
ETAS RTA-FBL_STLA v2.0.0

User Manual

www.etas.com

Copyright
The data in this document may not be altered or amended without special notifi-
cation from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation
to this document. The software described in it can only be used if the customer is
in possession of a general license agreement or single license. Using and copying
is only allowed in concurrence with the specifications stipulated in the contract.
Under no circumstances may any part of this document be copied, reproduced,
transmied, stored in a retrieval system or translated into another language
without the express wrien permission of ETAS GmbH.
© Copyright 2024 ETAS GmbH, Stugart
The names and designations used in this document are trademarks or brands
belonging to the respective owners.
ETAS RTA-FBL_STLA 2.0.0 - User Manual R01 EN – 07.2024

 Contents
1 Introduction . 6
1.1 Intended Use . 6
1.2 Target Group . 6
1.3 Classification of Safety Messages . 6
1.4 Safety Information . 6
1.5 Revision History . 6
1.6 Definition and Abbreviations . 10
1.7 References . 11
1.8 About this Document . 11
1.9 Chapter Description . 11
2 Introduction to ETAS RTA-FBL . 13
2.1 What is a Flash Bootloader? . 13
2.2 What is RTA-FBL? . 14
2.3 The Flash Tool (Tester) . 15
2.4 The OEM-defined Programming Sequence . 15
2.5 Target Dependencies and the Flash Driver . 15
2.6 Interaction with the Application using NvM . 16
2.7 One and Two-Stage Bootloaders . 16
2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin . 16
2.9 General architecture of RTA-FBL . 18
2.10 Seing up your environment to generate an RTA-FBL instance . 19
3 Installing RTA-FBL . 20
4 The STLA Port . 22
4.1 RTA-FBL_STLA Architecture . 22
4.2 Stellantis Download Sequence . 24
4.3 Creating and building an RTA-FBL instance . 25
4.3.1 Project creation . 25
4.3.2 Configuration and Generation of FBL and BSW . 28
4.3.2.1 FblRegion . 33
4.3.2.2 FblGeneral . 34
4.3.2.3 FblCore . 36
4.3.2.4 FblCan . 36
4.3.2.5 FblSec . 37

3 | Contents

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.3.2.6 FblNvmBlock . 38
4.3.2.7 FblNvmData . 39
4.3.2.8 FblDid . 40
4.3.2.9 FblFota . 41
4.3.2.10 FblFotaRollbackRegion . 42
4.3.3 Files created during generation . 43
4.3.4 The RTA-FBL instance for the Dummy Target . 44
4.3.4.1 Dummy Target Memory Layout . 45
4.4 Security Stack . 46
4.4.1 FBL callout for SecStack integration . 46
4.4.1.1 Startup . 46
4.4.1.2 Jump to application . 47
4.4.1.3 Periodic . 48
4.4.1.4 HTA suspension and activation . 49
4.4.1.5 Secure Download . 49
4.4.1.6 ADA - Challenge request . 50
4.4.1.7 ADA - Verify response and periodic certificate verification . 51
4.4.1.8 ADA - Certificate management . 52
4.4.1.9 ADA - Periodic . 54
4.4.1.10 FOTA - CSR and idendity key generation . 54
4.4.1.11 FOTA - Sign data with identity key . 56
4.4.1.12 FOTA - Periodic . 57
4.4.2 CertStore, DisavowedCertificateList and TrustStore . 57
4.4.3 Trusted Boot . 59
4.4.3.1 Bootloader first run . 60
4.4.3.2 Startup sequence . 61
4.4.4 Trusted Download . 62
4.5 Supported targets . 63
4.6 Integrator guidelines . 63
4.6.1 FBL: Memory Layout Adaptation . 63
4.6.2 FBL: User Functions . 64
4.6.2.1 Initialization . 64
4.6.2.2 Shutdown . 65
4.6.2.3 Watchdog . 65

4 | Contents

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.6.2.4 Application validation . 66
4.6.2.5 Software Identification Update . 66
4.6.2.6 External memory reprogramming . 67
4.6.2.7 Authenticated Diagnostic Access . 68
4.6.2.8 Diagnostic . 69
4.6.2.9 ECU Identity . 71
4.6.2.10 FOTA Rollback . 71
4.6.3 FBL: BSW adaptation . 72
4.6.4 FBL: MCAL adaptation . 72
4.6.5 FBL: OS adaptation . 72
4.6.6 FBL: BLSM adaptation . 73
4.6.7 Application Software: NvM layout adaptation . 74
4.6.8 ASW: Boot Jump Handling . 74
4.6.9 FBL: NvM adaption . 78
4.6.10 FBL: DID adaption . 80
4.7 Bootloader Update . 82
4.8 Authenticated Diagnostic Access . 84
4.8.1 Authenticated security access and Delay timer . 85
4.8.2 Certificate expiration and monotonic counter . 86
4.8.3 Role and Security policy management . 87
4.9 FOTA Rollback . 87
4.9.1 FOTA Rollback configuration . 87
4.9.2 FOTA Rollback functional behavior . 88
4.10 FOTA ECU Identity . 91
5 Privacy . 93
5.1 Privacy Statement . 93
5.2 Data Processing . 93
5.3 Data and Data Categories . 93
5.4 Technical and Organizational Measures . 93
6 ETAS Contact Addresses . 94
6.1 ETAS HQ . 94
6.2 ETAS Subsidiaries and Technical Support . 94

5 | Contents

ETAS RTA-FBL_STLA v2.0.0 | User Manual

1 Introduction
This user manual introduces the RTA-FBL port for STLA. It provides an overview of
the RTA-FBL architecture and software design. It also provides detailed informa-
tion of the STLA port for users developing ECUs that will be reprogrammed with
RTA-FBL. This includes information about how to configure RTA-FBL, as well as
how to integrate the Application Software on the ECU.

1.1 Intended Use
1.2 Target Group
1.3 Classification of Safety Messages
1.4 Safety Information
1.5 Revision History

Ver. Author Date Change (Why, What)
0.1 Francesco

Ficili
29/11/2018 First version.

1.0 Andrew
Borg

03/02/2019 First release.
1.1 Daniele

Cloralio
29/05/2020 STLA Port version

1.2 Daniele
Cloralio

15/07/2020 Minor changes
1.3 Daniele

Cloralio
22/10/2020 Typo and minor changes

1.4 Francesco
Sfragara

05/11/2020 Minor changes in section 4.3 and 3
1.5 Daniele

Cloralio
27/09/2022 Updates for release RTA-FBL STLA 2.0 Proto1

1.6 Mohamed
Salem

15/05/2023 Updates for release RTA-FBL STLA 2.0 Proto2.
Chapters:

-Updates in section 4.6.2 new user interfaces
for ADA

-Updates in section 4.6.7 to add new Nvm
entry for ADA

-Updates in section 4.6.8 to handle ADA
feature during Jump from the ASW

-Added section 4.8 for ADA feature descrip-
tion

6 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

1.7 Jacopo
Filippi

18/06/2023 Updates for release RTA-FBL STLA 2.0 Proto3.
Features:

-Moved SecHal from target to INFRA
-Added DID2001 user callback
-Added FBL Did and NvM configuration to the

plugin user interface.
FBL parameters:

-Deleted FblDidEcuDiagnosticVariant, FblDid-
SupplierId, FblDidEcuDiagnosticVersion,
FblDidFdn, FblDidAlgorithmIdReprogramming,
FblDidPtEslmHardwareNumber, FblDidE-
bomEcuPartNumber, FblDidCodepEcuPart-
Number, FblDidElsmEcuSoftwareNumber,
FblDidElsmEcuSwCalibrationNumber,
FblDidElsmEcuSwApplicationNumber, FblDid-
CodepAssemblyPartNumber, FblDidElsmE-
cuHardwareNumber, FblDidSupplierEcuHard-
warePartNumber, FblDidSupplierEcuSoft-
warePartNumber, FblDidEbomAssemblyPart-
Number, FblDidHwSupplierId, FblDidSwSup-
plierId, FblDidEcuSerialNumber, FblDidSuppli-
erManEcuSwVersion, FblDidSupplier-
ManEcuHwVersion, FblDidPolicyType,
FblDidErotan (replaced by FblDid)

-Added FblDid (Now user can configure DIDs
relevant parameter in the FBL module)

-Added FblNvmBlock (Now user can configure
the NvM blocks relevant parameter in the
FBL module)

-Added FblNvmData (Now user can configure
the NvM data relevant parameter in the FBL
module)

Chapters:
-Added chapter 4.6.9 FBL: NvM adaption
-Added chapter 4.6.10 FBL: Did adaption

7 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

1.8 Jacopo
Filippi

29/09/2023 Updates for release RTA-FBL STLA 2.0 Proto4.
Features:

-Added Rollback
-Added Ecu Identity

FBL parameters:
-Added FblFotaRollback
-Added FblFotaRollbackRegion
-Added FblEraseMaxSizePerCycle

Chapters:
-Updated 4.3.2.3 FblCore (Added FblFotaRoll-

backRegion)
-Added 4.3.2.9 FblFota
-Added 4.3.2.10 FblFotaRollbackRegion
-Updated 4.6.2.6 External memory repro-

gramming (Added UserFlash_FlashRead)
-Updated 4.6.2.8 Diagnostic (Added new call-

outs for DID)
-Added 4.6.2.9 ECU Identity
-Added 4.6.2.10 FOTA Rollback
-Updated 4.6.7 Application Software: NvM

layout adaptation
-Updated 4.6.10 FBL: DID adaption (Added

Fbl_Port_<DID_SHORT_NAME>ReadFunc)
-Added 4.9 FOTA Rollback
-Added 4.10 FOTA ECU Identity

8 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

1.9 Jacopo
Filippi

18/12/2023 Updates for release RTA-FBL STLA 2.0 Proto5.
Features:

-Added DCL support and DID 0x2031
-Updated Rollback
-Added F1AA

Chapters:
-Added 4.4.1 CertStore, DisalloweCertifi-

cateList and TrustStore
-Added 4.4.2 Authenticated Boot
-Added 4.4.3 Authenticated Download
-Updated 4.6.2.10 FOTA Rollback to add new

information on ISOLAR configuration and the
description of the updates.

-Update 4.6.2.8 Diagnostic with F1AA informa-
tions.

-Update 4.8.1Authenticated security access
and Delay timer. Failure counter is stored in
NvM.

1.10 Jacopo
Filippi

08/03/2024 Updates for release RTA-FBL STLA 2.0 Proto6.
Features:

-Added “Extended reset” feature
-Mod Secure Boot
-Del Dids 0xF1A7, 0x100A and 0x100B
-Mod Rollback
-Mod Erase

Chapters:
-Mod 4.4 Security Stack: added subchapters

4.4.1 FBL callout for SecStack integration,
4.4.2 CertStore, DisavowedCertificateList
and TrustStore

-Mod 4.9 FOTA Rollback with new features.

9 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

2.0.0 Jacopo
Filippi

02/07/2024 RTA-FBL_STLA qualified release
Chapters:

-Mod Stellantis Download Sequence (Erased
force pending responce)

-Mod Bootloader Update (Added information
about boot updater process)

-Mod FOTA ECU Identity (Added information
about ECDSA signature)

-Del How to Flash the ECU with INCA and the
ProF Script (INCA ProF is no more delivered
with the plugin)

1.6 Definition and Abbreviations
Term/Abbreviation Definition
ADC Analogue to Digital Convertor
ADA Authenticated Diagnostic Access
AR AUTOSAR
Application Software (ASW) This is the software that executes the control

logic of the ECU
AUTOSAR AUTomotive Open System Architecture
BLSM Bootloader State Manager
BSW Basic Software
CAN Controller Area Network
CAN FD CAN Flexible Datarate
CS Cert Store
CSR Certificate Signing Request
CRC Cyclic Redundancy Code - a CRC module is

provided in RTA-BSW
Dcm Diagnostic Communication Manager
DID Data IDentifier
DCL Disallowed Certificate List
DLL Dynamic Link Library
ECU Electronic Control Unit
FBL Flash Bootloader
FOTA Firmware Over The Air
Fee Flash EEPROM Emulation
FW Firmware
HW Hardware

10 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

ISR Interrupt Service Routine
MCAL Micro-Controller Abstraction Layer
NvM Non-Volatile Memory
OS Operative System
RTA-x The ETAS suite of embedded SW products
SFB Signer Firmware Block
SFBH Signer Firmware Block Header
SFBD Signer Firmware Block Data
STLA Stellantis
S&K Seed And Key
SW Software
TB Trusted Boot
TBT Trusted Boot Table
TS Trust Store
UDS Unified Diagnostic Services

1.7 References
Ref. Document Name Ver.
[1] CS.00101_ECU FLASH Reprogramming Requirements Rev. D
[2] CS.00102_Standardized Diag Data Rev. F
[3] CS.00092_AUTHENTICATED DIAGNOSTICS ACCCESS Rev. B
[4] FBLDid_DefaultValues.pdf 2.0.0
[5] FBLNvmBlock_DefaultValues.pdf 2.0.0
[6] FBLNvmData_DefaultValues.pdf 2.0.0
[7] SD.00078_Certificate_Formats.pdf Rev. C
[8] SD.00015_03_DCL Rev. 0

1.8 About this Document
This document provides a detailed description of ETAS’ RTA-FBL Port for Stel-
lantis OEM. It provides a reference for ECU developers that will allow reprogram-
ming of their ECU using RTA-FBL.

1.9 Chapter Description
Chapter Description
Chapter 1 This is the document introductory chapter.
Chapter 2 This chapter introduces ECU reprogramming in general and associ-

ated tooling, including RTA-FBL.
Chapter 3 This chapter explains how RTA-FBL must be installed in order to

allow you to create a complete RTA-FBL bootloader instance.

11 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Chapter 4 This chapter introduces the RTA-FBL Port for Stellantis. It includes
important integration steps required for integrating RTA-FBL with
your Application Software.

Chapter 5 This chapter explains how to flash an ECU with an RTA-FBL boot-
loader using INCA.

Chapter 6 This chapter contains important privacy information.
Chapter 7 This chapter contains ETAS references for customer support.

12 | Introduction

ETAS RTA-FBL_STLA v2.0.0 | User Manual

2 Introduction to ETAS RTA-FBL
This section introduces basic FBL concepts independently of a particular OEM
port or hardware target. It also introduces ETAS’ FBL product, RTA-FBL, and
provides information that is common to all ports and targets. Specific information
about your port and the targets supported in this port are detailed in the section
The STLA Port.

2.1 What is a Flash Bootloader?
A Flash Bootloader (FBL) is embedded SW that allows the reprogramming of an
ECU with new Application SW using a standard communication channel. The FBL
works in combination with an external tool that runs as a desktop application
(often called a Flash Tool or Tester Tool). This tool communicates with the FBL
executing on the ECU to transfer the new Application SW. The FBL updates the
ECU’s non-volatile memory with this new Application SW.

Figure 1: High level flashing process
The FBL is a standalone program. It has a separate run-time with respect to the
Application SW, and so the FBL and the Application SW never run concurrently.
After startup, the FBL always runs first as it needs to decide whether it is to wait
for new Application SW to be sent from a tester, or if it is to start the Application
SW already present in the ECU. This decision depends on two items of state in

13 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

the ECU: whether a reprogramming request flag has been set by the Application
SW before the last reset, and whether the Application SW currently programmed
in the ECU is valid.
A classic boot loading sequence showing this decision is depicted in Figure 2.
Note that the Application SW is only started if the Application SW is valid and the
reprogramming request flag is not set. In any other case, the FBL enters the Boot-
loader state and communicates with the tester to reprogram the ECU.

Figure 2: Boot loading flowchart
2.2 What is RTA-FBL?

RTA-FBL is ETAS’ bootloader product oering. It allows integrators to create Flash
Bootloader software according to a specific OEM specification. RTA-FBL gener-
ates source code (flash boot loader modules and basic software) from user
configuration. This significantly reduces the user eort required to get the flash
bootloader up and running and integrated with the application software.
RTA-FBL leverages the following layers defined by the AUTOSAR standard archi-
tecture:

-MCAL: provided by silicon vendor
-BSW: provided by ETAS (RTA-BSW)

Although RTA-FBL ports currently support CAN and CAN-FD, basing the under-

14 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

lying SW architecture on AUTOSAR allows support of other communication proto-
cols such as Ethernet, FlexRay, LIN.
RTA-FBL satisfies requirements from dierent OEMs for dierent HW architec-
tures by creating ports that integrate with the core RTA-FBL product. The clear
separation between core (which is OEM independent and target independent)
and port (which is OEM-dependent with support for one or more targets) makes it
possible to support a wide range of OEM FBL requirements and allows quick
porting to new targets.
RTA-FBL generates source code and BSW files through the following compo-
nents:

-rtafblgen: an executable for FBL generation
-RTA-FBL GUI: a user interface for configuring the parameters used by rtaf-
blgen for generation. The configuration options depend on the OEM port
and selected target.

2.3 The Flash Tool (Tester)
The Flash Tool, or Tester, is a desktop application that handles the PC-side of the
flashing process. In general, the tester is used when the bootloader is in produc-
tion and access to the ECU is limited to non-debug communication protocols
such as CAN, Ethernet and FlexRay.

2.4 The OEM-defined Programming Sequence
The tester communicates with the ECU by sending messages over a communica-
tion bus according to a defined protocol. The ETAS FBL supports the UDS on the
CAN protocol. This means that requests are made to the ECU over a CAN bus, and
the messages sent and received comply with the UDS standard ISO 14229-1 [2].
The allowed message sequence sent to the ECU, as well as the expected
response from the ECU diers across OEMs. Therefore, the ETAS FBL supports
dierent OEM standards for ECU reprogramming. These are called “OEM ports” or
just “ports”. This guide specifically addresses the RTA-FBL port that implements
the reprogramming standard described in [1]. Each port supports one or more
hardware “targets”.
For example, the RTA-FBL port that implements [1] supports all the targets
described in the section Supported targets.

2.5 Target Dependencies and the Flash Driver
An FBL will naturally contain several dependencies on the underlying microcon-
troller target. In addition to the typical drivers such as communication, port and
timer drivers is the driver used by the bootloader to write the FLASH memory of
the ECU. This is target dependent code (usually provided by the silicon vendor),
because each dierent target could have dierent flash memory properties (i.e.
dierent technology, layout, endurance, etc.). The flash driver typically forms
part of the MCAL.

15 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

2.6 Interaction with the Application using NvM
A Bootloader and the Application Software may need to share data. For example,
a Tester may read or write data such as the ECU serial number both when the
ECU is running in boot-loader mode and when running its Application Software
(e.g. by using UDS ReadDataByIndentifier and WriteDataByIdentifier commands).
Typically, this will mean that both the Bootloader and the Application Software will
need to be able to read and write the same non-volatile memory. Where
non-volatile memory is implemented by EEPROM emulation in flash such sharing
may introduce technical challenges because the Bootloader and Application
Software must use the same algorithms and data-structures when emulating
EEPROM. (For example, if the application uses an Autosar Fee module for EEPROM
emulation then the Bootloader may need to use the same Fee module). The
requirements for compatibility between the FBL and Application Software for your
port are detailed in the section The STLA Port.

2.7 One and Two-Stage Bootloaders
There are two broad models for bootloaders and the model type for the boot-
loader described in [1] is described in more detail in The STLA Port.

-Single-stage: In this model, the complete Bootloader is stored on the ECU
(in flash), including the code used to write a new application to flash.

-Two-stage: In this model, a Primary Bootloader is stored in the ECU. This
Primary Bootloader is able to start the application running or download a
Secondary Bootloader into RAM. The Primary Bootloader is not able to write
to the flash used to store the application. Programming flash with a new
application is done by the Secondary Bootloader. There are three advan-
tages to the two-stage approach:
•The Primary Bootloader can in principal be smaller because it does not

need to include the code to write to flash (although space savings will be
limited in practice if the Primary Bootloader also needs to include a flash
driver to write to non-volatile memory implemented with flash).

•Since the Primary Bootloader does not contain the code to write to flash,
the application is less likely to corrupt itself or the bootloader because
faulty code in the application cannot jump to the flash reprogramming
driver.

•The Secondary Bootloader can be used to work around bugs in the boot-
loader installed on the ECU when it was manufactured.

Rather than an independent Secondary Bootloader, some OEMs use a
single-stage Bootloader that only excludes the flash driver used to write to the
flash that stores the application. Instead, the driver used to write to flash is
downloaded and stored in RAM during the programming sequence. This is some-
times referred to as a software “interlock”.

2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin
An instance of ETAS’s FBL is generated based on the chosen OEM specification

16 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

that defines the reprogramming sequence, the chosen hardware target, and the
specific configurations that are allowed within the scope of the OEM specifica-
tion. The tool for generating this FBL instance is an ISOLAR-AB plugin, which is
included with your purchased core license. An FBL generated using this plugin is
described as “an instance of RTA-FBL”. The plugin creates bootloader code as well
as a full RTA-BSW project with configuration that is needed to support the boot-
loader functionality. In the same generation process, the plugin therefore option-
ally also invokes RTA-BSW to generate an instance of the BSW. Alternatively, the
user can open the RTA-BSW project created by the RTA-FBL plugin to inspect the
generated configuration. FBL generation also results in some ports in the genera-
tion of an MCAL project that can be adapted. Further details relevant to your port
are provided in The STLA Port.

Figure 3: The process of generating an RTA-FBL instance
The tool process for generating an RTA-FBL instance is shown in Figure 3.
ETAS-provided tooling allows the integrator to create the bootloader-specific

17 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

application code (through the RTA-FBL plugin for ISOLAR-AB), and the BSW code
(through the RTA-BSW plugin for ISOLAR-AB). The MCAL code must be created
using a 3rd party tool, typically provided by the silicon vendor.
Note that the RTA-FBL ISOLAR-AB plugin generates source code that includes
some sample code that may require modification by the integrator. The integrator
also has the option to add further integration code. Finally, all source code needs
to be integrated and built using either the sample build scripts provided with
RTA-FBL (and based on scons) or the integrator’s own build toolchain.

 WARNING
RTA-FBL tests are carried out by ETAS for various FBL configurations that
create for each configuration dierent bootloader code, an MCAL project and
a BSW project. Since the integrator can make adaptations to specified sample
code, the generated MCAL project and the generated BSW project, this may
result in a final software stack that is not tested. For this reason, it is ultimately
the integrator’s responsibility to test that the complete bootloader works with
any changes made to any code or projects generated by RTA-FBL. Please read
the important integrator guidelines provided in the section The STLA Port for
information relevant to your port.

2.9 General architecture of RTA-FBL
An instance of RTA-FBL consists of five types of module as shown within the
complete RTA-FBL architecture in Figure 4.
These are:

1.Core bootloader modules (in blue): these are generated from the RTA-FBL
ISOLAR-AB plugin and must not be modified.

2.BSW modules (in orange): these are standard AUTOSAR BSW modules
generated by RTA-BSW and must not be modified.

3.Port-specific bootloader modules (in yellow): these are generated by the
RTA-FBL ISOLAR-AB plugin and must not be modified. They implement the
bootloader features that are specific to an OEM.

4.Port-specific bootloader modules (in green): generated from the RTA-FBL
ISOLAR-AB plugin that can be modified by the integrator as discussed in
Integrator guidelines. For example, the scheduler with callouts to main func-
tions is provided in all ports as a sample OS, and can be modified. Most ports
will also include integration code that can be used as provided in samples or
completed by the integrator.

5.3rd-party modules, and in particular the MCAL.
As noted in FBL generation with the RTA-FBL ISOLAR-AB plugin, you will need to
install a number of tools in order to generate a complete instance of RTA-FBL with
all required modules as shown in Figure 4. A number of integration steps will also
be required to build your software. Details for your specific OEM port and target

18 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

are also given in The STLA Port, including the folder structure of a generated
RTA-FBL instance that contains the code for the modules in Figure 4.

Figure 4: General architecture of an RTA-FBL instance
2.10 Seing up your environment to generate an RTA-FBL instance

In order to generate an instance of RTA-FBL, you will need to install the tools
shown in Table 2.1. Once you have the above packages, you will be able to
generate an instance of RTA-FBL. In order to build the instance, you will also need
to have installed the 3rd party MCAL as well as the relevant compiler toolchain
required by your target as described in your STLA FBL Target Guide.

Table 2.1.Tool versions
Tool Name Version Description
RTA-CAR 9.2.1 RTA-FBL configurator tool.
RTA-BSW 5.1.0 AUTOSAR BSW code generation tool.
RTA-FBL STLA
Port

2.0.0 FBL generator tool.
.NET framework 3.5 This is required by the ETAS license manage-

ment. In most cases, you will already have this
installed on your machine.

19 | Introduction to ETAS RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

3 Installing RTA-FBL
This section describes the installer for RTA-FBL. As noted in Seing up your envi-
ronment to generate an RTA-FBL instance, you need to install this package in
addition to ISOLAR-AB. This installer is described further in this section. In order to
install RTA-FBL, follow the instructions below. At the end of this installation, the
PC needs to restart.
Step 1: Execute the file setup.exe from the root folder of the installation CD.
When the destination location window is displayed, select your preferred folder
and click “Next”.

Figure 5: Welcome window
Step 2: Select the ISOLAR-AB version that will support the plugin by using
“Browse”. The minimum required version is 9.2 Then click “Next”.

Figure 6: ISOLAR integration

20 | Installing RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Step 3: Wait for the software required for RTA-FBL to be installed.

Figure 7: Installation Ongoing
Step 4: Once the installation completes, click on “Finish” to close the installer.

Figure 8: Installation finished

21 | Installing RTA-FBL

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4 The STLA Port
This chapter describes the Stellantis Port of RTA-FBL. It provides specific infor-
mation relevant to this port that expands on the general RTA-FBL features
described in Introduction to ETAS RTA-FBL. This chapter assumes that the reader
is familiar with the STLA Bootloader Specification in [1] and all relevant referenced
specifications therein. Reference is therefore made to [1] only in describing the
configuration and implementation-specific features of RTA-FBL.

4.1 RTA-FBL_STLA Architecture
Figure 9 provides a high-level view of RTA-FBL architecture for Stellantis. The
communication, memory and diagnostic stacks are based on RTA-BSW and
support the AUTOSAR architecture and methodology for source code configura-
tion and generation. The rest of the components, except for the MCAL, are
provided by ETAS and Escrypt. The modules that comprise the RTA-FBL instance
for a Stellantis port are:

1.Core bootloader modules (in blue): these are generated from the RTA-FBL
ISOLAR-AB plugin and must not be modified by the integrator.

2.Standard AUTOSAR BSW modules (in orange): these are generated by
RTA-BSW and should not be modified by the integrator.

3.The Stellantis-specific port module (in yellow): this is generated by the
RTA-FBL ISOLAR-AB plugin when the Stellantis port is selected. This module
implements the bootloader features that are specific to the Stellantis speci-
fication [1].
Some of the api containted in this modules shall be populated by the inte-
grator. These api are described in the chapters FBL User Functions and FBL
callout for SecStack integration

4.The Stellantis-specific sample modules (in green): these are generated by
the RTA-FBL ISOLAR-AB plugin when the Stellantis port is selected and may
be modified by the integrator:

-The OS is a basic cyclic scheduler that can be replaced by any other
scheduler (e.g. a fully-configured RTA-OS) as long as the calls to the
relevant main functions are made at the correct periods as in the
provided samples. See FBL: OS adaptation for further details on how to
adapt this module.

-The BLSM contains code for initializing the Bootloader. Changes can be
made here by the integrator if other modules are to be integrated (e.g.
other BSW modules) but changes should not be made to the functions
that interact with the core FBL modules. See FBL: BLSM adaptation for
further details on how to adapt this module.

5.Third-party software modules (in red): these are security modules provided
by Escrypt that should not be modified by the integrator. These modules are
not generated with RTA-FBL and shall be added manually. If Escrypt solution
(CycurHSM and Stellantis Wrapper) is not used, the integrator shall add a
compatible security stack with the proper integration code.

22 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

6.The MCAL modules (in black); the modules shown are those required by the
Stellantis port of RTA-FBL. The integrator may add additional modules
required for a specific ECU. For example, the ADC module would likely be
required if the integrator wishes to check the baery voltage or other
system operating conditions required for the specific ECU.
Note: Fee and FlsLoader module may be present or not based on your target.

Figure 9: Stellantis architecture of an RTA-FBL instance

23 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.2 Stellantis Download Sequence
The download sequence is according to [1] and depicted below:

Figure 10: Flash Download Sequence Part 1

24 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 11: Flash Download Sequence Part 2
Particular aention should be payed to service $FF00 (Routine Control Erase
Flash). This operation is blocking for the Bootloader and, depending on the target,
might take some time. In order to avoid a timeout, the ECU will force a Pending
Response ($78) on the communication bus every 4 seconds until the end of the
operation.

4.3 Creating and building an RTA-FBL instance
This section explains how to create an ISOLAR-AB project in order to configure
and generate an instance of RTA-FBL compliant with the Stellantis bootloader
specification. The tooling described in this section has been tested with Windows
10.

4.3.1 Project creation
A new FBL project is created in ISOLAR-AB. As shown in Figure 12, create a new

25 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

RTA-CAR project by clicking the “New Project” dropdown buon and selecting
“RTA-CAR Project”.

Figure 12: RTA-CAR project creation
If RTA-CAR Project is not present, select “Project” and search for “RTA-CAR
Project” in the new window, as shown in Figure 13.

Figure 13: RTA-CAR project

26 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

In the New RTA-CAR Project window, select RTA-CAR bootloader project as
shown in Figure 14.

Figure 14: New RTA-CAR Bootloader Project
Next, choose a name for your project and select the RTA-FBL target from the
dropdown list as shown in Figure 15. Note that a target for RTA-OS port must also
be selected for a proper project creation, despite the tool can be unused.
If you have multiple RTA-FBL tools installed, click on Advanced option and select
2.0.0.Stellantis plugin under RTA FBL Tools.

27 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 15: Select Target
Once complete, clicking the Finish buon will result in the creation of the
RTA-CAR bootloader project.
Figure 16 shows the result of a successful project creation in the console window.

Figure 16: Console window upon successful project creation
4.3.2 Configuration and Generation of FBL and BSW

Next, complete the FBL configuration parameters. In the ECU Navigator view,
right click on FBL under Bsw Modules and select Open With > BSW Editor, as
shown in Figure 17.

28 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 17: Accessing the FBL configuration parameters
The user can now edit the base configuration parameters in the RTA-FBL Editor
window. Figure 18 shows as an example the configuration parameters for CAN
communication. An explanation of each parameter is provided at the end of this
section.

Figure 18: Edit Base Configuration Parameters
Once complete, the user can generate the RTA-FBL instance first by clicking on
“Open RTA Code Generator dialog…” as shown in Figure 19 and then, in the
opened RTA Code Generator window, by clicking Run after selecting only
RTA-FBL_STLA as shown in Figure 20.

29 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

RTA-OS should be generated only if the user wants to replace the FlashBoot-
loader scheduler with a version of RTA-OS that is has configured for his target.

Figure 19: Open RTA Code Generator Dialog

Figure 20: RTA Code Generator
Note the two options that are available:

-Generate BSW: This will automatically generate the BSW after FBL genera-
tion using the BSW configuration generated by the FBL generator.

-Overwrite BSW default values: If this option is selected, any manual changes
you have made to the BSW configuration after the last FBL generation will be

30 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

lost and overwrien by default values. Note that this option should only be
selected once you have generated the BSW at least once (using the option
“Generate BSW” as described above).

 WARNING
The FBL generator will always overwrite all BSW configuration held in the
configuration file Fblgen_EcucValues.arxml, even if the “Overwrite BSW
default values” option is not selected. The configuration in this file cannot be
modified as these values are completely defined by the configuration of the
bootloader.

On clicking Run, the RTA-FBL instance is generated. Figure 21 shows the result of
a successful generation in the console window.

Figure 21: Console Window on Successful Generation
To complete the FBL instance, the user must generate the BSW code by
selecting the BSW modules for which the code should be generated in the
RTA-BSW CodeGen tab of the RTA Code Generator window.
If you have previously generated the RTA-FBL instance, the configured modules
are already selected, as shown in Figure 22.

31 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 22: RTA-BSW CodeGen tab
Once complete, check the box Generate BSW in the Fbl Main tab of the RTA Code
Generator window and click Run.
The user can re-generate the BSW code by clicking on Generate RTA-FBL as
shown in Figure 23. Upon successful generation, the popup message in Figure 24
is shown.

Figure 23: Generate RTA-FBL

32 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 24: Successful generation
Following sections describe the parameters that the user can configure. The
leers ‘M’ and ‘O’ are used to indicate “Mandatory” and “Optional” respectively. If
O* or M* is specified, then see the Description for exceptions. The column
“Requires BSW Re-Gen” indicates whether the BSW needs to be re-generated in
case the associated parameter has been changed.
Note that your target may also specify parameters that are unique to that target.
These will also be listed in your Target Guide.

4.3.2.1 FblRegion
This container allows the configuration of the memory regions of your ECU. For
each region the parameters details are listed in Table 4.1.
The allowed range for each FblRegion that can be specified is dierent for each
target and can be found in your Target Guide.
Table 4.1.Configuration parameters FblRegion of the Stellantis port of RTA-FBL
Parameter Description RequiresBSWRe-Gen
FblRegionAddressLow Specifies the low address of

the region
Yes

FblRegionAddressHigh Specifies the high address of
the region

Yes
FblRegionMaxAemptCounter Specifies the maximum

number of reprogramming
aempts for the region. When
the number of aempts
reaches this threshold, it will
not be possible to reprogram
this block anymore.

Yes

33 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

FblRegionType Specifies the region type:
-BOOT_BLOCK Region

used for a Boot block
-APPLICATION_BLOCK

Region used for an appli-
cation block

-DATA_BLOCK Region
used for a data block

Yes

FblRegionExternalFlashSupport Specifies the region type:
-INTERNAL host PFLASH

region: erasing and
writing is handled by the
FlashBootloader using
MCAL APIs

-EXTERNAL external
memory device: erasing
and writing is handled by
the user via callbacks.

Yes

FblRegionID Specifies the identification
number of the region. The
number uniquely identifies the
region, and it is used by CDA
tool to address the block
during download

Yes

4.3.2.2 FblGeneral
Table 4.2 provides a description of each parameter for the container FblGeneral.

34 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.2.Configuration parameters FblGeneral of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblEcuType M This parameter indicates which ECU

Type is selected. As per STLA specifi-
cation [1] three dierent ECU types
are supported:

-ECU Type A (ECU_A) ECU
supporting Standard reprogram-
ming: there is no specific secu-
rity support, the Download is
unlocked by a security level 0x1
(Seed&Key). The FW blocks are
not protected with authenticity
check (signature verification)
but only against consistency
(CRC check).

-ECU Type B (ECU_B) ECU
supporting Standard Reprogram-
ming and Cyber security Level 4:
there is partial security support,
the Download is unlocked by a
security level 0x1 (Seed&Key).
The FW blocks are protected with
authenticity check (signature
verification). To accomplish this
the ECU must maintain an
internal certificate database
(TrustStore).

-ECU Type C (ECU_C) ECU
supporting Authenticated Repro-
gramming and Cyber security
Level 4 and 5: there is full secu-
rity support, the Download is
unlocked by a security level 0x11
(ADA – Challenge-Response).
The FW blocks are protected with
authenticity check (signature
verification). To accomplish this
the ECU must maintain an
internal certificate database
(TrustStore).

Yes

35 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

FblSleepWakeup M Specifies whether the ECU is a +15 or
+30 node and it shall support the
Bootloader Sleep/Wakeup Mechanism
of [1].

No

FblBlockSize O Allows the user to configure the
download block size in bytes.

No
FblDidC5Support 1 Allows to configure the Erotan ($F196)

of the FlashBootloader, for details
refer to [2].

No

4.3.2.3 FblCore
Table 4.3 provides a description of each parameter for the container FblCore.
Table 4.3.Configuration parameters FblCore of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
EraseTimeout M Allows to configure the maximum time

in microseconds for erase flash opera-
tion before timing out.

No

StartAddress M The start address of the application
software. The bootloader will jump to
this address if the application is valid
and no reprogramming request has
been made.

No

VerifyTimeout M Allows to configure the maximum time
in microseconds for flash verification
operation before timing out.

No

WriteTimeout M Allows to configure the maximum time
in microseconds for write on flash
operation before timing out.

No

FblEraseMaxSize
PerCycle

O Allows to configure the maximum
number of bytes that can be erased in
one erase cycle.
If this parameter is set, the logical
block erase operation is split
according to the bank memory layout
and this parameter.
If this parameter is not set, the logical
block erase operation is split
according to the bank memory layout.

No

4.3.2.4 FblCan
The Can parameters details of FblCan container are listed in Table 4.4. For addi-
tional information on the MCAL Can configuration, please refer to your FBL Target

36 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Guide.
Table 4.4.Configuration parameters FblCan of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblCanIdRxPhy M The physical receive Can ID.

It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

FblCanIdRxFunc M The functional receive Can ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

FblCanIdTxPhy M The physical trasmit Can ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

FblCanFdIdRxPhy M The physical receive Can FD ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

FblCanFdIdRxFunc M The functional receive Can FD ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

FblCanFdIdTxPhy M The physical transmit Can FD ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Yes

4.3.2.5 FblSec
This section describes the security related parameters. Some of these parame-
ters depend on the FSM and the CycurHsm integration. Check if the CycurHsm is
supported in your FBL Target Guide.

37 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.5.Configuration parameters FblSec of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblSecSk1,
FblSecSk2

M 1 Security constants for Seed&Key
algorithm to unlock level 0x01. Manda-
tory for ECU Type A and ECU Type B.

No

FblSecTsMain
StartAddress

M 2 Specifies the address of the main
Trustore Block. It should be a valid
host PFLASH address aligned on a
sector boundary.

No

FblSecTsBackup
StartAddress

M 2 Specifies the address of the second
Trustore Block, the backup copy. It
should be a valid host PFLASH address
aligned on a sector boundary.

No

FblSecTsCapacity M 2 Specifies the maximum number of
certificates that could be stored in the
Trustore.

No

FblSecCsCapacity M 2 Specifies the number of certificates
that could be stored in the CertStore.

No
FblSecCrlCapacity M 2 Specifies the number certificates that

could be stored in the Certificate
Revocation List.

No

FblSecTargetName M 2 Specifies the Target Name for all
Signed Firmware Blocks, for details
refer to SD.00015

No

1: This parameter is mandatory only if EcuType is set to ECU_A or ECU_B
2: This parameter is mandatory only if EcuType is set to ECU_B or ECU_C and your
target integrates the CycurHsm integration.

4.3.2.6 FblNvmBlock
This container allows to add or modify the default configuration of the non volatile
memory blocks. This parameter aects FBL_DataM, Nvm and Fee. It’s not possible
to delete the default non volatile memory blocks.

38 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.6.Configuration parameters FblNvmBlocks of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblNvmBlock M ShortName of the NvM block. This

parameter shall be unique or it can
have the same name of the a default
NvmBlock. Unicity check is only
performed on FBL configured parame-
ters so BSW modules are excluded.

Yes

FblNvmBlockId M Identifier of the NvmBlock. This identi-
fier will be propagated to the NvM and
the Fee modules This identifier shall
be unique. Unicity check is only
performed on FBL configured parame-
ters so BSW modules are excluded..

Yes

FblNvmBlockSize M Size of the NvmBlock. This identifier
will be propagated to the NvM and the
Fee modules

Yes

Refert to FBL: NvM adaption for more details about default values and how to
manage NvM.

4.3.2.7 FblNvmData
This container allows to add or modify the default configuration of the non volatile
memory data. This parameter aects FBL_DataM. It’s not possible to delete the
default non volatile memory data.

Table 4.7.Configuration parameters FblNvmBlocks of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblNvmData M ShortName of the NvM data. This

parameter shall be unique or it can
have the same name of the a default
NvM data. Unicity check is only
performed on FBL configured parame-
ters so BSW modules are excluded..

Yes

FblNvmBlockName M ShortName of the NvmBlock that
contains the data.
The FblNvmBlock shall be present in
the FblNvmBlock configuration.

Yes

FblNvmBlockOset M Oset of the data inside the NvmBlock
that contains the data.

Yes
FblNvmDataSize M Size of the data. Yes

39 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

FblNvmData
DefaultValue

M Allows to configure the default value
of the NvM data. The default value
shall be and hexadecimal string like
00FF00 (3 byte size data).
Eventually the default value can be 1
byte that will be copied over the whole
size.
For example an NvM data of size 5 can
have the default value set to 01. This
configuration will generate the
following default value 0101010101.

Yes

Refert to Chapter FBL: NvM adaption for more details about default values and
how to manage NvM.

4.3.2.8 FblDid
This container allows to add or modify the default configuration of the DID. It’s not
possible to delete the default DIDs. This parameter aect the dcm configuration
and the FBL_Port source code.
Table 4.8.Configuration parameters FblDid of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblDid M ShortName of the Did. This parameter

shall be unique or it can have the
same name of a default DID.

Yes

FblDidIdentifier M Identifier of the DID. A value in the
range between 0 and 0xFFFF.

Yes
FblDidReadInSession O Allows to configure the available

session for reading the DID.
This can be a string containing D for
Default session, P for Programming
session and E for Extended session.
For example the string DPE will allows
the DID to be read in all the sessions.

Yes

FblDidWriteInSession O Allows to configure the available
session for writing the DID.
This can be a string containing D for
Default session, P for Programming
session and E for Extended session.
For example the string DPE will allows
the DID to be read in all the sessions.

Yes

40 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

FblDidType M Allows to configure the type of the
DID.
Sets the DID type, select among:

-NVM_DATA read/write data
direct from NvM. FBL_DataM will
manage the dcm callback.

-CALLBACK read/write thruoght a
callback. FBL_Port will manage
the dcm callback.

-USER_CBK read/write thruoght a
callback. The user shall define
the dcm callback.

If the DID default type is CALLBACK,
the user can change the type to
USER_CBK to exclude the default call-
back implementation.
If the DID default type is NVM_DATA,
the user can change the type to
USER_CBK or CALLBACK and this
makes no dierence. The user shall
define the dcm callaback.

Yes

FblDidNvMDataName O* Allows to configure the Nvm data
associated to the DID. If FblDidType is
set to NVM_DATA, this field is manda-
tory. The short name reported shall be
a valid short name configured in the
FblNvmData table.

Yes

FblDidCbkReadSize O* Allows to configure size of the data
available in the read DID callback.
If FblDidType is set to CALLBACK or
USER_CBK, this field is mandatory.

Yes

FblDidCbkWriteSize O* Allows to configure the size of the
data available in the write DID callback.
If FblDidType is set to CALLBACK or
USER_CBK, this field is mandatory.

Yes

Refert to FblFotaRollbackRegion for more details about default values and how to
manage DIDs.

4.3.2.9 FblFota
This container allows to manage the configurations for the FOTA.

41 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.9.FblFota configuration container
Parameter O/MDescription RequiresBSWRe-Gen
FblFotaType O Allows to configure the FOTA type.

The value can be:
-FOTA_DISABLED: FOTA features

is disabled.
-FOTA_SMALL_TARGET_ECU:

FOTA features is enabled.
If parameter is not set, then the FOTA
feature is disabled.

Y

FblFotaRollback O Allows to enable or disable the FOTA
rollback feature.
If parameter is not set, then the FOTA
rollback feature is disabled.
This parameter can be set to ENABLED
only if the FblFotaType is not set to
FOTA_DISABLED

Y

FblFotaCanFdIdRxPhyO The physical receive Can ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Y

FblFotaCanFdIdRx
Func

O The functional receive Can ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Y

FblFotaCanFdIdTxPhyO The physical trasmit Can ID.
It is an integer between 1 and
0x1FFFFFFF.
Only addressing mode 29 bits is
supported.

Y

4.3.2.10 FblFotaRollbackRegion
This container allows to manage the FotaRollback blocks.
Table 4.10.Configuration parameters FblDid of the Stellantis port of RTA-FBL
Parameter O/MDescription RequiresBSWRe-Gen
FblFotaRollback
RegionAddressLow

M Specifies the low address of the
region

N

42 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

FblFotaRollback
RegionAddressHigh

M Specifies the high address of the
region

N
FblFotaRollback
RegionExternalFlash
Support

M Specifies the region type:
-INTERNAL host PFLASH region:

erasing and writing is handled by
the FlashBootloader using MCAL
APIs

-EXTERNAL external memory
device: erasing and writing is
handled by the user via callbacks.

N

FblRegionId M Specifies the identification number of
the region that is used by the rollback
region.

N

4.3.3 Files created during generation
When you generate an instance of the Stellantis RTA-FBL using the RTA-FBL
plugin for ISOLAR-AB, a series of files is created within a number of folders that
you then use to build your RTA-FBL instance. Table 4.11 summarizes the folder
structure created for this port. Additional folders which contain the target-spe-
cific elements, such as target code and sample build scripts, will be created. See
your FBL Target Guide for details of the content of these additional folders.
Please note that the executable generated using our sample build scripts
includes debug symbols, to make debugging/troubleshooting easier. However,
we recommend disabling/stripping debug symbols from your final production
builds, as debug symbols may constitute a security risk in some use-cases.

Table 4.11.Files created by RTA-FBL generation
L1 Folder Description
./ The home of the RTA-CAR project.
./fbl/input Internal files for RTA-CAR created during

project creation, with FBL module configu-
ration. Do not manually edit these files.

./fbl/output/Fbl/Bootloader This contains the core (port-independent
and core-independent) modules.

./fbl/output/Fbl/BSW This folder contains the RTA-BSW project
used to generate the FBL BSW modules.
You can investigate the configuration
used for the BSW modules of the FBL. If
the configuration in the project is manu-
ally changed and a new BSW generated,
then it is the integrator’s responsibility to
test that these changes do not aect the
bootloader’s correct functionality.

43 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

./fbl/output/Fbl/INFRA/BLSM The BLSM contains code for initializing the
Bootloader. The functions in ./src/BLSM_-
CallOuts.c can be changed as described in
FBL: BLSM adaptation, but the functions in
BLSM_Main.c should not be changed. It is
the integrator’s responsibility to ensure
that any changes made in the BLSM do
not aect the bootloader’s correct func-
tionality.

./fbl/output/Fbl/INFRA/OS The OS contains the cyclic scheduler that
calls the module main functions. The OS is
provided as a fully functioning and tested
sample, but the integrator may replace
the OS as described in FBL: OS adaptation.
For example, the integrator may wish to
use RTA-OS in order to more easily
configure interrupts for other software
integrated with RTA-FBL. It is the integra-
tor’s responsibility to ensure that any
changes made to the OS do not aect the
bootloader’s correct functionality.

./fbl/output/Fbl/INFRA/Port This folder contains the code that imple-
ments port-specific functionality. The file
FBL_Port.c should not be modified by the
integrator. The other files may be modified
depending on your ECU’s use cases. It is
the integrator’s responsibility to test that
any change made to the Port folder does
not aect the bootloader’s correct func-
tionality.

./fbl/output/Fbl/Tools/BootUpdater This folder contains the BootUpdater
sample, for details refer to Bootloader
Update.

./fbl/output/Fbl/INFRA/Stubs This folder contains stub code necessary
due to the AUTOSAR architecture. Files in
this folder should not be modified by the
integrator.

./fbl/output/Fbl/INFRA/SecHAL This folder contains interface between
the CycurHsm and the FBL

4.3.4 The RTA-FBL instance for the Dummy Target
The user can select a dummy target when creating a new project (please refer to
Project creation). The dummy target provided with the Stellantis Port cannot be
built. You can only use the generated code as a reference to explore how
dierent parameters change the generated FBL instance.
The FBL for your target will have undergone an in-depth testing using the

44 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

compiler and MCAL that you have chosen. All targets use a common base that
require the tools as described in Seing up your environment to generate an
RTA-FBL instance.
Note that although dierent compilers supported by your MCAL, as well as other
MCAL versions for this target should work, these have not been tested. If you do
need to generate your bootloader for a dierent MCAL/compiler combination
than that listed above, it is recommended that you first contact ETAS support
team.

4.3.4.1 Dummy Target Memory Layout
In order to allow the user to experiment with dierent memory space configura-
tions, the dummy target is set up to mimic the memory layout of Infineon’s TC233
processor. This processor has a memory layout as shown in Table 4.12. Memory
regions of a space must begin on sector boundaries and the bootloader reserves
the first sector (i.e. the memory between 0xA0000000 and 0xA01FFFFF). You can
experiment with dierent configurations of Application, Calibration and Boot-
loader space if you have not yet received your Target package. For example, if you
configure a space that uses a memory region that is not on a region boundary or
that enters enter a disallowed space and note the error returned by the FBL
generator.

Table 4.12.Memory layout of the Dummy Target
Bank Sector Start End Comment
0 0 0xA0000000 0xA0003FFF Reserved for FBL

1 0xA0004000 0xA0007FFF Available for Application/Calibration
2 0xA0008000 0xA000BFFF
3 0xA000C000 0xA000FFFF
4 0xA0010000 0xA0013FFF
5 0xA0014000 0xA0017FFF Not available for Application/Calibration
6 0xA0018000 0xA001BFFF
7 0xA001C000 0xA001FFFF Available for Application/Calibration
8 0xA0020000 0xA0027FFF
9 0xA0028000 0xA002FFFF
10 0xA0030000 0xA0037FFF
11 0xA0038000 0xA003FFFF
12 0xA0040000 0xA0047FFF
13 0xA0048000 0xA004FFFF
14 0xA0050000 0xA0057FFF
15 0xA0058000 0xA005FFFF
16 0xA0060000 0xA006FFFF Not available for Application/Calibration
17 0xA0070000 0xA007FFFF

45 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

1 18 0xA0080000 0xA008FFFF Available for Application/Calibration
19 0xA0090000 0xA009FFFF
20 0xA00A0000 0xA00BFFFF
21 0xA00C0000 0xA00DFFFF
22 0xA00E0000 0xA00FFFFF

2 23 0xA0100000 0xA013FFFF
24 0xA0140000 0xA017FFFF

3 25 0xA0180000 0xA01BFFFF
26 0xA01C0000 0xA01FFFFF

4.4 Security Stack
Depending on the configuration of the FBL, the integrator may need to add two
security modules provided by Escrypt:

-STLA Security Manager (FSM),
-CycurHSM.

The generated FBL contains stubs of these two stacks in order to allow the user
to test the other FBL functionalities.
If your target supports Escrypt modules, your FBL Target Guide will provide infor-
mation on how to replace the stubs with the functional code. If the integrator
does not use CycurHSM solution, he could refer to [6] forRTA-FBL STLA security
interfaces.
The CycurHsm supports the following features:

-Trusted boot
-Trusted download
-ADA
-X509v3 management
-Lv9 features for FOTA feature.

The following subsections apply only if your target integrates the Escrypt Secu-
rity Stack.

4.4.1 FBL callout for SecStack integration
The FBL provides the following callouts to integrate the security stack. In this
section you will find only the callout provided by the FBL. The Security features
will be presented in the next chapters. All the following apis can be found in the
FBL_Security, ADA and FBL_FOTA modules. These apis can provides the integra-
tion of the CycurHsm/Fsm or can be used to integrate an external Security stack.

4.4.1.1 Startup
This section provides all the apis that can be used in the startup phase to

46 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

initialize the HTA and request the Secure Boot.
Prototype void Fbl_Sec_DrvInitZero (void)

Parameter none
Return Code none
Functional
Description

This api is called during the startup phase.
It is requested just after the MCAL startup code and before
any other initialization.

Location FBL_Security.c
Pre-Conditions none

Prototype void Fbl_Sec_DrvInitOne (void)

Parameter none
Return Code none
Functional
Description

This api is called during the startup phase.
It is requested just after the NvM initialization.
This api is used by the CycurHsm.

Location FBL_Security.c
Pre-Conditions none

Prototype void Fbl_Sec_DrvInitThree (void)

Parameter none
Return Code none
Functional
Description

This api is called during the startup phase.
It is requested just after the Dcm initialization.
If the FBL jumps to the application, this api is not

Location FBL_Security.c
Pre-Conditions none

4.4.1.2 Jump to application
This section provides all the apis that can be used to check the application
validity and to perform any HTA action before jumping to the application.
Prototype boolean Fbl_Sec_ApplicationIsValid (uint8* blockId)

Parameter [out] blockId: it points to an array of size equal to DID201F_-
LOGICAL_BLOCK_BYTES. Each bit of this array refers to the
validity of the correspondent logical block as required by the
DID 0x201F.

Return Code TRUE: The software and the TS are trustable
FALSE: The software and the TS are not trustable

47 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Functional
Description

This api is called before jumping to the application to enable
or disable the application jump.
This api is also called by the DID 0x201F to retrieve the invalid
software parts.

Location FBL_Security.c
Pre-Conditions none

Prototype boolean Fbl_Sec_ApplicationJumpPreHook(void)

Parameter none
Return Code none
Functional
Description

This api is called only if the jump to the application is
requested and just before the actual jump.
It performs any action required by the HTA before jumping to
the application like disabling security features that shall not
be supported in the application.

Location FBL_Security.c
Pre-Conditions none

4.4.1.3 Periodic
This section provides all the apis that can be used to perform any periodic task
related to the HTA.
Prototype void Fbl_Sec_MainFunction_1ms (void)

Parameter none
Return Code none
Functional
Description

Periodic function scheduled by the OS every 1ms
Location FBL_Security.c
Pre-Conditions none

Prototype void Fbl_Sec_MainFunction_5ms (void)

Parameter none
Return Code none
Functional
Description

Periodic function scheduled by the OS every 5ms
Location FBL_Security.c
Pre-Conditions none

Prototype void Fbl_Sec_MainFunction_10ms (void)

Parameter none

48 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Return Code none
Functional
Description

Periodic function scheduled by the OS every 10ms
Location FBL_Security.c
Pre-Conditions none

4.4.1.4 HTA suspension and activation
This section provides all the apis that can be used to enable the HTA while
erasing or writing the PFLASH.
Prototype Fbl_Sec_StatusT Fbl_Sec_HTA_Suspend(void)

Parameter none
Return Code FBL_SEC_STATUS_OK: HTA suspension passes

FBL_SEC_STATUS_ERROR: HTA suspension fails
Functional
Description

Service to suspend the HTA
Location FBL_Security.c
Pre-Conditions none

Prototype Fbl_Sec_StatusT Fbl_Sec_HTA_Activate(void)

Parameter none
Return Code FBL_SEC_STATUS_OK: HTA activation passes

FBL_SEC_STATUS_ERROR: HTA activation fails
Functional
Description

Service to activate the HTA
Location FBL_Security.c
Pre-Conditions none

4.4.1.5 Secure Download
This section provides all the apis that can be used to start and check the soft-
ware verification.
Prototype Fbl_Sec_StatusT FBL_Sec_VerifyDownload (uint8 SfbIndex)

Parameter [in] SfbIndex: index of the signed firmware block that shall
be verified

Return Code FBL_SEC_STATUS_OK: verification is requested.
FBL_SEC_STATUS_BUSY: verification request is in progress.
FBL_SEC_STATUS_ERROR: verification request fails.

Functional
Description

It requests the verification process of a signed firmware
block. The verification process is asynchronous, and the
output of the verification can be checked polling the
FBL_Sec_VerifyDownloadResult.

49 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Location FBL_Security.c
Pre-Conditions none

Prototype Fbl_Sec_StatusT FBL_Sec_VerifyDownloadResult(void)

Parameter none
Return Code FBL_SEC_STATUS_OK: verification ends successfully.

FBL_SEC_STATUS_NOT_REQUESTED: verification is not requested.
FBL_SEC_STATUS_BUSY: verification request is in progress.
FBL_SEC_STATUS_ERROR: verification ends failing.

Functional
Description

It checks the result of the verification process of a signed
firmware block

Location FBL_Security.c
Pre-Conditions none

4.4.1.6 ADA - Challenge request
This section provides all the apis that can be used to generate the challenge
required by the Authenticated Security access ($27 11).
Prototype ADA_Sec_StatusT ADA_Sec_GenerateChallenge (const uint8*

certificate)

Parameter [in] certificate: pointer to the ADA certificate
Return Code ADA_SEC_STATUS_OK: the job is scheduled

ADA_SEC_STATUS_BUSY: HTA is busy and the job is not sched-
uled
ADA_SEC_STATUS_ERROR: HTA is faulty and the job is not sched-
uled

Functional
Description

It requests the random seed generation, it stores the ADA
certificates, and it can request the certificate verification.
This process is asynchronous, and the output of the verifica-
tion can be checked polling the ADA_Sec_GetChallengeSta-
tus.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype ADA_Sec_StatusT ADA_Sec_GetChallengeStatus(uint8*
randomSeed)

Parameter [in] certificate: pointer to the ADA certificate

50 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Return Code ADA_SEC_STATUS_OK: seed is available and job is successfully
terminated.
ADA_SEC_STATUS_BUSY: seed is not available and job is execut-
ing.
ADA_SEC_STATUS_REVOKED_CERT: seed is not available and job is
successfully terminated.
ADA_SEC_STATUS_EXPIRED_CERT: seed is not available and job is
successfully terminated.
ADA_SEC_STATUS_ERROR: seed is not available and job is
successfully terminated.

Functional
Description

It checks the status of the HTA job triggered by the functions
ADA_Sec_GenerateChallenge and it returns the random
seed to the FBL.

Location ADA_SecStackUserCode.c
Pre-Conditions none

4.4.1.7 ADA - Verify response and periodic certificate verification
This section provides all the apis that can be used to verify the response and the
certificate required by the Authenticated Security access ($27 12). The ADA
certificate can be verified both during the $27 11 and $27 12. By default, the ADA
certificate is stored in the host NvM, and it’s verified periodically. Check the
Authenticated Diagnostic Access section for more details.
Prototype ADA_Sec_StatusT ADA_Sec_VerifyResponse (const uint8*

key)

Parameter [in] key: pointer to the ADA signed random number array
Return Code ADA_SEC_STATUS_OK: the job is scheduled

ADA_SEC_STATUS_BUSY: HTA is busy and the job is not sched-
uled
ADA_SEC_STATUS_ERROR: HTA is faulty and the job is not sched-
uled

Functional
Description

This api is called during the dcm callback for the service $27
12.
It requests the verification of the Signed Challenge and the
ADA certificate. This process is asynchronous, and the
output of the verification can be checked polling the
ADA_Sec_VerifyResponseStatus.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype ADA_Sec_StatusT ADA_Sec_VerifyCertificate (const uint8*
certificate)

Parameter [in] certificate: pointer to the ADA certificate

51 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Return Code ADA_SEC_STATUS_OK: the job is scheduled
ADA_SEC_STATUS_BUSY: HTA is busy and the job is not sched-
uled
ADA_SEC_STATUS_ERROR: HTA is faulty and the job is not sched-
uled

Functional
Description

It periodically requests the verification of the ADA certificate.
This process is asynchronous, and the output of the verifica-
tion can be checked polling the ADA_Sec_VerifyResponseS-
tatus.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype ADA_Sec_StatusT ADA_Sec_VerifyResponseStatus(void)

Parameter none
Return Code ADA_SEC_STATUS_OK: ADA certificate is valid job is successfully

terminated.
ADA_SEC_STATUS_BUSY: job is executing.
ADA_SEC_STATUS_REVOKED_CERT: ADA certificate is revoked.
The job ends with an error.
ADA_SEC_STATUS_EXPIRED_CERT: ADA certificate is expired. The
job ends with an error.
ADA_SEC_STATUS_ERROR: ADA certificate is not valid or the
signature is not valid. The job ends with errors.

Functional
Description

It checks the status of the HTA job triggered by the func-
tions: ADA_Sec_VerifyResponse and ADA_Sec_VerifyCertifi-
cate.
If the request comes from the ADA_Sec_VerifyCertificate
and the certificate is stored in a protected area, this api shall
ADA_SEC_STATUS_OK since any other result will trigger a reset.

Location ADA_SecStackUserCode.c
Pre-Conditions none

4.4.1.8 ADA - Certificate management
This section provides all the apis that can be used to access to the information
stored in the ADA certificate.
Prototype ADA_Sec_StatusT ADA_Sec_GetCertificateInfo

(ADA_Sec_CertificateInfoT* certInfo)

Parameter [out] certInfo: a structure containing the serialNumber and
the commonName of the ADA certificate.

Return Code ADA_SEC_STATUS_OK: ADA certificate is verified and data are
available.
ADA_SEC_STATUS_ERROR: ADA certificate is not verified and
data are not available.

52 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Functional
Description

After a successful verification of the ADA certificate, this api
is used to retrieve the serialNumber and the commonName
and store these information in the DID 2030.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype uint8 ADA_Sec_GetAuthRole(void)

Parameter None
Return Code 0x00U if no role is set or the current role defined in the ADA

certificate.
Functional
Description

It retrieves the role of a valid ADA certificate. If the ADA
certificate is not valid, it returns 0x00U.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype void ADA_Sec_GetCertificate(uint8 * data)

Parameter [out] data: pointer to the ADA certificate
Return Code none
Functional
Description

This api is called to store the ADA certificate in the host NvM.
It retrieves the ADA certificate from the security stack.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype ADA_Sec_StatusT ADA_Sec_GetCertificateLatestSavedDate
(uint64* latestSavedDate)

Parameter [out] latestSavedDate: latest saved date formaed as unix
time

Return Code ADA_SEC_STATUS_OK: latest Saved Date was successfully
calculated.
ADA_SEC_STATUS_ERROR: latest Saved Date was not success-
fully calculated.

Functional
Description

This api is called during the startup to retrieve the last saved
date value from the validated certificate chain.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype ADA_Sec_StatusT ADA_Sec_GetCertificateLatestSavedDate
(uint64* latestSavedDate)

Parameter [out] latestSavedDate: latest saved date formaed as unix
time

53 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Return Code ADA_SEC_STATUS_OK: latest Saved Date was successfully
calculated.
ADA_SEC_STATUS_ERROR: latest Saved Date was not success-
fully calculated.

Functional
Description

This api is called during the startup to retrieve the last saved
date value from the validated certificate chain.

Location ADA_SecStackUserCode.c
Pre-Conditions none

Prototype Std_ReturnType ADA_Sec_certParseDate(uint64* timeStamp,
uint8* dateString, uint8 length)

Parameter [in] dateString: input ascii string
[in] length: input ascii string length
[out] timestamp: pointer to the time stamp

Return Code E_OK: valid date
E_NOT_OK: invalid date

Functional
Description

It converts an x509v3 GeneralizedTime od UTCTime into a
timestamp.

Location ADA_SecStackUserCode.c
Pre-Conditions none

4.4.1.9 ADA - Periodic
Prototype void ADA_Sec_Mainfunction_1ms (void)

Parameter none
Return Code none
Functional
Description

Periodic function scheduled by the OS every 1ms
Location ADA_SecStackUserCode.c
Pre-Conditions none

4.4.1.10 FOTA - CSR and idendity key generation
This section provides all the apis required by the FBL during the and the private
key and to sign with the identity key generation. This process is triggered by the
RC 0xD00A.
Prototype FBL_FOTA_Sec_StatusT

FBL_FOTA_Sec_GenerateIdentityKeyData (void)

Parameter none
Return Code FBL_FOTA_SEC_STATUS_OK: job is triggered successfully.

FBL_FOTA_SEC_STATUS_BUSY: HTA is busy, and job is not trig-
gered.
FBL_FOTA_SEC_STATUS_ERROR: HTA is faulty, and job is not trig-
gered.

54 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Functional
Description

It triggers the identity key generation. This is an asynchro-
nous function that trigger the job. FBL_FOTA_Sec_Get-
GenIdKeyStatus can be used for polling the result.

Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

Prototype FBL_FOTA_Sec_StatusT FBL_FOTA_Sec_GetGenIdKeyStatus
(void)

Parameter none
Return Code FBL_FOTA_SEC_STATUS_OK: job ends successfully.

FBL_FOTA_SEC_STATUS_BUSY: job is still running.
FBL_FOTA_SEC_STATUS_ERROR: job ends with errors.

Functional
Description

Periodic function scheduled by the OS every 1ms
Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

Prototype FBL_FOTA_Sec_StatusT FBL_FOTA_Sec_GenerateCSR (void)

Parameter none
Return Code FBL_FOTA_SEC_STATUS_OK: job is triggered successfully.

FBL_FOTA_SEC_STATUS_BUSY: HTA is busy, and job is not trig-
gered.
FBL_FOTA_SEC_STATUS_ERROR: HTA is faulty, and job is not trig-
gered.

Functional
Description

It triggers the CSR generation. This is an asynchronous func-
tion that trigger the job. FBL_FOTA_Sec_GetCSRStatus can
be used for polling the result.

Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

Prototype FBL_FOTA_Sec_StatusT FBL_FOTA_Sec_GetCSRStatus (void)

Parameter none
Return Code FBL_FOTA_SEC_STATUS_OK: job ends successfully.

FBL_FOTA_SEC_STATUS_BUSY: job is still running.
FBL_FOTA_SEC_STATUS_ERROR: job ends with errors.

Functional
Description

It retrieves the status of the CSR generation process.
Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

55 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.4.1.11 FOTA - Sign data with identity key
This section provides all the apis required by the FBL during the data signature
calculation required by the DIDs 0xF1B7 and 0xF1B8.
As reported in the [2], the DIDs 0xF1B7 and 0xF1B8 reserve up to 256 bytes for the
signature but it’s up to the HTA implementation to define the signature algorithm.
An api is provided to retrieve this information from the HTA.
Prototype FBL_FOTA_Sec_StatusT FBL_FOTA_Sec_SignWithIdentityKey

(const uint8* tbsData, uint32 tbsDataLen)

Parameter [in] tbsData: The data to be signed with the identity key
[in] tbsDataLen: Length of the data to be signed

Return Code FBL_FOTA_SEC_STATUS_OK: job is triggered successfully.
FBL_FOTA_SEC_STATUS_BUSY: HTA is busy, and job is not trig-
gered.
FBL_FOTA_SEC_STATUS_ERROR: HTA is faulty, and job is not trig-
gered.

Functional
Description

It triggers the FOTA Sign with Identity Key process. This is an
asynchronous function that trigger the job. FBL_FO-
TA_Sec_GetSignWithIdKeyStatus can be used for polling
the result.

Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

Prototype FBL_FOTA_Sec_StatusT
FBL_FOTA_Sec_GetSignWithIdKeyStatus (void)

Parameter none
Return Code FBL_FOTA_SEC_STATUS_OK: job ends successfully.

FBL_FOTA_SEC_STATUS_BUSY: job is still running.
FBL_FOTA_SEC_STATUS_ERROR: job ends with errors.

Functional
Description

It retrieves the status of the sign with identity key process.
Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

Prototype uint32 FBL_FOTA_Sec_GetSignatureLength(void)

Parameter none
Return Code uint32 containing the signature length
Functional
Description

It retrieves the signature length provided by the HTA.
The maximum size of the signature is 256 as reported in the
DID 0xF1B7 and 0xF1B8.

Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

56 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Prototype FBL_FOTA_Sec_StatusT FBL_FOTA_Sec_GetDataSignature
(uint8* SignedData)

Parameter [out] SignedData: pointer to an array that contains the
signed data.

Return Code uint32 containing the signature length
Functional
Description

It retrieves the signature length provided by the HTA
Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

4.4.1.12 FOTA - Periodic
Prototype void FBL_FOTA_Sec_Mainfunction_1ms

Parameter none
Return Code none
Functional
Description

Periodic function scheduled by the OS every 1ms
Location FBL_FOTA_SecStackUserCode.c
Pre-Conditions none

4.4.2 CertStore, DisavowedCertificateList and TrustStore
The CS (Cert Store) contains the certificate chain of trust and the DCL (Dis-
avowed Certificate List) according to the SD.00078 and the SD.00125.
The user shall assemble the CS and DCL considering that:

-CS and DCL shall have a separate SFBH
-CS and DCL shall be signed by a certificate that has the contains the
extKeyUsage OID 1.3.6.1.4.1.29858.3.1.2.5

-CS and DCL shall be concatenated.
An example of a CS and DCL is reported in the figure below.

Figure 25: CertStore creation
The FBL calculates the CS and DCL SFBs position inside the logical block 0 as

57 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

follow:
-The start address of the CS SFB is fixed and matches the start address of
the logical block 0.

-The size of the CS SFB is dynamic and depends on the field size of the CS
SFBH.

-The start address of the DCL SFB is dynamic and it’s calculated at the run
time by the FBL as: CS SFB start address +

-CS SFB size.
-The size of the DCL SFB is dynamic and depends on the field size of the DCL
SFBH and the DCL SFB start address.

The logical block 1 shall not be used since both the CS and the DCL are part of the
Logical block 0.
The CS contains the certificate that shall be added to the TS. It’s not necessary
that the CS contains all the certificate in the TS, but instead should contain those
certificates to be added to the TS.
The DCL shall be always present, and it shall contain at least one certificate filled
with 0xFFs if no certificate needs to be removed.
If only the DCL is to be installed, then the new Truststore will be generated from
the old Truststore and the new DCL
As reported in the SD.00015_03, each DCL entry shall contains two fields: the
issuer common name and the certificate serial number. Since the issuer common
name and the serial number may have a size smaller than the reserved area,
these two fields shall be padded as reported in the below figure.

Figure 26: DCL entry format
The FSM interprets the certificate serial number field in the DCL in big endian
representation.
The CS and the DCL are stored in the PFLASH and the whole content of the
Logical Block 0 is protected with a CMAC by the CycurHsm and verified at the
startup and before the usage.
The DID 2031 reports the last 10 DCL entries available.
At the first startup, the TS is generated based on the content of the CS only.

58 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

If a new CS/DCL is downloaded the TS is updated as follow:
-If a new valid certificate is added to the CS, it is also added to the TS.
-if a certificate is added to the DCL, the same certificate and all the leaf
certificates that are validated by that certificate are removed from the TS.

 NOTE
It’s suggested to leave the DCL “empty” (one entry filled 0xFFs) in the initial
Certificate.

 NOTE
A DCL entry shall be never removed otherwise the related certificate can be
readded to the CS and to the TS.

4.4.3 Trusted Boot
The authenticated boot is responsible to prevent that a corrupted or illegally
modified software executes on the ECU.
The FBL defines the Authenticated Boot table that contains all the information
related to the Logical block that shall be verified by the HTA during the Authenti-
cated boot phase.
A logical block may be verified in the following ways:

-TB_BOOT_MODE_SECURE: The Logical block CMAC verification is performed at
the startup by the HTA. If the Logical block CMAC verification fails, the HTA
doesn’t release the Host and the FBL doesn’t execute. This mode doesn’t
allow any recovery. This is the mode used to verify the FBL.

-TB_BOOT_MODE_AUTHENTIC: The Logical block CMAC verification is requested
by the FBL during the startup. The FBL doesn’t jump to the application until
the HTA verify the logical block. If the Logical block CMAC verification fails,
the FBL doesn’t jump to the application and remains in boot. A new download
is possible, and the corrupted region can be recovered. This is the default
mode used to verify the APPs and the CALs.

-TB_BOOT_MODE_AUTHENTIC_EXTENDED_RESET: The Logical block CMAC verifica-
tion is requested by the FBL during the startup. The FBL doesn’t wait for the
HTA verification and jump to the application. If the Logical block CMAC verifi-
cation fails, the HTA triggers a reset. At the following reset the FBL detects
that the HTA trigger the reset and erase all the regions marked with this flag.
This mode can be used to decrease the startup time

59 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

 NOTE
Only the application can be marked with the trusted boot mode
TB_BOOT_MODE_AUTHENTIC_EXTENDED_RESET.

The FBL configuration of the TBT (Trusted Boot Table) is stored in the variable
AuthBootTable located in the Sec_Hal_PrvCfg.c file. The AuthBootTable contains
the FBL configuration of the blocks that shall be verified by the CycurHsm.
Sec_Hal_UserCfg.h can be updated to change the Trusted Boot mode for the
Application and the Calibration entries. While it’s not possible to change the FBL
Trusted Boot Mode, it’s possible to change the one of the calibrations and appli-
cation blocks. By default, FBL block is set as TB_BOOT_MODE_SECURE and other as
TB_BOOT_MODE_AUTHENTIC.
The CycurHsm provides the api HSM_GetTBVerifTable to retrieve information
about the current blocks in the CycurHsm TBT. The two TBT, the one in the FBL
and the one in the CycurHsm are dierent.
The FBL TBT contains the configuration of the logical blocks that shall be part of
the CycurHsm TBT. Trustore is not part of the FBL TBT. The CycurHsm TBT
contains the current area for which the CycurHsm has calculated the CMAC. At
the first startup the CycurHsm TBT is empty, and it’s populated after the first
initialization and after each download.

4.4.3.1 Bootloader first run
The FBL requires a valid CS to be flashed on the ECU before the first run of the
FBL.
Both the TS regions shall be filled with 0s.
During the first run, the FBL performs the following tasks:

1.Initialize the HSM.
2.Request the CS verification and the TS generation from the HSM.
3.Store the TS and the TS backup in the PFLASH.
4.Request the TS protection from the HSM. During this step the lifecycle of

the HSM is set to INFIELD1 and the CMAC is
5.calculated for both the TS.
6.Verify the TS.
7.Calculate the CMAC of the configured logical block that are marked as

TB_BOOT_MODE_SECURE.

60 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

 NOTE
the lifecycle of the HSM switches to INFIELD1 despite any of the previous step
fails. This will prevent the TS generation. The HSM shall be re-flashed to
generate a new valid TS.

4.4.3.2 Startup sequence
After the first run, the startup sequence is reported in the figure below.

Figure 27: Authenticated boot Startup sequence
1.At the reset the HSM starts before the Host and verify the FBL (The FBL

block verification mode is flagged as TB_BOOT_MODE_SECURE)
2.If verification fails, the HSM doesn’t release the host.
3.After a successful verification, the HSM release the Host and the FBL starts.

In this step the TS is verified, and remedial action are setup to recover from a
corrupted TS. TS and TS backup shall be aligned.

4.If the programming session is not requested, the FBL requests the verifica-
tion of the application and calibration logical blocks in the Trusted Boot
Table.

-If the FBL detects a reset triggered by the HTA, the FBL invalidate the
block and erase the blocks marked as
TB_BOOT_MODE_AUTHENTIC_EXTENDED_RESET from the Trusted Boot Table.

61 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

-The FBL starts with all the blocks marked as TB_BOOT_MODE_AUTHENTIC
and wait until the HSM finishes the verification.

-If the FBL doesn’t detect a reset triggered by the HTA, then the FBL
moves to the blocks marked as
TB_BOOT_MODE_AUTHENTIC_EXTENDED_RESET and just start the verification
without waiting the output.

5.If verification fails (either TS, app or cal) or any blocks define in the Auth-
BootTable is not present in the Trusted Boot Table, then the ECU remains in
the FBL.

6.Once the SW verification is fine the FBL requests the jump to the application
after calling ecy_hsm_Csai_Protection_DisableSecCritFunctions. This API
disables some CycurHSM features. This is done only if no regions are marked
as TB_BOOT_MODE_AUTHENTIC_EXTENDED_RESET, otherwise it’s up to the App to
call this API.

 NOTE
The above startup sequence doesn’t report any MCAL initialization or any
other check to determine application can run.

 NOTE
At the first startup only TS and FBL are present in the Trusted Boot Table. Cals
and Apps are added to the Trusted Boot Table after a successful RC 0xF000
verify download.

4.4.4 Trusted Download
The verification process is managed by the FSM and the CycurHSM and all the
information can be found in their manuals.
As a summary:

-The verification process is triggered by the RID 0xF000 Check Program.
-The FBL requests to the CycurHsm the verification of the downloaded block
-The CycurHsm responds with a positive or negative response
-In case of positive response, the CycurHsm provides the updated TS.
-The FBL store the TS in the flash area and requests the protection.

After a successful verification, the FSM doesn’t include the SFBH and the CS area
in the CycurHsm TBT entry. The FBL updates the CycurHsm TBT to include all the
Logical Block area.

62 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.5 Supported targets
RTA-FBL is a hardware independent FlashBootloader, using the abstraction layers
provided by AUTOSAR: the integrator could integrate any AUTOSAR MCALs,
depending on the underlying hardware.
This port has been developed and tested with dierent MCALs and compilers,
please contact ETAS if you are interested to know the targets already used.

4.6 Integrator guidelines
Creating and building an RTA-FBL instance demonstrated how an RTA-FBL
project is created in the ISOLAR-AB plugin and the RTA-FBL instance generated.
This section explains how and where the integrator can modify this generated
instance, as well as integrate the control Application Software on the ECU. This
may require adaptation of the FBL as well as adaptations of your Applications
Software.
The integrator may need to make the following changes to the default generated
FBL:

-Memory layout adaptation
-Completion of user functions
-BSW module adaptation (optional)
-C-code startup and trap table updates (optional)
-MCAL adaptation (optional)
-OS adaptation (optional)
-BLSM adaptation (optional)

The integrator may need to make the following changes to the Application Soft-
ware:

-NvM layout adaptation
-Boot jump handling

The integrator may need to make additional changes not described in this User
Manual to support specific use cases for his ECU. It is the integrator’s responsi-
bility to ensure that any changes made do not aect the bootloader’s correct
functionality.

4.6.1 FBL: Memory Layout Adaptation
To integrate the FBL in your application the first step to do is decide how to set up
your memory regions. This is done using the configuration tool as described in
Configuration and Generation of FBL and BSW. The allowed memory range
depends on your target.
An example of a typical memory layout is depicted in Figure 28.

63 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 28: Sample memory layout
4.6.2 FBL: User Functions

This port provides some functions that need to be adapted by the integrator.
Few of them must be filled correctly to be fully compliant with Stellantis norms,
while others are optional.

4.6.2.1 Initialization
During system initialization, user has two callouts that could be used for ECU init,
useful in case specific hardware initialization is needed (e.g. enable a CAN trans-
ceiver or manage the operating mode of a SBC).
Prototype void Fbl_Port_UserConfigInitOne (void)

Parameter none
Return Code none
Functional
Description

Called at system startup during Flash Bootloader initializa-
tion, before the NvM has loaded the data flash.

Location FBL_PortUserCode.c
Pre-Conditions none

Prototype void Fbl_Port_UserConfigInitTwo (void)

Parameter none
Return Code none
Functional
Description

Called at system startup during Flash Bootloader initializa-
tion, after the NvM has loaded the data flash (thus only if the
application is not executed)

64 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Location FBL_PortUserCode.c
Pre-Conditions none

4.6.2.2 Shutdown
The user function Fbl_Port_GoToSleep should be filled to put the ECU in sleep
mode, according to the ECU hardware configuration and sleep strategy. The
callout is triggered according to [1] when the timers of section 5.2.6 Bootloader
Sleep/Wakeup Mechanism are expired. When this functionality is enabled, the
NvM block NvM_ShutdownCorrectBlock could be used to detect whether the
previous shutdown was normal or abnormal, according to [1]
Prototype void Fbl_Port_GoToSleep (void)

Parameter none
Return Code none
Functional
Description

Called to put the system in shutdown
Location FBL_PortUserCode.c
Pre-Conditions none

4.6.2.3 Watchdog
The FBL does not implement any watchdog functionality. As an example, for the
integrator, the call Fbl_Port_WatchDogInitialise is called from Os_Start and the
user should place the code that initializes the watchdog in this function. The
function Fbl_Port_WatchDogRefresh must then be called to pet the watchdog
from within a cyclic OS function. In the provided OS, this is called every 100ms, but
the integrator can call Fbl_Port_WatchDogRefresh at whatever rate is deemed
suitable.
Prototype void Fbl_Port_WatchDogInitialise (void)

Parameter none
Return Code none
Functional
Description

Called to initialize the watchdog
Location FBL_PortUserCode.c
Pre-Conditions none
Prototype void Fbl_Port_WatchDogRefresh (void)

Parameter none
Return Code none
Functional
Description

Called to refresh the watchdog
Location FBL_PortUserCode.c
Pre-Conditions none

65 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.6.2.4 Application validation
At the end of the download the callout Fbl_Port_UserValidApplication is trig-
gered to verify that the application is valid and compatible. The callout should be
filled with application specific checks. When requesting the routine $FF01 - Check
Programming Dependencies the callout is executed only if the signature or CRC
check on the blocks has been positive, otherwise a negative response is returned
without triggering the user callback. Please note that when bit # 1 of DID 2010 is
not set, the DTC P0602-00 is returned by FBL. The same should be done by the
application if it is executed in limp mode.
Prototype boolean Fbl_Port_UserValidApplication (uint8 *

isSwHwCompatible, uint8 * isSwDataCompatible)

Parameter isSwHwCompatible: pointer to software validity flag, it is used
to update bit #1 and bit #5 of DID 2010

-Bit 1 Programming Status - Application
-Bit 5 Software not Compatible with Hardware

isSwDataCompatible`: pointer to data validity flag, it is used
to update bit #2 and bit #6 of DID 2010

-Bit 2 Programming Status - Data
-Bit 6 Software not Compatible with Application Data

Return Code TRUE: the application will be executed; this value should be
returned to execute a valid application or an application in
limp mode
FALSE: the application will not be executed and the ECU will
remain in boot mode

Functional
Description

Called after an application software download, to verify the
application validity and compatibility.

Location FBL_PortUserCode.c
Pre-Conditions none

4.6.2.5 Software Identification Update
After an application software update is successfully performed, the callout
Fbl_Port_DownloadSuccess is triggered to execute user specific code. This callout
could be used to update software identification values in NVM with the newer
values, or to store the odometer for the last flash programming, or any other ECU
specific use case. The callout is executed at the end of the download only if the
signature check has been positive and the application has been considered valid.
Prototype void Fbl_Port_UserDownloadSuccess (void)

Parameter none
Return Code none
Functional
Description

Called after a successful download to execute user code

66 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Location FBL_PortUserCode.c
Pre-Conditions none

4.6.2.6 External memory reprogramming
If a region is configured as EXTERNAL using the FBL parameter FblRegionExter-
nalFlashSupport, following user callouts are triggered to manage erase and
writing processes.
Prototype UserFlash_ReturnType UserFlash_FlashErase (uint32

TargetAddress, uint32 Length)

Parameter TargetAddress: low address of the external memory device to
be erased.
Length: size of the external memory device to be erased

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Erase completed success-
fully.
FBL_USER_FLASH_RESULT_PROCESSING: Erase is in progress and
requires additional time. It will result in NRC 0x78 to RID
0xFF00 when Transport Protocol timeout expires.
FBL_USER_FLASH_RESULT_FAILURE: Erase completed with fail-
ure. It will result in NRC 0x72 to RID 0xFF00

Functional
Description

Triggered when RID 0xFF00 - Erase Memory is received for a
region configured as external. The integrator should start
the erase process of the memory device using its own driver.

Pre-Conditions None

Prototype UserFlash_ReturnType UserFlash_FlashWrite (uint32
TargetAddress, uint32 Length, const uint8*
SourceAddressPtr)

Parameter TargetAddress: address of the external memory device where
data should be wrien.
Length: size of the data to be wrien.
SourceAddressPtr: pointer to data.

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Write completed success-
fully.
FBL_USER_FLASH_RESULT_PROCESSING: Write is in progress and
requires additional time. It will result in NRC 0x78 to Transfer
Data service when Transport Protocol timeout expires.
FBL_USER_FLASH_RESULT_FAILURE: Write completed with fail-
ure. It will result in NRC 0x72 to Transfer Data service.

Functional
Description

Triggered each time data from Transfer Data service is
processed. Note that Length depends on the Fbl parameter
FblBlockSize. The integrator should start the write process of
the memory device using its own driver.

Pre-Conditions None

67 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Prototype UserFlash_ReturnType UserFlash_CalculateBlockHash (
uint32 TargetAddress, uint32 Length, uint8* Hash)

Parameter TargetAddress: address of the external memory device to
calculate the Hash.
Length: size of the data whose Hash should be computed.
Hash: pointer to computed hash.

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Hash calculation completed
successfully
FBL_USER_FLASH_RESULT_PROCESSING: Hash calculation is in
progress and requires additional time. It will result in NRC
0x78 to RID 0xD000xx service when Transport Protocol
timeout expires.
FBL_USER_FLASH_RESULT_FAILURE: Hash verification
completed with failure. It will result in NRC 0x72 to RID
0xD000xx

Functional
Description

Triggered when RID 0xD000 - Logical Block Hash is received
for a region configured as external. The integrator should
calculate the Hash of the memory region using the proper
algorithm. Please note a cryptographic library for
LTC_RIPEMD-160 is present in your generated code that
could be used.

Pre-Conditions None

Prototype UserFlash_ReturnType UserFlash_FlashRead (uint32
TargetAddress, uint32 Length, uint8* DestAddressPtr)

Parameter TargetAddress: address of the external memory device to be
red.
Length: size of the external memory device to be red.
DestAddressPtr: output buer.

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Read completed success-
fully.
FBL_USER_FLASH_RESULT_PROCESSING: Read is in progress and
requires additional time.
FBL_USER_FLASH_RESULT_FAILURE: Read completed with fail-
ure.

Functional
Description

The integrator should add the code to read from the external
memory device.

Pre-Conditions None
4.6.2.7 Authenticated Diagnostic Access

Prototype Std_ReturnType ADA_UserCode_SecurityPolicyService
(uint8 service, uint8 subService, uint32 userRole)

Parameter Service : Requested diagnostic service.
subService : Requested diagnostic subservice.
userRole : Current active role mask.

68 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Return Code E_OK : Service is allowed.
E_NOT_OK : Service is not allowed.

Functional
Description

This function handles the service security policy. It checks if
the requested service with the current active role is allowed
or not.

Pre-Conditions None

Prototype Std_ReturnType ADA_UserCode_SecurityPolicyRID (uint8
rid, uint8 subService, uint32 userRole)

Parameter rid : Requested diagnostic RID.
subService : Requested diagnostic RID subservice.
userRole : Current active role mask.

Return Code E_OK : RID is allowed.
E_NOT_OK : RID is not allowed.

Functional
Description

This function handles the RID security policy. It checks if the
requested RID with the current active role is allowed or not.

Pre-Conditions None

Prototype Std_ReturnType ADA_UserCode_SecurityPolicyDID (uint8
rid, uint8 subService, uint32 userRole)

Parameter did : Requested diagnostic DID.
subService : Requested diagnostic DID subservice.
userRole : Current active role mask.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID is not allowed.

Functional
Description

This function handles the DID security policy. It checks if the
requested DID with the current active role is allowed or not.

Pre-Conditions None
4.6.2.8 Diagnostic

Prototype Std_ReturnType Fbl_UserCode_DID2001_OdometerReadFunc
(uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is 2
according to the [2] unless the FblDid is updated.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID 2001.
Pre-Conditions None

69 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Prototype Std_ReturnType
Fbl_UserCode_DIDF1B9_FotaScomoId1ReadFunc (uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is
33 according to the [2] unless the FblDid is updated.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID F1B9.
Pre-Conditions None

Prototype Std_ReturnType
Fbl_UserCode_DIDF1BA_FotaScomoId2ReadFunc (uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is
33 according to the [2] unless the FblDid is updated.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID F1BA.
Pre-Conditions None

Prototype Std_ReturnType
Fbl_UserCode_DIDF1BB_FotaScomoId3ReadFunc (uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is
33 according to the [2] unless the FblDid is updated.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID F1BB.
Pre-Conditions None

Prototype Std_ReturnType
Fbl_UserCode_DIDF1BC_FotaScomoId4ReadFunc (uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is
33 according to the [2] unless the FblDid is updated.

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID F1BC.
Pre-Conditions None

70 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Prototype Std_ReturnType
Fbl_UserCode_DIDF1AA_StandardVersionInformationTypeReadFunc
(uint8* Data)

Parameter Data: pointer to the data content fo the DID. The data size is
11 according to the [2] unless the FblDid is updated in the
configurartion. The integrator can use the following define to
set the value of the DID: DID_F1AA_RELEASE_VERSION,
DID_F1AA_LICENSE_NUMBER, DID_F1AA_AUTOSAR_REVI-
SION and DID_F1AA_SUPPLIER_ID

Return Code E_OK : DID is allowed.
E_NOT_OK : DID negative response.

Functional
Description

This function handles the value of the DID F1AA.
Pre-Conditions None

4.6.2.9 ECU Identity
Prototype Std_ReturnType Fbl_Port_UserCheckCsrCondition (void)

Parameter None
Return Code E_OK : CSR generation allowed.

E_NOT_OK : CSR generation not allowed.
Functional
Description

This function enables or disables the CSR generation that is
triggered by the RC 0xD00A

Pre-Conditions None
4.6.2.10 FOTA Rollback

Prototype Std_ReturnType Fbl_Port_UserCheckRollbackCondition (
void)

Parameter None
Return Code E_OK: Rollback allowed.

E_NOT_OK : Rollback not allowed.
Functional
Description

This function enable or disable the Rollback feature that is
triggered by the RC 0xD006

Pre-Conditions None

Prototype void Fbl_Port_UserFinalizeRollback (void)

Parameter None
Return Code None
Functional
Description

This function can be used for customization after a
successful Rollback.

Pre-Conditions None

71 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.6.3 FBL: BSW adaptation
The BSW modules needed by RTA-FBL and configured in the generated BSW
project are listed in Table 4.69. This list is the minimum setup needed for the
basic FBL.
If changes are necessary in order to fulfill non-standard bootloader integration
requirements, you are allowed to modify the BSW generated configuration. You
are not allowed to modify any parameters within Fblgen_EcucValues.arxml: these
configuration parameters are highlighted in brick red and not editable by the user.
This file will always be overwrien during generation.
The integrator must always test the complete FBL after making any modifications
to the generated BSW project.

Table 4.69.MCAL modules list
BSW Module(s) Notes
Dcm The diagnostic communication module
Mem/IF; Fee; NvM Memory stack modules for the NVM
CanIf; CanSM; CanTp;
ComM; ComStack; PduR

Communication stack modules
Crc Uses for CRC calculation when verifying the

downloaded application/calibration.
4.6.4 FBL: MCAL adaptation

The MCAL modules needed by RTA-FBL for all targets are listed in Table 4.70. The
list is the minimum setup needed for the basic FBL functionalities (i.e. communi-
cation, flashing, etc.). The list does not include customer specific adaptations like
external watchdog, external transceivers, external EEPROM, etc. See your FBL
Target Guide for further information on MCAL modifications for your target.

Table 4.70.MCAL modules list
MCALModule Notes
Can CAN driver
Flash Driver Driver for FLASH erase and programming. This includes the

handling of PFLASH and DFLASH, so in some cases could be
made by two dierent modules (i.e. IFX MCALs use Fls for
DFLASH and FlsLoader for PFLASH).

Mcu Provides core functionality such as clock handling, mcu reset,
etc.

Port Provides interface to port pin peripheral.
4.6.5 FBL: OS adaptation

The OS provided with this port is based on a simple cyclic scheduler. This OS does

72 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

not support interrupts and is non-preemptive. If you need to integrate additional
code to the bootloader, you will likely need to adapt this OS. This might involve
adding co-routines to the existing tasks or adding new tasks. Adding a new
co-routine simply requires adding the function call with the relevant task body in
“Fbl/INFRA/Os/src/Os_Tasks.c”. If you need to add a new task
with a dierent frequency, then follow these steps:

1.Add the task to the task list in “Fbl/INFRA/Os/inc/Os_Tasks.h”
2.Add the task to Os_TaskTable in Os_SchTbl in “Fbl/INFRA/Os/inc/Os_-

Tasks.c”
3.Create the task body in “Fbl/INFRA/Os/inc/Os_Tasks.c”

The frequency used to derive the task periods is defined by SYSTEM_FREQ_HZ in
“Fbl/INFRA/Os/inc/Os.h”. You can change this value to match your clock frequency
in order to ensure that the tasks are executed at the correct rate. The timer used
is target dependent, but you can also change this by adapting the function
OsPort_InitOsTimerResource in “Fbl/INFRA/Os/inc/Os_Port.c” and the macro
GET_SYSTEM_TIMER in “Fbl/INFRA/Os/inc/Os_Port.h”.

 WARNING
The integrator is responsible for ensuring that any modifications made to the
OS are tested to ensure that the FBL continues to operate as expected. In
particular, moving the existing co-routines into a dierent order or within
other tasks will likely result in incorrect behavior.

4.6.6 FBL: BLSM adaptation
The BLSM is used primarily to initialize the BSW and MCAL modules and to start
the bootloader. An integrator may need to adapt the BLSM to make the initializa-
tion calls for additional modules. This will involve modifying one or more of the
Fbl_Port_BLSM_DriverInit functions in “Fbl/INFRA/BLSM/src/BLSM_CallOuts.c”. It
is strongly recommended that while additional init functions can be added, the
existing init functions calls are not moved from their current location with the
Fbl_Port_BLSM_DriverInit calls.
In choosing where to add your init functions, note that the NvM is only set up at
the end of Fbl_Port_BLSM_DriverInitOne. Therefore, if your integrated code
requires the NVM, you should add it in Fbl_Port_BLSM_DriverInitTwo.

 WARNING
The integrator is responsible for ensuring that any modifications made to the
BLSM are tested to ensure that the FBL continues to operate as expected.

73 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

4.6.7 Application Software: NvM layout adaptation
Adaptation of the NvM is usually required as the application would rarely already
incorporate the FBL NvM layout. This is because the NvM is the interaction mech-
anism between application and FBL. In particular, the application writes a specific
Fbl flag in NvM and then resets, in order to allow the FBL to handle the reprogram-
ming request and to know that this request has been issued. Moreover, the FBL
could have other internal NvM blocks that need to be copied in case of a page
swap by the application. Therefore, the application should take care of the
unknown blocks configured in the FBL.
The NvM memory layout of the FBL shall be a subset of the NvM memory layout of
the Application. In order for the layout to be consistent, the Fee persistent IDs of
the shared blocks must match between the application and FBL.
The default memory layout of the FBL is reported in [5].
Another parameter that needs to be aligned between Application and Bootloader
is the Fee Sector Layout. The sector layout depends on application and target
characteristics (data memory sizes mainly). The configuration of the Fee Sectors
needs to match between FBL and Application, otherwise the Fee will recognize it
as invalid and re-format the Data Memory (thus deleting the existing content).
See your FBL Target Guide for details of Fee Sectors configuration.

4.6.8 ASW: Boot Jump Handling
To reprogram the ECU when an application is valid and running, it is necessary for
the application to signal to the bootloader that reprogramming is required after
the next reset. This sequence is show in Figure 29.

74 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 29: Handling of jump logic
In an AUTOSAR stack, the module responsible for the reception of the tester
requests and triggering the jump to the bootloader is the Diagnostic Communica-
tion Manager (Dcm). For storing the information required by the bootloader, the
Dcm will execute the application callout Dcm_SetProgConditions (see Figure 30 for
API description).
This callout must be implemented by the user. The goal is to store the required
information in a place and format, the bootloader can access and understand.
The two required information are:

-The reprogramming request flag, a uint32 that shall be set by the application
exactly to 0xAAFF55AAUL,

-The parameter ProgConditions of the type Dcm_ProgConditionsType provided
by Dcm.

75 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 30: Dcm_SetProgConditions API from AUTOSAR SWS
Note that the callout Dcm_SetProgConditions allows the return value
DCM_E_PENDING which results in the Dcm_MainFunction calling
Dcm_SetProgConditions in each subsequent cycle until it returns E_OK, before the
Dcm continues with the jump to bootloader. Dcm uses the return value from the
function DcmAppl_DcmGetStoreType to fill in ProgConditions parameter of
Dcm_SetProgConditions. The recommended return value is
DCM_WARMRESPONSE_TYPE We strongly recommend to serialize the ProgConditions
structure as shown in Table 4.71 in order to make sure that there are no depen-
dencies on the structure of the data due to the compiler, compiler options, or the
BSW version. You should be able to get all the values needed to create data by
using the contents of the programming conditions sent as an input parameter to
the function Dcm_SetProgConditions called from the Dcm when the Programming
Session is entered in the application. The NvM block to store the reprogramming
request flag is NV_ReprogrammingRequestFlagBlock. The NvM block to store the
programming conditions is NvM_ProgrammingConditionsBlock.

76 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.71.Programming conditions data to be set in NvM as required by RTA-BSW
Name Firstbyteindex

SizeinBytes
Description

ProtocolId 0 1 Active Protocol ID - Set by Dcm to
identify the protocol on which
Jumping is initiated

Sid 1 1 Active Service Identifier - Set by Dcm
SubFncId 2 1 Active Subfunction Id - Set by Dcm
StoreType 3 1 Storing Type used for Storing the

information - Warm Request/Warm
Response/Warm Init

SessionLevel 4 1 Active Session Level which needs to
be stored - Set by Dcm

SecurityLevel 5 1 Active Security Level which needs to
be stored - Set by Dcm

ReqResLen 6 1 Total Request/Response length
including SID and Subfunc - Set by
Dcm

NumWaitPend 7 1 Number of wait response pending
triggered - Set by Dcm

ReqResBuf 8 8 Request / Response buer - Set by
Dcm

TesterSourceAddr 16 2 Tester diagnostic address. Note that
the Dcm sets the Tester Source
Address only if DcmDslProtocolRx-
TesterSourceAddr is correctly
configured for each DcmDs/DcmDsl-
Protocol/DcmDslConnections in BSW
configuration.

ElapsedTime 18 4 Total elapsed time - Set by Dcm
ReprogramingRequest 22 1 Reprograming of ECU requested or

not - Not Used.
ApplUpdated 23 1 Application has to be updated or not

- Not Used.
ResponseRequired 24 1 Response has to be sent by

flashloader or application - Set by
Dcm

freeForProjectUse 25 6 Those bytes are currently not used
To instruct the Dcm to call the Dcm_SetProgConditions callback when the
Programming Session is requested you must ensure the Dcm knows a jump to
Bootloader is required. This is achieved with the parameter DcmConfigSet/DcmD-
sp/DcmDspSession/DcmSessionRows/DcmDspSessionForBoot that must be set

77 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

to DCM_OEM_BOOT for Programming Session.
When receiving a programming session request, it is suggested to instruct the
Dcm to send a NACK $78 on transition to boot, in order to allow timing extension
(P2*). This configuration is needed to avoid that a long Bootloader startup time
breaks an UDS timeout (since the $10 02 response will be sent by the bootloader
after the jump). This is achieved seing the parameter DcmConfigSet/DcmDsl/D-
cmDslProtocol/DcmDslProtocolRows/DcmSendRespPendOnTransToBoot to TRUE.
If the ECU supports the ADA, the ECU can be kept authenticated after the jump
just storing the certificate used for the authenticated security access in the NvM
entry Nvm_ADACertificate.
The NvM entry Nvm_ADAsavedDate can be used to store the last NotBefore
value of a valid certificate.

 NOTE
Make sure to persist all NvM blocks before the reset.

4.6.9 FBL: NvM adaption
This chapter explains how to manage the NvM configuration through the FBL
module and perform the following tasks:

-Use the default configuration stored in the RTA-FBL
-Add new NvM blocks
-Modify the default NvM blocks (id and size)
-Add new data in the NvM blocks
-Modify the default data of the NvM blocks (move data to other blocks,
change id, size or default value)

The FBL will propagate the configuration to the impacted modules NvM, Fee and
FBL_DataM. You can still manually configure your own NvM blocks with the
Nvm/Fee module. These blocks will not be managed by the FBL and the FBL will not
have visibility of that modules. That means that the FBL_DataM won’t produce
any API to manage the block.
The FBL default configuration is reported in [5] and [6].
In order to keep the default configuration, the fblNvmBlock and FblNvmData
container shall be left empty. The RTA-FBL will use the default configuration
stored in the generator.
You can add new NvmBlock container and NvmData container or modify the
default configuration through the FBL modules as show in the below figure.

78 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 31: Menu to add new child container for FblNvmBLock, FblNvmDataand FblNvmDid
Once the new child FblNvmBlock container is added to the configuration, you can
create your block as show in the figure below.

Figure 32: ISOLAR GUI for FblNvmBlock container with a new block config-ured. At the top two buons allow the user to create or delete an entry
In the newly created FblNvmBlock you shall configure a unique ShortName. The
ShortName can be the same of the ShortName of a default value. In this case you
won’t generate a new NvM block but you will overwrite the default NvM block.
You shall also define a block id and the size.

Figure 33: ISOLAR GUI for FblNvmBlock entry with a new block configured.
Once the FblNvmBlock is configured, you can populate it with one or more
FblNvmData.
You can create the new child FblNvmData container and populate it with your
FblNvmData (same procedure as FblNvmBlock).
For each FblNvmData, you shall configure the ShortName. The ShortName can be

79 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

the same of the ShortName of a default value. In this case you won’t generate a
new NvM data but you will overwrite the default NvM data.
You shall also configure the FblNvmBlock that contains the data, the oset inside
the block, the size of the data and the default value.
The RTA-FBL will check that the FblNvmBlock configured for the FbmNvmData
exists and that it can contain the FbmNvmData.
The default value is a string value that shall contain the hexadecimal value. For
example if you configure the size to 3 you can set the value as follow:

-‘20’ all bytes will be automatically filled with the value generating the
following value {0x20U, 0x20U, 0x20U}

-‘010203’ the by will be set as follow {0x01U, 0x02U, 0x03U}

 NOTE
the FBL will not check the content of the FblNvmData so refer to [2].

Figure 34: ISOLAR GUI for FblNvmData entry with a new data configured.
Once the FBL and the BSW are generated, you will find your block propagated in
the NvM and Fee modules.
You can access the FblNvmData through the FBL_DataM APIs:

-Fbl_DataM_Nvm<SHORT_NAME>ReadFunc: read data from the non-volatile
memory

-Fbl_DataM_Nvm<SHORT_NAME>WriteFunc: write data to the non-volatile
memory

-Fbl_DataM_Nvm<SHORT_NAME>IsPersisted: check data is actually wrien
in the non-volatile memory

4.6.10 FBL: DID adaption
This chapter explains how to manage the DIDs configuration through the FBL
module and perform the following tasks:

80 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

-Use the default configuration stored in the RTA-FBL
-Add new DIDs
-Modify the default DIDs (id, type or size)

The FBL will propagate the configuration to the impacted modules: Dcm and
FBL_DataM.
You can still manually configure your own DIDs within the configuration of the
dcm. These DIDs will not be managed by the FBL and the FBL will not have visibility
of that DIDs. That means that the FBL_DataM cannot be used to manage that DID.
The FBL Did default configuration is reported in [4].
In order to keep the default configuration, the FblDids container shall be left
empty. The plugin-in will use the default hard coded configuration.
In order to add a new DID, you shall create a new FblDids container and rename it
as FblDids. Inside the FblDids container you can create a new FblDid pressing on
the “Create FblDid” buon on the top left of the BSW Editor.

Figure 35: ISOLAR GUI for FblDid container with a new DID configured. At thetop two buons allow the user to create or delete an entry
The new FblDid shall have a unique FblDid ShortName. This means that the Short-
Name shall not be equal to any default DIDs name or to other FblDid ShortName in
the ISOLAR configuration. If the FblDid ShortName is equal to a default DID name,
then the default DID will be overwrien.

Figure 36: ISOLAR GUI for FblDid entry with a new block configured.

81 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

For each DID you shall define the session in which the DID can be red or can be
wrien. For this value you can use D for default session, E for extended session or
P for programming session. So the string ‘DPE’ enables all the sessions.
You shall also define the FblDidType with one of the following values:

-NVM_DATA read/write data direct from NvM. FBL_DataM will manage the
dcm callback.

-CALLBACK read/write through a callback. FBL_Port will manage the dcm call-
back.

-USER_CBK read/write through a callback. you shall define the dcm callback.
If the DID default type is CALLBACK, you can change the type to USER_CBK to
overwrite the default callback implementation. In this case, you can define the
callback in any source file you want. The default callback implementation is
managed by the FBL_Port.c component and they will be excluded with a
preprocessor #define. These #define are generated in the FBL_Port_Cfg.h file.
If the DID default type is NVM_DATA, the user can change the type to USER_CBK
or CALLBACK and this makes no dierence.
In case the NVM_DATA is set, you shall define the FblNvmData associated to the
DID. In this case, the FblNvmData short name shall be defined in the FblNvmData
table.
In case the CALLBACK is set, the user shall define the FblDidCbkReadSize and the
FblDidCbkwriteSize.
The following api shall be populated:
FUNC(Std_ReturnType, DCM_APPL_CODE) Fbl_Port_<DID_SHORT_NAME>ReadFunc
(
 P2VAR(uint8, AUTOMATIC, DCM_APPL_DATA) dataOut1
)

4.7 Bootloader Update
The Flash Bootloader can be reprogrammed via UDS to upgrade the FBL of an ECU
in which the debug port is not accessible: this is achieved using a special applica-
tion, named Boot Updater.
The Boot Updater is downloaded just like a normal application: in its code flash it
holds the new flash bootloader and, once started, replaces the existing Boot-
loader by the new version.
Please note a boot manager is required to ensure the bootloader update process
is reliable.
On reset, the boot manager will check if the FBL is valid and jump to the boot-
loader if it is valid. If the bootloader is not valid, then the boot manager will jump to
the application. This is because if the bootloader is invalid, then this would signify
the boot updater application must have failed in a previous update aempt and
will need to run again. Note that the boot manager is the only non-replaceable
software and is used to ensure boot update is failure safe. It will hold a refence to
the start address of the bootloader and the start address of the application, that

82 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

cannot be changed across bootloader updates.
The figures below show a conceptual overview of the update process:

Figure 37: Example of the sequence of flash memory blocks updates during abootloader update process.
As depicted in previous pictures, the boot updater is executed during RID 0xFF01 -
Check Programming Dependencies processing. The user macro FBL_-
PORT_CHECK_BOOT_UPDATER is used to detect whether a boot updater was
downloaded and should be executed during RID processing or not. While the
actual boot update is in progress, one or more UDS NRC $78 may be issued to
prevent UDS timeouts to expire. Positive response to RID 0xFF01 is only sent by
FlashBootloader V2.0 after the boot update process has been completed.
Please note even if tester writes bootSoftwareFingerprint ($F183) addressing
logical block #0 (i.e. the bootloader logical block), the FBL expects the download
of a boot updater application, and the above-mentioned process would take
place.
The plugin includes a sample boot updater application.
The boot updater application is generated using the same parameters of the FBL.

83 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Table 4.72.FBL parameters used by the Boot Updater.
Parameter Description
FblEraseMaxSizePerCycleSplit the erase routine in multiple calls.
FblRegion Configures the erase routines and the target linker-

script
StartAddress Identifies the application used as boot updater.

The boot updater application implements the following logic:
1.Reorganize the TBT: The FBL is removed from the TBT and the Boot Updater

is marked as TB_BOOT_MODE_SECURE.
2.calls the BootUpdater_PreEraseHook(). The integrator may use this api for

custom operation (ex: update the NvM, refresh the watchdog).
3.Erase the FBL. The CycurHsm suspension api are already managed by the

Boot Updater erase functions.
4.calls the BootUpdater_PostEraseHook(). The integrator may use this api for

custom operation
5.calls the BootUpdater_PreWriteHook(). The integrator may use this api for

custom operation
6.Write the new FBL. The CycurHsm suspension api are already managed by

the Boot Updater write functions.
7.calls the BootUpdater_PostWriteHook(). The integrator may use this api for

custom operation
8.Restore the TBT: The FBL is added to the TBT and it’s marked as

TB_BOOT_MODE_SECURE and the Boot Updater trusted boot is restored.
9.Invalidate the NvM validity flags of the Boot Updater since at the next

startup it shall run.
10.calls the BootUpdater_BootUpdateSuccess(). The integrator may use this api

for custom operation.
11.Reset.

If any error occurs, the api BootUpdater_BootUpdateFailed() is called and the
failing state is stored in the variable BootUpdater_StateError.
The Boot Updater share the same BSW of the FBL.
In particular at the startup the Boot Updater reads the TesterSourceAddr stored
the in the Nvm block NvmProgConditions.
The dcm is not initialized, and the Boot Updater directly calls the CanIf_Transmit
to send the pending response. The variable TesterSourceAddr is used to identify
the tester and choose the correct Pdu.

4.8 Authenticated Diagnostic Access
According to the CS.00092, CS.00101 and CS.00121 the ADA module supports the
following features:

84 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

-Authenticated security access.
-Delay timer.
-Certificate expiration and monotonic counter.
-Role management.
-Secure policy management.
-Authenticated security access from App. Check ASW: Boot Jump Handling
for more details.

See the following chapter for more information.
4.8.1 Authenticated security access and Delay timer

Figure 38: Sequence diagram reporting a successful security access withservices 27/11 and 27/12
The above figure reports the step required by the ADA:

1.The tester requests the service 27 11 and send the x509v3 certificate to the
FBL.

2.The FBL store the certificate in the RAM. The x509v3 certificate is not veri-
fied during the service $27 11 callback routine.

3.The FBL requests the generation of a random number generation to the HTA.
4.The FBL responds to the tester with a positive response.
5.The tester signs the random number.
6.The tester sends the signed random number.
7.The FBL requests the verification of the x509v3 certificate and the signed

random number to the HTA.
8.The FBL store the x509v3 certificate in the NvM entry Nvm_ADACertificate.

85 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

9.The FBL responds to the tester with a positive response.
The Authenticated security access supports the NRC reported in the figure
below with the following exception:

-X509v3 certificate is validated during the service $27 12. The service $27 11
handles only the random number generation.

-At the startup the Delay timer is reset and the user shall wait that this timer
expires before request an ADA.

Figure 39: Authenticated security access workflow
4.8.2 Certificate expiration and monotonic counter

The last available NotBefore entry of a valid x509v3 certificate is stored in the
NvM entry Nvm_ADAsavedDate.
At the startup the x509v3 certificate of the cert store are used to define the
initial value of the Nvm_ADAsavedDate.
During an authenticate security access, The Nvm_ADAsavedDate entry is used
to verify the NotAfter value of x509v3 certificate. If the x509v3 certificate is valid
and its NotBefore value is greater than the stored Nvm_ADAsavedDate then the
Nvm_ADAsavedDate is updated.
When the ECU is authenticated by the ADA, a monotonic counter is set to the
NotBefore value of the x509v3 certificate used for the ADA.

86 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Until the ECU is authenticated, the FBL periodically increase the monotonic
counter and it checks if the certificate is still valid or not. If the certificate expires,
due to the monotonic counter reaching the NotAfter value of the certificate itself,
then the Nvm_ADAsavedDate is updated with the current monotonic counter
value to avoid that the same certificate can be reused. Then a reset is call and the
current session is terminated.

4.8.3 Role and Security policy management
X509v3 certificates for ADA store a role that is used for the secure policy
management. Since the certificate is stored on the FBL NvM, the FBL checks peri-
odically the certificate validity.
If the certificate is no more valid, the certificate is removed from the NvM entry
and the current session is terminated.
When the ECU is authenticated, the role is compared against the security policy.
It’s up to the integrator to define the Security policy populating the APIs in the file
ADA_UserCode.c.

4.9 FOTA Rollback
This section describes the rollback feature.
As reported in the CS.00180, if a FOTA process fails, the FOTA master can request
the rollback to all the ECU and restore the previous version of the software.
The ECU shall store a valid software version in a backup area. It’s up to the appli-
cation to create the backup.
The FOTA rollback can be requested both in the application or in the FBL. Once it’s
requested the ECU shall automatically move to the boot loader mode and restore
the software from the backup.
The FOTA master will poll the ECU to request feedbacks on the process.
Once the FOTA rollback ends, the ECU remains in the boot loader mode until the
FOTA master requests a reset.
Once the FOTA rollback starts, the ECU will respond only to the FOTA master until
a reset is requested.
It’s not possible to define a backup region for the FBL. If the Fsm and the
CycurHsm are integrated, it’s not possible to define a backup region for the main
TS and backup TS.

4.9.1 FOTA Rollback configuration
To enable and configure the feature, the ISOLAR parameter FblFotaRollback to
ENABLE. This option is available only if FblFotaType is not set to FOTA_DISABLED
and FblEcuType is set to ECU_C.
The generator performs the following checks:

-Rollback region ids are unique (No multiple rollback region for one region)
-Rollback region id links to a valid block region id.

87 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

-Rollback region size is equal to the block region size.
-All region id links to a rollback region id except for the FBL.
-Rollback region shall not overlap to other regions (block regions, trust
stores).

-The CS and the FBL shall not have a rollback region.

4.9.2 FOTA Rollback functional behavior
The Rollback can be requested both by the FBL and the App. The Rollback is
requested by writing 0x01 in the NvM data NvmRollbackStatus.
If the application manages the rollback request, then the value of the NvmRoll-
backStatus shall be persisted and a reset shall be called.
If the Fbl manages the rollback request, then the user can reject the requests
implementing the callout Fbl_Port_UserCheckRollbackCondition. It’s up to the
application software to populate the backup regions and the UserCheckRollback-
Condition can be used to inform the FBL that the backup is available.
It’s not possible to requests a rollback if a previous rollback is already executing.
The ECU will report a negative response with the NRC set to “conditions not
correct”.
The figure below shows the flowchart of the RC 0xD006 sub 01 when the request
is managed by the FBL.

Figure 40: flowchart of the RC 0xD006 01
After the reset, the FBL detects the rollback requests and it remains in the default
session.
If the FBL_Port_Rollback_Manager detects that a rollback is requested, it
updates the status of the NvM data NvmRollbackStatus to 0x02 (Pending execu-
tion).
At the beginning of the rollback, the NvM data related to the DID 0x2010 and the
logical block status are invalidated.
The pending execution status is not used to inform the tester about the execu-
tion status since there is a dedicated api to perform this task. This status is used
as a recovery action after an exception is thrown and a reset is performed.

88 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

During the erase process, if the backup region is external then the User-
Flash_FlashRead is used to read from the external device.
After a successful download, the fingerprints are restored and the user callout
Fbl_Port_UserFinalizeRollback is called.

89 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

Figure 41: Simplified flowchart of the Rollback manager with the calloutcalls.

90 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

If the Rollback is successful, the FBL update the NvM data NvmRollbackStatus
and the information about the DID 0x2010. The ECU remains in boot mode until
the FOTA Master requests a reset.

4.10 FOTA ECU Identity
This section describes the ecu identity feature.
The ECU Identity generation is triggered by the RC 0xD00A. As shown in the
figure below, the Dcm callouts is called multiple times and it returns a pending
response until the private key and the CSR are generated and stored in the NvM.

Figure 42: Simplified flowchart of a successful Ecu identity generation withthe callout calls.

91 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

In case of any error during the RC 0xD00A execution, the CSR counter and the
CSR remains unchanged.
After the CSR is generated:

-the CSR value is stored in the NvmDID2965_CSRRead and it can be red with
the DID 0x2965

-The DIDF1B7 and the DIDF1B8 can be used to sign the Software Id Signature
and the Hardware Id Signature

The alghorithm supported by the CycurHSM for the signature of the content of
the DID 0xF1B7 and 0xF1B8 is the ECDSA.
This algorithm generates a random signature also if the digest and the key are the
same.
Since the FOTA master requires that the FOTA target ECUs send always the same
signature if the digest doesn’t change, the FBL provides the following strategy.
The FBL provides 4 Nvm data to store the digest and the signature of the the two
dids: NvM_DIDF1B7_Signature_Data, NvM_DIDF1B7_Digest_Data, NvM_DID-
F1B8_Signature_Data and NvM_DIDF1B8_Digest_Data.
When the dids are called the FBL shall calculate the new signature and the new
digest.
If the new digest is equal to the digest stored in the NvM, the FBL sends the
signature stored in the NvM and ignore the new calculated digest and signature
If the new digest is not equal to the digest stored in the NvM, the FBL stores the
new signature and the new digest in the NvM and it sends back to the tester the
new calculated signature.

92 | The STLA Port

ETAS RTA-FBL_STLA v2.0.0 | User Manual

5 Privacy
5.1 Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy State-
ment that informs you which data are processed in RTA-FBL, which data cate-
gories RTA-FBL uses, and which technical measure you have to take to ensure
the users privacy. Additionally, we provide further instructions where this product
stores and where you can delete personal or personal-related data.

5.2 Data Processing
Note that personal or personal-related data respectively data categories are
processed when using this product. The purchaser of this product is responsible
for the legal conformity of processing the data in accordance with Article 4 No. 7
of the General Data Protection Regulation (GDPR). As the manufacturer, ETAS
GmbH is not liable for any mishandling of this data.

5.3 Data and Data Categories
When using the ETAS License Manager in combination with user-based licenses,
particularly the following personal or personal-related data respectively data
categories can be recorded for the purposes of license management:

-Communication data: IP address,
-User data: UserID, WindowsUserID.

5.4 Technical and Organizational Measures
This product does not itself encrypt the personal or personal-related data
respectively data categories that it records. Ensure that the data recorded are
secured by means of suitable technical or organizational measures in your IT
system. Personal or personal-related data in log files can be deleted by tools in
the operating system.

93 | Privacy

ETAS RTA-FBL_STLA v2.0.0 | User Manual

6 ETAS Contact Addresses
6.1 ETAS HQ

ETAS GmbH Borsigstraße 24 Phone: +49 711 3423-0
70469 Fax: +49 711 3423-2106
Germany Internet: www.etas.com

6.2 ETAS Subsidiaries and Technical Support
For details of your local sales oice as well as your local technical support team
and product hotlines, take a look at the ETAS website: www.etas.com/hotlines

94 | ETAS Contact Addresses

ETAS RTA-FBL_STLA v2.0.0 | User Manual

http://www.etas.com
www.etas.com/hotlines

	1 Introduction
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.5 Revision History
	1.6 Definition and Abbreviations
	1.7 References
	1.8 About this Document
	1.9 Chapter Description

	2 Introduction to ETAS RTA-FBL
	2.1 What is a Flash Bootloader?
	2.2 What is RTA-FBL?
	2.3 The Flash Tool (Tester)
	2.4 The OEM-defined Programming Sequence
	2.5 Target Dependencies and the Flash Driver
	2.6 Interaction with the Application using NvM
	2.7 One and Two-Stage Bootloaders
	2.8 FBL generation with the RTA-FBL ISOLAR-AB plugin
	2.9 General architecture of RTA-FBL
	2.10 Setting up your environment to generate an RTA-FBL instance

	3 Installing RTA-FBL
	4 The STLA Port
	4.1 RTA-FBL_STLA Architecture
	4.2 Stellantis Download Sequence
	4.3 Creating and building an RTA-FBL instance
	4.3.1 Project creation
	4.3.2 Configuration and Generation of FBL and BSW
	4.3.2.1 FblRegion
	4.3.2.2 FblGeneral
	4.3.2.3 FblCore
	4.3.2.4 FblCan
	4.3.2.5 FblSec
	4.3.2.6 FblNvmBlock
	4.3.2.7 FblNvmData
	4.3.2.8 FblDid
	4.3.2.9 FblFota
	4.3.2.10 FblFotaRollbackRegion

	4.3.3 Files created during generation
	4.3.4 The RTA-FBL instance for the Dummy Target
	4.3.4.1 Dummy Target Memory Layout

	4.4 Security Stack
	4.4.1 FBL callout for SecStack integration
	4.4.1.1 Startup
	4.4.1.2 Jump to application
	4.4.1.3 Periodic
	4.4.1.4 HTA suspension and activation
	4.4.1.5 Secure Download
	4.4.1.6 ADA - Challenge request
	4.4.1.7 ADA - Verify response and periodic certificate verification
	4.4.1.8 ADA - Certificate management
	4.4.1.9 ADA - Periodic
	4.4.1.10 FOTA - CSR and idendity key generation
	4.4.1.11 FOTA - Sign data with identity key
	4.4.1.12 FOTA - Periodic

	4.4.2 CertStore, DisavowedCertificateList and TrustStore
	4.4.3 Trusted Boot
	4.4.3.1 Bootloader first run
	4.4.3.2 Startup sequence

	4.4.4 Trusted Download

	4.5 Supported targets
	4.6 Integrator guidelines
	4.6.1 FBL: Memory Layout Adaptation
	4.6.2 FBL: User Functions
	4.6.2.1 Initialization
	4.6.2.2 Shutdown
	4.6.2.3 Watchdog
	4.6.2.4 Application validation
	4.6.2.5 Software Identification Update
	4.6.2.6 External memory reprogramming
	4.6.2.7 Authenticated Diagnostic Access
	4.6.2.8 Diagnostic
	4.6.2.9 ECU Identity
	4.6.2.10 FOTA Rollback

	4.6.3 FBL: BSW adaptation
	4.6.4 FBL: MCAL adaptation
	4.6.5 FBL: OS adaptation
	4.6.6 FBL: BLSM adaptation
	4.6.7 Application Software: NvM layout adaptation
	4.6.8 ASW: Boot Jump Handling
	4.6.9 FBL: NvM adaption
	4.6.10 FBL: DID adaption

	4.7 Bootloader Update
	4.8 Authenticated Diagnostic Access
	4.8.1 Authenticated security access and Delay timer
	4.8.2 Certificate expiration and monotonic counter
	4.8.3 Role and Security policy management

	4.9 FOTA Rollback
	4.9.1 FOTA Rollback configuration
	4.9.2 FOTA Rollback functional behavior

	4.10 FOTA ECU Identity

	5 Privacy
	5.1 Privacy Statement
	5.2 Data Processing
	5.3 Data and Data Categories
	5.4 Technical and Organizational Measures

	6 ETAS Contact Addresses
	6.1 ETAS HQ
	6.2 ETAS Subsidiaries and Technical Support

