
ETAS SCODE Workbench 3.1

Getting Started

Copyright

The data in this document may not be altered or amended without special notification

from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this

document. The software described in it can only be used if the customer is in possession

of a general license agreement or single license. Using and copying is only allowed in

concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,

transmitted, stored in a retrieval system or translated into another language without the

express written permission of ETAS GmbH.

© Copyright 2022 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging

to the respective owners.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

mathworks.com/trademarks for a list of additional trademarks.

SCODE Workbench 3.1 – Getting Started R01 EN – 04.2022

Contents

1. Safety and Privacy Information. 6

1.1. Demands on the Technical State of the Product. 6

1.2. Intended Use. 6

1.3. Classification of Safety Messages . 7

1.4. Safety Information. 7

1.5. Privacy Notice . 7

1.5.1. Data Categories. 7

1.5.2. Technical and Organizational Measures . 8

2. About SCODE Workbench . 9

2.1. Finding Out More . 9

3. Installing SCODE Workbench . 10

3.1. Preparing the Installation . 10

3.1.1. Delivery Scope. 10

3.1.2. Software Prerequisites and System Requirements . 10

3.2. Installation. 10

3.2.1. Installation via Dialog Windows . 10

3.2.2. Command-Line Installation . 16

3.3. Licensing. 17

3.4. Uninstallation . 18

4. SCODE-ANALYZER Tutorial . 20

4.1. Introduction . 20

4.1.1. Example: Hybrid Car . 21

4.2. Lesson 1: Creating a SCODE-ANALYZER Project. 21

4.3. Lesson 2: Defining the Problem Space. 25

4.4. Lesson 3: Defining Modes . 28

4.4.1. Creating and Editing Modes . 28

4.4.2. Checking Modes . 33

4.4.3. Inserting a Non-System Mode . 35

4.4.4. Viewing the Decision Tree . 36

4.5. Lesson 4: Code Generation from Mode Invariants . 39

4.6. Lesson 5: Defining Events and Transitions. 42

4.6.1. Creating and Editing Events and Transitions from One Mode. 42

4.6.1.1. First Transition . 46

4.6.1.2. Second Transition. 49

4.6.1.3. Remaining Transitions . 50

4.6.2. Optimizing the Rules . 52

4.6.3. Completing the Transition Matrix . 54

4.7. Lesson 6: Code Generation from Mode Transition Matrix 56

4.8. Lesson 7: Generating a Report. 58

5. SCODE-CONGRA Tutorial . 62

5.1. Introduction . 62

ETAS Contents

SCODE Workbench 3.1 — Getting Started 3

5.1.1. Concepts . 62

5.1.2. Preparations . 63

5.2. Lesson 1: Simple Equation . 65

5.2.1. Defining the Equation . 67

5.2.2. Specifying Directions . 71

5.2.3. Working with Computations . 74

5.2.4. Additional Task. 79

5.3. Lesson 2: Non-Linear Equation . 82

5.3.1. Preparing the Project . 82

5.3.2. Equation System and Computation . 85

5.3.3. Additional Tasks . 87

5.4. Lesson 3: Constants, Parameters, Fixed Variables . 89

5.4.1. Constants. 89

5.4.2. Parameters . 91

5.4.3. Fixed Variables . 93

5.4.4. Generating Code . 95

5.5. Lesson 4: Inverting Models . 98

5.6. Lesson 5: Explicit Outputs . 100

5.7. Lesson 6: Algebraic Loop . 102

5.8. Lesson 7: Constraints and Verification . 103

5.8.1. Constraints for Variables . 104

5.8.2. Verification Code . 107

5.8.3. Constraints for Parameters . 110

5.9. Lesson 8: Variables with Physical Units . 113

5.9.1. Defining Units in Separate Files. 114

5.9.2. Defining Units in the System SYQ File . 120

5.9.3. Assigning Units . 121

5.9.4. Units and Initial Values/Constraints . 123

5.9.5. Units in the Generated Code . 125

5.9.6. Additional Task. 126

6. First Steps with SCODE Workbench . 129

6.1. First Steps with SCODE-ANALYZER . 132

6.1.1. Generator Settings. 132

6.1.2. Start Using SCODE-ANALYZER . 134

6.2. First Steps with SCODE-CONGRA. 136

6.2.1. Settings . 136

6.2.2. Start Using SCODE-CONGRA . 138

6.3. Simulation in MATLAB®. 142

6.3.1. Uninstall Old Connection to MATLAB® . 142

6.3.2. Connect Current Version . 142

7. Useful Information . 144

7.1. SCODE-ANALYZER: Generating TPT Test Cases . 144

7.1.1. SCODE-ANALYZER Project . 144

ETAS Contents

SCODE Workbench 3.1 — Getting Started 4

7.1.2. Working in TPT . 154

7.1.2.1. Preparations . 154

7.1.2.2. TPT Project. 155

7.2. SCODE-CONGRA: Colors . 166

7.3. SCODE Workbench: Installing Yakindu Traceability . 169

8. Glossary . 177

8.1. SCODE-ANALYZER . 177

8.2. SCODE-CONGRA . 179

9. Tutorial Hints. 182

9.1. SCODE-ANALYZER Tutorial Hints . 182

9.1.1. Problem Space . 182

9.1.2. Modes . 182

9.1.3. Events and Transitions . 192

9.1.4. Code Generation: Mode Invariants . 198

9.1.5. Code Generation: Transition Matrix. 200

9.1.6. SCODE-ANALYZER Report . 206

9.2. SCODE-CONGRA Tutorial Hints . 217

9.2.1. C Code for Lesson 3 . 217

9.2.1.1. C Code for a Flow with Constant . 217

9.2.1.2. C Code for a Flow with Parameter . 218

9.2.1.3. C Code for a Flow with Fixed Variable . 218

9.2.2. C Code for Lesson 4 . 219

9.2.3. ESDL Code for Lesson 5 . 220

9.2.4. Generated Code for Lesson 6 . 221

9.2.4.1. Computation SYQ Code. 221

9.2.4.2. C Code . 222

9.2.4.3. ESDL Code. 222

9.2.4.4. MATLAB® Code . 223

9.2.5. Generated Code for Lesson 7 . 224

9.2.5.1. C Code for a Flow with Constraints . 224

9.2.5.2. C Harness for Flow F_ConstraintsVariables_in_RU 225

9.2.5.3. Comparison: Generated Code with/without Parameter Constraint . . . 229

9.2.6. Hints for Lesson 8 . 233

9.2.6.1. Example: Unit Definitions in a *.syq File . 233

9.2.6.2. C Code for a Flow with Units . 233

9.2.6.3. MATLAB® Code for a Flow with Units. 234

9.2.6.4. SCODE-CONGRA Report . 235

10. Contact Information . 240

Figures . 241

Tables . 245

Index . 247

ETAS Contents

SCODE Workbench 3.1 — Getting Started 5

1. Safety and Privacy Information

In this chapter, you can find information about the intended use (section 1.2), and

information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (Help > Safety Advice) and to the safety

information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not

adhering to the safety messages.

1.1. Demands on the Technical State of the Product

The following special requirements are made to ensure safe operation:

• Take all information on environmental conditions into consideration before setup

and operation (see the documentation of your computer, hardware, etc.).

1.2. Intended Use

The SCODE Workbench consists of the products SCODE-ANALYZER and SCODE-

CONGRA. They provide support in the early phases of ECU software development.

Using the software tools of SCODE Workbench (System CO-DEsign), engineers, control

systems technicians, and software developers, among others, can create model-based,

structured, and easily understood solutions for ECU software that are then automatically

verified.

SCODE-ANALYZER makes it possible to clearly describe and verify complex

relationships in closed-loop control systems. To this end, the overall system is divided up

into operating areas known as modes (for example, idle, full load, limp-home mode).

Displaying the system this way is most beneficial when the software makes decisions or

has a lot of variants.

With SCODE-CONGRA, software, function developers can describe control systems in

exact, easy-to-understand mathematical terms, and graphically visualize the results. The

description of system behavior is specified textually or graphically. Rule violations,

inconsistencies, algebraic loops, and other important characteristics of the system are

displayed precisely in the graph, and the user is offered options and functions to correct

these errors in the system immediately.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not

adhering to the safety messages.

This ETAS product fulfills standard quality management

requirements. If requirements of specific safety standards (e.g.

IEC 61508, ISO 26262, DO-178b, EN50128 and other similar

standards) need to be fulfilled, these requirements must be

explicitly defined and ordered by the customer. Before use of the

product, customers must verify the compliance.

ETAS 1. Safety and Privacy Information

SCODE Workbench 3.1 — Getting Started 6

1.3. Classification of Safety Messages

Safety messages warn of dangers that can lead to personal injury or damage to property:

DANGER indicates a hazardous situation that, if not avoided, will

result in death or serious injury.

WARNING indicates a hazardous situation that, if not avoided,

could result in death or serious injury.

CAUTION indicates a hazardous situation that, if not avoided,

could result in minor or moderate injury.

NOTICE indicates a situation that, if not avoided, could result in

damage to property.

1.4. Safety Information

Please adhere to the ETAS Safety Advice and to the following safety information to avoid

injury to yourself and others as well as damage to the property.

See also section 1.3.

Further safety advice for this ETAS product is available in the following formats:

• In electronic form on the DVD. See Documentation\ETAS Safety
Advice.pdf for details.

• The "ETAS Safety Advice" window that opens when you start the program, or when

you select Help > ETAS Safety Advice.

1.5. Privacy Notice

Note that personal data is processed when using this product. As the controller, the

purchaser undertakes to ensure the legal conformity of these processing activities in

accordance with Art. 4 No. 7 of the General Data Protection Regulation (GDPR). As the

manufacturer, ETAS GmbH is not liable for any mishandling of this data.

1.5.1. Data Categories

Note that this product creates files containing file names and file paths, e.g. for purposes

of error analysis, referencing source libraries, or for communicating with third party

programs.

The same file names and file paths may contain personal data, if they refer to the current

user’s personal directory or subdirectories (e.g., C:\Users\<UserId>\
Documents\...).

ETAS 1. Safety and Privacy Information

SCODE Workbench 3.1 — Getting Started 7

If you do not want personal information to be included in the generated files, please make

sure that

• the workspace of the product points to a directory without personal reference.

• all settings in the product (see menu Window > Preferences in the product) refer

to directories and file names without personal reference.

• all project settings in the product (see menu Project > Properties) refer to

directories and file names without personal reference.

• Windows environment variables refer to directories without personal reference

because these environment variables are used by the product.

In this case, also make sure that the users of this product have read and write access to

all relevant directories.

When using the ETAS License Manager in combination with user-based licenses,

particularly the following personal data (categories) and/or data (categories) that can be

traced back to a specific individual is recorded for the purposes of license management:

• User data: UserID

• Communication Data: IP address

1.5.2. Technical and Organizational Measures

This product does not itself encrypt the personal data that it records. Please ensure that

the data recorded is secured by means of suitable technical or organizational measures

in your IT system, e.g. by using classic anti-theft and access protection on the

measurement hardware.

Personal data in generated files can be deleted by tools in the operating system.

ETAS 1. Safety and Privacy Information

SCODE Workbench 3.1 — Getting Started 8

2. About SCODE Workbench

This Getting Started guide provides relevant information to all the users who want to

install and get to know the ETAS SCODE Workbench. The SCODE Workbench hosts the

SCODE tools, SCODE-ANALYZER and SCODE-CONGRA.

SCODE Workbench is distributed as a standard Microsoft Windows installer. See chapter

3 for detailed installation information.

SCODE Workbench is an Eclipse-based product. If you are familiar with using an Eclipse

environment then you should feel at home. If SCODE Workbench is the first Eclipse-

based application you have used, open the help viewer and go to the Workbench User

Guide to get more information on the basic Eclipse features.

SCODE-ANALYZER

SCODE-ANALYZER makes it possible to clearly describe and verify complex

relationships in closed-loop control systems. The overall system is divided up into

operating areas known as modes (for example, idle, full load, limp-home mode).

Displaying the system this way is most beneficial when the software makes decisions or

has a lot of variants.

New users of SCODE-ANALYZER are referred to chapter 4. You will learn how to work

with SCODE-ANALYZER using examples.

A quick introduction to SCODE-ANALYZER is given in chapter 6, particularly section 6.1.

SCODE-CONGRA

SCODE-CONGRA is designed to help you define and analyze continuous systems,

simulate them and generate code.

The system is described purely in form of variables, relations, and equations. The

equations are undirected. Depending on which variables are marked as inputs, the

equations are solved in the corresponding direction, and code is generated representing

the results of this direction of equations.

New users of SCODE-CONGRA are referred to chapter 5. You will learn how to work with

SCODE-CONGRA using various examples.

A quick introduction to SCODE-CONGRA is given in chapter 6, particularly section 6.2.

2.1. Finding Out More

Besides this User Guide, the online help is recommended — particularly when working

with the user interface. It can be called up via Help > Help Content or context-sensitive

(with F1) in the respective open operating window.

ETAS 2. About SCODE Workbench

SCODE Workbench 3.1 — Getting Started 9

3. Installing SCODE Workbench

This chapter provides relevant information to all users who install, maintain or uninstall

SCODE Workbench on a PC or a network.

The SCODE Workbench installation includes both SCODE-

ANALYZER and SCODE-CONGRA.

The licenses for SCODE-ANALYZER and SCODE-CONGRA

must be bought separately.

3.1. Preparing the Installation

Check the delivery package to make sure it is complete and make sure your system

corresponds to the system requirements. Depending on the operating system and

network connection used, you must ensure that you have the necessary user privilege.

3.1.1. Delivery Scope

The installation disk of the SCODE Workbench contains the following content:

• SCODE-ANALYZER and SCODE-CONGRA program files

• PDF documentation for SCODE-ANALYZER and SCODE-CONGRA

• ETAS Safety Advice in PDF format

• Information on open-source components used in SCODE-ANALYZER and

SCODE-CONGRA

3.1.2. Software Prerequisites and System Requirements

The software prerequisites and system requirements are listed in the release notes of the

SCODE Workbench.

3.2. Installation

When you install the SCODE Workbench, both SCODE-ANALYZER and SCODE-

CONGRA are installed automatically.

Keep in mind that you need separate licenses for SCODE-ANALYZER and SCODE-

CONGRA.

3.2.1. Installation via Dialog Windows

To start the SCODE Workbench installation

1. Insert the data carrier in the respective drive on your computer.

An installation dialog window opens.

2. Follow the Installation link, then follow the Install SCODE Workbench 3.1 link.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 10

3. Alternatively, select the driver in the Windows Explorer and run the setup.exe file

from the Installation folder.

The ETAS Installer is launched.

4. Click Next to get to the next installation window.

License agreement

Next, you have to accept the End User License Agreement.

1. Read the license agreement, then activate the I accept the terms of the License

Agreement option.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 11

2. Click Next.

To check for blocking applications

The "Verifying conditions" window shows running applications that block the installation.

1. Close each blocking application with its native closing mechanism.

Or

2. Click Next.

You are asked if you want to close the applications.

3. Click Yes to continue.

If an application cannot be closed normally, you are asked if you want to kill the

respective process.

Data loss due to process killing

Killing a process can lead to data loss.

Save your data and make sure that no data will be lost

before you agree to kill the process.

4. Click Yes to continue.

Once all blocking applications are closed, the installation continues automatically.

To define path settings

In the "Choose Install Location" window, you are prompted to enter a destination directory

for the SCODE Workbench.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 12

1. Enter or select (via the Browse button) a valid path.

An invalid path deactivates the Next button. You have to correct the path before

you can continue.

2. Click Next.

If you selected an existing directory, the installer assumes that the SCODE

Workbench 3.1 is installed in the selected directory. You are asked to uninstall the

existing installation.

3. Click Yes to continue.

If the existing folder does not contain an installation of the SCODE Workbench, the

folder is deleted. Continue reading at "To specify a folder in the Start menu".

If you selected an existing folder that contains an installation of the SCODE

Workbench, the "Uninstall ETAS SCODE Workbench" window opens.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 13

If you continue with Next, the connections between the old

version and MATLAB® and Simulink® are kept.

This means the new version cannot be connected to

MATLAB and Simulink during installation.

It is therefore strongly recommended that you do the

following:

1. Cancel the installation.

2. Remove all connections between the old version

and MATLAB and Simulink.

See section 6.3.2 for an instruction.

3. Re-start the installation.

4. Click Next.

The existing version is uninstalled. Once uninstallation is complete, the Close

button is available.

5. Click Close.

The installation continues.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 14

To specify a folder in the Start menu

1. Do one of the following:

◦ Accept the default folder name.

◦ Enter a new folder name.

You can enter folder and subfolder.

To install the SCODE Workbench

The next step starts the installation. You cannot abort it.

1. In the "Choose Start Menu Folder" window, click Install.

The installation is performed. A progress indicator shows how the installation is

progressing. When the installation is complete, the "Installation Complete" window

opens.

2. Click Next.

You are prompted to finish the installation.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 15

3. If desired, activate the Open ETAS SCODE Workbench 3.1 Getting Started

option.

4. Click Finish to complete the installation.

In the Start menu, the specified folder (named ETAS SCODE Workbench 3.1 by

default; see also "To specify a folder in the Start menu") is created. It contains the

following entries:

• SCODE Workbench 3.1

The SCODE Workbench is started.

• SCODE Workbench 3.1 Getting Started

Link to the Getting Started manual for SCODE Workbench.

• SCODE Workbench 3.1 Release Notes

Link to the Release Notes for SCODE Workbench.

The ETAS License Manager has an entry ETAS License Manager in the ETAS program

group of the Start menu.

The following icon is placed on the desktop of your computer:

3.2.2. Command-Line Installation

This section describes the command-line installation. Installation via dialog windows is

described in section 3.2.1.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 16

When you start the SCODE Workbench installation from a command line, you can use

several command-line parameters to customize the installation.

The command-line options are case-sensitive. For example, /S
will cause a silent installation, but /s will not.

/? or /h

Opens a window with the valid command line arguments.

/S or /silent

Silent installation mode. With this installation mode, no dialog windows requiring

user information open.

Default values are used for all information normally requested in installation windows.

Error messages are hidden, too.

/silent must be the first command-line argument. If other

arguments precede it, /silent has no effect.

/NCRC

Skips CRC check of the installer (ignored if CRCCheck force is set in the installer).

/D

Sets the installation directory ($INSTDIR).

/D must be the last parameter in the command line. /D must not contain any quotes.

Syntax

without spaces  —  /D=C:\ETAS\SCODE<x>.<y> [1]

with spaces  —  /D=C:\Program Files\SCODE

Examples

setup.exe /S /EULAAccepted

Triggers a silent installation with default installation path and CRC check.

setup.exe /NCRC /D=C:\Tools\SCODE<x>.<y> [1]

Triggers a non-silent installation without CRC check and with user-defined installation

directory.

3.3. Licensing

A valid license is required for using SCODE-ANALYZER, and a separate valid license is

required for using SCODE-CONGRA. You can obtain the license file(s) required for

licensing either from your tool coordinator or through a self-service portal under

www.etas.com/support/licensing. To request the license file(s), you have to enter the

activation number which you received from ETAS during the ordering process.

In the Windows Start menu, go to the app list and select E > ETAS > ETAS License

Manager.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 17

https://www.etas.com/support/licensing

Follow the instructions given in the license manager dialog. For further information about,

for example, the ETAS license models and borrowing a license, press F1 in the ETAS

License Manager.

If you do not have a valid license for either SCODE-ANALYZER or SCODE-CONGRA,

the respective tool will be available in grace mode for 14 days. After that, SCODE-

ANALYZER or SCODE-CONGRA can no longer be used.

3.4. Uninstallation

The entire SCODE Workbench is uninstalled. You cannot uninstall SCODE-ANALYZER

or SCODE-CONGRA individually.

Before you uninstall a version of the SCODE Workbench, you

must remove all connections between that version and

MATLAB®/Simulink®.

Otherwise, a new version cannot be connected to MATLAB
®/Simulink®.

See section 6.3.2 for an instruction.

Use one of the following ways to start the uninstall process for the SCODE Workbench:

• Programs and Features from the Windows control panel

• Apps > Apps & features from the Windows Settings

To uninstall the SCODE Workbench

1. Start the uninstall procedure.

A safety inquiry opens.

The next step will start the uninstallation. The entire

content of the installation directory will be deleted.

You cannot cancel the uninstallation once it is running.

2. Click Yes to continue.

A progress indicator shows how the uninstallation is progressing. Once

uninstallation is complete, a success window opens.

3. Click Close to end the uninstallation.

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 18

[1] <x>.<y> is the SCODE Workbench version number

ETAS 3. Installing SCODE Workbench

SCODE Workbench 3.1 — Getting Started 19

4. SCODE-ANALYZER Tutorial

This chapter contains a tutorial for SCODE-ANALYZER. A tutorial for SCODE-CONGRA

can be found in chapter 5.

4.1. Introduction

Users who are not yet familiar with SCODE-ANALYZER will learn the basic working steps

of SCODE-ANALYZER in this tutorial. The tutorial does not require any knowledge of

SCODE-ANALYZER, but does assume that you are familiar with the Windows operating

system and with Eclipse in general.

Motivation

The SCODE methodology aims at the following:

• reducing complexity

• determinism (100% complete, 100% consistent, all mode transitions are valid)

• 100% test coverage

• proof for correctness throughout the tool chain

• easy and fast modeling

For that purpose, the SCODE methodology separates control flow (discrete logic) and

data flow (continuous computation). SCODE-ANALYZER handles the discrete control

flow, while SCODE-CONGRA handles continuous data flow.

Workflow

Working with SCODE-ANALYZER comprises the following steps, which are covered by

this tutorial:

A. Create a SCODE-ANALYZER project.

See also section 4.2, “Lesson 1: Creating a SCODE-ANALYZER Project”.

B. Define the problem space, the combinatorial combinations of the system context.

See also section 4.3, “Lesson 2: Defining the Problem Space”.

C. Define the valid and invalid operational modes via rules on the problem space.

See also section 4.4, “Lesson 3: Defining Modes”.

D. Generate code for the modes.

See also section 4.5, “Lesson 4: Code Generation from Mode Invariants”.

E. Define the mode transitions / events via rules.

See also section 4.6, “Lesson 5: Defining Events and Transitions”.

F. Generate code for the mode transition matrix.

See also section 4.7, “Lesson 6: Code Generation from Mode Transition Matrix”.

G. Generate a report for the SCODE-ANALYZER project.

See also section 4.8, “Lesson 7: Generating a Report”.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 20

4.1.1. Example: Hybrid Car

The example system for this tutorial is a car with combustion engine and electric

engine/generator. It consists of the following components:

Combustion engine Can get disconnected (e.g. by clutch).

Electric engine/ generator Converts mechanical power to electrical or vice versa.

Can be disconnected (e.g. by clutch).

Battery

Brake The system can recuperate energy while braking.

Switch Used to select electric operation.

Table 1. Example system — components

Figure 1. Example system — draft

4.2. Lesson 1: Creating a SCODE-ANALYZER Project

In the first lesson of this tutorial, you will start the SCODE Workbench, open a workspace,

and create a SCODE-ANALYZER project.

It is recommended that you use a separate workspace for the

tutorial.

To create a workspace

1. Start the SCODE Workbench.

The "SCODE Workbench Launcher" window opens, asking for a workspace

location.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 21

2. In that window, enter or select (via the Browse button) a path and name for your

workspace.

This tutorial uses a workspace named WS_tutorial.

3. Click OK.

If you entered a directory that does not yet exist, it is created now.

The SCODE Workbench opens. It shows the welcome page.

Figure 2. SCODE Workbench window, showing the Welcome page

4. To reach the workbench, click the Hide button at the top right.

If you selected a new workspace, all views are empty (see Figure 3). If you

selected an existing workspace, that workspace is shown in the views.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 22

Figure 3. SCODE Workbench (SCODE-ANALYZER perspective) with empty workspace

If you used the SCODE Workbench with SCODE-CONGRA before you started this

tutorial, your window will look different than Figure 3. To open the SCODE-ANALYZER

perspective, click the SCODE-ANALYZER button at the right of the toolbar.

The SCODE-ANALYZER perspective shows the following views:

• top left: Project Explorer

• top middle: reserved for various editors

• top right: "Outline" view and "Build" view

• bottom left: "Problems" view, "Properties" view, Execution Environment, "Console"

view

• bottom right: "Analysis Details" view

You can now create a project for the tutorial.

To create a SCODE-ANALYZER project

1. In the SCODE Workbench window, do one of the following:

◦ Select File > New > SCODE-ANALYZER Project.

◦ Click the arrow next to the New button and select SCODE-ANALYZER

Project.

The "SCODE-ANALYZER project" window opens.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 23

Figure 4. "SCODE-ANALYZER project" window

2. Enter a project name, e.g., hybridCar.

It is recommended that you use the default location for this tutorial.

3. Click Finish.

The project is created, together with some default elements. The "Problem Space"

page is shown in the SCODE Workbench window.

4. Expand the tree in the Project Explorer.

Figure 5. SCODE Workbench window with newly created SCODE-ANALYZER project

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 24

4.3. Lesson 2: Defining the Problem Space

In this lesson, you will define the problem space of the system.

This is usually carried out as a structured discussion between domain experts and

SCODE analysts. The domain experts provide information about the system context,

requirements and system know-how. The SCODE analysts provide the competence for

the method & tooling. The analysis defines the problem space — also called condition and

action space — by a Zwicky box in terms of

• Dimensions — Conditions (inputs) and actions (outputs): aspects of the system or

its context that cause or represent different system behaviors (or cause-effect

chains) In the hybrid car example, one condition is the state of charge of the

battery, or battery SOC for short.

• Alternatives — possible values or value ranges of a dimension Alternatives for the

battery SOC condition would be full (i.e. no further charging possible), empty, and

normal.

To determine the dimensions

1. Write down the dimensions of the system, and the alternative values each

dimension can have.

Dimension Alternative

battery SOC full / empty / normal

...

When you name a dimension and its alternatives, you

should rather base the names on the physical meaning

than on the current implementation.

When you consider your list complete, you can enter the dimensions in SCODE-

ANALYZER. One condition dimension has been created automatically when you created

the project; you can add as many dimensions as required.

To edit an existing condition

1. Go to the "Problem Space" page of your project.

This page contains the Zwicky box.

2. Click in the "Dimension" cell of the existing condition and enter a name.

3. Click in the "Alternative 1" cell of the condition and enter the first alternative.

4. In the "Alternative 2" cell, enter the second alternative.

A new, empty alternative is added.

5. If required, enter further alternatives.

You do not have to change the type of the dimension.

For the battery SOC condition of the tutorial, the row should look like this:

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 25

Figure 6. "Problem Space" page with one condition

To add a new condition

1. In the "Problem Space" page, click the text Type new dimension below the last

dimension.

2. Enter the name of the new dimension.

The dimension is created. The type Condition is assigned automatically, and the

first alternative is set to a default value.

3. Enter the alternatives as described in To edit an existing condition.

Conditions are allowed to have different numbers of alternatives. One condition can

have 3 or more alternatives, while another has just 2 alternatives. Extra alternatives

are left empty.

4. Add the other conditions you need.

The "Outline" view on the right of the SCODE-ANALYZER window shows the statistic of

the problem space.

Figure 7. "Outline" view with statistics for the problem space

If desired, you can add a comment to a condition or to a single alternative.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 26

To add a comment to a condition or alternative

1. In the "Problem Space" page, click the condition or alternative you want to

comment.

2. Go to the "Properties" view.

By default, the "Properties" view is displayed at the bottom left of the SCODE

Workbench window.

3. Enter your comment.

Figure 8. "Properties" view for a dimension selected in the "Problem Space" page

In the "Problem Space" page, the condition or dimension is marked with a triangle

in the upper left corner of its table cell.

If the mouse pointer hovers over the cell, the comment appears as tooltip.

Add all conditions you need. When you have entered all conditions, the "Problem Space"

page may look like this:

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 27

4.4. Lesson 3: Defining Modes

The static analysis of the condition and action space described by the Zwicky box

decomposes the condition and action space into multiple non-overlapping subspaces that

model partial problems. A partial problem is now characterized by the fact that the

context of the system is in a so-called mode, i.e., in a specific situation. In this situation,

the system has to behave in a specific way, i.e., the system resides also in a mode

corresponding to this situation. Thus, a mode can also be understood as a so-called

situation module.

Modes that are relevant for the problem solution and model the corresponding system are

also called normal modes or system modes. In SCODE-ANALYZER, system modes are

marked by this icon:

Impossible or meaningless combinations of conditions, and combinations that are

possible by nature, but ruled out by design, are stored in so-called non-system modes. In

SCODE-ANALYZER, non-system modes are marked by this icon:

It is strongly recommended that you use system modes for

combinations that are possible, but ruled out by design. This is

especially important for safety-critical systems.

4.4.1. Creating and Editing Modes

The next thing to do is to define the modes of the system.

Again, this is usually carried out as a structured discussion between domain experts and

SCODE analysts.

In the hybrid car example, one mode is the situation that the car is charging.

To determine the modes

The modes must not overlap. If they do, SCODE-ANALYZER will

issue an error.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 28

1. Write down the modes of the system and the states of the conditions for each

mode.

Mode Conditions

battery SOC battery at OT others

charging empty or normal yes

...

When you consider your list complete, you can define the modes in SCODE-ANALYZER.

One mode has been created automatically when you created the project; you can add as

many modes as required.

Before you start adding and editing modes in SCODE-ANALYZER, read the following list

of requirements:

A System modes must not overlap.

If they do, an error message is shown in the "Outline" view (see Figure 10).

B You can select no, one, several, or all alternatives of a condition.

If a condition is irrelevant for the current mode, you can select none or all of its

alternatives. Such a condition is sometimes called a don’t care dimension.

If you add a new alternative to the condition, that

alternative is, by default, not selected in any rule. This

means that the condition loses its don’t care property if you

selected all old alternatives.

It is therefore recommended that you select no alternative

for don’t care dimensions.

C If you select two or more alternatives of one condition, the alternatives are ORed:

alternative_1 OR alternative_2

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 29

D If one alternative of a condition is forbidden for the mode, you can either select the

forbidden alternative and activate the option in the "NOT" column, or you can select

all conditions except the forbidden one.

is equivalent to

If you add a new alternative to the condition, that

alternative is not selected in any rule. This means that the

two possibilities are no longer equivalent.

The first possibility allows all alternatives except the

forbidden one, i.e. the new alternative is allowed.

The second possibility allows only those alternatives that

are explicitly selected, i.e. the new alternative is forbidden.

E The setting in the "NOT" column of a condition applies to all selected alternatives.

If you select several alternatives and activate the option in the "NOT" column, the

rule for this condition is

NOT(alternative_1 OR alternative_2)

F Alternatives from different conditions are ANDed:

battery SOC = empty AND battery at OT = no

G You can specify one or more rules for one mode. Each mode must have at least one

rule; otherwise, an error is issued.

A state belongs to a mode if it matches one of the mode’s rules.

Table 2. Requirements for modes and mode definition rules

To edit an existing mode

1. In the Project Explorer, do one of the following:

◦ Double-click the existing mode.

◦ Right-click the existing mode and select Open in Editor from the context

menu.

The editor for the mode opens in the "Mode Definition" page. The "Mode" field

allows renaming the mode and switching from system mode to non-system mode

or back. The "Rule Editor" field is used to select, for each condition, those

alternatives that define the mode.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 30

Figure 9. "Mode Definition" page with mode editor

2. In the "Name" field of the "Mode" pane, enter a meaningful name.

3. If desired, enter a comment in the "Comment" field.

4. In the "Rule Editor" field, click in the cells of all alternatives that define the mode.

Keep in mind the requirements listed in Table 2.

5. When you have selected all relevant alternatives, click the Add Include Rule

button.

Include rules and exclude rules are both valid, but exclude

rules tend to be more difficult to understand.

It is therefore strongly recommended that you use only

include rules.

The rule is added to the "Include Rules" list in the "Rules" field.

Since the mode is the only one in the project, it is marked as start mode ().

You can enter a name and a comment for the rule in the "Properties" view.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 31

The "Outline" view shows the statistics for the mode definition. Red font indicates errors.

Figure 10. "Outline" view with statistics for the mode definition

To add a new mode

1. To add a new empty mode, do one of the following:

◦ In the "Mode Definition" page, "Mode" field, click the Add Mode button.

◦ In the Project Explorer, right-click the Modes node and select Add Mode

from the context menu.

The mode is created as a system mode. It is added to the Modes node in the

Project Explorer, and it is opened in the mode editor in the "Mode Definition" page.

2. To add a non-empty mode, proceed as follows:

i. In the "Rule Editor" field, click in the cells of all alternatives that define the

mode.

ii. Click the Add Mode from Rule button.

The mode is added, together with the rule you specified.

3. Edit the mode as described in To edit an existing mode.

Add and edit all modes you need. [2] When you have entered all conditions, the Modes
folder in the Project Explorer may look like this:

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 32

The content of the "Mode Definition" page depends on your selection in the Project

Explorer.

4.4.2. Checking Modes

While you are adding and editing modes, the modes are analyzed for completeness,

determinism, and consistency. The "Outline" view shows an overview of the results. You

cannot generate code until all errors are corrected.

Figure 11. "Outline" view with statistic analysis for the modes and rules in Table 25

Red lines indicate errors. If you click a red line, detailed information appears in the

"Analysis Details" view.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 33

Figure 12. "Analysis Details" view for the modes and rules in Table 25

You can display the decision tree (see section 4.4.4) for an easy review.

You have to remove inconsistent and/or non-deterministic settings before you can

generate code. There are two ways to remove the errors: You can try to re-define the

rules, or you can check if your list of conditions is really complete, and add a condition, if

necessary.

To start removing the errors

1. For this tutorial, assume that a condition desired acceleration is missing.

2. Add the condition with suitable alternatives. [3]

3. Assign appropriate alternatives to the mode definition rules. [4]

If you determined and used the desired acceleration as shown in Table 26, the

"Outline" view looks as follows.

The number of states has increased, due to the new condition. The system is now

both deterministic and consistent, but some states are missing. In the "Analysis

Details" view, the results are marked as possibly outdated, and an Update button

appears.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 34

4. Click Update.

The "Analysis Details" view suggests rules for the missing states.

Figure 13. "Analysis Details" view with suggested rules for missing states

5. Double-click a suggested rule to display it in the "Rules Editor" field.

6. Check if the rule is physically possible. [5]

7. Repeat the last two steps for the other suggestion(s).

4.4.3. Inserting a Non-System Mode

Impossible or meaningless combinations of conditions, and combinations that are

possible by nature, but ruled out by design, are stored in non-system modes.

To start removing errors

1. In the "Analysis Details" window, double-click a suggestion to display the rule in the

"Rule Editor" field.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 35

2. In the "Rule Editor" field, click the Add Mode from Rule button.

The mode is added (as a system mode), together with the suggested rule.

3. Enter a name for the mode.

4. Click the Toggle to Non-System Mode button.

With that, the mode becomes a non-system mode. The mode icon in the Project

Explorer changes from to .

The static analysis in the "Outline" view is updated automatically. The "Analysis Details"

view is not updated automatically, it is just marked as possibly outdated.

To add the remaining states

1. Update the "Analysis Detail" view.

2. Display the remaining suggestion in the "Rules Editor" field.

3. Check if the rule is physically possible. [6]

4. Do one of the following:

◦ If the rule is not possible, add it to the non-system mode.

◦ If the rule is possible, add it to a system mode.

With that, the system is complete, deterministic, and consistent.

4.4.4. Viewing the Decision Tree

The mode definition rules can be visualized in a so-called decision tree, which is

displayed in the "Decision Tree" page. This decision tree can be used to check modes

and rules, and it is easier to read than the Zwicky box and the mode list.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 36

Figure 14. "Decision Tree" page

In the decision tree, the conditions are displayed as named blue boxes, normal modes

are displayed as named grey boxes. Non-system modes are hidden by default, but you

can display them, if desired. They appear as unnamed grey boxes. The alternatives of a

condition are displayed as named arrows pointing to another condition or a mode.

By default, the conditions appear in roughly the same order as in the Zwicky box.

However, you have several possibilities to change the look of the decision tree.

To change the view of the decision tree

1. Drag any condition and drop it onto another.

In some cases, dropping a condition onto another is forbidden. A prohibition icon is

shown in these cases.

If dropping is permitted, the dragged condition takes the place of the condition it is

dropped onto. The decision tree is re-arranged so that it still covers all decisions.

Figure 105 shows a re-arranged decision tree of the tutorial project.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 37

2. Click the Toggle orientation button to change the direction of the decision

tree.

Figure 106 shows the decision tree with horizontal orientation.

3. Click the Toggle view between tree and dag button to switch from tree view

mode to directed acyclic graph (DAG) view mode or back.

Figure 107 and Figure 108 show examples for the DAG view mode.

4. Open the "Layer" combo box and select the number of tree levels you want to

display.

You should do this only in the tree view mode. The DAG

view mode is suitable only for complete trees.

Only the selected number of levels is shown. Figure 109 shows an example.

5. Use the Zoom in and Zoom out buttons to zoom the decision tree.

The Fit to page button scales the decision tree to the current size of the

"Decision Tree" page.

6. Click the Show non-system states button to display the non-system modes.

See Figure 110 for an example.

7. To select a sub-tree, click the triangle to the right of the top node name and select

one of the alternatives.

Only the selected subtree is displayed. See Figure 110 for an example.

8. To optimize the height of the decision tree, right-click a node at or near the top of

the tree and select an Optimize height * entry from the context menu.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 38

The nodes of the tree are re-arranged so that the height of the tree is minimized.

See Figure 111 and Figure 112 for examples.

4.5. Lesson 4: Code Generation from Mode Invariants

The purpose of code generation is to transform this model into executable code that

reflects the same functionality as the model.

As soon as your model is complete, deterministic, and consistent, you can generate code,

even though transitions are still missing. In this case, the source for code generation is

based on the mode definition only; it is named Mode Invariants.

SCODE-ANALYZER offers the following setup possibilities:

• for the entire workspace (accessible via Window > Preferences)

• for a particular project (accessible via a project’s context menu or via Project >

Properties)

Project-specific settings override workspace settings. In this tutorial, you will use

workspace settings.

To prepare code generation from mode invariants

1. Select Window > Preferences.

2. In the "Preferences" window, open the "SCODE-ANALYZER\Generator" node.

3. In that node, do the following:

i. Select one or more generators.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 39

ii. For the "Generation Source" property, select Mode Invariants.

4. Click Apply and Close.

The settings should look like those in Figure 15.

Figure 15. "Preferences" window with settings for code generation from mode invariants

With that, you can generate the code.

To generate code from mode invariants

1. In the Project Explorer, right-click the SCODE file and select Generate Code from

the context menu.

Code is generated for the selected generators (ESDL, C code, C++ code, or

MATLAB). The resulting files are stored in the SCODE-ANALYZER project; the

output folder is named src-gen by default.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 40

Figure 16. Output folder for code generation

2. Open the hybridCar.* file(s) and look at the code.

It is recommended that you keep a copy of this file for later use.

3. If desired, open other generated files and inspect the code.

For code generation from mode invariants, the output folder contains the following items:

• folder <generator_name> (e.g., ESDL or C)

Only created when you activated the code generation

option Use generator specific subfolder (see Figure 15).

Contains all files generated for the respective generator.

◦ folder <project_name> (e.g., hybridCar)

Contains the files that define conditions and modes and the file that

determines the current mode.

For the ESDL generator, the files are named as follows:

▪ <condition_name>_Type.esdl (define the conditions; one file per

condition)

▪ <project_name>.esdl (determines the current mode)

▪ <project_name>.* (required if you want to use the generated

ESDL code in ASCET-DEVELOPER)

▪ Mode_Types.esdl (defines the modes)

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 41

For the MATLAB generator, the files are named as follows:

▪ <condition_name>_Type.m (define the conditions; one file per

condition)

▪ <project_name>_ModeSelector.m (determines the current mode)

▪ Mode_Types.m (defines the modes)

For the C and C++ generators, the files are named as follows:

▪ <project_name>_Types.h or <project_name>_Types.hpp
(defines all conditions and modes)

▪ <project_name>.c or <project_name>.cpp (determines the

current mode)

▪ <project_name>.h or <project_name>.hpp

4.6. Lesson 5: Defining Events and Transitions

The dynamic analysis step of SCODE-ANALYZER allows to specify which situation

changes in the context are possible and how the system shall react to them in terms of

transitions between modes. This is done in terms of a mode transition table that defines

which event triggers a transition from a source mode to a target mode. It is also possible

to define that there is no transition possible from a specific source mode to a target

mode.

Just like modes, events are defined based on rules on sets of alternatives for each

condition dimension in the underlying Zwicky box. This enables the tool-based analysis of

properties such as liveliness, stability and determinism:

• Liveliness of a transition means that the corresponding event is able to really

trigger the transition to the target mode (i.e. the event conditions are not already

fulfilled by the rules of the source mode).

• Stability of a transition means that the corresponding event is compatible with the

target mode (i.e. the event conditions are fulfilled by the rules of the target mode).

Otherwise, an immediate further mode change would be the consequence and the

system would "oscillate".

• Determinism (or consistency) means that the events of all outgoing transitions of

one mode do not overlap, i.e. that there is always only one transition possible and

the target mode is uniquely defined.

4.6.1. Creating and Editing Events and Transitions from One

Mode

The next thing to do is to define the transitions from one mode, e.g., charging, to the other

modes, as well as the events that trigger the transitions. Again, this is usually carried out

as a structured discussion between domain experts and SCODE analysts.

An event is a set of one or more mode transition rules that must be fulfilled. Mode

transition rules are very similar to mode definition rules, except that mode transition rules

are always include rules. The requirements for modes and mode definition rules listed in

Table 2 are valid for events and mode transition rules, too.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 42

In the hybrid car example, the transition from charging to discharging can occur, for

example, if the battery is at operating temperature and fully loaded, the cable is okay, the

car is moving, and the driver wants to keep or increase the speed.

To determine events

1. Decide which transitions are allowed and which are forbidden.

2. Decide what event triggers which allowed transition.

current mode next mode

charging discharging standstill combustion

engine only

mechanical

brake

charging * battery at operating

temperature and fully

charged AND electric

engine cable okay

AND car moves AND

desired acceleration

is keep or increase

speed

discharging *

standstill *

combustion

engine only

*

mechanical

brake

*

When you consider your list complete, you can define the events and transitions in

SCODE-ANALYZER.

In SCODE-ANALYZER, events and transitions are specified on the "Mode Transition"

page. That page has two views, the "Event Overview and Implementation" view and the

"Mode Transition" view. A button at the top right of the "Mode Transition" page (marked

red in Figure 17) is used to toggle the views.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 43

Figure 17. "Mode Transition" page with "Event Overview and Implementation" view

By default, SCODE-ANALYZER assigns events to transitions based on the definition of

the respective target mode. In this tutorial, you will deactivate this default behavior and

define all transitions manually.

To set transition behavior

1. Open the "Preferences" window and go to the SCODE-ANALYZER node. [7]

2. In that node, set the default transition behavior to non-transition.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 44

Figure 18. "Preferences" window, "SCODE-ANALYZER" node

3. Click Apply and Close.

The "Mode Transition" view (see Figure 19) is used to specify transitions and events.

There are several ways to create and specify transitions and events:

A. To add an empty event, you can do one of the following:

◦ Right-click the Events folder in the Project Explorer and select the Add

Event context menu option.

◦ Use the Add Event button in the event viewer (b in Figure 19).

These events are then assigned to transitions in the transition matrix (a in Figure

19) and specified via the rule editor (c in Figure 19).

B. To add a non-empty event, you can specify a rule in the rule editor and then use

the Add Event from Rule button to add an event with the specified rule.

This event is then assigned to a transition in the transition matrix and refined.

The last way is used in this tutorial.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 45

4.6.1.1. First Transition

To add an event from a rule

1. Go to the "Mode Transition" view of the "Mode Transition" page.

Figure 19. "Mode Transition" page with "Mode Transition" view

The upper part of the window contains a transition matrix (a) and an event viewer

(b). The lower part contains a rule editor (c) similar to the one used in section 4.4.1,

“Creating and Editing Modes”.

2. In the rule editor, specify a rule for a transition.

3. If desired, enter a name and/or a comment for the rule.

4. When you have selected all relevant alternatives, click the Add Event from Rule

button.

An event is added, together with the rule you specified. The event is shown in the

event viewer, with default name and short name.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 46

Figure 20. Event viewer with new event

5. In the "Name" field, enter a meaningful name for the event that shows the purpose

of the event.

This tutorial uses the names of source mode and target mode as event name. The

event in Figure 20 is named charging_discharging.

You cannot change the short name.

6. If desired, enter a comment for the event in the "Properties" view.

The event is created, but not yet assigned to a transition.

To assign an event to a transition

1. In the transition matrix, double-click in the cell of a transition.

The event in Figure 18 shall be assigned to the transition from charging to

discharging.

A combo box opens that offers all existing events for selection. In addition, you can

select an empty row to remove an event assignment, and you can select — to mark

the transition as forbidden.

2. Select the event that you want to assign to the transition.

The event’s short name appears in the cell. If the event is valid, the cell

background becomes green.

Each row in the transition matrix contains transitions from one mode.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 47

A. The transitions from one mode must fulfill the following requirements:

a. All states that lead away from the source mode must be covered by the

transitions from that mode.

The number of states that must be covered, and of states that are covered,

are given in the "Outline" tab.

b. The events must not overlap.

B. A single transition from the source mode must fulfill the following requirements:

a. All states of the source mode must react to the event.

b. The event must be fully enclosed in the target mode.

This rule is violated if at least one state in one of the rules is not part of the

target mode.

c. The event must not overlap with a non-system mode.

This rule is violated if at least one state in one of the rules is part of a non-

system mode.

d. The event must not overlap with dynamic non-transitions.

e. The rules for the transition must not overlap with the source mode.

This rule is violated if at least one state in one of the rules is part of the

source mode.

The "Outline" view shows the statistics for the source mode, as well as for a selected

transition. The selected transition is okay, but most states are not covered.

Figure 21. "Outline" view with statistics for mode transitions

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 48

4.6.1.2. Second Transition

To set up and assign another event

1. Create another event with the rule fuel tank = empty.

2. Assign the event to the transition from charging to standstill.

The "Outline" view shows several errors (red lines).

Error message Violated requirement

x States not covered rule A.a

Overlapping Events rule A.b

Non-reacting States of Source Mode rule B.a

Event Not Fully Enclosed With Target Mode rule B.b

Event Overlaps with Non-System Mode(s) rule B.c

To check and remove the errors

1. Click the line Overlapping Events.

The "Analysis Details" view displays the "Overlapping Events" tab.

Since the tutorial does not (yet) use dynamic non-transitions, the content of both

folders is identical.

2. Expand the first folder and all of its children.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 49

3. To display one of the overlapping rules, right-click an entry in the Overlapping
Rules folder and select Open in Editor > <rule_name> of <mode_name> from

the context menu.

4. Refine one or both overlapping rules to remove the overlap.

In this example, the overlap can be removed, e.g., if the rule for the second event

is changed to fuel tank = empty AND electric engine cable =
defective.

5. Update the display in the "Analysis Details" view.

6. If there are more errors, repeat this procedure to solve these, too.

4.6.1.3. Remaining Transitions

Once all errors for existing transitions are removed, only the x States Not Covered
line remains red. If you click that line, detailed information appears in the "Analysis

Details" view. Use that information to specify the other transitions from the charging

mode.

To specify transitions with the "Analysis Details" view

1. In the "Outline" view, click the red line with x States not covered.

The "Analysis Details" view offers suggestions for further rules.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 50

Figure 22. "Analysis Details" view with suggested rules for transitions

2. To complete the transition from charging to discharging, do the following: [8]

i. Double-click a suggestion in the Remaining States per Target
Mode\discharging * folder to display it in the "Rules Editor" field.

ii. Click the Add Include Rule button to add this rule to the

charging_discharging event.

The statistics in the "Outline" view are updated automatically, the

suggestions in the "Analysis Details" view are not.

iii. In the "Analysis Details" view, click Update for new suggestions.

iv. Repeat these steps for the remaining suggestions in the Remaining
States per Target Mode\discharging * folder.

3. To specify another transition from charging, do the following:

i. Double-click a suggestion to display it in the "Rules Editor" field.

E.g., click the entry in the combustion engine only folder.

ii. Click the Add Event from Rule button.

The event is added, together with the rule you selected.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 51

iii. Enter a meaningful name for the new event.

For the transition from charging to combustion engine only, for

example, name the event charging_ combustionOnly.

iv. Assign the event to a transition.

v. Update the "Analysis Details" view.

vi. Add rules from the other suggestions for this transition.

4. Repeat step 3 until all transitions from charging are complete and no errors

remain. [9]

Events without errors are displayed in green in the transition matrix.

If all transitions from a mode are complete and free of errors, the mode is displayed

in green, too.

4.6.2. Optimizing the Rules

An event can have many rules that may overlap or appear overly complex. You can try to

optimize the rules for a selected event and reduce their number and/or complexity.

To optimize rules:

1. Select the event whose rules you want to optimize.

2. In the event viewer, select one or more rules of the event.

3. Click the Reduce Rules button.

The "Reduce Rules" window shows the results. If the rules could be reduced, the

event viewer is updated.

Figure 23 shows an example for successfully reduced rules.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 52

Figure 23. Event charging_combustionOnly before and after rule optimization

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 53

4.6.3. Completing the Transition Matrix

The transitions away from the charging mode are specified. Use the procedures from

section 4.6.1, “Creating and Editing Events and Transitions from One Mode” and section

4.6.2, “Optimizing the Rules” to specify the entire transition matrix [10] and optimize the

results.

The completed transition matrix looks like this:

The Mode Transition Graph button at the top right of the mode transition matrix

creates a graphical display of the transitions; see Figure 24 for an example.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 54

Figure 24. Mode transition graph for the completed transition matrix

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 55

4.7. Lesson 6: Code Generation from Mode Transition

Matrix

The purpose of code generation is to transform this model into executable code that

reflects the same functionality as the model.

As soon as your model is complete, deterministic, and consistent, and the transitions are

completely specified, you can generate code from the transition matrix.

To prepare code generation from the transition matrix

1. Open the "Preferences" window and go to the "SCODE-ANALYZER\Generator"

node.[7]

2. In that node, do the following:

i. Select one or more generators.

ii. For the "Generation Source" property, select Mode Transition Matrix.

For the other properties, as well as for the generator-specific settings in the

subnodes, you can use the default values.

3. Click Apply and Close.

The settings should look like those in Figure 25.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 56

Figure 25. "Preferences" window with settings for code generation from the transition

matrix

With that, you can generate the code.

To generate code from the transition matrix

1. In the Project Explorer, right-click the SCODE file and select Generate Code from

the context menu.

Code is generated for the selected generators (ESDL, C code, C++ code, or

MATLAB). The resulting files are stored in the SCODE-ANALYZER project; the

output folder is named src-gen by default.

Figure 16 shows the output folder for generated code from mode invariants. The

same files with the same names are created for code generated from the transition

matrix.

2. Open the <project_name>.* file(s) and look at the code.

See section 9.1.5, “Code Generation: Transition Matrix” for the hybridCar.esdl
file.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 57

3. If desired, compare the <project_name>.* file(s) from this section with the

respective files from section 4.5, “Lesson 4: Code Generation from Mode

Invariants”.

4.8. Lesson 7: Generating a Report

To get a description of your project, you can generate a report. Generated reports can be

read without a SCODE Workbench installation.

To generate a report

1. Right-click the SCODE file and select Run As > Report (ANALYZER) from the

context menu.

If this is the first time you use the Run As > Report (ANALYZER) on this SCODE

file, the "Edit Configuration" window opens for the report launch configuration.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 58

Figure 26. "Edit Configuration" window for a SCODE-ANALYZER report launch

configuration

2. In the "Edit Configuration" window, enter a name for the report file.

3. In the "SCODE File" field, enter or select (via Workspace button) the SCODE file

that contains the model you want to export.

4. In the "Content" area, activate at least one content option.

5. In the "Type" field, activate the option for the desired report file type.

6. In the "Output File" field, enter or select (via Workspace or File System button) an

existing folder for the report.

If you enter the name of an existing file with the selected

type, that file is overwritten without further inquiry.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 59

7. Click Run to generate the report.

The report is generated with the selected format and stored in the selected folder. If

you selected a folder inside your workspace, you can see the report in the Project

Explorer.

8. In the confirmation window, click Yes to open the report.

A report for the hybridCar project, with all report parts generated, is shown in section

9.1.6.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 60

[2] See Table 25 for a suggestion of modes and rules.

[3] If you need help, see To add a new condition.

[4] If you need help, see To add a new condition and/or Table 26.

[5] If you need help, see Table 27, “Suggested rules for the missing states. Alternatives

that cannot be true at the same time are marked.”

[6] If you need help, see Table 28, “Suggested rules for the states that are still missing

after suggestion 1 from the previous table has been inserted as non-system mode”.

[7] If you need help, see, e.g., To prepare code generation from mode invariants.

[8] If you need help, see Table 30.

[9] If you need help, see Table 29 and references therein.

[10] If you need help, see the tables in section 9.1.3, “Events and Transitions”.

ETAS 4. SCODE-ANALYZER Tutorial

SCODE Workbench 3.1 — Getting Started 61

5. SCODE-CONGRA Tutorial

This chapter contains a tutorial for SCODE-CONGRA. A tutorial for SCODE-ANALYZER

can be found in chapter 4.

5.1. Introduction

Users who are not yet familiar with SCODE-CONGRA will learn the basic working steps

of SCODE-CONGRA in this tutorial. The tutorial does not require any knowledge of

SCODE-CONGRA, but does assume that you are familiar with the Windows operating

system and with Eclipse in general.

To model physical systems in SCODE-CONGRA, you define equation systems.

5.1.1. Concepts

This section introduces the most important concepts and processes used in this tutorial.

Workspace

A workspace is a way to store all information specified or produced with SCODE-

CONGRA (or SCODE-ANALYZER).

In SCODE-CONGRA, a workspace is structured into projects, folders, and files. On

the Windows file system, a workspace is stored in form of folders and files with the

same structure.

Project

A SCODE-CONGRA project stores a model.

SCODE-CONGRA projects are identified as such by the Eclipse environment. The

constraint graph functionality is only available for projects of this type. In the following

image, you see the difference between a SCODE-CONGRA project, a SCODE-

ANALYZER project, and a general project.

System

A system is defined as a set of variables and relations between the variables. A

system is undirected, i.e. no inputs and outputs are specified. You cannot generate

executable code from an undirected system.

SYQ file

A textual file in the SYQ language that contains the semantic description of the

system.

A SYQ file is the textual base of each SCODE-CONGRA project. Here, all variables,

relations, units, and flows are defined or stored (when you are working in the graphical

editor).

Each SCODE-CONGRA project must have at least one SYQ file.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 62

Variable

A variable is an element that can be read and written during the execution of a

SCODE-CONGRA model.

In SCODE-CONGRA, all variables are deemed to be continuous.

Relation

A relation describes how different variables of a system are interrelated. It does not

imply a computation direction.

The relations between different variables are specified by mathematical equations,

e.g., Einstein’s famous relation: E - m*c2 = 0

Flow

A flow is a system with specified inputs and specified or derived outputs.

If a flow is valid, the equations in the system become directed to produce the imposed

outputs of the relations.

For example, if m and c are given, then E is computed as E = m * c2.

If E and c are given, then m is computed as m = E/c2.

A valid flow is the basis for code generation.

Computation

A computation is the result of solving a flow, an executable sequence of computation

steps. It captures the solved equations, and also orders the computation steps in a

linear way.

5.1.2. Preparations

The first thing to do is to start the SCODE Workbench and open a workspace.

It is recommended that you use a separate workspace for the tutorial.

To create a SCODE-CONGRA workspace

1. Start the SCODE Workbench.

The "SCODE Workbench Launcher" window opens. It asks for a workspace

location.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 63

2. In that window, enter or select (via the Browse button) a path and name for your

workspace.

This tutorial uses a workspace named WS_tutorial.

3. Click OK.

If you entered a directory that does not yet exist, it is created now.

The SCODE Workbench opens. If you selected a new workspace, all views are

empty (see Figure 27). If you selected an existing workspace, that workspace is

shown in the views.

Figure 27. SCODE Workbench (SCODE-CONGRA perspective) with empty workspace

If you used the SCODE Workbench with SCODE-ANALYZER before you started this

tutorial, your window may look different from Figure 27. To open the SCODE-CONGRA

perspective, click the SCODE-CONGRA button at the right of the toolbar.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 64

The SCODE-CONGRA perspective shows the following views:

• top left: Project Explorer

• top right: reserved for various editors

• bottom left: "Outline" view and "Build" view

• bottom right: "Problems" view, "Properties" view, Execution Environment, "Console"

view

By default, the built-in solver and the Maxima solver are selected for the entire

workspace.

With that, SCODE-CONGRA is ready to be used.

However, a connection to MATLAB can be useful for working with SCODE-CONGRA.

See To connect SCODE Workbench and MATLAB for further information.

5.2. Lesson 1: Simple Equation

In the first lesson of this tutorial, you will create a new project and specify a simple

equation, i.e., Ohm’s law,

Equation 1: Ohm’s law

 U = R * I

In Equation 1, R is the resistance in ohms, U is the voltage in volts, and I is the current in

amperes.

To create a SCODE-CONGRA project

1. In the SCODE Workbench window, do one of the following:

◦ Select File > New > SCODE-CONGRA Project.

◦ Click the arrow next to the New button and select SCODE-CONGRA

Project.

◦ Follow the Create a SCODE-CONGRA project link in the Project Explorer.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 65

The "SCODE-CONGRA Project" window opens.

Figure 28. "SCODE-CONGRA Project" window

2. Enter a project name, e.g., Simple_Equation.

It is recommended that you use the default location for this tutorial.

3. Click Finish.

The project is created, together with some default elements. The *.syq file is

shown in the SCODE Workbench window.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 66

Figure 29. SCODE Workbench window with newly created SCODE-CONGRA project (a:

project folder, b: system folder, c: system equation language package (*.syq file), d:

system graph)

5.2.1. Defining the Equation

The equation system is specified graphically in the system graph (d in Figure 29). For this

example, you will create one relation between three variables. The variables themselves

are created automatically once the relation is specified.

To specify the equation

1. In the Project Explorer, double-click the Simple_Equation system.

The system opens in the graphical editor.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 67

Figure 30. Graphical editor (a: breadcrumbs row, b: toolbar for general editor

functionality, c: palette with tools for graphical elements, d: empty canvas)

2. In the "Nodes" group of the palette, click Relation.

3. Click the canvas to insert the relation.

The relation is represented by a rectangle. In the screenshot above, the rectangle

border is red because the relation is over-determined. The error symbols is shown

because a relation needs at least one variable.

4. Open the "Properties" view for the relation. [11]

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 68

Figure 31. "Properties" view for the new relation (equation still incomplete)

5. In the "Properties" view, "Semantic" node, click in the "Value" column next to

"Equation".

The cell becomes an input field.

6. Enter the equation and press Return .

The equation is accepted. The rectangle border is now blue. Variables

(represented by blue circles) for R, U, and I are automatically added to the graph.

Blue lines connect the variables and the relation.

Figure 32. Canvas with relation and variables

7. If desired, enter a description and/or rename the relation.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 69

8. Save the project.

The graphical specification is added to the *.syq file.

Figure 33. Simple_Equation.syq file with variables and relation

Next, you edit the variables.

To edit the variables

1. In the graphical editor, select the variable R.

2. Open the "Properties" view for the variable.

3. In the "Description" row, "Value" column, enter a description for resistance R.

This tutorial uses the description resistance (ohms).

4. In the "Expression" row, enter a default value.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 70

5. Enter descriptions and default values for U and I, too.

Unless otherwise stated, this tutorial uses the default

value 0 for all variables.

6. Save the project.

The *.syq file is updated.

With that, your system is defined. It is undirected, i.e. you have not yet specified inputs

and outputs.

5.2.2. Specifying Directions

Before computation can start, a direction must be added, i.e. you have to determine

which variables are to be computed, and which variables are inputs.

For the current example, one equation is sufficient to compute either R, or U, or I.

Directions are not added to the system graph itself. You create a flow from the system

graph and specify the direction in that flow. The latter is done by assigning types to the

variables. The following types are available:

type set via

variable’s

context menu

description see also

input

Set Type > *

shown in diagram as Figure 35

fixed Variable with fixed value in current flow;

can be calibrated

shown in diagram as

section 5.4.3

free default value

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 71

type set via

variable’s

context menu

description see also

output implicitly or via

Set Type >

Output

shown in diagram as (implicit output)

or (explicit output) if the automatic

analysis finds that the output is

computable

impl.: Figure 35

expl.: Figure 61

parameter Set Type >

Parameter

Fixed value in entire system; can be

calibrated

shown in diagram as

section 5.4.2

constant Set Type >

Constant

Fixed value in entire system; cannot be

calibrated

hidden in diagram; can be edited only in

the *.syq file

section 5.4.1

Table 3. Variable types available in a flow

To create a flow

In the first flow you create, R shall be computed from U and I.

1. In the Project Explorer, right-click the system graph and select New > Flow from

the context menu.

A new flow is created with a default name. It opens in the graphical editor. Since no

inputs are defined, all elements of the graph show an error mark because they

cannot be computed right now. The blue color indicates that the flow is under-

determined.

Figure 34. New flow in the graphical editor

2. Right-click a variable you want to use as input and select Set Type > Input from

the context menu.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 72

The variable is now shown as a blue circle with black border. The connection from

the variable to the relation is now an arrow with a white head.

3. Specify the second input.

The remaining variable of type free can now be computed. It is implicitly treated as

an output because no output is defined explicitly.

Arrows with white heads mark incoming elements, arrows with black heads mark

outgoing elements. [12]

4. If desired, rearrange the variables and the relation on the canvas. [13]

Figure 35. Flow after I and U have been defined as inputs (the variables were

rearranged).

Layout changes in one flow affect all other flows,

computations, and the system graph.

5. Rename the flow and enter a meaningful, unique name.

In this tutorial, flows are named according to the following scheme:

F_<system name>in<inputs>, e.g., F_Simple_Equation_in_IU

6. Save the project.

A computation is created for the flow. It consists of a *.syq file and a graph, stored

in the project, in the code generation folder.

By default, a computation is named c_<flow name>.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 73

Figure 36. Computation c_F_Simple_Equation_in_IU in the Project Explorer

More information on computations is given in section 5.2.3, “Working with

Computations”.

You can use the system to create as many flows as you need. For the simple equation

system, create two more flows, one that computes U, and one that computes I.

5.2.3. Working with Computations

Each time you save the SCODE-CONGRA project, a computation is created or updated

for each valid flow. A computation collects the solved equations, and also orders the

computation steps. Protections, e.g., against division by zero, are inserted

automatically.

Computations are stored in the code generation subfolder (named src-gen by default)

of the project, in a subfolder named <system name>. See Figure 36 for an example.

The *.syq file of the computation c_F_Simple_Equation_in_IU reads as follows:

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15

16

17

18

/**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
 *
 * @source F_Simple_Equation_in_IU
 *
 * @tool ETAS SCODE-CONGRA 3.1.0
 *
 **/

 package Simple_Equation;

 computation c_F_Simple_Equation_in_IU (I, U)
 implements Simple_Equation
 from F_Simple_Equation_in_IU {
 // Variable computation for level 2
 @level(2, 1)
 R = if (0.0!=I) then U/I else <- R1(I, U);
 // [Source: Built-In Solver]
 [R,I] = if (0.0!=I) then -U/I^2 else <- R1(I, U);
 // [Source: Built-In Solver]
 [R,U] = if (0.0!=I) then 1/I else <- R1(I, U);
 // [Source: Built-In Solver]
 }

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 74

Table 4. *.syq file for the c_F_Simple_Equation_in_IU computation. Line 15 shows

the equation used to compute R, lines 16 and 17 show the partial derivatives of the

equation.

The computation graph, shown in Figure 37, looks very similar to the flow graph shown in

Figure 35, except that the computation graph shows the following items:

• values of the variables (black text in Figure 37)

• computation level (red number in Figure 37)

Figure 37. Graph for the c_F_Simple_Equation_in_IU computation.

To work with computations, SCODE-CONGRA provides the Execution Environment.

To open the Execution Environment

1. In the Project Explorer, right-click the desired computation graph and select Open

With > Execution Environment from the context menu.

The Execution Environment opens and displays the elements of the flow. The

computation graph is not opened.

Or

2. Select Window > Show View > Execution Environment.

By default, the Execution Environment is visible in the SCODE-CONGRA

perspective, so that this step can be omitted.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 75

3. In the Project Explorer, double-click the desired computation graph to open it in the

graphical editor.

The flow elements then appear in the Execution Environment (see Figure 38). The

output row is shown in red to mark an error, here a division by 0.

Figure 38. Execution Environment with a computation

In the Execution Environment, you can enter input values and sensitivities, and see the

result immediately. If desired, the values can be shown in the graphical editor for the

computation.

To check values in the Execution Environment

1. Click in the "Value" column of both inputs and enter values.

The output is calculated immediately. As soon as the error due to the initial value

I = 0 is removed, the red color disappears from the output row.

2. In the graphical editor, click an empty place in the canvas.

The Layers button is only available if no element is

selected in the canvas.

3. Click the Layers button and select Execution Environment Layer from the

dropdown menu.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 76

The current values of the elements are displayed.

Figure 39. Computation graph with element values

You can use the Execution Environment also to perform a sensitivity analysis, i.e. to

check the effect of a change (sensitivity) in some variables to other variables in the

system.

The sensitivity analysis works as follows:

A relation uses the inputs x1,x2, … xn to compute a variable y via the function f:

 y = f(x1, … xn)

The input sensitivities Dx1, … Dxn are given. For a particular operating point (x1,x2, …
 xn), the sensitivity Dy of the output y is computed as follows:

Equation 2: Output sensitivity Dy

df/dxi is a partial derivative, i.e. the derivative of f with respect to xi.

In this tutorial, f is a flow you created; xi and y are the inputs and output of the flow. See

rows 18 — 20 in Table 4 for an example of a function and its partial derivatives.

To check sensitivities in the Execution Environment

1. Display a computation in the Execution Environment and in the graphical editor.

2. In the graphical editor, click the Layers button and select Sensitivity Analysis

from the dropdown menu.

The current sensitivities are shown in the diagram.

3. For a manual sensitivity check, do the following:

i. Click in the "Sensitivity" column of both inputs and enter values.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 77

The output sensitivity is calculated immediately.

In the graphical editor, the input sensitivities are shown, as well as the

contribution of each input to the output sensitivity.

Figure 40. Computation graph with input sensitivities (a), their contributions

(b) to the output sensitivity (c and d). The thickness of the arrows represents

the relative sensitivities.

ii. If necessary, click the Refresh diagram button to update the values in

the graphical editor.

4. For a forward sensitivity analysis, do the following:

i. In the Execution Environment or in the graphical editor, right-click an input

and select Forward Sensitivity Analysis from the context menu.

The sensitivity of that input is set to 1, the sensitivities of other inputs is set

to 0. The output sensitivity is computed according to Equation 2.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 78

Figure 41. Computation graph and Execution Environment with results of

forward sensitivity analysis

5.2.4. Additional Task

This section is not mandatory for the lesson on simple equations. However, it contains

useful information.

Storing Layout Changes

When you change the diagram layout as described in To create a flow, the positions of

the diagram elements are stored in a file named <system name>.graph, which is

visible only in the Windows file system, not in the Project Explorer.

You can store the element positions in the *.syq file, as a set of @geo annotations (see,

e.g., Figure 33).

A @geo annotation looks as follows:

@geo(<x>, <y>, <width>, <height>)

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 79

<x> and <y> are the horizontal and vertical positions of the top-left corner of the diagram

element, measured in pixels from the top-left corner of the canvas.

<width> and <height> determine the size of a relation in the diagram. The size of a

variable or parameter cannot be set.

.x.

width

.h
e

ig
h

t.

. . .

.y
.

Figure 42. Schematic view of the numbers in @geo annotations

To store layout changes manually

1. In the system graph or flow graph, arrange the elements according to your needs.

2. Click an empty place of the canvas, so that no diagram element is selected.

You cannot store the node positions while an element is selected.

3. Click the Store the node positions * into GEO annotations button.

4. Save the project.

With that, existing @geo annotations in the *.syq file are updated, and missing

@geo annotations are added.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 80

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

system Simple_Equation {

@geo(264, 108)
 @description("resistance (ohms)")
 var R = 0;
 @geo(109, 60)
 @description("current (amperes)")
 var I = 0;
 @geo(109, 156)
 @description("voltage (volts)")
 var U = 0;

 @description("Ohm\'s law")
 @geo(168, 108, 30, 30)
 R1(U, I, R) ::= U = R * I;
}

Table 5. Simple_Equation system with changed (lines 6, 9, 12) or added (line

17) @geo annotations

You can activate automatic storage of layout changes as @geo annotations when you

save a project or workspace.

To activate automatic storage for layout changes

1. In the SCODE Workbench window, select Window > Preferences.

2. In the "Preferences" window, go to the "SCODE-CONGRA\Diagram Options" node.

3. Activate the Update @geo annotation(s) by saving action option.

Figure 43. "Preferences" window, "Diagram Options" node

4. Click Apply and Close.

The next time you save a project or workspace, unsaved layout changes are

saved.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 81

5.3. Lesson 2: Non-Linear Equation

The second lesson focuses on having multiple solutions, one of which you have to select.

The lesson combines Ohm’s law, U = R * I, with the power of an ohmic resistor, P =

U * I.

Using both equations as relations in one system leads to an algebraic loop. This will be

treated in a later lesson.

Here, you will use the combination equation:

Equation 3: Joule’s law: power of an ohmic resistor (P -- electrical power in watt, R --

resistance in ohms, I -- current in amperes.)

P = R * I2

5.3.1. Preparing the Project

For this lesson, MuPAD® is recommended as solver. To use MuPAD, you need a working

installation of MATLAB® that includes Symbolic Math Toolbox™, you have to connect the

SCODE Workbench and MATLAB, and you have to activate the MuPAD solver.

If you cannot use the MuPAD solver, use the Maxima solver, which is shipped with

SCODE-CONGRA.

To connect SCODE Workbench and MATLAB®

1. In the SCODE Workbench window, select Window > Preferences.

2. In the "Preferences" window, go to the "MATLAB/Simulink" node.

This node lists all versions of MATLAB installed on your computer.

Figure 44. "Preferences" window, "MATLAB/Simulink" node

3. Select () the version(s) you want to connect.

4. Select a MATLAB version for the MuPAD solver.

5. Click Apply and Close.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 82

To select a MATLAB® version

1. Open the "Preferences" window.

2. In that window, expand the "SCODE-CONGRA" node and the "Solver" subnode,

then go to the "MuPAD" subnode.

This node contains settings for the MuPAD® solver. The "Select MATLAB

installation for solving with MuPAD" combo box contains all MATLAB versions

connected to the SCODE Workbench.

3. Select the MATLAB version you want to use.

Figure 45. "Preferences" window, "SCODE-CONGRA\Solver\MuPAD" node

4. Click Apply and Close.

You can select a MATLAB version only for the entire workspace.

Selecting a MATLAB version for a particular project is not

possible.

SCODE-CONGRA offers the following setup possibilities:

• for the entire workspace (accessible via Window > Preferences)

• for a particular project (accessible via a project’s context menu or via Project >

Properties)

Project-specific settings override workspace settings. In this lesson, you will use project-

specific settings.

To activate the MuPAD solver

1. Create a SCODE-CONGRA project and name it, e.g., QuadraticEquation.

2. In the Project Explorer, right-click the project and select Properties from the

context menu.

The "Properties for <project>" window opens.

3. In that window, expand the "SCODE-CONGRA" node and go to the "Solver"

subnode.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 83

By default, Enable project specific settings is deactivated; the project uses the

workspace settings.

Figure 46. "Properties for <project>" window, "Solver" node

4. Activate Enable project specific settings.

With that, the project-specific settings become available. They override the

workspace settings.

5. In the "Use solver" combo box, select Selected solver.

With that, the solver selected in the "Available solvers" area is used. If you select

several solvers, the one with the highest priority is used. [14] If that solver is unable

to solve the equation, the next one is used.

6. In the "Available Solvers" area, do the following:

i. Activate Maxima/MuPAD Cache or MuPAD [Incubation] or MuPAD

[deprecated]. [15]

If MuPAD is unavailable, use Maxima instead.

ii. Deactivate solvers with higher priority.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 84

Figure 47. "Solver" settings for a project with quadratic equation (project settings

that differ from workspace settings appear in bold font)

7. Click Apply and Close.

5.3.2. Equation System and Computation

After configuring the solver in the previous section, you will now solve the system. If there

are multiple valid solutions for a given system, the solver may need user input to pick the

correct solution for a given system. Here is an example of a system that will need user

input.

To create the system for the quadratic equation

1. Specify the equation for the power of an ohmic resistor. [16]

2. Create a flow with inputs P and R. [17]

With that, the remaining variable I is treated as an output.

3. Name the flow F_QuadraticEquation_in_PR.

4. Save the system.

The equation is quadratic, i.e. it has two solutions, -(P/R)1/2 and (P/R)1/2. When

you save the system, the "Please pick solution for request" window opens, which

offers the possible solutions for selection.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 85

Figure 48. "Please pick solution for request" window with possible solutions for the

quadratic equation example

5. Select one solution and click OK.

The selection is not saved. The next time you save the

project, or generate code, you are asked to pick a solution

again.

A computation is created for the F_QuadraticEquation_in_PR flow.

The selected solution is written to the *.syq file of the computation (line 15 in Table 6):

1
2
...
9
10
11
12

13
14
15

16

17

18

/**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
...
 **/
 package Quadratic_Equation;

 computation c_F_QuadraticEquation_in_PR (R, P)
 implements Quadratic_Equation
 from F_QuadraticEquation_in_PR {
 // Variable computation for level 2
 @level(2, 1)
 I = if ((0 <= P*R) && (R!=0)) then (P/R)^(1/2)
 else <- R01(P, R); // [Source: MuPAD [Incubation]]
 [I,P] = if ((0 <= P*R) && (R!=0)) then
 if (((0.0!=R) && (0.0 <= P/R))
 && (((0.0!=R) && (0.0!=P/R))))
 then 1/(2*R*(P/R)^(1/2))
 else
 else <- R01(P, R); // [Source: MuPAD [Incubation]]
 [I,R] = if ((0 <= P*R) && (R!=0)) then
 if (((0.0!=R) && (0.0 <= P/R))
 && (((0.0!=R) && (0.0!=P/R))))
 then -P/(2*R^2*(P/R)^(1/2))
 else
 else <- R01(P, R); // [Source: MuPAD [Incubation]]
}

Table 6. *.syq file for the c_ F_QuadraticEquation_in_PR computation

Check values and sensitivities in the Execution Environment. [18]

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 86

5.3.3. Additional Tasks

This section is not mandatory for the lesson on simple equations. However, it contains

useful information.

Selecting Solutions

By default, the selected solution (cf. Figure 48) is not saved. The next time you save the

project, or generate code, the "Please pick solution for request" window opens again. If

desired, you can disable the question, or you can store the selected solution.

To disable the request to select a solution

1. Open the "Properties for <project>" window and go to the "Solver" node.

2. In the "Solver" node, deactivate Ask in case of ambiguous solutions.

3. Click Apply and Close.

The next time code is generate, the "Please pick solution for request" window is

suppressed, and SCODE-CONGRA uses the first of the possible solutions.

To store a selected solution

1. Open the "Properties for <project>" window and go to the "Solver" node.

Settings in the "Properties for <project>" window apply

only to the current project. For workspace-specific

settings, use the "Preferences" window.

2. In that node, ensure the following:

◦ Enable specific settings is activated.

◦ In the "Use solver" combo box, Selected solver is selected.

◦ Only the Maxima / MuPAD Cache solver and the MuPAD [Incubation]

solver are selected.

3. Go to the "Maxima / MuPAD cache" node and do the following:

i. Activate Enable specific settings.

ii. Activate Activate Learning Mode.

With that, SCODE-CONGRA adds new solved equations to the cache, so

that the database of solved equation is growing. Solved equations are added

only if they are unknown to SCODE-CONGRA.

iii. If desired, enter path and file name (including the extension *.xml) for the

"Internal Solver Cache File".

By default, the project-specific cache file (named internal_cache.xml) is

placed in the project’s root folder.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 87

Figure 49. "Properties for <project>" window, "Maxima / MuPAD cache" node

4. Click Apply and Close.

The next time code is generated, you are asked to select a solution. That solution

is written to the cache file in the project folder.

Figure 50. Project Explorer with project-specific cache file

Closing Projects

By default, code is generated for all open projects (marked with the icon) in the

workspace. This may result in many "Please pick solution for request" windows, which

can be annoying.

To close projects

1. Right-click the project you are working on and select Close Unrelated Projects

from the context menu.

All projects not related to the selected one are closed. They are marked with the

icon.

Or

2. Right-click a project you want to close and select Close Project from the context

menu.

The selected project is closed and marked with the icon.

The next time code is generated, the closed projects are ignored.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 88

5.4. Lesson 3: Constants, Parameters, Fixed Variables

In this lesson, you will learn how to use constants, parameters, and fixed variables. You

will use Ohm’s law again (see Equation 1), and compute U from R and I. Use the

resistance R as constant, parameter, or fixed variable.

5.4.1. Constants

Constants store values that can be used in the model. Unlike parameters, constants

cannot be changed from outside the model; they are fixed at specification time.

A constant does not appear in the system graph or in flow graphs. When code is

generated, e.g., C code, the value of the constant is entered; there is no reference.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Constants. [19]

2. Specify the relation for Ohm’s law.[16]

Optional:

3. To enter a value for R, do the following:

i. In the system graph, select R.

ii. Open the "Properties" view for R.

iii. In the "Properties" view, "Semantic" node, click in the "Value" column next to

"Expression".

The cell becomes an input field.

iv. Enter the value and press Return .

If you do not enter a value here, you have to enter it later in the *.syq file

(see step 4 in the next instruction).

You cannot create a constant directly; you have to convert an existing variable. You can

create a constant graphically either in the system graph or in a flow.

To create a constant

1. To create a constant in the system graph, do the following:

i. Open the system graph.

Figure 32 shows an image of the relation.

ii. Right-click the variable R and select Set Type > Constant from the context

menu.

Or

2. To create a constant in a flow, do the following:

i. Create and open a flow.

ii. In the flow, right-click the variable R and select Set Type > Constant from

the context menu.

R is converted to a constant. It is no longer visible in the system graph (left) or flow

graph (right).

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 89

Figure 51. Constant R invisible in the system graph (left) and in the flow (right)

3. Save the project.

The definition of R in the *.syq code changes as follows:

const R = 0;

The definition of the relation changes as follows:

R01(I, U) ::= U = R * I;

The input list of the existing flow changes as follows:

flow F_Constants_in_I for Constants {
 inputs: I;
}

4. If necesssary, open the *.syq file and enter an appropriate value in the definition

of R.

This example uses R = 2.

5. Save the project again.

To convert a constant into a variable, you have to edit the *.syq file as follows:

R as constant R as variable

declaration const R = 2.0; var R = 2.0;

relation R01(I, U) ::= U = R * I; R01(I, R, U) ::= U = R * I;

flow flow F_<flow_name>
 for <system> {
 inputs: I;
}

flow F_<flow_name>
 for <system> {
 inputs: I, R;
}

Table 7. Changes in *.syq file to convert a constant into a variable

The computation *.syq file contains the value of the constant, see lines 15 and 16 in

Table 8.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 90

1
...
8
9
10
11
12

13
14
15
16
17

/**
 ...
 **/

 package Constants;

 computation c_F_Constants_in_I(I) implements Constants
 from c_F_Constants_in_I {
 // Variable computation for level 2
 @level(2, 1)
 U = 2*I <- R01(I); // [Source: Maxima]
 [U,I] = 2 <- R01(I); // [Source: Maxima]
 }

Table 8. *.syq file for a computation with a constant

In the Execution Environment, the value of R appears in the definition and partial

derivative of the output U.

Figure 52. Execution Environment showing a computation with a constant

5.4.2. Parameters

Like constants, parameters store values that can only be read from inside the model.

Unlike constants, parameters can also be calibrated, i.e. written to from outside the

model. The idea is that parameters will be flashed on the car by an application engineer.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Parameters.

2. Specify the relation for Ohm’s law.

Optional:

3. Enter a value for R. [20]

This example uses R = 15.

You cannot create a parameter directly; a parameter is created by converting an existing

variable. You can create a parameter graphically either in the system graph or in a flow.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 91

To create a parameter

1. To create a parameter in the system graph, do the following:

i. Open the system graph.

Figure 32 shows an image of the relation.

ii. Right-click the variable R and select Set Type > Parameter from the context

menu.

Or

2. To create a parameter in a flow, do the following:

i. Create and open a flow.

ii. In the flow, right-click the variable R and select Set Type > Parameter from

the context menu.

R is converted to a parameter. It is shown as a grey circle with black frame

() in the system graph (left) or flow graph (right).

Figure 53. Parameter R in the system graph (left) and in the flow (right)

3. Save the project.

The definition of R in the *.syq code changes as follows:

param R = 15;

The definition of the relation does not change.

R01(U, I, R) ::= U = R * I;

The input list of the existing flow changes as follows:

flow F_Constants_in_I for Constants {
 inputs: I;
}

4. Enter a value for R.

You can do so either in the *.syq file or via the system graph or flow graph, as

described in step 3 of To set up the project.

5. Save the project again.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 92

To convert a parameter into a variable, you can do the following:

• Use the Set Type > Variable option in the parameter’s context menu and correct

the flows in the *.syq file.

• Enter all required changes (see the right column in Table 7) directly in the *.syq
file.

The computation *.syq file refers to the parameter; see lines 16 — 18 in Table 9.

1
...
8
9
10
12
13

14
15
16
17
18
19

/**
 ...
 **/

 package Parameters;

 computation c_F_ Parameters_in_I(I) implements
 Parameters from c_F_ Parameters_in_I {
 // Variable computation for level 2
 @level(2, 1)
 U = I*R <- R01(I,R); // [Source: Maxima]
 [U,I] = R <- R01(I,R); // [Source: Maxima]
 [U,R] = I <- R01(I, R); // [Source: Maxima]
 }

Table 9. *.syq file for a computation with a parameter

In the Execution Environment, the parameter R appears in a separate row and in the

marked attributes of the output U.

Figure 54. Execution Environment showing a computation with a parameter

5.4.3. Fixed Variables

Parameters and constants are declared as such in the system. Their properties are the

same throughout the system; you cannot change them only for a particular flow.

If you need a constant value only in a particular flow, you can fix a variable in that flow.

With that, the flow can no longer change the value of the variable. In all other flows, the

variable is still a variable that can be read and written.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 93

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., FixedVariable.

2. Specify the relation for Ohm’s law.

Figure 32 shows an image of the relation.

A variable can be fixed only in a flow.

To fix a variable in a flow

1. Create and open a flow.

2. In the flow, right-click the variable R and select Set Type > Fixed from the context

menu.

R is fixed. It is shown as a grey circle with black frame () in the flow graph (left

side of Figure 55). In the system graph (right), R remains unchanged.

Figure 55. Fixed variable R in the flow (left) and in the system graph (right)

3. Enter a value for R:

i. In the flow, select R.

ii. Open the "Properties" view for R.

iii. In the "Properties" view, "Semantic" node, enter a value in the "Value"

column next to "Expression".

4. Save the project.

The definition of R and the definition of the relation in the *.syq code remain

unchanged:

var R = 0;
R01(U, I, R) ::= U = R * I;

The definition of the flow changes as follows:

flow F_FixedVariable_in_I_fix_R for FixedVariable {
 inputs: I;
 fixed: R = 5;
}

Other existing flows remain unchanged.

To convert a fixed variable into a variable, use the Set Type > Free option in the fixed

variable’s context menu.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 94

The computation *.syq file refers to the fixed variable. Lines 14 and 15 in Table 10

determine the fixed variable. In the following rows, R appears like other variables.

1
...
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23

/**
 ...
 **/

 package FixedVariable;

 computation c_F_FixedVariable_in_I_fix_R(I)
 implements FixedVariable from
 F_FixedVariable_in_I_fix_R [
 // Constant input and intrinsic BNS initialization
 @level(0, 1)
 R = 5;
]
 {
 // Variable computation for level 2
 @level(2, 1)
 U = I*R <- R01(I,R); // [Source: Maxima]
 [U,I] = R <- R01(I,R); // [Source: Maxima]
 [U,R] = I <- R01(I, R); // [Source: Maxima]
 }

Table 10. *.syq file for a computation with a fixed variable

In the Execution Environment, the fixed state of variable R is marked by the entries in the

"Type" and "State" columns.

Figure 56. Execution Environment showing a computation with a fixed variable

5.4.4. Generating Code

Next, you will generate C code, MATLAB code, and ESDL code for the three projects of

this lesson.

To select code generators

1. In the SCODE Workbench window, select Window > Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the

"Generator" subnode.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 95

Figure 57. "Preferences" window with "Generator" settings for SCODE-CONGRA

3. In the "Generators" area, activate the generators you want to use.

4. If you selected the ESDL generator, select one of the Use * entries in the "Error

case handling" combo box.

This example uses Use default value.

The Report error/abort execution error case

handling is not allowed in combination with ESDL code

generation.

Depending on your selection, you have to provide default

values or upper/lower limits for each variable.

5. If desired, activate the Use generator specific subfolder option.

With that, code generated for each generator is stored in its own folder below the

code generation folder.

6. Click Apply and Close.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 96

The next time code is generated, the computation and code for the selected generators

are generated.

To generate code

1. If desired, close projects you do not need, as described in To close projects.

2. In the Project Explorer, right-click one of the following items and select Generate

Code from the context menu.

project (e.g.,)

system folder (e.g.,)

*.syq file (e.g.,)

Code is generated for each selected generator.

Figure 58. Code generation folder for the FixedVariable project, with generated

C, ESDL, and MATLAB files

3. Open the generated files and look at the differences between constants,

parameters, and fixed variables.

In section 9.2.1, “C Code for Lesson 3”, you can find generated C code for this lesson,

and the following tables briefly explain the generated files.

Table 11 lists the files generated during C code, ESDL, and MATLAB code generation.

Table 12 shortly describes the content of the files.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 97

C Code ESDL MATLAB

folder src-gen\<generator>\<system>

for each flow c_<flow>.c
c_<flow>.h

c_<flow>.esdl
c_<flow>.layout

c_<flow>.m
c_<flow>_parameters.m

others libscode.a
scode.h

--- ---

folder src-gen\<generator>\math

others --- Math.esdl ---

Table 11. Files generated during C, ESDL, and MATLAB code generation

file content

All types c_<flow>.* Everything required to execute the <flow>.

C code libscode.a Library with standard implementations of

service routines supplied by SCODE-

CONGRA.

scode.h Header file required for libscode.a.

ESDL c_<flow>.layout Layout definitions for the <flow>. These

can be used in ASCET-DEVELOPER.

MATLAB c_<flow>_parameters.m Definitions for all parameters in the <flow>.

Table 12. Content of the files generated during C, ESDL, and MATLAB code generation

5.5. Lesson 4: Inverting Models

In this lesson, you will create a system with two connected relations. You will use the

system to invert a model.

The first relation is Ohm’s law (see Equation 1), the second is the power of an Ohmic

resistor:

Equation 4: Power of an ohmic resistor (P -- electrical power in watt, U -- voltage in volts,

I -- current in amperes)

 P = U * I

For this lesson, MuPAD is recommended as solver. If you cannot use the MuPAD solver,

use the Maxima solver, which is shipped with SCODE-CONGRA. For more details, see

section 5.3.1, “Preparing the Project”.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Resistor_Power.

2. Specify the first relation for Ohm’s law and name it, e.g., Ohms_law.

3. Use the handles to resize the relation.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 98

4. Specify the second relation for the power of an ohmic resistor (Equation 4) and

name it, e.g., Resistor_Power_Law.

The second relation is automatically connected to the existing variables I and U.

5. Enter default values for the variables.

6. Save the project.

To specify original flow and inverted flow

1. Create a flow that uses R and U to compute I and P.

Figure 59. Flow with original direction

U is used as input for both relations. Therefore, two white-headed arrows point

from U to the relations.

I is the output of the first relation, and an input of the second relation. A black-

headed arrow points from Ohms_law to I, and a white-headed arrow points from I

to Resistor_Power_Law.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 99

2. To invert the flow, create a second flow that uses I and P to compute R and U.

Figure 60. Flow with inverted direction

To generate code for original and inverted flows

In addition to the computations, you will generate C code.

1. In the Project Explorer, right-click the project and select Properties from the

context menu.

The "Properties for <project>" window opens.

2. In that window, do the following:

i. Expand the "SCODE-CONGRA" node and go to the "Generator" subnode.

By default, Enable project specific settings is deactivated; the project uses

the workspace settings.

ii. Activate Enable project specific settings.

The project-specific settings become available. They override the workspace

settings.

iii. In the "Generators" area, activate the C/FMI generator.

If you activate the ESDL generator, too, you have to select one of the Use *
entries in the "Error case handling" combo box.

iv. If desired, activate the Use generator specific subfolder option.

With that, code generated for each generator is stored in its own folder

below the code generation folder.

v. Click Apply and Close.

3. Generate code. [21]

See section 9.2.2, “C Code for Lesson 4” for the generated code.

5.6. Lesson 5: Explicit Outputs

In the previous lessons, the outputs were determined automatically. In this lesson, you

will use an explicitly defined output. With an explicit output, only the code needed to

compute the output is generated. Model parts not necessary to compute the defined

output are ignored.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 100

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., DefinedOutput.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor

(Equation 4).

3. If desired, name the relations, e.g., Ohms_law and Resistor_Power_Law.

4. Enter default values for the variables.

5. Save the project.

To define the output

1. Create a flow with inputs R and U.

Since both I and P can be computed, both are filled with green; see Figure 59.

2. If desired, name the flow F_DefinedOutput_in_RU_out_I.

3. Right-click I and select Set Type > Free and Output from the context menu.

I is now marked with a thick border; see Figure 61. Since the second relation and

the variable P are irrelevant for computing I, they are marked with grey borders.

Figure 61. Flow with inputs R and U and explicit output I. Irrelevant parts of the flow

are marked.

4. Create a second flow with inputs R and U, without explicit output.

5. Save the project.

In the *.syq file, the two flows appear as follows:

flow F_DefinedOutput_in_RU_out_I for DefinedOutput {
 inputs: R, U;
 outputs: I;
}

flow F_DefinedOutput_in_RU for DefinedOutput {
 inputs: R, U;
}

To generate code with an explicit output

In addition to the computations, you will generate C code and ESDL code.

1. Open the "Properties for <project>" window and enable code generation for C and

ESDL. [22]

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 101

2. Make sure that "Error case handling" is set to Use default value.

3. Generate code ().[21]

4. Compare the generated C code or ESDL code for both flows.

See section 9.2.3, “ESDL Code for Lesson 5” for the generated ESDL code.

5.7. Lesson 6: Algebraic Loop

In this lesson, you will use the same model as in lessons 4 and 5. This time, however, you

will specify an algebraic loop, which can be solved by the underlying computer algebra

system.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., AlgebraicLoop.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor

(Equation 4).

3. Enter default values for the variables.

4. Open the "Properties for <project>" window and enable code generation for C,

ESDL and MATLAB.

5. Save the project.

To define the flow with algebraic loop

1. Create a flow with inputs R and P.

2. If desired, name the flow F_AlgebraicLoop_in_PR.

Both relations and the variables I and U form the algebraic loop. They, as well as

the connections between them are shown with yellow borders.

Figure 62. Flow with algebraic loop

3. Save the project.

The "Please pick solution for request" window opens.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 102

4. Select one solution set and click OK.

Code is generated for each selected generator. Messages regarding the algebraic

loop are shown in the "Problems" view. [23]

See section 9.2.4, “Generated Code for Lesson 6” for several extracts from generated

code for this lesson.

5.8. Lesson 7: Constraints and Verification

In the previous lessons, all variables, parameters, etc. were unconstrained. In this lesson,

you will assign constraints to variables (section 5.8.1) and parameters (section 5.8.3). You

will also activate the generation of verification code (section 5.8.2).

You will use the same model as in lessons 4 to 6.

Table 13 lists the available constraint types. To use several types, connect them with and.

Constraint Type Meaning Remarks

< less than

Allowed for variables and parameters.
<= less than or equal

>= greater than or equal

> greater than

!= not Allowed only for parameters.

Table 13. Available constraint types

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 103

5.8.1. Constraints for Variables

Here, you will enter constraints for all variables.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., ConstraintsVariables.

2. Create and specify the relations for Ohm’s law (Equation 1) and the power of an

ohmic resistor (Equation 4).

3. Create a flow for each possible input pair.

4. Enable code generation for C code.

5. Save the project.

To enter constraints for the variables

1. Open the ConstraintsVariables system in the graphical editor.

2. Open the "Properties" view for the variable R.

3. In the "Variable Constraints" row, "Value" column, enter the following constraint: >0
and <100

The constraints are copied to the "Expression Range" row.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 104

Figure 63. "Properties" view with constraints for a variable

4. For the other variables, enter the following constraints:

I >=0 and <10

P >0 and <2500

U >0 and <=230

1. Save the project.

The constraints are added to the *.syq file, see Table 14.

2. Generate code ().

3. Open the generated files and check the effects of the constraints.

See section 9.2.5.1, “C Code for a Flow with Constraints” for a generated C code file.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 105

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
...

package ConstraintsVariables;

system ConstraintsVariables {

@geo(312, 180)
 var U is > 0 and <= 230;
 @geo(84, 112)
 var R is > 0 and < 100;
 @geo(312, 40)
 var I is >= 0 and < 10;
 @geo(528, 112)
 var P is > 0 and < 2500;

 @geo(216, 111, 61, 32)
 @description("Ohm\'s law")
 Ohms_Law(R, I, U) ::= U = R * I;
 @geo(408, 112, 90, 30)
 @description("Power of a Resistor")
 Resistor_Power_Law(P, I, U) ::= P = U * I;
}
...

Table 14. *.syq file for the ConstraintsVariables system. Lines 6, 8, 10, and 12

show the constraints for the variables.

To execute the computation

1. Open the c_F_ConstraintsVariables_in_RU computation in the Execution

Environment.

If you did not specify start values for U and R, I has the state evaluation
error, and P has the state based on error.

2. Enter values that are inside the limits for U and R.

For example, enter 100 for U and 20 for R.

The values for I and P are computed.

3. Now change the value of U to 220.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 106

The values of both U and R are still inside the respective constraint, but the

resulting I = U/R exceeds the upper constraint of 10. Therefore, I is limited to the

upper constraint, and marked accordingly (see Figure 64).

P is marked, too, because its value is within the constraints of P, but is based on

the limited value of I.

Figure 64. Execution Environment with a limited variable and a variable with a

value based on the limited variable.

4. Now enter a value outside the constraints for R, e.g., 110.

This time, R itself is limited to its upper constraint, and marked accordingly. Both I

and P are marked as based on limited values.

5.8.2. Verification Code

The verification code runs the code with varying input values. For each test run with a

given set of input values, the resulting values are tested against the original equation from

which the code was derived. For that purpose, the normalized equation is evaluated and

its residue compared with a given verification threshold. [24]

In order to run the verification code, all input variables must have

upper and lower bounds. Otherwise, an error message appears

in the "Build" view.

Verification code can be generated in a separate C file, the verification harness.

In the ConstraintsVariables project, all variables are constrained, and the

precondition for verification code generation is met. Therefore, you will add the

verification code to the ConstraintsVariables project.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 107

To enable and generate verification code

1. Open the "Properties for <project>" window for the ConstraintsVariables
project.

2. In the "Generator" node, activate the C/FMI generator.

3. If you did not specify start values for U and R, set the "Error case handling" to Use
upper limit or Use lower limit.

4. If desired, set "Validity checks on inputs" to limit.

5. In the "Verification" subnode, activate Generate Verification Code.

This enables the generation of verification code in a separate file, the verification

harness.

6. If desired, activate also Inform about Limitations.

This option is effective only if "Validity checks on inputs" is set to limit. It creates

a text file <flow_name>_<date>_<time>.txt that lists all limitations.

Figure 65. "Properties for <project>" window, "Verification" node

7. In the "C/FMI" subnode, activate the Compile and verify code option.

With that, the generated verification harness is automatically compiled and

executed.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 108

Figure 66. "Properties for <project>" window, "C/FMI" node

8. Save the project.

9. Generate code ().

The "Build" view summarizes the results. The verification harness issues one row for

each flow, see the highlighted rows in Figure 67.

Figure 67. "Build" view with results for C code generation with verification harness

In addition to the usual files (see Table 11), a c_<flow>_harness.c file and a

c_<flow>_harness.h file are created for each flow.

An example for such a file is shown in section 9.2.5.2.

If you activated Compile and verify code in the "C/FMI" subnode, an executable file

c_<flow>_harness.exe is created for each flow.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 109

5.8.3. Constraints for Parameters

Here, you will create a parameter and enter constraints for the parameter.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., ConstraintsParameters.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor

(Equation 4).

3. Enter default values of 0.

4. Create a flow for each possible input pair that includes I.

5. Enable code generation for C code and MATLAB code.

6. Set the "Error case handling" to Use default value.

7. Save the project.

To create and set up a parameter

1. Open the ConstraintsParameters system in the graphical editor.

2. Convert the variable I into a parameter and assign a default value.

3. Open the *.syq file in the text editor.

Warning icons can be seen next to the definitions of the relations. The light bulbs

show that quick fixes are available.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 110

4. Click in one of the marked lines and press Ctrl + 1 .

A white box opens. It shows the available quick fixes. A yellow box may open on

the right and show additional information.

Figure 68. Pop-up with quick fix

5. Double-click the quick fix.

I is marked as input.

6. Repeat steps 4 and 5 for the second marked line.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 111

To enter constraints for the parameter

1. Open the "Properties" view for the parameter I and do the following:

i. In the "Expression" row, "Value" column, set the parameter value to 2.0.

ii. In the "Variable Constraints" row, "Value" column, enter the following

constraint: !=0

The constraint is copied to the "Expression Range" row.

Figure 69. "Properties" view with constraints for a parameter

The other variables remain unconstrained. This means that verification code

cannot be generated.

2. Save the project.

Constraint (!= 0) and value (= 2.0) for parameter I are added to the *.syq
file.

...
 @geo(244, 40)
 param I is != 0 = 2;
...

3. Generate code.

4. Open the generated files and check the effect of the constraint.

To further illustrate the effect of the constraint on parameter I, create a comparison

system with no constraint on I.

To specify the comparison system

1. In the Project Explorer, right-click the ConstraintsParameters folder and select

New > SCODE-CONGRA File.

2. In the "SCODE-CONGRA File" window, enter a system name, e.g., Parameter,

then click Finish.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 112

3. Specify the Parameter system the same way as the ConstraintsParameters
system, but leave out the constraint !=0 for parameter I.

4. Save the project.

5. Generate code.

Section 9.2.5.3 compares generated code with and without parameter constraint.

5.9. Lesson 8: Variables with Physical Units

In the previous lessons, all variables, parameters, etc. were treated as unitless numbers.

In this lesson, you will assign physical units to the variables.

Expressions consider units. First, there are checks for "dimension compliance". This

means that SCODE-CONGRA ensures, for all additive (or comparative) expressions, that

the dimensions of the operands of the operation comply with respect to the physical unit

dimension. The same happens to the sides of an equation.

For this lesson, you will use the same model as in lessons 4 to 7.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., PhysicalUnits.

2. Create and specify the relations for Ohm’s law (Equation 1) and the power of an

ohmic resistor (Equation 4).

3. Create at least one flow, e.g., with I and U as inputs.

4. Enable code generation for C code.

5. Save the project.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 113

In SCODE-CONGRA, you have to define units in a *.syq file before you can use them.

This can be done only in the text editor. Units have to be defined outside the system and

outside the flows. Each unit must have a unique name.

This tutorial uses the International System of Units (SI). This system comprises a

coherent system of units of measurement built on seven base units , which are the

second, meter, kilogram, ampere, kelvin, mole, candela. [25] The system also specifies

names for 22 derived units [26], among them ohm, volt, watt, etc., for other common

physical quantities.

Base units are defined directly, while derived units are defined as combinations of base

units. This means that you have to define all base units that you use directly and

indirectly, i.e. for derived units.

Variable Unit Unit Type in SI base units

I A (ampere, electric current) base ---

U V (volt, voltage) derived (kg * m2) / (A * s2)

R Ω (ohm, resistance) derived V/A

P W (watt, electric power) derived V*A

Table 15. Some variables with units

You can define units in one central place and import them into the systems where they

are needed. That procedure is described in section 5.9.1, “Defining Units in Separate

Files”.

Alternatively, you can define units in the system *.syq file. The procedure is described in

section 5.9.2, “Defining Units in the System SYQ File”.

The SCODE-CONGRA online help recommends the first way to define units.

5.9.1. Defining Units in Separate Files

This section describes the definition of units in a central place (a special project), where

they can be accessed from other projects.

Defining units in separate files is the recommended way to

define units.

Separate files for units are easy to maintain, and they can be

shared by many projects.

Defining units in the system’s *.syq file is described in section 5.9.2, “Defining Units in

the System SYQ File”.

To define units in a special project

1. Create the SCODE-CONGRA project that will contain the unit definition file(s).

This tutorial uses a project named UnitDefinitions.

The system *.syq file opens automatically. It contains the following content:

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 114

package UnitDefinitions;

system UnitDefinitions {

}

2. If you want to use this project only for unit definitions, delete the lines below the

package declaration.

Units have to be defined outside systems and flows. In a file that only defines units,

a system is unnecessary.

3. Define the necessary base units as follows:

unit <base_unit name>;

The base unit for time needs a special definition:

unit <time_unit name> is time;

The additional is time marks <time_unit name> as

time in seconds.

In the context of a system, only one unit can be defined

with is time. A second definition unit <name> is
time; causes an error.

4. Define the necessary derived units as follows:

unit <derived_unit name> = <expression>;

<expression> is a combination of base units, derived units and/or scaling

factors. You can combine units and factors via * or / operators, and you can use

brackets, e.g. to enclose a denominator. See the following example:

 unit N = kg * m / (s*s);
. If desired, enter comments that describe the units.(((SYQ
file,comment)))

In the SYQ language, a comment is included in /* … */. You can place the

comment in a line that contains code, or you can place the comment in one or

more separate lines.

5. Save the project.

Examples for base units, derived units, and comments are given in section 9.2.6.1,

“Example: Unit Definitions in a *.syq File”.

If you want to spread the unit definitions over several files, or if you want to add a unit

definition file to an existing SCODE-CONGRA project, you have to create additional

*.syq files.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 115

To create an additional unit definition file

1. Select the SCODE-CONGRA project that will contain the unit definition file(s).

2. In the Project Explorer, right-click one of the following items and select New > File

from the context menu.

◦ project

◦ system folder

◦ *.syq file

The "New File" dialog window opens.

3. In the "New File" dialog window, do the following:

i. Select the system folder as parent folder for the new file.

ii. Enter a name and the extension .syq for the file.

You must enter the extension to determine the file type.

iii. Click Finish to create the file.

Figure 70. "New File" window

The empty file is created and opened in the text editor.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 116

4. In the first line, enter the package declaration:

package <project name>;

5. Define the units as described in To define units in a special project, steps 3 and 4.

6. If desired, enter comments that describe the file content and/or the units.

7. Save the project.

Figure 71 shows a project with unit definition files.

Figure 71. SCODE-CONGRA project UnitDefinitions with five unit definition files

Examples for base units, derived units, and comments are given in section 9.2.6.1,

“Example: Unit Definitions in a *.syq File”.

The units in the unit definition file(s) are known to the project that contains the files. To

use them in another project, you have to connect the projects, and then import the units.

To connect two projects

1. In the Project Explorer, select the project you want to connect with another project.

For example, select the project that will use the units defined in a special project.

This tutorial connects a project named PhysicalUnits2 with the

UnitDefinitions project that contains the unit definitions. [27]

2. Right-click the project and select Properties from the context menu.

The "Properties for <project>" window opens.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 117

3. In that window, go to the "Project References" node.

This node lists all projects in the workspace.

4. Select the project you want to connect and click Apply and Close.

Figure 72. "Properties for <project>" window, "Project References" node

The project you first selected now refers to the second project. However, the

second project does not refer to the first.

In the example shown in Figure 72, the PhysicalUnits2 project refers to the

UnitDefinitions project, but UnitDefinitions does not refer to

PhysicalUnits2.

Now you can import content from the referred project (UnitDefinitions in Figure 72)

into the referring project (PhysicalUnits2 in Figure 72). You can import the following

items:

• units

• systems

• flows

• computations

You cannot import an entire package. Each item you want to import needs its own import

declaration.

To import content from another package

1. Open the *.syq file into which you want to import content.

If your system contains variable definitions with undefined units, these definitions

are marked as errors.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 118

2. Between package declaration and system definition, enter the following line for

each item you want to import:

import <package name>.<item name>;

<package name> is the name of the package that contains the item to be

imported.

<item name> is the name of the item to be imported.

You have to explicitly import each unit you want to use.

It is recommended that you import all units used to form

the derived units you want to use.

3. To make work easier, use the following method:

i. Type import, followed by a blank.

ii. Press Ctrl + Space .

A white box opens. It shows all items you can import. Units are marked with

. A yellow box opens, too, and shows details for the selected element.

Figure 73. Popup with items that can be imported. The items are listed as

follows: icon <item name> - <package name>.<item name>

iii. Select the unit you want to import.

iv. Press Enter to insert your selection.

v. Enter the closing ;.

4. Save the project.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 119

1
2
3
4
5
6
7
8
9
10
11
...

package PhysicalUnits2;

import UnitDefinitions.A;
import UnitDefinitions.m;
import UnitDefinitions.s;
import UnitDefinitions.kg;
import UnitDefinitions.V;
import UnitDefinitions.Ohm;
import UnitDefinitions.W;

system PhysicalUnits2 {
...

Table 16. *.syq file with imported units

You can now assign the units to variables; see section 5.9.3.

5.9.2. Defining Units in the System SYQ File

The recommended way to define units is a separate file.

To define units in the system SYQ file

1. Open the PhysicalUnits.syq file in the text editor.

Units have to be defined outside systems and flows. You can place them, e.g.,

between the package … line and the system … line, or at the end of the *.syq
file.

2. Define the necessary base units as described in To define units in a special project,

step 3.

The base unit for time needs a special definition:

unit <time_unit name> is time;

The additional is time marks <time_unit name> as

time in seconds.

In the context of a system, only one unit can be defined

with is time. A second definition unit <name> is
time; causes an error.

3. Define the necessary derived units as described in To define units in a special

project, step 4.

4. If desired, enter comments that describe the units.

In the SYQ language, a comment is included in /* … */. You can place the

comment in a line that contains code, or you can place the comment in one or

more separate lines.

5. Save the project.

Examples for base units, derived units, and comments are given in section 9.2.6.1.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 120

You can now assign the units to variables; see section 5.9.3.

5.9.3. Assigning Units

Now you can assign the units to the variables. You will do this in the graphical editor of

the system or the flow.

To assign units to variables

1. Open the system graph or the flow graph.

2. Open the "Properties" view for a variable.

3. In the "Properties" view, "Semantic" node, click in the "Value" column next to "Unit".

A dropdown list opens that offers all defined units for selection.

4. Select the appropriate unit.

The unit is not automatically assigned to an existing default value. If you entered a

default value when you set up the project, an error is issued.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 121

5. Enter a default value with unit; see also To enter a value with unit in a graph.

Example:

6. Select units for the other variables.

7. Save the project.

The variable definitions in the *.syq code change as follows:

...
6
7
8
9
10
11
12
13
14
15
16
17
...

...
@geo(420, 145)
@description("electric power")
var W P;
@geo(200, 200)
@description("current")
var A I ;
@geo(40, 145)
@description("Ohmic resistor")
var Ohm R = 0 [Ohm];
@geo(200, 80)
@description("voltage")
var V U;
...

Table 17. *.syq file extract: variable definitions with units (lines 8, 11, 14, 17). The

unit name appears before the variable name.

You can assign units to variables, parameters, and constants in the *.syq file. To do so,

insert the unit name before the element name:

var <unit name> <element name>;
param <unit name> <element name>;
const <unit name> <element name>;

Each time you save the project, SCODE-CONGRA checks if the units of the various

variables match. If the units do not match, an error "UNV001 incompatible unit

dimensions …" is issued.

The PhysicalUnits.syq file with no unit assigned to electric current I is shown in

Figure 74, as well as the error markers and the error messages in the "Problems" view.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 122

Figure 74. PhysicalUnits.syq file and "Problems" view with error markers due to

incompatible units

5.9.4. Units and Initial Values/Constraints

Once a unit is assigned to a variable, all assignments to that variable are checked for

matching units. This includes start values and constraints.

You can enter a start value with unit either in the system graph, or in the *.syq file.

To enter a value with unit in a graph

1. Open the "Properties" view for the variable that needs a value.

2. In the "Properties" view, "Semantic" node, click in the "Value" column next to

"Expression".

The cell becomes an input field. ..Enter the desired value, followed by the unit in

square brackets.

For example, enter 220 [V] as value for U.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 123

Value and unit are transferred to the "Expression Value (R/O)" row. A derived unit is

replaced by the combination of units it is derived from.

The *.syq file is updated when you save the project.

@description("voltage")
var V U = 220[V];

If desired, you can enter value and unit for a variable, parameter, or constant directly in

the *.syq file:

<itemType> <unit> <itemName> = <value> [<unit>];

<itemType> can be var, param, or const.

Constraints are specified similarly, with the required unit in square brackets. In the *.syq
file, constraints with units look as follows:

<itemType> <unit> <itemName>
 is <constraintType> <constraintValue>[<unit>]
 and <constraintType> <constraintValue>[<unit>];

Example: var V U is > 0[V] and ⇐ 230[V];

If you want to specify both a value and constraints in the *.syq file, the value must be

defined after the constraint. If you place the value definition before the constraints

definition, you cause an error.

<itemType> <unit> <itemName>
 is <constraintType> <constraintValue>[<unit>]
 and <constraintType> <constraintValue>[<unit>]
 = <value> [<unit>];

Example: var V U is > 0[V] and ⇐ 230[V] = 220[V];

<itemType> can be var, param, or const. For a list of <constraintType> values,

see Table 13.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 124

5.9.5. Units in the Generated Code

This section shows the effect of units on generated code. You will use the Phys-
icalUnits project you created in section 5.9.2.

To prepare the project

To see how SCODE-CONGRA deals with different units of the same dimension, e.g., with

A and mA = 10-3 A as units for electric current, change the project as follows.

1. Define a new unit mA = 10-3 A.

2. Assign the new unit to the variable I.

The units of the other variables remain as they are.

3. Make sure that default values are defined for all variables.

4. Save the project.

To generate code

1. Open the "Properties of <project>" window for the PhysicalUnits project.

2. Activate generation of C code, ESDL code, and MATLAB code.

3. Generate code.

4. Open the generated *.c, *.m, and/or *.esdl files. [28]

The conversion factor to convert mA to A is inserted automatically wherever it is

required. Otherwise, the units are not visible in the generated C code and MATLAB

code.

5. Open the c_F_PhysicalUnits_in_IU computation in the Execution

Environment. [29]

Figure 75. Execution Environment showing a computation with units. Visible units are

marked.

If you change a value, or enter a sensitivity, enter the respective unit in square brackets,

or not at all. In the latter case, the unit is inserted automatically.

If a derived unit is assigned to a variable, you can enter either the derived unit, or you can

enter the combination of units and/or scale factors used to derive the assigned unit

(provided all units are defined or imported in the project). For example, you can enter

either 6000 [mA] or 6 [A] as value for I.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 125

5.9.6. Additional Task

This section is not mandatory for the lesson on variables with physical units. However, it

contains useful knowledge.

Generating a Report

To get a description of your system, you can generate a report. Generated reports can be

read without a SCODE Workbench installation.

To generate a report

1. Right-click the system *.syq file to be documented and select Run As > Report

(CONGRA) from the context menu.

If this is the first time you use the Run As > Report (CONGRA) on this SCODE

file, the "Edit Configuration" window opens for the report launch configuration.

Figure 76. "Edit Configuration" window for a SCODE-CONGRA report launch

configuration

2. In the "Edit Configuration" window, enter a name for the report file.

3. In the "SCODE File" field, enter or select (via Workspace button) the SYQ file that

contains the model you want to export.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 126

4. In the "Content" area, activate at least one content option.

5. In the "Type" field, activate the option for the desired report file type.

6. In the "Output File" field, enter or select (via Workspace or File System button) an

existing folder for the report.

If you enter the name of an existing file with the selected

type, that file is overwritten without further inquiry.

7. Click Run to generate the report.

The report is generated with the selected format and stored in the selected folder. If

you selected a folder inside your workspace, you can see the report in the Project

Explorer.

8. In the confirmation window, click Yes to open the report.

A report for the PhysicalUnits system, with all report parts generated, is shown in

section 9.2.6.4, “SCODE-CONGRA Report”.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 127

[11] If you need help to find the "Properties" view, see Figure 3.

[12] "incoming" and "outgoing" are seen from the relation’s point of view.

[13] For further information on layout changes, see Storing Layout Changes.

[14] Solver priorities are numbered in descending order. The highest priority is 1.

[15] MuPAD [deprecated] support will be discontinued in future SCODE Workbench

versions.

[16] If you need help, see To specify the equation.

[17] If you need help, see To create a Flow.

[18] If you need help, see section 5.2.3, “Working with Computations”.

[19] If you need help, see To create a SCODE-CONGRA project.

[20] If you need help, see To set up the project.

[21] If you need help, see To generate code.

[22] If you need help, see To generate code for original and inverted flows.

[23] If you need help to find the "Problems" view, see Figure 3.

[24] The normalized equation of an equation <left-hand side> = <right-hand
side> is defined as <left-hand side> - <right-hand side> = 0.

[25] See, e.g., en.wikipedia.org/wiki/SI_base_unit .

[26] See, e.g., en.wikipedia.org/wiki/SI_derived_unit#

Derived_units_with_special_names .

[27] PhysicalUnits2 is a copy of PhysicalUnits (section 5.9.2, “Defining Units in

the System SYQ File”), without unit definitions in the system *.syq file.

[28] See section 9.2.6.2, “C Code for a Flow with Units” and section 9.2.6.3, “MATLAB®

Code for a Flow with Units” for code examples.

[29] If you need help, see To open the Execution Environment.

ETAS 5. SCODE-CONGRA Tutorial

SCODE Workbench 3.1 — Getting Started 128

https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/SI_derived_unit#Derived_units_with_special_names
https://en.wikipedia.org/wiki/SI_derived_unit#Derived_units_with_special_names

6. First Steps with SCODE Workbench

The SCODE Workbench with the SCODE-ANALYZER and SCODE-CONGRA tools is an

Eclipse-based product. If you are familiar with using an Eclipse environment, then you

should feel at home. If SCODE Workbench 3.1 is the first Eclipse-based application you

have used, then this chapter provides some basic information to get you started.

To start the SCODE Workbench for the first time

1. Do one of the following to start the SCODE Workbench:

◦ Select ETAS SCODE Workbench 3.1 from the start menu.

◦ Double-click the SCODE Workbench 3.1 desktop icon.

2. In the "SCODE Workbench Launcher" window, enter or select (via the Browse

button) path and name of the workspace you want to use.

If you enter a non-existing workspace, it is created.

Later, the "Recent Workspaces" list will show previously used workspaces.

3. If desired, activate the Use this as the default and do not ask again option.

The next time you start the SCODE Workbench, the selected workspace opens

automatically.

4. Click OK.

The "ETAS Safety Advice" window opens. It contains safety information in several

languages. You can select a language in the combo box at the top of the window.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 129

Read the Safety Advice carefully before you click

Acknowledged.

You can open the Safety Advice in the SCODE

Workbench window via Help > ETAS Safety Advice. A

PDF version, ETAS Safety Advice.pdf, is available in

the SCODE Workbench installation directory, documents
subfolder.

5. Acknowledge the safety advice.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 130

The SCODE Workbench is now started.

Figure 77. SCODE Workbench window, showing the Welcome page

The Welcome page contains links to useful information.

6. To reach the workbench, click the Hide button at the top right.

7. Click the SCODE-ANALYZER or SCODE-CONGRA button at the top right

to select the appropriate perspective for the tool you want to use.

Figure 78. SCODE Workbench window, showing the SCODE-ANALYZER perspective

with empty workspace

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 131

Figure 79. SCODE Workbench window, showing the SCODE-CONGRA perspective with

empty workspace

6.1. First Steps with SCODE-ANALYZER

6.1.1. Generator Settings

The following generators are available:

• MATLAB

• C

• ESDL

• C++

You can select and configure a generator in the "Preferences" window.

To select and configure a generator for SCODE-ANALYZER

1. In the SCODE Workbench window, select Window > Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-ANALYZER" node and go to the

"Generator" subnode.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 132

Figure 80. "Preferences" window with generator settings for SCODE-ANALYZER

3. In the "Generators" area, select the generator(s) you want to use.

More details about the generators and their configuration are given in the SCODE-

ANALYZER User Guide, chapter "Tasks", sections "Code Generation" and "Code

Generation preferences".

The user guide is opened via Help > Help Contents.

4. Files are generated in the working directory. Make sure that the respective access

rights for this folder are available.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 133

6.1.2. Start Using SCODE-ANALYZER

To start using the features of SCODE-ANALYZER it is helpful to start with one of the

examples provided with the tool.

To create an example project for SCODE-ANALYZER

1. Open the SCODE Workbench (see step 1 in the previous instruction).

2. Do one of the following:

◦ Right-click in the project explorer and select New > Example from the

context menu.

◦ Select File > New > Example.

◦ Click the arrow next to the New button and select Example from the

dropdown menu.

The "New Example" window opens. It shows the examples for SCODE-ANALYZER

and SCODE-CONGRA.

3. In that window, select a SCODE-ANALYZER example project and click Next.

The selected project is listed.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 134

4. Click Finish to create the sample project.

The example project is imported into your workspace. It is shown in the project

explorer.

5. In the project explorer, open the SCODE-ANALYZER Example - Water Tank
folder and double-click the water_tank.scode file.

You are now ready to discover or use SCODE-ANALYZER!

For more information on how to use SCODE-ANALYZER, see chapter 4, SCODE-

ANALYZER Tutorial in this manual, and the SCODE-ANALYZER User Guide (opened via

Help > Help Contents).

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 135

6.2. First Steps with SCODE-CONGRA

6.2.1. Settings

Before you use SCODE-CONGRA for the first time, Maxima has to be activated. By

default, Maxima is activated. If you want to check the activation, proceed as described in

the following instruction.

To check Maxima activation

1. In the SCODE Workbench window, select Window > Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the

"Solver" subnode.

Figure 81. "Preferences" window with "Solver" settings for SCODE-CONGRA

3. In the "Use Solver" combo box (large arrow in Figure 81), select Selected
Solver.

4. In the "Available Solvers" area, activate Maxima (Priority: 4 *).

More details about the generators and their configuration are given in the SCODE-

CONGRA User Guide, chapter "Tasks", section "Preferences of ETAS SCODE-

CONGRA", subsection "Configuration of the Solvers".

The user guide is opened via Help > Help Contents.

5. Click Apply.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 136

With that, the internal cache will speed up the tool by reusing solutions already

calculated.

6. Configure the Maxima installation directory in the "Maxima" subnode (small arrow

in Figure 81).

7. Click Apply or Apply and Close.

If you click Apply, the "Preferences" window remains open.

To select and configure a generator

To use a code generator, activate the generator as follows.

1. In the SCODE Workbench window, select Window > Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the

"Generator" subnode.

Figure 82. "Preferences" window with "Generator" settings for SCODE-CONGRA

3. In the "Generators" area, select the generator(s) you want to use.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 137

More details about the generators and their configuration are given in the SCODE-

CONGRA User Guide, chapter "Tasks", section "Triggering the generators". The

user guide is opened via Help > Help Contents.

4. Files are generated in the working directory. Make sure that the respective access

rights for this folder are available.

6.2.2. Start Using SCODE-CONGRA

To start using the features of SCODE-CONGRA, it is helpful to start with one of the

examples provided with the tool.

To create an example project:

1. Do one of the following:

◦ Right-click in the project explorer and select New > Example from the

context menu.

◦ Select File > New > Example.

◦ Click the arrow next to the New button and select Example from the

dropdown menu.

The "New Example" window opens. It shows the examples for SCODE-ANALYZER

and SCODE-CONGRA.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 138

For most of the functionality of SCODE-CONGRA, it is

necessary to activate a Computer Algebra System as

solver; see section 6.2.1.

2. In the "New Example" window, select a SCODE-CONGRA example project and

click Next.

The selected project is listed.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 139

3. Click Finish to create the sample project.

If the SCODE Workbench uses the SCODE-ANALYZER perspective, you are

asked if you want to use the SCODE-CONGRA perspective instead. The SCODE-

CONGRA perspective is a selection of views, tabs and pages optimized for

SCODE-CONGRA.

4. Click Open Perspective to continue.

You may be asked to select a solution.

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 140

5. Click OK to accept the default selection.

The example project is imported into your workspace. It is shown in the project

explorer.

6. In the project explorer, open the SCODE-CONGRA Tutorial Chapter 1 -
Basic triangle folder and double-click one of the entries below

TriangleSystemBasic.syq.

The selected graph opens.

You are now ready to discover or use SCODE-CONGRA!

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 141

6.3. Simulation in MATLAB®

Working installations of MATLAB® and Simulink® are required.

Tests have been performed with versions R2016b, R2017b,

R2018b, and R2019b.

To activate interaction with MATLAB for simulation, the connection between SCODE

Workbench and MATLAB has to be configured.

6.3.1. Uninstall Old Connection to MATLAB®

If an old SCODE-CONGRA version (e.g., 1.5.0) is installed on the PC, make sure that

first the MLConnect Client gets deleted manually. The default path was

C:\Users\<your user id>\Documents\MATLAB. There, the following files and

folder need to be deleted:

• MATLABClient folder

• ETASConnect.m file

• sctLaunch.m file

If the MLConnect Client was installed on a different path, make sure that the same files

and folders are deleted from that path.

6.3.2. Connect Current Version

To connect SCODE Workbench and MATLAB®

1. In the SCODE Workbench window, select Window > Preferences.

2. In the "Preferences" window, go to the "MATLAB/Simulink" node.

This node lists all MATLAB installations on your computer.

Figure 83. "Preferences" window, "MATLAB/Simulink" node

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 142

3. Select () the MATLAB version(s) you want to connect.

4. Deselect () the MATLAB version(s) you want to disconnect.

5. Click Apply and Close.

A message window informs you about the result of the configuration process.

More details are given in the following parts of the online help (opened via Help > Help

Contents):

• SCODE-ANALYZER User Guide, chapter "Tasks", section "Establish Connection

between SCODE and MATLAB"

• SCODE-CONGRA User Guide, chapter "Tasks", section "Using MATLAB and

Simulink for simulation"

ETAS 6. First Steps with SCODE Workbench

SCODE Workbench 3.1 — Getting Started 143

7. Useful Information

This chapter contains useful information for working with the SCODE product family.

7.1. SCODE-ANALYZER: Generating TPT Test Cases

SCODE-ANALYZER can generate C code for a model. This C code can be tested with

TPT [30] test cases, which are also generated by SCODE-ANALYZER.

TPT can only access global variables of the C code, and SCODE-ANALYZER only

generates local variables in the generated functions. So, it is necessary to create another

C code file that declares global variables which TPT can access, and calls the SCODE-

ANALYZER-generated C code. This section explains how this code looks like and what

steps are necessary to execute the test cases.

It is recommended that you use a TPT version that contains the

C/C++ Platform. Versions prior to TPT 16 might not work, or

would need some manual modification to the generated TPT file.

This section is based on TPT 17, it uses the C/C++ Platform.

7.1.1. SCODE-ANALYZER Project

You need a SCODE-ANALYZER project with working C code generation. This section

uses the water tank example; To create an example project for SCODE-ANALYZER

explains how to create the project.

To generate TPT test cases for such a project, meet the following requirements.

• The transition matrix must be complete and free of errors.

• The default transition behavior must be set to non-transition.

You can set the behavior either for the entire workspace in the "Preferences"

window (see To set the transition behavior) or for this project in the project

properties (Figure 84). Close and re-open the *.scode file to see the change.

Figure 84. "Properties for <project>" window, "SCODE-ANALYZER" node

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 144

• The following settings in the "SCODE-ANALYZER\Generator" node are mandatory:

◦ The "Generation Source" property must be set to Mode Transition
Matrix.

A "Generation Source" property set to Mode
Transition Matrix means you have to specify

the transition matrix correctly.

◦ The "Dimension and Node representation" property must be set to Use
custom representation - default: Integer.

◦ C code generation must be activated.

◦ As long as you do not focus on testing actions, the "Output type" property

can be set to Modes.

Figure 85 shows an example for generator settings that can be used with TPT test

case generation.

Figure 85. "Properties for <project>" window, "SCODE-ANALYZER\Generator"

node

• The settings for "Dimension and Node representation" and "Output type" must be

identical in the generator settings and in the run configuration (see Figure 86).

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 145

• Analysis for dynamic non-transitions must be activated in the "Outline" tab.

To create a TPT test case

SCODE-ANALYZER provides a special launch configuration for TPT test case creation.

1. Right-click the SCODE file and select Run As > TPT (ANALYZER) from the

context menu.

The "Edit Configuration" window opens.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 146

Figure 86. "Edit Configuration" window for the TPT launch configuration

2. To select the source for TPT test case generation, enter or select (via Workspace

button) the <scode file name>.scode file in the "SCODE File" field.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 147

3. To select an output folder, enter or select (via Workspace or File System button) a

folder in your workspace.

With the Workspace button, you can select a folder in your current workspace.

With the File System button, you can select an output folder anywhere on your file

system.

4. Activate the option for the desired output type.

Modes ignores actions in the SCODE-ANALYZER project.

Modes and Actions includes actions in the SCODE-ANALYZER project.

The output type you select here must be the same as the output type selected in

the generator settings (see also Figure 85).

5. In the "Dimension and Node representation" area, activate Use custom
representation - default: Integer.

Other settings are currently not fully supported.

6. Click Run to create the test case.

The following files are created:

• <scode file name>_channels.tpt (see Table 18 for an example)

• <scode file name>_Runner.c (see Table 19 for an example)

• <scode file name>.csv (see Table 20 for an example)

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 148

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 149

<?xml version="1.0" encoding="ASCII"?>
<tspec fileformatversion="19">
 <header>
 <declarations>
 <channels>
 <channel log="true" name="Water_level" role="output" type="uint8"
 description="Water level"/>
 <channel log="true" name="Outlet_valve" role="input" type="uint8"
 description="Outlet valve"/>
 <channel log="true" name="Pump" role="input" type="uint8"
 description="Pump"/>
 <channel log="true" name="currentMode" role="output" type="uint8"
 description=""/>
 <channel log="true" name="mode" role="input" type="uint8"
 description=""/>
 </channels>
 </declarations>
 </header>
 <body>
 <testlet name="main">
 <content_ts/>
 </testlet>
 <assesslets>
 <assessletgroup name="Report">
 <assessletgroup name="Test Information">
 <assesslet name="Test Information" type="SectionReportAssessletType"/>
 <assesslet name="Report Meta Information"
 type="MetaInformationReportAssessletType"/>
 <assesslet name="Timeout" type="timeout"/>
 <assesslet name="Report Linked Requirements" type="rmassesslet"/>
 </assessletgroup>
 <assessletgroup name="Signals">
 <assesslet name="Signals" type="SectionReportAssessletType"/>
 <assesslet name="Assesslet Summary"
 type="AssessletSummaryReportAssessletType"/>
 <assesslet name="Assessments" type="SignalTableReportAssessletType">
 <assesslet_signalTableReport>
 <reportAssessletFilter_signalTable showAssessmentVariables="true"
 showScriptVariables="true"/>
 </assesslet_signalTableReport>
 </assesslet>
 <assesslet name="Inputs" type="SignalTableReportAssessletType">
 <assesslet_signalTableReport>
 <reportAssessletFilter_signalTable showInputs="true"/>
 </assesslet_signalTableReport>
 </assesslet>
 <assesslet name="Outputs" type="SignalTableReportAssessletType">
 <assesslet_signalTableReport>
 <reportAssessletFilter_signalTable showOutputs="true"/>
 </assesslet_signalTableReport>
 </assesslet>
 <assesslet name="Parameters" type="SignalTableReportAssessletType">
 <assesslet_signalTableReport>
 <reportAssessletFilter_signalTable showMeasurements="true"/>
 </assesslet_signalTableReport>
 </assesslet>
 <assesslet name="System Constants" type="SignalTableReportAssessletType">
 <assesslet_signalTableReport>
 <reportAssessletFilter_signalTable showDeclSysConstants="true"/>
 </assesslet_signalTableReport>
 </assesslet>
 </assessletgroup>
 <assesslet name="Assesslets" type="SectionReportAssessletType"/>
 </assessletgroup>
 <assesslet name="Test Step List Assessments" type="StepListAssessments"/>
 </assesslets>
 </body>
</tspec>

Table 18. water_tank_channels.tpt (XML-based TPT project file for the water tank

example)

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 150

/**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
 *
 * @source water_tank.scode
 *
 * @tool SCODE-ANALYZER 3.1
 *
 * @options
 * Generation source: Mode Transition Matrix
 * Dimension and mode representation: Use custom representation -
 * default: Integer
 * Output type: Modes and Actions
 *
 **/

#include "water_tank.h"

unsigned char currentMode;
unsigned char Water_level;
unsigned char mode;
unsigned char Outlet_valve;
unsigned char Pump;

void water_tank_Runner() {
 mode = water_tank_SelectorAction(currentMode, Water_level,
 &Outlet_valve, &Pump);
} /* water_tank_Runner*/

Table 19. water_tank_Runner.c (C file to create global variables accessible to TPT)

time;currentMode;Water_level;Outlet_valve;Pump;mode;
1;0;1;0;0;0;
2;0;0;0;1;1;
3;0;2;1;0;2;
4;1;0;0;1;1;
5;1;1;0;0;0;
6;1;2;0;1;1;
7;2;2;1;0;2;
8;2;1;0;0;0;
9;2;0;1;0;2;

Table 20. water_tank.csv (contains test data)

C Code

Generate C code for the project. If you need help, see To generate code from the

transition matrix. Without this C code, you cannot run the test.

The generated code is stored according to your settings. The following files are

generated:

• water_tank.c (Table 21)

• water_tank.h (Table 22)

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 151

1 /**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
 *
 * @source water_tank.scode
 *
 * @tool SCODE-ANALYZER 3.1
 *
 * @options
 * Generation source: Mode Transition Matrix
 * Dimension and mode representation: Use custom representation -
 * default: Integer
 * Rule generation type: Using Rule Definition
 * Output type: Modes and Actions
 *
 * @metrics:
 * Number_of_modes: 3
 * Number_of_mode_rules: 3
 * Number_of_events: 5
 * Number_of_event_rules: 5
 * Number_of_transitions: 6
 **/

#include "water_tank.h"

2 unsigned char water_tank_ModeSelector(unsigned char currentMode,
 unsigned char Water_level) {
 unsigned char mode = 0U;
 switch (currentMode) {
 case 0U:
 if ((Water_level == 0U)) {
 mode = 1U;
 } else if ((Water_level == 2U)) {
 mode = 2U;
 } else {
 mode = 0U;
 }
 break;

 case 1U:
 if ((Water_level == 1U)) {
 mode = 0U;
 } else {
 mode = 1U;
 }
 break;

 case 2U:
 if ((Water_level == 1U)) {
 mode = 0U;
 } else {
 mode = 2U;
 }
 break;

 default: {
 mode = currentMode;
 break;
 }
 } /* switch (input_currentMode)*/
 return mode;
} /* water_tank_ModeSelector*/

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 152

3 unsigned char water_tank_Action(unsigned char mode, unsigned char * Pump) {
 unsigned char Outlet_valve = 0U;
 switch (mode) {
 case 0U:
 /* case for Idle */
 Outlet_valve = 0U;
 *Pump = 0U;
 break;

 case 1U:
 /* case for Fill-up */
 Outlet_valve = 0U;
 *Pump = 1U;
 break;

 default: {
 /* case for Drain */
 Outlet_valve = 1U;
 *Pump = 0U;
 break;
 }
 } /* switch (mode)*/
 return Outlet_valve;
} /* water_tank_Action*/

4 unsigned char water_tank_SelectorAction(unsigned char currentMode,
 unsigned char Water_level, unsigned char * Outlet_valve, unsigned
char * Pump) {
 unsigned char mode = 0U;
 mode = water_tank_ModeSelector(currentMode, Water_level);
 *Outlet_valve = water_tank_Action(mode, Pump);
 return mode;
} /* water_tank_SelectorAction*/

Table 21. water_tank.c (C file generated for the water tank example)

/**
 ...
 **/

#ifndef WATER_TANK_H
#define WATER_TANK_H

extern unsigned char water_tank_ModeSelector(unsigned char
 currentMode, unsigned char Water_level);

extern unsigned char water_tank_Action(unsigned char mode,
 unsigned char * Pump);

extern unsigned char water_tank_SelectorAction(unsigned char
 currentMode, unsigned char Water_level,
unsigned char * Outlet_valve,
 unsigned char * Pump);

#endif /* WATER_TANK_H */

Table 22. water_tank.h (corresponding header file for water_tank.c)

The water_tank_ModeSelector function (Table 21, block 2) contains the mode logic.

The water_tank_Action function (Table 21, block 3) contains the action logic. The

water_tank_SelectorAction function (Table 21, block 4) calls the other two.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 153

As the variables are all local variables, the water_tank_Runner.c file is needed, which

is created during TPT project generation. That file (see Table 19) defines the inputs

(Water_level, currentMode) and the output (mode) as global variables. The

water_tank_Runner function is the function that calls the mode selector generated by

SCODE-ANALYZER. The included header file is used to make the code know about the

function calls of the mode selector.

7.1.2. Working in TPT

This section describes how to set up the TPT test project, using the *.tpt file (see To

create a TPT test case) and the generated C code (see C Code).

7.1.2.1. Preparations

TPT needs to know the compiler it is supposed to use.

To create a compiler configuration

1. Start TPT.

2. If the TPT "Welcome" page opens, click New to create a new, empty project.

3. In the TPT window, select Options > Preferences.

4. In the "Preferences" window, go to the "General\C Compiler" node.

5. Do one of the following:

◦ Make sure that your compiler configuration is correct.

◦ Add a new compiler configuration.

TPT can use only compilers that are configured in the

"General\C Compiler" node.

The CTC++ code coverage check requires a Visual Studio

compiler.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 154

Figure 87. TPT "Preferences" window, "General\C Compiler" node

6. Close the "Preferences" window.

7.1.2.2. TPT Project

To create the TPT project

1. Start TPT.

2. If the TPT "Welcome" page opens, click New to create a new, empty project.

3. If desired, close the empty project.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 155

4. In the main TPT window, select File > Open.

5. In the file selection window, select the *.tpt file you created with {project-nameA},

then click Open.

The *.tpt file is imported. The following tree is shown in the TPT "Project" tab:

Figure 88. *.tpt file opened in TPT

6. Click Save.

You are warned that the TPT file was created using a previous version of TPT. If

you proceed, the file format will be changed to TPT 17u1 and the file cannot be

opened with older versions of TPT any longer.

7. Click Yes to save the project.

To execute the test cases, three steps are required:

A. Generate a test case; see Test Case.

B. Configure the platform; see Platform.

C. Execute the test; see Execution.

Test Case

To generate a test case

1. In the main TPT window, select Generate Test Cases > from Test Data.

The "Generate Test Cases from Test Data" window opens.

2. In the "Data directory" field, enter or select (via the Browse button) the directory

that contains your test case files (see To create a TPT test case).

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 156

3. Make sure that the following values are set:

Parameter Value Remarks

"File pattern" *.csv The *.csv file (see Table 20) contains

the test data.

Embed signal data activat

ed

Create signal comparison

assesslets

activat

ed

Create local reference

channels

activat

ed

Add termination condition activat

ed

Assign values to matching

parameters

activat

ed

Figure 89. TPT "Generate Test Cases from Test Data" window

4. Click OK.

The test case is added to the TPT project.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 157

5. Double-click the test case to see it in the TPT "Contents" tab.

6. In the "Contents" tab, select a signal to display it in the lower half of the "Content"

tab.

Figure 90. TPT "Content" tab with test case and signal

Platform

The C/C++ Platform allows you to directly test C code from source files by automatically

generating an appropriate test frame. You can import functions and global variables via

C files, and you can set up step size and timeout of the test.

Step size

Sampling time, i.e., a constant time between one simulation step and the subsequent

one.

Timeout

Maximum test execution time before test execution stops.

Assume a test data file with 100 steps, a step size of 1s, and a timeout of 1min. When

you run the test, the simulation stops after 60 seconds ≙ 60 steps, and the remaining

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 158

steps are ignored steps. If the test data files has less than 60 steps, the simulation stops

after the last step.

So, when you set up the platform (see step 6 below), make sure that the maximum

execution time contains all steps. You may add some extra time, just to be sure.

To configure the platform

1. In the main TPT window, select Execution > Platform Configuration.

The "Platform Configuration" window opens.

2. In that window, click the Add Platform Configuration button and create a new

C/C++ Platform.

The platform is shown in the "Platform Configuration" window (Figure 91).

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 159

Figure 91. "Platform Configuration" window with newly created platform

3. In the "Compiler" combo box, select the compiler you want to use.

Only compilers defined in the "Preferences" window (see

To create a compiler configuration) are available.

4. If you are using a 64 bit compiler, activate the Compile as 64 bit option.

5. In the "Sources" area, add the C files.

In the example, water_tank_Runner.c (generated with the TPT file; see To

create a TPT test case) and water_tank.c (see also C Code) are added.

6. Configure "Step size" and "Timeout".

7. Configure other parameters.

8. To activate code coverage check, do the following:

i. Go to the "Code Coverage" node and activate Enable code coverage.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 160

ii. In the combo box next to the option, select the code coverage tool.

CTC++ code coverage check requires a Visual

Studio compiler. For other compilers, select CNU
gcov.

The "C/C++ Platform" node of the "Platform Configuration" window should look as follows:

Figure 92. "Platform Configuration" window with configured platform

Next, the variables and functions are analyzed, and the interface is exported.

To import the interface

1. In the "C/C++ Platform" node of the "Platform Configuration" window (Figure 92),

click the Analyze sources button.

The "Code interface" window opens. It lists the added C files and their elements.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 161

Figure 93. "Code interface" window

2. Make sure that the global variables in the *_Runner.c file are connected.

TPT can access only connected variables.

3. For the function in the *_Runner.c file, select schedule.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 162

This function (water_tank_Runner in the example) calls the function under test.

With the schedule setting, it is executed periodically.

4. For the functions in the <scode file name>_.c file (see Table 21 for an

example), select ignore.

5. Click Import interface.

The "Import Interface" window opens. It displays the information found in the

C files.

Figure 94. "Import Interface" window

6. Click Default All to select the actions TPT suggests for the elements.

7. Click OK to close the "Import Interface" window and import the interface.

If the import was successful, a message window informs you that the functions list

was updated.

8. Click OK to close the message window.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 163

9. In the "Platform Configuration" window, click Generate and compile test driver.

10. If no errors occurred, close the "Platform Configuration" window.

If errors occurred, refer to the TPT documentation for help.

Execution

Once test driver generation was successful, you can execute the test cases.

To execute test cases

1. In the main TPT window, select Execution > Execution Configuration.

2. In the "Execution Configuration" window, edit the configuration according to your

needs.

The example uses default settings.

Figure 95. "Execution Configuration" window

3. If desired, activate Save TPT file before running.

4. Click Run.

If a warning regarding file format changes opens, click yes to continue.

The tests are executed. Results are displayed in the "Build Progress" window. Passed

tests are marked with green hooks (; see also Figure 96), failed tests are

marked with red flashes ().

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 164

Figure 96. "TPT Build Progress" window, all tests passed

The * Report buttons become available when the report is created. Test Report opens

the test report in a web browser. The Overview Report button creates and opens an

overview report, which provides summary information and a link to the test report.

To analyze the signals, select a test case and click the Signals button [31] in the toolbar

of the "TPT Build Progress" window to open the TPT Signal Viewer. See the TPT online

help for further information.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 165

7.2. SCODE-CONGRA: Colors

Color Meaning Example

Fill colors

light grey undefined node see Example: Explicit Output,

Unused Nodes

green1 free variable see Example: Inputs, Implicit

Outputs, Algebraic Loop

light grey parameter see Example: Parameter, Fixed

Variable

orange1a argument

blue1 input see Example: Inputs, Implicit

Outputs, Algebraic Loop

green2a tearing variable

white relation see Example: Inputs, Implicit

Outputs, Algebraic Loop

dark greya relation with subsystem

light yellowa relation with char. table/map

orange2a relation with conditional

equation subsystem

pinka tearing relation

Edge/border colors

black normal edge see Example: Inputs, Implicit

Outputs, Algebraic Loop

blue2 underconstrained (sub-)graph see Example: Underconstrained

and Overconstrainedred overconstrained (sub-)graph

yellow algebraic loop see Example: Inputs, Implicit

Outputs, Algebraic Loop

browna subgraph with intrinsic BNS

pinka teared algebraic loop

rosya algebraic loop in teared

algebraic loop

a: See the SCODE-CONGRA User Guide for more information.

Table 23. SCODE-CONGRA graphs — CONGRA Classic colors and meanings

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 166

Example: Inputs, Implicit Outputs, Algebraic Loop

Figure 97. Flow with inputs, implicit outputs, and algebraic loop

The flow in Figure 97 contains the following elements:

• variables I, P, R, U

• relation Ohms_law: U = R * I

• relation Resistor_Power_Law: P =U * I

Variables R and P are marked as inputs. They use the fill color blue1 and thin black

borders.

Variables U and I are free, but they can be computed. Therefore, they use fill color

green1.

The relations use the fill color white.

Both relations and the variables I and U form the algebraic loop. They, as well as the

connections between them, use the border color yellow.

Example: Explicit Output, Unused Nodes

Figure 98. Flow with relations, inputs, explicit output, and unused parts

The flow in Figure 98 contains the same elements as the flow in Figure 97.

Variable I is marked as output. It uses fill color green1 and a thick black border.

Relation Resistor_Power_Law and variable P are not required to compute the explicit

output I. Therefore, they, and the connecting edges, use light grey as border color.

Variables P is free, but it can, in principle, be computed. Therefore, it uses fill color

green1.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 167

Example: Parameter, Fixed Variable

Figure 99. System graph (left) and flow (right) with relation, parameter, variables

System graph and flow in Figure 99 contain the following elements:

• variables I, U

• parameter R

• relation R01: U = R * I

R is specified as parameter, it uses the fill color light grey, both in the system graph and in

the flow.

A fixed variable uses the fill color light grey in a flow, but it looks like free variables in the

system graph. See Figure 55 for an example.

Example: Underconstrained and Overconstrained

Figure 100. Flow with underconstrained and overconstrained parts

The flow in Figure 100 contains the following elements:

• variables a, b, c, d, g, h, i, j

• relation R01: a = b + 2 + d

• relation R02: 3*b = a + c

• relation R05: g = h - i

• relation R06: g - 2*i = j

Variable b is determined by R01 and R02, i,e, b is overconstrained. Therefore, the

borders of b, R01, R02 and the connecting edges use the border color red.

One input variable, i, is not sufficient to compute free variables g, h and j; g, h, and j are

underconstrained. Therefore, the borders of g, h, j, R05, R06 and the connecting edges

use the border color blue2.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 168

7.3. SCODE Workbench: Installing Yakindu Traceability

This section describes the installation of Yakindu Traceability in the SCODE Workbench.

Yakindu Traceability is a requirements traceability management

tool created and sold by itemis AG.

For any information beyond how to install Yakindu Traceability

into SCODE Workbench, please contact www.itemis.com/.

When you buy Yakindu Traceability, you will receive a ZIP file, the YT repository. Unzip

that repository to a local folder on your PC.

To set up SCODE Workbench for Yakindu Traceability installation

1. Start the SCODE Workbench.

2. Select Window → Preferences.

3. In the "Preferences" window, go to the "General\Network Connections" node and

do the following:

i. Set the "Active Provider" to Manual (A in Figure 101).

ii. Select the HTTP schema (B in Figure 101) and click the Edit button.

iii. In the "Edit Proxy Entry" window, enter host, port, your user and your

password, then click OK.

iv. Edit the HTTPS (C in Figure 101) schema in the same way.

v. Click Apply.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 169

https://www.itemis.com/

The "General\Network Connections" node should look as follows:

Figure 101. "Preferences" window, "General\Network Connections" node

4. Go to the "Install/Updates\Available Software Sites" node and make sure that only

the following update sites are enabled:

◦ Eclipse Luna for BIRT 4.4.2

(available at download.eclipse.org/releases/luna/)

◦ Eclipse (current TP version)

(available at download.eclipse.org/releases/2020-09/)

Figure 102. "Preferences" window, "Install/Update\Available Software Sites" node

5. If they are not listed, use the Add button to add the missing site(s).

6. Click Apply and Close.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 170

http://download.eclipse.org/releases/luna/
http://download.eclipse.org/releases/2020-09/

To install Yakindu Traceability into SCODE Workbench

1. In the SCODE Workbench window, select Help → Install New Software.

2. In the "Install" window, click Add.

3. In the "Add Repository" window, do the following:

i. In the "Name" field, enter a meaningful name for the repository.

ii. Click Local.

iii. In the file selection window, select the folder where you stored the repository,

then click Select folder.

iv. Click Add.

The repository name and file path appear in the "Work with" field of the "Install"

window. The repository content is shown in the table below.

4. Expand the top and bottom nodes and select the features as shown in Figure 103.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 171

Figure 103. "Install" window with Yakindu Traceability features selected for

installation

5. Click Next to continue.

In the "Install" window, the "Install Details" page opens. It lists all components

selected for installation.

6. Click Next to continue.

In the "Install" window, the "Review Licenses" page opens. It lists the liccense

agreements for the selected components.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 172

7. Read the license agreements, then activate I accept the terms of the license

agreements.

8. Click Finish to start the installation.

Installing Yakindu Traceability can take quite some time. During the process, the

"Certificates" window opens.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 173

9. In the "Certificates" window, select the certificate(s) you trust, then click Accept

selected.

When the installation is complete, you are asked to restart the SCODE Workbench.

Do not restart the SCODE Workbench. Instead, click Cancel and exit the SCODE

Workbench. After that, proceed as described in To update the SCODE Workbench.

To update the SCODE Workbench

This procedure requires administrator rights.

1. Download the JDK needed to run Yakindu Traceability.

The JDK is available at github.com/AdoptOpenJDK/openjdk11-binaries/releases/

download/jdk-11.0.10+9/OpenJDK11U-jdk_x64_windows_hotspot_11.0.10_9.zip.

2. Unzip the JDK to a folder (e.g., C:\Data\jdk-11.0.10+9) on your computer.

3. In the Windows file system, navigate to your SCODE Workbench installation.

4. Replace the content of the jre folder with the JDK content you downloaded in the

previous step (e.g., to C:\Data\jdk-11.0.10+9).

To do so, you may perform the following two steps:

i. In the SCODE Workbench installation directory, rename the existing jre
folder (e.g., to jre-SCODE Workbench).

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 174

https://github.com/AdoptOpenJDK/openjdk11-binaries/releases/download/jdk-11.0.10+9/OpenJDK11U-jdk_x64_windows_hotspot_11.0.10_9.zip
https://github.com/AdoptOpenJDK/openjdk11-binaries/releases/download/jdk-11.0.10+9/OpenJDK11U-jdk_x64_windows_hotspot_11.0.10_9.zip

ii. Copy or move the unzipped JDK folder (e.g., jdk-11.0.10+9) to the

SCODE Workbench installation directory and rename it to jre.

5. Start the SCODE Workbench and use it together with Yakindu Traceability.

Figure 104. SCODE Workbench with menus added by Yakindu Traceability

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 175

[30] testing tool by Piketec GmbH

[31] In previous TPT versions, this button was named View Assessment Results.

ETAS 7. Useful Information

SCODE Workbench 3.1 — Getting Started 176

8. Glossary

This chapter lists terms and abbreviations relevant for the SCODE Workbench, SCODE-

ANALYZER (section 8.1), and SCODE-CONGRA (section 8.2).

MATLAB®

A multi-paradigm numerical computing environment and proprietary programming

language developed by MathWorks®.

project

A project stores a model.

The SCODE Workbench offers two special project types, the SCODE-ANALYZER

project and the SCODE-CONGRA project. Both project types are identified as such by

the Eclipse environment. An open SCODE-ANALYZER project is marked by the

icon. An open SCODE-CONGRA project is marked by the icon.

SCODE

System CO-DEsign

Simulink®

Tool for modeling, simulation and analysis of dynamic systems. Developed by

MathWorks®.

8.1. SCODE-ANALYZER

action dimension

Action dimensions are adapted as an effect of a mode change.

alternative

An alternative is a certain state that a dimension can assume. In a real system, this is

often an abstraction of a set or a range of real values.

condition dimension

A dimension that causes mode changes.

DAG

directed acyclic graph

dimension

Dimensions are aspects of the system or its context that cause or represent different

system behaviors (or cause-effect chains). The dimensions may comprise, e.g.,

discrete states of the contexts, external requests to the system.

There are three types of dimensions: condition dimension, action dimension, and info

dimension.

decision tree

A graphical visualization of the mode definition rules.

ETAS 8. Glossary

SCODE Workbench 3.1 — Getting Started 177

Essential Analysis

The SCODE Essential Analysis is based on the Essential Systems Analysis,

developed by McMenamin and Palmer originally for IT systems, and extends and

modifies it to enable application for physically dominated systems.

The successful application of the SCODE Essential Analysis yields a decomposition of

the overall problem in several smaller subproblems which can be solved separately

and more easily. The integration of the subproblem solutions then provides the overall

solution of the original problem.

event

An event describes the conditions for the transition from one mode to another. An

event is described by a set of rules that define its trigger conditions using the same

rule definitions.

Only inclusion rules created from condition dimensions are used for the definition of

events.

ICE

internal combustion engine

info dimension

Info dimensions are useful as information in analysis.

mode

A specific situation. In this situation, the system has to behave in a specific way, i.e.,

the system resides in the mode.

A mode is represented by a set of states in the problem space, i.e., in a Zwicky box by

combinations of selected sets of alternatives for each dimension. Modes partition the

system states of a Zwicky box into different sets of states using inclusion and

exclusion rules.

non-system event

An event with impossible or meaningless rules, or with rules that are possible by

nature, but ruled out by design.

non-system mode

A mode that stores impossible or meaningless combinations of conditions, and

combinations that are possible by nature, but ruled out by design.

no transition

If a non-system event occurs, no transition between modes takes place.

overlapping

Two modes or two events overlap if at least one state is present in both modes or both

events.

Overlapping modes or events make the system non-deterministic; they lead to errors.

rule

Rules define the conditions for the system states that belong to a mode or an event.

ETAS 8. Glossary

SCODE Workbench 3.1 — Getting Started 178

https://archive.org/details/essentialsystems00mcme/page/n8/mode/1up

SOC

state of charge

source mode

The mode where a mode transition starts.

Not to be confused with the start mode of the system.

start mode

The mode the system enters first at the start of the execution.

Not to be confused with the source mode of a transition.

state

A state in SCODE-ANALYZER is characterized by selecting a specific alternative for

each dimension. Each state is represented by a discrete set of alternatives.

The total number of states in a system, ntotal is the product of the numbers of

alternatives, nai, of all ncond conditions.

ntotal = Πi=1
i=n

cond nai

One or more states can be grouped into a mode.

system mode

A mode that is relevant for the problem solution and models the corresponding

system.

target mode

The mode where a transition ends.

TPT

Time Partition Testing tool by Piketec GmbH

Zwicky box

A Zwicky box is a grid box (table) to support morphological analysis for multi-

dimensional, non-quantifiable problems.

The Zwicky box is named after the developer of this method, Fritz Zwicky (February

14, 1898 — February 8, 1974), a Swiss astronomer.

8.2. SCODE-CONGRA

computation

A computation is the result of solving a flow, an executable sequence of computation

steps. It captures the solved equations, and also orders the computation steps in a

linear way, via levels.

ESDL

Embedded Software Development Language; a high-level programming language for

writing real-time, deeply embedded software.

flow

A flow defines a computation order in a system. A system itself can have any numbers

of flows attached to it.

ETAS 8. Glossary

SCODE Workbench 3.1 — Getting Started 179

A flow is associated to a system and defines which variables are considered as input,

output or constant to the specific system.

If a flow is valid, the equations in the system become directed to produce the imposed

outputs of the relations.

For example, if m and c are given, then E is computed as follows: E = m*c2

If E and c are given, then m is computed as follows: m = E / c2

A valid flow is the basis for code generation.

level

Used to order the steps in a computation.

In the computation SYQ file, the levels are represented by the @level(i,j)
annotation. In the computation graph, the levels are shown as red numbers.

Maxima

An open-source third-party computer algebra system, which is available on your

computer with SCODE-CONGRA.

MuPAD®

Used by the Symbolic Math Toolbox™ as part of its underlying computational engine.

Can be used as solver in SCODE-CONGRA.

relation

A relation describes how different variables of a system are interrelated. It does not

imply a computation direction. The relations between different variables are specified

by mathematical equations, e.g., Einstein’s famous relation: E - m*c2 = 0

Symbolic Math Toolbox™

Provides functions for solving, plotting, and manipulating symbolic math equations.

The MuPAD solver that can be used in SCODE-CONGRA is included in this toolbox.

SYQ

System Equation Language

SYQ file

A textual file in SYQ that contains the semantic description of the system.

A SYQ file is the textual base of each SCODE-CONGRA project. Here, all variables,

relations, units, and flows are defined or stored (when you are working in the graphical

editor).

Each SCODE-CONGRA project must have at least one SYQ file.

system

A system is defined as a set of variables and relations between the variables. A

system is undirected, i.e. no inputs and outputs are specified. You cannot generate

executable code from an undirected system.

System Equation Language

A language developed by ETAS to describe a continuous system in SCODE-

CONGRA.

ETAS 8. Glossary

SCODE Workbench 3.1 — Getting Started 180

variable

A variable is an element that can be read and written during the execution of a

SCODE-CONGRA model.

In SCODE-CONGRA, all variables are deemed to be continuous.

ETAS 8. Glossary

SCODE Workbench 3.1 — Getting Started 181

9. Tutorial Hints

This chapter contains reference information for SCODE-ANALYZER (section 9.1) and

SCODE-CONGRA (section 9.2).

9.1. SCODE-ANALYZER Tutorial Hints

9.1.1. Problem Space

Dimension Alternatives

battery SOC [32] full / empty / normal

battery at OT [33] yes / no

electric engine cable okay / defective

silent mode [34] on / off

desired acceleration increase speed / decrease speed / keep speed

fuel tank empty / not empty

car moves no / yes

Table 24. Problem space — suggestions (see section 4.3)

9.1.2. Modes

Mode Dimensions

battery

SOC

battery

at OT

electric

engine

cable

silent

mode

fuel tank car moves

charging empty or

normal

yes okay yes

discharging NOT

empty

yes okay

standstill yes okay no

no empty

defective empty

combustion

engine only

defective not empty

no not empty

empty yes okay off not empty

mechanical

brake

full yes okay yes

Table 25. Modes and rules — first set of suggestions (see section 4.4.1)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 182

Mode Dimensions

battery

SOC

battery

at OT

electric

engine

cable

silent

mode

fuel tank car

moves

desired

acceleration

charging empty or

normal

yes okay yes decrease speed

discharging NOT

empty

yes okay NOT decrease

speed

standstill yes okay no decrease speed

no empty

defective empty

combustion

engine only

defective not empty

no not empty

empty yes okay off not empty NOT decrease

speed

mechanical

brake

full yes okay yes decrease speed

Table 26. Modes and rules — suggestions for additional condition (see section 4.4.2)

Dimensions Suggestion 1 Suggestion 2

battery SOC empty empty

battery at OT yes yes

electric engine cable okay okay

silent mode on

fuel tank empty

car moves

desired acceleration NOT decrease speed NOT decrease speed

Table 27. Suggested rules for the missing states. Alternatives that cannot be true at the

same time are marked.

Dimensions Suggestion

battery SOC empty

battery at OT yes

electric engine cable okay

silent mode off

fuel tank empty

car moves

desired acceleration NOT decrease speed

Table 28. Suggested rules for the states that are still missing after suggestion 1 from the

previous table has been inserted as non-system mode

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 183

Figure 105. Complete decision tree for the hybrid car example; with condition desired acceleration as root (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 184

Figure 106. The decision tree from Figure 105 with horizontal orientation (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 185

Figure 107. DAG view of the decision tree with vertical orientation (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 186

Figure 108. DAG view of the decision tree with horizontal orientation (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 187

Figure 109. Decision tree with selected layers, first three levels are shown (see section

4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 188

Figure 110. Sub-tree (horizontal orientation) with non-system modes displayed (see

section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 189

Figure 111. Sub-tree before height optimization (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 190

Figure 112. Sub-tree after height optimization (see section 4.4.4)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 191

9.1.3. Events and Transitions

current mode

next mode

charging standstill mechanic

al brake

discharging combustion

engine only

non-

system

charging * E2 E4 E1 E3

standstill E5 * E6 E7 E8

mechanical brake E9 E10 * E11 E12

discharging E13 E14 E15 * E16

combustion

engine only

E17 E18 E19 E20 *

Table 29. Transitions with associated events (*: no transition; --: forbidden transition) for

section 4.6

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 192

event rule(s)

name

E1 charging_
discharging

• battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = yes

AND desired acceleration = (increase speed OR keep

speed)

• battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = no

AND desired acceleration = (increase speed OR keep

speed)

• battery SOC = normal AND battery at OT = yes AND

electric engine cable = okay AND desired acceleration

= NOT(decrease speed)

E2 charging_
standstill

• electric engine cable = defective AND fuel tank =

empty

• battery at OT = no AND fuel tank = empty

• battery at OT = yes AND electric engine cable = okay

AND car moves = no AND desired acceleration =

decrease speed

E4 charging_
mechanBrake

• battery SOC = full AND battery at OT = yes and

electric engine cable = okay AND car moves = yes

AND desired acceleration = decrease speed

E3 charging_
combustionOnly

• battery SOC = empty AND silent mode = off AND fuel

tank = not empty AND desired acceleration =

(increase speed OR keep speed)

• electric engine cable = defective AND fuel tank = not

empty

• battery at OT = no AND electric engine cable = okay

AND fuel tank = not empty AND desired acceleration

= decrease speed

• battery at OT = no AND electric engine cable = okay

AND silent mode = on AND fuel tank = not empty

AND desired acceleration = (increase speed OR keep

speed)

• battery SOC = (full OR normal) AND battery at OT =

no AND electric engine cable = okay AND silent mode

= off AND fuel tank = not empty AND desired

acceleration = (increase speed OR keep speed)

Table 30. Events and rules for the transitions from mode charging

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 193

event rule(s)

name

E5 standstill_
charging

• battery SOC = (empty OR normal) AND battery at OT

= yes AND electric engine cable = okay AND car

moves = yes AND desired acceleration = decrease

speed

E6 standstill_
mechanBrake

• battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = yes

AND desired acceleration = decrease speed

E7 standstill_
discharging

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = okay AND desired

acceleration = (increase speed OR keep speed)

E8 standstill_
combustionOnly

• battery SOC = empty AND silent mode = off AND fuel

tank = not empty AND desired acceleration =

(increase speed OR keep speed)

• electric engine cable = defective AND fuel tank = not

empty AND desired acceleration = decrease speed

• battery SOC = (full or normal) AND battery at OT = no

AND fuel tank = not empty AND desired acceleration

= (increase speed OR keep speed)

• battery SOC = empty AND battery at OT = no AND

silent mode = on AND fuel tank = not empty AND

desired acceleration = (increase speed OR keep

speed)

• battery at OT = yes AND electric engine cable =

defective AND silent mode = on AND fuel tank = not

empty AND desired acceleration = (increase speed

OR keep speed)

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = defective AND silent

mode = off AND fuel tank = not empty AND desired

acceleration = (increase speed OR keep speed)

• battery at OT = no AND electric engine cable = okay

AND fuel tank = not empty AND desired acceleration

= decrease speed

Table 31. Events and rules for the transitions from mode standstill

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 194

event rule(s)

name

E9 mechanBrake_
charging

• battery SOC = (empty or normal) AND battery at OT =

yes AND electric engine cable = okay AND car moves

= yes AND desired acceleration = decrease speed

E10 mechanBrake_
standstill

• battery at OT = yes AND electric engine cable = okay

AND car moves = no AND desired acceleration =

decrease speed

• electric engine cable = defective AND fuel tank =

empty

• battery at OT = no AND electric engine cable =

defective AND fuel tank = empty

• battery at OT = no AND electric engine cable = okay

AND fuel tank = empty

E11 mechanBrake_
discharging

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = okay AND desired

acceleration = (increase speed OR keep speed)

E12 mechanBrake_
combustionOnly

• electric engine cable = defective AND fuel tank = not

empty AND desired acceleration = decrease speed

• battery SOC = (full or normal) AND battery at OT = no

AND fuel tank = not empty AND desired acceleration

= (increase speed OR keep speed)

• battery SOC = empty AND battery at OT = no AND

silent mode = on AND fuel tank = not empty AND

desired acceleration = (increase speed OR keep

speed)

• battery at OT = yes AND electric engine cable =

defective AND silent mode = on AND fuel tank = not

empty AND desired acceleration = (increase speed

OR keep speed)

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = defective AND silent

mode = off AND fuel tank = not empty AND desired

acceleration = (increase speed OR keep speed)

• battery at OT = no AND electric engine cable = okay

AND fuel tank = not empty AND desired acceleration

= decrease speed

• battery SOC = empty AND silent mode = off AND fuel

tank = not empty AND desired acceleration =

(increase speed OR keep speed)

Table 32. Events and rules for the transitions from mode mechanical brake

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 195

event rule(s)

name

E13 discharging_
charging

• battery SOC = (empty or normal) AND battery at OT =

yes AND electric engine cable = okay AND car moves

= yes AND desired acceleration = decrease speed

E14 discharging_
standstill

• battery at OT = yes AND electric engine cable = okay

AND car moves = no AND desired acceleration =

decrease speed

• electric engine cable = defective AND fuel tank =

empty

• battery at OT = no AND electric engine cable = okay

AND fuel tank = empty

E15 discharging_
mechanBrake

• battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = yes

AND desired acceleration = decrease speed

E16 discharging_
combustionOnly

• battery SOC = empty AND silent mode= off AND fuel

tank = not empty AND desired acceleration =

(increase speed OR keep speed)

• battery SOC = (full or normal) AND battery at OT = no

AND fuel tank = not empty

• battery at OT = yes AND electric engine cable =

defective AND silent mode = on AND fuel tank = not

empty

• battery at OT = yes AND electric engine cable =

defective AND silent mode = off AND fuel tank = not

empty AND desired acceleration = decrease speed

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = defective AND silent

mode = off AND fuel tank = not empty AND desired

acceleration = (increase speed OR keep speed)

• battery SOC = empty AND battery at OT = no AND

fuel tank = not empty AND desired acceleration =

decrease speed

• battery SOC = empty AND battery at OT = no AND

silent mode = on AND fuel tank = not empty AND

desired acceleration = (increase speed OR keep

speed)

Table 33. Events and rules for the transitions from mode discharging

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 196

event rule(s)

name

E17 combustionOnly_
charging

• battery SOC = (empty or normal) AND battery at OT =

yes AND electric engine cable = okay AND car moves

= yes AND desired acceleration = decrease speed

E18 combustionOnly_
standstill

• electric engine cable = defective AND fuel tank =

empty

• battery at OT = yes AND electric engine cable = okay

AND car moves = no AND desired acceleration =

decrease speed

• battery at OT = no AND electric engine cable = okay

AND fuel tank = empty

E19 combustionOnly_
mechanBrake

• battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = yes

AND desired acceleration = decrease speed

E20 combustionOnly_
discharging

• battery SOC = (full or normal) AND battery at OT =

yes AND electric engine cable = okay AND desired

acceleration = (increase speed OR keep speed)

Table 34. Events and rules for the transitions from mode Combustion engine only

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 197

9.1.4. Code Generation: Mode Invariants

 /**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
...
 **/

package hybridCar;

import hybridCar.Mode_Type;
import hybridCar.battery_SOC_Type;
import hybridCar.battery_at_OT_Type;
import hybridCar.electric_engine_cable_Type;
import hybridCar.silent_mode_Type;
import hybridCar.fuel_tank_Type;
import hybridCar.car_moves_Type;
import hybridCar.desired_acceleration_Type;

class hybridCar {

public Mode_Type hybridCar_ModeSelector(battery_SOC_Type battery_SOC, battery_at_OT_Type battery_at_OT,
 electric_engine_cable_Type electric_engine_cable, silent_mode_Type silent_mode, fuel_tank_Type
 fuel_tank, car_moves_Type car_moves, desired_acceleration_Type desired_acceleration) {

Mode_Type mode = Mode_Type.charging;

if ((!(battery_SOC == battery_SOC_Type.full) && battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes
 && desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.charging;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 198

} else if ((battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves == car_moves_Type.no
 && desired_acceleration == desired_acceleration_Type.decrease_speed) ||
 (battery_at_OT == battery_at_OT_Type.no && fuel_tank == fuel_tank_Type.empty) ||
 (electric_engine_cable == electric_engine_cable_Type.defective
 && fuel_tank == fuel_tank_Type.empty)) {
 mode = Mode_Type.standstill;

} else if ((battery_SOC == battery_SOC_Type.full && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes &&
 desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.mechanical_brake;

} else if ((!(battery_SOC == battery_SOC_Type.empty) && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && !(desired_acceleration ==
 desired_acceleration_Type.decrease_speed))) {
 mode = Mode_Type.discharging;

} else if ((electric_engine_cable == electric_engine_cable_Type.defective && fuel_tank ==
 fuel_tank_Type.not_empty) || (battery_at_OT == battery_at_OT_Type.no && fuel_tank ==
 fuel_tank_Type.not_empty) || (battery_SOC == battery_SOC_Type.empty && battery_at_OT ==
 battery_at_OT_Type.yes && electric_engine_cable == electric_engine_cable_Type.okay &&
 silent_mode == silent_mode_Type.off && fuel_tank == fuel_tank_Type.not_empty &&
 !(desired_acceleration == desired_acceleration_Type.decrease_speed))) {
 mode = Mode_Type.combustion_engine_only;

} else {
 mode = Mode_Type.charging;

 }
 return mode;
 } // hybridCar_ModeSelector
} // hybridCar

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 199

9.1.5. Code Generation: Transition Matrix

/**
 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
...
 **/

package hybridCar;

import hybridCar.Mode_Type;
import hybridCar.battery_SOC_Type;
import hybridCar.battery_at_OT_Type;
import hybridCar.electric_engine_cable_Type;
import hybridCar.silent_mode_Type;
import hybridCar.fuel_tank_Type;
import hybridCar.car_moves_Type;
import hybridCar.desired_acceleration_Type;

class hybridCar {

public Mode_Type hybridCar_ModeSelector(Mode_Type currentMode, battery_SOC_Type battery_SOC,
 battery_at_OT_Type battery_at_OT, electric_engine_cable_Type electric_engine_cable,
 silent_mode_Type silent_mode, fuel_tank_Type fuel_tank, car_moves_Type car_moves,
 desired_acceleration_Type desired_acceleration) {

Mode_Type mode = Mode_Type.charging;
switch (currentMode) {
 case Mode_Type.charging : {
 if ((electric_engine_cable == electric_engine_cable_Type.defective && fuel_tank ==
 fuel_tank_Type.empty) || (battery_at_OT == battery_at_OT_Type.no &&
 fuel_tank == fuel_tank_Type.empty) || (battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.no && desired_acceleration ==
 desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.standstill;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 200

} else if ((battery_SOC == battery_SOC_Type.full && battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.yes && desired_acceleration ==
 desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.mechanical_brake;

} else if (((battery_SOC == battery_SOC_Type.full || battery_SOC ==
 battery_SOC_Type.normal) && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed))) {
 mode = Mode_Type.discharging;

} else if ((battery_SOC == battery_SOC_Type.empty && silent_mode == silent_mode_Type.off &&
 fuel_tank == fuel_tank_Type.not_empty && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed)) || (electric_engine_cable ==
 electric_engine_cable_Type.defective && fuel_tank == fuel_tank_Type.not_empty) ||
 (battery_at_OT == battery_at_OT_Type.no && fuel_tank == fuel_tank_Type.not_empty)) {
 mode = Mode_Type.combustion_engine_only;

 } else {
 mode = Mode_Type.charging;
 }
} // Mode_Type.charging

case Mode_Type.standstill : {
 if (((battery_SOC == battery_SOC_Type.empty || battery_SOC == battery_SOC_Type.normal) &&
 battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes &&
 desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.charging;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 201

} else if ((battery_SOC == battery_SOC_Type.full && battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.yes && desired_acceleration ==
 desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.mechanical_brake;

 } else if (((battery_SOC == battery_SOC_Type.full || battery_SOC ==
 battery_SOC_Type.normal) && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed))) {
mode = Mode_Type.discharging;

} else if ((battery_SOC == battery_SOC_Type.empty && silent_mode == silent_mode_Type.off &&
 fuel_tank == fuel_tank_Type.not_empty && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed)) || (battery_at_OT == battery_at_OT_Type.no
 && fuel_tank == fuel_tank_Type.not_empty) || (electric_engine_cable ==
 electric_engine_cable_Type.defective && fuel_tank == fuel_tank_Type.not_empty)) {
 mode = Mode_Type.combustion_engine_only;

 } else {
 mode = Mode_Type.standstill;
 }
} // Mode_Type.standstill

case Mode_Type.mechanical_brake : {
 if (((battery_SOC == battery_SOC_Type.empty || battery_SOC == battery_SOC_Type.normal) &&
 battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes &&
 desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.charging;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 202

} else if ((battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.no &&
 desired_acceleration == desired_acceleration_Type.decrease_speed) ||
 (electric_engine_cable == electric_engine_cable_Type.defective && fuel_tank ==
 fuel_tank_Type.empty) || (battery_at_OT == battery_at_OT_Type.no &&
 fuel_tank == fuel_tank_Type.empty)) {
 mode = Mode_Type.standstill;

} else if (((battery_SOC == battery_SOC_Type.full || battery_SOC ==
 battery_SOC_Type.normal) && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed))) {
 mode = Mode_Type.discharging;

} else if ((battery_SOC == battery_SOC_Type.empty && silent_mode == silent_mode_Type.off &&
 fuel_tank == fuel_tank_Type.not_empty && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed)) || (battery_at_OT == battery_at_OT_Type.no
 && fuel_tank == fuel_tank_Type.not_empty) || (electric_engine_cable ==
 electric_engine_cable_Type.defective && fuel_tank == fuel_tank_Type.not_empty)) {
 mode = Mode_Type.combustion_engine_only;

 } else {
 mode = Mode_Type.mechanical_brake;
 }
} // Mode_Type.mechanical_brake

case Mode_Type.discharging : {
 if (((battery_SOC == battery_SOC_Type.empty || battery_SOC == battery_SOC_Type.normal) &&
 battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes &&
 desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.charging;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 203

} else if ((battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.no &&
 desired_acceleration == desired_acceleration_Type.decrease_speed) ||
 (electric_engine_cable == electric_engine_cable_Type.defective && fuel_tank ==
 fuel_tank_Type.empty) || (battery_at_OT == battery_at_OT_Type.no &&
 fuel_tank == fuel_tank_Type.empty)) {
 mode = Mode_Type.standstill;

} else if ((battery_SOC == battery_SOC_Type.full && battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.yes && desired_acceleration ==
 desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.mechanical_brake;

} else if ((battery_SOC == battery_SOC_Type.empty && silent_mode == silent_mode_Type.off &&
 fuel_tank == fuel_tank_Type.not_empty && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed)) || (electric_engine_cable ==
 electric_engine_cable_Type.defective && fuel_tank == fuel_tank_Type.not_empty) ||
 (battery_at_OT == battery_at_OT_Type.no && fuel_tank == fuel_tank_Type.not_empty)) {
 mode = Mode_Type.combustion_engine_only;

 } else {
 mode = Mode_Type.discharging;
 }
} // Mode_Type.discharging

case Mode_Type.combustion_engine_only : {
 if (((battery_SOC == battery_SOC_Type.empty || battery_SOC == battery_SOC_Type.normal) &&
 battery_at_OT == battery_at_OT_Type.yes && electric_engine_cable ==
 electric_engine_cable_Type.okay && car_moves == car_moves_Type.yes &&
 desired_acceleration == desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.charging;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 204

} else if ((electric_engine_cable == electric_engine_cable_Type.defective && fuel_tank ==
 fuel_tank_Type.empty) || (battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.no && desired_acceleration == desired_acceleration_Type.decrease_speed)
 || (battery_at_OT == battery_at_OT_Type.no && fuel_tank == fuel_tank_Type.empty)) {
 mode = Mode_Type.standstill;

} else if ((battery_SOC == battery_SOC_Type.full && battery_at_OT == battery_at_OT_Type.yes
 && electric_engine_cable == electric_engine_cable_Type.okay && car_moves ==
 car_moves_Type.yes && desired_acceleration ==
 desired_acceleration_Type.decrease_speed)) {
 mode = Mode_Type.mechanical_brake;

} else if (((battery_SOC == battery_SOC_Type.full || battery_SOC ==
 battery_SOC_Type.normal) && battery_at_OT == battery_at_OT_Type.yes &&
 electric_engine_cable == electric_engine_cable_Type.okay && (desired_acceleration ==
 desired_acceleration_Type.keep_speed || desired_acceleration ==
 desired_acceleration_Type.increase_speed))) {
 mode = Mode_Type.discharging;

} else {
 mode = Mode_Type.combustion_engine_only;
}
 } // Mode_Type.combustion_engine_only

 default: {
 mode = currentMode;
 }
 } // switch (currentMode)
 return mode;
 } // hybridCar_ModeSelector
} // hybridCar

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 205

9.1.6. SCODE-ANALYZER Report

This section shows a report generated as a Word document (*.docx).

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 206

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

2

Zw
ic

ky
 B

ox
: h

yb
ri

dC
ar

Pr
ob

le
m

 S
pa

ce
:

Th

e
Zw

ick
y

bo
x

co
ns

ist
s

of
 7

 d
im

en
sio

ns
 a

nd
 s

pa
ns

 s
pa

ce
 o

f 2
88

 s
ta

te
s

an
d

28
8

st
at

es
 o

n
in

pu
t s

pa
ce

.
 ba

tte
ry

 S
OC

fu

ll
em

pt
y

no
rm

al

 ba
tte

ry
 a

t O
T

ye
s

no

 el
ec

tri
c

en
gi

ne

ca
bl

e
ok

ay

de
fe

ct
iv

e

 sil
en

t m
od

e
on

of

f
 fu

el
 ta

nk

em
pt

y
no

t e
m

pt
y

 ca
r m

ov
es

no

ye

s
 de

sir
ed

ac

ce
le

ra
tio

n
de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

 Di
m

en
sio

n
ty

pe
s:

 C
on

di
tio

n
di

m
en

sio
n,

 L
in

ke
d

Co
nd

iti
on

 d
im

en
sio

n,
 F

or
ei

gn
 C

on
di

tio
n

di
m

en
sio

n,
 C

on
di

tio
n

Va
ria

nt
 d

im
en

sio
n,

Ac

tio
n

di
m

en
sio

n,
 L

in
ke

d
Ac

tio
n

di
m

en
sio

n,
 In

fo
 d

im
en

sio
n

De

sc
rip

tio
n:

Pr
ob

lem
 S

pa
ce

 c
om

m
en

ts
.

 Di
m

en
sio

n
Al

te
rn

at
iv

e
Co

m
m

en
t

ba
tte

ry
 S

OC

SO

C
=

 s
ta

te
 o

f c
ha

rg
e

ba
tte

ry
 S

OC

fu
ll

fu
ll

ba
tte

ry
 a

t O
T

OT

 =
 o

pe
ra

tio
na

l t
em

pe
ra

tu
re

M
od

es

ch
ar

gi
ng

 (
St

ar
t M

od
e)

 (
M

od
e1

)

M

od
e

ch
ar

gi
ng

 (S
ta

rt
M

od
e)

 (M
od

e1
) i

s
a

Sy
st

em
 m

od
e

Co

m
m

en
ts

:s
ta

rt
m

od
e

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 N
OT

(fu
ll)

 A
ND

 b
at

te
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
ca

r m
ov

es

=
 y

es
 A

ND
 d

es
ire

d
ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

3

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

NO

T
fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

st
an

ds
til

l (
M

od
e2

)

M

od
e

st
an

ds
til

l (
M

od
e2

) i
s

a
Sy

st
em

 m
od

e
 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
ca

r m
ov

es
 =

 n
o

AN
D

de
sir

ed

ac
ce

le
ra

tio
n

=
 d

ec
re

as
e

sp
ee

d
2

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 a
t O

T
=

 n
o

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

4

of
 3

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

m
ec

ha
ni

ca
l b

ra
ke

 (
M

od
e3

)

M

od
e

m
ec

ha
ni

ca
l b

ra
ke

 (M
od

e3
) i

s
a

Sy
st

em
 m

od
e

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 fu
ll

AN
D

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =

ye
s

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 d

ec
re

as
e

sp
ee

d

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

di
sc

ha
rg

in
g

(M
od

e4
)

M
od

e
di

sc
ha

rg
in

g
(M

od
e4

) i
s

a
Sy

st
em

 m
od

e
 1

of
 1

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 N

OT
(e

m
pt

y)
 A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 N

OT
(d

ec
re

as
e

sp
ee

d)

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

NO
T

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

NO
T

de
cr

ea
se

 s
pe

ed

ke
ep

 s
pe

ed

in
cr

ea
se

 s
pe

ed

co
m

bu
st

io
n

en
gi

ne
 o

nl
y

(M
od

e5
)

M
od

e
co

m
bu

st
io

n
en

gi
ne

 o
nl

y
(M

od
e5

) i
s

a
Sy

st
em

 m
od

e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

5
 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

el

ec
tri

c
en

gi
ne

 c
ab

le
 =

 d
ef

ec
tiv

e
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 e
m

pt
y

AN
D

sil
en

t m
od

e
=

 o
ff

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 3

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

no
n-

sy
st

em
 m

od
e

(M
od

e6
)

M
od

e
no

n-
sy

st
em

 m
od

e
(M

od
e6

) i
s

a
No

n
Sy

st
em

 m
od

e
 1

of
 2

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 e

m
pt

y
AN

D
ba

tte
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
sil

en
t m

od
e

=
 o

n
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)
2

of
 2

Ty

pe
: I

nc
lu

de

ba
tte

ry
 S

OC
 =

 e
m

pt
y

AN
D

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

sil
en

t m
od

e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

6

Ru
le

=

 o
ff

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 2

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 2

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

M
od

e
O

ve
rv

ie
w

 T
ab

le

 M
od

e
Ty

pe

M
od

e
N

am
e

St
at

es

St
ar

t M
od

e
ch

ar
gi

ng

8
Sy

st
em

 M
od

e
st

an
ds

til
l

12
0

Sy
st

em
 M

od
e

m
ec

ha
ni

ca
l b

ra
ke

4

Sy
st

em
 M

od
e

di
sc

ha
rg

in
g

32

Sy
st

em
 M

od
e

co
m

bu
st

io
n

en
gi

ne
 o

nl
y

11
2

No
n

Sy
st

em

M
od

e
no

n-
sy

st
em

 m
od

e
12

Es
se

nt
ia

l A
na

ly
si

s

Re

su
lts

 o
f e

ss
en

tia
l a

na
ly

sis
 a

cc
or

di
ng

 to
 S

CO
DE

 m
et

ho
d.

An

al
ys

is
 R

es
ul

ts

Th

e
es

se
nt

ia
l a

na
ly

sis
 w

as
 c

ar
rie

d
ou

t o
n

th
e

co
m

pl
et

e
pr

ob
le

m
 s

pa
ce

Co
m

pl
et

e

Co
ns

ist
en

t

De
te

rm
in

ist
ic

No

 A
ct

io
ns

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

7
 Sp

ac
es

St

at
es

N

um
be

r
of

...

pr
ob

le
m

28

8
to

ta
l s

ta
te

s
of

 th
e

co
m

pl
et

e
pr

ob
le

m
 s

pa
ce

 s
pa

nn
ed

 b
y

th
e

di
m

en
sio

ns

co
ve

re
d

28
8

st
at

es
 c

ov
er

ed
 b

y
an

y
m

od
e

re
m

ai
ni

ng

0
st

at
es

 n
ot

 c
ov

er
ed

 b
y

an
y

m
od

e

D
ec

is
io

n
Tr

ee

Ev
en

ts

Tr
an

si
tio

n
Ta

bl
e

 So

ur
ce

M

od
e/

Ta
rg

et

M
od

e

ch

ar
gi

ng

st
an

ds
til

l
m

ec
ha

ni
ca

l
br

ak
e

di
sc

ha
r

gi
ng

co

m
bu

st
io

n
en

gi
ne

on

ly

N
o

Tr
an

si
tio

n

ch
ar

gi
ng

M

1
*

E2

E4

E1

E3

st

an
ds

til
l

M
2

E5

*
E6

E7

E8

m
ec

ha
ni

ca
l b

ra
ke

M

3
E9

E1

0
*

E1
1

E1
2

di

sc
ha

rg
in

g
M

4
E1

3
E1

4
E1

5
*

E1
6

co

m
bu

st
io

n
en

gi
ne

 o
nl

y
M

5
E1

7
E1

8
E1

9
E2

0
*

ch
ar

gi
ng

_d
is

ch
ar

gi
ng

[E
1]

 1

of
 1

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 (f

ul
l O

R
no

rm
al

) A
ND

 b
at

te
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

8
 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

ch
ar

gi
ng

_s
ta

nd
st

ill
[E

2]

 1
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 e
m

pt
y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 n

o
AN

D
de

sir
ed

ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ok
ay

de

fe
ct

iv
e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

9
 ca

bl
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

ch
ar

gi
ng

_
co

m
bu

st
io

nO
nl

y[
E3

]
 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 e

m
pt

y
AN

D
sil

en
t m

od
e

=
 o

ff
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 (k

ee
p

sp
ee

d
OR

 in
cr

ea
se

 s
pe

ed
)

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

10

 ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

ch
ar

gi
ng

_
m

ec
ha

nB
ra

ke
[E

4]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 fu
ll

AN
D

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =

ye
s

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 d

ec
re

as
e

sp
ee

d

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

st
an

ds
til

l_
 c

ha
rg

in
g[

E5
]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 (e
m

pt
y

OR
 n

or
m

al
) A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 y

es
 A

ND
 d

es
ire

d
ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

st
an

ds
til

l_
 m

ec
ha

nB
ra

ke
[E

6]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 fu
ll

AN
D

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =

ye
s

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 d

ec
re

as
e

sp
ee

d

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

11

 sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

st
an

ds
til

l_
 d

is
ch

ar
gi

ng
[E

7]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 (f
ul

l O
R

no
rm

al
) A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 (k

ee
p

sp
ee

d
OR

 in
cr

ea
se

 s
pe

ed
)

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

st
an

ds
til

l_
 c

om
bu

st
io

nO
nl

y[
E8

]
 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 e

m
pt

y
AN

D
sil

en
t m

od
e

=
 o

ff
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 (k

ee
p

sp
ee

d
OR

 in
cr

ea
se

 s
pe

ed
)

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ok
ay

de

fe
ct

iv
e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

12

 ca
bl

e
sil

en
t m

od
e

on

of

f
fu

el
 ta

nk

em

pt
y

no
t e

m
pt

y
ca

r m
ov

es

no

ye

s
de

sir
ed

ac

ce
le

ra
tio

n

de
cr

ea
se

 s
pe

ed

ke
ep

 s
pe

ed

in
cr

ea
se

 s
pe

ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

m
ec

ha
nB

ra
ke

_
ch

ar
gi

ng
[E

9]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 (e
m

pt
y

OR
 n

or
m

al
) A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 y

es
 A

ND
 d

es
ire

d
ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

m
ec

ha
nB

ra
ke

_
st

an
ds

til
l[

E1
0]

 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
ca

r m
ov

es
 =

 n
o

AN
D

de
sir

ed

ac
ce

le
ra

tio
n

=
 d

ec
re

as
e

sp
ee

d
2

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

el

ec
tri

c
en

gi
ne

 c
ab

le
 =

 d
ef

ec
tiv

e
AN

D
fu

el
 ta

nk
 =

 e
m

pt
y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 e
m

pt
y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

13

 el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

m
ec

ha
nB

ra
ke

_
di

sc
ha

rg
in

g[
E1

1]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 (f
ul

l O
R

no
rm

al
) A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 (k

ee
p

sp
ee

d
OR

 in
cr

ea
se

 s
pe

ed
)

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

14

m
ec

ha
nB

ra
ke

_
co

m
bu

st
io

nO
nl

y[
E1

2]

 1
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 e
m

pt
y

AN
D

sil
en

t m
od

e
=

 o
ff

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)
2

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 a
t O

T
=

 n
o

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

di
sc

ha
rg

in
g_

 c
ha

rg
in

g[
E1

3]

 1
of

 1

Ty
pe

: I
nc

lu
de

ba

tte
ry

 S
OC

 =
 (e

m
pt

y
OR

 n
or

m
al

) A
ND

 b
at

te
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

15

Ru
le

ca

r m
ov

es
 =

 y
es

 A
ND

 d
es

ire
d

ac
ce

le
ra

tio
n

=
 d

ec
re

as
e

sp
ee

d

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

di
sc

ha
rg

in
g_

 s
ta

nd
st

ill
[E

14
]

 1
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 n

o
AN

D
de

sir
ed

ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 e
m

pt
y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

16

R
ul

e:
 3

of
 3

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

di
sc

ha
rg

in
g_

 m
ec

ha
nB

ra
ke

[E
15

]
 1

of
 1

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 fu

ll
AN

D
ba

tte
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
ca

r m
ov

es
 =

ye

s
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

di
sc

ha
rg

in
g_

 c
om

bu
st

io
nO

nl
y[

E1
6]

 1

of
 3

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 e

m
pt

y
AN

D
sil

en
t m

od
e

=
 o

ff
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

AN
D

de
sir

ed
 a

cc
el

er
at

io
n

=
 (k

ee
p

sp
ee

d
OR

 in
cr

ea
se

 s
pe

ed
)

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 n

ot
 e

m
pt

y

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 n
ot

 e
m

pt
y

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

17

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 2

of
 3

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

co
m

bu
st

io
nO

nl
y_

 c
ha

rg
in

g[
E1

7]

 1
of

 1

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 S

OC
 =

 (e
m

pt
y

OR
 n

or
m

al
) A

ND
 b

at
te

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 y

es
 A

ND
 d

es
ire

d
ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

co
m

bu
st

io
nO

nl
y_

 s
ta

nd
st

ill
[E

18
]

 1
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

el
ec

tri
c

en
gi

ne
 c

ab
le

 =
 d

ef
ec

tiv
e

AN
D

fu
el

 ta
nk

 =
 e

m
pt

y

2
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 y

es
 A

ND
 e

le
ct

ric
 e

ng
in

e
ca

bl
e

=
 o

ka
y

AN
D

ca
r m

ov
es

 =
 n

o
AN

D
de

sir
ed

ac

ce
le

ra
tio

n
=

 d
ec

re
as

e
sp

ee
d

3
of

 3

Ty
pe

: I
nc

lu
de

Ru

le

ba
tte

ry
 a

t O
T

=
 n

o
AN

D
fu

el
 ta

nk
 =

 e
m

pt
y

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

18

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 2

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 3

of

 3

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ca

bl
e

ok

ay

de
fe

ct
iv

e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

co
m

bu
st

io
nO

nl
y_

 m
ec

ha
nB

ra
ke

[E
19

]
 1

of
 1

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 fu

ll
AN

D
ba

tte
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
ca

r m
ov

es
 =

ye

s
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 d
ec

re
as

e
sp

ee
d

Ty

pe
: I

nc
lu

de
 R

ul
e

R

ul
e:

 1

of

 1

 ba
tte

ry
 S

OC

fu

ll
em

pt
y

no
rm

al

ba
tte

ry
 a

t O
T

ye

s
no

el

ec
tri

c
en

gi
ne

ok
ay

de

fe
ct

iv
e

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

19

 ca
bl

e
sil

en
t m

od
e

on

of

f
fu

el
 ta

nk

em

pt
y

no
t e

m
pt

y
ca

r m
ov

es

no

ye

s
de

sir
ed

ac

ce
le

ra
tio

n

de
cr

ea
se

 s
pe

ed

ke
ep

 s
pe

ed

in
cr

ea
se

 s
pe

ed

co
m

bu
st

io
nO

nl
y_

 d
is

ch
ar

gi
ng

[E
20

]

Co
m

m
en

ts
:tr

an
sit

io
n

fro
m

 C
om

bu
st

io
n

En
gi

ne
 O

nl
y

to
 D

isc
ha

rg
in

g
 1

of
 1

Ty

pe
: I

nc
lu

de

Ru
le

ba

tte
ry

 S
OC

 =
 (f

ul
l O

R
no

rm
al

) A
ND

 b
at

te
ry

 a
t O

T
=

 y
es

 A
ND

 e
le

ct
ric

 e
ng

in
e

ca
bl

e
=

 o
ka

y
AN

D
de

sir
ed

 a
cc

el
er

at
io

n
=

 (k
ee

p
sp

ee
d

OR
 in

cr
ea

se
 s

pe
ed

)

Ty
pe

: I
nc

lu
de

 R
ul

e

R
ul

e:
 1

of
 1

 ba

tte
ry

 S
OC

fu
ll

em
pt

y
no

rm
al

ba

tte
ry

 a
t O

T

ye
s

no

el
ec

tri
c

en
gi

ne

ca
bl

e

ok
ay

de

fe
ct

iv
e

sil
en

t m
od

e

on

of
f

fu
el

 ta
nk

em
pt

y
no

t e
m

pt
y

ca
r m

ov
es

no

ye
s

de
sir

ed

ac
ce

le
ra

tio
n

de

cr
ea

se
 s

pe
ed

ke

ep
 s

pe
ed

in

cr
ea

se
 s

pe
ed

Ev
en

t O
ve

rv
ie

w
 T

ab
le

 Sh

or
t N

am
e

N
am

e
E1

ch

ar
gi

ng
_d

isc
ha

rg
in

g
E2

ch

ar
gi

ng
_s

ta
nd

st
ill

E3

ch
ar

gi
ng

_
co

m
bu

st
io

nO
nl

y
E4

ch

ar
gi

ng
_

m
ec

ha
nB

ra
ke

E5

st

an
ds

til
l_

 c
ha

rg
in

g
E6

st

an
ds

til
l_

 m
ec

ha
nB

ra
ke

E7

st

an
ds

til
l_

 d
isc

ha
rg

in
g

E8

st
an

ds
til

l_
 c

om
bu

st
io

nO
nl

y
E9

m

ec
ha

nB
ra

ke
_

ch
ar

gi
ng

E1

0
m

ec
ha

nB
ra

ke
_

st
an

ds
til

l
E1

1
m

ec
ha

nB
ra

ke
_

di
sc

ha
rg

in
g

E1
2

m
ec

ha
nB

ra
ke

_
co

m
bu

st
io

nO
nl

y
E1

3
di

sc
ha

rg
in

g_
 c

ha
rg

in
g

E1
4

di
sc

ha
rg

in
g_

 s
ta

nd
st

ill
E1

5
di

sc
ha

rg
in

g_
 m

ec
ha

nB
ra

ke

E1
6

di
sc

ha
rg

in
g_

 c
om

bu
st

io
nO

nl
y

E1
7

co
m

bu
st

io
nO

nl
y_

 c
ha

rg
in

g
E1

8
co

m
bu

st
io

nO
nl

y_
 s

ta
nd

st
ill

E1
9

co
m

bu
st

io
nO

nl
y_

m

ec
ha

nB
ra

ke

E2
0

co
m

bu
st

io
nO

nl
y_

 d
isc

ha
rg

in
g

Ge
ne

ra
te

d
by

 S
CO

DE
 W

or
kb

en
ch

 3
.1

 o
n

Ap
r 7

, 2
02

2,
 7

:5
5

PM

20

M
od

e
Tr

an
si

tio
n

D
ia

gr
am

9.2. SCODE-CONGRA Tutorial Hints

9.2.1. C Code for Lesson 3

9.2.1.1. C Code for a Flow with Constant

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_Constants_in_I.syq

5-7 ...

8 * @options

9 * Floating point data type Width: 64

10 * Optimize method code: false

11 * Validity checks on inputs: reject

12 * Validity checks on parameters: reject

13 * Validity checks on states: reject

14 * Use if statement for conditional expressions: true

15 * Split complex boolean expressions: false

16 * Maximum complexity allowed: 5

17 *

18 **/

19

20 #include "c_F_constant_in_I.h"

21

22 void c_F_constant_in_I(double I, double * U) {

23 *U = 2.0 * I;

24 } /* c_F_constant_in_I*/

Table 35. Generated C code (c_F_Constants_in_I.c) for the Constants project

(see section 5.4.1). The value of constant R appears in line 23.

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 217

9.2.1.2. C Code for a Flow with Parameter

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_Parameters_in_I.syq

5-17 ...

18 **/

19

20 #include "c_F_Parameters_in_I.h"

21

22 void c_F_parameter(double I, double R, double * U) {

23 *U = I * R;

24 } /* c_F_parameter*/

Table 36. Generated C code (c_F_Parameters_in_I.c) for the Parameters project

(see section 5.4.2). Parameter R appears in lines 22 and 23.

9.2.1.3. C Code for a Flow with Fixed Variable

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_FixedVariable_in_I_fix_R.c

5-17 ...

18 **/

19

20 #include "c_F_FixedVariable_in_I_fix_R.h"

21

22 void c_F_FixedVariable_in_I_fix_R(double I, double * U) {

23 double R = 5.0;

24 *U = I * R;

25 } /* c_F_FixedVariable_in_I_fix_R*/

Table 37. Generated C code (c_F_FixedVariable_in_I_fix_R.c) for the

FixedVariable project (see section 5.4.3). Fixed variable R appears in lines 23 and 24.

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 218

9.2.2. C Code for Lesson 4

c_F_Resistor_Power_in_RU.c c_F_Resistor_Power_in_IP.c
/** /**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT! * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
* *
* @source c_F_Resistor_Power_in_RU.syq * @source c_F_Resistor_Power_in_IP.syq
... ...
**/ **/

#include "c_F_Resistor_Power_in_RU.h" #include "c_F_Resistor_Power_in_IP.h"
#include "scode.h" #include "scode.h"

void c_F_Resistor_Power_in_RU(double R, double U,
 double * I, double * P) {

void c_F_Resistor_Power_in_IP(double P, double I,
 double * R, double * U) {

 if (!scode_double_eq(0.0, R)) { if (!scode_double_eq(0.0, I)) {
 *I = U / R; *U = P / I;
 } else { } else {
 *I = 0.0; *U = 0.0;
 } /* Ohms_law(R, U) */ } /* Resistor_Power_Law(I, P) */

 if (!scode_double_eq(0.0, I)) {
 *P = U * I; / Resistor_Power_Law(I, U) */ *R = *U / I;

 } else {
 *R = 0.0;
 } /* Ohms_law(I, U) */

} /* c_F_Resistor_Power_in_RU*/ } /* c_F_Resistor_Power_in_IP*/

Table 38. Generated C code for both flows in section 5.5

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 219

9.2.3. ESDL Code for Lesson 5

c_F_DefinedOutput_in_RU_out_I.esdl c_F_DefinedOutput_in_RU.esdl

/** /**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT! * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
* *
* @source c_F_DefinedOutput_in_RU_out_I.syq * @source c_F_DefinedOutput_in_RU.syq
... ...
**/ **/

package DefinedOutput; package DefinedOutput;

class c_F_DefinedOutput_in_RU_out_I { class c_F_DefinedOutput_in_RU {

 public void c_F_DefinedOutput_in_RU_out_I(real R,
 real U, real out I) {

 public void c_F_DefinedOutput_in_RU(real R,
 real U, real out I, real out P) {

 if (!Math.eq(0.0, R)) { if (!Math.eq(0.0, R)) {
 I = U / R; I = U / R;
 } else { } else {
 I = 0.0; I = 0.0;
 } // Ohms_law(R, U) } // Ohms_law(R, U)

 P = I * U; // Resistor_Power_Law(I, U)
 } // c_F_DefinedOutput_in_RU_out_I } // c_F_DefinedOutput_in_RU
} // c_F_DefinedOutput_in_RU_out_I } // c_F_DefinedOutput_in_RU_out_I

Table 39. Generated ESDL code for the flows with (left) and without (right) explicit output in section 5.6.

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 220

9.2.4. Generated Code for Lesson 6

This section shows generated code for the example in section 5.7, “Lesson 6: Algebraic

Loop”.

9.2.4.1. Computation SYQ Code

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_AlgebraicLoop_in_PR

5-7 ...

8 **/

9

10 package AlgebraicLoop;

11

12 computation c_F_AlgebraicLoop_in_PR(R, P)
 implements AlgebraicLoop from F_AlgebraicLoop_in_PR {

13 // Variable computation for level 2

14 @level(2, 1)

15 I = if ((0 <= P*R) && (R!=0))
 then (P*R)^(1/2)/R
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

16 [I,P] = if ((0 <= P*R) && (R!=0))
 then
 if ((0.0 <= P*R) && (((0.0!=P) && (0.0!=R))))
 then 1/(2*(P*R)^(1/2))
 else
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

27 [I,R] = if ((0 <= P*R) && (R!=0))
 then
 if (((0.0 <= P*R) && ((((0.0!=R) && (0.0!=P))
 && (0.0!=R)))) && (0.0!=R))
 then P/(2*R*(P*R)^(1/2))-(P*R)^(1/2)/R^2
 else
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

18 @level(2, 4)

19 U = if ((0 <= P*R) && (R!=0))
 then (P*R)^(1/2)
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

20 [U,P] = if ((0 <= P*R) && (R!=0))
 then
 if ((0.0 <= P*R) && (((0.0!=P) && (0.0!=R))))
 then R/(2*(P*R)^(1/2))
 else
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 221

21 [U,R] = if ((0 <= P*R) && (R!=0))
 then
 if ((0.0 <= P*R) && (((0.0!=P) && (0.0!=R))))
 then P/(2*(P*R)^(1/2))
 else
 else <- Ohms_law[I, U](R), Resistor_Power_Law[I, U](P);
 // [Source: MuPAD [Incubation]]

22 }

Table 40. *.syq file for the computation c_F_AlgebraicLoop_in_PR

9.2.4.2. C Code

20 #include "c_F_AlgebraicLoop_in_RP.h"

21 #include "scode.h"

22

23 void c_F_AlgebraicLoop_in_RP(double R, double P, double * I,
 double * U) {

24 if (((P * R) >= 0.0) && !scode_double_eq(R, 0.0)) {

25 *I = scode_double_pow(P * R, 1.0 / 2.0) / R;

26 } else {

27 *I = 0.0;

28 } /* Ohms_law[I, U](R), Resistor_Power_Law[I, U](P) */

29 if (((P * R) >= 0.0) && !scode_double_eq(R, 0.0)) {

30 *U = scode_double_pow(P * R, 1.0 / 2.0);

31 } else {

32 *U = 0.0;

33 } /* Ohms_law[I, U](R), Resistor_Power_Law[I, U](P) */

34 } /* c_F_AlgebraicLoop_in_RP*/

Table 41. Generated C code for the flow F_AlgebraicLoop_in_PR

9.2.4.3. ESDL Code

21 package AlgebraicLoop;

22

23 import math.Math;

24

25 class c_F_AlgebraicLoop_in_RP {

26

27 public void c_F_AlgebraicLoop_in_RP(real R, real P,
 real out I, real out U) {

28 if (((P * R) >= 0.0) && !Math.eq(R, 0.0)) {

29 I = Math.pow(P * R, 1.0 / 2.0) / R;

30 } else {

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 222

31 I = 0.0;

32 } // Ohms_law[I, U](R), Resistor_Power_Law[I, U](P)

33 if (((P * R) >= 0.0) && !Math.eq(R, 0.0)) {

34 U = Math.pow(P * R, 1.0 / 2.0);

35 } else {

36 U = 0.0;

37 } // Ohms_law[I, U](R), Resistor_Power_Law[I, U](P)

38 } // c_F_AlgebraicLoop_in_RP

39 } // c_F_AlgebraicLoop_in_RP

Table 42. Generated ESDL code for the flow F_AlgebraicLoop_in_PR

9.2.4.4. MATLAB® Code

19 function [U, I] = c_F_AlgebraicLoop_in_PR(R, P)

22 if ((P * R) >= 0.0) && ~eq(R, 0.0)

23 I = double(power(P * R, 1.0 / 2.0) / R);

24 else

25 I = 0.0;

26 end % Ohms_law[I, U](R), Resistor_Power_Law[I, U](P)

27 if ((P * R) >= 0.0) && ~eq(R, 0.0)

27 U = double(power(P * R, 1.0 / 2.0));

29 else

30 U = 0.0;

31 end % Ohms_law[I, U](R), Resistor_Power_Law[I, U](P)

32 end % Ohms_law[I, U](R), Resistor_Power_Law[I, U](P)

Table 43. Generated MATLAB code for the flow F_AlgebraicLoop_in_PR

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 223

9.2.5. Generated Code for Lesson 7

9.2.5.1. C Code for a Flow with Constraints

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_ConstraintsVariables_in_RU.syq

5-17 ...

18 **/

19

20 #include "c_F_ConstraintsVariables_in_RU.h"

21 #include "scode.h"

22

23 void c_F_ConstraintsVariables_in_RU(double R, double U,
 double * I, double * P) {

26 if ((R < 100.0) && (R > 0.0) && (U <= 230.0)
 && (U > 0.0)) {

27 *I = U / R; /* Ohms_law(R, U) */

28 *I = scode_double_min(scode_double_max(*I, 0.0),
 9.999999999999998); /* Ohms_law(R, U) */

29 *P = *I * U; /* Resistor_Power_Law(I, U) */

30 *P = scode_double_min(scode_double_max(*P,
 2.2250738585072014E-308), 2499.9999999999995);
 /* Resistor_Power_Law(I, U) */

31 } else {

32 *I = 9.999999999999998;

33 *P = 2499.9999999999995;

34 }

35 } /* c_F_ConstraintsVariables_in_RU*/

Table 44. c_F_ConstraintsVariables_in_RU.c file with constraints, but no

verification code (section 5.8.1).

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 224

9.2.5.2. C Harness for Flow F_ConstraintsVariables_in_RU

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

3 *

4 * @source c_F_ConstraintsVariables_in_RU

5-7 ...

8 * @options

9 * Floating point data type width: 64

10 * Optimize method code: false

11 * Validity checks on inputs: limit

12 * Validity checks on parameters: reject

13 * Validity checks on states: reject

14 * Use if statement for conditional expressions: true

15 * Points per input: 4

16 * Inform about limitations: true

17 * Verification threshold: 0.001

18 *

19 **/

20

21 #include "c_F_ConstraintsVariables_in_RU_harness.h"

22 #include "scode.h"

23 #include "c_F_ConstraintsVariables_in_RU.h"

24

25 signed int check_c_F_ConstraintsVariables_in_RU(double R,
 double U, double I, double P) {

26 signed int errorCount = 0U;

27 /* checking correctness for relation Ohms_Law with
 equation U=R*I realized in computation
 step I = U/R */

28 if ((I > 0.0) && (I < 9.999999999999998)) {

29 /* checking correctness only if the computed value is
 not limited */

30 if (scode_double_abs(U - (R * I)) > (0.001 *
 (scode_double_abs(I) + scode_double_abs(R) +
 scode_double_abs(U)))) {

31 errorCount = errorCount + 1U;

32 scode_printf_info("Error checking computation of I\n
 from equation: \"U=R*I\"\n realized in
 computation step I = U/R\n with values I = %f,
 R = %f, U = %f and error: %f\n", I, R, U,
 scode_double_abs(U - R * I));

33 }

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 225

34 } else {

35 scode_printf_info(" No check due to potential limitation
 of I with value %f in equation: \"U=R*I\" with
 values I = %f, R = %f, U = %f\n", I, I, R, U);

36 }

37 /* checking correctness for relation Resistor_Power_Law
 with equation P=U*I realized in computation
 step P = I*U */

38 if ((P > 2.2250738585072014E-308) &&
 (P < 2499.9999999999995)) {

39 /* checking correctness only if the computed value is
 not limited */

40 if (scode_double_abs(P - (U * I)) > (0.001 *
 (scode_double_abs(I) + scode_double_abs(P) +
 scode_double_abs(U)))) {

41 errorCount = errorCount + 1U;

42 scode_printf_info("Error checking computation of P\n
 from equation: \"P=U*I\"\nrealized in
 computation step P = I*U\n with values I = %f,
 P = %f, U = %f and error: %f\n", I, P, U,
 scode_double_abs(P - (U * I)));

43 }

44 } else {

45 scode_printf_info(" No check due to potential limitation
 of P with value %f in equation: \"P=U*I\" with
 values I = %f, P = %f, U = %f\n", P, I, P, U);

46 }

47 /* checking that the value is also within its limits */

48 if (!((I >= 0.0) && (I <= 9.999999999999998))) {

49 errorCount = errorCount + 1U;

50 scode_printf_info("Value %f for I is out of its range
 [0.0, 10.0)\n", I);

51 }

52 /* checking that the value is also within its limits */

53 if (!((P >= 2.2250738585072014E-308) &&
 (P <= 2499.9999999999995))) {

54 errorCount = errorCount + 1U;

55 printf("Value %f for P is out of its range (0.0,
 2500.0)\n", P);

56 }

57 return errorCount;

58 } /* check_c_F_ConstraintsVariables_in_RU*/

59

60 signed int c_F_ConstraintsVariables_in_RU_harness() {

61 signed int totalErrorCount = 0U;

62 double R_vals[6] = {

63 -33.333333333333336,

64 2.2250738585072014E-308,

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 226

65 33.333333333333336,

66 66.66666666666667,

67 99.99999999999999,

68 133.33333333333334

69 };

70

71 double U_vals[6] = {

72 -76.66666666666667,

73 2.2250738585072014E-308,

74 76.66666666666667,

75 153.33333333333334,

76 230.0,

77 306.6666666666667

78 };

79

80 {

81 unsigned char iter_R;

82 for (iter_R = 0U; iter_R <= 5U; iter_R++) {

83 double R = R_vals[iter_R];

84 {

85 unsigned char iter_U;

86 for (iter_U = 0U; iter_U <= 5U; iter_U++) {

87 double U = U_vals[iter_U];

88 double I = 0.0;

89 double P = 0.0;

90 c_F_ConstraintsVariables_in_RU(R, U, &I, &P);

91 if ((R > 0.0) && (R < 100.0) && (U > 0.0) &&
 (U <=230.0)) {

92 totalErrorCount = totalErrorCount +
 check_c_F_ConstraintsVariables_in_RU(R, U, I,
 P);

93 } else {

94 R = scode_double_min(scode_double_max(R,
 2.2250738585072014E-308), 99.99999999999999);

95 U = scode_double_min(scode_double_max(U,
 2.2250738585072014E-308), 230.0);

96 totalErrorCount = totalErrorCount +
 check_c_F_ConstraintsVariables_in_RU(R, U, I,
 P);

97 }

98 }

99 }

100 }

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 227

101 }

102 scode_printf_info("Total number of violations is %d\n", +
 totalErrorCount);

103 return totalErrorCount;

104 } /* c_F_ConstraintsVariables_in_RU_harness*/

105 /* Additional main function for direct execution */

106

107 signed int main() {

108 signed int totalErrorCount = 0U;

109 totalErrorCount = c_F_ConstraintsVariables_in_RU_harness();

110 return totalErrorCount;

111 } /* main*/

Table 45. c_F_ConstraintsVariables_in_RU_harness.c file (see section 5.8.2)

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 228

9.2.5.3. Comparison: Generated Code with/without Parameter Constraint

This section shows the generated computation SYQ, C, ESDL, and MATLAB files for the example in section 5.8.3, “Constraints for Parameters”.

c_F_ConstraintsParameters_in_IU.syq c_F_Parameter_in_IU.syq
... ...
computation c_F_ConstraintsParameters_in_IU(U)
 implements ConstraintsParameters
 from F_ConstraintsParameters_in_IU {

computation c_F_Parameter_in_IU(U)
 implements Parameter
 from F_Parameter_in_IU {

 // Variable computation for level 2 // Variable computation for level 2
 @level(2, 1) @level(2, 1)
 P = I*U <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 P = I*U <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 [P,I] = U <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 [P,I] = U <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 [P,U] = I <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 [P,U] = I <- Resistor_Power_Law(I, U);
 // [Source: Maxima]

 @level(2, 4) @level(2, 4)
 R = U/I <- Ohms_Law(I, U);
 // [Source: Maxima]

 R = if (0.0!=I) then U/I
 else <- Ohms_Law(I, U);
 // [Source: Maxima]

 [R,I] = -U/I^2 <- Ohms_Law(I, U);
 // [Source: Maxima]

 [R,I] = if (0.0!=I) then -U/I^2
 else <- Ohms_Law(I, U);
 // [Source: Maxima]

 [R,U] = 1/I <- Ohms_Law(I, U);
 // [Source: Maxima]

 [R,U] = if (0.0!=I) then 1/I
 else <- Ohms_Law(I, U);
 // [Source: Maxima]

} }

Table 46. Comparison of computation *.syq files with (left) and without (right) parameter constraint

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 229

c_F_ConstraintsParameters_in_IU.c c_F_Parameter_in_IU.c
... ...
#include "c_F_ConstraintsParameters_in_IU.h" #include "c_F_Parameter_in_IU.h"

#include "scode.h"

void c_F_ConstraintsParameters_in_IU(double U,
 double I, double * P, double * R) {

void c_F_Parameter_in_IU(double U,
 double I, double * P, double * R) {

 if ((I < 0.0) || (I > 0.0)) {
 *P = U * I; /* Resistor_Power_Law(I, U) */ *P = I * U; /* Resistor_Power_Law(I, U) */

 if (!scode_double_eq(0.0, I)) {
 R = U / I; / Ohms_law(I, U) */ *R = U / I;
 } else { } else {
 *P = 0.0;
 *R = 0.0; *R = 0.0;
 } } /* Ohms_law(I, U) */
} /* c_F_ConstraintsParameters_in_IU*/ } /* c_F_Parameter_in_IU*/

Table 47. Comparison of generated C code for computations with (left) and without (right) parameter constraint

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 230

c_F_ConstraintsParameters_in_IU.esdl c_F_Parameter_in_IU.esdl
... ...
package ConstraintsParameters; package ConstraintsParameters;

import math.Math;

class c_F_ConstraintsParameters_in_IU { class c_F_Parameter_in_IU {

 public void c_F_ConstraintsParameters_in_IU(real U,
 real I, real out P, real out R) {

 public void c_F_Parameter_in_IU(real U,
 real I, real out P, real out R) {

 if ((I < 0.0 || I > 0.0)) {
 P = I * U; // Resistor_Power_Law(I, U) P = I * U; // Resistor_Power_Law(I, U)

 if (!Math.eq(0.0, I)) {
 R = U / I; // Ohms_law(I, U) R = U / I;
 } else { } else {
 P = 0.0;
 R = 0.0; R = 0.0;
 } } // Ohms_law(I, U)
 } // c_F_ConstraintsParameters_in_IU } // c_F_Parameter_in_IU
} // c_F_ConstraintsParameters_in_IU } // c_F_Parameter_in_IU

Table 48. Comparison of generated ESDL code for computations with (left) and without (right) parameter constraint

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 231

c_F_ConstraintsParameters_in_IU.m c_F_Parameter_in_IU.m
... ...
function [P, R] = c_F_ConstraintsParameters_in_IU(U, I) function [P, R] = c_F_Parameter_in_IU(U, I)
 if (I < 0.0) || (I > 0.0)
 P = double(U * I); % Resistor_Power_Law(I, U) P = double(U * I); % Resistor_Power_Law(I, U)

 if ~eq(0.0, I)
 R = double(U / I); % Ohms_law(I, U) R = double(U / I);
 else else
 P = 0.0;
 R = 0.0; R = 0.0;
 end end % Ohms_law(I, U)
end % c_F_ConstraintsParameters_in_IU end % c_F_Parameter_in_IU

Table 49. Comparison of generated MATLAB files for computations with (left) and without (right) parameter constraint

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 232

9.2.6. Hints for Lesson 8

9.2.6.1. Example: Unit Definitions in a *.syq File

/*
 * unit definitions
 */

/* length */
unit m;
unit km = 1000.0 * m; /* scaled base unit */

/* time */
unit s is time;

/* mass */
unit kg;
unit g = 1.0e-3 * kg;

/* electric current */
unit A;
unit mA = 0.001 * A;

/* voltage */
unit V = kg *m*m / (A * s*s*s); /* derived from base units */

/* electric resistance */
unit Ohm = V / A;

/* electric power */
unit W = V * A; /* derived from base and derived unit */

Table 50. Unit definitions (see section 5.9)

9.2.6.2. C Code for a Flow with Units

... ...

19

20 #include "c_F_PhysicalUnits_in_IU.h"

21 #include "scode.h"

22

23 void c_F_PhysicalUnits_in_IU(double I, double U,
 double * P, double * R) {

24 *P = U * I * 0.001; /* Resistor_Power_Law(I, U) */

25 if (!scode_double_eq(0.0, I)) {

26 *R = U / I * 1000.0;

27 } else {

28 *R = 20.0;

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 233

29 } /* Ohms_law(I, U) */

30 } /* c_F_PhysicalUnits_in_IU*/

Table 51. Generated C code for the flow F_PhysicalUnits_in_IU (see section 5.9.5).

The units are invisible, but the scaling factor for mA ↔ A is inserted automatically.

9.2.6.3. MATLAB® Code for a Flow with Units

... ...

19 function [P, R] = c_F_PhysicalUnits_in_IU(I, U)

20 P = double(U * I * 0.001); % Resistor_Power_Law(I, U)

21 if ~eq(0.0, I)

22 R = double(U / I * 1000.0);

23 else

24 R = 20.0;

25 end % Ohms_law(I, U)

26 end % c_F_PhysicalUnits_in_IU

Table 52. Generated MATLAB code for the flow F_PhysicalUnits_in_IU (see section

5.9.5). The units are invisible, but the scaling factor for mA ↔ A is inserted automatically.

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 234

9.2.6.4. SCODE-CONGRA Report

This section shows screenshots of a report generated as a Word document (*.docx).

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 235

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 236

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 237

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 238

[32] state of charge

[33] operating temperature

[34] car runs only on the electric motor

ETAS 9. Tutorial Hints

SCODE Workbench 3.1 — Getting Started 239

10. Contact Information

ETAS Headquarters

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and

product hotlines, take a look at the ETAS website:

ETAS subsidiaries Internet: www.etas.com/en/contact.php

ETAS technical support Internet: www.etas.com/en/hotlines.php

ETAS 10. Contact Information

SCODE Workbench 3.1 — Getting Started 240

https://www.etas.com
https://www.etas.com/en/contact.php
https://www.etas.com/en/hotlines.php

Figures

Figure 1, “Example system — draft”

Figure 2, “SCODE Workbench window, showing the Welcome page”

Figure 3, “SCODE Workbench (SCODE-ANALYZER perspective) with empty workspace”

Figure 4, “"SCODE-ANALYZER project" window”

Figure 5, “SCODE Workbench window with newly created SCODE-ANALYZER project”

Figure 6, “"Problem Space" page with one condition”

Figure 7, “"Outline" view with statistics for the problem space”

Figure 8, “"Properties" view for a dimension selected in the "Problem Space" page”

Figure 9, “"Mode Definition" page with mode editor”

Figure 10, “"Outline" view with statistics for the mode definition”

Figure 11, “"Outline" view with statistic analysis for the modes and rules in Table 25”

Figure 12, “"Analysis Details" view for the modes and rules in Table 25”

Figure 13, “"Analysis Details" view with suggested rules for missing states”

Figure 14, “"Decision Tree" page”

Figure 15, “"Preferences" window with settings for code generation from mode invariants”

Figure 16, “Output folder for code generation”

Figure 17, “"Mode Transition" page with "Event Overview and Implementation" view”

Figure 18, “"Preferences" window, "SCODE-ANALYZER" node”

Figure 19, “"Mode Transition" page with "Mode Transition" view”

Figure 20, “Event viewer with new event”

Figure 21, “"Outline" view with statistics for mode transitions”

Figure 22, “"Analysis Details" view with suggested rules for transitions”

Figure 23, “Event charging_combustionOnly before and after rule optimization”

Figure 24, “Mode transition graph for the completed transition matrix”

Figure 25, “"Preferences" window with settings for code generation from the transition

matrix”

Figure 26, “"Edit Configuration" window for a SCODE-ANALYZER report launch

configuration”

[img_A_tut_ReportGerate]

Figure 27, “SCODE Workbench (SCODE-CONGRA perspective) with empty workspace”

Figure 28, “"SCODE-CONGRA Project" window”

Figure 29, “SCODE Workbench window with newly created SCODE-CONGRA project (a:

project folder, b: system folder, c: system equation language package (*.syq file), d:

system graph)”

ETAS Figures

SCODE Workbench 3.1 — Getting Started 241

Figure 30, “Graphical editor (a: breadcrumbs row, b: toolbar for general editor

functionality, c: palette with tools for graphical elements, d: empty canvas)”

Figure 31, “"Properties" view for the new relation (equation still incomplete)”

Figure 32, “Canvas with relation and variables”

Figure 33, “Simple_Equation.syq file with variables and relation”

Figure 34, “New flow in the graphical editor”

Figure 35, “Flow after I and U have been defined as inputs (the variables were

rearranged).”

Figure 36, “Computation c_F_Simple_Equation_in_IU in the Project Explorer”

Figure 37, “Graph for the c_F_Simple_Equation_in_IU computation.”

Figure 38, “Execution Environment with a computation”

Figure 39, “Computation graph with element values”

Figure 40, “Computation graph with input sensitivities (a), their contributions (b) to the

output sensitivity (c and d). The thickness of the arrows represents the relative

sensitivities.”

Figure 41, “Computation graph and Execution Environment with results of forward

sensitivity analysis”

Figure 42, “Schematic view of the numbers in @geo annotations”

Figure 43, “"Preferences" window, "Diagram Options" node”

Figure 44, “"Preferences" window, "MATLAB/Simulink" node”

Figure 45, “"Preferences" window, "SCODE-CONGRA\Solver\MuPAD" node”

Figure 46, “"Properties for <project>" window, "Solver" node”

Figure 47, “"Solver" settings for a project with quadratic equation (project settings that

differ from workspace settings appear in bold font)”

Figure 48, “"Please pick solution for request" window with possible solutions for the

quadratic equation example”

Figure 49, “"Properties for <project>" window, "Maxima / MuPAD cache" node”

Figure 50, “Project Explorer with project-specific cache file”

Figure 51, “Constant R invisible in the system graph (left) and in the flow (right)”

Figure 52, “Execution Environment showing a computation with a constant”

Figure 53, “Parameter R in the system graph (left) and in the flow (right)”

Figure 54, “Execution Environment showing a computation with a parameter”

Figure 55, “Fixed variable R in the flow (left) and in the system graph (right)”

Figure 56, “Execution Environment showing a computation with a fixed variable”

Figure 57, “"Preferences" window with "Generator" settings for SCODE-CONGRA”

ETAS Figures

SCODE Workbench 3.1 — Getting Started 242

Figure 58, “Code generation folder for the FixedVariable project, with generated C,

ESDL, and MATLAB files”

Figure 59, “Flow with original direction”

Figure 60, “Flow with inverted direction”

Figure 61, “Flow with inputs R and U and explicit output I. Irrelevant parts of the flow are

marked.”

Figure 62, “Flow with algebraic loop”

Figure 63, “"Properties" view with constraints for a variable”

Figure 64, “Execution Environment with a limited variable and a variable with a value

based on the limited variable.”

Figure 65, “"Properties for <project>" window, "Verification" node”

Figure 66, “"Properties for <project>" window, "C/FMI" node”

Figure 67, “"Build" view with results for C code generation with verification harness”

Figure 68, “Pop-up with quick fix”

Figure 69, “"Properties" view with constraints for a parameter”

Figure 70, “"New File" window”

Figure 71, “SCODE-CONGRA project UnitDefinitions with five unit definition files”

Figure 72, “"Properties for <project>" window, "Project References" node”

Figure 73, “Popup with items that can be imported. The items are listed as follows: icon

<item name> - <package name>.<item name>”

Figure 74, “PhysicalUnits.syq file and "Problems" view with error markers due to

incompatible units”

Figure 75, “Execution Environment showing a computation with units. Visible units are

marked.”

Figure 76, “"Edit Configuration" window for a SCODE-CONGRA report launch

configuration”

Figure 77, “SCODE Workbench window, showing the Welcome page”

Figure 78, “SCODE Workbench window, showing the SCODE-ANALYZER perspective

with empty workspace”

Figure 79, “SCODE Workbench window, showing the SCODE-CONGRA perspective with

empty workspace”

Figure 80, “"Preferences" window with generator settings for SCODE-ANALYZER”

Figure 81, “"Preferences" window with "Solver" settings for SCODE-CONGRA”

Figure 82, “"Preferences" window with "Generator" settings for SCODE-CONGRA”

Figure 83, “"Preferences" window, "MATLAB/Simulink" node”

Figure 84, “"Properties for <project>" window, "SCODE-ANALYZER" node”

Figure 85, “"Properties for <project>" window, "SCODE-ANALYZER\Generator" node”

ETAS Figures

SCODE Workbench 3.1 — Getting Started 243

Figure 86, “"Edit Configuration" window for the TPT launch configuration”

Figure 87, “TPT "Preferences" window, "General\C Compiler" node”

Figure 88, “*.tpt file opened in TPT”

Figure 89, “TPT "Generate Test Cases from Test Data" window”

Figure 90, “TPT "Content" tab with test case and signal”

Figure 91, “"Platform Configuration" window with newly created platform”

Figure 92, “"Platform Configuration" window with configured platform”

Figure 93, “"Code interface" window”

Figure 94, “"Import Interface" window”

Figure 95, “"Execution Configuration" window”

Figure 96, “"TPT Build Progress" window, all tests passed”

Figure 97, “Flow with inputs, implicit outputs, and algebraic loop”

Figure 98, “Flow with relations, inputs, explicit output, and unused parts”

Figure 99, “System graph (left) and flow (right) with relation, parameter, variables”

Figure 100, “Flow with underconstrained and overconstrained parts”

Figure 101, “"Preferences" window, "General\Network Connections" node”

Figure 102, “"Preferences" window, "Install/Update\Available Software Sites" node”

Figure 103, “"Install" window with Yakindu Traceability features selected for installation”

Figure 104, “SCODE Workbench with menus added by Yakindu Traceability”

Figure 105, “Complete decision tree for the hybrid car example; with condition desired

acceleration as root (see section 4.4.4)”

Figure 106, “The decision tree from Figure 105 with horizontal orientation (see section

4.4.4)”

Figure 107, “DAG view of the decision tree with vertical orientation (see section 4.4.4)”

Figure 108, “DAG view of the decision tree with horizontal orientation (see section 4.4.4)”

Figure 109, “Decision tree with selected layers, first three levels are shown (see section

4.4.4)”

Figure 110, “Sub-tree (horizontal orientation) with non-system modes displayed (see

section 4.4.4)”

Figure 111, “Sub-tree before height optimization (see section 4.4.4)”

Figure 112, “Sub-tree after height optimization (see section 4.4.4)”

ETAS Figures

SCODE Workbench 3.1 — Getting Started 244

Tables

Table 1, “Example system — components”

Table 2, “Requirements for modes and mode definition rules”

Table 3, “Variable types available in a flow”

Table 4, “*.syq file for the c_F_Simple_Equation_in_IU computation. Line 15

shows the equation used to compute R, lines 16 and 17 show the partial derivatives of

the equation.”

Table 5, “Simple_Equation system with changed (lines 6, 9, 12) or added (line 17)

@geo annotations”

Table 6, “*.syq file for the c_ F_QuadraticEquation_in_PR computation”

Table 7, “Changes in *.syq file to convert a constant into a variable”

Table 8, “*.syq file for a computation with a constant”

Table 9, “*.syq file for a computation with a parameter”

Table 10, “*.syq file for a computation with a fixed variable”

Table 11, “Files generated during C, ESDL, and MATLAB code generation ”

Table 12, “Content of the files generated during C, ESDL, and MATLAB code generation”

Table 13, “Available constraint types”

Table 14, “*.syq file for the ConstraintsVariables system. Lines 6, 8, 10, and 12

show the constraints for the variables.”

Table 15, “Some variables with units”

Table 16, “*.syq file with imported units”

Table 17, “*.syq file extract: variable definitions with units (lines 8, 11, 14, 17). The unit

name appears before the variable name.”

Table 18, “water_tank_channels.tpt (XML-based TPT project file for the water tank

example) ”

Table 19, “water_tank_Runner.c (C file to create global variables accessible to TPT)”

Table 20, “water_tank.csv (contains test data) ”

Table 21, “water_tank.c (C file generated for the water tank example)”

Table 22, “water_tank.h (corresponding header file for water_tank.c)”

Table 23, “SCODE-CONGRA graphs — CONGRA Classic colors and meanings”

Table 24, “Problem space — suggestions (see section 4.3)”

Table 25, “Modes and rules — first set of suggestions (see section 4.4.1)”

Table 26, “Modes and rules — suggestions for additional condition (see section 4.4.2)”

Table 27, “Suggested rules for the missing states. Alternatives that cannot be true at the

same time are marked.”

Table 28, “Suggested rules for the states that are still missing after suggestion 1 from the

previous table has been inserted as non-system mode”

ETAS Tables

SCODE Workbench 3.1 — Getting Started 245

Table 29, “Transitions with associated events (*: no transition; --: forbidden transition) for

section 4.6”

Table 30, “Events and rules for the transitions from mode charging”

Table 31, “Events and rules for the transitions from mode standstill”

Table 32, “Events and rules for the transitions from mode mechanical brake”

Table 33, “Events and rules for the transitions from mode discharging”

Table 34, “Events and rules for the transitions from mode Combustion engine only”

Table 35, “Generated C code (c_F_Constants_in_I.c) for the Constants project

(see section 5.4.1). The value of constant R appears in line 23.”

Table 36, “Generated C code (c_F_Parameters_in_I.c) for the Parameters project

(see section 5.4.2). Parameter R appears in lines 22 and 23.”

Table 37, “Generated C code (c_F_FixedVariable_in_I_fix_R.c) for the

FixedVariable project (see section 5.4.3). Fixed variable R appears in lines 23 and

24.”

Table 38, “Generated C code for both flows in section 5.5”

Table 39, “Generated ESDL code for the flows with (left) and without (right) explicit output

in section 5.6.”

Table 40, “*.syq file for the computation c_F_AlgebraicLoop_in_PR”

Table 41, “Generated C code for the flow F_AlgebraicLoop_in_PR”

Table 42, “Generated ESDL code for the flow F_AlgebraicLoop_in_PR”

Table 43, “Generated MATLAB code for the flow F_AlgebraicLoop_in_PR”

Table 44, “c_F_ConstraintsVariables_in_RU.c file with constraints, but no

verification code (section 5.8.1).”

Table 45, “c_F_ConstraintsVariables_in_RU_harness.c file (see section 5.8.2)”

Table 46, “Comparison of computation *.syq files with (left) and without (right) parameter

constraint”

Table 47, “Comparison of generated C code for computations with (left) and without (right)

parameter constraint”

Table 48, “Comparison of generated ESDL code for computations with (left) and without

(right) parameter constraint”

Table 49, “Comparison of generated MATLAB files for computations with (left) and without

(right) parameter constraint”

Table 50, “Unit definitions (see section 5.9)”

Table 51, “Generated C code for the flow F_PhysicalUnits_in_IU (see section 5.9.5).

The units are invisible, but the scaling factor for mA ↔ A is inserted automatically.”

Table 52, “Generated MATLAB code for the flow F_PhysicalUnits_in_IU (see

section 5.9.5). The units are invisible, but the scaling factor for mA ↔ A is inserted

automatically.”

ETAS Tables

SCODE Workbench 3.1 — Getting Started 246

Index
@

@geo annotation

store in SYQ file (automatically), 81

store in SYQ file (manually), 80

A

Add

condition, 26

event from rule, 46

mode, 32

mode definition rule, 31

Algebraic loop, 102

Alternative, 25

add comment, 27

edit, 25

C

C code

example, 217, 219

constraints, 224

flow with units, 233

for test case, 148

generated files, 245

Cache

store solution, 87

Code

generate, 97

select generator, 95

Code generation

mode invariants, 40

settings, 39, 56

transition matrix, 57

Command line

install SCODE Workbench, 16

Comment

for alternative, 27

for condition, 27

for event, 47

for mode, 31

for rule, 31, 46

in *.syq file, 120

Computation, 73, 74

Condition

add, 26

add comment, 27

edit, 25

Constant, 89

assign unit, 122

convert to variable, 90

create, 89

Constraint

enter, 104, 112

example (C code), 224

in Execution Environment, 106

parameter, 110

variable, 104

with unit, 124

Contact information, 240

Create

constant, 89

example project

SCODE-ANALYZER, 134

SCODE-CONGRA, 138

fixed variable, 94

flow, 72

input, 72

output, 101

parameter, 92

project

SCODE-ANALYZER, 23

SCODE-CONGRA, 65

relation, 68

TPT file, 146

unit (special project), 114

unit (system file), 120

unit definition file, 116

workspace, 21, 63

D

Decision tree, 36

change view, 37

DAG view mode, 38

non-system mode, 38

orientation, 38

sub-tree, 38

Default value

variable, 70

Description

relation, 69

variable, 70

Determinism, 42

Dimension, 25

determine, 25

don’t care, 29

ETAS Index

SCODE Workbench 3.1 — Getting Started 247

E

Edit

condition, 25

mode, 30

Equation

specify, 67

ESDL

code example, 220

generated files, 245

Event, 42, 42

add from rule, 46

assign to transition, 47

check, 49

determine, 43

Execution environment, 75

constraints, 106

open, 75

sensitivity, 77

units, 125

values, 76

F

First steps, 129

example project

SCODE-ANALYZER, 134

SCODE-CONGRA, 138

generator settings

SCODE-ANALYZER, 132

settings

SCODE-CONGRA, 136

start SCODE Workbench, 129

Fixed variable, 93

convert to variable, 94

create, 94

Flow

create, 72

G

Generated code

C example, 217, 219, 233

ESDL example, 220

MATLAB example, 223, 234

units, 125

verification harness, 225

with constraints (example), 229

Generator

configure

SCODE-ANALYZER, 132

SCODE-CONGRA, 137

Generator settings

SCODE-ANALYZER, 132

Glossary, 177

I

Import from package

item, 118

unit, 118

Input

create, 72

Installation, 10

blocking applications, 12

command line, 16

license agreement, 11

path settings, 12

prepare, 10

silent

SCODE Workbench, 17

start, 10

start menu folder, 15

uninstall existing version, 13

uninstall SCODE Workbench, 18

Yakindu Traceability, 169

International system of Units, 114

L

Layout

store as @geo annotation, 80, 81

Licensing, 17

Liveliness, 42

M

MATLAB

code example, 223

flow with units, 234

connect with SCODE Workbench, 142,

82

disconnect from SCODE Workbench,

143

generated files, 245

select version, 83

Maxima

activate, 136

Mode, 28

add, 32

add comment, 31

check, 33

determine, 28

edit, 30

non-system ~, 28, 35

rename, 31

ETAS Index

SCODE Workbench 3.1 — Getting Started 248

system ~, 28

Mode definition rule, 29

Mode invariants, 39

generate code, 40

prepare code generation, 39

Mode transition graph, 54

Mode transition rule, 42

MuPAD

activate, 83

MuPad

select MATLAB version, 83

N

Non-system mode, 28, 35

add, 35

in decision tree, 38

O

Open

example project

SCODE-CONGRA, 141

Output

create, 101

defined, 100

explicit, 100

implicit, 73

P

Parameter, 91

assign unit, 121

constraints, 110

convert to variable, 93

create, 92

enter constraint, 112

Perspective

SCODE-ANALYZER, 23, 23

SCODE-CONGRA, 65

Position

store as @geo annotation, 80, 81

store in SYQ file, 80, 81

Privacy, 7

Problem space

define, 25

determine dimensions, 25

Product liability disclaimer, 7

Project

close, 88

close unrelated projects, 88

connect to other ~, 117

create

SCODE-ANALYZER, 23

SCODE-CONGRA, 65

create example

SCODE-ANALYZER, 134

SCODE-CONGRA, 138

open example ~

SCODE-CONGRA, 141

SCODE-ANALYZER, 21

Project-specific settings

SCODE-CONGRA, 83

R

Relation

add, 68

create, 68

specify, 69

Report

example, 235

generate, 126, 58

Rule, 42

add, 31

add comment, 31, 46

add event from ~, 46

add via Analysis Details, 50

check, 49

optimize, 52

requirements, 29

specify, 46

S

Safety information, 7

technical state, 6

SCODE Workbench, 9

connect with MATLAB, 142, 82

disconnect from MATLAB, 143

generator settings

SCODE-ANALYZER, 132

SCODE-CONGRA, 137

silent installation, 17

start, 129

uninstall, 18

SCODE-ANALYZER

connect with MATLAB, 142

create example project, 134

create TPT file, 146

generator settings, 132, 132

SCODE-ANALYZER perspective, 23, 23

SCODE-ANALYZER project, 21

SCODE-ANALYZER tutorial, 20

code generation, 39, 56

ETAS Index

SCODE Workbench 3.1 — Getting Started 249

create project, 21

define problem space, 25

events, 42

modes, 28

transitions, 42

SCODE-CONGRA

activate Maxima, 136

connect with MATLAB, 142

create example project, 138

generator settings, 137

select MATLAB version, 83

SCODE-CONGRA perspective, 65

SCODE-CONGRA tutorial, 62

algebraic loop, 102

constant, 89

constraints, 103

defined output, 100

fixed variable, 93

invert model, 98

non-linear equation, 82

parameters, 91

preparations, 63

simple equation, 65

units, 113

verification, 103

Sensitivity

check, 77

Sensitivity analysis, 77

Settings, 136

for workspace, 82

project-specific

SCODE-CONGRA, 83

SI units, 114

Silent installation

SCODE Workbench, 17

Solution

disable selection, 87

select, 85

store, 87

use first, 87

Solver

Maxima, 136

MuPAD, 83

Stability, 42

SYQ file, 62

comment, 120

unit definition, 233

System mode, 28

T

Test case

additional C code, 148

create, 146

execute in TPT, 164

working in TPT, 154

TPT, 154

add C files, 160

configure platform, 159

create compiler configuration, 154

create project, 155

execute test case, 164

generate test case, 156

import interface, 161

test data file, 245

TPT file

create, 146

example, 245

Transition, 42

assign event, 47

check, 49

determine, 43

determinism, 42

liveliness, 42

requirement, 47

specify, 50

stability, 42

Transition graph, 54

Transition matrix, 46

code generation, 57

prepare code generation, 56

Tutorial

SCODE-ANALYZER, 20

SCODE-CONGRA, 62

U

Uninstallation, 18

Unit, 114

assign to constant, 122

assign to parameter, 121

assign to variable, 121

constraint with ~, 124

create definition file, 116

define (separate file), 116

define (special project), 114

define (system file), 120

definition example, 233

enter value with ~, 123

example

ETAS Index

SCODE Workbench 3.1 — Getting Started 250

C code, 233

MATLAB code, 234

Execution environment, 125

generated code, 125

import from package, 118

V

Value

enter ~ with unit, 123

Variable

assign unit, 121

constraints, 104

convert to constant, 89

convert to parameter, 92

default value, 70

description, 70

edit, 70

enter constraint, 104

fixed, 93

set type, 101, 72

types, 71

with constraints + value, 124

Verification code

enable, 108

example (harness), 225

Verification harness

example, 225

W

Workspace

create, 21, 63

Y

Yakindu Traceability

install, 169

ETAS Index

SCODE Workbench 3.1 — Getting Started 251

	ETAS SCODE Workbench 3.1: Getting Started
	Contents
	1. Safety and Privacy Information
	1.1. Demands on the Technical State of the Product
	1.2. Intended Use
	1.3. Classification of Safety Messages
	1.4. Safety Information
	1.5. Privacy Notice
	1.5.1. Data Categories
	1.5.2. Technical and Organizational Measures

	2. About SCODE Workbench
	2.1. Finding Out More

	3. Installing SCODE Workbench
	3.1. Preparing the Installation
	3.1.1. Delivery Scope
	3.1.2. Software Prerequisites and System Requirements

	3.2. Installation
	3.2.1. Installation via Dialog Windows
	3.2.2. Command-Line Installation

	3.3. Licensing
	3.4. Uninstallation

	4. SCODE-ANALYZER Tutorial
	4.1. Introduction
	4.1.1. Example: Hybrid Car

	4.2. Lesson 1: Creating a SCODE-ANALYZER Project
	4.3. Lesson 2: Defining the Problem Space
	4.4. Lesson 3: Defining Modes
	4.4.1. Creating and Editing Modes
	4.4.2. Checking Modes
	4.4.3. Inserting a Non-System Mode
	4.4.4. Viewing the Decision Tree

	4.5. Lesson 4: Code Generation from Mode Invariants
	4.6. Lesson 5: Defining Events and Transitions
	4.6.1. Creating and Editing Events and Transitions from One Mode
	4.6.1.1. First Transition
	4.6.1.2. Second Transition
	4.6.1.3. Remaining Transitions

	4.6.2. Optimizing the Rules
	4.6.3. Completing the Transition Matrix

	4.7. Lesson 6: Code Generation from Mode Transition Matrix
	4.8. Lesson 7: Generating a Report

	5. SCODE-CONGRA Tutorial
	5.1. Introduction
	5.1.1. Concepts
	5.1.2. Preparations

	5.2. Lesson 1: Simple Equation
	5.2.1. Defining the Equation
	5.2.2. Specifying Directions
	5.2.3. Working with Computations
	5.2.4. Additional Task

	5.3. Lesson 2: Non-Linear Equation
	5.3.1. Preparing the Project
	5.3.2. Equation System and Computation
	5.3.3. Additional Tasks

	5.4. Lesson 3: Constants, Parameters, Fixed Variables
	5.4.1. Constants
	5.4.2. Parameters
	5.4.3. Fixed Variables
	5.4.4. Generating Code

	5.5. Lesson 4: Inverting Models
	5.6. Lesson 5: Explicit Outputs
	5.7. Lesson 6: Algebraic Loop
	5.8. Lesson 7: Constraints and Verification
	5.8.1. Constraints for Variables
	5.8.2. Verification Code
	5.8.3. Constraints for Parameters

	5.9. Lesson 8: Variables with Physical Units
	5.9.1. Defining Units in Separate Files
	5.9.2. Defining Units in the System SYQ File
	5.9.3. Assigning Units
	5.9.4. Units and Initial Values/Constraints
	5.9.5. Units in the Generated Code
	5.9.6. Additional Task

	6. First Steps with SCODE Workbench
	6.1. First Steps with SCODE-ANALYZER
	6.1.1. Generator Settings
	6.1.2. Start Using SCODE-ANALYZER

	6.2. First Steps with SCODE-CONGRA
	6.2.1. Settings
	6.2.2. Start Using SCODE-CONGRA

	6.3. Simulation in MATLAB®
	6.3.1. Uninstall Old Connection to MATLAB®
	6.3.2. Connect Current Version

	7. Useful Information
	7.1. SCODE-ANALYZER: Generating TPT Test Cases
	7.1.1. SCODE-ANALYZER Project
	7.1.2. Working in TPT
	7.1.2.1. Preparations
	7.1.2.2. TPT Project

	7.2. SCODE-CONGRA: Colors
	7.3. SCODE Workbench: Installing Yakindu Traceability

	8. Glossary
	8.1. SCODE-ANALYZER
	8.2. SCODE-CONGRA

	9. Tutorial Hints
	9.1. SCODE-ANALYZER Tutorial Hints
	9.1.1. Problem Space
	9.1.2. Modes
	9.1.3. Events and Transitions
	9.1.4. Code Generation: Mode Invariants
	9.1.5. Code Generation: Transition Matrix
	9.1.6. SCODE-ANALYZER Report

	9.2. SCODE-CONGRA Tutorial Hints
	9.2.1. C Code for Lesson 3
	9.2.1.1. C Code for a Flow with Constant
	9.2.1.2. C Code for a Flow with Parameter
	9.2.1.3. C Code for a Flow with Fixed Variable

	9.2.2. C Code for Lesson 4
	9.2.3. ESDL Code for Lesson 5
	9.2.4. Generated Code for Lesson 6
	9.2.4.1. Computation SYQ Code
	9.2.4.2. C Code
	9.2.4.3. ESDL Code
	9.2.4.4. MATLAB® Code

	9.2.5. Generated Code for Lesson 7
	9.2.5.1. C Code for a Flow with Constraints
	9.2.5.2. C Harness for Flow F_ConstraintsVariables_in_RU
	9.2.5.3. Comparison: Generated Code with/without Parameter Constraint

	9.2.6. Hints for Lesson 8
	9.2.6.1. Example: Unit Definitions in a *.syq File
	9.2.6.2. C Code for a Flow with Units
	9.2.6.3. MATLAB® Code for a Flow with Units
	9.2.6.4. SCODE-CONGRA Report

	10. Contact Information
	Figures
	Tables
	Index

