RTA-OSEK

LiveDevices

ETAS Group

STMicroelectronics ST7 with the Cosmic Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-OSEK
Builder

RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with an unique timing
analysis tool.

This port data sheet discusses the STMicroelectronics ST7 family
port of the RTA-OSEK kernel alone and should be read in con-
junction with the Technical Product Overview "“Developing Em-
bedded Real-Time Applications with RTA-OSEK" available from
LiveDevices.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed.

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-
mized for greatest efficiency.

Features at a Glance

e OSEK/VDX OS version 2.2 certified OS

e RTOS overhead: 12 bytes RAM, 118 bytes ROM

e Category 2 interrupt latency: 182 CPU cycles

¢ Applications include: Automotive Body Electronics, Mechatronics and Indus-

trial Process Control

All tasks and ISRs in RTA-OSEK run on a single stack — even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task uses
queued activation or waits on events, the additional RTOS over-
head required to support these features is paid by the task rather
than by the system. This means that a basic single activation task
uses the same resources in a BCC1 system as it does in an ECC2
system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-OSEK kernel have
been built using the following tools:

e Cosmic cxst7 Version 4.4d
e Cosmic cast7 Version 4.2r

e Cosmic cInk Version 4.3p

Memory Model

The RTA-OSEK port to the ST7 with the Cosmic compiler supports
a simple stack-based memory model. Subject to certain con-

straints that are necessary to ensure correct operation, the user is
free to use a memory-based memory model (also called simulated
stack) for support functions. RTA-OSEK places some key variables

in zero-page (@tiny) RAM to improve efficiency.
ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by RTA-
OSEK for the following debuggers:

e Hitex HITOP

e Cosmic Zap v3.7

Further information about ORTI for RTA-OSEK can be found in
the RTA-OSEK User Manual.

Hardware Environment

RTA-OSEK supports all variants of the STMicroelectronics ST7
family. Note that a single interrupt mask bit is used to control in-
terrupts even on variants that support nested interrupts.

Interrupt Model

One level of interrupts is supported.

Floating Point Support

The STMicroelectronics ST7 uses software floating-point only.
The kernel floating-point support routines are also used to pre-
serve the context for 32-bit integer division. As a result, the ma-
jority of task switches are as fast as possible.

Evaluation Board Support

RTA-OSEK for the STMicroelectronics ST7 can be used with any
evaluation board. An example application is provided to run on
the Hitex AX6811 emulator with the ST72561 evaluation board.
This application can be adapted for other target boards by adjust-
ing the linker command file (to alter the RAM locations) and one
source file (if alternative output pins are required).

Functionality

The below table outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 16 plus an idle task
Max tasks per priority 1 16 1 16
Max queued activations 1 255 1 255
Max events per task n/a n/a 8 8
Max nested resources 255
Max alarms not limited by RTA-OSEK
Max standard resources 255
Max internal resources not limited by RTA-OSEK

Max application modes 255

Note that OSEK specifies that queued activations in an ECC2 sys-
tem are only possible for basic tasks. Where tasks share a priority
level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory type Overhead (bytes)
RAM 12
ROM/Flash 118

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

Object RAM Bytes ROM Bytes

BCC1 task 0 17
BCC2 task 6 24
ECC1 task 8 27
ECC2 task 10 31
Category 1 ISR 0 0
Category 2 ISR 0 28
Resource 0 10
Internal Resource 0 0
Event 0 1
Alarm 5 36
Counter 2 37
Taskset (RW) 2 2
Taskset (RO) 0 2
Schedule 7 16
Arrivalpoint (RW) 6

Arrivalpoint (RO) 0 6

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this
overhead applies to each priority level rather than to each task.
Similarly, for Category 2 interrupts this overhead applies for each
unique interrupt priority. The below table shows stack usage for
these objects.

Object Stack Bytes
Task priority level 1
Category 2 interrupt 9

RTA-OSEK provides an optimization for task termination if the
user can guarantee that tasks only terminate from their entry
function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 44 more stack bytes per priority
level than indicated in the table above.

Performance

The following table gives the key kernel timings for operating sys-

tem behavior in CPU cycles.

Task Type Basic Extended Ref A E
Category 1 ISR Latency 15 15 K I ’—g
_ i ActivateTask(T2

Category 2 ISR Latency 182 182 A RTA-OSEK activity -
Normal Termination 222 548 D |

Category 1 ISR 0
ChainTask 640 1294 J

Task T2 dyt

Pre-emption 598 1104 C ITask T2 faskT2resdyton 1
Triggered by alarm 1142 1646 F [Interrupt Asserted
Schedule 466 916 Q Trask 11
ReleaseResource 26 1006 M Figure 3 - Category 2 interrupt activates a higher priority task
SetEvent n/a 1706 S
Category 2 exit switch latency 354 802 E

All performance figures are for the non-optimized interface to

RTA-OSEK. Using the optimized interface will result in shorter ex-

ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request

from LiveDevices.

InterruptAsserted

| RTA-OSEK activity

—L_

(_/lf[L

| Category 1 ISR

- ‘-.

|Task

Figure 1 - Category 1 interrupt with return to interrupted task

| RTA-OSEK activity

|<—4[A

|Category 2 ISR

I rask

,7 T\terrupt/\sserteg
2

Figure 2 - Category 2 interrupt with return to interrupted task

T RTA-OSEK activity

t—‘{[c

H{D

TerminateTask() -

Frask 12

Frask 1

—

[ActivateTask(T2)

Figure 4 - Task activates a higher priority task

I RTA-OSEK activity

l—éfﬂ:

ITask T2

TerminateTask() |-

Frask 11

{Alarmactivates T2 ,7
N

Figure 5 - Alarm activates task

F RTA-OSEK activity

ChainTask(T1)

I(—/{U

!Task T2

Frask 11

Figure 6 - Task chaining

The following table shows the task priority configuration for each
benchmark application:

M[Q T 2

I o« _%' E
FRTA-OSEK activity [| - - % ;: 3 s . - .
Frask 2 ’W | I‘—'g g E a a & 2
[schedule(] v ISR1 10 10 IPL1 IPLT LT IPLT
ITask T1 e | A 10 10 8 8 8 8
Figure 7 - Schedule() call B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
S E 50 50 4 4 4 4
F 60 80 3 3 3 3
I RTA-OSEK activity [] G 70 100 2 2 2 2
N rack 12 WalEventED | L H 80 150 1 1 1 2

v [Settventt2£1}— Idle 10 - idle idle idle idle

Irask 11 ,—I:u I

Figure 8 - Activation by SetEvent()

The overhead figures give the ROM and RAM required for RTA-
OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.

BCC1
The BCC1 application uses 8 basic tasks with unique priorities.
M
This application has the following overheads:
FRTA-OSEK activity H Memory usage Bytes
e &) OS ROM 1843
€eleaseresourc
!Task T2 . OS RAM 198
comprising RAM data 54
Frask T1 —
comprising RAM stack 144
Figure 9 - ReleaseResource() BCC2
e application uses asic tasks with unigque priorities.
enchmarks The BCC2 applicati 8 basic tasks with uni ioriti

Tasks A-G are attached to 7 alarms. Task H is activated multiple
times from Task A and has maximum queued activation count of
255.

The following sections shows benchmarks for RTA-OSEK memory
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica-
tions. The applications have the following framework:

« 8 tasks plus the idle task This application has the following overheads:

e All basic tasks are lightweight tasks Memory usage Bytes
e 1 Category 2 ISR with a 10ms minimum inter-arrival time OS ROM 2337
e 1 Counter OS RAM 199
o 7 or 8 alarms, all attached to the same counter comprising RAM data 53

e No resources or internal resources comprising RAM stack 146

* No hooks ECC1

¢ No schedules

The ECC1 application uses 7 basic tasks and 1 extended task with
unique priorities. Task H is the extended task and it waits on a sin-
gle event that is set by basic tasks A-G.

¢ No tasksets

e Built using standard status

This application has the following overheads:

Memory usage Bytes
OS ROM 2996
OS RAM 207
comprising RAM data 62
comprising RAM stack 145
ECC2

The ECC2 application uses 6 basic tasks and 2 extend-
ed tasks. Tasks G and H are the extended tasks and
share a priority. The extended tasks wait on a single
event that is set by tasks A-F.

This application has the following overheads:

Memory usage Bytes
OS ROM 4912
OS RAM 246
comprising RAM data 78
comprising RAM stack 168

Stack Optimization

Using stack optimization with the benchmark exam-
ple identifies that the following tasks can share inter-
nal resources:

. Tasks A, B and C
o Tasks D, E and F
. Tasks G and H

The benefit of this optimization is shown in the fol-

lowing table:

Total Stack Space

BCC BCC ECC ECC

LiveDevices
ETAS Group

Contact addresses:

LiveDevices Ltd.

Atlas House

Link Business Park
Osbaldwick Link Road
Osbaldwick

(bytes) 1 2 1 2 York YO10 3JB, Great Britain
Phone +44 (1904) 56 25 80
NOn'OptimiZed 524 526 525 548 Fax :44 (1904) 56 25 81
info@livedevices.com
OS Overhead 144 146 145 168 S ——
Application Overhead 380 380 380 380
. ETAS GmbH
Optimized 269 269 270 270 BorsigstraBe 14
0S Overhead 89 89 90 90 70469 Stuttgart, Germany
Phone +49 (711) 8 96 61-102
Application Overhead 180 180 180 180 e =B EI)EEEE-IT

sales@etas.de

www.etas.de

ETAS Inc.

3021 Miller Road

Ann Arbor, MI 48103, USA
Phone +1 (888) ETAS INC
Fax +1(734) 997-9449
sales@etas.us
www.etas.us

ETAS K.K.

Queen’s Tower C-17F

2-3-5, Minatomirai

Nishi-ku

Yokohama 220-6217, Japan
Phone +81 (45) 222-0900
Fax +81 (45) 222-0956
sales@etas.co.jp
www.etas.co.jp

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France
Phone +33 (1) 56 70 00 50
Fax +33 (1) 56 70 00 51
sales@etas.fr

www.etas.fr

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-889, Korea
Phone +82 (2) 57 47-016
Fax +82(2) 57 47-120
sales@etas.co.kr
www.etas.co.kr

Www.etasgroup.com

Subject to changes (07/05)

