
 

RTA-OSEK 
Binding Manual: HC12X/COSMIC 





 

 

Contact Details 

 

ETAS Group 
www.etasgroup.com 
 
 

 

Germany 
ETAS GmbH 
Borsigstraße 14 
70469 Stuttgart 
Tel.:+49 (711) 8 96 61-102 
Fax:+49 (711) 8 96 61-106 
www.etas.de 

USA  
ETAS Inc. 
3021 Miller Road 
Ann Arbor, MI 48103 
Tel.: +1 (888) ETAS INC 
Fax: +1 (734) 997-94 49 
www.etasinc.com 

Japan 
ETAS K.K. 
Queen's Tower C-17F, 
2-3-5, Minatomirai, Nishi-ku, 
Yokohama, Kanagawa 
220-6217 Japan 
Tel.: +81 (45) 222-0900 
Fax: +81 (45) 222-0956 
www.etas.co.jp 

France 
ETAS S.A.S. 
1, place des États-Unis 
SILIC 307 
94588 Rungis Cedex 
Tel.: +33 (1) 56 70 00 50 
Fax: +33 (1) 56 70 00 51 
www.etas.fr 

Korea 
ETAS Korea Co. Ltd. 
3F, Samseung Bldg. 61-1 
Yangjae-dong, Seocho-gu 
Seoul 
Tel.: +82 (2) 57 47-016 
Fax: +82 (2) 57 47-120 
www.etas.co.kr 

 

Great Britain 
ETAS UK Ltd. 
Studio 3, Waterside Court 
Third Avenue, Centrum 100 
Burton-upon-Trent 
Staffordshire DE14 2WQ 
Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67
www.etas-uk.net 

 





 

 

Issue RM00064-01 Copyright Notice 1 

Copyright Notice 

© 2001 - 2004 LiveDevices Ltd. All rights reserved. 

Version: RM00064-01 

No part of this document may be reproduced without the prior written 
consent of LiveDevices Ltd.  The software described in this document is 
furnished under a license and may only be used or copied in accordance with 
the terms of such a license. 

Disclaimer 

The information in this document is subject to change without notice and 
does not represent a commitment on any part of LiveDevices.  While the 
information contained herein is assumed to be accurate, LiveDevices assumes 
no responsibility for any errors or omissions. 

In no event shall LiveDevices, its employees, its contractors or the authors of 
this document be liable for special, direct, indirect, or consequential damage, 
losses, costs, charges, claims, demands, claim for lost profits, fees or expenses 
of any nature or kind. 

Trademarks 

RTA-OSEK and LiveDevices are trademarks of LiveDevices Ltd. 

Windows and MS-DOS are trademarks of Microsoft Corp. 

OSEK/VDX is a trademark of Siemens AG. 

All other product names are trademarks or registered trademarks of their 
respective owners. 





C
ontents 

 

Issue RM00064-01 Contents 3 

Contents 
1 About this Guide.................................................................................. 5 

1.1 Who Should Read this Guide?..................................................... 5 
1.2 Conventions ............................................................................... 5 

2 Toolchain Issues ................................................................................... 7 
2.1 Memory Model ........................................................................... 7 
2.2 Compiler..................................................................................... 7 
2.3 Assembler ................................................................................... 8 
2.4 Linker/Locator ............................................................................. 8 
2.5 Debugger ................................................................................... 9 

3 Target Hardware Issues ...................................................................... 11 
3.1 Interrupts .................................................................................. 11 

3.1.1 Interrupt Levels ................................................................ 11 
3.1.2 Interrupt Vectors.............................................................. 11 
3.1.3 Interrupt Priority Levels .................................................... 12 
3.1.4 Category 1 Handlers ........................................................ 12 
3.1.5 Category 2 Handlers ........................................................ 12 
3.1.6 Vector Table Issues .......................................................... 13 



C
on

te
nt

s 

 

4 Contents Issue RM00064-01 

3.2 Register Settings ....................................................................... 13 
3.3 Stack Usage .............................................................................. 13 

3.3.1 Number of Stacks ............................................................ 13 
3.3.2 Stack Usage within API Calls ............................................ 13 

4 Parameters of Implementation............................................................ 15 



1.1 

 

Issue RM00064-01 About this Guide 5 

1 About this Guide 

This guide provides port specific information for the HC12X/COSMIC 
implementation of LiveDevices’ RTA-OSEK.   

A port is defined as a specific target microcontroller/target toolchain pairing.  
This guide tells you about integration issues with your target toolchain and 
issues that you need to be aware of when using RTA-OSEK on your target 
hardware.  Port specific parameters of implementation are also provided, 
giving the RAM and ROM requirements for each object in the RTA-OSEK 
Component and execution times for each API call to the RTA-OSEK 
Component. 

1.1 Who Should Read this Guide? 

It is assumed that you are a developer.  You should read this guide if you 
want to know low-level technical information to integrate the RTA-OSEK 
Component into your application. 

1.2 Conventions 

Important: Notes that appear like this contain important information that 
you need to be aware of.  Make sure that you read them carefully and that 
you follow any instructions that you are given. 

Portability: Notes that appear like this describe things that you will need to 
know if you want to write code that will work on any processor running the 
RTA-OSEK Component. 

In this guide you’ll see that program code, header file names, C type names, C 
functions and RTA-OSEK API call names all appear in the courier typeface.  
When the name of an object is made available to the programmer the name 
also appears in the courier typeface, so, for example, a task named Task1 
appears as a task handle called Task1. 





2.1 

 

Issue RM00064-01 Toolchain Issues 7 

2 Toolchain Issues 

In this chapter, you’ll see the important details that you need to know about 
RTA-OSEK and your toolchain.  A port of the RTA-OSEK Component is specific 
to both the target hardware and the compiler toolchain.  You must make sure 
that you build your application with this toolchain.   

If you are interested in using a different version of the same toolchain, you 
should contact LiveDevices to confirm whether or not this is possible. 

2.1 Memory Model 

The HC12 architecture supports the use of one-byte addresses for the first 
256 bytes of the address space, called the “zero page” section or “zpage”. 
Conventionally, however, low memory addresses are used for I/O flags. The 
RTA-OSEK Component therefore makes no special use of zpage, and the 
modifier @dir is not used. 

The HC12 architecture can also support three kinds of memory banking: 

• a 3-byte CALL/RTC mechanism in which 16k banks of code are mapped 
into and out of the space between 0x8000 and 0xBFFF. The PPAGE 
register stores the index of the currently-mapped bank. 

• a banked 4k data space at 0x7000-0x7FFF selectable by writing to the 
DPAGE register. 

• a banked 1k data space in low memory selectable by writing to the EPAGE 
register. 

Only the first of these is explicitly catered for by RTA-OSEK. All library code has 
been compiled without the @far modifier, and must therefore appear in 
unbanked code. If banked code is used for application code, most of what is 
required is the user’s responsibility. Where the API calls TerminateTask() 
and WaitEvent() are used in application code, if a bank switch is required 
the RTA-OSEK Component makes the necessary modification to PPAGE. 

In order to support this, the user is required to make known the location of 
PPAGE when linking applications, using a linker command of the form 
 +def os_ppage=0x30 

or whatever the location of PPAGE is on that target. If PPAGE does not exist, 
the location of any unused byte in RAM should be given. 

No support is provided for the use of DPAGE and EPAGE, so these may only 
be used in ways which do not affect the RTA-OSEK Component in any way. 

2.2 Compiler 

The RTA-OSEK Component was built using the following compiler: 
 

Vendor Cosmic 
Compiler cxs12x 
Version V4.6a 

 



2.
3 

 

8 Toolchain Issues Issue RM00064-01 

The compulsory compiler options for application code are shown in the 
following table: 

 
Option Description 
+nowiden Do not widen char parameters to integers 

 
The C file that RTA-OSEK generates from your OIL configuration file is called 
osekdefs.c.  This file defines configuration parameters for the RTA-OSEK 
Component when running your application. 

The compulsory compiler options for osekdefs.c are shown in the 
following table: 

 
Option Description 
+nowiden Do not widen char parameters to integers 

 

2.3 Assembler 

The RTA-OSEK Component was built using the following assembler: 
 

Vendor Cosmic 
Assembler cxs12x 
Version V4.6a 

 
The assembly file that RTA-OSEK generates from your OIL configuration file is 
called osgen.s.  This file defines configuration parameters for the RTA-OSEK 
Component when running your application. 

2.4 Linker/Locator 

The compulsory linker/locator options for an RTA-OSEK application are shown 
in the following table: 

 
Option Description 

+def os_ppage=<value> <value>=the address of PPAGE if any,  
or otherwise any unused RAM address 

 
In addition to the sections used by application code, the following RTA-OSEK 
sections must be located: 

 
Sections Rom/Ram Description 
os_pid ROM RTA-OSEK read-only data 
os_pird ROM RTA-OSEK initialization data 
os_vectbl ROM Relocatable vector table if generated by RTA-OSEK GUI 
os_vectbl1 ROM Fixed vector table if generated by RTA-OSEK GUI 
os_pir RAM RTA-OSEK initialized data 
os_pur RAM RTA-OSEK uninitialized data 

 



2.5 

 

Issue RM00064-01 Toolchain Issues 9 

All Cosmic run-time libraries are compatible with RTA-OSEK. 

2.5 Debugger 

Information about ORTI for RTA-OSEK can be found in the RTA-OSEK ORTI 
Guide 

At the time of writing, we were not aware of any debuggers for the Motorola 
Star12X with support for ORTI. 

If you are using an ORTI version 2.0 aware debugger on this platform you can 
use the “Unknown ORTI debugger” option in the RTA-OSEK GUI to generate 
an ORTI output file.  The ORTI generated will not have been tested on the 
debugger and, therefore, is not guaranteed to work. 

Please contact LiveDevices if you have any questions about ORTI support in 
RTA-OSEK. 





3.1 

 

Issue RM00064-01 Target Hardware Issues 11 

3 Target Hardware Issues 

3.1 Interrupts 

This section explains the implementation of RTA-OSEK’s interrupt model. You 
can find out more about configuring interrupts for RTA-OSEK in the RTA-
OSEK User Guide. 

3.1.1 Interrupt Levels 

In RTA-OSEK interrupts are allocated an Interrupt Priority Level (IPL).  This is a 
processor independent abstraction of the interrupt priorities that are available 
on the target hardware.  You can find out more about IPLs in the RTA-OSEK 
User Guide.  The hardware interrupt controller is explained in the CPU12X 
Reference Manual.   

The following table shows how RTA-OSEK IPLs relate to interrupt priorities on 
the target hardware: 

 
IPL 
Value 

High Byte Of Condition 
Code Register 

I Bit In Condition Code 
Register Description 

0 0 0 User level 

1 1 0 
Category 1 and 2 
interrupts 

2 2 0 
Category 1 and 2 
interrupts 

3 3 0 
Category 1 and 2 
interrupts 

4 4 0 
Category 1 and 2 
interrupts 

5 5 0 
Category 1 and 2 
interrupts 

6 6 0 
Category 1 and 2 
interrupts 

7 7 0 
Category 1 and 2 
interrupts 

8 any value 1 
Category 1 
interrupts only 

 

3.1.2 Interrupt Vectors 

For the allocation of Category 1 and Category 2 interrupt handlers to 
interrupt vectors on your target hardware, the following restrictions apply: 

 
Vector Legality 
0xFFFE RESET cannot be used 
0xF4 use of XIRQ invalidates timing analysis 

 



3.
1 

 

12 Target Hardware Issues Issue RM00064-01 

The HC12X has some vectors that have a fixed location (vectors 0xFFFC, 
0xFFFA) and the rest of the vectors are relocatable. If a vector table is 
generated it has two sections. os_vectbl1 contains the fixed location 
vectors and must be located at 0xfffa. os_vectbl contains the relocatable 
vectors and can be placed at any of the locations outlined in the processor 
documentation. The user is responsible for initializing the Interrupt Vector 
Base Register (IVBR). 

3.1.3 Interrupt Priority Levels 

The priority at which a hardware interrupt is taken is set in the INT_CFDATA 
registers under the control of the INT_CFADDR register.  

The RTA-OSEK GUI generates a table (of the interrupt priorities used in the 
application), called os_InitIrqLevels, which must be used to initialize the 
INT_CFDATA registers. This table contains the priority levels for interrupts 
defined in the application. 

Important: The os_InitIrqLevels table must be copied to the 
INT_CFDATA registers before the call to StartOS() otherwise interrupts will 
not work correctly. 

The init_target() function in target.c in the example application 
(located in <RTA-OSEK install directory>\COS12X\Example\) 
gives an example of how to copy os_InitIrqLevels to the correct 
location. 

 

 

3.1.4 Category 1 Handlers 

Category 1 interrupt service routines (ISRs) must correctly handle the interrupt 
context themselves, without support from the operating system.  The Cosmic 
C compiler can generate appropriate interrupt handling code for a C function 
decorated with the @interrupt function qualifier.  You can find out more 
in your compiler documentation. 

3.1.5 Category 2 Handlers 

Category 2 ISRs are provided with a C function context by the RTA-OSEK 
Component, since the RTA-OSEK Component handles the interrupt context 
itself.  The handlers are written using the OSEK OS standard ISR() macro, 
shown in Code Example 3:1. 

#include “MyISR.h” 
ISR(MyISR) { 
  /* Handler routine */ 
} 



3.2 

 

Issue RM00064-01 Target Hardware Issues 13 

Code Example 3:1 - Category 2 ISR Interrupt Handler 

You must not insert a return from interrupt instruction in such a function.  
The return is handled automatically by the RTA-OSEK Component. 

3.1.6 Vector Table Issues 

When you configure your application with the RTA-OSEK GUI you can choose 
whether or not a vector table is generated within osgen.s.  

Note that a generated vector table omits the reset vector entry.  If you choose 
to provide your own vector table, it must contain an entry for each interrupt 
handler, including the Category 2 interrupt handlers in RTA-OSEK.   

The following table shows the syntax for labels attached to RTA-OSEK 
Category 2 interrupt handlers (VV represents the 2 hex digit, upper-case, zero-
padded value of the vector location). 

 
Vector Location Label 
0xVV _os_wrapper_VV 

e.g. 0x90 _os_wrapper_90 
 

3.2 Register Settings 

The RTA-OSEK Component does not require the initialization of registers 
before calling StartOS(). 

The RTA-OSEK Component uses the following hardware registers.  They 
should not be altered by user code. 

 
Registers Used Notes 
High byte of CCR The high byte of the CCR holds the current priority level 
I bit in the CCR The I bit enables and disables interrupts. 

 

3.3 Stack Usage 

3.3.1 Number of Stacks 

A single stack is used. The first argument to StackFaultHook is always 0. 

StackOffsetType is a scalar, representing the number of bytes on the 
stack, with C type: unsigned short 

3.3.2 Stack Usage within API Calls 

The maximum stack usage within RTA-OSEK API calls, excluding calls to hooks 
and callbacks, is as follows: 



3.
3 

 

14 Target Hardware Issues Issue RM00064-01 

Standard 

 
API max usage (bytes): 15 

 

Timing 

 
API max usage (bytes): 15 

 

Extended 

 
API max usage (bytes): 23 

 
To determine the correct stack usage for tasks that use other library code, you 
may need to contact the vendor to find out more about library call stack 
usage. 



4 

 

Issue RM00064-01 Parameters of Implementation 15 

4 Parameters of Implementation 

This chapter provides detailed information on the functionality, performance 
and memory demands of the RTA-OSEK Component.   

NB: This is a placeholder for the tables of sizes and times collected by the 
Binding Manual Performance Measurement application.  At the time of 
generation of this manual, this application is not yet available for the 
HC12X/COSMIC port of RTA-OSEK. 

  





Support 

 

Issue RM00064-01 Support 17 

Support 

For product support, please contact your local ETAS representative. 

Office locations and contact details can be found on the ETAS Group website 
www.etasgroup.com. 

 
 


	Binding Manual: HC12X/COSMIC
	Copyright Notice
	Disclaimer
	Trademarks

	About this Guide
	Who Should Read this Guide?
	Conventions

	Toolchain Issues
	Memory Model
	Compiler
	Assembler
	Linker/Locator
	Debugger

	Target Hardware Issues
	Interrupts
	Interrupt Levels
	Interrupt Vectors
	Interrupt Priority Levels
	Category 1 Handlers
	Category 2 Handlers
	Vector Table Issues

	Register Settings
	Stack Usage
	Number of Stacks
	Stack Usage within API Calls
	Standard
	Timing
	Extended



	Parameters of Implementation
	Support


