RTA-OSEK

LiveDevices

ETAS Group

Freescale Star12 with the Metrowerks Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-OSEK
Builder

RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with an unique timing
analysis tool.

This port data sheet discusses the Freescale Star12 port of the
RTA-OSEK kernel using the Metrowerks compiler only and should
be read in conjunction with the Technical Product Overview " De-
veloping Embedded Real-Time Applications with RTA-OSEK”
available from LiveDevices.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed.

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-
mized for greatest efficiency.

Features at a Glance

e OSEK/VDX OS version 2.2 certified OS

e RTOS overhead: 12bytes RAM, 89bytes ROM

e Category 2 interrupt latency: 18CPU cycles

e Applications include: HEVAC, Occupant Safety Systems, Passive Entry

All tasks and ISRs in RTA-OSEK run on a single stack — even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task uses
queued activation or waits on events, the additional RTOS over-
head required to support these features is paid by the task rather
than by the system. This means that a basic single activation task
uses the same resources in a BCC1 system as it does in an ECC2
system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-OSEK kernel have
been built using the following tools:

e Metrowerks CodeWarrior IDE v3.1

e Metrowerks HC12 Compiler v5.0.24.0
e Metrowerks HC12 Assembler v5.0.26.0
e Metrowerks Smartlinker v5.0.22.0

Memory Model
RTA-OSEK for the Star12 with the Metrowerks compiler supports

a special page-zero addessing mode, but conventionally low ad-
dresses are used for I/0 flags. The kernel makes no special use of

page zero and the modifier __near is not used.

The use of program bank-switching for application code is sup-
ported. All library code has been compiled without the __far
modifier and must therefore appear in unbanked pages. Applica-
tion code may be placed in banked pages and may use all API
calls, including those that entail a bank switch.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by RTA-
OSEK for the following debuggers:

e Noral Flex v4.2

Further information about ORTI for RTA-OSEK can be found in
the ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Freescale Star12 family.

Interrupt Model

One level of interrupts is supported.

Floating Point Support

The Freescale Star12 uses software floating point only.

Evaluation Board Support

RTA-OSEK for the Freescale Star12 with the Metrowerks compiler
can be used with any evaluation board. An example application
is provided to run on a Freescale Barracuda evaluation board. This
application can be adapted for other target boards by adjusting
the linker command file (to alter the RAM locations) and one
source file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 16 plus an idle task
Max tasks per priority 1 16 1 16
Max queued activations 1 255 1 255
Max events per task n/a n/a 16 16
Max nested resources 1 16 1 16
Max alarms 255
Max standard resources not limited by RTA-OSEK
Max internal resources 255

Max application modes not limited by RTA-OSEK

Note that OSEK specifies that queued activations in an ECC2 sys-
tem are only possible for basic tasks. Where tasks share a priority
level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory type Overhead (bytes)
RAM 12
ROM/Flash 89

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 17
BCC2 task 5 24
ECC1 task 1" 29
ECC2 task 13 33
Category 1 ISR 0 0
Category 2 ISR 0 23
Resource 0 10
Internal Resource 0 0
Event 0 2
Alarm 5 34
Counter 2 10
Taskset (RW) 2 2
Taskset (RO) 0 2
Schedule 7 16
Arrivalpoint (RW) 6 6
Arrivalpoint (RO) 0 6

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this
overhead applies to each priority level rather than to each task.
Similarly, for Category 2 interrupts this overhead applies for each
unique interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 17
Category 2 interrupt (N

RTA-OSEK provides an optimization for task termination if the
user can guarantee that tasks only terminate from their entry
function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 7 more stack bytes per priority
level than indicated in the table above.

Performance

The following table gives the key kernel timings for operating sys-

tem behavior in CPU cycles.

Task Type Basic Extended Ref A E
Category 1 ISR Latency 15 15 K I
. Vi ActivateTask(T2

Category 2 ISR Latency 18 18 A RTA-OSEK activity -
Normal Termination 69 151 D I

Category 1 ISR 0
ChainTask 145 325 J

Task T2 dyt

Pre-emption 137 248 C I Task T2 [rask 72 readytorun |
Triggered by alarm 233 345 F [Interrupt Asserted
Schedule 118 224 q |lTaskTi
ReleaseResource 129 236 M Figure 3 - Category 2 interrupt activates a higher priority task
SetEvent n/a 389 S
Category 2 exit switch latency 92 196 E

All performance figures are for the non-optimized interface to
RTA-OSEK. Using the optimized interface will result in shorter ex-
ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request
from LiveDevices.

InterruptAsserted

..ﬁ{“

I RTA-OSEK activity [] []
[]
N i
ICategory 11SR 1 i 4
I rask i i

Figure 1 - Category 1 interrupt with return to interrupted task

|<—4[A B

| RTA-OSEK activity

|Category 2 ISR

,7 TﬁerruptAssertea
Py

|Task i i

Figure 2 - Category 2 interrupt with return to interrupted task

T RTA-OSEK activity

t—‘{[c

TerminateTask() -

Frask 12

Frask 1

—

[ActivateTask(T2)

Figure 4 - Task activates a higher priority task

I RTA-OSEK activity

l—éfﬂ:

ITask T2

TerminateTask() |-

Frask 11

{Alarmactivates T2 ,7
N

Figure 5 - Alarm activates task

F RTA-OSEK activity

ChainTask(T1)

I(—/{U

!Task T2

Frask 11

Figure 6 - Task chaining

P RTA-OSEK activity

. TerminateTask()

ActivateTask(T2)

Frask 12 . |
[schedule) | v
Frask 1 | l_l
Figure 7 - Schedule() call
S

I RTA-OSEK activity

ITask 12

WaitEvent(E1) |

¥

Frask 11

f.

SetEvent(T2,E1 }— S

41

Figure 8 - Activation by SetEvent()

F RTA-OSEK activity

M[M

Brask 12

ReleaseResource(R1)
L

Frask 11

Figure 9 - ReleaseResource()

Benchmarks

The following sections shows benchmarks for RTA-OSEK memory
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica-
tions. The applications have the following framework:

e 8 tasks plus the idle task

e All basic tasks are lightweight tasks

e 1 Category 2 ISR with a 10ms minimum inter-arrival time

e 1 Counter

e 7 or 8 alarms, all attached to the same counter

e No resources or internal resources

¢ No hooks

e No schedules

¢ No tasksets

e Built using standard status

The following table shows the task priority configuration for each
benchmark application:

= 2 3

s ¥ & 5 O g§ ¢

8 & & a a 2 2
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8
B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3
G 70 100 2 2 2 2
H 80 150 1 1 1 2
Idle 10 - idle idle idle idle

The overhead figures give the ROM and RAM required for RTA-
OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique priorities.

This application has the following overheads:

Memory usage Bytes

OS ROM 1011
OS RAM 201
comprising RAM data 54

comprising RAM stack 147

BCC2

The BCC2 application uses 8 basic tasks with unique
priorities.

Tasks A-G are attached to 7 alarms. Task H is activat-
ed multiple times from Task A and has maximum
queued activation count of 255.

This application has the following overheads:

Memory usage Bytes
OS ROM 1202
OS RAM 201

comprising RAM data 52

comprising RAM stack 149

ECC1

The ECC1 application uses 7 basic tasks and 1 extend-
ed task with unique priorities. Task H is the extended
task and it waits on a single event that is set by basic
tasks A-G.

This application has the following overheads:

Memory usage Bytes
OS ROM 1534
OS RAM 229

comprising RAM data 65

comprising RAM stack 164

ECC2

The ECC2 application uses 6 basic tasks and 2 extend-
ed tasks. Tasks G and H are the extended tasks and
share a priority. The extended tasks wait on a single

LiveDevices
ETAS Group

event that is set by tasks A-F.

This application has the following overheads:

Memory usage Bytes
OS ROM 2006
OS RAM 273

comprising RAM data 84

comprising RAM stack 189

Stack Optimization

Using stack optimization with the benchmark exam-
ple identifies that the following tasks can share inter-
nal resources:

e Tasks A, B and C
e Tasks D, Eand F
e Tasks G and H

The benefit of this optimization is shown in the fol-
lowing table:

Total Stack Space BCC1 BCC2 ECC1 ECC2

(bytes)
Non-optimized 527 529 544 569

OS Overhead 147 149 164 189

Application Overhead 380 380 380 380

Optimized 242 242 259 259

OS Overhead 62 62 79 79

Application Overhead 180 180 180 180

Contact addresses:

Livedevices Ltd.

Atlas House

Link Business Park
Osbaldwick Link Road
Osbaldwick

York YO10 3JB, Great Britain
Phone +44 (1904) 56 25 80
Fax +44 (1904) 56 25 81
info@livdevices.com
www.livedevices.com

ETAS GmbH

BorsigstraBBe 14

70469 Stuttgart, Germany
Phone +49 (711) 8 96 61-102
Fax +49(711) 896 61-106
sales@etas.de

www.etas.de

ETAS Inc.

3021 Miller Road

Ann Arbor, MI 48103, USA
Phone +1 (888) ETAS INC
Fax +1(734) 997-9449
sales@etas.us
www.etas.us

ETAS K.K.

Queen’s Tower C-17F

2-3-5, Minatomirai

Nishi-ku

Yokohama 220-6217, Japan
Phone +81 (45) 222-0900
Fax +81 (45) 222-0956
sales@etas.co.jp
www.etas.co.jp

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France
Phone +33 (1) 56 70 00 50
Fax +33 (1) 56 70 00 51
sales@etas.fr

www.etas.fr

ETAS Korea Co., Ltd.

3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul, Korea

Phone +82 (2) 57 47-016
Fax +82(2) 57 47-120
sales@etas.co.kr
www.etas.co.kr

Www.etasgroup.com

Subject to changes (07/04)

