RTA-OSEK

LiveDevices

ETAS Group

Infineon TriCore 17x6 with the Tasking Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-OSEK
Builder

RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with an unique timing
analysis tool.

This port data sheet discusses the Infineon TriCore 17x6 port of
the RTA-OSEK kernel alone and should be read in conjunction
with the Technical Product Overview ”Developing Embedded
Real-Time Applications with RTA-OSEK" available from LiveDevic-
es.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed.

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-
mized for greatest efficiency.

Features at a Glance

e OSEK/VDX OS version 2.2 certified OS
e RTOS overhead: 28bytes RAM, 172bytes ROM
e Category 2 interrupt latency: 30CPU cycles

¢ Applications include: Engine Management, Integrated Starter Alternators,
Chassis Control

All tasks and ISRs in RTA-OSEK run on a single stack — even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task uses
queued activation or waits on events, the additional RTOS over-
head required to support these features is paid by the task rather
than by the system. This means that a basic single activation task
uses the same resources in a BCC1 system as it does in an ECC2
system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-OSEK kernel have
been built using the following tools:

e Tasking TriCore VX-toolset C compiler v2.2r3 Build 156.1.4
e Tasking TriCore VX-toolset assembler v2.2r3 Build 134.1.2
e Tasking TriCore VX-toolset object linker v2.2r3 Build 104

Memory Model

RTA-OSEK for the TriCore 17x6 has a flat 32-bit memory model.
It makes use of 24-bit relative addressing internally which requires
the library to be contained within a 1024Kb memory block. 32-
bit addressing is used externally providing no restrictions on
placement of user code and data. Support for placing the RTA-

OSEK code and interrupt vector table in scratchpad RAM is also
provided.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by RTA-
OSEK for the following debuggers:

e Lauterbach Trace32 Build 1194

Further information about ORTI for RTA-OSEK can be found in
the ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Infineon TriCore 17x6 fam-
ily - TC1796, TC1766, TC1764 and TC1762.

Interrupt Model

255 interrupt levels are supported. Category 2 interrupts may
share priority levels or have unique multi-level priorities. Category
1 interrupts may share the priority level 255 or have unique multi-
level priorities.

Floating Point Support

The Infineon TriCore TC17x6 family uses software or hardware
floating point when available (single precision only). The libraries
supplied with the Tasking toolchain are reentrant on a per func-
tion basis. Please consult the Tasking TriCore Reference Manual
for detailed information.

Evaluation Board Support

RTA-OSEK for the Infineon TriCore 17x6 can be used with any
suitable evaluation board. An example application is provided to
run on the Triboard TC1796 evaluation board. This application
can be adapted for other target boards by adjusting the linker
command file (to alter the RAM locations) and one source file (if
alternative output pins are required).

Functionality

The table below outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

Context Save Areas (CSAs)

All RAM figures quoted in this datasheet do not include CSAs.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory type Overhead (bytes)
RAM 28
ROM/Flash 172

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

Object RAM Bytes ROM Bytes

BCC1 task 0 36
BCC2 task 10 52
ECC1 task 28 60
ECC2 task 30 68
Category 1 ISR 0 0
Category 2 ISR 0 64
Resource 0 20
Internal Resource 0

Event 0 4
Alarm 12 60
Counter 4 50
Taskset (RW) 4

Taskset (RO) 0

Schedule 16 36
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this

el e el e overhead applies to each priority level rather than to each task.
Max no of tasks 32 plus an idle task Similarly, for Category 2 interrupts this overhead applies for each
Max tasks per priority 1 32 1 32 unique interrupt priority. The table below shows stack usage for
Max queued activations 1 255 1 255 these objects.
Max events per task n/a n/a 32 32 Object Stack Bytes
Max nested resources 255 Task priority level 12
Max alarms not limited by RTA-OSEK Category 2 interrupt 3
Max standard resources 255 255 255 255
- — RTA-OSEK provides an optimization for task termination if the
Max internal resources not limited by RTA-OSEK . .
user can guarantee that tasks only terminate from their entry
Max application modes 4294967295

Note that OSEK specifies that queued activations in an ECC2 sys-
tem are only possible for basic tasks. Where tasks share a priority

function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 16 more stack bytes per priority
level than indicated in the table above.

Performance

The following table gives the key kernel timings for operating sys-
tem behavior in CPU cycles.

| RTA-OSEK activity

A I j[E
ActivateTask(T2 -

Task Type Basic Extended Ref |
Category 1 ISR Latency 31 31 K Category 1 ISR 1
Category 2 ISR Latency 30 30 A " Task T2 readyto run|
Normal Termination 64 177 D LB : ~L
- |Interrupt Asserted
ChainTask 89 280 J I Task T1 —— |—
Pre-emption 87 197 C
i Figure 3 - Category 2 interrupt activates a higher priority task
Triggered by alarm 127 241 F
Schedule 70 179 Q
ReleaseResource 77 185 M
SetEvent n/a 256 S
Category 2 exit switch latency 71 181 E

All performance figures are for the non-optimized interface to
RTA-OSEK. Using the optimized interface will result in shorter ex-
ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request
from LiveDevices.

InterruptAsserted

—L_

(_/lf[L

I RTA-OSEK activity

| Category 1 ISR

|Task .

- ‘-.

Figure 1 - Category 1 interrupt with return to interrupted task

l—éy([A B

| RTA-OSEK activity

|Category 2 ISR

,7 T\terrupt/\sserteg —

ITask i i

Figure 2 - Category 2 interrupt with return to interrupted task

T RTA-OSEK activity

4

TerminateTask() -

Frask 12

Frask 1

,7 [ActivateTask(T2) |
|

Figure 4 - Task activates a higher priority task

I RTA-OSEK activity

l_4[F
||

ITask T2

l TerminateTask() |-

Frask 11

,7‘ {Alarmactivates T2 ,7
N
I

Figure 5 - Alarm activates task

F RTA-OSEK activity

I(—/{U

ChainTask(T1)

!Task T2

Frask 11

Figure 6 - Task chaining

P RTA-OSEK activity

. TerminateTask()

ActivateTask(T2)

Frask 12 . |
[schedule) | v
Frask 1 | l_l
Figure 7 - Schedule() call
S

I RTA-OSEK activity

ITask 12

WaitEvent(E1) |

¥

Frask 11

f.

SetEvent(T2,E1 }— S

41

Figure 8 - Activation by SetEvent()

F RTA-OSEK activity

M[M

Brask 12

ReleaseResource(R1)
L

Frask 11

Figure 9 - ReleaseResource()

Benchmarks

The following sections shows benchmarks for RTA-OSEK memory
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica-
tions. The applications have the following framework:

e 8 tasks plus the idle task

e All basic tasks are lightweight tasks

e 1 Category 2 ISR with a 10ms minimum inter-arrival time

e 1 Counter

e 7 or 8 alarms, all attached to the same counter

e No resources or internal resources

¢ No hooks

e No schedules

¢ No tasksets

e Built using standard status

The following table shows the task priority configuration for each
benchmark application:

= 2 3

s ¥ & 5 O g§ ¢

8 & & a a 2 2
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8
B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3
G 70 100 2 2 2 2
H 80 150 1 1 1 2
Idle 10 - idle idle idle idle

The overhead figures give the ROM and RAM required for RTA-
OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique priorities.

This application has the following overheads:

Memory usage Bytes

OS ROM 1744
OS RAM 232
comprising RAM data 128

comprising RAM stack 104

BCC2

The BCC2 application uses 8 basic tasks with unique
priorities.

Tasks A-G are attached to 7 alarms. Task H is activat-
ed multiple times from Task A and has maximum
queued activation count of 255.

This application has the following overheads:

Memory usage Bytes
OS ROM 1966
OS RAM 229

comprising RAM data 124

comprising RAM stack 105

ECC1

The ECC1 application uses 7 basic tasks and 1 extend-
ed task with unique priorities. Task H is the extended
task and it waits on a single event that is set by basic
tasks A-G.

This application has the following overheads:

LiveDevices
ETAS Group

share a priority. The extended tasks wait on a single
event that is set by tasks A-F.

This application has the following overheads:

Memory usage Bytes
OS ROM 3040
OS RAM 342

comprising RAM data 194

comprising RAM stack 148

Stack Optimization

Using stack optimization with the benchmark exam-
ple identifies that the following tasks can share inter-
nal resources:

"Tasks A, B and C
"Tasks D, Eand F
"Tasks G and H

The benefit of this optimization is shown in the fol-
lowing table:

Total Stack Space BCC1 BCC2 ECC1 ECC2

Memory usage Bytes (bytes)
OS ROM 2480 Non-optimized 484 485 502 528
OS RAM 278 0S Overhead 104 105 122 148

comprising RAM data 156

comprising RAM stack 122

ECC2

The ECC2 application uses 6 basic tasks and 2 extend-
ed tasks. Tasks G and H are the extended tasks and

Application Overhead 380 380 380 380

Optimized 224 224 242 242

OS Overhead 44 44 62 62

Application Overhead 180 180 180 180

Contact addresses:

LiveDevices Ltd.

Atlas House

Link Business Park
Osbaldwick Link Road
Osbaldwick

York YO10 3JB, Great Britain
Phone +44 (1904) 56 25 80
Fax +44 (1904) 56 25 81
info@livedevices.com
www.livedevices.com

ETAS GmbH

BorsigstraBBe 14

70469 Stuttgart, Germany
Phone +49 (711) 8 96 61-102
Fax +49(711) 896 61-106
sales@etas.de

www.etas.de

ETAS Inc.

3021 Miller Road

Ann Arbor, MI 48103, USA
Phone +1 (888) ETAS INC
Fax +1(734) 997-9449
sales@etas.us
www.etas.us

ETAS K.K.

Queen’s Tower C-17F

2-3-5, Minatomirai

Nishi-ku

Yokohama 220-6217, Japan
Phone +81 (45) 222-0900
Fax +81 (45) 222-0956
sales@etas.co.jp
www.etas.co.jp

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France
Phone +33 (1) 56 70 00 50
Fax +33 (1) 56 70 00 51
sales@etas.fr

www.etas.fr

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-889, Korea
Phone +82 (2) 57 47-016
Fax +82(2) 57 47-120
sales@etas.co.kr
www.etas.co.kr

Www.etasgroup.com

Subject to changes (01/06)

