RTA-OSEK

LiveDevices
ETAS Group

STMicroelectronics ST30 with the ARM Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-OSEK
Builder

RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with an unique timing
analysis tool.

This port data sheet discusses the STMicroelectronics ST30 family
port of the RTA-OSEK kernel alone and should be read in con-
junction with the Technical Product Overview "“Developing Em-
bedded Real-Time Applications with RTA-OSEK" available from
LiveDevices.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed.

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-
mized for greatest efficiency.

Features at a Glance

e OSEK/VDX OS version 2.2 certified OS

e RTOS overhead: 24 bytes RAM, 144 bytes ROM

e Category 2 interrupt latency: 118 CPU cycles

¢ Applications include: Car Body, Air Bag, Dashboard and Radio

All tasks and ISRs in RTA-OSEK run on a single stack — even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task uses
queued activation or waits on events, the additional RTOS over-
head required to support these features is paid by the task rather
than by the system. This means that a basic single activation task
uses the same resources in a BCC1 system as it does in an ECC2
system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-OSEK kernel have
been built using the following tools:

e ARM Developer Suite V1.2
Memory Model

The ST30/ADS supports a flat 32-bit memory model. The only re-
strictions placed on memory usage are that locations used by on-
board peripherals cannot be used for application code and the
vector table must be located at 0xO0.

ORTI Debugger Support

ORTIl is the OSEK Run-Time Interface. Currently there are no ORTI

compatible debuggers supported by RTA-OSEK for this target.

Hardware Environment

RTA-OSEK supports all variants of the ST30 family including the
ST30F771-Z, ST30F772-Z, ST30F771-A and ST30F774-Z.

Interrupt Model

RTA-OSEK for the ST30 architecture supports 17 interrupt priority
levels. These correspond to the 16 levels of the ST30 Enhanced
Interrupt Controller (EIC) and the 'F' bit (bit 6) of the current pro-
gram status register (CPSR).

The ST30 architecture has an 8-entry vector table starting at 0x0.
There are six processor exceptions, one reset vector and one re-
served vector. The vector table can be provided either by the user
or by RTA-OSEK. When multiple interrupt FIQ or IRQ interrupts
are used in an application a 64-entry software vector table for the
EIC exceptions is concatenated to the ST30 vector table.

OSEK Category 2 interrupts are only supported on the ST30 IRQ
exception at EIC priority level 1, via the 64 EIC interrupt channels.
When processing Category 2 interrupts, RTA-OSEK uses 16 bytes
of the IRQ stack before reverting to the supervisor mode stack.

Floating Point Support

Tasks and ISRs may safely use software floating point.

Evaluation Board Support

RTA-OSEK for the ST30 can be used with any evaluation board.
An example application is provided to run on the ST30F77x eval-
uation board. This application can be adapted for other target
boards by adjusting the linker command file (to alter the RAM lo-
cations) and one source file (if alternative output pins are re-
quired).

Functionality

The below table outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms not limited by RTA-OSEK
Max standard resources 255
Max internal resources not limited by RTA-OSEK

Max application modes 255

Note that OSEK specifies that queued activations in an ECC2 sys-
tem are only possible for basic tasks. Where tasks share a priority
level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory type Overhead (bytes)
RAM 24
ROM/Flash 144

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

Object RAM Bytes ROM Bytes

BCC1 task 0 36
BCC2 task 10 52
ECC1 task 140 60
ECC2 task 142 68
Category 1 ISR 0 0
Category 2 ISR 0 52
Resource 0 20
Internal Resource 0

Event 0 4
Alarm 6 32
Counter 2 44
Taskset (RW) 4

Taskset (RO) 0

Schedule 12 36
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this
overhead applies to each priority level rather than to each task.
Similarly, for Category 2 interrupts this overhead applies for each
unique interrupt priority. The below table shows stack usage for
these objects.

Object Stack Bytes
Task priority level 72
Category 2 interrupt 48

RTA-OSEK provides an optimization for task termination if the
user can guarantee that tasks only terminate from their entry
function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 44 more stack bytes per priority
level than indicated in the table above.

Performance

The following table gives the key kernel timings for operating sys-

tem behavior in CPU cycles.

Task Type Basic Extended Ref A E
Category 1 ISR Latency 18 18 K I
. Vi ActivateTask(T2

Category 2 ISR Latency 118 118 A] -
Normal Termination 211 393 D I

Category 1 ISR 0
ChainTask 313 739 J

Task T2 dyt

Pre-emption 216 350 C I Task T2 [rask 72 readytorun |
Triggered by alarm 445 579 F [Interrupt Asserted
Schedule 209 336 Q ITask T1
ReleaseResource 217 344 M Figure 3 - Category 2 interrupt activates a higher priority task
SetEvent n/a 578 S
Category 2 exit switch latency 112 239 E

All performance figures are for the non-optimized interface to

RTA-OSEK. Using the optimized interface will result in shorter ex-

ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request

from LiveDevices.

InterruptAsserted

| RTA-OSEK activity

—L_

(_/lf[L

| Category 1 ISR

- ‘-.

|Task

Figure 1 - Category 1 interrupt with return to interrupted task

| RTA-OSEK activity

|<—4[A

|Category 2 ISR

I rask

.

T\terrupt Asserteg

Figure 2 - Category 2 interrupt with return to interrupted task

T RTA-OSEK activity

t—‘{[c

TerminateTask() -

Frask 12

Frask 1

—

[ActivateTask(T2)

Figure 4 - Task activates a higher priority task

I RTA-OSEK activity

l—éfﬂ:

ITask T2

TerminateTask() |-

Frask 11

{Alarmactivates T2 ,7
N

Figure 5 - Alarm activates task

F RTA-OSEK activity

ChainTask(T1)

I(—/{U

!Task T2

Frask 11

Figure 6 - Task chaining

The following table shows the task priority configuration for each
benchmark application:

M[Q T 2

I o« _%' E
FRTA-OSEK activity [| - - % ;: 3 s . - .
Frask 2 ’W | I‘—'g g E a a & 2
[schedule(] v ISR1 10 10 IPL1 IPLT LT IPLT
ITask T1 e | A 10 10 8 8 8 8
Figure 7 - Schedule() call B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
S E 50 50 4 4 4 4
F 60 80 3 3 3 3
I RTA-OSEK activity [] G 70 100 2 2 2 2
N rack 12 WalEventED | L H 80 150 1 1 1 2

v [Settventt2£1}— Idle 10 - idle idle idle idle

T f

| The overhead figures give the ROM and RAM required for RTA-
OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.

Figure 8 - Activation by SetEvent()

BCC1
The BCC1 application uses 8 basic tasks with unique priorities.
M
This application has the following overheads:
FRTA-OSEK activity H Memory usage Bytes
e &) OS ROM 1686
€eleaseresourc
Frask T2 - 05 RAM 706
comprising RAM data 74
Frask T1 —
comprising RAM stack 632
Figure 9 - ReleaseResource() BCC2
The BCC2 application uses 8 basic tasks with unique priorities.
enchmarks

Tasks A-G are attached to 7 alarms. Task H is activated multiple
times from Task A and has maximum queued activation count of
255.

The following sections shows benchmarks for RTA-OSEK memory
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica-
tions. The applications have the following framework:

« 8 tasks plus the idle task This application has the following overheads:

e All basic tasks are lightweight tasks Memory usage Bytes
e 1 Category 2 ISR with a 10ms minimum inter-arrival time OS ROM 1924
e 1 Counter OS RAM 716
o 7 or 8 alarms, all attached to the same counter comprising RAM data 76

e No resources or internal resources comprising RAM stack 640

* No hooks ECC1

¢ No schedules

The ECC1 application uses 7 basic tasks and 1 extended task with
unique priorities. Task H is the extended task and it waits on a sin-
gle event that is set by basic tasks A-G.

¢ No tasksets

e Built using standard status

This application has the following overheads:

Memory usage Bytes
OS ROM 2226
OS RAM 1022
comprising RAM data 214
comprising RAM stack 808
ECC2

The ECC2 application uses 6 basic tasks and 2 extend-
ed tasks. Tasks G and H are the extended tasks and
share a priority. The extended tasks wait on a single
event that is set by tasks A-F.

This application has the following overheads:

Memory usage Bytes
OS ROM 2632
OS RAM 1412
comprising RAM data 364
comprising RAM stack 1048

Stack Optimization

Using stack optimization with the benchmark exam-
ple identifies that the following tasks can share inter-
nal resources:

e Tasks A, Band C

e Tasks D, Eand F
e Tasks G and H

The benefit of this optimization is shown in the fol-

LiveDevices
ETAS Group

Contact addresses:

lowing table:
LiveDevices Ltd.
Total Stack Space BCC BCC ECC ECC Atlas House
(bytes) 1 2 1 2 Link Business Park
Osbaldwick Link Road
Non-optimized 101 102 118 142 Osbaldwick
2 0 8 8 York YO10 3JB, Great Britain
Phone +44 (1904) 56 25 80
0S Overhead 632 640 808 104 Fax 444 (1904) 56 25 81
] info@livedevices.com
www.livedevices.com
Application Overhead 380 380 380 380
Optimized 452 452 628 628 ETAS GmbH

BorsigstraBBe 14

OS Overhead 272 272 448 448

70469 Stuttgart, Germany
Phone +49 (711) 8 96 61-102

Application Overhead 180

180

180 Fax +49(711) 896 61-106
sales@etas.de

180

www.etas.de

ETAS Inc.

3021 Miller Road

Ann Arbor, MI 48103, USA
Phone +1 (888) ETAS INC
Fax +1(734) 997-9449
sales@etas.us
www.etas.us

ETAS K.K.

Queen’s Tower C-17F

2-3-5, Minatomirai

Nishi-ku

Yokohama 220-6217, Japan
Phone +81 (45) 222-0900
Fax +81 (45) 222-0956
sales@etas.co.jp
www.etas.co.jp

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France
Phone +33 (1) 56 70 00 50
Fax +33 (1) 56 70 00 51
sales@etas.fr

www.etas.fr

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-889, Korea
Phone +82 (2) 57 47-016
Fax +82(2) 57 47-120
sales@etas.co.kr
www.etas.co.kr

Www.etasgroup.com

Subject to changes (07/05)

