ETAS SCODE Workbench V3.0
Getting Started

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this
document. The software described in it can only be used if the customer is in possession
of a general license agreement or single license. Using and copying is only allowed in
concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language without the
express written permission of ETAS GmbH.

© Copyright 2021 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
mathworks.com/trademarks for a list of additional trademarks.

SCODE Workbench V3.0 — Getting Started R01 EN — 04.2021

ETAS

Contents

1. About this Document
1.1. Classification of Safety Messages
1.2. Presentation of Instructions
1.3. Typographical Conventions
1.4. Presentation of Supporting Information
2. Introduction
2.1. Safety Information
2.1.1. Intended Use
2.1.2. Demands on the Technical State of the Product
2.2. Privacy Notice
3. Installing SCODE Workbench
3.1. Preparing the Installation
3.1.1. Delivery Scope
3.1.2. Software Prerequisites and System Requirements
3.2. Installation
3.2.1. Installation via Dialog Windows
3.2.2. Command-Line Installation
3.3. Licensing
3.4. Uninstallation
4. SCODE-ANALYZER Tutorial
4.1. Introduction
4.1.1. Example: Hybrid Car
4.2. Lesson 1: Creating a SCODE-ANALYZER Project
4.3. Lesson 2: Defining the Problem Space
4.4, Lesson 3: Defining Modes
4.4 1. Creating and Editing Modes
4.4.2. Checking Modes
4.4 3. Inserting a Non-System Mode
4.4 4. Viewing the Decision Tree
4.5. Lesson 4: Code Generation from Mode Invariants
4.6. Lesson 5: Defining Events and Transitions
4.6.1. Creating and Editing Events and Transitions from One Mode
4.6.1.1. First Transition
4.6.1.2. Second Transition
4.6.1.3. Remaining Transitions
4.6.2. Optimizing the Rules
4.6.3. Completing the Transition Matrix
4.7. Lesson 6: Code Generation from Mode Transition Matrix
4.8. Lesson 7: Generating a Report
5. SCODE-CONGRA Tutorial
5.1. Introduction

SCODE Workbench V3.0 — Getting Started

Contents

© O 00 0 0 N O O O o

O OO OO o oo o g A B DWW WDNDNDNDDNDDNDNDN-=_2 2 A A A A A a-
W W O N O W -~ O N W WwWOoOoONO P O© ©ODNDN-_"A = © 0N 2~ A A A am

ETAS

5.1.1. Concepts
5.1.2. Preparations

5.2. Lesson 1: Simple Equation
5.2.1. Defining the Equation
5.2.2. Specifying Directions
5.2.3. Working with Computations
5.2.4. Additional Task

5.3. Lesson 2: Non-Linear Equation
5.3.1. Preparing the Project
5.3.2. Equation System and Computation
5.3.3. Additional Tasks

5.4. Lesson 3: Constants, Parameters, Fixed Variables
5.4.1. Constants
5.4.2. Parameters
5.4.3. Fixed Variables
5.4.4. Generating Code

5.5. Lesson 4: Inverting Models

5.6. Lesson 5: Explicit Outputs

5.7. Lesson 6: Algebraic Loop

5.8. Lesson 7: Constraints and Verification
5.8.1. Constraints for Variables
5.8.2. Verification Code
5.8.3. Constraints for Parameters

5.9. Lesson 8: Variables with Physical Units
5.9.1. Defining Units in Separate Files
5.9.2. Defining Units in the System SYQ File
5.9.3. Assigning Units
5.9.4. Units and Initial Values/Constraints
5.9.5. Units in the Generated Code
5.9.6. Additional Task

6. First Steps with SCODE Workbench

6.1. First Steps with SCODE-ANALYZER
6.1.1. Generator Settings
6.1.2. Start Using SCODE-ANALYZER

6.2. First Steps with SCODE-CONGRA
6.2.1. Settings
6.2.2. Start Using SCODE-CONGRA

6.3. Simulation in MATLAB®
6.3.1. Uninstall Old Connection to MATLAB®
6.3.2. Connect Current Version

7. Useful Information

7.1. SCODE-ANALYZER: Generating TPT Test Cases

7.1.1. SCODE-ANALYZER Project

SCODE Workbench V3.0 — Getting Started

Contents

63
64
66
68
72
75
80
83
83
86
88
90
90
92
94
96
99

101

103

104

105

108

111

114

115

121

122

124

126

127

131

134

134

136

138

138

140

144

144

144

146

146

146

ETAS Contents

7.1.2. Additional C Code
7.1.3. Working in TPT
7.1.3.1. Preparations
7.1.3.2. TPT Project
7.2. SCODE-CONGRA: Colors
7.3. SCODE Workbench: Installing Yakindu Traceability
8. Glossary
8.1. SCODE-ANALYZER
8.2. SCODE-CONGRA
9. Tutorial Hints
9.1. SCODE-ANALYZER Tutorial Hints
9.1.1. Problem Space
9.1.2. Modes
9.1.3. Events and Transitions
9.1.4. Code Generation: Mode Invariants
9.1.5. Code Generation: Transition Matrix
9.1.6. SCODE-ANALYZER Report
9.2. SCODE-CONGRA Tutorial Hints
9.2.1. C Code for Lesson 3
9.2.1.1. C Code for a Flow with Constant
9.2.1.2. C Code for a Flow with Parameter
9.2.1.3. C Code for a Flow with Fixed Variable
9.2.2. C Code for Lesson 4
9.2.3. ESDL Code for Lesson 5
9.2.4. Generated Code for Lesson 6
9.2.4.1. Computation SYQ Code
9.2.4.2. C Code
9.2.4.3. ESDL Code
9.2.4.4. MATLAB® Code
9.2.5. Generated Code for Lesson 7
9.2.5.1. C Code for a Flow with Constraints
9.2.5.2. C Harness for Flow F_ConstraintsVariables in RU
9.2.5.3. Comparison: Generated Code with/without Parameter Constraint
9.2.6. Hints for Lesson 8
9.2.6.1. Example: Unit Definitions in a * . syqg File
9.2.6.2. C Code for a Flow with Units
9.2.6.3. MATLAB® Code for a Flow with Units
9.2.6.4. SCODE-CONGRA Report
10. Contact Information
Figures
Tables
Index

SCODE Workbench V3.0 — Getting Started

149
152
152
153
165
168
176
176
178
181
181
181
181
191
197
199
205
217
217
217
218
218
219
220
221
221
222
222
223
224
224
225
229
233
233
233
234
235
240
241
245
247

ETAS 1. About this Document

1. About this Document

1.1. Classification of Safety Messages

The safety messages used here warn of dangers that can lead to personal injury or
damage to property:

A indicates a hazardous situation with a high risk of death or
DANGER serious injury if not avoided.

A indicates a hazardous situation of medium risk, which could
WARNING result in death or serious injury if not avoided.

A indicates a hazardous situation of low risk, which may result in
CAUTION minor or moderate injury if not avoided.

NOTICE indicates a situation, which may result in damage to property if
not avoided.

1.2. Presentation of Instructions

The target to be achieved is defined in the heading. The necessary steps for this are
listed in a step-by-step guide:

Target definition
1. Step 1
2. Step 2
3. Step 3

> Result

1.3. Typographical Conventions

OCI_CANTxMessage msg0 = Code snippets are presented in the
Courier font.

Meaning and usage of each command are
explained by means of comments. The
comments are enclosed by the usual syntax
for comments.

Select File — Save Menu commands are shown in boldface.

SCODE Workbench V3.0 — Getting Started 6

ETAS 1. About this Document

Click OK. Buttons are shown in boldface.
Press Enter. Keyboard commands are shown as blocks.
The "Open File" dialog box is displayed. Names of program windows, dialog boxes,

fields, etc. are shown in quotation marks.

Select the file setup.exe. Text in drop-down lists on the screen,
program code, as well as path and file
names are shown in Courier font.

A distribution is always a one-dimensional General emphasis and new terms are set in
table of sample points. italics.

1.4. Presentation of Supporting Information

“ NOTE Contains additional supporting information.

SCODE Workbench V3.0 — Getting Started 7

ETAS 2. Introduction

2. Introduction

This Getting Started guide provides relevant information to all the users who want to
install and get to know the ETAS SCODE Workbench. The SCODE Workbench hosts the
SCODE tools, SCODE-ANALYZER and SCODE-CONGRA.

SCODE Workbench is distributed as a standard Microsoft Windows installer. See chapter
3, Installing SCODE Workbench for detailed installation information.

SCODE Workbench is an Eclipse-based product. If you are familiar with using an Eclipse
environment then you should feel at home. If SCODE Workbench is the first Eclipse-
based application you have used, open the help viewer and go to the Workbench User
Guide to get more information on the basic Eclipse features.

SCODE-ANALYZER

SCODE-ANALYZER makes it possible to clearly describe and verify complex
relationships in closed-loop control systems. The overall system is divided up into
operating areas known as modes (for example, idle, full load, limp-home mode).
Displaying the system this way is most beneficial when the software makes decisions or
has a lot of variants.

New users of SCODE-ANALYZER are referred to chapter 4, SCODE-ANALYZER Tutorial.
You will learn how to work with SCODE-ANALYZER using examples.

A quick introduction to SCODE-ANALYZER is given in chapter 6, First Steps with SCODE
Workbench, particularly section 6.1, “First Steps with SCODE-ANALYZER”.

SCODE-CONGRA

SCODE-CONGRA is designed to help you define and analyze continuous systems,
simulate them and generate code.

The system is described purely in form of variables, relations, and equations. The
equations are undirected. Depending on which variables are marked as inputs, the
equations are solved in the corresponding direction, and code is generated representing
the results of this direction of equations.

New users of SCODE-CONGRA are referred to chapter 5, SCODE-CONGRA Tutorial.
You will learn how to work with SCODE-CONGRA using various examples.

A quick introduction to SCODE-CONGRA is given in chapter 6, First Steps with SCODE
Workbench, particularly section 6.2, “First Steps with SCODE-CONGRA”.

2.1. Safety Information

Please adhere to the ETAS Safety Advice and to the following safety information to avoid
injury to yourself and others as well as damage to the property.

See also section 1.1, “Classification of Safety Messages”.

2.1.1. Intended Use

ETAS GmbH cannot be made liable for damage which is caused by incorrect use and not
adhering to the safety messages.

SCODE Workbench V3.0 — Getting Started 8

ETAS 2. Introduction

“ NOTE This ETAS product fulfills standard quality management
requirements. If requirements of specific safety standards (e.g.
IEC 61508, ISO 26262, DO-178b, EN50128 and other similar
standards) need to be fulfilled, these requirements must be
explicitly defined and ordered by the customer. Before use of the
product, customers must verify the compliance.

2.1.2. Demands on the Technical State of the Product
The following special requirements are made to ensure safe operation:

» Take all information on environmental conditions into consideration before setup
and operation (see the documentation of your computer, hardware, etc.).

Further safety advice for this ETAS product is available in the following formats:

* A printed document shipped with the DVD media.

* In electronic form on the DVD. See Documentation\ETAS Safety
Advice.pdf for details.

» The "ETAS Safety Advice" window that opens when you start the program, or when
you select Help — ETAS Safety Advice.

2.2. Privacy Notice

Note that personal data is processed when using this product. As the controller, the
purchaser undertakes to ensure the legal conformity of these processing activities in
accordance with Art. 4 No. 7 of the General Data Protection Regulation (GDPR). As the
manufacturer, ETAS GmbH is not liable for any mishandling of this data.

Data Categories

Note that this product creates files containing file names and file paths, e.g. for purposes
of error analysis, referencing source libraries, or for communicating with third party
programs.

The same file names and file paths may contain personal data, if they refer to the current
user’s personal directory or subdirectories (e.g., C:\Users\<UserId>\
Documents\...).

If you do not want personal information to be included in the generated files, please make
sure that

« the workspace of the product points to a directory without personal reference.

« all settings in the product (see menu Window — Preferences in the product) refer
to directories and file names without personal reference.

« all project settings in the product (see menu Project — Properties) refer to
directories and file names without personal reference.

» Windows environment variables refer to directories without personal reference
because these environment variables are used by the product.

SCODE Workbench V3.0 — Getting Started 9

ETAS 2. Introduction

In this case, also make sure that the users of this product have read and write access to
all relevant directories.

When using the ETAS License Manager in combination with user-based licenses,
particularly the following personal data (categories) and/or data (categories) that can be
traced back to a specific individual is recorded for the purposes of license management:

e User data: UserID

¢« Communication Data: IP address

Technical and Organizational Measures

This product does not itself encrypt the personal data that it records. Please ensure that
the data recorded is secured by means of suitable technical or organizational measures
in your IT system, e.g. by using classic anti-theft and access protection on the
measurement hardware.

Personal data in generated files can be deleted by tools in the operating system.

SCODE Workbench V3.0 — Getting Started 10

ETAS 3. Installing SCODE Workbench

3. Installing SCODE Workbench

This chapter provides relevant information to all users who install, maintain or uninstall
SCODE Workbench on a PC or a network.

“ NOTE The SCODE Workbench installation includes both SCODE-
ANALYZER and SCODE-CONGRA.

The licenses for SCODE-ANALYZER and SCODE-CONGRA
must be bought separately.

3.1. Preparing the Installation

Check the delivery package to make sure it is complete and make sure your system
corresponds to the system requirements. Depending on the operating system and
network connection used, you must ensure that you have the necessary user privilege.

3.1.1. Delivery Scope

The installation disk of the SCODE Workbench contains the following content:
+ SCODE-ANALYZER and SCODE-CONGRA program files
* PDF documentation for SCODE-ANALYZER and SCODE-CONGRA
« ETAS Safety Advice in PDF format

* Information on open-source components used in SCODE-ANALYZER and
SCODE-CONGRA

3.1.2. Software Prerequisites and System Requirements

The software prerequisites and system requirements are listed in the release notes of the
SCODE Workbench.

3.2. Installation

When you install the SCODE Workbench, both SCODE-ANALYZER and SCODE-
CONGRA are installed automatically.

Keep in mind that you need separate licenses for SCODE-ANALYZER and SCODE-
CONGRA.

3.2.1. Installation via Dialog Windows
To start the SCODE Workbench installation

1. Insert the data carrier in the respective drive on your computer.
An installation dialog window opens.

2. Follow the Installation link, then follow the Install SCODE Workbench 3.0 link.

SCODE Workbench V3.0 — Getting Started 11

ETAS 3. Installing SCODE Workbench

3. Alternatively, select the driver in the Windows Explorer and run the setup.exe file

from the Installation folder.

The ETAS Installer is launched.

Welcome to ETAS SCODE
Workbench ¥ W Setup

Setup will quide you through the installation of ETAS SCODE
Workbench

It iz recommended that you dose all other applications
before starting Setup. This will make it possible to update

relevant system files without having to reboot your
computer.

Click Mext to continue.

B8 ETAS SCODE Waorkbench £ Setup = X

4. Click on Next to get to the next installation window.

License agreement

Next, you have to accept the End User License Agreement.

ffH ETAS SCODE Workbench 7 7 Setup

License Agreement
Flease review the license terms before installing ETAS SCODE Workbench r

Press Page Down to see the rest of the agreement.

ETAS SCODE-#N " End User License Agreement -~

ARTICLE I, GRAMNT OF LICEMSE

Subject to the provisions contained herein, ETAS GmbH, Barsigstr, 24, 70465 Stuttgart,
Germany, or an affliate of ETAS GmbH (hereinafter collectively referred to as
"Licensor™), either directly or through a designated ETAS reseller, hereby grants to the
Licensee a non-exdusive, timely unlimited, non-transferable, non-sublicensable,
revocable right to use Software SCODE (hereinafter referred to as "Software™), a
proprietary software tool, and any materials provided to the Licensee by Licensar in

connection with the license grant, such as documentation and demonstration material.

If you accept the terms of the agreement, dick the chedk box below. You must accept the
agreement to install ETAS SCODE Workbench © ©. Click Mext to continue.

[]1 accept the terms of the License Agreement

< Back Mext = Cancel

1. Read the license agreement, then activate the | accept the terms of the License

Agreement option.

SCODE Workbench V3.0 — Getting Started

12

ETAS 3. Installing SCODE Workbench

2. Click on Next.

To check for blocking applications

The "Verifying conditions" window shows running applications that block the installation.

ffH ETAS SCODE Workbench 7 Setup

Verifying conditions
Checking currently running processes [;m=

Flease close the following programs before continuing with setup...

Application Process
[1C\Program Files («36)\Common Files\ETAS Licensin... LiMaServer.exe
4\ MATLAB R2016b MATLAE exe

1. Close each blocking application with its native closing mechanism.
Or
2. Click on Next.
You are asked if you want to close the applications.
3. Click on Yes to continue.

If an application cannot be closed normally, you are asked if you want to kill the
respective process.

NOTICE Data loss due to process killing

Killing a process can lead to data loss.

Save your data and make sure that no data will be lost
before you agree to kill the process.

4. Click on Yes to continue.
Once all blocking applications are closed, the installation continues automatically.

To define path settings

In the "Choose Install Location" window, you are prompted to enter a destination directory
for the SCODE Workbench.

SCODE Workbench V3.0 — Getting Started 13

ETAS 3. Installing SCODE Workbench

5 ETAS SCODE Workbench 7 7 Setup

Choose Install Location
Choose the folder in which to install ETAS SCODE Workbench © . [:mi

Setup will install ETAS SCODE Workbench in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

Erowse...

Space reguired: GB
Space available: & ¢ GB

1. Enter or select (via the Browse button) a valid path.

An invalid path deactivates the Next button. You have to correct the path before
you can continue.

2. Click on Next.

If you selected an existing directory, the installer assumes that the SCODE
Workbench 3.0 is installed in the selected directory. You are asked to uninstall the
existing installation.

3. Click on Yes to continue.

If the existing folder does not contain an installation of the SCODE Workbench, the
folder is deleted. Continue reading at "To specify a folder in the Start menu".

If you selected an existing folder that contains an installation of the SCODE
Workbench, the "Uninstall ETAS SCODE Workbench" window opens.

SCODE Workbench V3.0 — Getting Started 14

ETAS

f¥, ETAS SCODE Workbench

3. Installing SCODE Workbench

Uninstall

continue.

Uninstall ETAS SCODE Workbench =
Remove ETAS SCODE Workbench from your computer. %

ETAS SCODE Workbench will be uninstalled from the following folder. Click Mext to

Uninstalling from: | C:\Program Files\ETAS\SCODE

NOTICE

4. Click on Next.

If you continue with Next, the connections between the old
version and MATLAB® and Simulink® are kept.

This means the new version cannot be connected to
MATLAB and Simulink during installation.

It is therefore strongly recommended that you do the
following:

1. Cancel the installation.

2. Remove all connections between the old version
and MATLAB and Simulink.

See section 6.3.2, “Connect Current Version” for an
instruction.

3. Re-start the installation.

The existing version is uninstalled. Once uninstallation is complete, the Close

button is available.

5. Click on Close.

The installation continues.

SCODE Workbench V3.0 — Getting Started 15

ETAS 3. Installing SCODE Workbench

To specify a folder in the Start menu

ffH ETAS SCODE Workbench 7 7 Setup

Choose Start Menu Folder
Choose a Start Menu folder for the ETAS SCODE Workbench shortouts, Em!

Select the Start Menu folder in which you would like to create the program's shortouts, You
can also enter a name to create a new folder.

AS SCODE Workbench

1. Do one of the following:
o Accept the default folder name.

o Enter a new folder name.

You can enter folder and subfolder.

To install the SCODE Workbench

“ NOTE The next step starts the installation. You cannot abort it.

1. In the "Choose Start Menu Folder" window, click on Install.

The installation is performed. A progress indicator shows how the installation is
progressing. When the installation is complete, the "Installation Complete" window
opens.

2. Click on Next.

You are prompted to finish the installation.

SCODE Workbench V3.0 — Getting Started 16

ETAS 3. Installing SCODE Workbench

¥ ETAS SCODE Workbench 7% Setup =

Completing ETAS SCODE
Workbench » & Setup

ETAS SCODE Workbench has been installed on your
computer.,

Click Finish to close Setup.

Open ETAS SCODE Workbench & a Getting Started

P
m

3. If desired, activate the Open ETAS SCODE Workbench 3.0 Getting Started
option.

4. Click on Finish to complete the installation.

In the Start menu, the specified folder (hamed ETAS SCODE Workbench 3.0 by
default; see also "To specify a folder in the Start menu") is created. It contains the
following entries:

« SCODE Workbench 3.0

The SCODE Workbench is started.
+ SCODE Workbench 3.0 Getting Started

Link to the Getting Started manual for SCODE Workbench.
+ SCODE Workbench 3.0 Release Notes

Link to the Release Notes for SCODE Workbench.

The ETAS License Manager has an entry ETAS License Manager in the ETAS program
group of the Start menu.

The following icon is placed on the desktop of your computer:

ik

ETAS SCODE
Waorkbench

3.2.2. Command-Line Installation

This section describes the command-line installation. Installation via dialog windows is
described in section 3.2.1, “Installation via Dialog Windows”.

SCODE Workbench V3.0 — Getting Started 17

ETAS 3. Installing SCODE Workbench

When you start the SCODE Workbench installation from a command line, you can use
several command-line parameters to customize the installation.

“ NOTE The command-line options are case-sensitive. For example, /S
will cause a silent installation, but /s will not.

/?or/h
Opens a window with the valid command line arguments.

/Sor /silent

Silent installation mode. With this installation mode, no dialog windows requiring
user information open.

Default values are used for all information normally requested in installation windows.
Error messages are hidden, too.

“ NOTE /silent must be the first command-line argument. If other
arguments precede it, /silent has no effect.

/NCRC
Skips CRC check of the installer (ignored if CRCCheck force is set in the installer).

/D
Sets the installation directory ($SINSTDIR).

/D must be the last parameter in the command line. /D must not contain any quotes.

Syntax
without spaces — /D=C:\ETAS\SCODE<x>,<y> U

with spaces — /D=C:\Program Files\SCODE
Examples

setup.exe /S /EULAAccepted
Triggers a silent installation with default installation path and CRC check.
setup.exe /NCRC /D=C:\Tools\SCODE<x>.<y>U

Triggers a non-silent installation without CRC check and with user-defined installation
directory.

3.3. Licensing

A valid license is required for using SCODE-ANALYZER, and a separate valid license is
required for using SCODE-CONGRA. You can obtain the license file(s) required for
licensing either from your tool coordinator or through a self-service portal under
www.etas.com/support/licensing. To request the license file(s), you have to enter the
activation number which you received from ETAS during the ordering process.

In the Windows Start menu, go to the app list and select E — ETAS — ETAS License
Manager.

SCODE Workbench V3.0 — Getting Started 18

https://www.etas.com/support/licensing

ETAS 3. Installing SCODE Workbench

Follow the instructions given in the license manager dialog. For further information about,
for example, the ETAS license models and borrowing a license, press F1 in the ETAS
License Manager.

If you do not have a valid license for either SCODE-ANALYZER or SCODE-CONGRA,
the respective tool will be available in grace mode for 14 days. After that, SCODE-
ANALYZER or SCODE-CONGRA can no longer be used.

3.4. Uninstallation

The entire SCODE Workbench is uninstalled. You cannot uninstall SCODE-ANALYZER
or SCODE-CONGRA individually.

“ NOTE Before you uninstall a version of the SCODE Workbench, you
must remove all connections between that version and
MATLAB®/Simulink®.

Otherwise, a new version cannot be connected to MATLAB
®/Simulink®.

See section 6.3.2, “Connect Current Version” for an instruction.

Use one of the following ways to start the uninstall process for the SCODE Workbench:

* Programs and Features from the Windows control panel

* Apps — Apps & features from the Windows Settings
To uninstall the SCODE Workbench

1. Start the uninstall procedure.

A safety inquiry opens.

“ NOTE The next step will start the uninstallation. The entire
content of the installation directory will be deleted.

You cannot cancel the uninstallation once it is running.

2. Click on Yes to continue.

A progress indicator shows how the uninstallation is progressing. Once
uninstallation is complete, a success window opens.

3. Click on Close to end the uninstallation.

SCODE Workbench V3.0 — Getting Started 19

ETAS 3. Installing SCODE Workbench

[1] <x>.<y>is the SCODE Workbench version number

SCODE Workbench V3.0 — Getting Started 20

ETAS 4. SCODE-ANALYZER Tutorial

4. SCODE-ANALYZER Tutorial

This chapter contains a tutorial for SCODE-ANALYZER. A tutorial for SCODE-CONGRA
can be found in chapter 5.

4.1. Introduction

Users who are not yet familiar with SCODE-ANALYZER will learn the basic working steps
of SCODE-ANALYZER in this tutorial. The tutorial does not require any knowledge of
SCODE-ANALYZER, but does assume that you are familiar with the Windows operating
system and with Eclipse in general.

Motivation

The SCODE methodology aims at the following:
* reducing complexity
» determinism (100% complete, 100% consistent, all mode transitions are valid)
* 100% test coverage

* proof for correctness throughout the tool chain

* easy and fast modeling

For that purpose, the SCODE methodology separates control flow (discrete logic) and
data flow (continuous computation). SCODE-ANALYZER handles the discrete control
flow, while SCODE-CONGRA handles continuous data flow.

Workflow

Working with SCODE-ANALYZER comprises the following steps, which are covered by
this tutorial:

A. Create a SCODE-ANALYZER project.
See also section 4.2, “Lesson 1: Creating a SCODE-ANALYZER Project”.

B. Define the problem space, the combinatorial combinations of the system context.

See also section 4.3, “Lesson 2: Defining the Problem Space”.

C. Define the valid and invalid operational modes via rules on the problem space.

See also section 4.4, “Lesson 3: Defining Modes”.

D. Generate code for the modes.

See also section 4.5, “Lesson 4: Code Generation from Mode Invariants”.

E. Define the mode transitions / events via rules.

See also section 4.6, “Lesson 5: Defining Events and Transitions”.

F. Generate code for the mode transition matrix.

3

See also section 4.7, “Lesson 6: Code Generation from Mode Transition Matrix”.

G. Generate a report for the SCODE-ANALYZER project.

See also section 4.8, “Lesson 7: Generating a Report”.

SCODE Workbench V3.0 — Getting Started 21

ETAS 4. SCODE-ANALYZER Tutorial

4.1.1. Example: Hybrid Car

The example system for this tutorial is a car with combustion engine and electric
engine/generator. It consists of the following components:

Combustion engine Can get disconnected (e.g. by clutch).

Electric engine/ generator Converts mechanical power to electrical or vice versa.
Can be disconnected (e.g. by clutch).

Battery
Brake The system can recuperate energy while braking.
Switch Used to select electric operation.

Table 1. Example system — components

Wheel Wheel

Combustion

Engine

Wheel Wheel
Figure 1. Example system — draft
4.2. Lesson 1: Creating a SCODE-ANALYZER Project
In the first lesson of this tutorial, you will start the SCODE Workbench, open a workspace,

and create a SCODE-ANALYZER project.

“ NOTE It is recommended that you use a separate workspace for the
tutorial.

To create a workspace

1. Start the SCODE Workbench.

The "SCODE Workbench Launcher" window opens, asking for a workspace
location.

SCODE Workbench V3.0 — Getting Started 22

ETAS 4. SCODE-ANALYZER Tutorial

Select a directory as workspace
SCODE Workbench uses the workspace directory to store its preferences and development artifacts.

Workspace: Q| = HSCODE- workspace V| | Browse...

[] Use this as the default and do not ask again

| Launch | | Cancel |

2. In that window, enter or select (via the Browse button) a path and name for your
workspace.

This tutorial uses a workspace named WS_tutorial.
3. Click on OK.
If you entered a directory that does not yet exist, it is created now.

The SCODE Workbench opens. It shows the welcome page.

i
File Edit Mavigate Search Project Window Help
E@Welcomem’ ﬁ\':‘:‘/ffrzﬂ

=]
e &
Welcome to SCODE Workbench

Q Overview @é_’f, Samples

Get an overview of the features T Try out the samples

What's New m Tutorials
% Go through tutorials

Find out what is new

Figure 2. SCODE Workbench window, showing the Welcome page

4. To reach the workbench, click on the Hide button at the top right.

If you selected a new workspace, all views are empty (see Figure 3). If you
selected an existing workspace, that workspace is shown in the views.

SCODE Workbench V3.0 — Getting Started 23

ETAS 4. SCODE-ANALYZER Tutorial

File Edit Mavigate Search Project Window Help

N-H@0 SR P ifFl oD oD =l

f5 Projectbxpl... 22 = O = B = Cutline 32 $4Build = B8
BESY §

There is no active editor that

There are no projects in your : A
provides an outline.

workspace.
To add a project:

Create a
Y SCODE-ANALYZER

project
Y Create a project. L, Analysis Details 57 =
p
L2 Import projects... Select an analysis in outline to see
details.

O

= Properties &3 [:_ Problems [EJ Console B [? E = 0
Property Value

‘FEE n | 9 &

Figure 3. SCODE Workbench (SCODE-ANALYZER perspective) with empty workspace

If you used the SCODE Workbench with SCODE-CONGRA before you started this
tutorial, your window will look different than Figure 3. To open the SCODE-ANALYZER
perspective, click on the [E] SCODE-ANALYZER button at the right of the toolbar.

The SCODE-ANALYZER perspective shows the following views:

* top left: Project Explorer
« top middle: reserved for various editors
* top right: "Outline" view and "Build" view

* bottom left: "Problems" view, "Properties" view, Execution Environment, "Console
view
* bottom right: "Analysis Details" view

You can now create a project for the tutorial.

To create a SCODE-ANALYZER project

1. In the SCODE Workbench window, do one of the following:

o Select File — New — SCODE-ANALYZER Project.
o Click on the arrow next to the New button and select SCODE-ANALYZER

Project.

g : Qi v
T SCODE-AMALYZER Project

T Project..
LI

The "SCODE-ANALYZER project" window opens.

SCODE Workbench V3.0 — Getting Started 24

ETAS 4. SCODE-ANALYZER Tutorial

SCODE-ANALYZER project
Create a new SCODE-AMALYZER project resource,

Project name:

Uze default location
Location: | DAETASData\SCODE-EMAMNALYZERNWS_tutorial Browse...

@

Figure 4. "SCODE-ANALYZER project" window

2. Enter a project name, e.g., hybridCar.
It is recommended that you use the default location for this tutorial.

3. Click on Finish.

The project is created, together with some default elements. The "Problem Space"
page is shown in the SCODE Workbench window.

4. Expand the tree in the Project Explorer.

File Edit Mavigate Search Project Window Help

H-EBRC PRG-I o =1k
[Project Explorer 23 = O hybridCar.scode 532 = B I£ Outline 3 ¥ Build = 8
SR . . [Statistics for: hybridCa
] &7 8 hybridCar Problem Space ~ | (h o E5 [|2 ics for: hybridCar
v 5 hybridCar 1 CONDITION dimension
hd hybridCar.scode ‘ Type Dimension | Alternative 1 | Alternative 2 1 States on CONDITION dimensions
Problem 5 i i F
_Ij roblem space 1 CONDITION dimension alternative 1 States on CONDITION and ACTION
» 0y Modes (1)

> ig Events (0)

a5 Mapping ANALYZER to CONGRA
), Analysis Details 2 = 0O
Select an analysis in outline to see

details.
<

< 3 [Problem Space | {0y Mode Definition | ¢ Mode Transition

3,
2

] Properties [#] Problems 52 &) Console T &8 = O
0items
Description Resource Path Lecation Type

FHEA 2| 9 % o=

Figure 5. SCODE Workbench window with newly created SCODE-ANALYZER project

SCODE Workbench V3.0 — Getting Started 25

ETAS 4. SCODE-ANALYZER Tutorial

4.3. Lesson 2: Defining the Problem Space

In this lesson, you will define the problem space of the system.

This is usually carried out as a structured discussion between domain experts and
SCODE analysts. The domain experts provide information about the system context,
requirements and system know-how. The SCODE analysts provide the competence for
the method & tooling. The analysis defines the problem space — also called condition and
action space — by a Zwicky box in terms of

» Dimensions — Conditions (inputs) and actions (outputs): aspects of the system or
its context that cause or represent different system behaviors (or cause-effect
chains) In the hybrid car example, one condition is the state of charge of the
battery, or battery SOC for short.

« Alternatives — possible values or value ranges of a dimension Alternatives for the
battery SOC condition would be full (i.e. no further charging possible), empty, and
normal.

To determine the dimensions

1. Write down the dimensions of the system, and the alternative values each
dimension can have.

Dimension Alternative
battery SOC full / empty / normal
“ NOTE When you name a dimension and its alternatives, you

should rather base the names on the physical meaning
than on the current implementation.

When you consider your list complete, you can enter the dimensions in SCODE-
ANALYZER. One condition dimension has been created automatically when you created
the project; you can add as many dimensions as required.

To edit an existing condition

1. Go to the "Problem Space" page of your project.
This page contains the Zwicky box.

2. Click in the "Dimension" cell of the existing condition and enter a name.
3. Click in the "Alternative 1" cell of the condition and enter the first alternative.

4. In the "Alternative 2" cell, enter the second alternative.
A new, empty alternative is added.
5. If required, enter further alternatives.

You do not have to change the type of the dimension.

For the battery SOC condition of the tutorial, the row should look like this:

SCODE Workbench V3.0 — Getting Started 26

ETAS 4. SCODE-ANALYZER Tutorial

[hybridCar.scode 532 = 8
hybridCar Problem Space =
| Type Dimension Alternative 1 Alternative 2 | Alternative 3 | Alternative 4

1 CONDITION battery SOC full empty normal

] Problem Space| i 1: Mode Definition | ¢ & Mode Transition | [%. Decision Tree | =2 Mapping ANALYZER to CONGRA

Figure 6. "Problem Space" page with one condition

To add a new condition

1. In the "Problem Space" page, click on the text Type new dimension below the
last dimension.

2. Enter the name of the new dimension.

The dimension is created. The type Condition is assigned automatically, and the
first alternative is set to a default value.

[*hybridCar.scode &3 = 0
hybridCar Problem Space ~ | —
| Type Dimension | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4
1 CONDITION battery SOC full empty normal

2 CONDITION battery at OT Altemative |

3. Enter the alternatives as described in To edit an existing condition.

Conditions are allowed to have different numbers of alternatives. One condition can
have 3 or more alternatives, while another has just 2 alternatives. Extra alternatives

are left empty.
4. Add the other conditions you need.

The "Outline" view on the right of the SCODE-ANALYZER window shows the statistic of
the problem space.

EE Outline 3 = O

Statistics for: hybridCar

2 CONDITION dimensions
B States on COMDITION dimensions

B States on COMNDITION and ACTION dimensions

Figure 7. "Outline" view with statistics for the problem space

If desired, you can add a comment to a condition or to a single alternative.

SCODE Workbench V3.0 — Getting Started 27

ETAS 4. SCODE-ANALYZER Tutorial

To add a comment to a condition or alternative

1. In the "Problem Space" page, click on the condition or alternative you want to
comment.

2. Go to the "Properties" view.

By default, the "Properties” view is displayed at the bottom left of the SCODE
Workbench window.

3. Enter your comment.

[Py ProjectEx.. 32 = B [d *hybridCarscode 53 = B
v
= = hybridCar Problem Space B
. |1 By
w2 hybridCar B
v [hybridCar.scode | Type Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 |
[7] Problem Space 1 CONDITION " fyll empty normal
Hi Modes (1)
i Events (0]
=2 Mapping ANALY.
< > [T Problgfn Space| i1 Mode Definition | ¢ Mode Transition | [£. Decision Tree | =:Z Mapping ANALYZER ...
= Properties 52 | (2] Problems [l Génsole == 0
Dimension: battery SOC
Mame: battery SOC
[Comment: SOC = state of charge]
Edit
Description:

Figure 8. "Properties" view for a dimension selected in the "Problem Space" page

In the "Problem Space" page, the condition or dimension is marked with a triangle
in the upper left corner of its table cell.

If the mouse pointer hovers over the cell, the comment appears as tooltip.

[*hybridCar.scode &3

hybridCar

|T3,rpe Dirnension Alternative 1 | Alternative :
1 COMDITION 7 battery SOC \‘:‘ empty

2 COMDITIOM battery at OT SGC:statecufcharge| no

Add all conditions you need. When you have entered all conditions, the "Problem Space"
page may look like this:

SCODE Workbench V3.0 — Getting Started 28

ETAS 4. SCODE-ANALYZER Tutorial

[} *hybridCar.scode 532 = B
hybridCar Problem Space B L
Type Dimension Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 |

1 COMDITION " full empty normal

2 CONDITIOM battery at OT yes no

3 COMNDITIOM electric engine cable okay defective

4 CONDITION silent mode on off

5 COMNDITION fuel tank empty not empty

& COMNDITIOMN car moves ni yes

] Problem Space | i (i, Mode Definition | | & Mode Transition | [%. Decision Tree | =5 Mapping ANALYZER to ...

4.4. Lesson 3: Defining Modes

The static analysis of the condition and action space described by the Zwicky box
decomposes the condition and action space into multiple non-overlapping subspaces that
model partial problems. A partial problem is now characterized by the fact that the
context of the system is in a so-called mode, i.e., in a specific situation. In this situation,
the system has to behave in a specific way, i.e., the system resides also in a mode
corresponding to this situation. Thus, a mode can also be understood as a so-called
situation module.

Modes that are relevant for the problem solution and model the corresponding system are
also called normal modes or system modes. In SCODE-ANALYZER, system modes are
marked by this icon:

Impossible or meaningless combinations of conditions, and combinations that are
possible by nature, but ruled out by design, are stored in so-called non-system modes. In
SCODE-ANALYZER, non-system modes are marked by this icon: ¢

“ NOTE It is strongly recommended that you use system modes for
combinations that are possible, but ruled out by design. This is
especially important for safety-critical systems.

4.4.1. Creating and Editing Modes

The next thing to do is to define the modes of the system.

Again, this is usually carried out as a structured discussion between domain experts and
SCODE analysts.

In the hybrid car example, one mode is the situation that the car is charging.

To determine the modes

“ NOTE The modes must not overlap. If they do, SCODE-ANALYZER wiill
issue an error.

SCODE Workbench V3.0 — Getting Started 29

ETAS 4. SCODE-ANALYZER Tutorial

1. Write down the modes of the system and the states of the conditions for each

mode.
Mode Conditions

battery SOC battery at OT others
charging empty or normal yes

When you consider your list complete, you can define the modes in SCODE-ANALYZER.
One mode has been created automatically when you created the project; you can add as
many modes as required.

[Project Explorer 32 | 5] & ¥ = O
w22 hybridCar
v [4] hybridCar.scode
3 Problemn Space
w i Modes (1)
& Mode (M1) {0}

: % F""F"I"If'- i

Before you start adding and editing modes in SCODE-ANALYZER, read the following list
of requirements:

A System modes must not overlap.

If they do, an error message is shown in the "Outline" view (see Figure 10).

B You can select no, one, several, or all alternatives of a condition.

If a condition is irrelevant for the current mode, you can select none or all of its
alternatives. Such a condition is sometimes called a don’t care dimension.

“ NOTE If you add a new alternative to the condition, that
alternative is, by default, not selected in any rule. This
means that the condition loses its don’t care property if you
selected all old alternatives.

It is therefore recommended that you select no alternative
for don’t care dimensions.

C If you select two or more alternatives of one condition, the alternatives are ORed:

alternative 1 OR alternative 2

SCODE Workbench V3.0 — Getting Started 30

ETAS 4. SCODE-ANALYZER Tutorial

D If one alternative of a condition is forbidden for the mode, you can either select the
forbidden alternative and activate the option in the "NOT" column, or you can select
all conditions except the forbidden one.

Type Dimensicn MOT | Alternative 1 | Alternative 2 | Alternative 3
COMDITION " battery SOC v |7 full empty normal

is equivalent to

Type | Dimensicn | NOT| Alternative 1 | Alternative 2 | Alternative 3
COMDITION " battery SOC O - full empty normal

“ NOTE If you add a new alternative to the condition, that
alternative is not selected in any rule. This means that the
two possibilities are no longer equivalent.

The first possibility allows all alternatives except the
forbidden one, i.e. the new alternative is allowed.

The second possibility allows only those alternatives that
are explicitly selected, i.e. the new alternative is forbidden.

E The setting in the "NOT" column of a condition applies to all selected alternatives.

If you select several alternatives and activate the option in the "NOT" column, the
rule for this condition is

NOT (alternative 1 OR alternative 2)

F Alternatives from different conditions are ANDed:

battery SOC = empty AND battery at OT = no

G You can specify one or more rules for one mode. Each mode must have at least one
rule; otherwise, an error is issued.

A state belongs to a mode if it matches one of the mode’s rules.

Table 2. Requirements for modes and mode definition rules

To edit an existing mode

1. In the Project Explorer, do one of the following:

o Double-click on the existing mode.

o Right-click the existing mode and select Open in Editor from the context
menu.

The editor for the mode opens in the "Mode Definition" page. The "Mode" field
allows renaming the mode and switching from system mode to non-system mode
or back. The "Rule Editor" field is used to select, for each condition, those
alternatives that define the mode.

SCODE Workbench V3.0 — Getting Started 31

ETAS 4. SCODE-ANALYZER Tutorial

I Project Explorer i3 [=hybridCar.scode 2 = B8

i
oo O

— Mode: (System Mode) o8 (% [E
w k= hybridCar

vﬁ hybridCar.scode o Mame: ‘deE M1 Comment: I:I

[Problem Space

w iy Modes (1) Rules
o mode (M1) {0}
5 Events (0) ‘ Include Rules (0) ‘
o Mapping ANALVZER to CONGRA Exclude Rules (0)
Rule Editor g &| X
MName: | | Comrent: | |
Type | Dimension | NOT ‘ Alternative 1 | Alternative 2 | Alternative 3 ‘
CONDITION " battery SOC O ful empty normal
CONDITION |" battery at OT O ye no
CONDITION electric engine cable [J okay defective
CONDITION silent mode O on off
CONDITION fuel tank O empty not empty
CONDITION car moves O no yes
[7] Problem Spa... | i Mode Definiti... | & Mode Transiti.. | [%. Decision Tr... | =¢Z Mapping ANALYZER...

Figure 9. "Mode Definition" page with mode editor

2. In the "Name" field of the "Mode" pane, enter a meaningful name.

3. If desired, enter a comment in the "Comment" field.

Mode: (System Mode) o @ &

a® Mame: | charging M1 Comment: | start mode

4. In the "Rule Editor" field, click in the cells of all alternatives that define the mode.

Keep in mind the requirements listed in Table 2.

5. When you have selected all relevant alternatives, click on the Add Include Rule
button.

RO 2

| Add Include Rule |

“ NOTE Include rules and exclude rules are both valid, but exclude
rules tend to be more difficult to understand.

It is therefore strongly recommended that you use only
include rules.

The rule is added to the "Include Rules" list in the "Rules" field.

Rules m

~ Include Rules (1)
4 battery SOC = NOT(full) AND battery at OT = yes AND electric engine cable = okay AND car moves = yes
Exclude Rules (0]

Since the mode is the only one in the project, it is marked as start mode ().

You can enter a name and a comment for the rule in the "Properties" view.

SCODE Workbench V3.0 — Getting Started 32

ETAS 4. SCODE-ANALYZER Tutorial

The "Outline" view shows the statistics for the mode definition. Red font indicates errors.

EE Qutline 53 ﬂBU”d = O

Static Analysis For Zwicky Box:
hybridCar

96 States on COMDITIOMN dimensions
& Covered states

Mot cornplete: 82 states missing
Deterministic

Consistent

Mo Actions

Functional dependencies

Figure 10. "Outline" view with statistics for the mode definition

To add a new mode
1. To add a new empty mode, do one of the following:

o In the "Mode Definition" page, "Mode" field, click on the Add Mode button.
5 -]
O]

v

° In the Project Explorer, right-click the Modes node and select Add Mode
from the context menu.

The mode is created as a system mode. It is added to the Modes node in the
Project Explorer, and it is opened in the mode editor in the "Mode Definition" page.

2. To add a non-empty mode, proceed as follows:

i. In the "Rule Editor" field, click in the cells of all alternatives that define the
mode.

ii. Click on the Add Mode from Rule button.

® &

| Add Mode from Rule

The mode is added, together with the rule you specified.

3. Edit the mode as described in To edit an existing mode.

Add and edit all modes you need. & When you have entered all conditions, the Modes
folder in the Project Explorer may look like this:

SCODE Workbench V3.0 — Getting Started 33

ETAS 4. SCODE-ANALYZER Tutorial

5 Project Explorer F3 = “/‘}=r=l> 7 & = B8
v {:5 hybridCar
~ g hybridCar.scode
[Problemn Space
w 17 Modes (5)
55 charging (M1) (8]
&) standstill (M2) {48}
% mechanical brake (M3) {4}
&) discharging (M4) {16}
a‘% combustion engine only (M3) {28
: i Events (0]
=5 Mapping ANALYZER to CONGRA

The content of the "Mode Definition" page depends on your selection in the Project
Explorer.

4.4.2. Checking Modes

While you are adding and editing modes, the modes are analyzed for completeness,
determinism, and consistency. The "Outline" view shows an overview of the results. You
cannot generate code until all errors are corrected.

E= Outline 52 47 Build = 8
Static Analysis For Zwicky Box:
hybridCar

96 States on COMDITIOMN dimensions

%6 Covered states

Complete

Mot deterministic

Mot consistent

Mo Actions

Functional dependencies

Figure 11. "Outline" view with statistic analysis for the modes and rules in Table 24

Red lines indicate errors. If you click on a red line, detailed information appears in the
"Analysis Details" view.

SCODE Workbench V3.0 — Getting Started 34

ETAS 4. SCODE-ANALYZER Tutorial

", Analysis Details 3 -0

| type filter text

= Overlaps of conditions (deterministic) (3)
w [Overlap of system modes (consistent) (3)

w Iy [charging] and [discharging]

w [Overlapping Rules (1)
[charging : Rule_2] and [discharging : Rule_1]
w [Overlapping States
= {4} battery SOC = normal AND battery at OT = yes AND electric engine cable = okay AND car moves = yes

{1}y [charging] and [combustion engine only]
@y [standstill] and [discharging]
{0}, [standstill] and [combustion engine cnly]
@ [mechanical brake] and [discharging]

= Overlaps between non-system modes (0)

Rernaining States Overlapping Modes Redundant Rules Extended Results

Figure 12. "Analysis Details" view for the modes and rules in Table 24

You can display the decision tree (see section 4.4.4) for an easy review.

You have to remove inconsistent and/or non-deterministic settings before you can
generate code. There are two ways to remove the errors: You can try to re-define the
rules, or you can check if your list of conditions is really complete, and add a condition, if
necessary.

To start removing the errors

1. For this tutorial, assume that a condition desired acceleration is missing.
2. Add the condition with suitable alternatives. &

3. Assign appropriate alternatives to the mode definition rules.

If you determined and used the desired acceleration as shown in Table 25, the
"Outline" view looks as follows.

o= Outline 52 47 Build = 8
Static Analysis For Zwicky Box:
hybridCar

232 States on COMDITIOM dimensions

276 Covered states

Mot complete: 12 states missing

Deterministic

Consistent

Mo Actions

Functional dependencies

The number of states has increased, due to the new condition. The system is now
both deterministic and consistent, but some states are missing. In the "Analysis
Details" view, the results are marked as possibly outdated, and an Update button
appears.

SCODE Workbench V3.0 — Getting Started 35

ETAS 4. SCODE-ANALYZER Tutorial

L, Analysis Details 3 = =

Update | & Results may not be up to date.

[+ e Filker Fent

4. Click on Update.

The "Analysis Details" view suggests rules for the missing states.

L, Analysis Details 53 -0

Update | & Results are up to date.

| type filter text |

w = Remaining States
= {8} battery at OT = yes AMD desired acceleration = (keep speed OR increase speed) £
= {8} battery at OT = yes AMD desired acceleration = (keep speed OR increase speed) /
[= Rule proposals for systern modes
[= Rule proposals for non-system modes

£ >

Remaining States Overlapping Modes Redundant Rules Extended Results
Figure 13. "Analysis Details" view with suggested rules for missing states

5. Double-click on a suggested rule to display it in the "Rules Editor" field.

Rule Editor for Rule Proposal = | ERERN 4

Mame: | |C|:rr1mer1t: | |

Type | Dimensicn | NOT | Alternative 1 Alternative 2 | Alternative 3
CONDITION " battery SOC O r+ul normal

COMDITIOM " battery at OT (i yes no
CONDITION electric engine cable] defective
COMDITION zilent mode O off
COMDITION fuel tank O empty not empty
COMDITION Car moves O

no yes
COMDITION desired acceleration O decrease speed m

6. Check if the rule is physically possible. &

7. Repeat the last two steps for the other suggestion(s).

4.4.3. Inserting a Non-System Mode

Impossible or meaningless combinations of conditions, and combinations that are
possible by nature, but ruled out by design, are stored in non-system modes.

To start removing errors

1. In the "Analysis Details" window, double-click on a suggestion to display the rule in
the "Rule Editor" field.

SCODE Workbench V3.0 — Getting Started 36

ETAS 4. SCODE-ANALYZER Tutorial

2. In the "Rule Editor" field, click on the Add Mode from Rule button.

® &

| Add Mode from Rule |

The mode is added (as a system mode), together with the suggested rule.

3. Enter a name for the mode.

4. Click on the Toggle to Non-System Mode button.

& Mame: Mon-system Mode

&

| Teggle to Mon-Systern Mode |

With that, the mode becomes a non-system mode. The mode icon in the Project
Explorer changes from @& to <.

The static analysis in the "Outline" view is updated automatically. The "Analysis Details
view is not updated automatically, it is just marked as possibly outdated.

To add the remaining states

1. Update the "Analysis Detail" view.

2. Display the remaining suggestion in the "Rules Editor" field.

3. Check if the rule is physically possible. ©

4. Do one of the following:
o If the rule is not possible, add it to the non-system mode.
o If the rule is possible, add it to a system mode.

With that, the system is complete, deterministic, and consistent.

o= Outline 52 47 Build = O

Static Analysis For Zwicky Box:
hybridCar

Deterministic

Consistent

Mo Actions

Functional dependencies

4.4.4. Viewing the Decision Tree

The mode definition rules can be visualized in a so-called decision tree, which is
displayed in the "Decision Tree" page. This decision tree can be used to check modes
and rules, and it is easier to read than the Zwicky box and the mode list.

SCODE Workbench V3.0 — Getting Started 37

ETAS 4. SCODE-ANALYZER Tutorial

[hybridCar.scode 53 = O
Decision Tree for All Modes

| F e @Q| D E||yes -
b battery SOC »

) B
e s o e = E S o= = =
= '-llnl-_-.---q |--H'“ |m = = -I'Ir--—;-nl |“ T = = flil I&r =
== TR R = S S
= b
£ >

] Problem Space | iy Mode Definition | i & Mode Transition [%. Decision Tree | =5 Mapping ANALYZER to CONGRA
Figure 14. "Decision Tree" page

In the decision tree, the conditions are displayed as named blue boxes, normal modes
are displayed as named grey boxes. Non-system modes are hidden by default, but you

can display them, if desired. They appear as unnamed grey boxes. The alternatives of a
condition are displayed as named arrows pointing to another condition or a mode.

By default, the conditions appear in roughly the same order as in the Zwicky box.
However, you have several possibilities to change the look of the decision tree.

To change the view of the decision tree

1. Drag any condition and drop it onto another.

In some cases, dropping a condition onto another is forbidden. A prohibition icon is
shown in these cases.

LHI Ui

= : P
fuel tank ‘ cati' moves

e

Pl sl a2l »

If dropping is permitted, the dragged condition takes the place of the condition it is
dropped onto. The decision tree is re-arranged so that it still covers all decisions.

Figure 110 shows a re-arranged decision tree of the tutorial project.

SCODE Workbench V3.0 — Getting Started 38

ETAS 4. SCODE-ANALYZER Tutorial

2. Click on the & Toggle orientation button to change the direction of the decision
tree.

Figure 111 shows the decision tree with horizontal orientation.

3. Click on the Toggle view between tree and dag button to switch from tree

view mode to directed acyclic graph (DAG) view mode or back.

Figure 112 and Figure 113 show examples for the DAG view mode.

4. Open the "Layer" combo box and select the number of tree levels you want to
display.

“ NOTE You should do this only in the tree view mode. The DAG
view mode is suitable only for complete trees.

Only the selected number of levels is shown. Figure 114 shows an example.
5. Use the (4 Zoom in and = Zoom out buttons to zoom the decision tree.

The {+ Fit to page button scales the decision tree to the current size of the
"Decision Tree" page.

6. Click on the Show non-system states button to display the non-system modes.

e relQQql

Y C
| Show Mon System States

See Figure 115 for an example.

7. To select a sub-tree, click on the triangle to the right of the top node name and
select one of the alternatives.

Iﬁ|®<h'|*1i1*'t¥ '$|5}’:.=",:.|'D‘U|Layer3

b battery SOC P

|
full—battery at OT

w empty—battery at OT
w yes—electric engine cable
okay—silent mode
defective—fuel ta
no—fuel tank
normal—battery at OT

Only the selected subtree is displayed. See Figure 115 for an example.

8. To optimize the height of the decision tree, right-click on a node at or near the top
of the tree and select an Optimize height * entry from the context menu.

SCODE Workbench V3.0 — Getting Started 39

ETAS 4. SCODE-ANALYZER Tutorial

battery at OT

Compare With L]

Teamn ¥

Remove all bend points

Increase display height
[Decrease display height

Go into

Go up

Reset Mode Filter

Reset Display Filter

nly Mawve Up
tex Optimize height (Simple heuristic)

empty & Optimize height (Advanced heuristic)

& Optimize height (Globally)

{J FRunAs -]
E{S: Debug As -]

Replace With >

The nodes of the tree are re-arranged so that the height of the tree is minimized.
See Figure 116 and Figure 117 for examples.

4.5. Lesson 4: Code Generation from Mode Invariants

The purpose of code generation is to transform this model into executable code that
reflects the same functionality as the model.

As soon as your model is complete, deterministic, and consistent, you can generate code,
even though transitions are still missing. In this case, the source for code generation is
based on the mode definition only; it is named Mode Invariants.

SCODE-ANALYZER offers the following setup possibilities:

« for the entire workspace (accessible via Window — Preferences)

« for a particular project (accessible via a project’s context menu or via Project —
Properties)

Project-specific settings override workspace settings. In this tutorial, you will use
workspace settings.

To prepare code generation from mode invariants

1. Select Window — Preferences.
2. In the "Preferences" window, open the "SCODE-ANALYZER\Generator" node.
3. In that node, do the following:

i. Select one or more generators.

SCODE Workbench V3.0 — Getting Started 40

ETAS 4. SCODE-ANALYZER Tutorial

i. For the "Generation Source" property, select Mode Invariants.

4. Click on Apply and Close.
The settings should look like those in Figure 15.

type filter text Generator - -

0o

Efge'a' Build
++
EHANDEOOK [] Generate automatically
EMF Compare Generators
Help MATLAB
Install;"Updlate . Flc
MATLAB/Simulink
Model Validation M=t
Run/Debug LlC++
~ SCODE-ANALYZER Nami
- aming
Diagram
o [———— Function input template | Fenameda |
c Enum type template | Yenamea_Type |
C++
ESDL Generator configuration
MATLAB Output folder | src-gen |
EF_ODE_CONGRA Use generator specific subfolder
irius
Team Maximum length of lines in generated code | 120 |
Terminal [Generation source Mode Invariants] v
Dimension representation Enumeration ~
Rule generation type Using Rule Definition w
Output type Mades ~
Verification
Verification code | Off ~

Reduce ruleset prior to generation

[[] Optimize rule terms prior to generation

Restore Defaults Apply

® @ é Apply and Close Cancel

Figure 15. "Preferences" window with settings for code generation from mode invariants

With that, you can generate the code.

To generate code from mode invariants

1. In the Project Explorer, right-click the SCODE file and select Generate Code from
the context menu.

Code is generated for the selected generators (ESDL, C code, C++ code, or
MATLAB). The resulting files are stored in the SCODE-ANALYZER project; the
output folder is named src-gen by default.

SCODE Workbench V3.0 — Getting Started 41

ETAS

7 Project Explorer 53 ==

v (== hybridCar

“ [src-gen
(= C

w = ESDL

-

= B

“ [hybridCar

o

battery_at_OT_Type.esd|
battery_SOC_Type.esdl
car_moves_Type.esd|
desired_acceleration_Type.esdl
electric_engine_cable_Type.esdl
fuel_tank_Type.esdl
hybridCar.esdl
hybridCar.layout
hybridCar.png
Mode_Type.esdl
silent_mode_Type.esdl

[= MATLAB
[hybridCar.scode

Figure 16. Output folder for code generation

4. SCODE-ANALYZER Tutorial

2. Open the hybridcCar. * file(s) and look at the code.

It is recommended that you keep a copy of this file for later use.

3. If desired, open other generated files and inspect the code.

For code generation from mode invariants, the output folder contains the following items:

» folder <generator name>(e.g., ESDL or C)

“ NOTE

Only created when you activated the code generation

option Use generator specific subfolder (see Figure 15).

Contains all files generated for the respective generator.

o folder <project name>(e.g., hybridCar)

Contains the files that define conditions and modes and the file that
determines the current mode.

For the ESDL generator, the files are named as follows:

* <condition name> Type.esdl (define the conditions; one file per
condition)

* <project name>.esdl (determines the current mode)

» <project name>.* (required if you want to use the generated
ESDL code in ASCET-DEVELOPER)

* Mode Types.esdl (defines the modes)

SCODE Workbench V3.0 — Getting Started

42

ETAS 4. SCODE-ANALYZER Tutorial

For the MATLAB generator, the files are named as follows:

* <condition name> Type.m (define the conditions; one file per
condition)

* <project name> ModeSelector.m (determines the current mode)

* Mode Types.m (defines the modes)
For the C and C++ generators, the files are named as follows:

* <project name> Types.hoOr <project name> Types.hpp
(defines all conditions and modes)

* <project name>.c Of <project name>.cpp (determines the
current mode)

* <project name>.h oOr <project name>.hpp

4.6. Lesson 5: Defining Events and Transitions

The dynamic analysis step of SCODE-ANALYZER allows to specify which situation
changes in the context are possible and how the system shall react to them in terms of
transitions between modes. This is done in terms of a mode transition table that defines
which event triggers a transition from a source mode to a target mode. It is also possible
to define that there is no transition possible from a specific source mode to a target
mode.

Just like modes, events are defined based on rules on sets of alternatives for each
condition dimension in the underlying Zwicky box. This enables the tool-based analysis of
properties such as liveliness, stability and determinism:

* Liveliness of a transition means that the corresponding event is able to really
trigger the transition to the target mode (i.e. the event conditions are not already
fulfilled by the rules of the source mode).

« Stability of a transition means that the corresponding event is compatible with the
target mode (i.e. the event conditions are fulfilled by the rules of the target mode).
Otherwise, an immediate further mode change would be the consequence and the
system would "oscillate".

» Determinism (or consistency) means that the events of all outgoing transitions of
one mode do not overlap, i.e. that there is always only one transition possible and
the target mode is uniquely defined.

4.6.1. Creating and Editing Events and Transitions from One
Mode

The next thing to do is to define the transitions from one mode, e.g., charging, to the other
modes, as well as the events that trigger the transitions. Again, this is usually carried out
as a structured discussion between domain experts and SCODE analysts.

An event is a set of one or more mode transition rules that must be fulfilled. Mode
transition rules are very similar to mode definition rules, except that mode transition rules
are always include rules. The requirements for modes and mode definition rules listed in
Table 2 are valid for events and mode transition rules, too.

SCODE Workbench V3.0 — Getting Started 43

ETAS 4. SCODE-ANALYZER Tutorial

In the hybrid car example, the transition from charging to di scharging can occur, for
example, if the battery is at operating temperature and fully loaded, the cable is okay, the
car is moving, and the driver wants to keep or increase the speed.

To determine events

1. Decide which transitions are allowed and which are forbidden.

2. Decide what event triggers which allowed transition.

current mode next mode

charging discharging standstill combustion mechanical
engine only brake

charging battery at operating
temperature and fully
charged AND electric
engine cable okay
AND car moves AND
desired acceleration
is keep or increase
speed
discharging
standstill
combustion
engine only
mechanical
brake

When you consider your list complete, you can define the events and transitions in
SCODE-ANALYZER.

In SCODE-ANALYZER, events and transitions are specified on the "Mode Transition"
page. That page has two views, the "Event Overview and Implementation” view and the
"Mode Transition" view. A button at the top right of the "Mode Transition" page (marked
red in Figure 17) is used to toggle the views.

SCODE Workbench V3.0 — Getting Started 44

ETAS 4. SCODE-ANALYZER Tutorial

[#] hybridCar.scode E3 = 08
= Filter: A |LE
Type Dimension | MOT | Alternative 1 Alternative 2 | Alternative 3 ‘
CONDITION 7 battery SOC O rfull empty normal

COMNDITION 7 battery at OT O e no
COMDITION electric enginecable [okay defective
COMDITION zilent mode O on off
COMNDITION fuel tank O empty not empty
COMDITIOMN car moves O no yes
COMDITION desired acceleration O decrease speed keep speed increase speed

List of Events

Event Mame | Implementation Mame Comment

[Problem Space | i Mode Definition | £ ¢ Mode Transition | [%. Decision Tree | =2 Mapping ANALYZER t...
Figure 17. "Mode Transition" page with "Event Overview and Implementation" view
By default, SCODE-ANALYZER assigns events to transitions based on the definition of

the respective target mode. In this tutorial, you will deactivate this default behavior and
define all transitions manually.

To set transition behavior

1. Open the "Preferences" window and go to the SCODE-ANALYZER node. @

2. In that node, set the default transition behavior to non-transition.

SCODE Workbench V3.0 — Getting Started 45

ETAS 4. SCODE-ANALYZER Tutorial

[type filter text | | SCODE-ANALYZER v B
> General SCODE-ANALYZER behaviour
y CfC++

EHANDEOOK Default transition behaviour | non-transition e

» EMF Compare

based on target mode

» Help

> Install/Update
MATLAB/ Simulink
Model Validation
Run/Debug
SCODE-AMALYZER
SCODE-COMGRA
Sirius

L R R

Team

Terminal Restore Defaults Apply

® @l |é:l Apply and Close Cancel

Figure 18. "Preferences" window, "SCODE-ANALYZER" node

3. Click on Apply and Close.

The "Mode Transition" view (see Figure 19) is used to specify transitions and events.
There are several ways to create and specify transitions and events:

A. To add an empty event, you can do one of the following:

o Right-click the Events folder in the Project Explorer and select the Add
Event context menu option.

o Use the Add Event button in the event viewer (b in Figure 19).

Event ﬁ} %._,

These events are then assigned to transitions in the transition matrix (a in Figure
19) and specified via the rule editor (c in Figure 19).

B. To add a non-empty event, you can specify a rule in the rule editor and then use
the Add Event from Rule button to add an event with the specified rule.

Rule Editor 8 & v ®&|&4

This event is then assigned to a transition in the transition matrix and refined.

The last way is used in this tutorial.

SCODE Workbench V3.0 — Getting Started 46

ETAS

4.6.1.1. First Transition

To add an event from a rule

4. SCODE-ANALYZER Tutorial

1. Go to the "Mode Transition" view of the "Mode Transition" page.

hybridCar.scode 53 = 4
Mode Transition (a) % Event (b) g [H
Source Mode/Target mode charging | standstill | mechanical brake| discharging | combustion engine only| No Tr Mame: l:l
" charging
tancstil I Rules 40
mechicarake [0 S
discharging | []
combustion engineonty [—
< >
Rule Editor (c) E@m|lvES L
MName: | | Comment: | |
Type ‘ Dimension ‘ NOT | Alternative 1 ‘ Alternative 2 | Alternative 3
CONDITION " battery SOC O ful empty normal
CONDITION " battery at OT O yes no
CONDITION electric engine cable [0 okay defective
CONDITION silent mode [m] on off
CONDITION fuel tank O empty not empty
CONDITION car moves [m] no yes
CONDITION desired acceleration [] decreasespeed keepspeed increase speed

7 Problem Space | 5 Mode Definition | ¢ Mode Transition | [+, Decision Tree <% Mapping ANALVZER to CONGRA|

Figure 19. "Mode Transition" page with "Mode Transition" view

The upper part of the window contains a transition matrix (a) and an event viewer
(b). The lower part contains a rule editor (c) similar to the one used in section 4.4.1,
“Creating and Editing Modes”.

. In the rule editor, specify a rule for a transition.

Rule Editor B & v@e L
Mame: | | Comment: | |
Type | Dimension | MOT | Alternative 1 Alternative 2 | Alternative 3 |
COMDITION " battery SOC O empty nermal
COMDITION * battery at OT (i yes no
COMDITION electric engine cable [FELED defective
COMDITION silent mode O on off
COMDITION fuel tank O empty not empty
COMDITION car moves O no =3
COMDITIOM desired acceleration [0 decreasespesd

3. If desired, enter a name and/or a comment for the rule.

4. When you have selected all relevant alternatives, click on the Add Event from

SCODE Workbench V3.0 — Getting Started

Rule button.

i 4

Add Event from Rule

An event is added, together with the rule you specified. The event is shown in the
event viewer, with default name and short name.

47

ETAS 4. SCODE-ANALYZER Tutorial

Event g{é} LE|
Mame; | Ewvent | E1
Rules

v Tl Rules (1)

T# battery SOC = full AND battery at OT = yes AND electric engine cable = okay AND

Mame: Rule_1

Rule: battery SOC = full AND battery at OT = yes AND electric engine cable
= okay AND car moves = yes AMD desired acceleration = (keep speed OR
increase speed)

< >

Figure 20. Event viewer with new event
5. In the "Name" field, enter a meaningful name for the event that shows the purpose
of the event.

This tutorial uses the names of source mode and target mode as event name. The
event in Figure 20 is named charging discharging.

You cannot change the short name.
6. If desired, enter a comment for the event in the "Properties" view.
The event is created, but not yet assigned to a transition.

To assign an event to a transition

1. In the transition matrix, double-click in the cell of a transition.

The event in Figure 18 shall be assigned to the transition from charging to
discharging.

A combo box opens that offers all existing events for selection. In addition, you can
select an empty row to remove an event assignment, and you can select —to mark
the transition as forbidden.

Mode Transition
Source Mode/Target mode | charging | standstill | mechanical brake| discharging | combustion ¢
" charging w

ctandsti N e
mechanical brake I _
rl

= — E1 charging_discharging

2. Select the event that you want to assign to the transition.

The event’s short name appears in the cell. If the event is valid, the cell
background becomes green.

charging | standstill | mechanical brakel discharging | combustior

Each row in the transition matrix contains transitions from one mode.

SCODE Workbench V3.0 — Getting Started 48

ETAS

4. SCODE-ANALYZER Tutorial

A. The transitions from one mode must fulfill the following requirements:

a.

b.

All states that lead away from the source mode must be covered by the
transitions from that mode.

The number of states that must be covered, and of states that are covered,
are given in the "Outline" tab.

The events must not overlap.

B. Asingle transition from the source mode must fulfill the following requirements:

a.
b.

All states of the source mode must react to the event.

The event must be fully enclosed in the target mode.

This rule is violated if at least one state in one of the rules is not part of the
target mode.

. The event must not overlap with a non-system mode.

This rule is violated if at least one state in one of the rules is part of a non-
system mode.

. The event must not overlap with dynamic non-transitions.

. The rules for the transition must not overlap with the source mode.

This rule is violated if at least one state in one of the rules is part of the
source mode.

The "Outline" view shows the statistics for the source mode, as well as for a selected
transition. The selected transition is okay, but most states are not covered.

o= Outline 52 47 Build - O

Dynamic Analysis

[] Analysis for dynamic non-transitions

For Source Mode: charging

VED O

268 States on COMDITIOM dimensions

& Covered states

260 States Mot Covered

Mo Overlapping Events

For Transition to: discharging

All States Of Source Mode React To Event

Event Fully Enclosed In Target Mode

Event has no COwverlap with Mon-5ystem Mode(s)

Event has no Overlap with dynamic Mon-Transition

Figure 21. "Outline" view with statistics for mode transitions

SCODE Workbench V3.0 — Getting Started

49

ETAS 4. SCODE-ANALYZER Tutorial

4.6.1.2. Second Transition

To set up and assign another event

1. Create another event with the rule fuel tank = empty.

2. Assign the event to the transition from charging to standstill.

The "Outline" view shows several errors (red lines).

0= Outline 22 %7 Build - O

Dynamic Analysis
[] Analysis for dynamic non-transitions

For Source Mode: charging
268 States on COMDITIOM dimensions
136 Covered states
132 States Mot Covered

Owerlapping Bvents

For Transition to: standstill

Mon-reacting States Of Source Mode
Event Mot Fully Enclosed With Target Mode
Event Owerlaps with Mon-5ystem Mode(s)

Event has no Overlap with dynamic Mon-Transition

Error message Violated requirement
x States not covered rule A.a
Overlapping Events rule A.b
Non-reacting States of Source Mode rule B.a
Event Not Fully Enclosed With Target Mode rule B.b
Event Overlaps with Non-System Mode(s) rule B.c

To check and remove the errors

1. Click on the line Overlapping Events.
The "Analysis Details" view displays the "Overlapping Events" tab.

Since the tutorial does not (yet) use dynamic non-transitions, the content of both
folders is identical.

2. Expand the first folder and all of its children.

SCODE Workbench V3.0 — Getting Started 50

ETAS 4. SCODE-ANALYZER Tutorial

L4, Analysis Details 53 ~ =

Update | @ Results are up to date.

| type filter text

~ = Overlap of events excluding all dynamic non-transitions (1)}
v 42 [charging_discharging] and [charging_standstill]
w [= Owverlapping Rules (1)

D [charging_discharging : Rule_1] and [charging_standstill : Rule_1]
w = Overlapping States
= {4} battery 50C = full AND battery at OT = yes AND electric engine cable
[= Owverlap of all events (1)
£ >

Remaining States Overlapping Events Invalid States

3. To display one of the overlapping rules, right-click an entry in the Overlapping
Rules folder and select Open in Editor — <rule_name> of <mode_name> from
the context menu.

Rule Editor from charging_discharging 5 |L| o ‘@ fj J
Mame: |Ru|e_'| | Comment: | |
Type ‘ Dimension | MNOT | Alternative 1 Alternative 2 | Alternative 3 |
CONDITION " battery S0OC O lm _ empty normal
CONDITION " battery at OT O no
COMDITION electric engine cable [J okay defective
COMNDITION silent mode O on off
COMDITION fuel tank O empty not empty
COMDITIOMN Car moves O no
COMDITION desired acceleration O decrease speed m

4. Refine one or both overlapping rules to remove the overlap.

In this example, the overlap can be removed, e.g., if the rule for the second event
is changed to fuel tank = empty AND electric engine cable =
defective.

5. Update the display in the "Analysis Details" view.

6. If there are more errors, repeat this procedure to solve these, too.

4.6.1.3. Remaining Transitions

Once all errors for existing transitions are removed, only the x States Not Covered
line remains red. If you click on that line, detailed information appears in the "Analysis
Details" view. Use that information to specify the other transitions from the charging
mode.

To specify transitions with the "Analysis Details" view

1. In the "Outline" view, click on the red line with x States not covered.

The "Analysis Details" view offers suggestions for further rules.

SCODE Workbench V3.0 — Getting Started 51

ETAS 4. SCODE-ANALYZER Tutorial

L, Analysis Details 53 - o

Update | & Results are up fo date.

| type filter text

w = Remaining States per Target Mode
= standstill (P2)
= mechanical brake (P3)
w = discharging (M4)
‘=2 {8] battery SOC = full AND battery at OT = yes AND electric
= {16} battery 50C = normal AMD battery at OT = yes AND ele
[= combustion engine only (M3)
[= Remaining States for all Target Modes
£ >

Rernaining States Overlapping Events Invalid States
Figure 22. "Analysis Details" view with suggested rules for transitions

2. To complete the transition from charging to discharging, do the following: @

i. Double-click on a suggestion in the Remaining States per Target
Mode\discharging * folder to display it in the "Rules Editor" field.

Rule Editor from Rule Proposal 8 &8 | & & &

Mame: | Comment: | |

Type | Dimensicn | NOT Alternative 1 Alternative 2 | Alternative 3 |
COMDITION " battery SOC empty normal

CONDITION " battery at OT |:| [yes B
CONDITION electric engine cable [defective
COMNDITION silent mode a on off
COMDITION fuel tank D empty notempty

CONDITION car moves O s
COMDITION desired acceleration O decreasespeed m

ii. Click on the @ Add Include Rule button to add this rule to the
charging discharging event.

The statistics in the "Outline" view are updated automatically, the
suggestions in the "Analysis Details" view are not.

iii. Inthe "Analysis Details" view, click on Update for new suggestions.

iv. Repeat these steps for the remaining suggestions in the Remaining
States per Target Mode\discharging * folder.

3. To specify another transition from charging, do the following:

i. Double-click on a suggestion to display it in the "Rules Editor" field.
E.g., click on the entry in the combustion engine only folder.
i. Click on the Add Event from Rule button.

The event is added, together with the rule you selected.

SCODE Workbench V3.0 — Getting Started 52

ETAS 4. SCODE-ANALYZER Tutorial

i. Enter a meaningful name for the new event.

For the transition from charging to combustion engine only, for
example, name the event charging combustionOnly.

iv. Assign the event to a transition.

Mode Transition e Event @ B
Source Mode/Target mode charging | standstill | mechanical brake | discharging | combustion engine only| b Name: | charging combustionOnly | [E3

" charging
standstill vz | LD
mechanical brake 3|

v 1 Rules (1)
discharging [ma |

] battery SOC = empty AND silent mol
combustion engine anly [E|

< > < >

v. Update the "Analysis Details" view.
vi. Add rules from the other suggestions for this transition.

4. Repeat step 3 until all transitions from charging are complete and no errors
remain. ©

Events without errors are displayed in green in the transition matrix.

If all transitions from a mode are complete and free of errors, the mode is displayed
in green, too.

4.6.2. Optimizing the Rules

An event can have many rules that may overlap or appear overly complex. You can try to
optimize the rules for a selected event and reduce their number and/or complexity.

To optimize rules:

1. Select the event whose rules you want to optimize.
2. In the event viewer, select one or more rules of the event.

3. Click on the Reduce Rules button.
Rules q m I
[
#| battery SOC = empty AND sil Feduce Rules

The "Reduce Rules" window shows the results. If the rules could be reduced, the
event viewer is updated.

Figure 23 shows an example for successfully reduced rules.

SCODE Workbench V3.0 — Getting Started 53

ETAS 4. SCODE-ANALYZER Tutorial

Event # &
Mame: | charging_ combustionOnly | |E3

Rules Eﬁ m
~ 1 Rules (3]

& battery SOC = empty AND silent mode = off AND fuel tank = not empty AND desired acceleration = (keep speed OR increase speed)

T electric engine cable = defective AMD fuel tank = not empty

battery at OT = no AMD electric engine cable = okay AND fuel tank = not empty AND desired acceleration = decrease speed

% battery at OT = no AND electric engine cable = okay AND silent mode = on AND fuel tank = not empty AMD desired acceleration = (keep speed OR increase ...
& battery SOC = (full OR normal) AND battery at OT = no AND electric engine cable = ckay AND silent mede = off AND fuel tank = not empty AND desired acc ...

Event #F 5
Mame: | charging_ combustionOnly | |E3

Rules q m
w | Rules (3]

& battery SOC = empty AND silent mode = off AND fuel tank = not empty AND desired acceleration = (keep speed OR increase speed)
& electric engine cable = defective AMD fuel tank = not empty
#| battery at OT = no AND fuel tank = not empty

Figure 23. Event charging combustionOnly before and after rule optimization

SCODE Workbench V3.0 — Getting Started 54

ETAS 4. SCODE-ANALYZER Tutorial

4.6.3. Completing the Transition Matrix

The transitions away from the charging mode are specified. Use the procedures from
section 4.6.1, “Creating and Editing Events and Transitions from One Mode” and section
4.6.2, “Optimizing the Rules” to specify the entire transition matrix "2 and optimize the
results.

The completed transition matrix looks like this:

Mode Transition She

Source Mode/Target mode | charging | standstill | mechanical brake | discharging | combustion engine only | No Transition

" charging

standstill

mechanical brake

discharging : :

combustion nginecnty (MMM NI .

The i+ Mode Transition Graph button at the top right of the mode transition matrix
creates a graphical display of the transitions; see Figure 24 for an example.

SCODE Workbench V3.0 — Getting Started 55

ETAS 4. SCODE-ANALYZER Tutorial

[£] hybridCar.scode obe hybridCar.sdgm 23 =

combustionCnly_ charging

discharging_ charging

charging discharging combustionCOnly_ standstill

discharging_ combustionOnly

charging_standstill o standstill_ discharging

combustionCnly_ discharging

F 3

standstill_ charging discharging_ standstill

:I—‘ mechanBrake_ discharging

discharging_ mechanBrake

combusﬁonOnly mechanBrake

mechanBrake_ standstill mechanBrake_ combustionOnly

standstill_ mechanBrake

standstill_ combustionOnly

mechanBrake_ charging

charging_ mechanBrake

charging_ combustionOnly

Figure 24. Mode transition graph for the completed transition matrix

SCODE Workbench V3.0 — Getting Started 56

ETAS 4. SCODE-ANALYZER Tutorial

4.7. Lesson 6: Code Generation from Mode Transition
Matrix

The purpose of code generation is to transform this model into executable code that
reflects the same functionality as the model.

As soon as your model is complete, deterministic, and consistent, and the transitions are
completely specified, you can generate code from the transition matrix.

To prepare code generation from the transition matrix

1. Open the "Preferences" window and go to the "SCODE-ANALYZER\Generator"
node.”

2. In that node, do the following:
i. Select one or more generators.

i. Forthe "Generation Source" property, select Mode Transition Matrix.

For the other properties, as well as for the generator-specific settings in the
subnodes, you can use the default values.

3. Click on Apply and Close.
The settings should look like those in Figure 25.

SCODE Workbench V3.0 — Getting Started 57

ETAS 4. SCODE-ANALYZER Tutorial

Generator -
E;EE'E' Build
++ i
EHANDEOOK [[] Generate automatically
EMF Compare Generators
Help MATLAB
Installf"Upd.ate . Hc
MATLAB/Simulink
Model Validation M
Run/Debug BAC++
~ SCODE-ANALYZER Naming
Diagram
o [—— Function input template | Yenameda |
C Enum type template | %name_Type |
C++
ESDL Generator configuration
MATLAB Output folder | src-gen |
E_C_ODE_CONGRA Use generator specific subfolder
irus
Tearmn Maxirnum length of lines in generated code | 120 |
Terminal [Generation source Made Transition Matrix] w
Dimension representation Enumeration ~
Rule generation type Using Rule Definition ~
Output type Modes ~
Verification
Verification cede | Off ~
Reduce ruleset prior to generation
[[] Optimize rule terms prior to generation
Restore Defaults Apply
® @ |¢, Apply and Close Cancel

Figure 25. "Preferences" window with settings for code generation from the transition
matrix

With that, you can generate the code.

To generate code from the transition matrix

1. In the Project Explorer, right-click the SCODE file and select Generate Code from
the context menu.

Code is generated for the selected generators (ESDL, C code, C++ code, or
MATLAB). The resulting files are stored in the SCODE-ANALYZER project; the
output folder is named src-gen by default.

Figure 16 shows the output folder for generated code from mode invariants. The
same files with the same names are created for code generated from the transition
matrix.

2. Open the <project name>.* file(s) and look at the code.

See section 9.1.5, “Code Generation: Transition Matrix” for the hybridCar.esdl
file.

SCODE Workbench V3.0 — Getting Started 58

ETAS 4. SCODE-ANALYZER Tutorial

3. If desired, compare the <project name>.* file(s) from this section with the
respective files from section 4.5, “Lesson 4: Code Generation from Mode
Invariants”.

4.8. Lesson 7: Generating a Report

To get a description of your project, you can generate a report. Generated reports can be
read without a SCODE Workbench installation.

To generate a report

1. Right-click the SCODE-ANALYZER project or the SCODE file and select Export
from the context menu.

2. In the list of the "Export" window, select report generation for SCODE-ANALYZER.

Select
Generate a report for a SCODE-AMALYZER model to the local file system. H

Select an export wizard:

| type filter text |

v = General

v = CfC++

% = Install

5 = lava

» = Run/Debug

w = SCODE-AMNALYZER

B Model
i Mode Transition Graph
{2 Report
B Test Suite
» = SCODE-COMGRA
v = Team
@ < Back Next > Finish Cancel

Figure 26. "Export" window with selected SCODE-ANALYZER report generation

3. Click on Next to continue.

SCODE Workbench V3.0 — Getting Started 59

ETAS

4. SCODE-ANALYZER Tutorial

Generate a Report
Generate a Report

AMNALYZER File: | D:/Data/SCODE-E 3/ _ANALYZER/WS_tutorial/hybridCar/hybridCar.scode | Browse workspace...

Destination Folder: | D:/Data/SCODE-T 0/ _AMNALYZER/WS_tutornial/hybridCar | Browse...
Report File Type: | Word ~
Report Name: | hybridCar |

Choose report parts to be generated
Problem Space

Modes

Modes Overview

Essential Analysis

Decision Tree

Transitions

Events Overview

Transition Graph

Select all

Deselect all

®

Next > Finish -

Figure 27. "Generate a Report" window for a SCODE-ANALYZER report

4. In the "Generate a Report" window, do the following:

Vi.

If necessary, enter or select (via the Browse workspace button) the SCODE
file that contains the model you want to export.

i. Enter or select (via the Browse button) an existing folder for the report.
ii. Select the "Report File Type".

. Enter a name for the report file.

“ NOTE If you enter the name of an existing file with the
selected format, that file is overwritten without
further inquiry.

. Activate at least one option in the "Choose report parts to be generated”

area.
Click on Finish to generate the report.
The report is generated with the selected format and stored in the selected

folder. If you selected a folder inside your workspace, you can see the report
in the Project Explorer.

SCODE Workbench V3.0 — Getting Started 60

ETAS 4. SCODE-ANALYZER Tutorial

5 Projectbplorer 32 B 5 7 § = 8
v (== hybridCar

= MI_src-gen

[src-gen

ﬁ hybridCar.docx

[hybridCar.scode

oke hybridCar.sdgm

5. In the confirmation window, click on Yes to open the report.

A report for the hybridCar project, with all report parts generated, is shown in section
9.1.6, “SCODE-ANALYZER Report”.

SCODE Workbench V3.0 — Getting Started

61

ETAS 4. SCODE-ANALYZER Tutorial

[2] See Table 24 for a suggestion of modes and rules.

[3] If you need help, see To add a new condition.

[4] If you need help, see To add a new condition and/or Table 25.

[5] If you need help, see Table 26, “Suggested rules for the missing states. Alternatives
that cannot be true at the same time are marked.”

[6] If you need help, see Table 27, “Suggested rules for the states that are still missing
after suggestion 1 from the previous table has been inserted as non-system mode”.

[7] If you need help, see, e.g., To prepare code generation from mode invariants.

[8] If you need help, see Table 29.
[9] If you need help, see Table 28 and references therein.

[10] If you need help, see the tables in section 9.1.3, “Events and Transitions”.

SCODE Workbench V3.0 — Getting Started 62

ETAS 5. SCODE-CONGRA Tutorial

5. SCODE-CONGRA Tutorial

This chapter contains a tutorial for SCODE-CONGRA. A tutorial for SCODE-ANALYZER
can be found in chapter 4.

5.1. Introduction

Users who are not yet familiar with SCODE-CONGRA will learn the basic working steps
of SCODE-CONGRA in this tutorial. The tutorial does not require any knowledge of
SCODE-CONGRA, but does assume that you are familiar with the Windows operating
system and with Eclipse in general.

To model physical systems in SCODE-CONGRA, you define equation systems.

5.1.1. Concepts
This section introduces the most important concepts and processes used in this tutorial.

Workspace
A workspace is a way to store all information specified or produced with SCODE-
CONGRA (or SCODE-ANALYZER).

In SCODE-CONGRA, a workspace is structured into projects, folders, and files. On
the Windows file system, a workspace is stored in form of folders and files with the
same structure.

Project

A SCODE-CONGRA project stores a model.

SCODE-CONGRA projects are identified as such by the Eclipse environment. The
constraint graph functionality is only available for projects of this type. In the following
image, you see the difference between a SCODE-CONGRA project, a SCODE-
ANALYZER project, and a general project.

‘G"DE

24

5 Project Explorer &3 =

= general_project
(£ SCODE-ANALYZER_project
= SCODE-CONGRA_project

System

A system is defined as a set of variables and relations between the variables. A
system is undirected, i.e. no inputs and outputs are specified. You cannot generate
executable code from an undirected system.

SyaQ file

Atextual file in the SYQ language that contains the semantic description of the
system.

A SYQ file is the textual base of each SCODE-CONGRA project. Here, all variables,
relations, units, and flows are defined or stored (when you are working in the graphical
editor).

Each SCODE-CONGRA project must have at least one SYQ file.

SCODE Workbench V3.0 — Getting Started 63

ETAS 5. SCODE-CONGRA Tutorial

Variable

A variable is an element that can be read and written during the execution of a
SCODE-CONGRA model.

In SCODE-CONGRA, all variables are deemed to be continuous.
Relation

A relation describes how different variables of a system are interrelated. It does not
imply a computation direction.

The relations between different variables are specified by mathematical equations,
e.g., Einstein’s famous relation: E - m*c? =0

Flow
A flow is a system with specified inputs and specified or derived outputs.

If a flow is valid, the equations in the system become directed to produce the imposed
outputs of the relations.

For example, if m and c are given, then E is computed as E = m * ¢
If E and c are given, then m is computed as m = E/c?.

A valid flow is the basis for code generation.

Computation

A computation is the result of solving a flow, an executable sequence of computation
steps. It captures the solved equations, and also orders the computation steps in a
linear way.

5.1.2. Preparations
The first thing to do is to start the SCODE Workbench and open a workspace.
It is recommended that you use a separate workspace for the tutorial.

To create a SCODE-CONGRA workspace

1. Start the SCODE Workbench.

ek

ETAS SCODE
Workbench

The "SCODE Workbench Launcher" window opens. It asks for a workspace
location.

SCODE Workbench V3.0 — Getting Started 64

ETAS 5. SCODE-CONGRA Tutorial

Select a directory as workspace
SCODE Workbench uses the workspace directory to store its preferences and development artifacts.

Workspace: Q| ChUsers\k NSCODE-2 workspace e Browse...

[] Use this as the default and do not ask again

2. In that window, enter or select (via the Browse button) a path and name for your
workspace.

This tutorial uses a workspace named WS_tutorial.
3. Click on OK.
If you entered a directory that does not yet exist, it is created now.

The SCODE Workbench opens. If you selected a new workspace, all views are
empty (see Figure 28). If you selected an existing workspace, that workspace is
shown in the views.

File Edit Mavigate Search Project Run Window Help

N HRBQU A~ F 0P| B

¥ Project Explorer &3 = 8 = 8
BES Y §

There are no projects in your

workspace.

To add a project:
Create a SCODE-CONGRA
project
rﬁ Create a project...
£ Import projects...

B Qutline 32 ¥Build = B [%] Problems 51 [Properties 4 Execution Environment B Console Y 8 = 8
0 items

Moo eatmaToriss Description Resource Path Location Type

provides an outline.

i Qe
Figure 28. SCODE Workbench (SCODE-CONGRA perspective) with empty workspace

If you used the SCODE Workbench with SCODE-ANALYZER before you started this
tutorial, your window may look different from Figure 28. To open the SCODE-CONGRA
perspective, click on the =& SCODE-CONGRA button at the right of the toolbar.

SCODE Workbench V3.0 — Getting Started 65

ETAS 5. SCODE-CONGRA Tutorial

The SCODE-CONGRA perspective shows the following views:
* top left: Project Explorer
* top right: reserved for various editors
* bottom left: "Outline" view and "Build" view
* bottom right: "Problems" view, "Properties" view, Execution Environment, "Console"
view
By default, the built-in solver and the Maxima solver are selected for the entire
workspace.
With that, SCODE-CONGRA is ready to be used.

However, a connection to MATLAB can be useful for working with SCODE-CONGRA.
See To connect SCODE Workbench and MATLAB for further information.

5.2. Lesson 1: Simple Equation

In the first lesson of this tutorial, you will create a new project and specify a simple
equation, i.e., Ohm’s law,

Equation 1: Ohm’s law
U=R*1I

In Equation 1, R is the resistance in ohms, U is the voltage in volts, and | is the current in
amperes.

To create a SCODE-CONGRA project

1. In the SCODE Workbench window, do one of the following:

o Select File — New — SCODE-CONGRA Project.
o Click on the arrow next to the New button and select SCODE-CONGRA

Project.

i A NEE Al e
= SCODE-CONGRA Project

™ Project.

> Follow the Create a SCODE-CONGRA project link in the Project Explorer.

&

&5 ProjectExplorer 52 B 5 %Y 2 = B8
There are no projects in your workspace,
To add a project:
[Create a SCODE-CONGRA project

,=? Create a project...
Ex] Import projects...

SCODE Workbench V3.0 — Getting Started 66

ETAS 5. SCODE-CONGRA Tutorial

The "SCODE-CONGRA Project" window opens.

SCODE-CONGRA Project
Create a new project configured for SCODE-COMGRA data

Project name:

Uze default location
Location: | DAETASData\SCODE- WS tutorial Browse...

@

Figure 29. "SCODE-CONGRA Project" window

2. Enter a project name, e.g., Simple Equation.
It is recommended that you use the default location for this tutorial.
3. Click on Finish.

The project is created, together with some default elements. The * . syq file is
shown in the SCODE Workbench window.

SCODE Workbench V3.0 — Getting Started

67

ETAS 5. SCODE-CONGRA Tutorial

File Edit Navigate S5earch Project Run Window Help

i R AHL REP A SSURE TRA K RCR AR . £

Lt 0.1 step | DADI LS =N
5 ProjectBxplorer 22 15 7 &8 = O L Simple_Equation.syq 52 = 0
v'l_,-g Simple_Equation (a} package Simple_Equation; |

~ ;= Simple_Equation {b)

« B Simple_Equation.syq (©) & = system Simple Equation {

72 Simple_Equation {d} }
Oz OQutline 57 ¥ Build a5 = 8 [#] Problems % Properties Execution Environment Console 2 = 8
O zl = il P! 25}
> B Simple_Equation 0 errors, 2 warnings, 1 other
Description Resource Path Location Type

» & Warnings (2 items)
» 1 Infos (1 item)

B Q¥R

QN ENED]

Figure 30. SCODE Workbench window with newly created SCODE-CONGRA project (a:
project folder, b: system folder, c: system equation language package (* . syq file), d:
system graph)

5.2.1. Defining the Equation

The equation system is specified graphically in the system graph (d in Figure 30). For this
example, you will create one relation between three variables. The variables themselves
are created automatically once the relation is specified.

To specify the equation

1. In the Project Explorer, double-click the Simple Equation system.

The system opens in the graphical editor.

SCODE Workbench V3.0 — Getting Started 68

ETAS

4.

5. SCODE-CONGRA Tutorial

o4 Simple_Equation 52
4 @ Simple_Equation.syq b gngimple_Equation (a)

BB @ A% vm B-S G (b) = palette (€)1
@ e -
ENodes 4]
(V) Variable
[R] Relation
Graph Edges]
(d) %\ EF;ge i
& Timing Edges <
J Integrate
Yz Delay
& Tearing Edges <
i Tear

Figure 31. Graphical editor (a: breadcrumbs row, b: toolbar for general editor
functionality, c: palette with tools for graphical elements, d: empty canvas)

. In the "Nodes" group of the palette, click on Relation.

-
== Modes 0
() Variable

| 2| Relation

. Click on the canvas to insert the relation.

3 *Simple_Equation 3

b B Simple Equationsyg P o4 Simple_Equation

=] o =] T=
A BN Vol A VAR 1~

R1

The relation is represented by a rectangle. In the screenshot above, the rectangle
border is red because the relation is over-determined. The error symbols is shown
because a relation needs at least one variable.

Open the "Properties" view for the relation. 1

SCODE Workbench V3.0 — Getting Started 69

ETAS 5. SCODE-CONGRA Tutorial

|#! Problems [0 Properties 52 | g Execution Environment &) Console AlEE = O
[R] Relation R1
Semantic Property Value
Style + Relation R1
Description
Appearance Equation U=R*
Image
Mame = R1
Relation Symbol
Solve numerically if in algebraic loop false
Subsystem

Validation warnings {R/0)

Figure 32. "Properties" view for the new relation (equation still incomplete)

5. In the "Properties" view, "Semantic" node, click in the "Value" column next to
"Equation".

The cell becomes an input field.
6. Enter the equation and press Return.

The equation is accepted. The rectangle border is now blue. Variables
(represented by blue circles) for R, U, and | are automatically added to the graph.
Blue lines connect the variables and the relation.

EE*SimpIE_Equation &
4 @ Simple_Equation.syq # E%Simple_Equatinn

BrBirE-r®afr vE - @Q G
R

1O

O

L
Figure 33. Canvas with relation and variables

7. If desired, enter a description and/or rename the relation.

SCODE Workbench V3.0 — Getting Started 70

ETAS 5. SCODE-CONGRA Tutorial

(% Problems [] Properties 52 | Execution Environment [Console
[R] Relation R1

Equation Property Value
Semantic w Relation R1
Syl Description
tyle Equation U—R*|
Appearance Image

Mame =

[e ' [

8. Save the project.
The graphical specification is added to the * . syq file.
?ESimplE_Equatinn @ Simple_Equation.syg i3
package Simple Equation;
system Simple Equation {

o \
T e
wgeo)

s1]
= mo=
]
e 3
[[

(e

2 Eh 2 B 2 -
(1]
]

o og @ 0g

@description("0hm\'s law")
RL(} ri=U=R* I;
¥

Figure 34. simple Equation.syq file with variables and relation

Next, you edit the variables.

To edit the variables

1. In the graphical editor, select the variable R.

2. Open the "Properties" view for the variable.

3. In the "Description" row, "Value" column, enter a description for resistance R.
This tutorial uses the description resistance (ohms).

4. In the "Expression" row, enter a default value.

SCODE Workbench V3.0 — Getting Started 71

ETAS

5. Enter descriptions and default values for U and I, too.

“ NOTE

6. Save the project.

(v) Variable R
Semantic Property
Style w Variable R
Dependency Type (R/D)
Appearance

Depending Elerment
Description

Expression

Expression Range (R/Q)
Expression Value (R/0Q)
Mame

Systern Type

Unit

Variable Constraints
Variable Symbaol

5. SCODE-CONGRA Tutorial

Problems | [T Properties &3 | g Execution Environment &l Console

Walue

0

(-oo, oo)
0.0

=R
Variable

Unless otherwise stated, this tutorial uses the default

value O for all variables.

The *. syq file is updated.

With that, your system is defined. It is undirected, i.e. you have not yet specified inputs

and outputs.

5.2.2. Specifying Directions

Before computation can start, a direction must be added, i.e. you have to determine
which variables are to be computed, and which variables are inputs.

For the current example, one equation is sufficient to compute either R, or U, or I.

Directions are not added to the system graph itself. You create a flow from the system
graph and specify the direction in that flow. The latter is done by assigning types to the
variables. The following types are available:

type set via description see also
variable’s
context menu
input shown in diagram as O Figure 36
fixed Variable with fixed value in current flow; section 5.4.3
Set Type — * can be calibrated
shown in diagram as O)
free default value

SCODE Workbench V3.0 — Getting Started

72

ETAS 5. SCODE-CONGRA Tutorial

type set via description see also
variable’s
context menu

output implicitly or via shown in diagram as () (implicit output) impl.: Figure 36
Set Type — or O (explicit output) if the automatic expl.: Figure 62

Output analysis finds that the output is
computable
parameter Set Type — Fixed value in entire system; can be section 5.4.2
Parameter calibrated

shown in diagram as)

constant Set Type — Fixed value in entire system; cannot be section 5.4.1
Constant calibrated
hidden in diagram; can be edited only in
the * . syq file

Table 3. Variable types available in a flow

To create a flow

In the first flow you create, R shall be computed from U and I.

1. In the Project Explorer, right-click the system graph and select New — Flow from
the context menu.

gﬂ Simple_Equation
Mew > E System
Open With y G5 Flow

A new flow is created with a default name. It opens in the graphical editor. Since no
inputs are defined, all elements of the graph show an error mark because they
cannot be computed right now. The blue color indicates that the flow is under-

determined.
o ProjectExplorer 32 B 5. ¥ = O 5 Simple_Equation &s F_Simple_Equation i3
v {3% Simple_Equation b [Simple_Equation.syq b L5 F_Simple_Equatior
v [Simple_Equation 02 - i - @ @100 v B
v ki Simple_Equation.syq —= = —— =

E‘i F_Simple_Equation

gjg Simple_Equation @

o —&)

9

u
Figure 35. New flow in the graphical editor

2. Right-click a variable you want to use as input and select Set Type — Input from
the context menu.

SCODE Workbench V3.0 — Getting Started 73

ETAS 5. SCODE-CONGRA Tutorial

The variable is now shown as a blue circle with black border. The connection from
the variable to the relation is now an arrow with a white head.

3. Specify the second input.

The remaining variable of type free can now be computed. It is implicitly treated as
an output because no output is defined explicitly.

Arrows with white heads mark incoming elements, arrows with black heads mark
outgoing elements. 12

4. If desired, rearrange the variables and the relation on the canvas. =

;JR'I—D-{R’

O

u
Figure 36. Flow after | and U have been defined as inputs (the variables were
rearranged).
“ NOTE Layout changes in one flow affect all other flows,

computations, and the system graph.

5. Rename the flow and enter a meaningful, unique name.

In this tutorial, flows are named according to the following scheme:

F <system name>in<inputs>, e.g.,F Simple Equation in IU
6. Save the project.

A computation is created for the flow. It consists of a * . syq file and a graph, stored
in the project, in the code generation folder.

By default, a computation is named ¢_<flow name>.

SCODE Workbench V3.0 — Getting Started 74

ETAS

You can use the system to create as many flows as you need. For the simple equation

5. SCODE-CONGRA Tutorial

5 Project Explorer F3 - =5 ¥ = O

v [Simple_ Equation

w [Simple_Equaticn
v ¢ Simple_Equation.syq
Ls F_Simple_Equation_in_IU
o Simple_Equation
w [src-gen
w [= Simple_Equation
W @ c_F_Simple_Equation_in_IU.syq
3| ¢ F_Simple_Equation_in_IU

Figure 37. Computation ¢ F Simple Equation in IU in the Project Explorer

More information on computations is given in section 5.2.3, “Working with
Computations”.

system, create two more flows, one that computes U, and one that computes I.

5.2.3. Working with Computations

Each time you save the SCODE-CONGRA project, a computation is created or updated

for each valid flow. A computation collects the solved equations, and also orders the

computation steps. Protections, e.g., against division by zero, are inserted
automatically.

Computations are stored in the code generation subfolder (hamed src-gen by default)

of the project, in a subfolder named <system name>. See Figure 37 for an example.

The * . syq file of the computation ¢ F Simple Equation in IU reads as follows:

O J o Ul WN

[)
N RO

13
14
15
16
17

18

* k%

/* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
*

* (@source F Simple Equation in IU

*

* @tool ETAS SCODE-CONGRA 3.0.0

iy

package Simple Equation;

computation ¢ F Simple Equation in IU (I, U)

implements Simple Equation
from F _Simple Equation in IU {
// Variable computation for level 2
@level (2, 1)
R = 1f (0.0!'=I) then U/I else <- R1(I, U);

// [Source: Built-In Solver]
[R,I] = 1if (0.0!=I) then -U/I"2 else <- R1(I, U);

// [Source: Built-In Solver]
[R,U] = 1if (0.0!=I) then 1/I else <- R1(I, U);

// [Source: Built-In Solver]

SCODE Workbench V3.0 — Getting Started

75

ETAS 5. SCODE-CONGRA Tutorial

Table 4. * . syq file forthe ¢ F Simple Equation in IU computation. Line 15 shows
the equation used to compute R, lines 16 and 17 show the partial derivatives of the
equation.

The computation graph, shown in Figure 38, looks very similar to the flow graph shown in
Figure 36, except that the computation graph shows the following items:

« values of the variables (black text in Figure 38)
» computation level (red number in Figure 38)

EF_SimplE_Equaticn_in_IU 3| c_F_Simple_Equation_in_IUl &3
3 @ c_F_Simple_Equation_in_[U.syq # . c_F_Simple_Equation_in_IU

BBy Fr@® S00% vEm EFrd @R G

e

O
|=% 2
ol

Figure 38. Graph forthe ¢ F Simple Equation in IU computation.

To work with computations, SCODE-CONGRA provides the Execution Environment.

To open the Execution Environment

1. In the Project Explorer, right-click the desired computation graph and select Open
With — Execution Environment from the context menu.

I¥5 Project Explorer &3 = <’='=‘> ~ =08
v Simple_Equation 3 @ c_F_Simple_Equation_in_IU
Simple_Equati =
=+ 2imple_Equation o2 - 'gb @ & @

“ [src-gen
w [= Simple_Equation
~ @ c_F_Simple_Equation_in_[U.syq

i

i c_F_Simple_Equation_in_U
Mew ¥ O

iy

Open With * gy Execution Environment
H Graphical Editor
B Syqlanguage Editor

K Delete Delete

The Execution Environment opens and displays the elements of the flow. The
computation graph is not opened.

Or
2. Select Window — Show View — Execution Environment.

By default, the Execution Environment is visible in the SCODE-CONGRA
perspective, so that this step can be omitted.

SCODE Workbench V3.0 — Getting Started 76

ETAS 5. SCODE-CONGRA Tutorial

3. In the Project Explorer, double-click the desired computation graph to open it in the
graphical editor.

The flow elements then appear in the Execution Environment (see Figure 39). The
output row is shown in red to mark an error, here a division by 0.

Problems Propertiss g Execution Environment 23 _onsole = O
* Execution View
System: | Simple_Equation - Simple_Equation.Simple_Equation v|
Computation: | c_F_Simple_Equation_in_U - Simple_Equation.c_F_Simple_Equation_in_IU v|
Mode: | Compute values and sensitivities (default) v|
~ Variables
Mame Type State Value Unit Sen.. Backward 5. Relative Sensitivity Definition
input Rz 5.00, [:: 10,00
input -0.50, Uz 0.10
elapsed time time]] elapzed time
£ >

Figure 39. Execution Environment with a computation

In the Execution Environment, you can enter input values and sensitivities, and see the
result immediately. If desired, the values can be shown in the graphical editor for the
computation.

To check values in the Execution Environment

1. Click in the "Value" column of both inputs and enter values.

- Variables

Mame Type State Value Unit 5e
U input 1':'-[1 1]
R calculated computed 5 0
I input 2 0
elamcear I ¥irme Fime n

The output is calculated immediately. As soon as the error due to the initial value
I = 0 isremoved, the red color disappears from the output row.

2. In the graphical editor, click on an empty place in the canvas.

“ NOTE The [= Layers button is only available if no element is
selected in the canvas.

3. Click on the Layers button and select Execution Environment Layer from the
dropdown menu.

SCODE Workbench V3.0 — Getting Started 77

ETAS 5. SCODE-CONGRA Tutorial

S v & = |00% v e

~* Execution Environment Layer

Sensitivity &nalysis

The current values of the elements are displayed.

/{Jm R = 5000
O

U = 10,000
Figure 40. Computation graph with element values

You can use the Execution Environment also to perform a sensitivity analysis, i.e. to
check the effect of a change (sensitivity) in some variables to other variables in the
system.

The sensitivity analysis works as follows:
Arelation uses the inputs x,, x,, .. x,to compute a variable y via the function f:
y = f(xll Xn)

The input sensitivities Dx,, .. Dx, are given. For a particular operating point (x,, x,,
x,), the sensitivity Dy of the output y is computed as follows:

n
af (x1, ..., xn
Dy = Z A py)*Dxi
i=

Equation 2: Output sensitivity Dy

df/dxi is a partial derivative, i.e. the derivative of £ with respect to x;.

In this tutorial, f is a flow you created; x: and y are the inputs and output of the flow. See
rows 18 — 20 in Table 4 for an example of a function and its partial derivatives.

To check sensitivities in the Execution Environment

1. Display a computation in the Execution Environment and in the graphical editor.

2. In the graphical editor, click on the Layers button and select Sensitivity Analysis
from the dropdown menu.

The current sensitivities are shown in the diagram.

3. For a manual sensitivity check, do the following:

i. Click in the "Sensitivity" column of both inputs and enter values.

SCODE Workbench V3.0 — Getting Started 78

ETAS 5. SCODE-CONGRA Tutorial

= Variables
Marne Type State Value Unit Sensitivity Backware
U input 10 1.4
R calculated computed 5 0.45
I input Z 0.1
elapsed time time] 0

The output sensitivity is calculated immediately.

In the graphical editor, the input sensitivities are shown, as well as the
contribution of each input to the output sensitivity.

-0.25
|=2000 * 2
& =0.100
(a) R = 5.000
O 0.7 5=0450 (d)
U = 10.000 {b)
5 = 1.400

Figure 41. Computation graph with input sensitivities (a), their contributions
(b) to the output sensitivity (c and d). The thickness of the arrows represents
the relative sensitivities.

ii. If necessary, click on the .i» Refresh diagram button to update the values
in the graphical editor.

4. For a forward sensitivity analysis, do the following:

i. Inthe Execution Environment or in the graphical editor, right-click an input
and select Forward Sensitivity Analysis from the context menu.

The sensitivity of that input is set to 1, the sensitivities of other inputs is set
to 0. The output sensitivity is computed according to Equation 2.

SCODE Workbench V3.0 — Getting Started 79

ETAS 5. SCODE-CONGRA Tutorial

U = 10.000
& =1.000

Problems [Properties | 4 Execution Environment £3 El Cons

b Execution View

+ Variables
Mame Type State Yalue Unit Sensitivity |
U input 10 1
R calculated computed 3 0.5

I input 0

-
i

Pt Pud

elapsed time time

Figure 42. Computation graph and Execution Environment with results of
forward sensitivity analysis

5.2.4. Additional Task

This section is not mandatory for the lesson on simple equations. However, it contains
useful information.

Storing Layout Changes

When you change the diagram layout as described in To create a flow, the positions of
the diagram elements are stored in a file named <system name>.graph, which is
visible only in the Windows file system, not in the Project Explorer.

This PC (D) DATA ETAS SCODE- WS_tutorial Simple_Equation Simple_Equation
W5_tutorial & Name
‘metadata Simple_Equatien.graph

Simple_Equation Simple_Equation.syq

settings
Simple_Equaticn

SrC-gen

You can store the element positions in the * . syq file, as a set of @geo annotations (see,
e.g., Figure 34).

A @geo annotation looks as follows:

@geo (<x>, <y>, <width>, <height>)

SCODE Workbench V3.0 — Getting Started 80

ETAS 5. SCODE-CONGRA Tutorial

<x>and <y> are the horizontal and vertical positions of the top-left corner of the diagram
element, measured in pixels from the top-left corner of the canvas.

<width>and <height> determine the size of a relation in the diagram. The size of a
variable or parameter cannot be set.

O O O 00 .
- >
>

— x—¥ s
h 2‘ width

TNy

RO1

aybray >

=]

s
O

U

\/

Figure 43. Schematic view of the numbers in @geo annotations

To store layout changes manually

1. In the system graph or flow graph, arrange the elements according to your needs.

2. Click on an empty place of the canvas, so that no diagram element is selected.
You cannot store the node positions while an element is selected.

3. Click on the Store the node positions * into GEO annotations button.

V100% vim @ & G

Store the node positions of the current diagram into GEQ annotations

10

R

O

U

4. Save the project.

With that, existing @geo annotations in the * . syq file are updated, and missing
@geo annotations are added.

SCODE Workbench V3.0 — Getting Started 81

ETAS

5. SCODE-CONGRA Tutorial

4
5
6
-
8

9

10
11
12
13
14
15
16
17
18
19

system Simple Equation {

@geo (264,

108)

@description("resistance (ohms)")

var R

@geo (109, 60)
@description ("current (amperes)")

var 1

= 0;

@geo (109, 156)
@description ("voltage (volts)")

var U

@description ("Ohm\'s law")
@geo (168, 108, 30, 30)

R1 (U,

I, R) ::= U =R * I;

Table 5. Simple Equation system with changed (lines 6, 9, 12) or added (line

17) @geo annotations

You can activate automatic storage of layout changes as @geo annotations when you
save a project or workspace.

To activate automatic storage for layout changes

1. In the SCODE Workbench window, select Window — Preferences.
2. In the "Preferences" window, go to the "SCODE-CONGRA\Diagram Options" node.

3. Activate the Update @geo annotation(s) by saving action option.

type filter text

General
C/C++
EHANDBOOK
EMF Compare
Help
Install/Update
MATLAB/Simulink
Model Validation
Run/Debug
SCODE-AMALYZER
SCODE-CONGRA
Build
Diagram Options
Execution Environment
Generator
Refactoring
Solhver
Syntax Coloring
Sirius
Team
Terminal

Diagram Options (=14

-

-

[]Show decorator for relation containing an equation
[Update @geo annotation(s) by saving action]

[Hide validation markers in diagrams

[[]5how diagram preview in tooltip (can consume a lot of memory resources)

Stretch factor for line height in selection dialogs | 1.0

Color Scheme Settings
Select Color Schermne | ETAS Colors ~

Restore Defaults

Apply

@ b

Apply and Close Cancel

Figure 44. "Preferences" window, "Diagram Options" node

4. Click on Apply and Close.

The next time you save a project or workspace, unsaved layout changes are
saved.

SCODE Workbench V3.0 — Getting Started

82

ETAS 5. SCODE-CONGRA Tutorial

5.3. Lesson 2: Non-Linear Equation

The second lesson focuses on having multiple solutions, one of which you have to select.
The lesson combines Ohm’s law, U = R * |, with the power of an ohmic resistor, P =

u-*l

Using both equations as relations in one system leads to an algebraic loop. This will be
treated in a later lesson.

Here, you will use the combination equation:

Equation 3: Joule’s law: power of an ohmic resistor (P -- electrical power in watt, R --
resistance in ohms, | -- current in amperes.)

P=R* I’

5.3.1. Preparing the Project

For this lesson, MuPAD® is recommended as solver. To use MuPAD, you need a working
installation of MATLAB® that includes Symbolic Math Toolbox™, you have to connect the
SCODE Workbench and MATLAB, and you have to activate the MuPAD solver.

If you cannot use the MuPAD solver, use the Maxima solver, which is shipped with
SCODE-CONGRA.

To connect SCODE Workbench and MATLAB®

1. In the SCODE Workbench window, select Window — Preferences.

2. In the "Preferences" window, go to the "MATLAB/Simulink" node.

This node lists all versions of MATLAB installed on your computer.

| type filter text | | MATLAB/Simulink Gvhv B
General Server configuration
C/C++
EHANDBOOK Connection Timeout [seconds] | 300
EMF Compare Connect with MATLAB versions
Help
Install/Update L
MATLAB/Simulink R2017h (is not or not properly installed)
Model Validation []R2018b
Run/Debug [C1RrR201%b
SCODE-AMNALYZER
SCODE-COMNGRA
Sirius
Team
Terminal Restore Defaults Apply
@ g IQ. Cancel

Figure 45. "Preferences" window, "MATLAB/Simulink" node

3. Select ([+]) the version(s) you want to connect.
4. Select a MATLAB version for the MuPAD solver.

5. Click on Apply and Close.

SCODE Workbench V3.0 — Getting Started 83

ETAS 5. SCODE-CONGRA Tutorial

To select a MATLABS version

1. Open the "Preferences" window.

2. In that window, expand the "SCODE-CONGRA" node and the "Solver" subnode,
then go to the "MuPAD" subnode.

This node contains settings for the MuPAD® solver. The "Select MATLAB
installation for solving with MuPAD" combo box contains all MATLAB versions
connected to the SCODE Workbench.

3. Select the MATLAB version you want to use.

| type filter text | MuPAD - - 8
Madel Validation A
Run/Debug
SCODE-ANALYZER Select MATLAB installation for solving with MuPAD | R2015b ~

~ SCODE-COMNGRA
Build
Diagram Reset communication cache Show communication cache

Communication timecut in seconds | 600 |

Cache communication with MuPAD

Execution Environment
Generator
Refactoring
~ Solver
Maxima
Maxima/MuPAD cache
MuPAD
User supplied cache
Syntax Coloring
Sirius
Team

Restore Defaults Appl
Terminal hd B
@' IQ, <] Apply and Close Cancel

Figure 46. "Preferences” window, "SCODE-CONGRA\Solver\MuPAD" node

4. Click on Apply and Close.

“ NOTE You can select a MATLAB version only for the entire workspace.
Selecting a MATLAB version for a particular project is not
possible.

SCODE-CONGRA offers the following setup possibilities:

« for the entire workspace (accessible via Window — Preferences)

« for a particular project (accessible via a project’s context menu or via Project —
Properties)

Project-specific settings override workspace settings. In this lesson, you will use project-
specific settings.

To activate the MuPAD solver

1. Create a SCODE-CONGRA project and name it, e.g., QuadraticEquation.

2. In the Project Explorer, right-click the project and select Properties from the
context menu.

The "Properties for <project>" window opens.

3. In that window, expand the "SCODE-CONGRA" node and go to the "Solver"
subnode.

SCODE Workbench V3.0 — Getting Started 84

ETAS

5. SCODE-CONGRA Tutorial

By default, Enable project specific settings is deactivated; the project uses the
workspace settings.

type filter text

Resource
Builders
Project Matures
Project References
Run/Debug Settings
~ SCODE-CONGRA
Diagram
Generator
Solwver

000

Solver (g -

[]Enable specific settings
General solver settings

MAsk in case of ambiguous solutions
Use numeric solver for symbolically unselvable equations
Use numeric solver in case of singular solution
Log communication to external CAS tool to console
Enable initial integrity check for external symbolic solvers
Generate assumptions
Use external solver with units (experimental)

Extract common condition in algebraic loops

Partial derivatives

Use solver Selected solver

Generate frorm | Solved equations

Available solvers
User supplied solution cache (Priority: 1)
Built-In Solver (Priority: 2, Simple solver with no support for assumptions)
Maxima/MuPAD Cache (Priority: 3)
Maxima (Pricrity: 4, Advanced solver with nearly no support for assumptions)
MuPAD [Incubation] (Pricrity: 5, Most advanced solver with broad support for assumptions)

MuPAD [deprecated] (Priority: 6, Most advanced solver with broad support for assumptions)

Restore Defaults Apply

©)

Apply and Close Cancel

Figure 47. "Properties for <project>" window, "Solver" node

4. Activate Enable project specific settings.

With that, the project-specific settings become available. They override the
workspace settings.

5. In the "Use solver" combo box, select Selected solver.

With that, the solver selected in the "Available solvers" area is used. If you select
several solvers, the one with the highest priority is used. ™ If that solver is unable
to solve the equation, the next one is used.

6. In the "Available Solvers" area, do the following:

i. Activate Maxima/MuPAD Cache or MuPAD [Incubation] or MuPAD
[deprecated]. 2

If MuPAD is unavailable, use Maxima instead.

i. Deactivate solvers with higher priority.

SCODE Workbench V3.0 — Getting Started 85

ETAS 5. SCODE-CONGRA Tutorial

Solver 7 v o

[Enable specific settings]
General soclver settings

[«"] Ask in case of ambiguous solutions

Use numeric solver for symbolically unsolvable equations
Use numeric sclver in case of singular solution

[]Log communication to external CAS toal to consale
Enable initial integrity check for external symbolic solvers
[v] Generate assumptions

[]Use external solver with units (experimental)

(] Extract common condition in algebraic loops

Partial derivatives

[Use solver Selected solver] w

Generate from | Solved equations ~

Available solvers

(] User supplied solution cache (Priority: 1)

[Built-In Sohver (Priority: 2, Simple solver with no suppert for assumptions)

[/] Maxima/MuPAD Cache (Priority: 3) |

(] Maxima (Priority: 4, Advanced solver with nearly no support for assumptions)

MuPAD [Incubation] (Priority: 5, Most advanced solver with broad support for assumptions)
[D MuPAD [deprecated] (Priority: 6, Most advanced solver with broad support for assumptions) J

Figure 48. "Solver" settings for a project with quadratic equation (project settings
that differ from workspace settings appear in bold font)

7. Click on Apply and Close.

5.3.2. Equation System and Computation

After configuring the solver in the previous section, you will now solve the system. If there
are multiple valid solutions for a given system, the solver may need user input to pick the
correct solution for a given system. Here is an example of a system that will need user
input.

To create the system for the quadratic equation

1. Specify the equation for the power of an ohmic resistor. &
2. Create a flow with inputs P and R. 2

With that, the remaining variable | is treated as an output.
3. Name the flow F QuadraticEquation in PR.
4. Save the system.

The equation is quadratic, i.e. it has two solutions, - (P/R) 2 and (P/R) */2. When
you save the system, the "Please pick solution for request" window opens, which
offers the possible solutions for selection.

SCODE Workbench V3.0 — Getting Started 86

ETAS 5. SCODE-CONGRA Tutorial

Request to solve [P=R**2] for variable(s) | in context "F_CuadraticEquation_in_PR" (numOfVariables: 1, numOfRelations: 1)

=»>Valid assumption(s): 0 <= P*"R&R!=0

| = -(P/R}*(1/2) (value unknown)

Figure 49. "Please pick solution for request" window with possible solutions for the
quadratic equation example

5. Select one solution and click on OK.

“ NOTE The selection is not saved. The next time you save the
project, or generate code, you are asked to pick a solution
again.

A computation is created for the F_QuadraticEquation_in PR flow.

The selected solution is written to the * . syq file of the computation (line 15 in Table 6):

l /**
2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
9 **/
10 package Quadratic Equation;
11
12 computation ¢ F QuadraticEquation in PR (R, P)
implements Quadratic Equation
from F QuadraticEquation in PR {
13 // Variable computation for level 2
14 @level (2, 1)
15 I = 1if ((0 <= P*R) && (R!=0)) then (P/R)"(1/2)
else <- RO1(P, R); // [Source: MuPAD [Incubation]]

16 [I,P] = if ((0 <= P*R) && (R!=0)) then

if (((0.0'=R) && (0.0 <= P/R))

&& (((0.0!=R) && (0.0'=P/R))))
then 1/ (2*R* (P/R)~(1/2))
else
else <- RO1(P, R); // [Source: MuPAD [Incubation]]

17 [I,R] = if ((0 <= P*R) && (R!=0)) then

if (((0.0'=R) && (0.0 <= P/R))

&& (((0.0!=R) && (0.0'=P/R))))
then -P/ (2*R*2* (P/R)"*(1/2))
else

else <- RO1(P, R); // [Source: MuPAD [Incubation]]
18 }

Table 6. *. syq file forthe ¢ F QuadraticEquation in PR computation

Check values and sensitivities in the Execution Environment. 18

SCODE Workbench V3.0 — Getting Started 87

ETAS 5. SCODE-CONGRA Tutorial

5.3.3. Additional Tasks

This section is not mandatory for the lesson on simple equations. However, it contains
useful information.

Selecting Solutions

By default, the selected solution (cf. Figure 49) is not saved. The next time you save the
project, or generate code, the "Please pick solution for request" window opens again. If
desired, you can disable the question, or you can store the selected solution.

To disable the request to select a solution

1. Open the "Properties for <project>" window and go to the "Solver" node.
2. In the "Solver" node, deactivate Ask in case of ambiguous solutions.
3. Click on Apply and Close.

The next time code is generate, the "Please pick solution for request” window is
suppressed, and SCODE-CONGRA uses the first of the possible solutions.

To store a selected solution

1. Open the "Properties for <project>" window and go to the "Solver" node.

“ NOTE Settings in the "Properties for <project>" window apply
only to the current project. For workspace-specific

settings, use the "Preferences" window.

2. In that node, ensure the following:
o Enable specific settings is activated.
o In the "Use solver" combo box, Selected solver is selected.

o Only the Maxima / MuPAD Cache solver and the MuPAD [Incubation]
solver are selected.

3. Go to the "Maxima / MuPAD cache" node and do the following:
i. Activate Enable specific settings.

ii. Activate Activate Learning Mode.

With that, SCODE-CONGRA adds new solved equations to the cache, so
that the database of solved equation is growing. Solved equations are added
only if they are unknown to SCODE-CONGRA.

ii. If desired, enter path and file name (including the extension * . xm1) for the
"Internal Solver Cache File".

By default, the project-specific cache file (named internal cache.xml)is
placed in the project’s root folder.

SCODE Workbench V3.0 — Getting Started 88

ETAS 5. SCODE-CONGRA Tutorial

|t}'pr:filtr:rtf:>¢ | Maxima/MuPAD cache (=g - &

Resource
Builders

Enable specific settings
Activate learning mode
[Apply normalization

Project Matures

Project References

Run/Debug Settings Internal solver cache file Sedefaultiinternal_cachexml
w SCODE-COMGRA
Diagram
Generator
v Solver
Maxima/MuPAD cache
User supplied cache
Restore Defaults Apply

Figure 50. "Properties for <project>" window, "Maxima / MuPAD cache" node

4. Click on Apply and Close.

The next time code is generated, you are asked to select a solution. That solution
is written to the cache file in the project folder.

) Project Explorer 53 = |

0 Simple_Equation
v [QuadraticEquatien
[= CuadraticEquaticn
[src-gen

d__ -
= |nternal_cache.xml\

Figure 51. Project Explorer with project-specific cache file

Closing Projects

By default, code is generated for all open projects (marked with the (- icon) in the
workspace. This may result in many "Please pick solution for request" windows, which
can be annoying.

To close projects

1. Right-click the project you are working on and select Close Unrelated Projects
from the context menu.

All projects not related to the selected one are closed. They are marked with the]
icon.

Or

2. Right-click a project you want to close and select Close Project from the context
menu.

The selected project is closed and marked with the ("7 icon.

The next time code is generated, the closed projects are ignored.

SCODE Workbench V3.0 — Getting Started 89

ETAS 5. SCODE-CONGRA Tutorial

5.4. Lesson 3: Constants, Parameters, Fixed Variables

In this lesson, you will learn how to use constants, parameters, and fixed variables. You
will use Ohm’s law again (see Equation 1), and compute U from R and |. Use the
resistance R as constant, parameter, or fixed variable.

5.4.1. Constants

Constants store values that can be used in the model. Unlike parameters, constants
cannot be changed from outside the model; they are fixed at specification time.

A constant does not appear in the system graph or in flow graphs. When code is
generated, e.g., C code, the value of the constant is entered; there is no reference.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Constants. @
2. Specify the relation for Ohm’s law.18
Optional:
3. To enter a value for R, do the following:
i. Inthe system graph, select R.
ii. Open the "Properties" view for R.

ii. Inthe "Properties" view, "Semantic" node, click in the "Value" column next to
"Expression".

The cell becomes an input field.
iv. Enter the value and press Return.

If you do not enter a value here, you have to enter it later in the * . syq file
(see step 4 in the next instruction).

You cannot create a constant directly; you have to convert an existing variable. You can
create a constant graphically either in the system graph or in a flow.

To create a constant

1. To create a constant in the system graph, do the following:
i. Open the system graph.
Figure 33 shows an image of the relation.

ii. Right-click the variable R and select Set Type — Constant from the context
menu.

Or
2. To create a constant in a flow, do the following:

i. Create and open a flow.

i. In the flow, right-click the variable R and select Set Type — Constant from
the context menu.

R is converted to a constant. It is no longer visible in the system graph (left) or flow
graph (right).

SCODE Workbench V3.0 — Getting Started 90

ETAS

ot —()

U

5. SCODE-CONGRA Tutorial

Og v By v [~ @& = (100% «|F

o +—(O)

¥

U

Figure 52. Constant R invisible in the system graph (left) and in the flow (right)

3. Save the project.

The definition of R in the * . syg code changes as follows:

const R = 0;

The definition of the relation changes as follows:

RO1(I, U) ::= U =R * I;

The input list of the existing flow changes as follows:

flow F Constants in I for Constants ({

inputs: I;

}

4. If necesssary, open the * . syq file and enter an appropriate value in the definition

of R.
This example uses R = 2.

5. Save the project again.

To convert a constant into a variable, you have to edit the * . sy file as follows:

R as constant

R as variable

declaration const R = 2.0;

var R = 2.0;

relation RO1(I, U) ::=U =

RO1(I, R, U) ::=U =R * I;

flow flow F _<flow name>

for <system> {
inputs: I;

}

flow F_<flow name>
for <system> {
inputs: I, R;
}

Table 7. Changes in * . syq file to convert a constant into a variable

The computation * . syq file contains the value of the constant, see lines 15 and 16 in

Table 8.

SCODE Workbench V3.0 — Getting Started

91

ETAS 5. SCODE-CONGRA Tutorial

1 /**

g wx/

9

10 package Constants;

11

12 computation ¢ F Constants in I(I) implements Constants
from ¢ F Constants in I {

13 // Variable computation for level 2

14 @level (2, 1)

15 U = 2*I <- RO1(I); // [Source: Maximal]

16 [U,I] = 2 <= RO1(I); // [Source: Maximal]

17 }

Table 8. * . syq file for a computation with a constant

In the Execution Environment, the value of R appears in the definition and partial
derivative of the output U.

[2]l Problems [T] Properties | g Execution Environment &7 | B Console = 0

~ Execution View

System: | Constants - Constants.Constants v|

Computation: | c_F_Constants_in_| - Constants.c_F_Constants_in_| v|

Mode: | Compute values and sensitivities (default) v|
~ Variables

MName Type State Value Unit Sensit... Backward Sensit... Relative Sensitivity Definition Partial Derivatives

u caleulated computed 16 0 I 2.00 [y| wu:z+Rmm]

| input 8]

elapsed time time 0] elapsed time

Figure 53. Execution Environment showing a computation with a constant

5.4.2. Parameters

Like constants, parameters store values that can only be read from inside the model.
Unlike constants, parameters can also be calibrated, i.e. written to from outside the
model. The idea is that parameters will be flashed on the car by an application engineer.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Parameters.

2. Specify the relation for Ohm’s law.
Optional:
3. Enter a value for R. 2

This example uses R = 15.

You cannot create a parameter directly; a parameter is created by converting an existing
variable. You can create a parameter graphically either in the system graph or in a flow.

SCODE Workbench V3.0 — Getting Started 92

ETAS

5. SCODE-CONGRA Tutorial

To create a parameter

1.

Or
2.

3.

5.

To create a parameter in the system graph, do the following:

i. Open the system graph.
Figure 33 shows an image of the relation.

ii. Right-click the variable R and select Set Type — Parameter from the
context menu.

To create a parameter in a flow, do the following:

i. Create and open a flow.

i. In the flow, right-click the variable R and select Set Type — Parameter from

the context menu.

R is converted to a parameter. It is shown as a grey circle with black frame
(O) in the system graph (left) or flow graph (right).

BrB-E- @ Q0% v|E BB @ % v

O O
RO1 —O RO1 —-O

U U

O O

| |
Figure 54. Parameter R in the system graph (left) and in the flow (right)

Save the project.

The definition of R in the * . syg code changes as follows:

param R = 15;

The definition of the relation does not change.

RO1(U, I, R) ::=U =R * I;

The input list of the existing flow changes as follows:

flow F Constants in I for Constants {
inputs: I;

}

Enter a value for R.

You can do so either in the * . syq file or via the system graph or flow graph, as
described in step 3 of To set up the project.

Save the project again.

SCODE Workbench V3.0 — Getting Started

ETAS 5. SCODE-CONGRA Tutorial

To convert a parameter into a variable, you can do the following:

* Use the Set Type — Variable option in the parameter’s context menu and correct
the flows in the * . syq file.

 Enter all required changes (see the right column in Table 7) directly in the * . syqg
file.

The computation * . syq file refers to the parameter; see lines 16 — 18 in Table 9.

l /**

8 **/

9

10 package Parameters;

12

13 computation ¢ F Parameters in I(I) implements
Parameters from c F Parameters in I {

14 // Variable computation for level 2

15 @level (2, 1)

16 U = I*R <- RO1(I,R); // [Source: Maximal]

17 [U,I] = R <= RO1(I,R); // [Source: Maximal]

18 [U,R] = I <- RO1(I, R); // [Source: Maximal]

19 }

Table 9. * . syq file for a computation with a parameter

In the Execution Environment, the parameter R appears in a separate row and in the
marked attributes of the output U.

|#] Problems [T] Properties £y Execution Environment 53 E) Console = 0

* Execution View

System: | Parameters - Parameters.Parameters v|

Computation: | c_F_Parameters_in_| - Parameters.c_F_Parameters_in_| v|

Mode: | Compute values and sensitivities (default) v|
~ Variables /

Name Type State Value Unit Sen.. Backward 5. Relative Sensitivity Definition Partial Derivatives

u calculated computed 75 0 [1::15.00,R:: 5.00 "R [U.I]= R <- RO1(I, R}, [U,R] = | <- ROT(I, R]]

R parameter computed 13 0 15.0

| input 5 0

clapsed time time 0 0 elapsed time

Figure 55. Execution Environment showing a computation with a parameter

5.4.3. Fixed Variables

Parameters and constants are declared as such in the system. Their properties are the
same throughout the system; you cannot change them only for a particular flow.

If you need a constant value only in a particular flow, you can fix a variable in that flow.
With that, the flow can no longer change the value of the variable. In all other flows, the
variable is still a variable that can be read and written.

SCODE Workbench V3.0 — Getting Started 94

ETAS

To set up the project

5. SCODE-CONGRA Tutorial

1. Create a SCODE-CONGRA project and name it, e.g., FixedVariable.

2. Specify the relation for Ohm’s law.
Figure 33 shows an image of the relation.
A variable can be fixed only in a flow.

To fix a variable in a flow

1. Create and open a flow.

2. In the flow, right-click the variable R and select Set Type — Fixed from the context

menu.

R is fixed. It is shown as a grey circle with black frame (O) in the flow graph (left
side of Figure 56). In the system graph (right), R remains unchanged.

b [FixedVariablesyq b s F_FixedVariable_in_|_fix_R

S v @ a[100% |
Q
RO1 Q—O

“’ |
O

OY w e
J)

B~

Sr

G

b @ FixedVariable.syq # ﬁFixed‘u‘ariable

oo @S| 100% | FE

oY w e
J -

O

O

U

Figure 56. Fixed variable R in the flow (left) and in the system graph (right)

3. Enter a value for R:
i. In the flow, select R.

i. Open the "Properties" view for R.

ii. In the "Properties" view, "Semantic" node, enter a value in the "Value"

column next to "Expression".

4. Save the project.

The definition of R and the definition of the relation in the * . syq code remain

unchanged:

var R = 0;
RO1(U, I, R) ::=U =R * I;

The definition of the flow changes as follows:

flow F FixedVariable in I fix R for FixedVariable ({

inputs: I;
fixed: R = 5;

}

Other existing flows remain unchanged.

To convert a fixed variable into a variable, use the Set Type — Free option in the fixed

variable’s context menu.

SCODE Workbench V3.0 — Getting Started

95

ETAS

The computation * . syq file refers to the fixed variable. Lines 14 and 15 in Table 10
determine the fixed variable. In the following rows, R appears like other variables.

5. SCODE-CONGRA Tutorial

1 /**

8 xx/

9

10 package FixedVariable;

11

12 computation ¢ F FixedVariable in I fix R(I)
implements FixedVariable from
F FixedVariable in I fix R [

13 // Constant input and intrinsic BNS initialization

14 @level (0, 1)

15 R = 5;

16]

17 {

18 // Variable computation for level 2

19 @level (2, 1)

20 U = I*R <- RO1(I,R); // [Source: Maxima]

21 [U,I] = R <= RO1(I,R); // [Source: Maximal]

22 [U,R] = I <= RO1(I, R); // [Source: Maxima]

23 }

Table 10. * . syq file for a computation with a fixed variable

In the Execution Environment, the fixed state of variable R is marked by the entries in the
"Type" and "State" columns.

|,'_ Problems [O] Properties | g Execution Environment i3 B Console (]
* Execution View
System: | FixedVariable - FixedVariable FixedVariable v|
Computation: | c_F_FixedVariable_in_|_fix_R - FixedVariable.c_F_FixedVariable_in_|_fix_R v|
Mode: | Compute values and sensitivities (default) v|
* Variables
Name Type State Value Unit Sen.. Backward 5.. Relative Sensitivity Definition Partial Derivatives
U calculated computed 0 0 l:: 0.00, Rz 5.00 IR [U.]]= R=- RO, R}, [LR] =1 <- ROT{, R}
[R fixed computed] 5 0 5
| input 0 0
elapsed time time 0 0 elapsed time

Figure 57.

Execution Environment showing a computation with a fixed variable

5.4.4. Generating Code

Next, you will generate C code, MATLAB code, and ESDL code for the three projects of
this lesson.

To select

code generators

1. In the SCODE Workbench window, select Window — Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the
"Generator" subnode.

SCODE Workbench V3.0 — Getting Started

96

ETAS

5. SCODE-CONGRA Tutorial

|t}fpefiltertext G t L=l - g
General Generator Configuration
C/C++
EHANDEQQK Output folder | src-gen |
EMF Compare [Use generator specific subfolder]
Help Suffix for inverse callbacks [inveRsE |
Install/Update
MATLAB/Simulink Prefix for autogenerated variables | t |
Model Validation Function input template | %name% |
Run/Debug i
SCODE-ANALYZER [] Optimize method code
SCODE-CONGRA []Return status of tearing computation
Build Use if staternent for conditional expressions
Diagram [] Generate Extended State Space form additionally
Execution Environment Floating point data type width 64 ~
Generator
Refactoring Code Styling
Solver [] Use explicit bracketing
Syntax Celoring . .
Sirius Maximum length of lines in generated code | 120
Team Boolean expression in if condition
Terminal [Split complex boolean expressions
M axirnum complexity allowed | 3
Error Handling
[Error case handling Use default value ~]
Validity checks on inputs reject ~
Validity checks on parameters | reject ~
Validity checks on states reject ~
Generators
C/FMI
ESDL
MATLAB
[JETAS ASCMO-MOCA
Restore Defaults Apply
® @ |é, Apply and Close Cancel

Figure 58. "Preferences" window with "Generator" settings for SCODE-CONGRA

3. In the "Generators" area, activate the generators you want to use.

4. If you selected the ESDL generator, select one of the Use * entries in the "Error

6.

SCODE Workbench V3.0 — Getting Started

case handling" combo box.

This example uses Use default value.

“ NOTE

The Report error/abort execution error case
handling is not allowed in combination with ESDL code
generation.

Depending on your selection, you have to provide default
values or upper/lower limits for each variable.

If desired, activate the Use generator specific subfolder option.

With that, code generated for each generator is stored in its own folder below the
code generation folder.

Click on Apply and Close.

97

ETAS

5. SCODE-CONGRA Tutorial

The next time code is generated, the computation and code for the selected generators

are generated.

To generate code

1. If desired, close projects you do not need, as described in To close projects.

2. In the Project Explorer, right-click on one of the following items and select

Generate Code from the context menu.

project

(e.g., ¥ FixedVariable)

system folder (e.g., (= FixedVariable)

*, syq file

Code is generated for each selected generator.

(e.g., pf FixedVariable.syq)

5 Project Explorer &3

W I& FixedVWariable
w = FiedVYanable
@ FixedVariable.syg
w [src-gen

w = C
v =

FixedVanable

L] ¢ F_FixedVariable_in_|_fix_R.c
lg) c_F_FixedVariable_in_|_fix_R.h

w [= ESDL

o [L—'/-

FixedVanable

= ¢_F_FixedVariable_in_|_fix_R.esdl
=| c_F_FixedVariable_in_|_fix_R.layout

math
= Math.esdl

= FixedVariable
w = MATLAB

o [L—'/-

FixedVWariable

1

c_F_FixedVariable_in_|_fix_R_parameters.m
- ¢ F FixedVariable_in_| fix_R.m

]

W

Figure 59. Code generation folder for the Fixedvariable project, with generated
C, ESDL, and MATLAB files

3. Open the generated files and look at the differences between constants,
parameters, and fixed variables.

In section 9.2.1, “C Code for Lesson 3", you can find generated C code for this lesson,

and the following tables briefly explain the generated files.

Table 11 lists the files generated during C code, ESDL, and MATLAB code generation.

Table 12 shortly describes the content of the files.

SCODE Workbench V3.0 — Getting Started

98

ETAS 5. SCODE-CONGRA Tutorial

C Code ESDL MATLAB
folder src-gen\<generator>\<system>
foreach flow c <flow>.c c_<flow>.esdl c_<flow>.m

c:<flow>.h c:<flow>. layout c:<flow>7parameters.m
others libscode.a - -

scode.h

folder src-gen\<generator>\math

others -— Math.esdl —

Table 11. Files generated during C, ESDL, and MATLAB code generation

file content
All types c_<flow>.* Everything required to execute the <fIow>.
C code libscode.a Library with standard implementations of
service routines supplied by SCODE-
CONGRA.
scode.h Header file required for 1ibscode. a.
ESDL c_<flow>.layout Layout definitions for the <fIow>. These

can be used in ASCET-DEVELOPER.
MATLAB c_<flow> parameters.m Definitions for all parameters in the <fIow>.

Table 12. Content of the files generated during C, ESDL, and MATLAB code generation

5.5. Lesson 4: Inverting Models

In this lesson, you will create a system with two connected relations. You will use the
system to invert a model.

The first relation is Ohm’s law (see Equation 1), the second is the power of an Ohmic
resistor:

Equation 4: Power of an ohmic resistor (P -- electrical power in watt, U -- voltage in volts,
| -- current in amperes)
P=U%*TI

For this lesson, MuPAD is recommended as solver. If you cannot use the MuPAD solver,
use the Maxima solver, which is shipped with SCODE-CONGRA. For more details, see
section 5.3.1, “Preparing the Project’.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., Resistor Power.
2. Specify the first relation for Ohm’s law and name it, e.g., Ohms_law.

3. Use the handles to resize the relation.

SCODE Workbench V3.0 — Getting Started 99

ETAS 5. SCODE-CONGRA Tutorial

O

O—(F{?* 1 hms_law

O

4. Specify the second relation for the power of an ohmic resistor (Equation 4) and
name it, e.g., Resistor Power Law.

The second relation is automatically connected to the existing variables | and U.

O

U

O— Ohms_law Resistor_Power_Law —O

5. Enter default values for the variables.

6. Save the project.

To specify original flow and inverted flow

1. Create a flow that uses R and U to compute | and P.

/ U \(\
O—[} Ohmms_law Resistor_Power_Law —UO
R \. /7 F
|
Figure 60. Flow with original direction

U is used as input for both relations. Therefore, two white-headed arrows point
from U to the relations.

| is the output of the first relation, and an input of the second relation. A black-
headed arrow points from Ohms law to |, and a white-headed arrow points from |
to Resistor Power Law.

SCODE Workbench V3.0 — Getting Started 100

ETAS 5. SCODE-CONGRA Tutorial

2. To invert the flow, create a second flow that uses | and P to compute R and U.

/ U \
O-l— Ohms_law Resistor_Power_Law <J—O
R ‘D\ /G' P
|
Figure 61. Flow with inverted direction

To generate code for original and inverted flows

In addition to the computations, you will generate C code.

1. In the Project Explorer, right-click the project and select Properties from the
context menu.

The "Properties for <project>" window opens.

2. In that window, do the following:
i. Expand the "SCODE-CONGRA" node and go to the "Generator" subnode.

By default, Enable project specific settings is deactivated; the project uses
the workspace settings.

ii. Activate Enable project specific settings.

The project-specific settings become available. They override the workspace
settings.

i. Inthe "Generators" area, activate the C/FMI generator.

If you activate the ESDL generator, too, you have to select one of the Use *
entries in the "Error case handling” combo box.

iv. If desired, activate the Use generator specific subfolder option.

With that, code generated for each generator is stored in its own folder
below the code generation folder.

v. Click on Apply and Close.

3. Generate code. &l

See section 9.2.2, “C Code for Lesson 4” for the generated code.

5.6. Lesson 5: Explicit Outputs

In the previous lessons, the outputs were determined automatically. In this lesson, you
will use an explicitly defined output. With an explicit output, only the code needed to
compute the output is generated. Model parts not necessary to compute the defined
output are ignored.

SCODE Workbench V3.0 — Getting Started 101

ETAS 5. SCODE-CONGRA Tutorial

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., DefinedOutput.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor
(Equation 4).

3. If desired, name the relations, e.g., Ohms law and Resistor Power Law.
4. Enter default values for the variables.

5. Save the project.

To define the output

1. Create a flow with inputs R and U.
Since both | and P can be computed, both are filled with green; see Figure 60.

2. If desired, name the flow F DefinedOutput in RU out I.

3. Right-click | and select Set Type — Free and Output from the context menu.

| is now marked with a thick border; see Figure 62. Since the second relation and
the variable P are irrelevant for computing I, they are marked with grey borders.

O

U

O—[} Ohms_law Resistor_Power_Law
R \\\\‘ P

|
Figure 62. Flow with inputs R and U and explicit output I. Irrelevant parts of the flow
are marked.

4. Create a second flow with inputs R and U, without explicit output.

5. Save the project.

In the * . syq file, the two flows appear as follows:

flow F DefinedOutput in RU out I for DefinedOutput {
inputs: R, U;
outputs: I;

}

flow F DefinedOutput in RU for DefinedOutput {

inputs: R, U;
}

To generate code with an explicit output

In addition to the computations, you will generate C code and ESDL code.

1. Open the "Properties for <project>" window and enable code generation for C and
ESDL. &

SCODE Workbench V3.0 — Getting Started 102

ETAS 5. SCODE-CONGRA Tutorial

2. Make sure that "Error case handling" is set to Use default value.
3. Generate code (¥7).21

4. Compare the generated C code or ESDL code for both flows.

See section 9.2.3, “ESDL Code for Lesson 5” for the generated ESDL code.

5.7. Lesson 6: Algebraic Loop

In this lesson, you will use the same model as in lessons 4 and 5. This time, however, you
will specify an algebraic loop, which can be solved by the underlying computer algebra
system.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., AlgebraicLoop.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor
(Equation 4).
3. Enter default values for the variables.

4. Open the "Properties for <project>" window and enable code generation for C,
ESDL and MATLAB.

5. Save the project.

To define the flow with algebraic loop

1. Create a flow with inputs R and P.

2. If desired, name the flow F AlgebraicLoop in PR.

Both relations and the variables | and U form the algebraic loop. They, as well as
the connections between them are shown with yellow borders.

O—[} Ohms_law Resistor_Power_Law <J—O
R

P

|
Figure 63. Flow with algebraic loop

3. Save the project.

The "Please pick solution for request" window opens.

SCODE Workbench V3.0 — Getting Started 103

ETAS

5. SCODE-CONGRA Tutorial

Request to solve [U=R*, P=U*] for variable(s) LU in context "F_AlgebraicLoop_in_PR" (numOfVariables: 2, numOfRelations: 2)

=»>Valid assumption(s): 0 <= P"R&R!=0

U= (P*R)*({1/2) (value unknown)
I = (P*R)*(1/2)/R (value unknown)

4. Select one solution set and click on OK.

Code is generated for each selected generator. Messages regarding the algebraic

loop are shown in the "Problems" view. &

[&1 Problems 52 | [T] Properties & Execution Environment B Console ®» v =0

8 items

Description Resource. Path Location Type

~ 1 Infos (8 items)
i (CMP107) The variable(s) | isfare computed in an algebraic loop. AlgebraicLoop.syq [fAlgebraicloop... line: 19 fAlgebraicLeop/A.. Syq Prob..
i (CMP107) The variable(s) U is/are computed in an algebraic loop. AlgebraicLoop.syq /AlgebraicLoop... line: 19 fAlgebraicLoop/A... Syq Prob...
i (CMP117) The variable(s) U, | is/are computed in an algebraic loop. AlgebraicLoop.syq /AlgebraicLoop... line: 19 /AlgebraicLoop/A... Syq Prob..
i (FLAOD2) Algebraic loop detected with relations < <Ohms_law Resistor Power_Law> > and variables <<| U>> AlgebraicLoop.syq /AlgebraicLoop.. line: 19 /AlgebraicLoop/A... Syq Prob..

See section 9.2.4, “Generated Code for Lesson 6” for several extracts from generated

code for this lesson.

5.8. Lesson 7: Constraints and Verification

In the previous lessons, all variables, parameters, etc. were unconstrained. In this lesson,
you will assign constraints to variables (section 5.8.1) and parameters (section 5.8.3). You

will also activate the generation of verification code (section 5.8.2).

You will use the same model as in lessons 4 to 6.

Table 13 lists the available constraint types. To use several types, connect them with and.

Constraint Type Meaning Remarks
< less than
<= less than or equal
_ Allowed for variables and parameters.
>= greater than or equal
> greater than
1= not Allowed only for parameters.

Table 13. Available constraint types

SCODE Workbench V3.0 — Getting Started

104

ETAS 5. SCODE-CONGRA Tutorial

5.8.1. Constraints for Variables
Here, you will enter constraints for all variables.

To set up the project

1. Create a SCODE-CONGRA project and name i, e.g., ConstraintsVariables.

2. Create and specify the relations for Ohm’s law (Equation 1) and the power of an
ohmic resistor (Equation 4).

3. Create a flow for each possible input pair.

vTiJ_’—j ConstraintsVanables
v (= ConstraintsVariables

v@ ConstraintsVariables.syg
-1 ConstraintsVariables
Er_; F_Constraints\Varnables_in_IP
E'i F_ConstraintsVariables_in_IR
EI‘-; F_ConstraintsVariables_in_|U
Eé F_ConstraintsVariables_in_PR
Er_; F_Constraints\Varnables_in_PLU
E'i F_ConstraintsVariables_in_RLU

[= src-gen

4. Enable code generation for C code.

5. Save the project.

To enter constraints for the variables

1. Open the ConstraintsvVariables system in the graphical editor.
2. Open the "Properties" view for the variable R.

3. In the "Variable Constraints" row, "Value" column, enter the following constraint: >0
and <100

The constraints are copied to the "Expression Range" row.

SCODE Workbench V3.0 — Getting Started 105

ETAS 5. SCODE-CONGRA Tutorial

(% Problems [] Properties 52 | Execution Environment [Console il

(v) Variable R

Semantic Property Yalue

Style w Variable R

; Dependency Type (R/O)

~ppearance Depending Element
Descripticn
Expression
Expression Range (R/Q) (0.0, 100.0
Expression Value (R/O)
Mame =R
Systern Type wariable
Unit
Variable Constraints =0 and <100

Variable Symbaol

Figure 64. "Properties" view with constraints for a variable

4. For the other variables, enter the following constraints:

| >=0 and <10

P >0 and <2500

U >0 and <=230

1. Save the project.
The constraints are added to the * . syq file, see Table 14.
2. Generate code (%7).
3. Open the generated files and check the effects of the constraints.

See section 9.2.5.1, “C Code for a Flow with Constraints” for a generated C code file.

SCODE Workbench V3.0 — Getting Started 106

ETAS 5. SCODE-CONGRA Tutorial
1 package ConstraintsVariables;

2

3 system ConstraintsVariables {

4

5 @geo (312, 180)

6 var U is > 0 and <= 230;

7 @geo (84, 112)

8 var R is > 0 and < 100;

9 @geo (312, 40)

10 var I is >= 0 and < 10;

11 @geo (528, 112)

12 var P is > 0 and < 2500;

13

14 @geo (216, 111, 61, 32)

15 @description ("Ohm\'s law"™)

16 Ohms Law(R, I, U) ::=U =R * I;

17 @geo (408, 112, 90, 30)

18 @description ("Power of a Resistor")
19 Resistor Power Law(P, I, U) ::= P =1U * I;
20 1}

Table 14. * . syq file for the Constraintsvariables system. Lines 6, 8, 10, and 12

show the constraints for the variables.

To execute the computation

1. Openthe c F ConstraintsVariables in RU computation in the Execution

Environment.

[:__ Problems [O] Properties | & Execution Environment &3 &l Console

* Execution View

Systemn:

| ConstraintsVariables - ConstraintsVariables.ConstraintsVariables

Computation: | c_F_ConstraintsVariables_in_RWU - ConstraintsVariables.c_F_ConstraintsVariables_in_RU

Mode: | Compute values and sensitivities (default)

« Variables

MName State Value Unit Sensit...

Type
U input

elapsed time time 0 0

Backward ...

Relative 5... Definition Parti

elapsed time

Error evaluating "U/R" [Division by zero with denominator "R"]

If you did not specify start values for U and R, | has the state evaluation

error, and P has the state based on error.
2. Enter values that are inside the limits for U and R.

For example, enter 100 for U and 20 for R.

The values for | and P are computed.

3. Now change the value of U to 220.

SCODE Workbench V3.0 — Getting Started

107

ETAS 5. SCODE-CONGRA Tutorial

The values of both U and R are still inside the respective constraint, but the
resulting | = U/R exceeds the upper constraint of 10. Therefore, | is limited to the
upper constraint, and marked accordingly (see Figure 65).

P is marked, too, because its value is within the constraints of P, but is based on
the limited value of I.
oy Execution Environment 23

v Execution View

System: | ConstraintsVariables - ConstraintsVariables.ConstraintsVariables

Computation: | c_F_ConstraintsVariables_in_RU - ConstraintsVariables.c_F_ConstraintsVariables_in_RU

Mode: | Compute values and sensitivities (default)
v Variables

Name" Type State Value WUnit Sensit.. Backward 5.. Relative 5.. Definition
u input 220 0

R input 20 0

P calculated based on limited values 2200 0 U:: 10.00... U*

| calculated value is limited 10 0 Rz -0.55,.. U/R
clapsed time time 0 0 elapsed tim:

Figure 65. Execution Environment with a limited variable and a variable with a
value based on the limited variable.

4. Now enter a value outside the constraints for R, e.g., 110.

This time, R itself is limited to its upper constraint, and marked accordingly. Both |
and P are marked as based on limited values.

5.8.2. Verification Code

The verification code runs the code with varying input values. For each test run with a
given set of input values, the resulting values are tested against the original equation from
which the code was derived. For that purpose, the normalized equation is evaluated and
its residue compared with a given verification threshold. 24

“ NOTE In order to run the verification code, all input variables must have
upper and lower bounds. Otherwise, an error message appears
in the "Build" view.

v 51:.' [Harness, 19:12:00:217] \<systems/c_<fow:>.c generated from "c_<fiow>": has failed in 0 [ms]
Cannot generate verification code for computation 'c_<fow>' since the following inputs have no limited range: ‘U’

Verification code can be generated in a separate C file, the verification harness.

Inthe ConstraintsVariables project, all variables are constrained, and the
precondition for verification code generation is met. Therefore, you will add the
verification code to the Constraintsvariables project.

SCODE Workbench V3.0 — Getting Started 108

ETAS 5. SCODE-CONGRA Tutorial

To enable and generate verification code

1. Open the "Properties for <project>" window for the ConstraintsvVariables
project.

2. In the "Generator" node, activate the C/FMI generator.

3. If you did not specify start values for U and R, set the "Error case handling" to Use
upper limit orUse lower limit.

4. If desired, set "Validity checks on inputs" to 1imit.

Error Handling

Error case handling Abort execution ~
*Validity checks on inputs limnit - ~
Validity checks on parameters reject ~
Validity checks on states reject ~

5. In the "Verification" subnode, activate Generate Verification Code.

This enables the generation of verification code in a separate file, the verification
harness.

6. If desired, activate also Inform about Limitations.

This option is effective only if "Validity checks on inputs" is set to 1imit. It creates
atextfile <flow name> <date> <time>.txt that lists all limitations.

[type filter text | | Verification v §
Re_sc-urce Enable specific settings
Builders

Project Natures Verification harness

Project References Generate verification code
Run/Debug Settings Points per input | 4 |
~ SCODE-COMNGRA
Diagram Verification options
~ Generator Inform about limitations
C/EMI Verification threshold | 0.001 |
C++
ESDL
MATLAB
Verification
Solver

Restore Defaults Apply

@ Apply and Close Cancel

Figure 66. "Properties for <project>" window, "Verification" node

7. In the "C/FMI" subnode, activate the Compile and verify code option.

With that, the generated verification harness is automatically compiled and
executed.

SCODE Workbench V3.0 — Getting Started 109

ETAS

type filter text C/FMI l=Re =
Resource . .
Builders [] Enable specific settings
Project Natures Generation location Project

Project References
Run/Debug Settings
w SCODE-CONGRA

5. SCODE-CONGRA Tutorial

Diagram [] Compile and verify code
v Generator Error code to return for invalid solution assumptions 0
C/EMI
ESDL FMI 2.0
MATLAB [1Build FMU
Verification Include source code
Solver

Restore Defaults Apply

® Apply and Close Cancel

Figure 67. "Properties for <project>" window, "C/FMI" node

8. Save the project.
9. Generate code (¥7).

The "Build" view summarizes the results. The verification harness issues one row for
each flow, see the highlighted rows in Figure 68.

¥ Build i3 5= Outline

<

E—? [15:03:22.272 C/FMI] Processing sources from 'c_F_ConstraintsWariables_in_|IP": was successful in 34 [ms]

E’j’ [15:03:22.288 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_IP": was successful in 0 [ms]
E—'ﬁ' [15:03:22.306 C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_IP": was successful in 1037 [ms]
E’E [15:03:23.343 Execution] Processing sources from 'c_F_ConstraintsVariables_in_IP': was successful in 93 [ms]

Eﬁ' [15:03:23.489 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_PU": was successful in 0 [ms]
E:ﬂ [15:03:23.429 C/FMI] Processing sources from 'c_F_ConstraintsVariables_in_PU": was successful in 16 [ms]

E—’j’ [15:03:23.521 C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_PU": was successful in 901 [ms]
E—? [15:03:24.422 Execution] Processing sources from 'c_F_CenstraintsVariables_in_PU": was successful in 84 [ms]

E:j' [15:03:24.560 C/FMI] Processing sources from 'c_F_ConstraintsVariables_in_IU" was successful in 13 [ms]

E:j' [15:03:24.560 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_IU": was successful in 0 [ms]
E::j' [15:03:24.591 C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_IU'": was successful in 301 [ms]
E—'j’ [15:03:23.452 Execution] Processing sources from 'c_F_CeonstraintsVariables_in_IU": was successful in 85 [ms]

Eﬁ' [15:03:23.608 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_RU" was successful in 0 [ms]
E—? [15:03:23.608 C/FMI] Processing sources from 'c_F_ConstraintsVariables_in_RU" was successful in 15 [ms]

E—? [15:03:23.639% C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_RU": was successful in 386 [ms]
E’E [15:03:26.525 Execution] Processing sources from 'c_F_CenstraintsVariables_in_RU': was successful in 85 [ms]

E—'ﬁI [15:03:26.647 C/FMI] Processing sources from 'c_F_ConstraintsVariables_in_IR": was successful in 32 [ms]

Eﬁ' [15:03:26.647 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_IR's was successful in 16 [ms]
E—'j’ [15:03:26.725 C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_IR": was successful in 886 [ms]
E—? [15:03:27.611 Execution] Processing sources from 'c_F_CenstraintsVariables_in_IR": was successful in 83 [ms]

E:j' [15:03:30,167 C/FMI] Processing sources from 'c_F_ConstraintsVariables_in_PR": was successful in 31 [ms]

E:j' [15:03:30.183 Verification Code] Processing sources from 'c_F_ConstraintsVariables_in_PR" was successful in 0 [ms]
E’E [15:03:30.198 C Compilation] Processing sources from 'c_F_ConstraintsVariables_in_PR": was successful in 902 [ms]
E—'ﬁI [15:03:31.100 Execution] Processing sources from 'c_F_CenstraintsVariables_in_PR': was successful in 84 [ms]

Figure 68. "Build" view with results for C code generation with verification harness

In addition to the usual files (see Table 11), a ¢ _<flIow> harness.c file and a
c_<flow> harness.h file are created for each flow.

An example for such a file is shown in section 9.2.5.2.

If you activated Compile and verify code in the "C/FMI" subnode, an executable file
c_<flow> harness.exe is created for each flow.

SCODE Workbench V3.0 — Getting Started

RX%RERRBD= O

ETAS 5. SCODE-CONGRA Tutorial

5.8.3. Constraints for Parameters
Here, you will create a parameter and enter constraints for the parameter.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., ConstraintsParameters.

2. Create and specify the relations for Ohm’s law and the power of an ohmic resistor
(Equation 4).

3. Enter default values of 0.

4. Create a flow for each possible input pair that includes I.

vl’ﬁ ConstraintsParameters
s = ConstraintsParameters
~ i ConstraintsParameters.syq
?ﬂ ConstraintsParameters
Er_; F_ConstraintsParameters_in_IP
EI‘-; F_ConstraintsParameters_in_|IR
Er_; F_ConstraintsPararmeters_in_[U

W [~ SrC-Qen

5. Enable code generation for C code and MATLAB code.
6. Set the "Error case handling" to Use default value.

7. Save the project.

To create and set up a parameter

1. Open the ConstraintsParameters system in the graphical editor.
2. Convert the variable | into a parameter and assign a default value.

3. Open the *. syq file in the text editor.

Warning icons can be seen next to the definitions of the relations. The light bulbs
show that quick fixes are available.

SCODE Workbench V3.0 — Getting Started 111

ETAS 5. SCODE-CONGRA Tutorial

5 ConstraintsParameters.syq &2 | 4 ConstraintsParameters

1 package ConstraintsParameters;

2
3= system ConstraintsParameters {
4
5 (dgeol s)]
B var U = &3
7 igeo(44,)|
8 var R = &3
g @EEQ[. b
1@ param I is != 0 = H
11 @geo ,)
12 var P = H
13
14 figeo(» s s)|
15 @description("Power of a Resistor™)
i 16 Resistor Power Law(} =P =U* I;

|
@description("Ohm\'s law™)

4. Click in one of the marked lines and press Ctrl + 1.

A white box opens. It shows the available quick fixes. A yellow box may open on
the right and show additional information.

14 figeo(. . B)

15 f@description("Power of a Resistor™)
W16 Resistor_Power_Law(P, U,) ;

1; EEE;.L:'ip;:i:ni 'J';\IA;;\'"J-,'-:, ila-.-.-"';. @ Insert keyword in for parameter | in argument list
W19 Ohms_Law(R, U, I} ;

2 }

Figure 69. Pop-up with quick fix

5. Double-click on the quick fix.
| is marked as input.

6. Repeat steps 4 and 5 for the second marked line.

14 @geo s s s)i
15 @description("Power of a Resistor™)
816 Resistor_Power_Law(P, U, in I) ;
17 @geoi s s s)
18 @description("0Qhm\'s law™)
&19 Ohms_Law(R, U, in I} ;
22 }

SCODE Workbench V3.0 — Getting Started 112

ETAS 5. SCODE-CONGRA Tutorial

To enter constraints for the parameter

1. Open the "Properties" view for the parameter | and do the following:

i. Inthe "Expression" row, "Value" column, set the parameter value to 2. 0.

ii. In the "Variable Constraints" row, "Value" column, enter the following
constraint; !=0

The constraint is copied to the "Expression Range" row.

(% Problems [T] Properties 5% g Execution Environment [Console

& Variable |

Semantic Property Yalue

Style w Variable |

= Description

Appearance Expressicn 2.0
Expression Range (R/O) [(-oo, 0.0), (0.0, oo)]
Expressicn Value (R/Q) 2.0
Marme 1= |
Systern Type parameter
Unit
Wariable Constraints =0

Variable Symbaol

Figure 70. "Properties" view with constraints for a parameter
The other variables remain unconstrained. This means that verification code
cannot be generated.
2. Save the project.

Constraint (! = 0) and value (= 2.0) for parameter | are added to the *.syqg
file.

@geo (244, 40)
param I is !'= 0 = 2;

3. Generate code.

4. Open the generated files and check the effect of the constraint.

To further illustrate the effect of the constraint on parameter |, create a comparison
system with no constraint on |I.

To specify the comparison system

1. In the Project Explorer, right-click the ConstraintsParameters folder and select
New — SCODE-CONGRA File.

2. In the "SCODE-CONGRA File" window, enter a system name, e.g., Parameter,
then click on Finish.

SCODE Workbench V3.0 — Getting Started 113

ETAS

5. SCODE-CONGRA Tutorial

SCODE-CONGRA File

Create a new .syq file and add basic content

Enter or select the parent folder of new file:

| fConstraintsParameters/ConstraintsParameters

£
E ConstraintsParameters
g ConstraintsVariables

System Mame: | Parameter

Flow Mame: |

Convert project to SCODE-COMGRA project

@

3. Specify the Parameter system the same way as the ConstraintsParameters
system, but leave out the constraint ! =0 for parameter I.

4. Save the project.

5. Generate code.

Section 9.2.5.3 compares generated code with and without parameter constraint.

5.9. Lesson 8: Variables with Physical Units

In the previous lessons, all variables, parameters, etc. were treated as unitless numbers.
In this lesson, you will assign physical units to the variables.

Expressions consider units. First, there are checks for "dimension compliance". This
means that SCODE-CONGRA ensures, for all additive (or comparative) expressions, that
the dimensions of the operands of the operation comply with respect to the physical unit
dimension. The same happens to the sides of an equation.

For this lesson, you will use the same model as in lessons 4 to 7.

To set up the project

1. Create a SCODE-CONGRA project and name it, e.g., PhysicalUnits.

2. Create and specify the relations for Ohm’s law (Equation 1) and the power of an

ohmic resistor (Equation 4).

3. Create at least one flow, e.g., with | and U as inputs.

4. Enable code generation for C code.

5. Save the project.

SCODE Workbench V3.0 — Getting Started

114

ETAS 5. SCODE-CONGRA Tutorial

In SCODE-CONGRA, you have to define units in a * . syq file before you can use them.
This can be done only in the text editor. Units have to be defined outside the system and
outside the flows. Each unit must have a unique name.

This tutorial uses the International System of Units (Sl). This system comprises a
coherent system of units of measurement built on seven base units , which are the
second, meter, kilogram, ampere, kelvin, mole, candela. 22 The system also specifies
names for 22 derived units 2, among them ohm, volt, watt, etc., for other common
physical quantities.

Base units are defined directly, while derived units are defined as combinations of base
units. This means that you have to define all base units that you use directly and
indirectly, i.e. for derived units.

Variable Unit Unit Type in Sl base units
I A (ampere, electric current) base -

U V (volt, voltage) derived (kg *m?)/ (A* s?)
R Q (ohm, resistance) derived VIA

P W (watt, electric power) derived V*A

Table 15. Some variables with units

You can define units in one central place and import them into the systems where they
are needed. That procedure is described in section 5.9.1, “Defining Units in Separate
Files”.

Alternatively, you can define units in the system * . syq file. The procedure is described in
section 5.9.2, “Defining Units in the System SYQ File”.

The SCODE-CONGRA online help recommends the first way to define units.

5.9.1. Defining Units in Separate Files

This section describes the definition of units in a central place (a special project), where
they can be accessed from other projects.

“ NOTE Defining units in separate files is the recommended way to
define units.

Separate files for units are easy to maintain, and they can be
shared by many projects.

Defining units in the system’s * . syq file is described in section 5.9.2, “Defining Units in
the System SYQ File”.

To define units in a special project

1. Create the SCODE-CONGRA project that will contain the unit definition file(s).
This tutorial uses a project named UnitDefinitions.

The system * . syq file opens automatically. It contains the following content:

SCODE Workbench V3.0 — Getting Started 115

ETAS 5. SCODE-CONGRA Tutorial

package UnitDefinitions;
system UnitDefinitions {

}

2. If you want to use this project only for unit definitions, delete the lines below the
package declaration.

Units have to be defined outside systems and flows. In a file that only defines units,
a system is unnecessary.

3. Define the necessary base units as follows:

unit <base unit name>;

“ NOTE The base unit for time needs a special definition:

unit <time unit name>is time;

The additional is time marks <time unit name> as
time in seconds.

In the context of a system, only one unit can be defined
with is time. A second definition unit <name>is
time; causes an error.

4. Define the necessary derived units as follows:
unit <derived unit name>= <expression>;

<expression>is a combination of base units, derived units and/or scaling
factors. You can combine units and factors via * or / operators, and you can use
brackets, e.g. to enclose a denominator. See the following example:

unit N = kg * m / (s*s);
If desired, enter comments that describe the units. (((SYQ
file, comment)))

In the SYQ language, a comment is included in /* .. */. You can place the
comment in a line that contains code, or you can place the comment in one or
more separate lines.

5. Save the project.

Examples for base units, derived units, and comments are given in section 9.2.6.1,
“‘Example: Unit Definitions in a * . syg File”.

If you want to spread the unit definitions over several files, or if you want to add a unit
definition file to an existing SCODE-CONGRA project, you have to create additional
* syq files.

SCODE Workbench V3.0 — Getting Started 116

ETAS 5. SCODE-CONGRA Tutorial

To create an additional unit definition file

1. Select the SCODE-CONGRA project that will contain the unit definition file(s).

2. In the Project Explorer, right-click on one of the following items and select New —
File from the context menu.

o project
o system folder
o * syqfile
The "New File" dialog window opens.
3. In the "New File" dialog window, do the following:
i. Select the system folder as parent folder for the new file.
i. Enter a name and the extension . syq for the file.
You must enter the extension to determine the file type.

ii. Click on Finish to create the file.

File
i
Create a new file resource.

Enter or select the parent folder:

| UnitDefinitions/UnitDefinitions |

@~ =
» 125 Physicallnits
v [UnitDefinitions
» [src-gen
= UnitDefinitions

File name: | UnitDefinitions_Slba se.syq|

Advanced » >

@

Figure 71. "New File" window

The empty file is created and opened in the text editor.

SCODE Workbench V3.0 — Getting Started 117

ETAS 5. SCODE-CONGRA Tutorial

4. In the first line, enter the package declaration:
package <project name>;

5. Define the units as described in To define units in a special project, steps 3 and 4.

6. If desired, enter comments that describe the file content and/or the units.

7. Save the project.

Figure 72 shows a project with unit definition files.

5 Project Explorer 52 | 5] 5. ¥ = O [+ UnitDefinitions_Slbase.syg &3
LI AlgebraicLocp ~ 1 package UnitDefinitions;
LI Constant E
i 30
L Cnnstrafntsl:'ar.ameters 1 T
LI ConstraintsVariables 3
LI DefinedOutput 6
LI FixedVariable 7 /¥ Length */
LI Parameter g unit m;
: g
12 PhysicalUnits 19 |7* Mass *7
H - - Lu d Ad >3
et Physicallnits2 11 unit kg;
L] QuadraticEquation 12
LI Resistor_Power 13 /* Time */
LI simple_units 14 wnit s 1s time;
H - - . 15
'[%Tut.urlal.c.h.apterd-Usmg units 16 /* electric current */
v & UnitDefinitions 17 unit A;
[= src-gen 18
w [= UnitDefinitions 19 /* Thermodynamic temperature */
B UnitDefinitions_nonSl.syq 28 unit K;
. . ey Fam s
b UnftDeffnft!nns_Slbas.e.syq 22 f* Amount of Substance
B UnitDefinitions_Slderived1.syq 23 unit mol;
B UnitDefinitions_Slderived2.syq 24
i UnitDefinitions_Slderived3.syq 25 /* Luminous Intensity */
W 26 wnit cd;

L4 >

Figure 72. SCODE-CONGRA project UnitDefinitions with five unit definition files

Examples for base units, derived units, and comments are given in section 9.2.6.1,
“Example: Unit Definitions in a * . syqg File”.

The units in the unit definition file(s) are known to the project that contains the files. To
use them in another project, you have to connect the projects, and then import the units.

To connect two projects

1. In the Project Explorer, select the project you want to connect with another project.
For example, select the project that will use the units defined in a special project.

This tutorial connects a project named PhysicalUnits2 with the
UnitDefinitions project that contains the unit definitions. &

2. Right-click the project and select Properties from the context menu.

The "Properties for <project>" window opens.

SCODE Workbench V3.0 — Getting Started 118

ETAS 5. SCODE-CONGRA Tutorial

3. In that window, go to the "Project References" node.
This node lists all projects in the workspace.

4. Select the project you want to connect and click on Apply and Close.

|t}fpefi|ter text | Project References fr v f

Rescurce

Projects may refer to other projects in the workspace.

Builders Use this page to specify what other projects are referenced by the project.
Project Matures

Project References Project references for 'PhysicalUnits2":

Refactoring Hlst.nry 0w AlgebraicLoop

Run/Debug Settings [€3 Constants

SCODE-COMGRA
] 3 ConstraintsParameters

(] L3 ConstraintsVariables
O DefinedOutput

[O3 FixedVariable

Ol J Parameters

O @PhysicalUnits

| DﬂuadraticEquation
| Resistor_Power
O Simple_Equation
1% UnitDefinitions |

® Apply and Close Cancel

Figure 73. "Properties for <project>" window, "Project References" node

The project you first selected now refers to the second project. However, the
second project does not refer to the first.

In the example shown in Figure 73, the PhysicalUnits2 project refers to the
UnitDefinitions project, but UnitDefinitions does not refer to
PhysicalUnits2.

Now you can import content from the referred project (UnitDefinitions in Figure 73)
into the referring project (PhysicalUnits2 in Figure 73). You can import the following
items:

* units

» systems

* flows

» computations

You cannot import an entire package. Each item you want to import needs its own import
declaration.

To import content from another package

1. Open the * . syq file into which you want to import content.

If your system contains variable definitions with undefined units, these definitions
are marked as errors.

SCODE Workbench V3.0 — Getting Started 119

ETAS

5. SCODE-CONGRA Tutorial

2. Between package declaration and system definition, enter the following line for

each item you want to import:

import <package name>.<item name>;

<package name> is the name of the package that contains the item to be

imported.

<item name> is the name of the item to be imported.

“ NOTE

You have to explicitly import each unit you want to use.

It is recommended that you import all units used to form
the derived units you want to use.

3. To make work easier, use the following method:

i. Type import, followed by a blank.

i. Press Ctrl + Space.

A white box opens. It shows all items you can import. Units are marked with
@ A yellow box opens, too, and shows details for the selected element.

[+ UnitDefinitions_Slbase.syq 4 PhysicalUnits2
package PhysicalUnits2;

LSVRN S ol

import UnitDefinitions.A;
import UnitDefinitions.m;
import UnitDefinitions.s;
import UnitDefinitions.kg;
import

= oo

0o

i Lows (F (@K - UnitDefinitions.K

system p (kg - UnitDefinitions.kg

(@ km - UnitDefinitions.lem

@1 - UnitDefinitions.|

] \[-I)m - UnitDefinitions.m

(@ mA - UnitDefinitions.mA

= @mg - UnitDefinitions.mg
@minute - UnitDefinitions.minute
. @mol - UnitDefinitiens.mol

@ N - UnitDefinitions.N

=9 @ Ohm - UnitDefinitiens.Ohm

| {@ Pa - UnitDefinitions.Pa

@5 - UnitDefinitions.s

=

RN S

m
=]

(=9]
m
W

a

[l
A R |

1]

Ls]

oo
7 M
I

o
oo

=

m

noo

(<)
al

b
B 2 S &
al

W M

P

BRI ORI ORI ORI R PO

o
=]
oo

Jdes @w wvol
@W - UnitDefinitions.W
<

Bl “PhysicalUnitsZsyq &2

UnitV = kg*m*m/(A"s"s"s)

Volt: voltage

>

Figure 74. Popup with items that can be imported. The items are listed as
follows: icon <item name> - <package name>.<item name>

ii. Select the unit you want to import.
iv. Press Enter to insert your selection.
v. Enter the closing ;.

4. Save the project.

SCODE Workbench V3.0 — Getting Started

120

ETAS

5. SCODE-CONGRA Tutorial

package PhysicalUnits2;

import UnitDefinitions.
import UnitDefinitions.
import UnitDefinitions.
import UnitDefinitions.
import UnitDefinitions.
import UnitDefinitions
import UnitDefinitions

PP OOoWwJo ol N

system PhysicalUnits2

kg;
\

.Ohm;
W

Table 16. * . syq file with imported units

You can now assign the units to variables; see section 5.9.3.

5.9.2. Defining Units in the System SYQ File

“ NOTE The recommended way to define units is a separate file.

To define units in the system SYQ file

1. Open the PhysicalUnits.syqfile

in the text editor.

Units have to be defined outside systems and flows. You can place them, e.g.,
between the package ..line and the system .. line, or at the end of the *.syqg

file.

2. Define the necessary base units as described in To define units in a special project,

step 3.

“ NOTE The base unit for time needs a special definition:

unit <time unit name>is time;

The additional is time marks <time unit name>as
time in seconds.

In the context of a system, only one unit can be defined
with is time. A second definition unit <name>is
time; causes an error.

3. Define the necessary derived units as described in To define units in a special

project, step 4.

4. If desired, enter comments that describe the units.

In the SYQ language, a comment is included in /* ...
comment in a line that contains code, or you can place the comment in one or

more separate lines.

5. Save the project.

* /. You can place the

Examples for base units, derived units, and comments are given in section 9.2.6.1.

SCODE Workbench V3.0 — Getting Started

121

ETAS

5. SCODE-CONGRA Tutorial

You can now assign the units to variables; see section 5.9.3.

5.9.3. Assigning Units

Now you can assign the units to the variables. You will do this in the graphical editor of

the system or the flow.

To assign units to variables

1. Open the system graph or the flow graph.

2. Open the "Properties" view for a variable.

3. In the "Properties" view, "Semantic" node, click in the "Value" column next to "Unit".

A dropdown list opens that offers all defined units for selection.

L]

(v) Variable R

Semantic
Style

Appearance

g Problems [Properties %1 g Execution Environm...

Property
w Variable R

Dependency Type (R/O0)
Depending Element
Description

Expression

Expression Range (R/Q)
Expression Value (R/0Q)
Mame

Systern Type

Unit

Variable Constraints
Variable Symbol

4. Select the appropriate unit.

A

Yalue

Chmic resistor

(-oo, oo)

=R
Variable

kg

m

ma = 0.001*A
COhm = W/

5
W= kg*m*m/ (A% s s"s)
W= V4

&l Console
7 E Y

= B

Doon

The unit is not automatically assigned to an existing default value. If you entered a
default value when you set up the project, an error is issued.

N\

D
R

Ohms_law

SCODE Workbench V3.0 — Getting Started

122

ETAS 5. SCODE-CONGRA Tutorial

(v) Variable R
Semantic Property Value
Style w Variable R

Dependency Type (R/C)

Depending Element

Description Ohrnic resistor

Expression 0

Expression Range (R/0) (-oo [kg m*2/A%2 s3], oo [kg m”*2/A%2 s23])
Expression Value (R/Q) 0.0

Appearance

Mame =R
System Type Variable
Unit Ohm = V/A

Validation errors (R/0) (UNYD01) Incompatible unit dimensions: R has unit "kg m*2/422 =*3" and 0 has ne unit
Variable Constraints
Variable Symbaol

5. Enter a default value with unit; see also To enter a value with unit in a graph.

e b b e i

Expression 0 [Chm]

Example: - - -

6. Select units for the other variables.

7. Save the project.

The variable definitions in the * . syg code change as follows:

@geo (420, 145)
@description("electric power")
var W P;

9 @geo (200, 200)

10 (@description("current")

11 wvar A I ;

12 (@geo (40, 145)

13 (@description("Ohmic resistor")

14 wvar Ohm R = 0 [Ohm];

15 (@geo (200, 80)

16 (@description("voltage")

17 wvar V U;

O J oy -

Table 17. * . syq file extract: variable definitions with units (lines 8, 11, 14, 17). The
unit name appears before the variable name.

You can assign units to variables, parameters, and constants in the * . syq file. To do so,
insert the unit name before the element name:

var <unit name> <element name>;
param <unit name> <element name>;
const <unit name> <element name>;

Each time you save the project, SCODE-CONGRA checks if the units of the various
variables match. If the units do not match, an error "UNV001 incompatible unit
dimensions ..." is issued.

The PhysicalUnits. syq file with no unit assigned to electric current | is shown in
Figure 75, as well as the error markers and the error messages in the "Problems" view.

SCODE Workbench V3.0 — Getting Started 123

ETAS

ﬁ PhysicalUnits.syg 23
package PhysicalUnits;

-

<

3 system PhysicalUnits {

4

<] E"‘EE:': »)

6 @description(“electric power™)

7 var W P;

8 f"‘cE:': »)

a @description("current™)

la var I ;

11 @geo(4a,)}

12 @description("Qhmic resistor™)

13 wvar Ohm R;

14 E‘EEC': ¥)

15 @description(“voltage™)

16 var WV U;

18 Big=ol 3 3 3)

19 @description("ghm\'s law")
Q20 Ohms_Law(Yy ii=U =R *.I;

21 E"‘EE:': e 3 3 J

22 @description(”Power of a Resistor”
Q23 Resistor_Power_Law() 1= P =

24 %

25

2 errors, D warnings, 1 other

v xs

& Problems &2 | [C] Properties s Execution Environment &) Console

5. SCODE-CONGRA Tutorial

Description F
w @ Errors (2 items)
@ (UNVDD1) Incompatible unit dimensions: P has unit "kg m*2/543" and U * | has unit "kg m*2/A4 s*3" P

@ (UNWDD1) Incompatible unit dimensions: U has unit "kg m*2/4 53" and R * | has unit "kg m"2/A*2 s%3" P

I T B]

Figure 75. PhysicalUnits. syq file and "Problems" view with error markers due to

incompatible units

5.9.4. Units and Initial Values/Constraints

Once a unit is assigned to a variable, all assignments to that variable are checked for

matching units. This includes start values and constraints.

You can enter a start value with unit either in the system graph, or in the * . syq file.

To enter a value with unit in a graph

1. Open the "Properties" view for the variable that needs a value.

2. In the "Properties" view, "Semantic" node, click in the "Value" column next to

"Expression".

The cell becomes an input field. ..Enter the desired value, followed by the unit in

square brackets.

For example, enter 220

SCODE Workbench V3.0 — Getting Started

[V] as value for U.

124

ETAS 5. SCODE-CONGRA Tutorial

[%! Problems [O] Properties 53 ¢y Execution Environment E Console

(v) Variable U
Semantic Property Value
Style w Variable U
= Dependency Type (R/0)
Appearance Depending Element
Description voltage
Expression 2200V
Expression Range (R/0) (-oo [kg m*2/4 s3], oo [kg m*2/A s°3])
Expression Value (R/O) 220.0 [kg m~2/4 53]
Mame = U
System Type variable
Unit Y = kg*m™*m/[A*s*s%5)

Wariable Constraints
Variable Symbol

Value and unit are transferred to the "Expression Value (R/O)" row. A derived unit is
replaced by the combination of units it is derived from.

The * . syq file is updated when you save the project.

@description ("voltage")
var V U = 220[V];

If desired, you can enter value and unit for a variable, parameter, or constant directly in
the x.syq file:

<itemType> <unit> <itemName> = <value> [<unit>];

<itemType>can be var, param, Or const.

Constraints are specified similarly, with the required unit in square brackets. In the * . syg
file, constraints with units look as follows:

<itemType> <unit> <itemName>
is <constraintType> <constraintValue>[<unit>]
and <constraintType> <constraintValue>[<unit>];

Example: var V U is > 0[V] and U 230([V];

If you want to specify both a value and constraints in the * . syq file, the value must be
defined after the constraint. If you place the value definition before the constraints
definition, you cause an error.

<itemType> <unit> <itemName>
is <constraintType> <constraintValue>|[<unit>]
and <constraintType> <constraintValue>[<unit>]
= <value> [<unit>];

Example: var Vv U is > 0[V] and [230[V] = 220[V];

<itemType> can be var, param, or const. For a list of <constraintType> values,
see Table 13.

SCODE Workbench V3.0 — Getting Started 125

ETAS 5. SCODE-CONGRA Tutorial

5.9.5. Units in the Generated Code

This section shows the effect of units on generated code. You will use the Phys-
icalUnits project you created in section 5.9.2.

To prepare the project

To see how SCODE-CONGRA deals with different units of the same dimension, e.g., with
A and mA = 102 A as units for electric current, change the project as follows.

1. Define a new unit mA = 102 A.

2. Assign the new unit to the variable I.
The units of the other variables remain as they are.

3. Make sure that default values are defined for all variables.

4. Save the project.

To generate code

1. Open the "Properties of <project>" window for the PhysicalUnits project.
2. Activate generation of C code, ESDL code, and MATLAB code.

3. Generate code.
4.

Open the generated * . c, *.m, and/or * .esd1 files. &

The conversion factor to convert mA to A is inserted automatically wherever it is
required. Otherwise, the units are not visible in the generated C code and MATLAB
code.

5. Openthe c_F PhysicalUnits_in_IU computation in the Execution
Environment. &

[£1 Problems [0 Properties | g Execution Environment i | B Console = 0

~ Execution View

System: | Physicallnits - PhysicalUnits.Physicallnits v‘
Computation: | c_F_PhysicalUnits_in_IU - PhysicalUnits.c_F_PhysicalUnits_in_IU v‘
Mode: | Compute values and sensitivities (default) N - ‘
S b / \

MName Type State Value Unit Sensitivity| B.. Relative Sensitivity Definition Partialerivatives

u input 220 V] v 0v]

R calculated computed [44[Ohm] Ohm 0 [Chm] Uz 0.00,1:-0.00 if (0.0[A]'=1) then U/l else [R] = if (0.0[A]!=1) then -U/1"2 else <- Ohm...
P calculated computed |1100[W] W 0[wW] U :: 5000.00, 2 220.00 U*I [P.I] = U <- Resistor_Power_Law(], U), [P,U] =.

| input 5000 [mA] ma 0 [mA]

- J
elapsed t... time 0 0 elapsed time

Figure 76. Execution Environment showing a computation with units. Visible units are
marked.

If you change a value, or enter a sensitivity, enter the respective unit in square brackets,
or not at all. In the latter case, the unit is inserted automatically.

If a derived unit is assigned to a variable, you can enter either the derived unit, or you can
enter the combination of units and/or scale factors used to derive the assigned unit
(provided all units are defined or imported in the project). For example, you can enter
either 6000 [mA] or 6 [A] as value for I.

SCODE Workbench V3.0 — Getting Started 126

ETAS 5. SCODE-CONGRA Tutorial

5.9.6. Additional Task

This section is not mandatory for the lesson on variables with physical units. However, it
contains useful knowledge.

Generating a Report

To get a description of your system, you can generate a report. Generated reports can be
read without a SCODE Workbench installation.

To generate a report

1. Right-click the system * . sy file to be documented and select Export from the
context menu.

2. In the list of the "Export" window, select report generation for SCODE-CONGRA
(see Figure 77).

Select)

Generate a report for a SCODE-COMGRA rodel to the local file systern. H

Select an export wizard:

| type filter text |

5 = General

v CfC++

» [= Install

5 =% lava

» [= Run/Debug

v = SCODE-AMALYZER
w = SCODE-COMGRA

(B2 Report
5 = Team
@ < Back Next » Finish Cancel

Figure 77. "Export" window with selected SCODE-CONGRA report generation

3. Click on Next to continue.

SCODE Workbench V3.0 — Getting Started 127

ETAS

4.

5. SCODE-CONGRA Tutorial

Generate a Report

Generate a Report

COMNGRA File: | D:/Data/5CODE- ‘,"WS_tutorial,"PhysicaIUnits,."Ph}rsicaIUnits.fPhysicaIUnits.syq| Browse workspace...
Destination Folder: | D:/Data/5CODE-- &/ W5_tutorial/PhysicalUnits/Report | Browse...
Report File Type: | Word ~

Report Mame: | Physicallnits |

Choose report parts to be generated
Textual representation of the model
Graphs of systemns and flows
Computations

[+] Table of model elements

Select all

Deselect all

® < Back Mext = Cancel

Figure 78. "CONGRA Report Generator" window

In the "CONGRA Report Generator" window, do the following:
i. Enter or select (via the Browse button) an existing folder for the report.
i. Select the "Report File Type".

ii. Enter a name for the report file.

“ NOTE If you enter the name of an existing file with the
selected format, that file is overwritten without

further inquiry.

iv. Activate at least one option in the "Choose report parts to be generated"
area.

v. Click on Finish to generate the report.

The report is generated with the selected format and stored in the selected
folder.

If you selected a folder inside your workspace, you can see the report in the
Project Explorer.

SCODE Workbench V3.0 — Getting Started 128

ETAS

55 Project Explorer &3 =

LI ConstraintsVariables
LI DefinedOutput
LI FixedVariable
LJ Parameters
v [PhysicalUnits
w [= PhysicallUnits
W @ PhysicallUnits.syg
L5 F_PhysicalUnits_in_IU
-2 PhysicalUnits
~ [~ Report
@ PhysicalUnits.docx
[=> src-gen
4 PhysicalUnits2

5. In the inquiry window, click on Yes to open the report.

5. SCODE-CONGRA Tutorial

Areport for the PhysicalUnits system, with all report parts generated, is shown in

section 9.2.6.4, “"SCODE-CONGRA Report”.

SCODE Workbench V3.0 — Getting Started

129

ETAS 5. SCODE-CONGRA Tutorial

[11] If you need help to find the "Properties" view, see Figure 3.
[12] "incoming" and "outgoing" are seen from the relation’s point of view.

[13] For further information on layout changes, see Storing Layout Changes.

[14] Solver priorities are numbered in descending order. The highest priority is 1.

[15] MuPAD [deprecated] support will be discontinued in future SCODE Workbench
versions.

[16] If you need help, see To specify the equation.

[17] If you need help, see To create a Flow.

[18] If you need help, see section 5.2.3, “Working with Computations”.

[19] If you need help, see To create a SCODE-CONGRA project.

[20] If you need help, see To set up the project.

[21] If you need help, see To generate code.

[22] If you need help, see To generate code for original and inverted flows.

[23] If you need help to find the "Problems" view, see Figure 3.

[24] The normalized equation of an equation <left-hand side> = <right-hand
side> is defined as <left-hand side> - <right-hand side> = 0.

[25] See, e.g., en.wikipedia.org/wiki/SIl_base_unit .

[26] See, e.g., en.wikipedia.org/wiki/SI_derived_unit#
Derived_units_with_special_names .

[27] PhysicalUnits2 is a copy of PhysicalUnits (section 5.9.2, “Defining Units in
the System SYQ File”), without unit definitions in the system * . sy file.

[28] See section 9.2.6.2, “C Code for a Flow with Units” and section 9.2.6.3, “MATLAB®
Code for a Flow with Units” for code examples.

[29] If you need help, see To open the Execution Environment.

SCODE Workbench V3.0 — Getting Started 130

https://en.wikipedia.org/wiki/SI_base_unit
https://en.wikipedia.org/wiki/SI_derived_unit#Derived_units_with_special_names
https://en.wikipedia.org/wiki/SI_derived_unit#Derived_units_with_special_names

ETAS 6. First Steps with SCODE Workbench

6. First Steps with SCODE Workbench

The SCODE Workbench with the SCODE-ANALYZER and SCODE-CONGRA tools is an
Eclipse-based product. If you are familiar with using an Eclipse environment, then you
should feel at home. If SCODE Workbench 3.0 is the first Eclipse-based application you
have used, then this chapter provides some basic information to get you started.

To start the SCODE Workbench for the first time

1. Do one of the following to start the SCODE Workbench:

o Select ETAS SCODE Workbench 3.0 from the start menu.
o Double-click on the SCODE Workbench 3.0 desktop icon.

%5

ETAS SCODE
Waorkbench

Select a directory as workspace

SCODE Workbench uses the workspace directory to store its preferences and development artifacts,

[
Workspace: ~ Browse...

[[]Uze this as the default and do not ask again

2. In the "SCODE Workbench Launcher" window, enter or select (via the Browse
button) path and name of the workspace you want to use.

If you enter a non-existing workspace, it is created.
Later, the "Recent Workspaces" list will show previously used workspaces.
3. If desired, activate the Use this as the default and do not ask again option.

The next time you start the SCODE Workbench, the selected workspace opens
automatically.

4. Click on OK.

The "ETAS Safety Advice" window opens. It contains safety information in several
languages. You can select a language in the combo box at the top of the window.

SCODE Workbench V3.0 — Getting Started 131

ETAS

5.

6. First Steps with SCODE Workbench

English o

STAS

DRIVING EMBEDDED EXCELLENCE

SAFETY ADVICE ~

Warning! It is critical that you read and follow this safety advice, the product
description including technical data and the associated technical documentation, which
are facilitated on and to be downloaded from ETAS website, www.etas.com (via Direct
Product Access/select Product). Do not use the product if you cannot read and/or
understand the Information for safe operation. If you do have guestions for safe
operation, please contact the ETAS hotling in your region www.etas.com/hotlines.

This ETAS product enzables users to control systems which accomplish safety functions
(e.g. in automobiles, automobile components and test facilities), to change safety
relevant data, or to allocate those for further processing. Hence, the application of this
product can be hazardous. Improper use and unskilled application without adequate
instruction and experience in handling of such products may cause threats to life and
physical conditions as well as damages to property,

Our products have been developed and released exdusively for use in applications
defined in the product description.

Fitness and suitability of the products for any intended use beyond the utilization for
which the products have been released (e.q. different stresses/strains or technical
conditions) need to be verified by the user on own authority by taking appropriate
actions and measures (e.g. by means of tests).

. ETAS products made available as beta versions of firmware, hardware and
software are to be used exclusively in testing and evaluation. These products may
hawve not sufficient technical documentation and not fulfill all requirements
regarding guality and accuracy for market released series products. Therefore
product performance may differ from the product description and your
expectations. The product should be used only in controlled test environments. Do
not use data and results from beta versions without prior and separate
verification and validation and do not pass them to third parties without prior
examination, W

[TR E Y N E S PR Y [[P S UG [I S S S

Acknowledged

“ NOTE Read the Safety Advice carefully before you click on
Acknowledged.

You can open the Safety Advice in the SCODE
Workbench window via Help — ETAS Safety Advice. A
PDF version, ETAS Safety Advice.pdf, is available in
the SCODE Workbench installation directory, documents
subfolder.

Acknowledge the safety advice.

SCODE Workbench V3.0 — Getting Started 132

ETAS

The SCODE Workbench is now started.

I
File Edit Mavigate Search Project Window Help

Welcome to SCODE Workbench

(‘" Overview @g? Samples

Get an overview of the features T~ Try out the samples

What's New Tutorials
Find out what is new Go through tutorials

oo al= s

-5- @Welcome &3
=]
7

6. First Steps with SCODE Workbench

Figure 79. SCODE Workbench window, showing the Welcome page

The Welcome page contains links to useful information.

6. To reach the workbench, click on the Hide button at the top right.

7. Click on the] SCODE-ANALYZER or ?g SCODE-CONGRA button at the top

right to select the appropriate perspective for the tool you want to use.

127
= g

File Edit Mavigate Search Project Window Help

IB-ERIT IR E eSS D

5 ProjectBpl.. 32 = B

workspace.
To add a project:

Create a
% SCODE-ANALYZER

£ Import projects... :
details.

= Properties 33 E Problems [E] Console
Property Value

= B = Outline 22 ¥ Build

&Y 8
There are no projects in your Therg is no activ.e editor that
provides an outline.

project =
¥ Createa project... ., Analysis Details &2
Select an analysis in outline to see

EREE 2|2 % ¢ =

O

with empty workspace

SCODE Workbench V3.0 — Getting Started

Figure 80. SCODE Workbench window, showing the SCODE-ANALYZER perspective

133

ETAS 6. First Steps with SCODE Workbench

File Edit Mavigate Search Project Run Window Help

N EHRRA P ey G : O [A
i Project Explorer 53 = 0 = 8
) Xp
BES Y §
There are no projects in your
workspace.

To add a project:
] Cregte a SCODE-CONGRA
project
ﬁ Create a project...
£ Import projects...

B2 Qutline 52 ¥yBuild = B [#] Problems 32 [Properties g Execution Environment & Console Y 8 = 8
0 items
Description Resource Path Location Type

There is no active editor that provides
an outline.

BRI 2| 9 ® &=

Figure 81. SCODE Workbench window, showing the SCODE-CONGRA perspective with
empty workspace

6.1. First Steps with SCODE-ANALYZER

6.1.1. Generator Settings
The following generators are available:
* MATLAB
«C
« ESDL
e C++
You can select and configure a generator in the "Preferences" window.

To select and configure a generator for SCODE-ANALYZER

1. In the SCODE Workbench window, select Window — Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-ANALYZER" node and go to the
"Generator" subnode.

SCODE Workbench V3.0 — Getting Started 134

ETAS

6. First Steps with SCODE Workbench

type filter text Generator = -~ 8
General Build
C/C++)
EHANDEOOK [] Generate automatically
EMF Compare Generators
Help MATLAB
Install;"Upd.ate . c
MATLAB/Simulink
Model Validation ESDL
Run/Debug M s
v SCODE-ANALYZER Naming
Diagram
« Generator Function input template | Fenamee |
C Enum type template | Fenamed_Type |
C++
ESDL Generator configuration
MATLAB Output folder | src-gen |
:_C_ODE_CONGRA [[] Use generator specific subfolder
irius
Team Maximum length of lines in generated code | 120 |
Terminal Generatien source Mode Transition Matrix ~
Dimension representation Enumeration ~
Rule generation type Using Rule Definition ~
Output type Modes ~
Verification
Verification code | Off ~
Reduce ruleset prior to generation
[] Optimize rule terms prior to generation
Restore Defaults Apply
® @ |é:, Apply and Close Cancel

Figure 82. "Preferences" window with generator settings for SCODE-ANALYZER

3. In the "Generators" area, select the generator(s) you want to use.

More details about the generators and their configuration are given in the SCODE-
ANALYZER User Guide, chapter "Tasks", sections "Code Generation" and "Code
Generation preferences".

The user guide is opened via Help — Help Contents.

4. Files are generated in the working directory. Make sure that the respective access
rights for this folder are available.

SCODE Workbench V3.0 — Getting Started

135

ETAS 6. First Steps with SCODE Workbench

6.1.2. Start Using SCODE-ANALYZER

To start using the features of SCODE-ANALYZER it is helpful to start with one of the
examples provided with the tool.

To create an example project for SCODE-ANALYZER

1. Open the SCODE Workbench (see step 1 in the previous instruction).

2. Do one of the following:

> Right-click in the project explorer and select New — Example from the
context menu.

o Select File — New — Example.

o Click on the arrow next to the =} + New button and select Example from
the dropdown menu.

The "New Example" window opens. It shows the examples for SCODE-ANALYZER
and SCODE-CONGRA.

Select a wizard _—

Wizards;

w = SCODE-AMNALYZER Examples
Cruise control
Pl controller
Requirements tracing using YAKINDU Traceability
Water tank

w = SCODE-COMGRA Examples
= Cart pole pendulum
=2 DC motor
= Longitudinal vehicle
=2 Requirements tracing using YAKINDU Traceahility
= Suspension
= Tutorial Chapter 1 - Basic triangle
= Tutorial Chapter 2 - Solving the triangle system
= Tutorial Chapter 3 - Solving a model with the cache mechanism
= Tutorial Chapter 4 - Using units

@ < Back Next > Finish Cancel

3. In that window, select a SCODE-ANALYZER example project and click on Next.

The selected project is listed.

SCODE Workbench V3.0 — Getting Started 136

ETAS 6. First Steps with SCODE Workbench

Example Projects

Create the example projects listed below.

ZER Example - Water Tank

This is a simple project consisting of water tank example. Rename...

@ Next > Finish | | Cancel

4. Click on Finish to create the sample project.

The example project is imported into your workspace. It is shown in the project
explorer.

5. In the project explorer, open the SCODE-ANALYZER Example - Water Tank
folder and double-click the water tank.scode file.

File Edit MNavigate Search Project Window Help

"Rt IR ESEEFIFA Y-y

Hl=Ip
[Project Explorer 53 =g “water_tankscode 52 = O 5= Outiine 53 ¥ Build =g
& tics for:
=] —— Problem Space v|(k & B @ Statistics for: water_tank
« &2 SCODE-ANALYZER Example - Water Tank | CONDITION dimension
v éﬂt:r_:nk-S;odE | Type Dimension | Alternative 1 | Attemative2 | Attemative3 |2 5 4Ti0N dimensions
roblem Space g
. (BJpa 1 CONDITION Waterlevel below minimum ok above maximum 2 States on CONDITION dimensions
) ©
5 Events (5 ZRACTION Ouictvalvell closed open 12 States on CONDITION and ACTION dimension:
>i8 3 ACTION " Pump off on
«f Mapping ANALYZER to CONGRA
© Analysis Details 53 =g

Select an analysis in outline to see details.

<

[T Problem Space | :: Mode Definition| 1 & ModeTransltlon‘ 2. Decision Tree|
E Properties &3 [2) Problems (& Console
ZwickyBox: water_tank

E=0o
Semantic

Name: water_tank

Comment: | This is the SCODE essential analysis of the Watertank example. The example is so simple that - in fact - there is no nee|

Description:

FEE 2| 9% ¢ =

You are now ready to discover or use SCODE-ANALYZER!

For more information on how to use SCODE-ANALYZER, see chapter 4, SCODE-

ANALYZER Tutorial in this manual, and the SCODE-ANALYZER User Guide (opened via
Help — Help Contents).

SCODE Workbench V3.0 — Getting Started 137

ETAS 6. First Steps with SCODE Workbench

6.2. First Steps with SCODE-CONGRA

6.2.1. Settings

Before you use SCODE-CONGRA for the first time, Maxima has to be activated. By
default, Maxima is activated. If you want to check the activation, proceed as described in
the following instruction.

To check Maxima activation

1. In the SCODE Workbench window, select Window — Preferences.
The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the
"Solver" subnode.

type filter text Solver =1 r -
General
C/C++ General Solver Settings
EHAMNDBOOK [] Ask in case of ambiguous solutions
EMF Compare Use numeric solver for symbolically unsclvable equations
Help Use numeric solver in case of singular solution

Install/Update
MATLAB/Simulink
Meodel Validation

[JLog communication to external CAS tool to console

Enable Initial Integrity Check for external symbolic solvers

Run/Debug [Generate assumptions
SCODE-ANALYZER [[]Use external sobver with units (experimental)
~ 5CODE-CONGRA []Extract common condition in algebraic loops
Build
Diagram Partial Derivatives
Execution Environment Use solver Selected solver
Generator z - F— "
Refactoring enerate from | Solved equations
v [EakEs . Available solvers
m:ﬁ:::fMuPAD cachehe O Us.er supplied sollfti(.m cach.e (Priority: 1) . .
Built-In Selver (Pricrity: 2, Simple solver with no support for assumptions)
MuPAD P P P
User supplied cache [Maxima/MuPAD Cache (Priority: 3)
Syntax Colering l_ Mazxima (Priority: 4, Advanced solver with nearly no support for assumptions) J
Sirius] MuPAD [Incubation] (Priority: 3, Most advanced solver with broad support for assumptions)
Team I MuPAD [deprecated] (Priority: 6, Most advanced solver with broad support for assumptions)

Terminal

Restore Defaults Apply

® [) Apply and Close Cancel

Figure 83. "Preferences" window with "Solver" settings for SCODE-CONGRA

3. In the "Use Solver" combo box (large arrow in Figure 83), select Selected
Solver.

4. In the "Available Solvers" area, activate Maxima (Priority: 4 *).

More details about the generators and their configuration are given in the SCODE-
CONGRA User Guide, chapter "Tasks", section "Preferences of ETAS SCODE-
CONGRA", subsection "Configuration of the Solvers".

The user guide is opened via Help — Help Contents.

5. Click on Apply.

SCODE Workbench V3.0 — Getting Started 138

ETAS

6. First Steps with SCODE Workbench

With that, the internal cache will speed up the tool by reusing solutions already

calculated.

6. Configure the Maxima installation directory in the "Maxima" subnode (small arrow

in Figure 83).

7. Click on Apply or Apply and Close.

If you click on Apply, the "Preferences" window remains open.

To select and configure a generator

To use a code generator, activate the generator as follows.

1. In the SCODE Workbench window, select Window — Preferences.

The "Preferences" window opens.

2. In the "Preferences" window, expand the "SCODE-CONGRA" node and go to the

"Generator" subnode.

|t}fpefiltertext G t Fe=Tn g - g
General Generator Configuration
C/C++
EHANDEQQK Output folder | src-gen |
EMF Compare Use generator specific subfolder
Help Suffix for inverse callbacks [inveRsE |
Install/Update
MATLAB/Simulink Prefix for autogenerated variables | t |
Model Validation Function input template | %name% |
Run/Debug i
SCODE-ANALYZER [] Optimize method code
« SCODE-CONGRA [Return status of tearing computation
Build Use if staternent for conditional expressions
Diagram [] Generate Extended State Space form additionally
Execution Environment Floating point data type width 64 ~
Generator
Refactoring Code Styling
Solver [] Use explicit bracketing
Syntax Coloring . .
Sirius Mazxirmurm length of lines in generated code | 120
Team Boolean expression in if condition
Terminal [5plit complex boolean expressions
M axirnum complexity allowed | 3
Error Handling
Error case handling Use default value
Validity checks on inputs reject
Validity checks on parameters | reject
Validity checks on states reject
Generators
C/FMI
ESDL
MATLAB
[JETAS ASCMO-MOCA
Restore Defaults Apply
® @ |é, Apply and Close Cancel

Figure 84. "Preferences" window with "Generator" settings for SCODE-CONGRA

3. In the "Generators" area, select the generator(s) you want to use.

SCODE Workbench V3.0 — Getting Started

139

ETAS 6. First Steps with SCODE Workbench

More details about the generators and their configuration are given in the SCODE-
CONGRA User Guide, chapter "Tasks", section "Triggering the generators". The
user guide is opened via Help — Help Contents.

4. Files are generated in the working directory. Make sure that the respective access
rights for this folder are available.

6.2.2. Start Using SCODE-CONGRA

To start using the features of SCODE-CONGRA, it is helpful to start with one of the
examples provided with the tool.

To create an example project:

1. Do one of the following:
o Right-click in the project explorer and select New — Example from the
context menu.
o Select File — New — Example.

o Click on the arrow next to the =} ~ New button and select Example from
the dropdown menu.

The "New Example" window opens. It shows the examples for SCODE-ANALYZER
and SCODE-CONGRA.

SCODE Workbench V3.0 — Getting Started 140

ETAS 6. First Steps with SCODE Workbench

Select a wizard _—

Wizards;

w = SCODE-AMNALYZER Examples
Cruise control
Pl controller
Requirements tracing using YAKINDU Traceability
Water tank
w = SCODE-COMGRA Examples
= Cart pole pendulum
=2 DC motor
= Longitudinal vehicle
= Requirements tracing using YAKINDU Traceability
= Suspension
= Tutorial Chapter 1 - Basic triangle
= Tutorial Chapter 2 - Solving the triangle system

= Tutorial Chapter 3 - Solving a model with the cache mechanism
= Tutorial Chapter 4 - Using units

@ < Back Next > Finish

“ NOTE For most of the functionality of SCODE-CONGRA, it is
necessary to activate a Computer Algebra System as
solver; see section 6.2.1.

2. In the "New Example" window, select a SCODE-CONGRA example project and
click on Next.

The selected project is listed.

SCODE Workbench V3.0 — Getting Started 141

ETAS 6. First Steps with SCODE Workbench

Example Projects

Create the example projects listed below.

SCODE-COMGRA Tutonial Chapter 1 - Basic triangle

Introductory example for a systemn describing the relations in a Rename...
rectangular triangle.

@ Next > Finish | | Cancel

3. Click on Finish to create the sample project.

If the SCODE Workbench uses the SCODE-ANALYZER perspective, you are
asked if you want to use the SCODE-CONGRA perspective instead. The SCODE-
CONGRA perspective is a selection of views, tabs and pages optimized for
SCODE-CONGRA.

@ Open the SCODE-CONGRA perspective?

[JRemember my decisicn

Open Perspecti'.rel | Mo

4. Click on Open Perspective to continue.

You may be asked to select a solution.

SCODE Workbench V3.0 — Getting Started 142

ETAS 6. First Steps with SCODE Workbench

Request to solve [F=(a"b)/2, c*2=a"2+b"2] for vaniable(s) a,b in context "area” (numOfVariables: 2, numOfRelations: 2)

a = sqrt(sqri(c"4-16*F~2)+c2)/sqrt(2) (value unknown)

]
a = -sgrt{c"2-sqrt(c™4-16%F*2))/sqrt(2]) (value unknown)

n)
a = sqrt(c™2-sqrt(c™4-16°F*2])/sqrt(2) (value unknown)

€

b = -(sqrt(sqrt(c”4-16"F*2)+c2) *(sqrt(2)"sqri{c™4-16"F*2)-sqrt(2)*c2)) /(B°F) (value unknown

b = -(sqrt(c"2-sqrt(c"4-16*F~2)) *(sqri(2)*sqr(c "4-16*F*2)+sqrt(2)*c*2)) /(8*F) (value unknow

b = (sgrt{c"2-sqrt(c™4-16%F*2))* (sgrt(2)"sqrt(c4-16"F*2) +sqrt(2)*c"2)) /(8*F) (value unknown)

5. Click on OK to accept the default selection.

The example project is imported into your workspace. It is shown in the project

explorer.

6. In the project explorer, open the SCODE-CONGRA Tutorial Chapter 1 -
Basic triangle folder and double-click on one of the entries below

TriangleSystemBasic.syq.

The selected graph opens.

™

File Edit Diagram Mavigate Search Project Run Window Help

> i Infos (10 items)

B H@DA P B e D i =15
5 Project Explorer 53 = O 3 TriangleSystem & big icLoop B4 legs B area 32 = 0O
B S W & » [TriangleSystemBasic.syg » irh area
VLQESEODE—CONGRATutmia\Chapter] -Basic of - 'S.E\. - @ = B - Q:><b (% [} @_ g E: % Palette I
> src-gen @ =
v [TriangleSystemBasic m ==
@ trianglepng anglesum =O 2= Modes e
v @ E‘gangleSystemBaslc.syq et @Variable
area
Relation
L% bigAlgebraicLoop &
L2 legs & GraphEdges <
o7 TriangleSystem "\ Edge
C & Timing Edges <
a
b J Integrate
Yfz Delay
& Tearing Edges
b
o Tear
pythagoras
< > zlpha
9% Outline 2 4 Build B|g = O
area ﬂ—o
a F
|1-: Problems % [C] Properties g Execution Environment &l Console Y & = 18
10 items
Description Resource Path Location Type

2|0 % = EEE

You are now ready to discover or use SCODE-CONGRA!

SCODE Workbench V3.0 — Getting Started

143

ETAS 6. First Steps with SCODE Workbench

6.3. Simulation in MATLAB®

“ NOTE Working installations of MATLAB® and Simulink® are required.

Tests have been performed with versions R2016b, R2017b,
R2018b, and R2019b.

To activate interaction with MATLAB for simulation, the connection between SCODE
Workbench and MATLAB has to be configured.

6.3.1. Uninstall Old Connection to MATLAB®

If an old SCODE-CONGRA version (e.g., 1.5.0) is installed on the PC, make sure that
first the MLConnect Client gets deleted manually. The default path was
C:\Users\<your user id>\Documents\MATLAB. There, the following files and
folder need to be deleted:

* MATLABClient folder
e ETASConnect.m file
¢ sctLaunch.mfile

If the MLConnect Client was installed on a different path, make sure that the same files
and folders are deleted from that path.

6.3.2. Connect Current Version
To connect SCODE Workbench and MATLAB®

1. In the SCODE Workbench window, select Window — Preferences.

2. In the "Preferences" window, go to the "MATLAB/Simulink" node.

This node lists all MATLAB installations on your computer.

[type filter text | | MATLAB/Simulink RIS S:
General Server configuration
C/C++
EHANDBOOK Connection Timeout [seconds] | 300
EMF Compare Connect with MATLAE versions
Help
Install/Update W s
MATLAB/Simulink R2017b (is not or not properly installed)
Model Validation L1R2012b
Run/Debug []R2019b
SCODE-ANALYZER
SCODE-CONGRA
Sirius
Team
Terminal Restore Defaults Apply

Figure 85. "Preferences" window, "MATLAB/Simulink" node

SCODE Workbench V3.0 — Getting Started 144

ETAS 6. First Steps with SCODE Workbench

3. Select ([+]) the MATLAB version(s) you want to connect.
4. Deselect ([]) the MATLAB version(s) you want to disconnect.
5. Click on Apply and Close.

A message window informs you about the result of the configuration process.

More details are given in the following parts of the online help (opened via Help — Help
Contents):

» SCODE-ANALYZER User Guide, chapter "Tasks", section "Establish Connection
between SCODE and MATLAB"

* SCODE-CONGRA User Guide, chapter "Tasks", section "Using MATLAB and
Simulink for simulation”

SCODE Workbench V3.0 — Getting Started 145

ETAS 7. Useful Information

7. Useful Information

This chapter contains useful information for working with the SCODE product family.

7.1. SCODE-ANALYZER: Generating TPT Test Cases

SCODE-ANALYZER can generate C code for a model. This C code can be tested with
TPT &Y test cases, which are also generated by SCODE-ANALYZER.

The challenge in this approach is that TPT can only access global variables of the

C code, and SCODE-ANALYZER only generates local variables in the generated
functions. So, it is necessary to manually create additional C code that declares global
variables which TPT can access, and code that calls the SCODE-ANALYZER-generated
C code. This section explains how this code looks like and what steps are necessary to
execute the test cases.

“ NOTE It is recommended that you use a TPT version that contains the
C/C++ Platform. Using an older version is possible, but differs
from the procedure described here.

This section is based on TPT 16, it uses the C/C++ Platform.

7.1.1. SCODE-ANALYZER Project

First, you need a SCODE-ANALYZER project with working C code generation. This
section uses the water tank example; To create an example project for SCODE-
ANALYZER explains how to create the project.

You can generate TPT test cases for such a project, provided that the following
requirements are met.

* The default transition behavior must be set to non-transition.

You can set the behavior either for the entire workspace in the "Preferences”
window (see To set the transition behavior) or for this project in the project

properties (Figure 86).

| type filter text | SCODE-ANALYZER =1 - &
Re_source Enable specific settings
Builders .
Proi SCODE-ANALYZER behaviour
roject Matures
Project References [De'laull transition behaviour non-transition] w

Run/Debug Settings
~ SCODE-ANALYZER

Diagram
Generator
Restore Defaults Apply
@ Apply and Close Cancel

Figure 86. "Properties for <project>" window, "SCODE-ANALYZER" node

SCODE Workbench V3.0 — Getting Started 146

ETAS 7. Useful Information
» The "Generation Source" property in the "SCODE-ANALYZER\Generator" node
must be set to Mode Transition Matrix (see Figure 25).

“ NOTE This means you have to specify the transition matrix
correctly.

» C code generation must be activated.

» As long as you do not focus on testing actions, the "Output type" property can be
set to Modes.

Figure 87 shows an example for generator settings that can be used with TPT test case
generation.

| type filter text | Generator M M

ono

R - .
ssouree Enable specific settings

Generators
Project References CIMATLAB
Run/Debug Settings Mc

~ SCODE-AMNALYZER [JESDL

Diagram Cc++
Generator

Builders
Project Matures

Maming

Function input template | input_%name% |

Enum type template | Fenamed_Type |

Generatar configuration

Qutput folder | src-gen |

Use generator specific subfolder

Maximum length of lines in generated code | 120 |

Generation source Mede Transition Matrix -
Dimensicn and mode representation Enumeration ~
Rule generation type Using Rule Definition ~

OQutput type Modes ~
Verification

Verfication code | Off ~

Reduce ruleset prior to generation

[[] Optimize rule terms pricr to generation

Restore Defaults Apply

® Apply and Close Cancel

Figure 87. "Properties for <project>" window, "SCODE-ANALYZER\Generator" node

To create a TPT test case

You have to export a test suite.

1. Right-click the SCODE-ANALYZER project or the SCODE file and select Export
from the context menu.

2. In the list of the export wizard, select test suite generation for SCODE-ANALYZER
(see Figure 88).

SCODE Workbench V3.0 — Getting Started 147

ETAS 7. Useful Information

Select

Generate a TPT file containing a test suite for a SCODE-AMALYZER model H
to the local file system.

Select an export wizard:

| type filter text |

5 = General

v CfC++

» = Install

5 =% lava

» [Run/Debug

w = SCODE-AMALYZER
Maodel

Mede Transition Graph
Report

Test Suite

» = SCODE-COMGRA
5 = Teamn

@ < Back Finish Cancel

Figure 88. "Export" window with selected SCODE-ANALYZER test suite generation

3. Click on Next to continue.
The "Generate Test Suite" dialog window opens.

4. Enter or select (via the Browse workspace button) path 2 and name of your
project’s * . scode file.

5. Enter or select (via the Browse button) the destination folder.E!
In this example, the resulting file is stored in the project folder.

6. If you want to ignore potential actions in the SCODE-ANALYZER project, activate
Exclude action dimensions *.

SCODE Workbench V3.0 — Getting Started 148

ETAS 7. Useful Information

Generate Test Suite
Generate a test suite from the mode transition matrix of a SCODE-AMALYZER model.

AMALYZER File: | D:/Data/SCODE/_AMNALYZER/ WS_TPT/Water tank/water_tank.scode | Browse workspace...

Destination Folder: | D:/Data/SCODE/_ANALYZER/WS_TPT/Water tank | Browse...

[] Generate separate file for each source mode

Exclude action dimensions from the generation of verification criteria

@ < Back Mext = Cancel

Figure 89. "Generate Test Suite" window with settings for the example

7. Click on Finish to create the test suite.

The generated file is named <project name>.tpt. Itis stored in the selected
destination folder.

7 Project Explorer 33 = O
5SS Y 8
w EH Water tank
w water_tank.scode
[Problemn Space
5 i Modes (2)
y i 2 Events (3]
=5 Mapping ANALYZER to CONGRA
water_tank.tpt

@l

7.1.2. Additional C Code
Next, you have to generate C code for the project. B2

The generated code is stored according to your settings. The following files are
generated:

* water tank.c (Table 18)
* water tank.h (Table 19)
* water tank_ Types.h (Table 20)

SCODE Workbench V3.0 — Getting Started 149

ETAS 7. Useful Information

/**

* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

*

* @source water tank.scode

*

* @tool SCODE-ANALYZER 3.0.0

*

* @options

* Generation source: Mode Transition Matrix
* Dimension and mode representation: Enumeration

* Rule generation type: Using Rule Definition
* Output type: Modes

*

**/

#include "water tank.h"
#include "water tank Types.h"

mode Type water tank ModeSelector (mode Type input currentMode,
Water level Type input Water level) {
mode Type mode = mode Type Idle;
switch (input currentMode) {
case mode Type Idle:
if ((input Water level == Water level Type below minimum)) {
mode = mode Type Fill up;
} else if ((input Water level ==

Water level Type above maximum)) {
mode = mode Type Drain;
} else {
mode = mode Type Idle;
}
break;
case mode Type Fill up:
if ((input Water level == Water level Type ok)) {
mode = mode Type Idle;
} else {
mode = mode Type Fill up;
}
break;
case mode Type Drain:
if ((input Water level == Water level Type ok)) {
mode = mode Type Idle;
} else {

mode = mode Type Drain;

}

break;

default: {
mode = input currentMode;
break;

}
} /* switch (input currentMode)/
return mode;
} / water tank ModeSelector*/

Table 18. water tank.c (C file generated for the water tank example)

SCODE Workbench V3.0 — Getting Started 150

ETAS 7. Useful Information

/**
x

#ifndef WATER TANK H
#define WATER TANK H

#include "water tank Types.h"

extern mode Type water tank ModeSelector (mode Type
input currentMode, Water level Type input Water level);

#endif /* WATER TANK H */

Table 19. water tank.h (corresponding header file for water tank.c)

/**
k)

#ifndef WATER TANK TYPES H
#define WATER TANK TYPES H

/* Generating information for dimension: "mode Type" */
/* Generating enumeration for : mode Type */
typedef enum {
mode Type Idle,
mode Type Fill up,
mode Type Drain
} mode Type;

/* Generating information for dimension: "Water level Type" */
/* Generating enumeration for : Water level Type */
typedef enum {
Water level Type below minimum,
Water level Type ok,
Water level Type above maximum
} Water level Type;

/* Generating information for dimension: "Outlet valve Type" */
/* Generating enumeration for : Outlet valve Type */
typedef enum {
Outlet valve Type closed,
Outlet valve Type open
} Outlet valve Type;

/* Generating information for dimension: "Pump Type" */
/* Generating enumeration for : Pump Type */
typedef enum {
Pump Type off,
Pump Type on
} Pump Type;

#endif /* WATER TANK TYPES H */

Table 20. water tank Types.h (defines the required enumerations)

SCODE Workbench V3.0 — Getting Started 151

ETAS 7. Useful Information

The function that actually contains all the logic is the water_tank_mode selector
function (see Table 18). As the variables are all local variables, an additional C file that
creates global variables accessible to TPT is necessary.

You can create the additional file either from within SCODE-ANALYZER, or externally
with any text editor. An example for such a file is shown in Table 21. Place it somewhere
inside the SCODE-ANALYZER project.

Instead of using an additional C file, you can also define this code as customer wrapper
code in TPT.

/**
* manually created to test water tank mode selector

**/

#include "water tank.h"
#include "water tank Types.h"

Water level Type Water level;
mode Type mode;
mode Type currentMode;

void testWaterTankModeSelector () {
mode=water tank ModeSelector (currentMode, Water level);

}

Table 21. C file that defines global variables

The code defines the inputs (Water level, currentMode) and the output (mode) as
global variables. The testWaterTankModeSelector function is the function that calls
the mode selector generated by SCODE-ANALYZER. The included header files are used
to make the code know about the input and output data types and the function call of the
mode selector.

7.1.3. Working in TPT

This section describes how to set up the TPT test project, using the * . tpt file (see To
create a TPT test case) and the C code (see section 7.1.2).

7.1.3.1. Preparations

TPT needs to know the compiler it is supposed to use.

To create a compiler configuration

1. In the TPT window, select Options — Preferences.
2. In the "Preferences" window, go to the "General\C Compiler" node.
3. Do one of the following:

o Make sure that your compiler configuration is correct.

o Add a new compiler configuration.

SCODE Workbench V3.0 — Getting Started 152

ETAS

“ NOTE

"General\C Compiler" node.

7. Useful Information

TPT can use only compilers that are configured in the

TPT Tool Preferences
Configuration of general settings nd preferences of TPT

8

GENERAL
(@ General settings

L)

Lo (D) Steplists MinGW GNU_472
i (D Report

+o (D) Plugdns

i (1) Dialog Auto Ansners
- () Obsolete Features
Lo (D) Variables

@ AM

“- (D Custom Attributes
(0 ASCET

(1) Assessment Library
(1) AUTOSAR

6] C conpiers|

() CANape

(1) codeBeamer

@ CTC++

(1) Debug

(@ Edipse

D A

() LABCAR

(D MATLAB

(1) Polarion

(@ TPT AP

water_tank.tpt

(1) TPT Model Behavior

(D) TPT Assessment Behavior
@ AL

(D) Assessment Library

(@ Equivalence Classes

() MDF

(@ Modifications

(1) RM Settings

i 8 :mrk;anz\ MinGW 64 Version name: MinGW/ 64
: ssesdle

Instalation path: |C: e\ Syringws4

Compiler kind: (@) MinGW (0) Visual Studio

Figure 90. TPT "Preferences" window, "General\C Compiler" node

4. Close the "Preferences" window.

7.1.3.2. TPT Project
To create the TPT project

1. Start TPT.

2. If the TPT "Welcome" page opens, click on New to create a new, empty project.

TPT‘ Welcome to TPT 16

Overview
.J Open

Open an existing TPT project.

25 ASCET

[New

Create a new TPT project for any other

platform.

U

%) LABCAR

3. In the main TPT window, select File — Open.

SCODE Workbench V3.0 — Getting Started

153

ETAS

7. Useful Information

4. In the file selection window, select the * . tpt file you created with {project-nameA},

then click on Open.

A warning window opens that 55 warnings occurred while loading the * . tpt file.
These warnings occurred because {project-nameA} uses an older TPT version.
You can ignore the warnings because Piketec confirmed that TPT will remain able

to read old file formats.

. Click on Open it anyway.

The * . tpt file is imported. The following tree is shown in the TPT "Project” tab:

Bl \Jwater tank
B states
=- E Testet
= States
= E Equivalence Class
- States
EI Bl currentMode
: , States
=] variants [3]
i ¥ 1die [ID=62]

=¥ Fillup [1D=63]
“ ¥ Drain [ID=64]
= E Water_level

-] variants [3]

¥ ok [ID=59]

I'_-'r--'-l_j Transitions [9]

#-2] M1_M2_variants [1]
2 M1_M3 variants [1]
2 M1_M1_variants [1]
2 M2_M1_variants [1]
2 M2_M2_variants [2]
2 M3_M1_variants [1]
) M3_M3_variants [2]
21 Testlets [7]

-2 M1 M2 E1 [1]

S M1 M3 E2 [1]

S M1 ML [1]

2 M2_M1.E3 [1]

2 M2 M2 E4 [1]

2 M3_M1_E3 [1]

2 M3_M3 E5 [1]

I':'r--'-l_j Test Cases [7]

f-] M1_M2_E1 [1]

MMz E2 [1]

M1 ML [1]

2 M2_M1_E3 [1]

2 M2_ M2 E4 [1]

2 M3_M1E3 [1]

2 M3 M3 E5 [1]

- ﬂ below minimum [ID=58]

¥ above maximum [ID=50]

Figure 91. * . tpt file opened in TPT

SCODE Workbench V3.0 — Getting Started

154

ETAS

To execute the test cases, three steps are required:

A. Define a test set; see Test Set.
B. Configure the platform; see Platform.

C. Execute the test; see Execution.

Test Set

To define a test set

7. Useful Information

1. In the main TPT window, select Execution — Test Set Definition.

The "Test Set Definition" window opens.

2. Click on the Add a test set button.

Atest set is created. The right panel shows all possible test cases.

3. Activate the desired test cases.

Test Set Definition -- water_tank |
Create and manage test sets for the execution. Multiple test sets can be selected for comparison
and editing.
+ @ X3 | 58 @ E|R
w i Test Cases [Active: 7/ 7]
w- (MM M2 EL [Active: 1/1]
w- (ML M3 E2 [Active: 1/1]
E- BATIMI ML [Active: 1/1]
w- (M2 M1 E3 [Active: 1/1]
w- (M2 M2 E4 [Active: 1/1]
w- ACIM3_ M1 ES [Active: 1/1]
B [IM3 M3 ES [Active: 1/1]
Condition: []
Reguirement set: |@ <all requirements= o "@‘
[] Restrict to linked test cases
b Ger

Figure 92. "Test Set Definition" window with test set (all test cases activated)

4. Close the "Test Set Definition" window.

SCODE Workbench V3.0 — Getting Started

155

ETAS

Platform

To configure the platform

1. In the main TPT window, select Execution — Platform

The "Platform Configuration" window opens.

7. Useful Information

Configuration.

2. In that window, click on the Add Platform Configuration button and create a new

C/C++ Platform.

Platform Configuration
Create and manage platforms

{F"\‘

| A v B

ASCET Platform
ASCET@FUSION Platform
Azsessment Platform

AUTOSAR Platform

0 BPD

Z/C++ Platform

]
pel
i

AR - el

The platform is shown in the "Platform Configuration" window (Eigure 93).

Platiorm Configuration
Create and manage platforms.

&

FRB| AV

£ No compiler has been specified or the specified compler could not be found.

W sttings
Step size [s]: 10ms | Timeout [s]: |min History size [steps):
[] enfarce single threaded execution
ttings
Compiler: | - ‘ [complle as 64 bit
Project root folder: Iwm tptfile.dir}\ ‘ |:|
Sources: & &
Source Extra Cptions Analyze Headers
A2L interface file: | ‘ I:|
B Showcodeinterface || [Ignore includes
Test driver i
Mapping: |<Nona> “
TasuO stumentaton:
Test driver 1/O: Enable Read/Write for output channels [] Initialize interface variables with pointer typesin C
Indude /O consistency check [[] Round scaling results
Output folder: st totie.dir wigenerated]
[B) Generate and Compile test driver ...

Figure 93. "Platform Configuration" window with newly created platform

SCODE Workbench V3.0 — Getting Started

156

ETAS 7. Useful Information

3. In the "Compiler" combo box, select the compiler you want to use.

“ NOTE

Only compilers defined in the "Preferences" window (see
To create a compiler configuration) are available.

4. If you are using a 64 bit compiler, activate the Compile as 64 bit option.

Source settings
Compiler: ~ Compile as &4 bit
Project root folder:

MinGW GNU_472

5. In the "Sources" area, add the C files.
In the example, the generated water tank.c and the manually created
testnWaterTankModeSelector.c are added (see also section 7.1.2).

Sources:

B H X~

Source

Extra Options Analyze Headers

| ¥

src-gen\Cl\testWaterTankModeSelector.c
[£] sre-gem\Ciwater_tank\water_tank.c

The "Platform Configuration" window should look as follows:

&

Platform Configuration
Create and manage platforms

FHD| A

VM settings
S C/C+ + Platform]
Step size [5]: 10ms Timeout [s): | imin History size [steps]: 100
[Enforce single threadsd execution
ttings
Compiler: |MinGW 64 - | Compile as 64 bit
Projectroot folder: | s ipt tptfle.ir}\
Sources: @& |
Source Extra Options Analyze Headers

[¢] src-gen\C\testWaterTankModeSelector.c
[¢] src-gen\Cwater_tankiwater_tank.c

AL interface file:
% Analyze sources |) Show code interface [Tgnore includes
Test driver
Mapping: <None> v
TASMO instrumentation: |Full Instrumentation

Test driver 1/O:

Output folder:

Enable Read/Write for output channels
Indude 1/0 consistency check

${tpt. tptfile.dir}\. tptgenerated

[Initialize interface variables with pointer types in C

[] Round scaling resilts

|Z:) Generate and Compile test driver ...

Figure 94. "Platform Configuration" window with configured platform
Next, the variables and functions are analyzed, and the interface is exported.
SCODE Workbench V3.0 — Getting Started 157

ETAS

7. Useful Information

To import the interface

1. In the "Platform Configuration" window (Figure 94), click on the Analyze sources

button.

The "Code interface" window opens. It lists the added C files and their elements.

Select functions and variables to connect to TPT

Functions can be connected with TPT in different ways. You can either schedule them which means that they wil be
periodically called within the generated test frame or you can impert them and call them within your steplists.

Ay The C code configuration was not imported, please extract the interface.

-[Z] unresolved references

& S IS
Mame Details
= [¢] sregen\ChtestwaterTankModeSelector.c
E>----l:\.|']l Water_level: Water_level_Type connect
V) currentMode: mode_Type connect
V) mode: mode_Type connect
----- ()Y testWaterTankModeSelector(): void schedule
=- @ src-gen'Clwater_tank\water_tank.c
“.(f) water_tank_ModeSelector(input_currentMode:mods_Type, input_Water_level:\:
W] Custom Wrapper Code

Import interface Cancel

Figure 95. "Code interface" window

2. Make sure that the global variables in the additional C file are connected.

MName

Details
- @ src-gen’C\testWaterTankModeSelector.c

V) currentMode: mode_Type
V) mode: mode_Type

TPT can access only connected variables.

3. For the function in the additional C file, select schedule.

SCODE Workbench V3.0 — Getting Started

158

ETAS 7. Useful Information

Mame Details
=- @ src-gen’C\testWaterTankModeSelector.c
>{V} Water_level: Water_level Type connect
>{V} currentMode: mode_Type connect
>{V} meode: mode_Type connect

- @ src-gen'Ciwater_tank'water_tank.c
- [#] Custom Wrapper Code
--[Z] unresolved references

dient-function

This function (testWaterTankModeSelector in the example) calls the function
under test. With the schedule setting, it is executed periodically.

4. Set the function in the generated C file (water tank Mode Selector inthe
example) to ignore or client-function.

It is necessary to include that file that TPT knows about the function under test.

Both selections shown in Figure 96 work.

Select functions and variables to connect to TPT

Functions can be cennected with TPT in different ways. You can either schedule them which means that they wil be
periedically called within the generated test frame or you can import them and call them within your steplists.

& The C code configuration was not imported, please extract the interface.

A 5]ty (D] Y-
Mame Details
= @ sre-genChtestWaterTankModeSelector. c
(V) Water_level: Water_level_Type connect
! (W) currentMode: mode_Type connect
() mode: mode_Type connect
(f)” testWaterTankModeSelector(): void schedule
=1+ [e] sre-gen\Clwater_tankiwater_tank.c
“.(f) water_tank_ModeSelector(input_currentMode:mode_Type, input_Water_level:\W;
- [w] Custom Wrapper Code
(=] unresolved references

Select functions and variables to connect to TPT

Functions can be connected with TPT in different ways. You can either schedule them which means that they will be
periodicalty called within the generated test frame or you can import them and call them within your steplists.

- o (L21 (7]
Name Details
- [¢] src-gen\CltestwaterTankModeSelector.c
>(V) Water_level: Water_level_Type connect
E (V) currentMode: mode_Type connect
(V) mode: mode_Type connect
to(f)! testWaterTankModeSelector(): void schedule
- [src-geniChwater_tank'water_tank.c
“.(f) water_tank_MedeSelector(input_currentMode:mode_Type, input_Water_level:Widient-function
- [W] Custom Wrapper Code

(] unresolved references

Figure 96. Working selections in the "Code interface" window

5. Click on Import interface.

SCODE Workbench V3.0 — Getting Started 159

ETAS

The "Import Interface” window opens. It displays the information found in the
C files.

7. Useful Information

Import Interface
Choose signals, types and functions from the list and configure the import.
Synchrorization: () Name (@) External Name | Mapping: | <New Mapping> ~||l@ E O @ @ (f) | changed [Aunchanged [FNew [Removed | [T
Status Acton Rename Hame A Data type 2 Value =
Changed Ignore @ - o cumentMode Mode_Type Mode_Type_Idie (0) NONE ~
Changed Ignore] - o mode Mode_Type Mode_Type_Ide (0) NONE
Changed Ionore ® - o Water level Water_level_Type Water_level_Type_below_mirimum (0) NCNE
New Ignore @ ©-Mode_Type int32
New Ignore o Water_level Type int32
v
Defauit All Ignore All Default Selected | [] Hide new signals in other mappings [] Import rename to mapping [Import values to mapping
I Export to Excel Guess rename Cancel

Figure 97. "Import Interface" window
6. Click on Default All to select the actions TPT suggests for the elements.

Import Interface
Choose =ignals, types and functions from the list and configure the import.

Synchronization: O Marne @ External Mame | Mapping: | <Mew Mapping:

Status Action Rename Ma
Changed Modify &8 .- o
Changed Modify & o
Changed Modify] o

Mew Add [1 | --m-:-
Mew Add (71] "'I.“.I'E

7. Click on OK to close the "Import Interface" window and import the interface.

8. In the "Platform Configuration" window, click on Generate and compile test
driver.

9. If no errors occurred, close the "Platform Configuration" window.

If inconsistencies between configuration and C files are found, you are asked if you want
to continue with code generation. It is strongly recommended that you click on No in the
message window to abort code generation. The following instruction may solve the
problem.

SCODE Workbench V3.0 — Getting Started

160

ETAS 7. Useful Information

To resolve inconsistencies

1. Close the "Platform Configuration" window.
2. In the main TPT window, select View — Declaration Editor.
3. In the "Declaration Editor" window , delete all existing declarations.

File View Tools]
% ® W % M ||FE| B E = | Mapping: | no mapping selected v 2@ . | E O © | B EE | seectuused | [

L} Data type Unit Value Equivalence class set Record Mode Group Description (=
T —— mbeterde) | @ por | [

e ket [mode type e @l | [|
Viater Jevel Water level Type | | Water fevel Type below mamm @] | & Jor | | |

< >

Hide details

General Equivalence Class Set

@ Charnel ~| Datatype: |<various> - Desaription:
Name: |* 3 rows selected *

Group: Mode: OUT “

Unit: ~ Record

Value: (0 (0bD000D00D000D00000000000000000000 Dx00000000)

Figure 98. "Declaration Editor" window

4. Close the "Declaration Editor" window.

5. Repeat the procedure in To import the interface.

The test driver generation should now complete without further problems.
Execution

Once test driver generation was successful, you can execute the test cases.

To execute test cases

1. In the main TPT window, select Execution — Execution Configuration.

2. In the "Execution Configuration" window, select a test set from the "Test set" combo
box.

SCODE Workbench V3.0 — Getting Started 161

ETAS

7. Useful Information

Use one core

Save TPT file before running

CLE e =
W & General 2} Attributes @ Storage Report Settings) Global Assessment
Data
Directory: &{ipt. tptfile.dir}\testdata\${tpt. execconfigname. filename}
Advanced
Report
Format: HTML (embedded resources) -
Report directory:
Advanced
Execution
Mode ()) Normal mode Cancel when 9999 tests failed
Flatform: cé‘ C/C++Flatform e @
Test set; |— Selected test cases -- (7 e | @
— — 7
Parameter set: Selected test cases — (7
Variables: 5]
Back-to-Back: | <None > ~
Execute [] pashboard Assess Report

Figure 99. "Execution Configuration" window

3. If desired, activate Save TPT file before running.

4. Click on Run.

If a warning regarding file format changes opens, click on yes to continue.

The tests are executed. Results are displayed in the "Build Progress" window. Passed
tests are marked with green hooks (see Figure 100), failed tests are marked with red

flashes (& Done (execution errar).).

SCODE Workbench V3.0 — Getting Started

162

ETAS 7. Useful Information

& & & 4 a

Signals TestReport Reclassify | Stat StartSelected Pause Cancel | Dsbug Signals Owerview Report

Test Caze Messages Detailz From To Result
Default Configuration Dane. - T Test case: M3_M3_E5 ¥ A
cE' C/C++ Platform Done. i @ Initislization
U Tesf Cases @ Execution
O MimzEr - € Assessment 0s 40ms W
U M1M2_E1 « Done. Report/Test Information,Timeout 0s 40ms
O MMz ’ :M37M371: (in state Testlet step no, 1) 0s 20ms
n ';1 M_3 o ¥ Done : ¢ 'M3_M3_2 gn state 'Testlet step no. 2 20ms 40ms
= ' i £F Report generation
) Mprz i 8 Summary
T M1_M1 ' Dore.
ol Mz Mz E3
T m2_m1_E3 ' Done.
[M2 M2 E4
T M2 M2 E4 " Dore.
il M3 M1
T M3_M1_E3 + Dore,
M3 M2 ES
T S —
v
[Initialization] ~

Creating directory 'D:\ETASData\SCODE-3.0_RNALYZER\WS_TFI2\Water tank\testdata\Default_Configuration\C_C__ Flatform\00&_M3_
Reading parameters from platform C/C++ Platform.

Starting test executable "D:\ETASData‘\3CODE-3.0_ANALYZER\WS_TPT2\Water tank\.tptgeneratedi\bin\TFT_TestDriver.exe” -r "D:\ET
Writing parameter file testcase_exchange.params.xml.

Writing parameter file testcase_exchange.params_to_platform.tptkin.

Writing parameters to platform C/C++ Platform.

Compilation started (lst pass).

Compilation started (2nd pass).

Info file generation started.

[Execution]

Execute test case.

Starting test executable "D:\ETASData\SCODE-3.0_ANALYZER\WS_TPT2\Water tank\.tptgenerated\bin\IPI_TestDriver.exe" "D:\EIASD
saving tracks done

Done.

Execution finished.

[Summary]
Done. hd
< >

Runs: 7 /7 (total time 04 s)

Figure 100. "TPT Build Progress" window, all tests passed
To analyze the signals, select a test case and click on the Signals button &2 in the

toolbar of the "TPT Build Progress" window to open the TPT Signal Viewer. See the TPT
online help for further information.

SCODE Workbench V3.0 — Getting Started 163

ETAS 7. Useful Information

File Edit View Filter Table Interpolation View Signals
soue mE EIEREFL:| 80| |e.alolo.lo. mlm ||k |

i

°5| M3_M3_E5

o

Value 1.00 100

— mede_Type_Drain (2) 3 F
— mode_Type Drain (2) 0.75 Fo7s

—1] E
0.505 Fos0

— n/a] C

4] £
0.25 Fozs

—— Water_level_Type_sbove... E E
0.00—] Fo.00

T 1171 I L I L I UL I TT1r 1T I TT1r 1T ‘ LB I LI I T o

0000 DOD5 0010 0015 0020 0025 0030 0035 0.040

main:

Testlet: M3_M3_ES |
Testlet:

M3_M3_ES: Section 1 |M37M37E5: Section 2 |

Equivalence Class:

M3 _M3_1: Section 1| M3_M3_1: Section z|

Equivalence Class:

| M3_M3_2: Section 1| M3_M3_2 Section 2|
LI L L B

0.000 0.005 0010 0015 0.0z0 0025 0.030 0.035 0.040

Figure 101. TPT Signal Viewer

SCODE Workbench V3.0 — Getting Started 164

ETAS 7. Useful Information

7.2. SCODE-CONGRA: Colors

Color Meaning Example
Fill colors
light grey undefined node see Example: Explicit Output,
Unused Nodes
green1 free variable see Example: Inputs, Implicit
Outputs, Algebraic Loop
light grey parameter see Example: Parameter, Fixed
Variable

orange1? |argument

blue1 input see Example: Inputs, Implicit
Outputs, Algebraic Loop

green22 tearing variable

white relation see Example: Inputs, Implicit
Outputs, Algebraic Loop

dark grey2 [relation with subsystem

light yellow? [relation with char. table/map

orange22 relation with conditional
equation subsystem

pink2 tearing relation

Edge/border colors

black normal edge see Example: Inputs, Implicit
Outputs, Algebraic Loop

blue2 underconstrained (sub-)graph |see Example: Underconstrained

red overconstrained (sub-)graph |2nd Overconstrained

yellow algebraic loop see Example: Inputs, Implicit
Outputs, Algebraic Loop

brown? subgraph with intrinsic BNS

pink2 teared algebraic loop

rosy2 algebraic loop in teared

algebraic loop

a: Seerthe SCODE-CONGRA User Guide for more information.
Table 22. SCODE-CONGRA graphs — CONGRA Classic colors and meanings

SCODE Workbench V3.0 — Getting Started 165

ETAS 7. Useful Information

Example: Inputs, Implicit Outputs, Algebraic Loop

O—[::» Qhms_law Resistor_Power_Law <J—O
R

P

|
Figure 102. Flow with inputs, implicit outputs, and algebraic loop
The flow in Figure 102 contains the following elements:
e variables |, P, R, U
* relation Ohms_law:U=R*|
» relation Resistor Power Law:P=U*I

Variables R and P are marked as inputs. They use the fill color and thin black
borders.

Variables U and | are free, but they can be computed. Therefore, they use fill color

The relations use the fill color white.

Both relations and the variables | and U form the algebraic loop. They, as well as the
connections between them, use the border color

Example: Explicit Output, Unused Nodes

O

U

O—r:.: Qhms_law Resistor_Power_Law
R \ P

|
Figure 103. Flow with relations, inputs, explicit output, and unused parts

The flow in Figure 103 contains the same elements as the flow in Figure 102.
Variable | is marked as output. It uses fill color and a thick black border.

Relation Resistor Power Law and variable P are not required to compute the explicit
output I. Therefore, they, and the connecting edges, use as border color.

Variables P is free, but it can, in principle, be computed. Therefore, it uses fill color

SCODE Workbench V3.0 — Getting Started 166

ETAS 7. Useful Information

Example: Parameter, Fixed Variable

R RN PR -:{|100% “|E

Figure 104. System graph (left) and flow (right) with relation, parameter, variables

System graph and flow in Figure 104 contain the following elements:

* variables |, U
* parameter R
e relation RO1: U =R * |

R is specified as parameter, it uses the fill color , both in the system graph and in
the flow.
A fixed variable uses the fill color in a flow, but it looks like free variables in the

system graph. See Figure 56 for an example.

Example: Underconstrained and Overconstrained

O s —@

O—Am|—0O

g
Figure 105. Flow with underconstrained and overconstrained parts

The flow in Figure 105 contains the following elements:
 variables a, b, c,d, g, h, i,]j

relation RO1:a=b+2+d

relation R02: 3*b=a +c

relation R0O5: g=h -
* relation R06: g - 2*i = j

Variable b is determined by R01 and R02, i,e, b is overconstrained. Therefore, the
borders of b, R01, R02 and the connecting edges use the border color red.

One input variable, i, is not sufficient to compute free variables g, h and j; g, h, and j are
underconstrained. Therefore, the borders of g, h, j, R05, R06 and the connecting edges
use the border color blue?2.

SCODE Workbench V3.0 — Getting Started 167

ETAS 7. Useful Information

7.3. SCODE Workbench: Installing Yakindu Traceability

This section describes the installation of Yakindu Traceability in the SCODE Workbench.

“ NOTE Yakindu Traceability is a requirements traceability management
tool created and sold by itemis AG.

For any information beyond how to install Yakindu Traceability
into SCODE Workbench, please contact www.itemis.com/.

When you buy Yakindu Traceability, you will receive a ZIP file, the YT repository. Unzip
that repository to a local folder on your PC.

To set up SCODE Workbench for Yakindu Traceability installation
1. Start the SCODE Workbench.

2. Select Window — Preferences.

3. In the "Preferences" window, go to the "General\Network Connections" node and
do the following:

i. Set the "Active Provider" to Manual (Ain Figure 106).
i. Selectthe HTTP schema (B in Figure 106) and click on the Edit button.

iii. Inthe "Edit Proxy Entry" window, enter host, port, your user and your
password, then click on OK.

Schema:

Host: | | Port: | I |
Requires Authentication:
User: | A |

Password: |

iv. Editthe HTTPS (C in Figure 106) schema in the same way.
v. Click on Apply.

SCODE Workbench V3.0 — Getting Started 168

https://www.itemis.com/

ETAS 7. Useful Information

The "General\Network Connections" node should look as follows:

|t)rpefi|ter text | Network Connections mre v B
~ General [

» Appearance Active Provider: | Manual ~| (A)
Compare/Patch
Content Types Proxy entries

> Editors Sche.. Host Port Provider Auth User Password Edit...
Globalizati
K S B HTTP . — Manual ~ Yes - Clear

€ys - -

Link Handlers e HTTPS Manual Yes

» Network Connections SOCKS Manual No
Perspectives [J HTP Dynamic Dynamic Mative No
Project Matures
Quick Search
Search Proxy bypass

> Security Host Provider Add Host...
Start d Shutd

7 Siartup and shucon localhost Manual :
Ul Freeze Monitoring Edit...

» User Storage Service 127.0.01 Manual 5
Web Browser =S

> Workspace

s CfC++ v Restore Defaults Apply
® Lél I.él Apply and Close Cancel

Figure 106. "Preferences" window, "General\Network Connections" node

4. Go to the "Install/Updates\Available Software Sites" node and make sure that only
the following update sites are enabled:
o Eclipse Luna for BIRT 4.4.2

(available at download.eclipse.org/releases/luna/)

o Eclipse (current TP version)

(available at download.eclipse.org/releases/2020-09/)

type filter text Available Sof Sites S §
» General
» C/C++ .
EHANDBOOK | type filter text x |
» EMF Compare Mame - Location Enabled Add...
» Help O <l cot http://download.eclipse.org/tocls/cdt/releases/10.0 Disabled §
v Install/Update [<flease scripting http://download.eclipse.org/ease/update/release Disabled £
Automatic Updates ¥ Eclipse 2020-09 releases http://download.eclipse.org/releases/2020-09/ Enabled —
MA?E::;I;:;S:JTE‘CNE Sites O« Eclipse 2020-09 updates http://download.eclipse.org/eclipse/updates/4.17/ Disabled
. Model Validation | Eclipse Luna for BIRT 4.4.2 http://download.eclipse.org/releases/luna/ Enabled ! Reload
» Run/Debug O« Egit http://dewnload.eclipse.org/egit/updates Disabled -
. SCODE-ANALYZER] J,J\maga Export http://veger.github.com/eclipse-gef-imageexport Disabled Disable
. SCODE-CONGRA O ﬂMylyn http://download.eclipse.org/mylyn/releases/latest Disabled s
» Sirius
» Team Export...
Terminal
® 4

Figure 107. "Preferences" window, "Install/lUpdate\Available Software Sites" node

5. If they are not listed, use the Add button to add the missing site(s).
6. Click on Apply and Close.

SCODE Workbench V3.0 — Getting Started 169

http://download.eclipse.org/releases/luna/
http://download.eclipse.org/releases/2020-09/

ETAS 7. Useful Information

To install Yakindu Traceability into SCODE Workbench

1. In the SCODE Workbench window, select Help — Install New Software.

2.
3.

4.

Available Software
Select a site or enter the location of a site, \J)

Workwith:a V|| Add... | | Manage... |

| type filter text | Select All
Deselect All

MName Version
[1(@) There is no site selected.

In the "Install" window, click on Add.

In the "Add Repository" window, do the following:

Name: | VT repo for TP 2020-09 with Xtext 2.23 | Llocal. |
Location: | filey/D/Ternp/ Y T2 yt-repository/ | | Archive... |
oK

@ Add | Cancel |

i. Inthe "Name" field, enter a meaningful name for the repository.
i. Click on Local.

iii. In the file selection window, select the folder where you stored the repository,
then click on Select folder.

iv. Click on Add.

The repository name and file path appear in the "Work with" field of the "Install"
window. The repository content is shown in the table below.

Work with: | VT repo for TP 2020-00 with Xtext 223 - file/D:/Temp/YT2/yt-repository, ~| | Add.. | | Manage.. |

| type filter text | Select All
Mame Version Deselect All

>] 000 com.yakindu.traceability
»] 000 Third party dependencies
» 1000 Uncategorized

Expand the top and bottom nodes and select the features as shown in Figure 108.

SCODE Workbench V3.0 — Getting Started 170

ETAS 7. Useful Information

Available Software
Check the itemns that you wish to install, \:)‘
Work with: | Trepo for TP 2020-09 with Xtext 2.23 - filer/D:/Temp/YT2/yt-repository/ Add... Manage...
| type filter text Select All
MName Version Deselect All
~ (W] 000 com.yakindu traceability
[g Traceability Adapter for ETAS ASCET Blockdiagrams 1.1.2052.20201 2071641
[l Traceability Adapter for Xtext Feature 1.1.2052.202012071641
[Traceability Analysis Model and Services Feature 1.1.2052.202012071634
[l Traceability Analysis Perspective 1.1.2052.202012071634
[Traceability Attribute Mapping Storage Feature 1.1.2052.202012071641
@: Traceability Core Feature 1.1.2052.202012071634
@: Traceability Dashboard Feature 1.1.2052.202012071634
@: Traceability Excel Storage Feature 1.1.2052.20201 2071641
@z Traceability Link By Query Storage 1.1.2052.20201 2071641
@z Traceability Port for Eclipse XML Feature 1.1.2052.20201 2071641
[Traceability Port for ETAS ASCET SCT Feature 1.1.2052.202012071641
@: Traceability Port for MS Excel Feature 1.1.2052.20201 2071641
@: Traceability Port for MS Woerd Feature 1.1.2052.20201 2071641
@: Traceability Snapshot Feature 1.1.2052.202012071634
@: Traceability TextEditor adapter Feature 1.1.2052.20201 2071641
» []000 Third party dependencies
~ [] 000 Uncategorized
[l YAKINDU Licensemanagement 3.0.0.202006270400
[l YAKINDU Licensemanagement Ul 3.1.0.202006270400

16 items selected

Details
Show only the latest versions of available software Hide iterns that are already installed
Group items by category What is already installed?

[[]Show only software applicable to target environment
Contact all update sites during install te find required software

® < Back Finish Cancel

Figure 108. "Install" window with Yakindu Traceability features selected for
installation

5. Click on Next to continue.

In the "Install" window, the "Install Details" page opens. It lists all components
selected for installation.

6. Click on Next to continue.

In the "Install" window, the "Review Licenses" page opens. It lists the liccense
agreements for the selected components.

SCODE Workbench V3.0 — Getting Started 171

ETAS 7. Useful Information

Review Licenses

Licenses must be reviewed and accepted before the software can be installed. C)‘“
Licenses: License text:
» [Enter License Description here.] [Enter License Description here.]

» Eclipse Foundation Software User Agreement
» Eclipse Foundation Software User Agreement
» Eclipse Foundation Software User Agreement
» General Terms and Conditions of [TEMIS AG for Software Licenses

(®) | accept the terms of the license agreements

(Ol do not accept the terms of the license agreements

@ et [Finish || Cancel

7. Read the license agreements, then activate | accept the terms of the license
agreements.

8. Click on Finish to start the installation.

Installing Yakindu Traceability can take quite some time. During the process, the
"Certificates" window opens.

SCODE Workbench V3.0 — Getting Started 172

ETAS 7. Useful Information

Do you trust these certificates?

Eclipse.org Foundation', Inc.; IT: Eclipse.org Foundatien', Inc.

Select All Deselect All

w Eclipse.org Foundation', Inc.; IT; Eclipse.org Foundation®, Inc.
v Eclipse.org Foundation’, Inc,; IT; Eclipse.crg Foundatien', Inc.
w DigiCert High Assurance Code Signing CA-1; www.digicert.com; DigiCert Inc
w DigiCert High Assurance EV Root CA; www.digicert.com; DigiCert Inc
GTE CyberTrust Global Root; GTE CyberTrust Selutions', Inc.; GTE Cerporaticon

Details

® Accept selected Cancel

9. In the "Certificates" window, select the certificate(s) you trust, then click on Accept
selected.

When the installation is complete, you are asked to restart the SCODE Workbench.

Do not restart the SCODE Workbench. Instead, click on Cancel and exit the SCODE
Workbench. After that, proceed as described in To update the SCODE Workbench.

To update the SCODE Workbench

“ NOTE This procedure requires administrator rights.

1. Download the JDK needed to run Yakindu Traceability.

The JDK is available at github.com/AdoptOpenJDK/openjdk11-binaries/releases/
download/jdk-11.0.10+9/0OpenJDK11U-jdk x64 windows hotspot 11.0.10 9.zip.

2. Unzip the JDK to a folder (e.g., C: \Data\jdk-11.0.10+9) on your computer.
3. In the Windows file system, navigate to your SCODE Workbench installation.

4. Replace the content of the jre folder with the JDK content you downloaded in the
previous step (e.g., to C:\Data\jdk-11.0.10+9).

To do so, you may perform the following two steps:

i. In the SCODE Workbench installation directory, rename the existing jre
folder (e.g., t0 jre-SCODE Workbench).

SCODE Workbench V3.0 — Getting Started 173

https://github.com/AdoptOpenJDK/openjdk11-binaries/releases/download/jdk-11.0.10+9/OpenJDK11U-jdk_x64_windows_hotspot_11.0.10_9.zip
https://github.com/AdoptOpenJDK/openjdk11-binaries/releases/download/jdk-11.0.10+9/OpenJDK11U-jdk_x64_windows_hotspot_11.0.10_9.zip

ETAS 7. Useful Information

i. Copy or move the unzipped JDK folder (e.g., jdk-11.0.10+9) to the
SCODE Workbench installation directory and rename it to jre.

5. Start the SCODE Workbench and use it together with Yakindu Traceability.

File Edit | Source Refactor Mavigate | Search Project| Traceability |Window Hel
Myl i iQ i@ 7 v 41 Configuration »
5 Project Explorer §3 = 8 water_tank.scod Update *
ES Y § &/ Reporting »
e & maﬂuall}- . .

> iz Water tank; .y Validation >
Export b

#include "y
#include "4 Snapshot -]

Figure 109. SCODE Workbench with menus added by Yakindu Traceability

SCODE Workbench V3.0 — Getting Started

174

ETAS 7. Useful Information

[30] testing tool by Piketec GmbH
[31] in the Windows file system

[32] If you need help, see To generate code from the transition matrix.

[33] In previous TPT versions, this button was named View Assessment Results.

SCODE Workbench V3.0 — Getting Started 175

ETAS 8. Glossary

8. Glossary

This chapter lists terms and abbreviations relevant for the SCODE Workbench, SCODE-
ANALYZER (section 8.1), and SCODE-CONGRA (section 8.2).

MATLAB®
A multi-paradigm numerical computing environment and proprietary programming
language developed by MathWorks®.

project
A project stores a model.

The SCODE Workbench offers two special project types, the SCODE-ANALYZER
project and the SCODE-CONGRA project. Both project types are identified as such by
the Eclipse environment. An open SCODE-ANALYZER project is marked by the .2
icon. An open SCODE-CONGRA project is marked by the -t icon.

SCODE
System CO-DEsign
Simulink®

Tool for modeling, simulation and analysis of dynamic systems. Developed by
MathWorks®.

8.1. SCODE-ANALYZER

action dimension

Action dimensions are adapted as an effect of a mode change.

alternative
An alternative is a certain state that a dimension can assume. In a real system, this is
often an abstraction of a set or a range of real values.

condition dimension

A dimension that causes mode changes.
DAG
directed acyclic graph

dimension

Dimensions are aspects of the system or its context that cause or represent different
system behaviors (or cause-effect chains). The dimensions may comprise, €.g.,
discrete states of the contexts, external requests to the system.

There are three types of dimensions: condition dimension, action dimension, and info
dimension.

decision tree

A graphical visualization of the mode definition rules.

SCODE Workbench V3.0 — Getting Started 176

ETAS 8. Glossary

Essential Analysis

The SCODE Essential Analysis is based on the Essential Systems Analysis,
developed by McMenamin and Palmer originally for IT systems, and extends and
modifies it to enable application for physically dominated systems.

The successful application of the SCODE Essential Analysis yields a decomposition of
the overall problem in several smaller subproblems which can be solved separately
and more easily. The integration of the subproblem solutions then provides the overall
solution of the original problem.

event

An event describes the conditions for the transition from one mode to another. An
event is described by a set of rules that define its trigger conditions using the same
rule definitions.

Only inclusion rules created from condition dimensions are used for the definition of
events.

ICE
internal combustion engine

info dimension

Info dimensions are useful as information in analysis.

mode
A specific situation. In this situation, the system has to behave in a specific way, i.e.,
the system resides in the mode.

A mode is represented by a set of states in the problem space, i.e., in a Zwicky box by
combinations of selected sets of alternatives for each dimension. Modes partition the
system states of a Zwicky box into different sets of states using inclusion and
exclusion rules.

non-system event
An event with impossible or meaningless rules, or with rules that are possible by
nature, but ruled out by design.

non-system mode
A mode that stores impossible or meaningless combinations of conditions, and
combinations that are possible by nature, but ruled out by design.

no transition

If a non-system event occurs, no transition between modes takes place.

overlapping

Two modes or two events overlap if at least one state is present in both modes or both
events.

Overlapping modes or events make the system non-deterministic; they lead to errors.

rule

Rules define the conditions for the system states that belong to a mode or an event.

SCODE Workbench V3.0 — Getting Started 177

https://archive.org/details/essentialsystems00mcme/page/n8/mode/1up

ETAS 8. Glossary

SoC
state of charge

source mode

The mode where a mode transition starts.
Not to be confused with the start mode of the system.
start mode
The mode the system enters first at the start of the execution.
Not to be confused with the source mode of a transition.

state

A state in SCODE-ANALYZER is characterized by selecting a specific alternative for
each dimension. Each state is represented by a discrete set of alternatives.

The total number of states in a system, n..... is the product of the numbers of
alternatives, na;, of all n..., conditions.

Ntotal = Hi=li:ncond na;
One or more states can be grouped into a mode.

system mode

A mode that is relevant for the problem solution and models the corresponding
system.

target mode

The mode where a transition ends.

TPT
Time Partition Testing tool by Piketec GmbH

Zwicky box

A Zwicky box is a grid box (table) to support morphological analysis for multi-
dimensional, non-quantifiable problems.

The Zwicky box is named after the developer of this method, Fritz Zwicky (February
14, 1898 — February 8, 1974), a Swiss astronomer.

8.2. SCODE-CONGRA

computation

A computation is the result of solving a flow, an executable sequence of computation
steps. It captures the solved equations, and also orders the computation steps in a
linear way, via levels.

ESDL

Embedded Software Development Language; a high-level programming language for
writing real-time, deeply embedded software.

flow

A flow defines a computation order in a system. A system itself can have any numbers
of flows attached to it.

SCODE Workbench V3.0 — Getting Started 178

ETAS 8. Glossary

A flow is associated to a system and defines which variables are considered as input,
output or constant to the specific system.

If a flow is valid, the equations in the system become directed to produce the imposed
outputs of the relations.

For example, if m and c are given, then E is computed as follows: E = m*c?
If E and c are given, then m is computed as follows:m = E / ¢?
A valid flow is the basis for code generation.
level
Used to order the steps in a computation.

In the computation SYQ file, the levels are represented by the @level (i, 7)
annotation. In the computation graph, the levels are shown as red numbers.

Maxima

An open-source third-party computer algebra system, which is available on your
computer with SCODE-CONGRA.

MuPAD®

Used by the Symbolic Math Toolbox™ as part of its underlying computational engine.
Can be used as solver in SCODE-CONGRA.

relation

A relation describes how different variables of a system are interrelated. It does not
imply a computation direction. The relations between different variables are specified
by mathematical equations, e.g., Einstein’s famous relation: E - m*c? = 0

Symbolic Math Toolbox™

Provides functions for solving, plotting, and manipulating symbolic math equations.
The MuPAD solver that can be used in SCODE-CONGRA is included in this toolbox.

syQ

System Equation Language

SyaQ file

Atextual file in SYQ that contains the semantic description of the system.

A SYQ file is the textual base of each SCODE-CONGRA project. Here, all variables,
relations, units, and flows are defined or stored (when you are working in the graphical
editor).

Each SCODE-CONGRA project must have at least one SYQ file.

system

A system is defined as a set of variables and relations between the variables. A
system is undirected, i.e. no inputs and outputs are specified. You cannot generate
executable code from an undirected system.

System Equation Language

A language developed by ETAS to describe a continuous system in SCODE-
CONGRA.

SCODE Workbench V3.0 — Getting Started 179

ETAS 8. Glossary

variable

A variable is an element that can be read and written during the execution of a
SCODE-CONGRA model.

In SCODE-CONGRA, all variables are deemed to be continuous.

SCODE Workbench V3.0 — Getting Started 180

ETAS 9. Tutorial Hints

9. Tutorial Hints

This chapter contains reference information for SCODE-ANALYZER (section 9.1) and
SCODE-CONGRA (section 9.2).

9.1. SCODE-ANALYZER Tutorial Hints

9.1.1. Problem Space

Dimension Alternatives

battery SOC &4 full / empty / normal

battery at OT Y yes / no

electric engine cable okay / defective

silent mode &9 on / off

desired acceleration increase speed / decrease speed / keep speed
fuel tank empty / not empty

car moves no/yes

Table 23. Problem space — suggestions (see section 4.3)

9.1.2. Modes
Mode Dimensions
battery battery electric silent fuel tank car moves
SOC at OT engine mode
cable
charging empty or yes okay yes
normal
discharging NOT yes okay
empty
standstill yes okay no
no empty
defective empty
combustion defective not empty
engine only no not empty
empty yes okay off not empty
mechanical full yes okay yes
brake

Table 24. Modes and rules —first set of suggestions (see section 4.4.1)

SCODE Workbench V3.0 — Getting Started 181

ETAS 9. Tutorial Hints

Mode Dimensions
battery battery electric silent fuel tank car desired
SOC at OT engine mode moves acceleration
cable
charging empty or yes okay yes decrease speed
normal
discharging NOT yes okay NOT decrease
empty speed
standstill yes okay no decrease speed
no empty
defective empty
combustion defective not empty
engine only no not empty
empty yes okay off not empty NOT decrease
speed
mechanical full yes okay yes decrease speed

brake

Table 25. Modes and rules — suggestions for additional condition (see section 4.4.2)

Dimensions Suggestion 1 Suggestion 2
battery SOC empty empty

battery at OT yes yes

electric engine cable okay okay

silent mode on

fuel tank empty

car moves

desired acceleration NOT decrease speed NOT decrease speed

Table 26. Suggested rules for the missing states. Alternatives that cannot be true at the
same time are marked.

Dimensions Suggestion

battery SOC empty

battery at OT yes

electric engine cable okay

silent mode off

fuel tank empty

car moves

desired acceleration NOT decrease speed

Table 27. Suggested rules for the states that are still missing after suggestion 1 from the
previous table has been inserted as non-system mode

SCODE Workbench V3.0 — Getting Started 182

ETAS

9kay'"’

battery SOC

full,
normal

empty

<~ v

=

speed,
_keep speed
‘,,»
battery at OT
~ |
|
_yes no
P \
A~ v
g / N
defective empty not émpty
N\
/ \
¥ LY
fuel tank [standstill } Combustion engine only]
empty nét\hmpty

standstill

increase

~
Combustion engine only

desired acceleration

“decrease
speed-_
Sa
battery at OT
“L yes.
v
7
y, \
/
not empty empty o
/
¥ LY

battery SO

P
C
\.

empty, full
normal

¥ N
[mechanical brake]

charging]

A
electric engine cable

[standstill J car moves
|

yes~ nF

v
standstill

9. Tutorial Hints

ay defective

l /

fuel tank
~

| N
empty notempty
|

v
{ standstill]

“a

[Combustion engine only]

Figure 110. Complete decision tree for the hybrid car example; with condition desired acceleration as root (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started

183

ETAS

no

()

decrease
speed

<ired acceleration

increase
speed ,
keep speed

battery at OT no

yes

not empty

defective

electric engine cable

ckay

not-empty

empty

electric engine cable okay

defective

Combustion &

standsti

not empty
battery 50C Furlt

empty,

normial

Combustion engine enly

w0
&
S
o
=

full,
normal
battery S0C empty
notempty

Combusticn engine enly

no

car moves yes
I

car moves e

Combusticn engine cnly

andst
%

Combustion engine enly

Figure 111. The decision tree from Figure 110 with horizontal orientation (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started

mechanical brake
standstill

9. Tutorial Hints

184

ETAS 9. Tutorial Hints

desired acceleration

increase

detrease
speed, speed
keep speed
yes yes
electric engine cable no no | electric engine cable
okay defective defective okay
battery S5OC battery SOC
full , empty,
normal empty not empty nofmal o
discharging [Combustion engine enly] empty
no WS yes

mechanical brake

Figure 112. DAG view of the decision tree with vertical orientation (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started 185

ETAS 9. Tutorial Hints

discharging

full

/

Combustion engine only]
increase

5 B
et
rease
5

standstill

charging

mechanical brake

Figure 113. DAG view of the decision tree with horizontal orientation (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started 186

ETAS 9. Tutorial Hints

| q><‘-3| i T2 e | 4 =—|_\‘| £+ L Choose optimization type V| Layer 3 V|

desired acceleration b Layer 2
Layer 4

Layer 5
Layer &
Layer 7
Layer 8

[desired acceleration }

decrease increa;e
speed speed,
p keep speed
¥ ,
battery at OT battery at OT
no” yes np Yes.

¥ ¥

e 'Y
[electric engine cable] fuel tank [electric engine cable]

Figure 114. Decision tree with selected layers, first three levels are shown (see section
4.4.4)

SCODE Workbench V3.0 — Getting Started 187

ETAS 9. Tutorial Hints

b battery SOC b empty --> battery at OT b yes --> electric engine cable P okay --> silent mode p

Combustion engine only

increase
speed,
Keep speed
. . decrease
desired acceleration
speed

no
Combustion engine only

INCTease
speed,
keep speed

desired acceleration

:

decrease
speed

okay

not empty

decrease
speed
increase
desired acceleration speed;
keep speed

ne.
off
increase
desired acceleration speed ,
keep speed

3

[=]
[~]

decrease
speed.

on

decrease
speed

-
increase
speed,

no.

increase
desired acceleration speed
keep speed

decrease
speed

Figure 115. Sub-tree (horizontal orientation) with non-system modes displayed (see
section 4.4.4)

SCODE Workbench V3.0 — Getting Started 188

ETAS 9. Tutorial Hints

no yes
4 fuel tank electric engine cable
not empty empty okay defective
¥ ¥
[Combustion engine only] silent mode
off on empty not empty
¥ A
fuel tank car moves [Combustion engine only
not emnpty empty yes no
¥ ¥
car moves car moves charging standstill
yes no yes na,
a ¥ ¥
desired acceleration charging
decrease increase incréase decrease
speed speed, speed, speed
keep speed keep speed

¥
[Combustion engine only] [Combustion engine only]

Figure 116. Sub-tree before height optimization (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started 189

ETAS 9. Tutorial Hints

yes no
[electric engine cable]
okay defective empty not empty
[desired acceleration] [Combusticn engine only
decrease increase
speed , empty not empty
speed
keep speed
[Combustion engine cnly] [Combustion engine cnly]

no yes

Figure 117. Sub-tree after height optimization (see section 4.4.4)

SCODE Workbench V3.0 — Getting Started 190

ETAS 9. Tutorial Hints

9.1.3. Events and Transitions

next mode

charging standstill mechanic discharging combustion non-
current mode al brake engine only system
charging * E2 E4 E1 E3
standstill E5 * E6 E7 E8
mechanical brake E9 E10 * E11 E12
discharging E13 E14 E15 * E16
combustion E17 E18 E19 E20 *
engine only

Table 28. Transitions with associated events (*: no transition; --: forbidden transition) for
section 4.6

SCODE Workbench V3.0 — Getting Started 191

ETAS

9. Tutorial Hints

event

name

rule(s)

E1 charging
discharging

* battery SOC = full AND battery at OT = yes AND

electric engine cable = okay AND car moves = yes
AND desired acceleration = (increase speed OR keep
speed)

battery SOC = full AND battery at OT = yes AND
electric engine cable = okay AND car moves = no
AND desired acceleration = (increase speed OR keep
speed)

battery SOC = normal AND battery at OT = yes AND
electric engine cable = okay AND desired acceleration
= NOT(decrease speed)

E2 charging
standstill

electric engine cable = defective AND fuel tank =
empty

battery at OT = no AND fuel tank = empty

battery at OT = yes AND electric engine cable = okay
AND car moves = no AND desired acceleration =
decrease speed

E4 charging
mechanBrake

battery SOC = full AND battery at OT = yes and
electric engine cable = okay AND car moves = yes
AND desired acceleration = decrease speed

E3 charging
combustionOnly

battery SOC = empty AND silent mode = off AND fuel
tank = not empty AND desired acceleration =
(increase speed OR keep speed)

electric engine cable = defective AND fuel tank = not
empty

battery at OT = no AND electric engine cable = okay
AND fuel tank = not empty AND desired acceleration
= decrease speed

battery at OT = no AND electric engine cable = okay
AND silent mode = on AND fuel tank = not empty
AND desired acceleration = (increase speed OR keep
speed)

battery SOC = (full OR normal) AND battery at OT =
no AND electric engine cable = okay AND silent mode
= off AND fuel tank = not empty AND desired
acceleration = (increase speed OR keep speed)

Table 29. Events and rules for the transitions from mode charging

SCODE Workbench V3.0 — Getting Started 192

ETAS 9. Tutorial Hints

event rule(s)

name

E5 standstill + battery SOC = (empty OR normal) AND battery at OT
charging

= yes AND electric engine cable = okay AND car
moves = yes AND desired acceleration = decrease

speed
E6 standstill « battery SOC = full AND battery at OT = yes AND
mechanBrake electric engine cable = okay AND car moves = yes
AND desired acceleration = decrease speed
E7 standstill + battery SOC = (full or normal) AND battery at OT =
discharging yes AND electric engine cable = okay AND desired
acceleration = (increase speed OR keep speed)
E§ standstill + battery SOC = empty AND silent mode = off AND fuel
combustionOnly

tank = not empty AND desired acceleration =
(increase speed OR keep speed)

* electric engine cable = defective AND fuel tank = not
empty AND desired acceleration = decrease speed

* battery SOC = (full or normal) AND battery at OT = no
AND fuel tank = not empty AND desired acceleration
= (increase speed OR keep speed)

* battery SOC = empty AND battery at OT = no AND
silent mode = on AND fuel tank = not empty AND
desired acceleration = (increase speed OR keep
speed)

* battery at OT = yes AND electric engine cable =
defective AND silent mode = on AND fuel tank = not
empty AND desired acceleration = (increase speed
OR keep speed)

* battery SOC = (full or normal) AND battery at OT =
yes AND electric engine cable = defective AND silent
mode = off AND fuel tank = not empty AND desired
acceleration = (increase speed OR keep speed)

* battery at OT = no AND electric engine cable = okay
AND fuel tank = not empty AND desired acceleration
= decrease speed

Table 30. Events and rules for the transitions from mode standstill

SCODE Workbench V3.0 — Getting Started 193

ETAS

9. Tutorial Hints

event

name

rule(s)

E9 mechanBrake
charging

* battery SOC = (empty or normal) AND battery at OT =

yes AND electric engine cable = okay AND car moves
= yes AND desired acceleration = decrease speed

E10 mechanBrake
standstill

battery at OT = yes AND electric engine cable = okay
AND car moves = no AND desired acceleration =
decrease speed

electric engine cable = defective AND fuel tank =
empty

battery at OT = no AND electric engine cable =
defective AND fuel tank = empty

battery at OT = no AND electric engine cable = okay
AND fuel tank = empty

E11 mechanBrake
discharging

battery SOC = (full or normal) AND battery at OT =
yes AND electric engine cable = okay AND desired
acceleration = (increase speed OR keep speed)

E12 mechanBrake
combustionOnly

electric engine cable = defective AND fuel tank = not
empty AND desired acceleration = decrease speed

battery SOC = (full or normal) AND battery at OT = no
AND fuel tank = not empty AND desired acceleration
= (increase speed OR keep speed)

battery SOC = empty AND battery at OT = no AND
silent mode = on AND fuel tank = not empty AND
desired acceleration = (increase speed OR keep
speed)

battery at OT = yes AND electric engine cable =
defective AND silent mode = on AND fuel tank = not
empty AND desired acceleration = (increase speed
OR keep speed)

battery SOC = (full or normal) AND battery at OT =
yes AND electric engine cable = defective AND silent
mode = off AND fuel tank = not empty AND desired
acceleration = (increase speed OR keep speed)

battery at OT = no AND electric engine cable = okay
AND fuel tank = not empty AND desired acceleration
= decrease speed

* battery SOC = empty AND silent mode = off AND fuel

tank = not empty AND desired acceleration =
(increase speed OR keep speed)

Table 31. Events and rules for the transitions from mode mechanical brake

SCODE Workbench V3.0 — Getting Started 194

ETAS

9. Tutorial Hints

event

name

rule(s)

E13 discharging_
charging

* battery SOC = (empty or normal) AND battery at OT =

yes AND electric engine cable = okay AND car moves
= yes AND desired acceleration = decrease speed

E14 discharging
standstill

battery at OT = yes AND electric engine cable = okay
AND car moves = no AND desired acceleration =
decrease speed

electric engine cable = defective AND fuel tank =
empty

battery at OT = no AND electric engine cable = okay
AND fuel tank = empty

E15 discharging
mechanBrake

battery SOC = full AND battery at OT = yes AND
electric engine cable = okay AND car moves = yes
AND desired acceleration = decrease speed

E16 discharging
combustionOnly

battery SOC = empty AND silent mode= off AND fuel
tank = not empty AND desired acceleration =
(increase speed OR keep speed)

battery SOC = (full or normal) AND battery at OT = no
AND fuel tank = not empty

battery at OT = yes AND electric engine cable =
defective AND silent mode = on AND fuel tank = not
empty

battery at OT = yes AND electric engine cable =
defective AND silent mode = off AND fuel tank = not
empty AND desired acceleration = decrease speed

battery SOC = (full or normal) AND battery at OT =
yes AND electric engine cable = defective AND silent
mode = off AND fuel tank = not empty AND desired
acceleration = (increase speed OR keep speed)

battery SOC = empty AND battery at OT = no AND
fuel tank = not empty AND desired acceleration =
decrease speed

battery SOC = empty AND battery at OT = no AND
silent mode = on AND fuel tank = not empty AND
desired acceleration = (increase speed OR keep
speed)

Table 32. Events and rules for the transitions from mode discharging

SCODE Workbench V3.0 — Getting Started 195

ETAS 9. Tutorial Hints

event rule(s)

name

E17 combustionOnly_ * battery SOC = (empty or normal) AND battery at OT =
charging

yes AND electric engine cable = okay AND car moves
= yes AND desired acceleration = decrease speed

E18 combustionOnly - electric engine cable = defective AND fuel tank =
standstill empty

* battery at OT = yes AND electric engine cable = okay
AND car moves = no AND desired acceleration =
decrease speed

« battery at OT = no AND electric engine cable = okay
AND fuel tank = empty

E19 combustionOnly * battery SOC = full AND battery at OT = yes AND
mechanBrake . : _ —
electric engine cable = okay AND car moves = yes
AND desired acceleration = decrease speed

E20 combustionOnly * battery SOC = (full or normal) AND battery at OT =
discharging . . _ .

yes AND electric engine cable = okay AND desired
acceleration = (increase speed OR keep speed)

Table 33. Events and rules for the transitions from mode Combustion engine only

SCODE Workbench V3.0 — Getting Started 196

ETAS 9. Tutorial Hints

9.1.4. Code Generation: Mode Invariants

/**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

gy
package hybridCar;

import hybridCar.Mode Type;

import hybridCar.battery SOC Type;

import hybridCar.battery at OT Type;

import hybridCar.electric engine cable Type;
import hybridCar.silent mode Type;

import hybridCar.fuel tank Type;

import hybridCar.car moves_ Type;

import hybridCar.desired acceleration Type;

class hybridCar {

public Mode Type hybridCar ModeSelector (battery SOC Type battery SOC, battery at OT Type battery at OT,
electric_engine cable Type electric engine cable, silent mode Type silent mode, fuel tank Type
fuel tank, car moves Type car moves, desired acceleration Type desired acceleration) {

Mode Type mode = Mode Type.charging;

if ((!(battery SOC == battery SOC Type.full) && battery at OT == battery at OT Type.yes
&& electric engine cable == electric engine cable Type.okay && car moves == car moves Type.yes
&& desired acceleration == desired acceleration Type.decrease speed)) {

mode = Mode Type.charging;

SCODE Workbench V3.0 — Getting Started 197

ETAS 9. Tutorial Hints

} else if ((battery at OT == battery at OT Type.yes
&& electric _engine cable == electric engine cable Type.okay && car moves == car moves Type.no
&& desired acceleration == desired acceleration Type.decrease speed) ||
(battery at OT == battery at OT Type.no && fuel tank == fuel tank Type.empty) ||
(electric_engine cable == electric _engine cable Type.defective
&& fuel tank == fuel tank Type.empty)) {
mode = Mode Type.standstill;

} else 1if ((battery SOC == battery SOC Type.full && battery at OT == battery at OT Type.yes &&
electric _engine cable == electric engine cable Type.okay && car moves == car moves Type.yes &&
desired acceleration == desired acceleration Type.decrease_ speed)) {

mode = Mode Type.mechanical brake;

} else if ((! (battery SOC == battery SOC Type.empty) && battery at OT == battery at OT Type.yes &&
electric engine cable == electric engine cable Type.okay && ! (desired acceleration ==
desired acceleration Type.decrease speed))) {

mode = Mode Type.discharging;

} else 1if ((electric_engine cable == electric_engine cable Type.defective && fuel tank ==
fuel tank Type.not empty) || (battery at OT == battery at OT Type.no && fuel tank ==
fuel tank Type.not empty) || (battery SOC == battery SOC Type.empty && battery at OT ==
battery at OT Type.yes && electric engine cable == electric engine cable Type.okay &&
silent mode == silent mode Type.off && fuel tank == fuel tank Type.not empty &&

! (desired acceleration == desired acceleration Type.decrease speed))) {
mode = Mode Type.combustion engine only;

} else {
mode = Mode Type.charging;

}

return mode;
} // hybridCar ModeSelector
} // hybridCar

SCODE Workbench V3.0 — Getting Started 198

ETAS 9. Tutorial Hints

9.1.5. Code Generation: Transition Matrix

/**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

Ny
package hybridCar;

import hybridCar.Mode Type;

import hybridCar.battery SOC Type;

import hybridCar.battery at OT Type;

import hybridCar.electric engine cable Type;
import hybridCar.silent mode Type;

import hybridCar.fuel tank Type;

import hybridCar.car moves_ Type;

import hybridCar.desired acceleration Type;

class hybridCar {

public Mode Type hybridCar ModeSelector (Mode Type currentMode, battery SOC Type battery SOC,
battery at OT Type battery at OT, electric _engine cable Type electric_engine cable,
silent mode Type silent mode, fuel tank Type fuel tank, car moves_ Type car moves,
desired acceleration Type desired acceleration) {

Mode Type mode = Mode Type.charging;
switch (currentMode) {
case Mode Type.charging : {
if ((electric_engine cable == electric_engine cable Type.defective && fuel tank ==
fuel tank Type.empty) || (battery at OT == battery at OT Type.no &&
fuel tank == fuel tank Type.empty) || (battery at OT == battery at OT Type.yes
&& electric _engine cable == electric engine cable Type.okay && car moves ==
car moves Type.no && desired acceleration ==
desired acceleration Type.decrease speed)) {
mode = Mode Type.standstill;

SCODE Workbench V3.0 — Getting Started 199

ETAS 9. Tutorial Hints

} else if ((battery SOC == battery SOC Type.full && battery at OT == battery at OT Type.yes
&& electric _engine cable == electric engine cable Type.okay && car moves ==
car moves Type.yes && desired acceleration ==
desired acceleration Type.decrease speed)) {
mode = Mode Type.mechanical brake;

} else if (((battery SOC == battery SOC Type.full || battery SOC ==
battery SOC Type.normal) && battery at OT == battery at OT Type.yes &&
electric _engine cable == electric engine cable Type.okay && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==

desired acceleration Type.increase speed))) {
mode = Mode Type.discharging;

} else if ((battery SOC == battery SOC Type.empty && silent mode == silent mode Type.off &&
fuel tank == fuel tank Type.not empty && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==
desired acceleration Type.increase speed)) || (electric _engine cable ==
electric_engine cable Type.defective && fuel tank == fuel tank Type.not empty) ||
(battery at OT == battery at OT Type.no && fuel tank == fuel tank Type.not empty)) {

mode = Mode Type.combustion engine only;

} else {
mode = Mode Type.charging;
}
} // Mode Type.charging

case Mode Type.standstill : {

if (((battery SOC == battery SOC Type.empty || battery SOC == battery SOC Type.normal) &&
battery at OT == battery at OT Type.yes && electric engine cable ==
electric _engine cable Type.okay && car moves == car moves Type.yes &&
desired acceleration == desired acceleration Type.decrease speed)) {
mode = Mode Type.charging;

SCODE Workbench V3.0 — Getting Started 200

ETAS 9. Tutorial Hints

} else if ((battery SOC == battery SOC Type.full && battery at OT == battery at OT Type.yes

&& electric _engine cable == electric engine cable Type.okay && car moves ==
car moves Type.yes && desired acceleration ==
desired acceleration Type.decrease speed)) {

mode = Mode Type.mechanical brake;

} else if (((battery SOC == battery SOC Type.full || battery SOC ==
battery SOC Type.normal) && battery at OT == battery at OT Type.yes &&
electric _engine cable == electric engine cable Type.okay &&
desired acceleration Type.keep speed || desired acceleration ==
desired acceleration Type.increase speed))) {
mode = Mode Type.discharging;

(desired acceleration ==

} else if ((battery SOC == battery SOC Type.empty && silent mode == silent mode Type.off &&
fuel tank == fuel tank Type.not empty && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==
desired acceleration Type.increase speed)) || (battery at OT == battery at OT Type.no
&& fuel tank == fuel tank Type.not empty) || (electric _engine cable ==
electric_engine cable Type.defective && fuel tank == fuel tank Type.not empty)) {

mode = Mode Type.combustion engine only;

} else {

mode = Mode Type.standstill;
}

} // Mode Type.standstill

case Mode Type.mechanical brake : {

if (((battery SOC == battery SOC Type.empty || battery SOC == battery SOC Type.normal) &&
battery at OT == battery at OT Type.yes && electric engine cable ==
electric _engine cable Type.okay && car moves == car moves Type.yes &&
desired acceleration == desired acceleration Type.decrease speed)) {

mode = Mode Type.charging;

SCODE Workbench V3.0 — Getting Started 201

ETAS 9. Tutorial Hints

} else if ((battery at OT == battery at OT Type.yes && electric engine cable ==
electric _engine cable Type.okay && car moves == car moves Type.no &&
desired acceleration == desired acceleration Type.decrease speed) ||
(electric_engine cable == electric _engine cable Type.defective && fuel tank ==
fuel tank Type.empty) || (battery at OT == battery at OT Type.no &&
fuel tank == fuel tank Type.empty)) {

mode = Mode Type.standstill;

} else 1if (((battery SOC == battery SOC Type.full || battery SOC ==
battery SOC Type.normal) && battery at OT == battery at OT Type.yes &&
electric_engine cable == electric engine cable Type.okay && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==

desired acceleration Type.increase speed))) {

mode = Mode Type.discharging;

} else 1if ((battery SOC == battery SOC Type.empty && silent mode == silent mode Type.off &&
fuel tank == fuel tank Type.not empty && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==
desired acceleration Type.increase speed)) || (battery at OT == battery at OT Type.no
&& fuel tank == fuel tank Type.not empty) || (electric engine cable ==
electric engine cable Type.defective && fuel tank == fuel tank Type.not empty)) {

mode = Mode Type.combustion engine only;

} else {
mode = Mode Type.mechanical brake;

}
} // Mode Type.mechanical brake

case Mode Type.discharging : {
if (((battery SOC == battery SOC Type.empty || battery SOC == battery SOC Type.normal) &&
battery at OT == battery at OT Type.yes && electric engine cable ==
electric_engine cable Type.okay && car moves == car _moves Type.yes &&
desired acceleration == desired acceleration Type.decrease speed)) {
mode = Mode Type.charging;

SCODE Workbench V3.0 — Getting Started 202

ETAS

} else if ((battery at OT == battery at OT Type.yes && electric engine cable ==
electric _engine cable Type.okay && car moves == car moves Type.no &&
desired acceleration == desired acceleration Type.decrease speed) ||
(electric_engine cable == electric _engine cable Type.defective && fuel tank ==
fuel tank Type.empty) || (battery at OT == battery at OT Type.no &&
fuel tank == fuel tank Type.empty)) {

mode = Mode Type.standstill;

} else if ((battery SOC == battery SOC Type.full && battery at OT == battery at OT Type.yes
&& electric_engine cable == electric _engine cable Type.okay && car moves ==
car moves_ Type.yes && desired acceleration ==
desired acceleration Type.decrease speed)) {

mode = Mode Type.mechanical brake;

} else if ((battery SOC == battery SOC Type.empty && silent mode == silent mode Type.off &&
fuel tank == fuel tank Type.not empty && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==
desired acceleration Type.increase speed)) || (electric _engine cable ==
electric_engine cable Type.defective && fuel tank == fuel tank Type.not empty) ||
(battery at OT == battery at OT Type.no && fuel tank == fuel tank Type.not empty)) {

mode = Mode Type.combustion engine only;

} else {
mode = Mode Type.discharging;
}
} // Mode Type.discharging

case Mode Type.combustion engine only : {
if (((battery SOC == battery SOC Type.empty || battery SOC == battery SOC Type.normal) &&
battery at OT == battery at OT Type.yes && electric engine cable ==
electric _engine cable Type.okay && car moves == car moves Type.yes &&
desired acceleration == desired acceleration Type.decrease_ speed)) {
mode = Mode Type.charging;

SCODE Workbench V3.0 — Getting Started

9. Tutorial Hints

203

ETAS 9. Tutorial Hints

} else if ((electric engine cable == electric engine cable Type.defective && fuel tank ==
fuel tank Type.empty) || (battery at OT == battery at OT Type.yes &&
electric _engine cable == electric engine cable Type.okay && car moves ==
car moves_ Type.no && desired acceleration == desired acceleration Type.decrease speed)
|| (battery at OT == battery at OT Type.no && fuel tank == fuel tank Type.empty)) {
mode = Mode Type.standstill;

} else if ((battery SOC == battery SOC Type.full && battery at OT == battery at OT Type.yes
&& electric _engine cable == electric engine cable Type.okay && car moves ==
car moves Type.yes && desired acceleration ==
desired acceleration Type.decrease speed)) {

mode = Mode Type.mechanical brake;

} else if (((battery SOC == battery SOC Type.full || battery SOC ==
battery SOC Type.normal) && battery at OT == battery at OT Type.yes &&
electric _engine cable == electric engine cable Type.okay && (desired acceleration ==
desired acceleration Type.keep speed || desired acceleration ==

desired acceleration Type.increase speed))) {
mode = Mode Type.discharging;

} else {
mode = Mode Type.combustion engine only;
}

} // Mode Type.combustion engine only

default: {
mode = currentMode;
}
} // switch (currentMode)
return mode;
} // hybridCar ModeSelector
} // hybridCar

SCODE Workbench V3.0 — Getting Started 204

ETAS 9. Tutorial Hints

9.1.6. SCODE-ANALYZER Report

This section shows a report generated as a Word document (*.docx).

SCODE-ANALYZER Report

hybridCar.scode in hybridCar

Generated on -

This report has been generated by SCODE Workbench 2 2, SCODE Workbench has been released as an engineering tool and no
guarantee is given for the correctness of this output. All contents of this report have to be verified carefully before they are

Generated by SCODE Workbench on -

1

SCODE Workbench V3.0 — Getting Started 205

€ 4

INd 60:8 ‘T20Z ‘0T g84 U0 '€ YouaaxIoM 3A0JS Ag paressusd INd 60:8 ‘T20Z ‘0T ga4 U0 '€ YouaaxIoMm 3A0JS Ag paressusd
uoljela|adde
paads asealoul paads daay paisap
sak saAoW Jed
Aydwsa jou uey [any
3o apow Ju
a|qed
ENGLEIET aulbus 2111998 alnjesadwsa) [euoiesado = |10 10 e A1aneq
ou 10 e Aisneq 1y 1y 00s Assneq
lewou 208 Aleneq abieyd jo a1el1s = D0S 20S Ateneq
€40 T :8Iny JUBWWOY aAleuId)Y uoisuswiqg
8Ny apnjouy :adAL "SIUBLIWI0D 808dS Wajqold -UonauIsaq
a|ny
Adwa = suey [an) ANY 2AI399)9p = 3|ed aulbua 211399]9 apnpul :adAL | €10 ¢ UOISUSWIP OJu] ‘UOISUSWIP UONDY PaxyUIT ‘UOISUSWIP UOIDY ‘UoISUSWIp
ET JUBLIBA UORIPUOY ‘UoISUSWIP uonIpuo) ubisio4 ‘UCISUSWIP UOIIPUOD PaYUIT ‘UOISUSWIP UOIIPUOY :SadA) uoisuswig
fAdwsa = yuey |any Ny ou = 10 1e Aleneq apnpul :adA) | €102
paads asealdsp = Uoiela|adde a|ny Uonels|eooe
paJisap NV OU = SaAow Jed NV Ao = 3|qed aulbus 211198]8 ANV SoA = 10 e Aianeq apnpul adAL | €40 T peads sseaioul peads daa peads ssealoap : palisap
SpoW WalsAS &
AN&UO_\/_V lnspuels _ sak _ ou _ saAoW Ied _
uoljela|adde
paads asealoul paads daay paiisap _ Fadwa 100 _ Tdwe _ Suer 19N _
SeAOW Jed
Adwsa jou fdwa Muey |any
Ho apouw 1ua|IS _ Ho _ uo _ apouw Jua|is _
a|qed
ENGREIET aulbus 21119918
a|qed
ou 10 ye Aaneq EIVRETET Kexo auibus o11108[8
[ewiou LON 00S Aseneq
Ti0 T :8Iny
a|ny epnjouj :adAL [ou sah | Lo Aieneq]
paads asealdsp = UoIela|ad9e Pallsap ANY SIA = sanow B
1ed NV Aexo = a|qeo auibua 21119918 ANV SoA = 10 1e A1eneq any (i) LON = J0S Alaneq apnpul :adAl | TiOT _ lewou fAdwa 1Ny _ 20S fisneq _
PO 11815 SJUBWIIo)

*aoeds Indul Uo sayels ggz pue sajels ggz JO adeds sueds pue SUoISUBWIP / JO SISISU0I Xoq A3oImZ ay L
apow walsAs e si (Tapon) (spo 1els) Buibreys apon

:ooeds wajqol
(Tepon) (spoN 1re1s) Bulbaeyo S tHeldo.d

SOpPON 1e)pugAy :xog Aoimz

‘uoirejuawaidwi pue ubisap Jo sdals Jayuny ul pasn

S 14

INd 60:8 ‘T20Z ‘0T g84 U0 '€ YouaaxIoM 3A0JS Ag paressusd INd 60:8 ‘T20Z ‘0T ga4 U0 '€ YouaaxIoMm 3A0JS Ag paressusd
Adws Suey [any apow walsAs e si (yapoly) Buibreyasip apo
o uo apow jua|is
Y po (7opon) Buibreyosip
a|qed
EINEETET) Aexo aulbua 2113999
uoiela|sde
sak 10 1e Aeneq paads aseaoul paads daa palisap
Jew.ou Adwa 1ny 008 Alaneq sanow Jea
€40 ¢ ”mn__ﬂw_ fdwa jou UEY [any
9|Ny apn|ou| 8
Iny spnpRul L 3o uo apow jua|is
uonelis|aooe a|qed
paads asealoul paads doay paads asealosp pauisap SAIBI3P auibua 2111933
sak ou SaAOW Jed ou 10 1e Aieneq
Tadwe Suey [ony [ew.ou Adwa 008 Alaneq
e w FouTuE TIo TR
a|Ny apn|au| 8
g% 1Ny apnjou] 1
Kexjo auibus 2113099
paads asealdap = uoijela|adde pallsap ANY Sak
ou sak 10 1e Aaneq = SaA0W Jed NV Aexo = a|qed auibus 2130819 ANV SaA = 10 1e Aleeq any |INy = D0S Aseneq | epnpul :adAL | Tio T
[ewuiou _ Adwa _ 1INy 008 A1eneq SpoW Wa)SAS € ST (SOPOIN) oxelq [edlueyoall apoN
€10 T :3Iny
a|ny apnjouy :odAL (£9poN) axelq ediueydaw
(paads aseaoul YO paads deay) = aIny uoiela|adde
uofrela|ade palisap ANV Aidws jou = yjuey [any NV O = apow 1us|is Ny Adwa = DS Aleneq | apnjpuj :adAL | €40 € paads asealoul paads daay paads asealoap pausap
Ny sak ou SaAOW Jed
fdws jou = yue} |any NV OU = 1O Je fianeq apnpouj :adAL | €40¢ Fadws 100 Suer 1ony
Ny 110 apouw jud|Is
fdwa jou = yue) |any ANV 9AR84ep = 3|qed aulbua d13d3|8 opnpouj :adAL | €40 T
S UIBU5 GONSNG 63 SPOT a|qed
SPOW W3)SAS € ST (GOPOIN) AJUO auIbUS UONSNAWOd SPON oUIBUB 91N09[o
(gapoIn) AJuo suilbus uonsnquod 10 18 fusneq
[ewiou fdws 00s Aisneq
uoljela|aode €10 € /Iny
paads asealoul paads daay 10N palisap aIny epnjouy :adAL
sok ou SeAOW Jed
Adwsa jou fdwa Muey |any uonels|eoe
paads asealoul paads doaay paads asealoap palisap
1o uo spow jus|is
sak ou SeAOW Jed
a|qed -
EIGREIE]] aulbus o1308[8 Jawa Jou sjuey jany
ou 10 18 Alaneq 3o uo apow jud|is
fewou 1iny 10N 30s Aieneq o1ge
. EINRETET) £fexo auibua 21119919
T40 T:3INd K A
a|ny apnjou] :adAL o 10 1e Aisneq
lewou Adwa T 208 A1eneq
(paads aseal09p) LON = UONRI9BIIE palisap 3Ny €J0 ¢ /Ny
anv Aeso = ajqed auibua o11193j8 ANY ek = 10 1e Aialeq any (A1dwa) LON = 00S Aseneq apnjou) :adAL [T40 T a|ny apnjou] :adAL

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

apow Aue Ag palan0d 10U Salels 0 Buurewsal
apow Aue Aq palanod sarers 882 palanod
suolsuawip
ay3 Aq pauueds adeds wajqoid a18|dwod ay) Jo sa1es [e10} 882 wajqoid
“Jo JaquinN sajels wwom.u_w
suonady oN
ansiuIWILIeg
1U8ISISU0D
a19/dwo)

9oeds wajqoid 818]dwod 8y} UO N0 pallIed sem SisA[eue [enuassa ay |
s1InNsay sisAleuy

‘poyraw 3a0JS 03 BulpIodae SisAeue [eRUSSSs JO S)Nsay

sIsAjeuy |ennuassy

apowl apo

T wa1sAs-uou walsAS UON
Ajuo auibua

21T uonsnquiod QPO WidIsAS

€ Buibreyosip PO WaISAS

¥ ayelq [eslueydaw PO WidIsAS

02T spuels B

8 Buibreyos PO LEIS

sal1e1s aweN apoN | adAL spown

a|gel MB3IAIBAQD 3PON

paads asealoap _

UoIeI3|990e
palisap

9

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

sak SanoW Jed

fAdwsa jou Muely [any

apouw Jua|is

EIFER]

EIVILETET auibua 211308[9

ou 10 18 Aianeq

[ewou 00s Ateneq
¢J0 ¢ =/Iny
a|ny apnjou] :adAL

uonela|a0oe

paads aseaioap pauisap

sak ou SanoW Jed

Aydwsa jou fdwa uey [any

1o apouw Jua|is

EIRER]

ELNREIET) auibus 2113098

ou 10 1e Auaneq

Jew.ou 00S Aisneq
240 T :3Iny

a|ny apnjou] :adA L

(paads asealoul YO paads daay) = uoela|@dde palisap NV Adwsa = yuel [an} ANV 4O =
apow 1ua|is NV Ae3o = a|qed aulbua 213938 ANV S84 = 10 Je Alaneq gNy Adwa = J0s Aleneq

a|ny
apnpul :adA) | zlo gz

(paads aseaoul YO paads deay) = uoirels|adde palisap ANV U0 =
apouw jus|is NV Aexo = a|qed aulbua 211198]8 ANV S8A = 10 Ye Aisireq aNy Adws = D0S Aleneq

8Ny
apnpul :adA) | zo T

SpOLU Wa)SAS UON ® Sl (99POI) apoull LWaISAS-UOU apoi

(99poN) apow walsAs-uou

uonesa|ade

paads asealdsp patisap

ou saAOW Jed

JSCE) uey [any

uo apow jud|is

a|qed

ELILEIET Kexjo auibus 2111999

ou sak 10 1e A1aneq

[ewou 1y 00S Ateneq
€10 € 3Iny

a|ny apnjou] :adAL

paads asealoul paads daay paads asealosp

uonesa|a0oe
pauisap

sak ou

SaA0W Jed

6

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

EIVILETET]

ou

a|qed
auibua 211309j8

Jew.ou

10 1e Alaneq

Adws 1N}

20S Ateneq

€40 € 3Iny
a|ny apnjou] :adAL

paads asealoul

paads doay| paads asealoap

uoneIa[E0de
palisap

sak

ou

Adws j0u

SaAOW Jed

3o

Sjue) [any

apouw Jua|is

EIVILETET

Jew.ou

Aexo

a|qed
auibua 211308}

sok

10 e Aisneq

Adwa 1Ny

20S Aleneq

€40 ¢ 3Ny
a|ny apnjou] :adA L

uonela|adoe

paads asealoul paads daay paads asealdsp pausap
sak ou saAoW Jed

Adws jou juel [any

3o apow jud|is

a|qed

auibua 21119919

10 e Aisneq

Jew.ou

Adwa TN

005 Ateneq

€J0 T :8Iny
a|ny apnjou] :adAL

paads asealdsp = UoNela|a00e

paJIsap ANV OU = SaAoW 1ed ANV ABXo = a|qed auifua 9113998 ANV SaA = 10 e Alaneq

B
apnpul :adA] | €jo g

Adwa = >uey [any gNY ou = 1O 1e A1sneq

3Ny
apnpul :adA) | €102

Adwa = sjuey [an} ANV dAI9849P = 3|qed aulbua 21309[8

a|ny

apnpuj :adAl | €40 T

[zalinspuels™ buibaeyo

uonela|a00e

paads asealdsp palisap

sak ou SeAOW Ied
Adwsa jou fdwa Muey |any
3o uo apowl Jua|Is

8

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

EIVILETET

ou

a|qed
aulbua 211308[9

10 e Aisneq

00s Ateneq

TJo T8Ny
a|ny apnjou] :adA L

(paads asealoul YO paads daay) = uoela|gdde palisap
ANV Aexjo = 3|qed auIbus d11398]2 ANV S9A = 1O ¥e A1eneq ANy (jewsou JO (Ing) = 00S Aisneq

a|ny
apnpuj :adAl | TOT

[T3]16uibreyosip Buibieyo

* 023 613 813 /13 SN [Ajuo suibus uonsnquiod
913 * ST3 ¥13 €13 7N Buibreyosip
[AE] 113 * 013 63 €N aelq [edlueyosw
83 /3 93 * EE] N |nspuels
€3 13 3 23 M TN Buibreyos
Ajuo
uonisuel] [auibua axelq apoI\ 10bue]
OoN ngquwoa reyosip|reyossw [spuels|iibreys /9POIN 921N0S

a|ge] uonisuel|

SUEYE

9al] uoisioaq

T

INd 60:8 ‘T20Z ‘0T g84 U0 '€ YouaaxIoM 3A0JS Ag paressusd
a|ny apnjou| :adA L

paads asealdap = UoeIa|adde pallsap ANV SoA B
= SaAoW Jed NV Aexo = 3|qed aulbus d1399j8 ANV SoA = 10 1e A1leneq ANV I} = D0S A1eneq | apnjpoul :adAL | T40 T

[93]exeigueyoaw " [nspuels

uonela|a0oe

paads asealoul paads daay palisap

SaAoW Jed

Adws j0u
3o

IUE] [N}

apouw Jua|is

a|qed
auibus a11399[9

10 e Assneq
208 A1eneq

BnI08)ep

ou

0T

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

Ti0 T :8Iny
a|ny apnjou] :adAL

paads asealdap = UoIIeIa|999e PalIsap ANV SoA = SaAow Jed Ny
Aexjo = a|qed aulbua 2113998 ANV S9A = 10 Je Alaneq aNy (fewuou yo Adwa) = 9OS Alenreq

a|ny
apnpul :adAl | TiOT

[g3]6uibaeys "(nspuels

uoneIa[E0oe

paads asealoul paads doay palisap

sanow Jea
Auey jany
apouw Jua|is

Adws 10u
3o

9|qed
auibua 21119919
10 1e Aisneq
205 Ateneq

T40 T 8Ny

a|ny apnjou| :adA L

EIVILETET

ou

Jew.ou

paads asealoap = UoeIa|adde pallsap ANV SoA a|ny

a|qed
EINRETET) £fexo auibua 21119919
sok 10 e Alaneq
Jewou fdwa 1Ny 208 Ateneq
€10 € 3Ind
a|ny apnjou| :adA L
uoiela|ade
paads asealoul paads doay| paads asealoap palisap
sak ou saAoW Ied
Adws juey |any
I w oo wele
a|qed
Aexo aulbua 21119919
sak 10 e Aleneq
[ewou 1y 00s Ateneq
€140 ¢ =/Iny

a|ny apnjou| :adA L

uonela|a0oe

= SanoW Jed NV Aexo = ajqed aulbua d1399j8 ANV SoA = 10 1e A1leneq ANV (I} = D0S Aseneq | apnjpoul :adAL | T40 T

[v3lexeagueyosaw ~Buibaeys

paads asealosp palisap
ou SaAOW Jed
Adws uel [gny
uo apow jua|is
a|qed
EINLETET) Aexo auibus 2113099
ou sak 10 1e Aieneq
Jewiou 00S Asaneq
€140 T :3Iny
a|ny apnjou] :adA L
a|ny
fAdwsa jou = yuey |any NV OU = 10 e Aleneq apnpuj :adA] | €jo g
a|ny
fdws Jou = yue) |any ANY 9A1994p = 3|qed aulbua 211303|3 apnpul :adA) | €102
(paads asealoul YO paads dasy) = any
uoeIajadde palisap NV A1dws jou = yuel [any ANV HO = apow juajis dNY Adwe = DOS Alenreq | apnpoul :adAl | €30 T

[e3]Alupuonsnquwos ~ buibieyo

uonels|a00e

paads asealoul paads daay palisap
sok SeAOW Jed
Adwsa jou fdwa Muey |any

uoljela|adde
paads asealoul paads daay paads asealoap paiisap
sok ou SeAOW Ied
fdwa Muey |any

1o uo spow u

1O uo apoLu Ju

€T

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

uonela|a0oe

ou

paads asealoul paads daay paisap
SaAOW Jed

Aydwsa jou uey [any

3o apouwl ua|Is

a|qed

ELIGEIET aulbus 21119918

10 e Aisneq

008 Aieneq

T340 T:BINY

a|ny apnjou] :adAL

poads asealoap = UONeIa|a00. Palisap ANV SaA = sanow I1ed ANy

Aexjo = a|qed aulbua 2143998 ANV S9A = 10 Je Alaneq aNy (fewuou yo Adwa) = 9OS Alenreq

s|ny
apnpuj :adAl | TiOT

[63]6uIbieys ~axeigueyssw

uoneIa[E00e

paads asealoul paads doay paads asealosp palisap

sak ou SoAOW Jed

fdwa Muel |any

I 0 o

a|qed

fexo auibua 21119919

sak 10 1e Aianeq

Jewou fdwa 1Ny 208 Ateneq
€10 € =/Iny
a|ny apnjou| :adA L

uoijela|adde

paads asealoul paads doay| paads asealoap palisap

sak ou saAoW Ied

Adws uey [any

3o uo apow jud|is

a|qed

EINEETET) £fexo auibua 21119919

sak 10 18 Aianeq

Jewiiou fKdwa 1INy 008 Asaneq
€40 ¢ 3Iny
a|ny apnjou] :adAL

uoljela|adde

paads asealdsp palisap

sok ou SoAOW Ied

4%

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

fdwa Muel |any

uo apow jua|is

a|qed

EINRETET) £fexo auibua 21119919

ou sok 10 e Aleaneq

[ew.ou 1ny 20S Ateneq

€40 T 3Iny
a|ny apnjou| :adA L

B
apnpouj :adAL | €0 €
a|ny
fAdwa j0u = yuey |any NV oU = 10 e Aleneq apnpuj :adA] | €302

(paads aseasoul YO paads dasy) = 3Ny

uofela|a2de palisap ANV Adwsa 1ou = yuey [any ANY o = apow usjis aNy Aidwa = DOs Aleneq| apnjpoul :adAl | €10 T

fdws jou = yue} |any ANV dAN8J8P = 3|ged duIbus J113I8|9

[83]Aluouonsnquwod "jlaspuels

uonela|ae
paads asealoap pauisap
sak ou SanoW Jed
Adws j0u fdws Suey [any
3o uo apouw jud|Is
9|qea
EVVIBETETY] aulbua 21119919
ou 10 1e Aianeq
008 Aleneq

TJo T8Ny

a|ny apnjou| :adA L

(paads asealoul YO paads daay) = uopela|gdde palisap any
ANV Aexo = a|ged auifua 21139818 ANV S8A = 1O Je Aianreq aNy (fewdou HO |INy) = D0S Aieneq | apnpoul :adAl | T0 T

[23]6uibareydsip ~[spuels

uonela|a00e

paads asealoul paads daay palsap
SeAOW Jed
Adws j0u Juel [sny
Ho uo apow u
a|qed
ELLEIET] auibua a11309[8
ou 10 Ye Auanreq
[ewiou fdws 00s Aisneq

T4o T:_BINY

ST

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

3o uo apow jud|is

a|qed

EINEETET) Aexo auibua 21119919

sak 10 18 Aianeq

[ewou 1INy 00S Ateneq
€10 ¢ /Ny

a|ny apnjou] :adAL

uonela|a0oe

paads asealdsp palisap

ou SeAOW Jed

fdwa uey [any

uo apow jua|is

a|qed

ELILEIET] Kexjo auibua 2111098

ou sak 10 Te A1eneq
€10 T :3Iny

a|ny apnjou] :adA L

uoneIa|P09e palisap NV Aldwa jou = juel [any NV 4O = apow Judjis aNY Aidwae = J0S Alenreq

a|ny

fdwa jou = yue) |any ANV dAN948p = 3|qed aulbua 2113d3|8 apnpouj :adAL | €40 €
B

fAdws 10U = yue) |any NV OU = 10 e Alsneq apnpul :adA) | €102
(paads asealoul YO paads dasy) = any

apnpul :adAl | €30 T

[zT3lAluouonsnqwod

ayeigueyosuw

uonela|a00e

paads asealdsp palisap

sak ou SeAOW Jed
Adwsa jou fdwa Muey |any
1o uo spow jus|is
a|qed

ENGLEIET aulbus 21139918
ou 10 Ye Auaneq

208 Ateneq

Ti0 T8Ny
a|ny apnjou] :adAL

(paads asealoul YO paads daay) = uonela|@ade palissp
ANV Aexo = a|qed aulbus 21119318 ANV S8A = 10 Te Aleneq ANy (fewuou yO [Iny) = J0S Alaneq

||ny
apnpul :adAl | Tio T

[TT3]6uIbreyosip

“oyeagueyosw

1

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

paads asealoul

paads daay

paads asealosp

uonela|a0oe
pauisap

sak

ou

Adws j0u

4o

uo

SaAoW Jed

IUE] [N}

apouw Jua|is

BAI08)ep

Jewou

Kexjo

a|qed
auibus 2113099

sak

10 e Aisneq

Adwa

1}

208 A1eneq

€10 € 3|ny
a|ny apnjou] :adAL

paads asealoul

paads daay

paads asealoap

uonels|a00e
pauisap

sak

ou

Adwsa j0u

140

S9A0OW Jed

IUE) 1Ny

ESITENET

a|qed
auibua 211309J8

10 e Aeneq

[ew.ou

Adwa

1n}

208 A1eneq

paads asealoul

paads doay

sok

Adws 10u

fdwa

€10 ¢ 3Iny
a|ny apnjou] :adAL

uoneIa[E00e
palisap

SaAOW Jed

Sjuey [any

Ho

EIVILETET]

ou

Jew.ou

Adwae

apouw Jua|is

a|qed
auibua 211308[8

10 e A1aneq

1}

20S Aleneq

€40 T :3Iny
a|ny apnjou| :adA L

palisap NV OU = SaA0W Jed NV Aexo = ajqed auibua o11398j8 ANV S8k = 10 1e Aleyeq

B
Adwa = uey [an} gNY ou = 10 e Aleneq apnpu :adAL | €0 €
a|ny
Adwsa = yue) [any ANV dA1948p = 3|qed aulbua 211303|3 apnjpou :adAL | €40¢
paads asealdsp = uoieIa|sde 3Ny

apnpul :adA) | €10 T

[oTalimspuels ~axeagueyosw

LT

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

130

uo apow JUa|IS

ENVILETET]

a|qed
auibua 211399j8

ou

10 e Aeneq

[ew.ou

208 A1eneq

T40 T :8INd
a|ny apnjouj :adAL

paads asealoap = UoeIa|adde palIsap ANV SoA
= San0W Jed ANV Aexo = s|qed aulbus J1198|8 ANV S9A = 10 Je Alsleq any |INy = D0S A1eneq

a|ny
opnpul :adA)l | Tio T

[sT3lexeigueyssw ~ Buibieyosip

uonela|a0oe

paads asealoul paads daay paads asealosp paisap

sak ou saAoW Jed

Adws jou el [gny

3o uo apow jua|is

a|qed

EIURETET Kexjo auibus 011088

sak 10 1e Aianeq

lewou Adwa 1INy 00S Aianeq
€10 €3Ny

a|ny apnjou] :adA L

uonela|a00e

paads asealoul paads daay paads asealoap paiisap
sok ou SeAOW Ied

Adwsa jou Muey |any

3o apouwl us|is

a|qed
auibua 2111098

10 e Aisneq

[ew.ou

fdws 20s Aisneq

€10 ¢ /Iny
a|ny apnjou] :adAL

uoneIa[aa0e

paads asealoul paads daay palisap
sak SeAOW Jed

Aydwsa j0u Jquel [sny

1o apow jua|Is

a|qed

ENGLEIET aulbua 21139919

ou 10 1e Aianeq

9T

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

Jewiou Adwa N _ _ 00S Aleneq _
€J0 T 38|y
a|ny apnjou| :adA L

any
Adwa = uey [an} NV ou = 10 e Aleneq apnpuj :adAL | €0 €
s|ny
Adwsa = yue) |any ANV dA1948p = 3|qed aulbua 211323|3 apnjpouj :adAL | €J0¢
paads asealosp = uoiela|adde B
paJIsap ANV OU = SaA0W 1ed NV AB3o = 3|qed aulbus 21198]8 ANV SoA = 10 1e Aianeq opnpul :adAL | €40 T

[FTalimspuelrs ~Buibreyosip

uonesa|a0e

paads doay| palisap

paads asealoul

SaAOW Jed

Adws j0u
3o

IUE) [N}

apouw jud|Is
9|qed
auibua 21119919
10 e Aisneq
008 Asaneq
T40 T:@INY
a|ny apnjou] :adA L

EIVRETET

ou

paads asealdap = UoIjela|adde Pallsap ANV SeA = sanow Jed Ny a|ny
Aexo = a|qed auibua 2143988 ANV S9A = 10 Je Aleneq ANV (fewuou yo Adwa) = 9OS Alenreq apnpuj :adAl | TO T

[eT3]Buibareys ~Buibreyosip

uone1a[ad0e

paads asealoul paads doay| paads asealdap palisap
sak ou SeAOW Jed
fdwa Muey |any
I w apoutd
a|qed
fexo auibua 21139919
ou sak 10 Ye Alaneq
Jewiou Adwa 1INy 20S A1aneq
€10 € 3Ny

a|ny apnjou] :adAL

uoneIs[E00e

paads asealoul paads doay paads asealosp palisap
sak ou SoAOW Ied
Adwsa juey |any

6T

INd 60:8 ‘T20Z ‘0T G924 U0 0’E YIUACIOM FA0IS A parelsusd

fewou Adwa Ny _

[oos keneq]

€10 g :3Iny
a|ny apnjou| :adA L

paads asealoul paads doay| paads asealoap

uonesa|a0e
pauisap

sak ou

SaAoW Jed

Adws j0u

IUE) [N}

3o

apow Ju

EIRER]
auibua 21119919

10 e Aisneq

Jewiiou fKdwa 1INy 008 Asaneq
€140 T 3Iny
a|ny apnjou] :adAL
Elute]
Adwsa = yuey |any NV ou = 10 1e Aeneq apnpuj :adA] | €jo g
paads asealdsp = uoiela|ade s|ny
paJisap ANV OuU = Sanow Jed gNY Aexo = a|qed aulbua 211393|3 ANV SaA = 10 Je Alaneq apnpul :adA) | €102
B
Adwa = uey [an} ANV 9AI9949p = a|qed auibua 2113938 apnpul :adAL | €40 T

[8T3alimspuels ~Ajuouonsnquiod

uonela|a0oe

paads asealoul poads doay| palisap
SeAOW Jed

Adws jou juey [any

3o apow jud|is

a|qed

ENGREIET aulbus 21119818

ou

10 e Aisneq

008 A1eneq

Ti0 T:8Iny
a|ny apnjou] :adAL

paads asealdsp = UoIIeIa|999e Pallsap ANV SoA = Sanow Jed Ny
Aexjo = a|qed aulbua 2113998 ANV S9A = 10 Je Aleneq ANy (fewuou yo Adwa) = 9OS A1anreq

a|ny
apnpuj :adAl | Ti0 T

[2T3]B6ubreys ~Ajupuonsnquod

paads asealoul paads doay paads asealosp

uoneIs[EIde
palisap

sak ou

SaA0W Jed

Adwa

Sjue) [any

8T

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

3o uo apouw jua|Is
EINLETET) Aexo auibua o_M_uH%M
sak 10 1e Asaneq

€10 € 3Iny

a|ny apnjouj :adA L

uonela|a00e

paads asealoul paads daay paads asealoap paisap
sok ou SeAOW Jed
fdwa Muey |any
uo apow ju
a|qed
Kexjo auibua a11309[8
sak 10 Ye Auaneq
[ewiou Adws 1y 20S A1aneq
€10 ¢ /Iny

a|ny apnjou] :adAL

uone1a[3d0e

paads asealosp palisap
ou SeAOW Jed
Adwa Juel [any
uo apow jus|is
a|qed
ELNRETET) fexo auibua 21119919
ou sak 10 Ye Alaneq
[ewou 1} 208 A1eneq
€40 T 3Ny
a|ny apnjouy :odAL
B
fdws jou = yuey |any NV ou = 1O Je Aisneq apnpoul :adAL | €40 €
a|ny
fdwa jou = yue) [any ANV 9AR84ep = d|qed aulbua du3d3|8 apnpouj :adAL | €J0¢
(paads aseasoul YO paads dasy) = a|ny
uofrela|ade palisap ANV Adwsa jou = yuel [any NY o = apow uajis aNy Aidwa = DOs Aeneq| apnjpul :adAl | €10 T

[oT3]Alupuonsnqwos ~ Bulbireyosip

paads asealoul

Adws 10u

paads doay

uoneIs[E00e
palisap

SaAOW Jed

Sjue) [any

TC

INd 60:8 ‘T20Z ‘0T 024 UO 0’E UIUACIOM FA0IS Ad paressusd

Buibreyasip ~Ajlupuonsnquiod 0z3
ayelgueydsw

~Alupuonsnquwod 613
[Ispuels ~Ajuouonsnguiod 813
Buibreyds ~Ajuouonsnquiod /13
Ajuouonsnqwod ~ BuiBreyasip 913
axelgueydsw ~ buibreydsip ST3
IInspuels ~Buibreyasip ¥13
Buibreydp ~buibreyosip €13

Alupuonsnquwod
oyeigueyIaW 213
Buibreyosip ~exeigueydsw 113
1ISpuels ~ axelgueydaw [E]
Buibreyd ~exeigueyosw 63
Aluouonsnquwiod ~[jiaspuess 83
Buibreyosip ~jinspuels /3
ayeigueydaw ||aspuels E]
buibreyo ~|nspueis [eE]
axeigueydaw buibreyd 3
Aluouonsnquiod ~buibreys 3
spuels Buibreyd Z3
Buibreyosip” Buibreyd 13
aweN aweN 1oys

a|gel MaIAISAQ 1UBAT

uoljela|adde

paads asealdsp palisap

sok ou SeAOW Jed

Adwsa jou fdwa Muey |any
3o uo apow u

a|qed

ENGLEIET aulbus 2113998

ou

10 e Aeneq

205 Ateneq

T4o T:_BINY

0C

INd 60:8 ‘T2Z0Z ‘0T G8d U0 0°E YoUSGPHOM JA0DS Ag parelauss
a|ny apnjou] :adAL

(paads asealoul YO paads daay) = uonela|@ade palisap
ANV Aexo = a|qed aulbus 91119318 ANV S8A = 10 Te A1eneq ANy (fewuou HO [Iny) = J0S Alaneq

a|ny
apnjul :adA L

T40T

BuibIeyasiq o3 Ajuo auibug UoRSNqUIo) Woiy UoRISUeI] :SIuaWio)

[0z3a]Buibireyosip ~ Ajupuonsnquiod

paads asealoul paads doay

uoneIa[E0oe

palisap

SaA0W Jed

Adws 10u

Sjue) [any

1o uo

apouw Jua|is

EIVILETET

a|qed

auibua 211308[8

ou

10 e Aisneq

lewou Adwa

00s Aseneq

T40 T:3BINY
a|ny apnjou| :adA L

paads asealoap = UoeIa|adde pallsap ANV SoA
= SaAoW Jed NV Aexo = ajqed aulbua d11399j8 ANV SoA = 10 e Alanteq ANV [N} = D0S A1eneq

B
apnpouj :adAL

T40T

[6T3]axeigueyossw ~ Ajlupouonsnquod

paads asealoul paads daay paads asealosp

uonels|a0oe

pauisap

sak ou

SaA0OW Jed

Adws j0u

IUE) [N}

1O uo

‘apoLU JU

IS

ELVILEIET] Kexjo

a|qed

auibua 2113098

sak

10 e Aieneq

[ewiou Adwa

205 Ateneq

€40 g 3Ny

a|ny apnjou] :adAL

uoneIa|ade

paads asealoul paads doaay palisap
sak SeAOW Jed

Adwsa jou Muel |any

1o apow jua|is

a|qed

ENGREIET aulbua 2113998

ou 10 1e Aianeq

[44

INd 60:8 ‘T20Z ‘0T ga4 U0 '€ YouaaxIoMm 3A0JS Ag paressusd

flupueogsngwes "buibieyd

ajergueyzaw “Buibieys
Buibueys =
spuess uibueyd “EjeIgueYIS W
SfEIGUEYIELU T|ISpUELS
eyosp JINspuE]s “ayeIguey I W
Buibueys T|nspuels
22w |Inspuels “Buibreyssip
.. Buibieyzsip Tjspuels IInspueisBuibieys
oo
buibieyasip buibueyd
Buibiey> TBuibreyssip

Buibiey> ~Ajuguonsnguod

wresBelq uonisuel] apon

ETAS 9. Tutorial Hints

9.2. SCODE-CONGRA Tutorial Hints

9.2.1. C Code for Lesson 3

9.2.1.1. C Code for a Flow with Constant

1 /o
2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c_F Constants in I.syq

5-7

8 * @options

9 * Floating point data type Width: 64

10 * Optimize method code: false

11 * Validity checks on inputs: reject

12 * Validity checks on parameters: reject

13 * Validity checks on states: reject

14 * Use if statement for conditional expressions: true
15 * Split complex boolean expressions: false

16 * Maximum complexity allowed: 5

17 *

18 *x/

19

20 #include "c F constant in I.h"

21

22 void ¢ _F constant in I(double I, double * U) {

23 *U = 2.0 * I;

24 } /* ¢ F constant in I*/

Table 34. Generated C code (c_F_Constants_in I.c)forthe Constants project
(see section 5.4.1). The value of constant R appears in line 23.

SCODE Workbench V3.0 — Getting Started 217

ETAS 9. Tutorial Hints

9.2.1.2. C Code for a Flow with Parameter

1 /**

2 * @Qwarning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c F Parameters in I.syqg

5-17

18 *x/

19

20 #include "c_F Parameters in I.h"

21

22 void c F parameter (double I, double R, double * U) {
23 *U =1 * R;

24 } /* ¢ _F parameter*/

Table 35. Generated C code (c_F Parameters in I.c)forthe Parameters project
(see section 5.4.2). Parameter R appears in lines 22 and 23.

9.2.1.3. C Code for a Flow with Fixed Variable

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c F Fixedvariable in I fix R.c

5-17

18 *x/

19

20 #include "c F FixedVariable in I fix R.h"

21

22 void ¢ F FixedVariable in I fix R(double I, double * U) ({
23 double R = 5.0;

24 *U =1 *R;

25 } /* ¢ F FixedVariable in I fix R*/

Table 36. Generated C code (c_F_FixedVariable in I fix R.c)forthe
FixedVariable project (see section 5.4.3). Fixed variable R appears in lines 23 and 24.

SCODE Workbench V3.0 — Getting Started 218

ETAS 9. Tutorial Hints

9.2.2. C Code for Lesson 4

c F Resistor Power in RU.c c F Resistor Power in IP.c
/** /**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!|* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
* *
* @source c F Resistor Power in RU.syqg * @source c F Resistor Power in IP.syq
**/ **/
#include "c_F Resistor Power in RU.h" #include "c_F Resistor Power in IP.h"
#include "scode.h" #include "scode.h"
void ¢ _F Resistor Power in RU(double R, double U, void ¢ _F Resistor Power in IP(double P, double I,
double * I, double * P) { double * R, double * U) {
if (!scode double eq(0.0, R)) { if (!scode double eq(0.0, I)) {
*T = U / R; *Y =P / I;
} else { } else {
*T = 0.0; *U = 0.0;
} /* Ohms law (R, U) */ } /* Resistor Power Law(I, P) */
if (!scode double eq(0.0, I)) {
*P = U * I; / Resistor Power Law(I, U) */ *R = *U / I;
} else {
*R = 0.0;
} /* Ohms law (I, U) */
} /* c_F Resistor Power in RU*/ } /* ¢ _F Resistor Power in IP*/

Table 37. Generated C code for both flows in section 5.5

SCODE Workbench V3.0 — Getting Started 219

ETAS 9. Tutorial Hints

9.2.3. ESDL Code for Lesson 5

c_F_DefinedOutput_in_RU_out_l.esdl ¢_F_DefinedOutput_in_RU.esdl
/** /**
* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!|* @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
* *
* @source c_ F DefinedOutput in RU out I.syq * @source c_F DefinedOutput in RU.syg
**/ **/
package DefinedOutput; package DefinedOutput;
class ¢ _F DefinedOutput in RU out I ({ class c¢_F DefinedOutput in RU {
public void c_F DefinedOutput in RU out I(real R, public void c¢_F DefinedOutput in RU(real R,
real U, real out I) { real U, real out I, real out P) {
if (!Math.eg(0.0, R)) { if (!Math.eqg(0.0, R)) {
I =U/R; I =U/R;
} else { } else {
I =20.0; I =20.0;
} // Ohms law (R, U) } // Ohms law (R, U)
P=1I*U; // Resistor Power Law(I, U)
} // ¢ F DefinedOutput in RU out I } // c_F_DefinedOutput in RU
} // c_F DefinedOutput in RU out I } // c_F DefinedOutput in RU out I

Table 38. Generated ESDL code for the flows with (left) and without (right) explicit output in section 5.6.

SCODE Workbench V3.0 — Getting Started 220

ETAS 9. Tutorial Hints

9.2.4. Generated Code for Lesson 6

This section shows generated code for the example in section 5.7, “Lesson 6: Algebraic
Loop”.

9.2.4.1. Computation SYQ Code

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c F AlgebraicLoop in PR

5-7

8 **/

9

10 package AlgebraicLoop;

1

12 |computation ¢ F AlgebraicLoop in PR(R, P)
implements AlgebraicLoop from F AlgebraicLoop in PR {

13 // Variable computation for level 2
14 @level (2, 1)
15 I = 1if ((0 <= P*R) && (R!=0))

then (P*R)"(1/2)/R
else <- Ohms law[I, U] (R), Resistor Power Law([I, U] (P);
// [Source: MuPAD [Incubation]]

16 [I,P] = if ((0 <= P*R) && (R!=0))
then
if ((0.0 <= P*R) && (((0.0!'=P) && (0.0!'=R))))
then 1/ (2* (P*R)"~(1/2))
else

else <- Ohms law[I, U] (R), Resistor Power Law[I, U] (P);
// [Source: MuPAD [Incubation]]

27 [I,R] = 1if ((0 <= P*R) && (R!=0))
then
if (((0.0 <= P*R) && ((((0.0!=R) && (0.0!=P))
&& (0.0!=R)))) && (0.0!=R))
then P/ (2*R* (P*R)"~(1/2))-(P*R)"~(1/2)/R"2
else

else <- Ohms law[I, U] (R), Resistor Power Law[I, U] (P);
// [Source: MuPAD [Incubation]]
18 @level (2, 4)

19 U = 1if ((0 <= P*R) && (R!=0))
then (P*R)"(1/2)
else <- Ohms law[I, U] (R), Resistor Power Law[I, U] (P);
// [Source: MuPAD [Incubation]]

20 [U,P] = if ((0 <= P*R) && (R!=0))
then
if ((0.0 <= P*R) && (((0.0!'=P) && (0.0!'=R))))
then R/ (2* (P*R) "~ (1/2))
else

else <- Ohms law[I, U] (R), Resistor Power Law[I, U] (P);
// [Source: MuPAD [Incubation]]

SCODE Workbench V3.0 — Getting Started 221

ETAS 9. Tutorial Hints

21 [U,R] = 1f ((0 <= P*R) && (R!=0))
then
if ((0.0 <= P*R) && (((0.0'=P) && (0.0!'=R))))
then P/ (2* (P*R)"(1/2))
else

else <- Ohms_law[I, U] (R), Resistor Power Law[I, U] (P);
// [Source: MuPAD [Incubation]]

22 |}

Table 39. * . syq file for the computation ¢ F AlgebraicLoop in PR

9.2.4.2. C Code

20 #include "c F AlgebraicLoop in RP.h"

21 #include "scode.h"

22

23 |void c F AlgebraicLoop in RP(double R, double P, double * I,
double * U) {

24 if (((P * R) >= 0.0) && !scode double eq(R, 0.0)) {

25 *I = scode double pow(P * R, 1.0 / 2.0) / R;

26 } else {

27 *I = 0.0;

28 } /* Ohms law[I, U] (R), Resistor Power Law[I, U] (P) */

29 if (((P * R) >= 0.0) && !scode double eg(R, 0.0)) {

30 *U = scode double pow(P * R, 1.0 / 2.0);

31 } else {

32 *U = 0.0;

33 } /* Ohms law[I, U] (R), Resistor Power Law[I, U] (P) */

34 } /* ¢ F AlgebraicLoop in RP*/

Table 40. Generated C code for the flow F AlgebraicLoop in PR

9.2.4.3. ESDL Code

21 package AlgebraicLoop;

22

23 import math.Math;

24

25 class ¢ F AlgebraicLoop in RP {

26

27 public void c¢_F AlgebraicLoop in RP(real R, real P,
real out I, real out U) {

28 if (((P * R) >= 0.0) && !'Math.eg(R, 0.0)) {

29 I = Math.pow(P * R, 1.0 / 2.0) / R;

30 } else {

SCODE Workbench V3.0 — Getting Started 222

ETAS 9. Tutorial Hints

31 I =20.0;

32 } // Ohms law[I, U] (R), Resistor Power Law[I, U] (P)
33 if (((P * R) >= 0.0) && !'Math.eqg(R, 0.0)) {

34 U = Math.pow(P * R, 1.0 / 2.0);

35 } else {

36 U= 0.0;

37 } // Ohms law[I, U] (R), Resistor Power Law[I, U] (P)
38 } // ¢ F AlgebraicLoop in RP

39 } // c¢_F_AlgebraicLoop in RP

Table 41. Generated ESDL code for the flow F_AlgebraicLoop_in PR

9.2.4.4. MATLAB® Code

19 function [U, I] = c F AlgebraicLoop in PR(R, P)

22 if ((P * R) >= 0.0) && ~eg(R, 0.0)

23 I = double(power(P * R, 1.0 / 2.0) / R);

24 else

25 I =20.0;

26 end % Ohms_law[I, U] (R), Resistor Power Law[I, U] (P)
27 if ((P * R) >= 0.0) && ~eq(R, 0.0)

27 U = double (power (P * R, 1.0 / 2.0));

29 else

30 U =0.0;

31 end % Ohms_law[I, U] (R), Resistor Power Law[I, U] (P)
32 end % Ohms_law[I, U] (R), Resistor Power Law[I, U] (P)

Table 42. Generated MATLAB code for the flow F AlgebraicLoop in PR

SCODE Workbench V3.0 — Getting Started 223

ETAS 9. Tutorial Hints

9.2.5. Generated Code for Lesson 7

9.2.5.1. C Code for a Flow with Constraints

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c_F ConstraintsVariables in RU.syq

5-17

18 |/

19

20 #include "c_F ConstraintsVariables in RU.h"

21 #include "scode.h"

23 void ¢ F ConstraintsVariables in RU(double R, double U,
double * I, double * P) {

26 if ((R < 100.0) && (R > 0.0) && (U <= 230.0)
&& (U > 0.0)) {
27 *I = U / R; /* Ohms_law(R, U) */
28 *I = scode_double min(scode double max(*I, 0.0),
9.999999999999998); /* Ohms law(R, U) */
29 *P = *I * U; /* Resistor Power Law(I, U) */
30 *P = scode double min(scode double max(*P,

2.2250738585072014E-308), 2499.9999999999995) ;
/* Resistor Power Law (I, U) */

31 } else {

32 *I = 9.999999999999998;
33 *P = 2499.9999999999995;
34 }

35 } /* ¢ F ConstraintsVariables in RU*/

Table 43. ¢ F ConstraintsVariables in RU.c file with constraints, but no
verification code (section 5.8.1).

SCODE Workbench V3.0 — Getting Started 224

ETAS 9. Tutorial Hints

9.2.5.2. C Harness for Flow F ConstraintsVariables in RU

1 /**

2 * @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!
3 *

4 * @source c_F ConstraintsVariables in RU

5-7

8 * @options

o] * Floating point data type width: 64

10 |* Optimize method code: false

1 * Validity checks on inputs: limit

12 * Validity checks on parameters: reject

13 * Validity checks on states: reject

14 * Use if statement for conditional expressions: true
15 |* Points per input: 4

16 * Inform about limitations: true

17 * Verification threshold: 0.001

18 *

19 |7/

20

21 #include "c_F ConstraintsVariables in RU harness.h"

22 |#include "scode.h"

23 |#include "c_F ConstraintsVariables in RU.h"

24
25 |signed int check c F ConstraintsVariables in RU(double R,

double U, double I, double P) {
26 signed int errorCount = 0U;

27 /* checking correctness for relation Ohms Law with
equation U=R*I realized in computation
step I = U/R */

28 if ((I > 0.0) && (I < 9.999999999999998)) {

29 /* checking correctness only if the computed value is
not limited */

30 if (scode double abs(U - (R * I)) > (0.001 *

(scode double abs(I) + scode double abs(R) +
scode_double abs(U)))) {

31 errorCount = errorCount + 1U;

32 scode printf info ("Error checking computation of I\n
from equation: \"U=R*I\"\n realized in
computation step I = U/R\n with values I = %f,
R = %f, U = %f and error: %f\n", I, R, U,
scode double abs(U - R * I));

33 }

SCODE Workbench V3.0 — Getting Started 225

ETAS

34
35

36
37

38

39

40

41
42

43
44
45

46
47
48
49
50

51
52
53

54
55

56
57
58
59
60
61
62
63
64

9. Tutorial Hints

} else {

scode _printf info (" No check due to potential limitation
of I with value %f in equation: \"U=R*I\" with
values I = %f, R = %f, U = %f\n", I, I, R, U);

}

/* checking correctness for relation Resistor Power Law
with equation P=U*I realized in computation
step P = I*U */

if ((P > 2.2250738585072014E-308) &&

(P < 2499.9999999999995)) {

/* checking correctness only if the computed value is
not limited */
if (scode double abs(P - (U * I)) > (0.001 *
(scode_double abs(I) + scode double abs (P) +
scode _double abs(U)))) {
errorCount = errorCount + 1U;

scode printf info ("Error checking computation of P\n
from equation: \"P=U*I\"\nrealized in

computation step P = I*U\n with values I = %f,
P = %f, U= %f and error: %f\n", I, P, U,
scode _double abs(P - (U * I)));

}
} else {

scode printf info (" No check due to potential limitation
of P with value %f in equation: \"P=U*I\" with
values I = %f, P = %f, U = $f\n", P, I, P, U);

}

/* checking that the value is also within its limits */

if (' ((I >= 0.0) && (I <= 9.999999999999998))) {
errorCount = errorCount + 1U;

scode_printf info("Value %f for I is out of its range
[0.0, 10.0)\n", I);

}

/* checking that the value is also within its limits */

if (! ((P >= 2.2250738585072014E-308) &&
(P <= 2499.9999999999995))) {
errorCount = errorCount + 1U;

printf ("Value %$f for P is out of its range (0.0,
2500.0)\n", P);

}

return errorCount;

} /* check c F ConstraintsVariables in RU*/

signed int c_F ConstraintsVariables in RU harness () {
signed int totalErrorCount = 0U;
double R vals[6] = {

-33.333333333333336,
2.2250738585072014E-308,

SCODE Workbench V3.0 — Getting Started 226

ETAS 9. Tutorial Hints

65 33.333333333333336,

66 66.66666666666667,

67 99.99999999999999,

68 133.33333333333334

69 bi

70

71 double U vals[6] = {

72 -76.66666666666667,

73 2.2250738585072014E-308,

74 76.66666666666667,

75 153.33333333333334,

76 230.0,

77 306.6666666666667

78 bi

79

80 {

81 unsigned char iter R;

82 for (iter R = 0U; iter R <= 5U; iter R++) {

83 double R = R vals[iter R];

84 {

85 unsigned char iter U;

86 for (iter U = 0U; iter U <= 5U; iter U++) {

87 double U = U vals[iter U];

88 double I = 0.0;

89 double P = 0.0;

a0 c F ConstraintsVariables in RU(R, U, &I, &P);

91 if ((R > 0.0) && (R < 100.0) && (U > 0.0) &&
(U <=230.0)) {

92 totalErrorCount = totalErrorCount +
check ¢ F ConstraintsVariables in RU(R, U, I,
P);

93 } els; {

94 R = scode double min(scode double max (R,
2.2250738585072014E-308), 99.99999999999999) ;

95 U = scode double min (scode double max (U,
2.2250738585072014E-308), 230.0);

26 totalErrorCount = totalErrorCount +
check ¢ F ConstraintsVariables in RU(R, U, I,
P);

97 }

98 }

99 }

100 }

SCODE Workbench V3.0 — Getting Started 227

ETAS 9. Tutorial Hints

101 }

102 scode printf info("Total number of violations is %d\n", +
totalErrorCount) ;

103 return totalErrorCount;

104 |} /* c_F ConstraintsVariables in RU harness*/

105 |/* Additional main function for direct execution */

106

107 |signed int main() {

108 signed int totalErrorCount = 0U;

109 totalErrorCount = ¢ F ConstraintsVariables in RU harness();
110 return totalErrorCount;

111 } /* main*/

Table 44. ¢ F ConstraintsVariables in RU harness.c file (see section 5.8.2)

SCODE Workbench V3.0 — Getting Started 228

ETAS 9. Tutorial Hints

9.2.5.3. Comparison: Generated Code with/without Parameter Constraint

This section shows the generated computation SYQ, C, ESDL, and MATLAB files for the example in section 5.8.3, “Constraints for Parameters”.

c F ConstraintsParameters in IU.syq c F Parameter in IU.syq
computation ¢ F ConstraintsParameters in IU(U) computation ¢ F Parameter in IU (U)
implements ConstraintsParameters implements Parameter
from F ConstraintsParameters in IU { from F Parameter in IU {
// Variable computation for level 2 // Variable computation for level 2
@level (2, 1) Qlevel (2, 1)
P = I*U <- Resistor_Power_Law(I, u); P = I*U <- Resistor_Power_Law(I, u);
// [Source: Maxima] // [Source: Maxima]
[P,I] = U <- Resistor_Power_Law(I, u); [P,I] = U <- Resistor_Power_Law(I, u);
// [Source: Maxima] // [Source: Maxima]
[P,U] = I <- Resistor Power Law(I, U); [P,U] = I <- Resistor Power Law (I, U);
// [Source: Maxima] // [Source: Maxima]
@level (2, 4) Qlevel (2, 4)
R = U/I <- Ohms Law (I, U); R = 1if (0.0!=I) then U/I
// [Source: Maximal] else <- Ohms_Law (I, U);
// [Source: Maxima]
[R,I] = -U/I"2 <- Ohms_Law (I, U); [R,I] = if (0.0!=I) then -U/I"2
// [Source: Maxima] else <- Ohms_ Law (I, U);
// [Source: Maxima]
[R,U] = 1/I <- Ohms_Law (I, U); [R,U] = if (0.0!=I) then 1/I
// [Source: Maxima] else <- Ohms Law (I, U);
// [Source: Maxima]
} }

Table 45. Comparison of computation * . syq files with (left) and without (right) parameter constraint

SCODE Workbench V3.0 — Getting Started 229

ETAS 9. Tutorial Hints

c F ConstraintsParameters in IU.c c F Parameter in IU.c
#include "c F ConstraintsParameters in IU.h" #include "c F Parameter in IU.h"
#include "scode.h"
void ¢ F ConstraintsParameters in IU(double U, void ¢ F Parameter in IU(double U,
double I, double * P, double * R) { double I, double * P, double * R) {
if ((I < 0.0) || (I > 0.0)) {
*P = U * I; /* Resistor Power Law(I, U) */ *P = I * U; /* Resistor Power Law(I, U) */
if (!scode double eq(0.0, I)) {
R =U / I; / Ohms_law(I, U) */ *R =10/ I;
} else { } else {
*P = 0.0;
*R = 0.0; *R = 0.0;
} } /* Ohms law(I, U) */
} /* ¢ _F ConstraintsParameters in IU*/ } /* ¢ F Parameter in IU*/

Table 46. Comparison of generated C code for computations with (left) and without (right) parameter constraint

SCODE Workbench V3.0 — Getting Started 230

ETAS

c F ConstraintsParameters in IU.esdl

9. Tutorial Hints

c F Parameter in IU.esdl

package ConstraintsParameters;

class ¢ _F ConstraintsParameters in IU {

public void c_F ConstraintsParameters in IU(real U,
real I, real out P, real out R) {
if ((I < 0.0 |] I >0.0)) {

P =1 * U; // Resistor Power Law (I, U)

U/ I; // Ohms law(I, U)

} else {
P =20.0;
R = 0.0;

} // ¢ F ConstraintsParameters in IU
} // c_F ConstraintsParameters in IU

package ConstraintsParameters;
import math.Math;
class ¢ _F Parameter in IU {
public void ¢ F Parameter in IU(real U,

real I, real out P, real out R)

P =1 * U; // Resistor Power Law(I, U)
if (!'Math.eq(0.0, I)) {

R=1U/ 1I;
} else {
R = 0.0;

} // Ohms law(I, U)
} // ¢ F Parameter in IU
} // ¢ _F Parameter in IU

Table 47. Comparison of generated ESDL code for computations with (left) and without (right) parameter constraint

SCODE Workbench V3.0 — Getting Started

{

231

ETAS

c F ConstraintsParameters in IU.m

9. Tutorial Hints

c F Parameter in IU.m

function [P, R] = ¢ F ConstraintsParameters in IU(U, I)
if (I < 0.0) || (I > 0.0)
P = double(U * I); % Resistor Power Law(I, U)

R = double(U / I); % Ohms_law(I, U)

else
P =0.0;
R = 0.0;
end
end % c_F ConstraintsParameters in IU

function [P, R] = c¢_F Parameter in IU(U, I)
P = double(U * I); %
if ~eq(0.0, I)

R = double(U / I);

else

Resistor Power Law(I, U)

R
end

0.0;
Ohms law (I, U)
_F Parameter in IU

oo

o\
Q

end

Table 48. Comparison of generated MATLAB files for computations with (left) and without (right) parameter constraint

SCODE Workbench V3.0 — Getting Started

232

ETAS 9. Tutorial Hints

9.2.6. Hints for Lesson 8

9.2.6.1. Example: Unit Definitions in a * . syg File

/*
* unit definitions

*/

/* length */
unit m;
unit km = 1000.0 * m; /* scaled base unit */

/* time */

unit s is time;

/* mass */

unit kg;

unit g = 1.0e-3 * kg;
/* electric current */
unit A;

unit mA = 0.001 * A;

/* voltage */
unit V = kg *m*m / (A * s*s*s); /* derived from base units */

/* electric resistance */
unit Ohm =V / A;

/* electric power */
unit W =V * A; /* derived from base and derived unit */

Table 49. Unit definitions (see section 5.9)

9.2.6.2. C Code for a Flow with Units

19

20 #include "c_ F PhysicalUnits in IU.h"

21 #include "scode.h"

22

23 void ¢ F PhysicalUnits in IU(double I, double U,
double * P, double * R) {

24 *P = U * I * 0.001; /* Resistor Power Law(I, U) */

25 if (!scode double eq(0.0, I)) {

26 *R=0U/ I * 1000.0;

27 } else {

28 *R = 20.0;

SCODE Workbench V3.0 — Getting Started 233

ETAS 9. Tutorial Hints

29 } /* Ohms law (I, U) */

30 } /* c_F PhysicalUnits in IU*/

Table 50. Generated C code for the flow F PhysicalUnits in IU (see section 5.9.5).
The units are invisible, but the scaling factor for mA < A is inserted automatically.

9.2.6.3. MATLAB® Code for a Flow with Units

19 function [P, R] = c F PhysicalUnits in IU(I, U)

20 P = double(U * I * 0.001); % Resistor Power Law(I, U)
21 if ~eq(0.0, I)

22 R = double(U / I * 1000.0);

23 else

24 R = 20.0;

25 end % Ohms law (I, U)

26 end % c_F PhysicalUnits in IU

Table 51. Generated MATLAB code for the flow F_PhysicalUnits in IU (see section
5.9.5). The units are invisible, but the scaling factor for mA < A is inserted automatically.

SCODE Workbench V3.0 — Getting Started 234

ETAS 9. Tutorial Hints

9.2.6.4. SCODE-CONGRA Report

This section shows screenshots of a report generated as a Word document (* . docx).

SCODE-CONGRA Report

PhysicalUnits.syq in PhysicalUnits\PhysicalUnits

Generated on | 1

This report has been generated by SCODE Workbench = 7, SCODE Workbench has been released as an engineering tool and no

guarantee is given for the correctness of this output. All contents of this report have to be verified carefully before they are used
in further steps of design and implementation.

Generated by SCODE Workbench on

SCODE Workbench V3.0 — Getting Started 235

ETAS 9. Tutorial Hints

PhysicalUnits

PhysicalUnits.syq

package PhysicalUnits;

* unit definitions

* length =/
unit m;

[* time */
unit 5 is time;

/= mass */
unit ka;

/= electric current */
it Ay
unit mA = 0.001 = A;

/= voltage =/
unit V = ka *m*m [(A * 5%5*s); /* derived from base units =/

/= electric resistance =/
unit Chm =V /[A;

* electric power */
unit W =V * A; /= derived from base and derived unit =/

system PhysicalUnits {

@aeo{220, 217)
@description(voltage”)
var V U = 200[V1;
@geo(64, 145)
@description("resistor”)
var Ohm R = 20 [Qhm1:
@ageo(218, 84)
@description("current™)
varmAI=0TAl
@geo(444, 145)
@description("power™)
var W P = 1000 ['WT;

@geo(120, 144, 80, 40)

Ohms law(R, U, I} ::=U=R*I;
@geo(276, 144, 120, 40)
Resistor_Power_Law(U, P, I} =P =U*1;

¥
flow F_PhysicalUnits_in_IU for PhysicalUnits {

inputs; I, U;
1

Generated by SCODE Workbench on

SCODE Workbench V3.0 — Getting Started 236

ETAS 9. Tutorial Hints

System: PhysicalUnits

O

O ' Ohms_law Resistor_Power_Law | O

u

Flow: F_PhysicalUnits_in_IU

| \
Resistor_Power_Law "()

O* Ohms_law

O

U

Computations:

c_F_PhysicalUnits_in_IU.syq

JII:-:*

= @warning AUTOMATICALLY GENERATED FILE! DO NOT EDIT!

* @warning GENERATED BY A NOT RELEASED BUILD! DO NOT USE FOR. PRODUCTION!
*

Generated by SCODE Workbench on

SCODE Workbench V3.0 — Getting Started 237

ETAS

* [@source F_PhysicalUnits_in_TU
*

= @tool ETAS SCODE-CONGRA 3.0.0
*

= Jl'
package PhysicalUnits;

computation ¢_F_PhysicalUnits_in_IU(T, U) implements PhysicalUnits from F_PhysicalUnits_in_IU {
/I Variable computation for level 2
@level(2, 1)
P = U*I <- Resistor_Power_Law(I, U); // [Source: Built-In Solver]
[P,I1 = U <- Resistor Power Law(I, U); // [Source: Built-In Solver]
[P,U] = I <- Resistor_Power_Law(I, U); // [Source: Built-In Solver]
@level(2, 4)
R = if (0.0[AT!=I) then U/I else <- Ohms law(I, U); // [Source: Built-In Sclver]
[R,I] = if (0.0[A]!=TI) then (-U)/1"2 else «- Ohms_law(I, U); // [Source: Built-In Solver]
[R,UT = if (0.07AT!=1) then I/1~2 else <- Ohms law(L, UY; /f [Source: Built-In Solver]

}
Table Of Model Elements

9. Tutorial Hints

Systems
Name Constants Library Image Extended
System
PhysicalUnits no
PhysicalUnits
Variables
Variable [System Type| Description Unit Variable | Expression | Variable
Name Constraints Symbol
0] variable voltage v 20001
R variable resistor Ohm 20 [Ohm]
1 variable current mA 0[Al
P variable power w 1000 [W1
Relations
Relation Equation Subsystem | Description Image Relation
Name Symbol
Ohms law U=R*I
Resistor_Powe P=U*I
r_Law
Flows
Name Inputs Outputs Extended
Flow
Generated by SCODE Workbench on
4

SCODE Workbench V3.0 — Getting Started

238

ETAS

Name

Inputs

Outputs

Extended
Flow

F_PhysicalUnits_in_
U

Iu

Generated by SCODE Workbench

[34] state of charge

[35] operating temperature

[36] car runs only on the electric motor

on

(5]

SCODE Workbench V3.0 — Getting Started

9. Tutorial Hints

239

ETAS 10. Contact Information

10. Contact Information

ETAS Headquarters

ETAS GmbH

BorsigstralRe 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and
product hotlines, take a look at the ETAS website:

ETAS subsidiaries Internet: www.etas.com/en/contact.php

ETAS technical support Internet: www.etas.com/en/hotlines.php

SCODE Workbench V3.0 — Getting Started 240

https://www.etas.com
https://www.etas.com/en/contact.php
https://www.etas.com/en/hotlines.php

ETAS

Figures

Figures

Figure 1,

“Example system — draft”

Figure 2,

“SCODE Workbench window, showing the Welcome page”

Figure 3,

“SCODE Workbench (SCODE-ANALYZER perspective) with empty workspace”

Figure 4,

“SCODE-ANALYZER project" window”

Figure 5,

“SCODE Workbench window with newly created SCODE-ANALYZER project”

Figure 6,

“"Problem Space" page with one condition”

Figure 7,

“"Outline" view with statistics for the problem space”

Figure 8,

“"Properties" view for a dimension selected in the "Problem Space" page”

Figure 9,

“"Mode Definition" page with mode editor”

Figure 10

, “"Outline" view with statistics for the mode definition”

Figure 11,

“"Qutline" view with statistic analysis for the modes and rules in Table 24”

Figure 12

. “"Analysis Details" view for the modes and rules in Table 24"

Figure 13

. “"Analysis Details" view with suggested rules for missing states”

Figure 14

, “"Decision Tree" page”

Figure 15

, “"Preferences" window with settings for code generation from mode invariants”

Figure 16

. “Output folder for code generation”

Figure 17

. “"Mode Transition" page with "Event Overview and Implementation" view”

Figure 18

. “"Preferences" window, "SCODE-ANALYZER" node”

Figure 19

, “"Mode Transition" page with "Mode Transition" view”

Figure 20

. “Event viewer with new event”

Figure 21

L "Outline" view with statistics for mode transitions”

Figure 22

. “"Analysis Details" view with suggested rules for transitions”

Figure 23

. “‘Event charging combustionOnly before and after rule optimization”

Figure 24

, “Mode transition graph for the completed transition matrix”

Figure 25,

“"Preferences" window with settings for code generation from the transition

matrix”

Figure 26,

“"Export" window with selected SCODE-ANALYZER report generation”

Figure 27,

“"Generate a Report" window for a SCODE-ANALYZER report”

Figure 28,

“SCODE Workbench (SCODE-CONGRA perspective) with empty workspace”

Figure 29,

“"SCODE-CONGRA Project” window”

Figure 30,

“SCODE Workbench window with newly created SCODE-CONGRA project (a:

project fol

der, b: system folder, c: system equation language package (* . syg file), d:

system graph)”

SCODE Workbench V3.0 — Getting Started 241

ETAS Figures

Figure 31, “Graphical editor (a: breadcrumbs row, b: toolbar for general editor
functionality, c: palette with tools for graphical elements, d: empty canvas)”

Figure 32, “"Properties" view for the new relation (equation still incomplete)”

Figure 33, “Canvas with relation and variables”

Figure 34, “Simple Equation.syg file with variables and relation”

Figure 35, “New flow in the graphical editor”

Figure 36, “Flow after | and U have been defined as inputs (the variables were

rearranged).”

Figure 37, “Computation ¢ F Simple Equation in IU in the Project Explorer”

Figure 38, “Graph for the ¢ F Simple Equation in_ IU computation.”

Figure 39, “Execution Environment with a computation”

Figure 40, “Computation graph with element values”

Figure 41, “Computation graph with input sensitivities (a), their contributions (b) to the
output sensitivity (c and d). The thickness of the arrows represents the relative
sensitivities.”

Figure 42, “Computation graph and Execution Environment with results of forward
sensitivity analysis”

Figure 43, “Schematic view of the numbers in @geo annotations”

Figure 44, “"Preferences" window, "Diagram Options" node”

Figure 45, “"Preferences" window, "MATLAB/Simulink" node”

Figure 46, “"Preferences" window, "SCODE-CONGRA\Solver\MuPAD" node”

Figure 47, “"Properties for <project>" window, "Solver" node”

Figure 48, “"Solver" settings for a project with quadratic equation (project settings that
differ from workspace settings appear in bold font)”

Figure 49, “"Please pick solution for request" window with possible solutions for the
quadratic equation example”

Figure 50, “"Properties for <project>" window, "Maxima / MuPAD cache" node”

Figure 51, “Project Explorer with project-specific cache file”

Figure 52, “Constant R invisible in the system graph (left) and in the flow (right)”

Figure 53, “Execution Environment showing a computation with a constant”

Figure 54, “Parameter R in the system graph (left) and in the flow (right)”

Figure 55, “Execution Environment showing a computation with a parameter”

Figure 56, “Fixed variable R in the flow (left) and in the system graph (right)”

Figure 57, “Execution Environment showing a computation with a fixed variable”

Figure 58, “"Preferences" window with "Generator" settings for SCODE-CONGRA”

SCODE Workbench V3.0 — Getting Started 242

ETAS Figures

Figure 59, “Code generation folder for the Fixedvariable project, with generated C,
ESDL, and MATLAB files”

Figure 60, “Flow with original direction”

Figure 61, “Flow with inverted direction”

Figure 62, “Flow with inputs R and U and explicit output |. Irrelevant parts of the flow are
marked.”

Figure 63, “Flow with algebraic loop”

Figure 64, “"Properties" view with constraints for a variable”

Figure 65, “Execution Environment with a limited variable and a variable with a value
based on the limited variable.”

Figure 66, “"Properties for <project>" window, "Verification" node”

Figure 67, “"Properties for <project>" window, "C/EMI" node”

Figure 68, “"Build" view with results for C code generation with verification harness”

Figure 69, “Pop-up with quick fix”

Figure 70, “"Properties" view with constraints for a parameter”

Figure 71, “"New File" window”

Figure 72, “SCODE-CONGRA project UnitDefinitions with five unit definition files”

Figure 73, “"Properties for <project>" window, "Project References" node”

Figure 74, “Popup with items that can be imported. The items are listed as follows: icon
<item name> - <package name>.<item name>"

Figure 75, “PhysicalUnits. svyg file and "Problems" view with error markers due to
incompatible units”

Figure 76, “Execution Environment showing a computation with units. Visible units are
marked.”

Figure 77, “"Export" window with selected SCODE-CONGRA report generation”

Figure 78, “"CONGRA Report Generator" window”

Figure 79, “SCODE Workbench window, showing the Welcome page”

Figure 80, “SCODE Workbench window, showing the SCODE-ANALYZER perspective
with empty workspace”

Figure 81, “SCODE Workbench window, showing the SCODE-CONGRA perspective with
empty workspace”

Figure 82, “"Preferences" window with generator settings for SCODE-ANALYZER”

Figure 83, “"Preferences" window with "Solver" settings for SCODE-CONGRA”

Figure 84, “"Preferences" window with "Generator" settings for SCODE-CONGRA”

Figure 85, “"Preferences" window, "MATLAB/Simulink" node”

Figure 86, “"Properties for <project>" window, "SCODE-ANALYZER" node”

Figure 87, “"Properties for <project>" window, "SCODE-ANALYZER\Generator" node”

SCODE Workbench V3.0 — Getting Started 243

ETAS Figures

Figure 88, “"Export" window with selected SCODE-ANALYZER test suite generation”

Figure 89, “"Generate Test Suite" window with settings for the example”

Figure 90, “TPT "Preferences" window, "General\C Compiler" node”

Figure 91, “* . tpt file opened in TPT”

Figure 92, “"Test Set Definition" window with test set (all test cases activated)”

Figure 93, “"Platform Configuration" window with newly created platform”

Figure 94, “"Platform Configuration" window with configured platform”

Figure 95, “"Code interface" window”

Figure 96, “Working selections in the "Code interface" window”

Figure 97, “"Import Interface" window”

Figure 98, “"Declaration Editor" window”

Figure 99, “"Execution Configuration" window”

Figure 100, “"TPT Build Progress" window, all tests passed”

Figure 101, “TPT Signal Viewer”

Figure 102, “Flow with inputs, implicit outputs, and algebraic loop”

Figure 103, “Flow with relations, inputs, explicit output, and unused parts”

Figure 104, “System graph (left) and flow (right) with relation, parameter, variables”

Figure 105, “Flow with underconstrained and overconstrained parts”

Figure 106, “"Preferences" window, "General\Network Connections" node”

Figure 107, “"Preferences" window, "Install/Update\Available Software Sites" node”

Figure 108, “"Install" window with Yakindu Traceability features selected for installation”

Figure 109, “SCODE Workbench with menus added by Yakindu Traceability”

Figure 110, “Complete decision tree for the hybrid car example; with condition desired
acceleration as root (see section 4.4.4)"

Figure 111, “The decision tree from Figure 110 with horizontal orientation (see section

4.4.4)

Figure 112, “DAG view of the decision tree with vertical orientation (see section 4.4.4)"

Figure 113, “DAG view of the decision tree with horizontal orientation (see section 4.4.4)”

Figure 114, “Decision tree with selected layers, first three levels are shown (see section

4.4.4)

Figure 115, “Sub-tree (horizontal orientation) with non-system modes displayed (see

section 4.4.4)”

Figure 116, “Sub-tree before height optimization (see section 4.4.4)”

Figure 117, “Sub-tree after height optimization (see section 4.4.4)”

SCODE Workbench V3.0 — Getting Started 244

ETAS Tables

Tables

Table 1, “Example system — components”

Table 2, “Requirements for modes and mode definition rules”

Table 3, “Variable types available in a flow”

Table 4, “* . syqg file forthe ¢ F Simple Equation in IU computation. Line 15
shows the equation used to compute R, lines 16 and 17 show the partial derivatives of

the equation.”

Table 5, “Simple Equation system with changed (lines 6, 9, 12) or added (line 17)
@geo annotations”

Table 6, “* . sygfile forthe ¢ F QuadraticEquation_ in PR computation”

Table 7, “Changes in *. syg file to convert a constant into a variable”

Table 8, “* . syg file for a computation with a constant”

Table 9, “* . syqg file for a computation with a parameter”

Table 10, “* . syg file for a computation with a fixed variable”

Table 11, “Files generated during C, ESDL, and MATLAB code generation v

Table 12, “Content of the files generated during C, ESDL, and MATLAB code generation”

Table 13, “Available constraint types”

Table 14, “* . syg file for the ConstraintsvVariables system. Lines 6, 8, 10, and 12
show the constraints for the variables.”

Table 15, “Some variables with units”

Table 16, “* . syg file with imported units”

Table 17, “* . syg file extract: variable definitions with units (lines 8, 11, 14, 17). The unit
name appears before the variable name.”

Table 18, “water tank.c (C file generated for the water tank example)”

Table 19, “water tank.h (corresponding header file for water tank.c)”

Table 20, “water tank Types.h (defines the required enumerations)”

Table 21, “C file that defines global variables”

Table 22, “SCODE-CONGRA graphs — CONGRA Classic colors and meanings”

Table 23, “Problem space — suggestions (see section 4.3)”

Table 24, “Modes and rules — first set of suggestions (see section 4.4.1)”

Table 25, “Modes and rules — suggestions for additional condition (see section 4.4.2)”

Table 26, “Suggested rules for the missing states. Alternatives that cannot be true at the
same time are marked.”

Table 27. “Suggested rules for the states that are still missing after suggestion 1 from the
previous table has been inserted as non-system mode”

Table 28, “Transitions with associated events (*: no transition; --: forbidden transition) for
section 4.6”

SCODE Workbench V3.0 — Getting Started 245

ETAS Tables

Table 29, “Events and rules for the transitions from mode charging”

Table 30, “Events and rules for the transitions from mode standstill”

Table 31, “Events and rules for the transitions from mode mechanical brake”

Table 32, “Events and rules for the transitions from mode discharging”

Table 33, “Events and rules for the transitions from mode Combustion engine only’

Table 34, “Generated C code (c_F_Constants_in I.c)forthe Constants project
(see section 5.4.1). The value of constant R appears in line 23.”

Table 35, “Generated C code (c_F_Parameters in I.c)forthe Parameters project
(see section 5.4.2). Parameter R appears in lines 22 and 23.”

Table 36, “Generated C code (¢c_F_FixedVariable in I fix R.c)forthe
FixedVariable project (see section 5.4.3). Fixed variable R appears in lines 23 and
24"

Table 37, “Generated C code for both flows in section 5.5”

Table 38, “Generated ESDL code for the flows with (left) and without (right) explicit output
in section 5.6.”

Table 39, “* . syq file for the computation ¢ F_AlgebraicLoop_in PR’

Table 40, “Generated C code for the flow F_AlgebraicLoop in PR’

Table 41, “Generated ESDL code for the flow F_AlgebraicLoop_in PR’

Table 42, “Generated MATLAB code for the flow F AlgebraicLoop in PR’

Table 43, “c F ConstraintsVariables in RU.c file with constraints, but no
verification code (section 5.8.1).”

Table 44, “c F ConstraintsVariables in RU harness.c file (see section 5.8.2)"

Table 45, “Comparison of computation * . syqg files with (left) and without (right) parameter
constraint”

Table 46, “Comparison of generated C code for computations with (left) and without (right)
parameter constraint”

Table 47, “Comparison of generated ESDL code for computations with (left) and without
(right) parameter constraint”

Table 48, “Comparison of generated MATLAB files for computations with (left) and without
(right) parameter constraint”

Table 49, “Unit definitions (see section 5.9)"

Table 50, “Generated C code for the flow F_PhysicalUnits in IU (see section 5.9.5).
The units are invisible, but the scaling factor for mA < A is inserted automatically.”

Table 51, “Generated MATLAB code for the flow FF PhysicalUnits in IU (see
section 5.9.5). The units are invisible, but the scaling factor for mA < A is inserted

automatically.”

SCODE Workbench V3.0 — Getting Started 246

ETAS Index

Index
@ convert to variable, 91
@geo annotation crea’fe, 20

Constraint

store in SYQ file (automatically), 82
enter, 105, 113

store in SYQ file (manually), 81
example (C code), 224

A in Execution Environment, 107
Add parameter, 111

condition, 27 variable, 105

event from rule, 47 with unit, 125

mode, 33 Contact information, 240

mode definition rule, 32 Create
Algebraic loop, 103 constant, 90
Alternative, 26 example project

add comment, 28 SCODE-ANALYZER, 136

edit, 26 SCODE-CONGRA, 140
c fixed variable, 95

flow, 73

C code input, 73

additional ~ for test case, 149 output, 102

example, 217, 219 parameter, 93

constraints, 224 project
flow with units, 233 SCODE-ANALYZER, 24

generated files, 245 SCODE-CONGRA, 66
Cache relation, 69

store solution, 88 TPT file, 147

Code unit (special project), 115
generate, 98 unit (system file), 121
select generator, 96 unit definition file, 117

Code generation workspace, 22, 64
mode invariants, 41 T

settings, 40, 57 D

transition matrix, 58 Decision tree, 37
Command line change view, 38

install SCODE Workbench, 17 DAG view mode, 39
Comment non-system mode, 39

for alternative, 28 orientation, 39

for condition, 28 sub-tree, 39

for event, 48 Default value

for mode, 32 variable, 71

for rule, 32, 47 Description

in *.syq file, 121 relation, 70
Computation, 74, 75 variable, 71
Condition Determinism, 43

add, 27 Dimension, 26

add comment, 28 determine, 26

edit, 26 don’t care, 30

Constant, 90
assign unit, 123

SCODE Workbench V3.0 — Getting Started 247

ETAS

E
Edit
condition, 26
mode, 31
Equation
specify, 68
ESDL
code example, 220
generated files, 245
Event, 43, 43
add from rule, 47
assign to transition, 48
check, 50
determine, 44
Execution environment, 76
constraints, 107
open, 76
sensitivity, 78
units, 126
values, 77

F

First steps, 131
example project
SCODE-ANALYZER, 136
SCODE-CONGRA, 140
generator settings
SCODE-ANALYZER, 134
settings
SCODE-CONGRA, 138
start SCODE Workbench, 131
Fixed variable, 94
convert to variable, 95
create, 95
Flow
create, 73

G

Generated code
C example, 217, 219, 233

ESDL example, 220

MATLAB example, 223, 234

units, 126

verification harness, 225

with constraints (example), 229

Generator

configure
SCODE-ANALYZER, 134
SCODE-CONGRA, 139

Generator settings

SCODE Workbench V3.0 — Getting Started

Index

SCODE-ANALYZER, 134

Glossary, 176

Import from package

item, 119
unit, 119

Input

create, 73

Installation, 11

blocking applications, 13
command line, 17
license agreement, 12
path settings, 13
prepare, 11
silent

SCODE Workbench, 18
start, 11
start menu folder, 16
uninstall existing version, 14
uninstall SCODE Workbench, 19
Yakindu Traceability, 168

International system of Units, 115

Layout

store as @geo annotation, 81, 82

Licensing, 18
Liveliness, 43

MATLAB

code example, 223
flow with units, 234

connect with SCODE Workbench, 144,
83

disconnect from SCODE Workbench,
145

generated files, 245

select version, 84

Maxima

activate, 138

Mode, 29

add, 33

add comment, 32
check, 34
determine, 29
edit, 31
non-system ~,
rename, 32

9, 36

248

ETAS Index

system ~, 29 SCODE-ANALYZER, 24
Mode definition rule, 30 SCODE-CONGRA, 66
Mode invariants, 40 create example

generate code, 41 SCODE-ANALYZER, 136

prepare code generation, 40 SCODE-CONGRA, 140
Mode transition graph, 55 open example ~
Mode transition rule, 43 SCODE-CONGRA, 143
MuPAD SCODE-ANALYZER, 22

activate, 84 Project-specific settings
MuPad SCODE-CONGRA, 84

select MATLAB version, 84 R
N Relation
Non-system mode, 29, 36 add, 69

add, 36 create, 69

in decision tree, 39 specify, 70
o Report

example, 235
Open generate, 127, 59
example project Rule, 43
SCODE-CONGRA, 143 add, 32
Output add comment, 32, 47

Cregte, 102 add event from ~, 47

defined, 101 add via Analysis Details, 51

explicit, 101 check, 50

implicit, 74 optimizg5_3
P requirements, 30
Parameter, 92 specify, 47

assign unit, 122 S
constraints, 111

Safety information, 8
convert to variable, 94

technical state, 9

create, 93 . SCODE Workbench, 8
enter constraint, 113 connect with MATLAB, 144, 83
Perspective disconnect from MATLAB, 145

SCODE-ANALYZER, 24, 24 generator settings
SCODE-ANALYZER, 13

SCODE-CONGRA, 66

Position SCODE-CONGRA, 139
store as @geo annotation, 81, 82 silent installation, 18
store in SYQ file, 81, 82 T

. start, 131

Privacy, 9 uninstall, 19

Problem space SCODE-ANALYZER
define, .@ . . connect with MATLAB, 144
determine dimensions, 26 create example project, 136

Product liability disclaimer, 8 create TPT file. 147

Project generator settings, 134, 134
close, 89 _ SCODE-ANALYZER perspective, 24, 24
close unrelated projects, 89 SCODE-ANALYZER project, 22
connect to other ~, 118 SCODE-ANALYZER tutorial, 21
create

code generation, 40, 57

SCODE Workbench V3.0 — Getting Started 249

ETAS Index

create project, 22 T
deflnte pér:;blem space, 26 Test case
events, 43 additional C code, 149
modes, 29
create, 147

transitions, 43 execute in TPT, 161
SCODE-CONGRA

. Maxi 138 working in TPT, 152
aCt'Vatet 'Tr):la,aAZI'LAB 144 TPT, 152
°°””te° W B add C files, 157
create examp.e project, 120 configure platform, 156
generator settings, 139 . ' .
: create compiler configuration, 152
select MATLAB version, 84 .
; create project, 153
SCODE-CONGRA perspective, 66

' define test set, 155
SCODE-CONGRA tutorial, 63
. execute test case, 161
algebraic loop, 103 3

import interface, 1
constant, 90

o TPT file
Zo?s rzln S, o create, 147
lefined output, 101 Transition, 43
fixed variable, 94 i
o assign event, 48
mvel. model, _t o check, 50
non- metar eq;za ion, 83 determine, 44
parameters, 92 determinism, 43
preparations, 64

repe e liveliness, 43
simple equation, 66 requirement, 48
units, 114 i

e 1os specify, 51
. V?’:'I l.ct:a ion, 104 stability, 43
ensitivity Transition graph, 55
check, 78

Transition matrix, 47
code generation, 58
prepare code generation, 57
Tutorial
SCODE-ANALYZER, 21
SCODE-CONGRA, 63

Sensitivity analysis, 78
Settings, 138
for workspace, 83
project-specific
SCODE-CONGRA, 84

Sl units, 115

Silent installation U
SCODE Workbench, 18 Uninstallation, 19

Solution Unit, 115
disable selection, 88 assign to constant, 123
select, 86 assign to parameter, 122
store, 88 assign to variable, 122
use first, 88 constraint with ~, 125

Solver create definition file, 117
Maxima, 138 define (separate file), 117
MuPAD, 84 define (special project), 115

Stability, 43 define (system file), 121

SYQ file, 63 definition example, 233
comment, 121 enter value with ~, 124
unit definition, 233 example

System mode, 29 C code, 233

MATLAB code, 234

SCODE Workbench V3.0 — Getting Started 250

ETAS Index

Execution environment, 126
generated code, 126
import from package, 119

v

Value

enter ~ with unit, 124
Variable

assign unit, 122

constraints, 105

convert to constant, 90

convert to parameter, 93

default value, 71

description, 71

edit, 71

enter constraint, 105

fixed, 94

set type, 102, 73

types, 72

with constraints + value, 125
Verification code

enable, 109

example (harness), 225
Verification harness

example, 225

w

Workspace
create, 22, 64

Y

Yakindu Traceability
install, 168

SCODE Workbench V3.0 — Getting Started 251

	ETAS SCODE Workbench V3.0: Getting Started
	Contents
	1. About this Document
	1.1. Classification of Safety Messages
	1.2. Presentation of Instructions
	1.3. Typographical Conventions
	1.4. Presentation of Supporting Information

	2. Introduction
	2.1. Safety Information
	2.1.1. Intended Use
	2.1.2. Demands on the Technical State of the Product

	2.2. Privacy Notice

	3. Installing SCODE Workbench
	3.1. Preparing the Installation
	3.1.1. Delivery Scope
	3.1.2. Software Prerequisites and System Requirements

	3.2. Installation
	3.2.1. Installation via Dialog Windows
	3.2.2. Command-Line Installation

	3.3. Licensing
	3.4. Uninstallation

	4. SCODE-ANALYZER Tutorial
	4.1. Introduction
	4.1.1. Example: Hybrid Car

	4.2. Lesson 1: Creating a SCODE-ANALYZER Project
	4.3. Lesson 2: Defining the Problem Space
	4.4. Lesson 3: Defining Modes
	4.4.1. Creating and Editing Modes
	4.4.2. Checking Modes
	4.4.3. Inserting a Non-System Mode
	4.4.4. Viewing the Decision Tree

	4.5. Lesson 4: Code Generation from Mode Invariants
	4.6. Lesson 5: Defining Events and Transitions
	4.6.1. Creating and Editing Events and Transitions from One Mode
	4.6.1.1. First Transition
	4.6.1.2. Second Transition
	4.6.1.3. Remaining Transitions

	4.6.2. Optimizing the Rules
	4.6.3. Completing the Transition Matrix

	4.7. Lesson 6: Code Generation from Mode Transition Matrix
	4.8. Lesson 7: Generating a Report

	5. SCODE-CONGRA Tutorial
	5.1. Introduction
	5.1.1. Concepts
	5.1.2. Preparations

	5.2. Lesson 1: Simple Equation
	5.2.1. Defining the Equation
	5.2.2. Specifying Directions
	5.2.3. Working with Computations
	5.2.4. Additional Task

	5.3. Lesson 2: Non-Linear Equation
	5.3.1. Preparing the Project
	5.3.2. Equation System and Computation
	5.3.3. Additional Tasks

	5.4. Lesson 3: Constants, Parameters, Fixed Variables
	5.4.1. Constants
	5.4.2. Parameters
	5.4.3. Fixed Variables
	5.4.4. Generating Code

	5.5. Lesson 4: Inverting Models
	5.6. Lesson 5: Explicit Outputs
	5.7. Lesson 6: Algebraic Loop
	5.8. Lesson 7: Constraints and Verification
	5.8.1. Constraints for Variables
	5.8.2. Verification Code
	5.8.3. Constraints for Parameters

	5.9. Lesson 8: Variables with Physical Units
	5.9.1. Defining Units in Separate Files
	5.9.2. Defining Units in the System SYQ File
	5.9.3. Assigning Units
	5.9.4. Units and Initial Values/Constraints
	5.9.5. Units in the Generated Code
	5.9.6. Additional Task

	6. First Steps with SCODE Workbench
	6.1. First Steps with SCODE-ANALYZER
	6.1.1. Generator Settings
	6.1.2. Start Using SCODE-ANALYZER

	6.2. First Steps with SCODE-CONGRA
	6.2.1. Settings
	6.2.2. Start Using SCODE-CONGRA

	6.3. Simulation in MATLAB®
	6.3.1. Uninstall Old Connection to MATLAB®
	6.3.2. Connect Current Version

	7. Useful Information
	7.1. SCODE-ANALYZER: Generating TPT Test Cases
	7.1.1. SCODE-ANALYZER Project
	7.1.2. Additional C Code
	7.1.3. Working in TPT
	7.1.3.1. Preparations
	7.1.3.2. TPT Project

	7.2. SCODE-CONGRA: Colors
	7.3. SCODE Workbench: Installing Yakindu Traceability

	8. Glossary
	8.1. SCODE-ANALYZER
	8.2. SCODE-CONGRA

	9. Tutorial Hints
	9.1. SCODE-ANALYZER Tutorial Hints
	9.1.1. Problem Space
	9.1.2. Modes
	9.1.3. Events and Transitions
	9.1.4. Code Generation: Mode Invariants
	9.1.5. Code Generation: Transition Matrix
	9.1.6. SCODE-ANALYZER Report

	9.2. SCODE-CONGRA Tutorial Hints
	9.2.1. C Code for Lesson 3
	9.2.1.1. C Code for a Flow with Constant
	9.2.1.2. C Code for a Flow with Parameter
	9.2.1.3. C Code for a Flow with Fixed Variable

	9.2.2. C Code for Lesson 4
	9.2.3. ESDL Code for Lesson 5
	9.2.4. Generated Code for Lesson 6
	9.2.4.1. Computation SYQ Code
	9.2.4.2. C Code
	9.2.4.3. ESDL Code
	9.2.4.4. MATLAB® Code

	9.2.5. Generated Code for Lesson 7
	9.2.5.1. C Code for a Flow with Constraints
	9.2.5.2. C Harness for Flow F_ConstraintsVariables_in_RU
	9.2.5.3. Comparison: Generated Code with/without Parameter Constraint

	9.2.6. Hints for Lesson 8
	9.2.6.1. Example: Unit Definitions in a *.syq File
	9.2.6.2. C Code for a Flow with Units
	9.2.6.3. MATLAB® Code for a Flow with Units
	9.2.6.4. SCODE-CONGRA Report

	10. Contact Information
	Figures
	Tables
	Index

