RTA-TRACE

User Manual

Contact Details

ETAS Group

Germany

ETAS GmbH
Borsigstral3e 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

Japan

ETAS K.K.

Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

Korea

ETAS Korea Co. Ltd.

3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, Ml 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

France

ETAS S.A.S.

1, place des Etats-Unis
SILIC 307

94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

Great Britain

ETAS UK Ltd.

Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2003-2006 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TD0O0002-005

RTA-TRACE

Contents

1 About this Manual............cccooiiiii 11
1.1 Who Should Read this Manual?ccccccoiiiiiiii 11

1.2 CONVENTIONS. ...oiiiiiiii 11

2 RTA-TRACE OVEIVIEW ... 13
2.7 TArGeT e 13

2.2 RTA-TRACE SEIVETooiiiiiiiiiiie e 13

2.3 RTA-TRACE Client ..., 14

3 APLFUNCHIONS oo 15
3.1 Trace CONTIOl . oii i 15

3.1.1 StartFreeRunningTraceccccocoiiiii 15

3.1.2 StartBurstingTrace........coooooiiiiiiii 16

3.1.3 StartTriggeringTracecoooeeeeeeeeeieeeeee e 16

3.1.4 SetTraceRepeatccoooiiiiiiiiiiii 17

315 STOPTIACE v 17

3.2 GENETAl. i 17

32,1 Identifers ... 18

3.2.2 CAteQOrIBS v 18

Contents

Contents

3.3

3.4

3.5

3.6

3.7

3.2.3 ClASSES oo 19

3.2.4 EnableTraceClassesccoooiiiiiiiiiiiiiiiiiiiiie 21
3.2.5 DisableTraceClasses..........ccoooviiiiiiiiiiiiiiiiiiiiie 21
3.2.6 EnableTraceCategoriescoovvvviiiiiiieiiiiiiiiieeeeee, 22
3.2.7 DisableTraceCategoriescuuvviiiieiieiiiiiiiieeeee e, 22
TrACEPOINTS Loevi e 23
T80 T B oo | 7= Tl o o] | A 23
3.3.2 LogTracepointValueccooiiiiiiii, 24
3.3.3 LogTracepointData........coooeeiiiiiiiiiiiie 25
Task-TracepPOINtsoooviiiii 26
3.4.1 LogTaskTracepointcooeiiiiiiiiiiiiieeee e, 26
3.4.2 LogTaskTracepointValue.........cccccooeiiiiiiiiiiiiiiii, 27
3.4.3 LogTaskTracepointDataccccvvviieieeiiiiiiiiiiiceeeeee, 28
INTEIVALS ..o 29
3.5.1 LogIntervalStart..........cccooeoiiiiiiiiii 29
3.5.2 LogIntervalStartValueoooooe 30
3.5.3 LogIntervalStartData..........coooiiiiiiii 31
3.5.4 LogintervalENdcccooiiiiiiiiii 31
3.5.5 LogIntervalEndValue................oooooeiii 32
3.5.6 LogintervalEndDataccooviiiiiiiiii 33
Miscellaneous LOGQINGcocoiiiiiiiiiiiiiiieeee e 33
3.6.17 LogProfileStartcooooiiiiiiiii 33
3.6.2 LogCriticalExecutionEndcccoeoviiiiiiiiiiiii 34
3.6.3 LogCatTISRStartocoiiiiiii 34
3.6.4 LogCatTISRENGcooiiiiiiiiiiiiiiiii e 35
3.6.5 LogOVerrunHOOK.ccoiiiiiiiiiiiiiiiecec e, 35
THQQEMNNG «ooiiiiiiii 35
I N G 1T T oo =T 35
3.7.2 TriggerNOW....ooooiiiiii e 36
3.7.3 SetTriggerWindowccoooeiiiiiiiiiiiiiiceeeecee e 37
3.7.4 TriggerOnACtiVationciviiiiiiiiii e 38
3.7.5 TriggerONChaincooiiiiiiiiiiiieeee e, 38
3.7.6 TriggerOnTaskStart ..o, 39
3.7.7 TriggerONTaskStop.ccooiiiiiiiiiiiiiieee e, 39
3.7.8 TriggerOnISRStart.......ccooooiiiiiiiiiiieeee e 40
3.7.9 TriggerONnISRSTOP ... 40
3.7.10 TriggerOnCatTISRStartcooooiiiiiiiiii 41

3.7.11 TriggerOnCatTISRSIOP...ccooviiiiiiiiiiii 41

3.7.12 TriggerOnCat2ISRStartooviiiiiieiie e 42
3.7.13 TriggerOnCat2ISRStOP.....ccooviiiiiiiiiie e 42
3.7.14 TriggerOnInitTaskStart............ccccovveiiiiiiiiieee 43
3.7.15 TriggerOnInitTaskStop......cooooveeeiiiiiiiii 43
3.7.16 TriggerONGetReSOUICEccovviiiiiiiiie e 44
3.7.17 TriggerONnReleaseResOUrCecooueveviiiiiiiiiiiiieeeee, 44
3.7.18 TriggerOnSetEventoooooiiiiiiiii e, 45
3.7.19 TriggerONnTracepointcooveiiiiiiiiiiii e, 45
3.7.20 TriggerOnTaskTracepoint.........ccccceeeviiiiiiiiiiiiieeeeiii, 46
3.7.21 TriggerOnlintervalStart............ooooeeiiii 46
3.7.22 TriggerOnintervalEnd (TriggerOnlintervalStop)............... 47
3.7.23 TriggerOnTimetableEXpiry........ccccovvvviiiiiiiiiiiiiiiiiiii, 47
3.7.24 TriggerOnTickSchedule...............oooooeeiii 48
3.7.25 TriggerOnAdvanceSchedule..............ccoovviiiiiiiiiiiiiiinn, 48
3.7.26 TriggerOnAlQrmEXpPiryooooeeeviiiiiiiiiiii 49
3.7.27 TriggerOnExplicitSendStateMessage..................oooeeeen. 49
3.7.28 TriggerOnExplicitReceiveStateMessage.......................... 50
3.7.29 TriggerOnSendMessage.ccoeeeeeieieiiiiiiiiiiiieeeeeeeeee 50
3.7.30 TriggerOnReceiveMessagecoooeveeiiiiiiiiiiiiiiieee 51
3.7.371 TriggerONErTOr...ccoooi oo 51
3.7.32 TriggerOnShutdown........cooooiiiiiiiieieieeeeeeeeeeeeeee e 51
APL RESTIICHIONS ... 53
4.1 INTrOdUCHION ..o 53
4.2 General Problem ... 53
4.3 Applicable Macros (ERCOS™) ... 53
4.4 Applicable Macros (RTA-OSEK)ovviiieii 54

Contents

9

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably-enhanced application, it provides the developer with a unique set of
services to assist in debugging and testing a system. Foremost amongst these
is the ability to see exactly what is happening in a system at runtime with a
production build of the application software.

This manual describes the target API for RTA-TRACE.

1.1 Who Should Read this Manual?

It is assumed that you are a developer. You should read this guide if you want
to find out about the target API for RTA-TRACE. This document also contains
a top-level overview of the RTA-TRACE architecture for reference.

1.2 Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

In this guide you'll see that program code, header file names, C type names, C
functions and API call names all appear in the Courier typeface. When the
name of an object is made available to the programmer the name also
appears in the Courier typeface, so, for example, a task named Task 1
appears as a task handle called Task1.

About this Manual 11

2

RTA-TRACE Overview

2.1

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably-enhanced application, it provides the developer with a unique set of
services to assist in debugging and testing a system. Foremost amongst these
is the ability to see exactly what is happening in a system at runtime with a
production build of the application software.

The RTA-TRACE product consists of three layers — target, RTA-TRACE Server,
and RTA-TRACE Client (each described in more detail below).

End-to-end, RTA-TRACE looks like this:

Target

Application
RTA-TRACE Server

RTOS | race Comm. Comm. Link DLL
layer link

RTA-TRACE Client

OS DLL TimeTrace visualizer

) Statistics calculator
Processing Buffer

CPU usage chart

Target

2.2

The target layer consists of an application, a supported OSEK OS (optional if
using the RTA-TRACE Instrumenting Kit), and the RTA-TRACE target software.
The RTA-TRACE target software consists of a library and header files allowing
OS calls to be intercepted, as well as providing an API for the logging of user-
generated tracing information (using Tracepoints, Task-Tracepoints, and
intervals — see individual sections in this document).

During the system build process, it is possible to enable and disable classes of
log-data (both OS and user trace information); the mechanism for this is
described in the RTA-TRACE Configuration Reference Manual.

Trace data generated by the target is transferred via an ECU Link (described in
the RTA-TRACE ECU Link Guide) to the RTA-TRACE Server.

RTA-TRACE Server

The RTA-TRACE Server is responsible for collecting trace data generated by
the target (a single Server is capable of connecting to multiple targets
simultaneously with appropriate licensing) and processing the trace data into
a form suitable for the RTA-Trace client. Appropriate DLLs for the ECU Link
and OS in use are used to convert/unpack data into a form suitable for
display.

RTA-TRACE Overview 13

Although the Server application is separate from the Client, it will most often
be executed automatically when the Client is started; the only evidence that
the Server is running is the icon in the system tray of the host PC. See the
RTA-TRACE ECU Link Guide to determine how to modify parameters of the
ECU Link (if necessary or possible).

The RTA-TRACE Server can support connections from multiple RTA-TRACE
Clients (as well as target applications) — either locally (on the same PC) or
remotely (across a network). These features are subject to licensing.

2.3 RTA-TRACE Client

The RTA-TRACE Client is the most visible portion of RTA-TRACE since it is
responsible for displaying the recorded data, calculating statistics etc.. The
various visualization options are supplied as p/ug-ins, which may be subject to
additional licensing.

Processing is carried out which converts the raw trace data generated by the
target into a more readable form, as described by the user during the
configuration process. See the RTA-TRACE Configuration Reference Manual
for details about how this is done.

Examples of plug-ins are the TimeTrace visualizer (allowing the task activity of
an application to be examined), and the CPU usage pie and bar graphs
(allowing a view of the CPU usage by system element).

Plug-in features are more completely described by online help files — available
from the ‘Help’ menu of the RTA-TRACE Client.

14 RTA-TRACE Overview

3 API Functions

3.1 Trace control

The following API calls control the mode in which RTA-TRACE operates.

3.1.1 StartFreeRunningTrace

Syntax: void StartFreeRunningTrace (void)
Parameters: None
Description: Starts tracing in Free Running mode.

In Particular: Free running trace mode captures event information
continuously. Data is uploaded to the host as soon as it is
available, concurrently with capture.

If the trace buffer becomes full, logging of trace data is
suspended until the buffer has been emptied. When the
buffer is available again, tracing resumes. This situation
might occur if the ECU Link is too slow for the desired
volume of trace data.

If this call is made whilst tracing, the trace buffer is
cleared and tracing begins again.

Applies to: All OS.

API Functions 15

16

3.1.2 StartBurstingTrace

Syntax:
Parameters:
Description:

In Particular:

Applies to:

void StartBurstingTrace (void)

None
Starts tracing in Bursting mode.

Bursting trace mode captures event information into the
trace buffer in a ‘one-shot’ manner. When the buffer is
full, tracing stops and data transfer begins. No attempt is
made to upload data to the Server until the trace buffer
has filled.

If SetTraceRepeat () (see 3.1.4) has been used to
enable repeated bursting traces, tracing resumes when
data transfer is complete.

If this call is made whilst tracing, the trace buffer is
cleared and tracing begins again.

All OS.

3.1.3 StartTriggeringTrace

Syntax:
Parameters:
Description:

In Particular:

Applies to:

API Functions

void StartTriggeringTrace (void)

None
Starts tracing in Triggering mode.

Triggering trace mode waits for specific events before
transferring trace data to the host. Trigger events are set
using the Triggeron...() API calls (see 3.7.4 onward).

A pre- and post-trigger buffer size can be specified using
SetTriggerWindow () (see 3.7.1) so that only the set
of events before and after the trigger event can be seen.

SetTraceRepeat () (see 3.1.4) can be used to enable
repeated triggered traces. In this case, when data-transfer
has completed, tracing will resume the next time the
trigger event occurs.

If this call is made whilst tracing, the trace buffer is
cleared and tracing begins again.

All OS.

3.1.4 SetTraceRepeat

Syntax: void SetTraceRepeat (osTraceBool <modes)

Parameters:

mode Non-zero value enables repeat mode, zero disables repeat
mode.

Description: Enables/disables repeat feature of Bursting and Triggering
trace modes.

In Particular: See 3.1.2 and 3.1.3.
Applies to: All OS.

3.1.5 StopTrace

Syntax: void StopTrace (void)
Parameters: None
Description: Stops recording of trace data to the trace buffer.

In Particular: This does not abort the data link: any data remaining in
the trace buffer is uploaded to the host.

Applies to: All OS.

3.2 General

RTA-TRACE allows three different visualization aids to be defined to aid in
program debugging — these are Tracepoints, Task-Tracepoints, and Intervals:

e Tracepoints (Section 3.3) are displayed on the TimeTrace visualizer on
individual tapes. They can be logged from any point in a program —
perhaps to indicate some global program state;

» Task-Tracepoints (Section 3.4) are displayed on the tape of the task
which logs them — so these are ideal for showing the activity of a
particular task;

» Intervals (Section 3.5) can be logged from any place in a program —
they have both a start and an end, and might be used to show a time-
related feature of a program (i.e. stimulus -> response).

Logging any of the above markers can also have some data attached (which
will be displayed in the TimeTrace visualizer) either as a single 16- or 32-bit
value (using the ..value () version of the Log...() calls) or a larger data-
block (using the ..Data () version of the Log...() calls). The attached

API Functions 17

data/value will be displayed according to the format-string supplied at
configuration time (See the RTA-TRACE Configuration Guide for details).

Each marker described above has an identifier, and can belong to one or more
categories. These terms are described below.

3.2.1 Identifers

The identifiers (IDs) used for Tracepoints, Task-Tracepoints, and Intervals have
a limited range. Two ranges of identifier exist for each of these (selected at
configuration-time): compact and extended IDs. The ranges for each of these
are shown below:

ID Compact’ Extended (default)’
Tracepoint 8-bit (1..255) 13-bit (1..8191)
TaskTracePoint | 4-bit (1..15) 13-bit (1..8191)
Interval 8-bit (1..255) 13-bit (1..8191)

Identifiers can be generated either in the configuration process
(recommended for ERCOS®™ and RTA-OSEK) or literals can be used. For
ERCOS™ and RTA-OSEK, generated identifiers are #defined in the
rtatrace.h header file. Use of identifiers generated in the configuration
process means that visualization of the trace data will be more readily
understood (for example, the TimeTrace Visualizer will display “Tracepoint
<name>" instead of “Tracepoint 5”).

If a Tracepoint has been configured with a name and number, subsequent use
of the literal number as an identifier will cause the name to be seen in the
RTA-TRACE Client — it is therefore recommended that named identifiers be
used.

When using the OS Instrumenting kit this mechanism is still available, except
that the description file (with a . rta extension) may need to be hand-
generated.

Note: Using a Log... () call with an identifier that is out of range, will silently
fail.

3.2.2 Categories

Every user (Task)Tracepoint belongs to one or more user-defined categories.
This allows sets of (Task)Tracepoints to be to enabled or disabled either at
runtime or at configuration time. There are 31 runtime categories available,
and an unlimited number of configuration-time categories.

! Although it is possible to generate an ID of 0, it is not possible to trigger on an
interval/tracepoint/task-tracepoint with an ID of 0.

18 API Functions

3.2.3

Categories are specified as bitmasks during the configuration process? hence it
is possible to combine multiple trace categories using the bitwise OR operator

(1.

Note: In a Log... () call, a Tracepoint is logged if any of the categories are
active (i.e. for a particular Tracepoint, if a runtime category is combined with a
category which has been enabled at configuration time, disabling the runtime
category will have no effect — the Tracepoint will still be logged).

Note: If all of the categories attached to a particular Log... () call are marked
as FALSE at configuration-time, the Log... () call will not be inserted into the
code stream.

Note: Categories must only be enabled or disabled (using
EnableTraceCategories and DisableTraceCategories
respectively) when tracing is stopped. If this is not done, the RTA-TRACE
visualizer may display incorrect and/or misleading data.

Classes

Logged events belong to predefined classes, allowing the user to enable or
disable classes of events either at runtime or configuration-time. A list of
classes is given in the following table.

Since classes are bitmasks, it is possible to enable or disable a set of classes by
using the bitwise OR operator (|).

2 See the RTA-TRACE configuration reference for your particular operating system for details of
the configuration process.

API Functions 19

osTraceClassesType Applies to:
TRACE_ACTIVATIONS CLASS All OS
TRACE OSEK MESSAGES CLASS All OS
TRACE RESOURCES CLASS All OS
TRACE INTERRUPT LOCKS CLASS All OS
TRACE SWITCHING OVERHEADS CLASS All OS
TRACE TASKS AND ISRS CLASS All OS
TRACE PROCESSES CLASS ERCOS™/Custom
TRACE EXPLICIT STATE MESSAGES CLASS | ERCOS™
TRACE ERRORS_CLASS All OS
TRACE_TASK TRACEPOINT CLASS All OS
TRACE TRACEPOINT CLASS All OS
TRACE INTERVALS CLASS All OS
TRACE MESSAGE DATA CLASS All OS
TRACE STARTUP AND SHUTDOWN CLASS All OS
TRACE ALARMS CLASS All OS
TRACE_TIMETABLES CLASS ERCOS™
TRACE_SCHEDULES CLASS RTA-OSEK
TRACE_OSEK_EVENTS_ CLASS RTA-OSEK/Custom
TRACE NO CLASSES All OS
TRACE ALL CLASSES All OS

Note: Classes must only be enabled or disabled (using
EnableTraceClasses and DisableTraceClasses respectively) when
tracing is stopped. If this is not done, the RTA-TRACE visualizer may display
incorrect and/or misleading data.

20 API Functions

3.2.4 EnableTraceClasses

Syntax:

Parameters:

mask

Description:

In Particular:

Applies to:

void EnableTraceClasses (
osTraceClassesType <mask>)

Mask of one or more event classes to enable.

This call enables one or more classes of trace events at run
time.

The dual to 3.2.5.

Classes not listed in the call will be left in their current
state.

All OS.

3.2.5 DisableTraceClasses

Syntax:

Parameters:

mask

Description:

In Particular:

Applies to:

void DisableTraceClasses (
osTraceClassesType <mask>)

Mask of one or more event families to disable.

This call disables one or more families of trace events at
run time.

The dual to 3.2.4.

Classes not listed in the call will be left in their current
state.

All OS.

API Functions 21

3.2.6 EnableTraceCategories

Syntax:

Parameters:

void EnableTraceCategories (
osTraceCategoriesType <mask>)

mask An event-category mask.

Description:

In Particular:

Applies to:

Causes a user-specified subset of user Tracepoints to be
enabled.

The dual to 3.2.7.

Every user Tracepoint belongs to one or more categories.

Categories not listed in the call will be left in their current
state.

All OS.

3.2.7 DisableTraceCategories

Syntax:

Parameters:

void DisableTraceCategories (
osTraceCategoriesType <mask>)

mask An event-category mask.

Description:

In Particular:

Applies to:

22 API Functions

Causes a user-specified subset of user Tracepoints to be
disabled.

The dual to 3.2.6.

Every user Tracepoint belongs to one or more categories.

Categories not listed in the call will be left in their current
state.

All OS.

3.3

Tracepoints

Tracepoints are displayed in the TimeTrace visualizer on their own tapes.
Tracepoint identifiers can be named during the configuration process (and
TimeTrace will display the name) or literal numerical values can be used
instead.

3.3.1 LogTracepoint

Syntax: void LogTracepoint (
<TpointIds>,
osTraceCategoriesType <catmask>)

Parameters:

TpointId Identifies a Tracepoint (size varies — see 3.2.1)
catmask The category or categories that this Tracepoint belongs to.

Description: Logs a Tracepoint against its designated task.

In Particular: Logging is subject to the TRACE TRACEPOINT CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

API Functions 23

3.3.2 LogTracepointValue

Syntax: void LogTracepointValue (
<TpointIds>,
uint <vals>,
osTraceCategoriesType <catmask>)

Parameters:

TpointId Identifies a Tracepoint (size varies — see 3.2.1)

val Numerical value to be sent with the Tracepoint. The size
of val (16 or 32 bit) depends upon the size of the system
time selected during configuration — see the RTA-TRACE
Configuration Reference Manual for further information.

catmask The category or categories that this Tracepoint belongs to.

Description: Logs a Tracepoint against its designated task, along with
an unsigned 16 or 32 bit integer value.

In Particular: Logging is subject to the TRACE TRACEPOINT CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

24 API Functions

3.3.3 LogTracepointData

Syntax:

Parameters:

TpointID
dataPtr

length

catmask

Description:

In Particular:

Applies to:

void LogTracepointData (

<TpointID>,

PTR (ByteType) <dataPtrs,
osUIntType <lengths>,
osTraceCategoriesType <catmask>)

Identifies a Tracepoint (size varies — see 3.2.1)
Points to a data block to be sent with the Tracepoint.

Length of the data block pointed to by <dataPtr> in
bytes.

The category or categories that this call belongs to.

Logs a Tracepoint against its designated task, along with
arbitrary binary data.

Logging is subject to the TRACE TRACEPOINT CLASS
class and one or more of the categories in <catmask>
being enabled.

All OS.

API Functions 25

3.4 Task-Tracepoints

Task-Tracepoints are displayed in the TimeTrace visualizer on the tape of the
task that issued the LogTaskTracepoint... () call. Task-Tracepoint
identifiers can be named during the configuration process (and TimeTrace will
display the name) or literal numerical values can be used instead.

3.4.1 LogTaskTracepoint

Syntax: void LogTaskTracepoint (
<TTpointIds>,
osTraceCategoriesType <catmask>)

Parameters:

TTpointId |dentifies a Task-Tracepoint (size varies — see 3.2.1)

catmask The category or categories that this Task-Tracepoint
belongs to.

Description: Logs Task-Tracepoint <TTPointID> against its
designated task.

In Particular: Logging is subject to the
TRACE TASK TRACEPOINT CLASS class and one or
more of the categories in <catmask> being enabled.

Applies to: All OS.

26 API Functions

3.4.2 LogTaskTracepointValue

Syntax:

Parameters:

TTpointId

val

catmask

Description:

In Particular:

Applies to:

void LogTaskTracepointValue (
<TTpointIds>,
uint <vals>,
osTraceCategoriesType <catmask>)

Identifies a Task-Tracepoint (size varies — see 3.2.1)

Numerical value to be sent with the Task-Tracepoint. The
size of val (16 or 32 bit) depends upon the size of the
system time selected during configuration — see the RTA-
TRACE Configuration Reference Manual for further
information.

The category or categories that this Task-Tracepoint
belongs to.

Logs Task-Tracepoint <TTPointID> against its
designated task, along with an unsigned 16 or 32 bit
integer value.

Logging is subject to the
TRACE TASK TRACEPOINT CLASS class and one or
more of the categories in <catmask> being enabled.

All OS.

API Functions 27

3.4.3 LogTaskTracepointData

Syntax:

Parameters:

TTPointID
dataPtr

length

catmask

Description:

In Particular:

Applies to:

28 API Functions

void LogTaskTracepointData (
<TTPointID>,
PTR (ByteType) <dataPtrs>,
osUIntType <lengths>,
osTraceCategoriesType <catmask>)

Identifies a Task-Tracepoint (size varies — see 3.2.1)
Points to a data block to be sent with the Task-Tracepoint.

Length of the data block pointed to by <dataPtr> in
bytes.

The category or categories that this Tracepoint belongs to.

Logs Task-Tracepoint <TTPointID> against its
designated task, along with arbitrary binary data.

Logging is subject to the
TRACE TASK TRACEPOINT CLASS class and one or
more of the categories in <catmask> being enabled.

All OS.

3.5

Intervals

Intervals provide a mechanism for users to measure elapsed time between two
events. Interval indications appear on their own tapes in the TimeTrace
visualizer. Interval identifiers can be named during the configuration process
(and TimeTrace will display the name) or literal numerical values can be used
instead.

3.5.1 LogintervalStart

Syntax: void LogIntervalStart (
<intervalIds>,
osTraceCategoriesType <catmask>)

Parameters:

intervalId An Interval identifier (size varies — see 3.2.1)
catmask The category or categories that this call belongs to.

Description: This call starts the interval referenced by <intervalIds.

In Particular: Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

API Functions 29

30

3.5.2 LogintervalStartValue

Syntax:

Parameters:

intervalld

val

catmask

Description:

In Particular:

Applies to:

API Functions

void LogIntervalStartValue (
<intervallds,
uint <vals>,
osTraceCategoriesType <catmask>)

An Interval identifier (size varies — see 3.2.1)

Numerical value to be sent with the Interval start. The size
of val (16 or 32 bit) depends upon the size of the system
time selected during configuration — see the RTA-TRACE
Configuration Reference Manual for further information.

The category or categories that this call belongs to.

This call starts the interval referenced by <intervalIds,
along with an unsigned 16 or 32 bit integer value.

Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

All OS.

3.5.3 LogintervalStartData

Syntax: void LogIntervalStartData (
<intervallds>,
PTR (ByteType) <dataPtrs,
osUIntType <lengths>,
osTraceCategoriesType <catmask>)

Parameters:

intervalId An Interval identifier (size varies —see 3.2.1)
dataPtr Points to a data block to be sent with the interval start.

length Length of the data block pointed to by <dataPtrs> in
bytes.

catmask The category or categories that this call belongs to.

Description: This call starts the interval referenced by <intervalIds,
along with arbitrary binary data.

In Particular: Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

3.5.4 LogintervalEnd

Syntax: void LogIntervalEnd (
<intervalIds>,
osTraceCategoriesType <catmask>)

Parameters:

intervalId An Interval identifier (size varies — see 3.2.1)
catmask The category or categories that this call belongs to.

Description: This call ends the interval referenced by <intervalIds.

In Particular: Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

API Functions 31

3.5.5 LogintervalEndValue

Syntax: void LogIntervalEndvValue (
<intervallds,
uint <vals>,
osTraceCategoriesType <catmask>)

Parameters:

intervalId An Interval identifier (size varies — see 3.2.1)

val Numerical value to be sent with the Interval end. The size
of val (16 or 32 bit) depends upon the size of the system
time selected during configuration — see the RTA-TRACE
Configuration Reference Manual for further information.

catmask The category or categories that this call belongs to.

Description: This call ends the interval referenced by <intervalIds,
along with an unsigned 16 or 32 bit integer value.

In Particular: Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

32 API Functions

3.5.6 LogintervalEndData

Syntax: void LogIntervalEndData (
<intervallds,
PTR (ByteType) <dataPtrs,
osUIntType <lengths>,
osTraceCategoriesType <catmask>)

Parameters:

intervalId An Interval identifier (size varies —see 3.2.1)
dataPtr Address of a data block to be sent with the interval end.

length Length of the data block pointed to by <dataPtrs> in
bytes.

catmask The category or categories that this call belongs to.

Description: This call ends the interval referenced by <intervalIds,
along with arbitrary binary data

In Particular: Logging is subject to the TRACE INTERVALS CLASS
class and one or more of the categories in <catmask>
being enabled.

Applies to: All OS.

3.6 Miscellaneous Logging

3.6.1 LogProfileStart

Syntax: void LogProfileStart (
osTraceInfoType <profilelds)

Parameters:

profileId A Profile identifier.

Description: This call marks the switch over to a new runtime profile.

In Particular: Logging is subject to the
TRACE TASKS AND ISRS CLASS class.

Applies to: RTA-OSEK, Generic OS

API Functions 33

3.6.2 LogCriticalExecutionEnd
Syntax: void LogCriticalExecutionEnd (
osTraceInfoType <critExecIds>)
Parameters:

CritExecId A Critical Execution Point identifier.

Description: This call marks the end of a critical execution section. This
will most often be used to observe response time to some
stimulus.

In Particular: Logging is subject to the
TRACE TASKS AND ISRS CLASS class.

Applies to: RTA-OSEK, Generic OS

3.6.3 LogCat1ISRStart

Syntax: void LogCatlISRStart (
osTraceInfoType <IsrIds>)

Parameters:

IsrId A Category 1 ISR identifier.

Description: This call marks the start of a category 1 ISR. This type of
ISR is not controlled by the operating system, and so
requires manual logging.

In Particular: Logging is subject to the
TRACE TASKS AND ISRS CLASS class.

Applies to: RTA-OSEK

34 API Functions

3.6.4 LogCat1ISRENnd
Syntax:

Parameters:

IsrId

Description:

In Particular:

Applies to:

void LogCatlISREnd (
osTraceInfoType <IsrIds>)

A Category 1 ISR identifier.

This call marks the end of a category 1 ISR. This type of
ISR is not controlled by the operating system, and so
requires manual logging.

Logging is subject to the
TRACE TASKS AND ISRS CLASS class.

RTA-OSEK

3.6.5 LogOverrunHook

Syntax:
Parameters:

Description:

In Particular:

Applies to:

3.7 Triggering

void LogOverrunHook ()
None

This call marks that the overrun-hook was called. This is
called if a task has run for too long at its termination.

Logging is subject to the TRACE_ERRORS_CLASS class.

RTA-OSEK

3.7.1 ClearTrigger

Syntax:
Parameters:

Description:

In Particular:

Applies to:

void ClearTrigger (void)
None

Clears the trigger condition so that no trace record can
cause triggering.

If the trigger condition has occurred, events will continue
to be logged.

All OS.

API Functions 35

3.7.2 TriggerNow

Syntax: void TriggerNow (void)

Parameters: None

Description: Trigger now regardless of trigger conditions.

In Particular: If trigger conditions have been set, this call will not clear
them.

Applies to: All OS.

36 API Functions

3.7.3 SetTriggerWindow

Syntax: void SetTriggerWindow (
UIntType <befores,
UIntType <afters)

Parameters:

Before Number of records to be uploaded from before the
trigger event.

After Number of records to be uploaded after the trigger event.

Description: Sets the number of records pre- and post-trigger that will
be uploaded.

In Particular: The total number of records uploaded (<before> +
<afters>) must be less than the total buffer size
available.

If the total is greater than the buffer size available,
<afters is truncated so that <befores will fit — if
<before> is greater than the available buffer, then
<befores is set to the available buffer size, and
<afters is set to zero.

Note: since each trace event may be carried in multiple trace
records, the number of events before and after the trigger
point will not match the number of records specified in this
call. Truncation of trace events may occur (for example with
Log..Data () calls), causing incomplete data or ‘missed’
events.

Small values of after should be avoided - consider using
StopTrace () when triggering on terminal events such as
system shutdown.

Applies to: All OS.

API Functions 37

3.7.4 TriggerOnActivation
Syntax: void TriggerOnActivation (
TaskType <taskId>)
Parameters:

taskId |dentifier of the task to trigger on.

Description: Sets the trigger to be an attempt to activate <taskId>
(i.e. an ActivateTask (<TaskId>) call has been
made).

In Particular: If <taskIds issetto OSTRACE TRIGGER ANY, any call
to ActivateTask () will trigger tracing.

The trigger will occur on explicit task activation, and on
task activation via a timetable. It will occur on task
activation via an alarm unless logging of alarms is
enabled. It will not occur as a result of ChainTask ().
(See TriggerOnChain ()), or activation of a taskset
containing task <taskId> (applies to RTA-OSEK only).

Applies to: All OS.

3.7.5 TriggerOnChain

Syntax: void TriggerOnChain (TaskType <taskIds)
Parameters:

taskId |dentifier of the task to trigger on.

Description: Sets the trigger to be an attempt to chain task <taskIds>
(i.e. a ChainTask (<TaskId>) call has been made).

In Particular: If <taskIds> issetto OSTRACE TRIGGER ANY, any call
to ChainTask () will trigger tracing.

Applies to: RTA-OSEK, ERCOS™

38 API Functions

3.7.6 TriggerOnTaskStart

Syntax:

Parameters:

taskId

Description:

In Particular:

Applies to:

void TriggerOnTaskStart (
TaskType <taskId>)

Identifier of the task to trigger on.

Sets the trigger to be the start of <taskIds>.

If <taskId> issetto OSTRACE TRIGGER ANY, any task
start will trigger tracing.

All OS.

3.7.7 TriggerOnTaskStop

Syntax:
Parameters:

taskId

Description:

In Particular:

Applies to:

void TriggerOnTaskStop (TaskType <taskIds)

Identifier of the task to trigger on.

Sets the trigger to be the end of <taskIds>.

If <taskIds> issetto OSTRACE TRIGGER ANY, any task
stop will trigger tracing.

All OS.

API Functions 39

3.7.8 TriggerOnISRStart

Syntax: void TriggerOnISRStart (ISRType <ISRId>)

Parameters:
ISRIA The identifier of the ISR.

Description: Sets the trigger to be the start of <ISRIA>.

In Particular: If <ISRId> is set to OSTRACE TRIGGER ANY, any ISR
start will trigger tracing.

<ISRId> must be the identifier used during system
generation.

Applies to: ERCOS™.

3.7.9 TriggerOnISRStop

Syntax: void TriggerOnISRStop (ISRType <ISRId>)

Parameters:
ISRIA The identifier of the ISR.

Description: Sets the trigger to be the end of <ISRId>.

In Particular: If <ISRIA> is set to OSTRACE TRIGGER ANY, any ISR
stop will trigger tracing.

<ISRId> must be the identifier used during system
generation.

Applies to: ERCOSH.

40 API Functions

3.7.10 TriggerOnCat1ISRStart

3.7.11

Syntax:

Parameters:

void TriggerOnCatlISRStart (
ISRType <ISRId>)

ISRIA The identifier of the ISR.

Description:

In Particular:

Applies to:

Sets the trigger to be the start of <ISRId>.

If <ISRIA> is set to OSTRACE TRIGGER ANY, the start
of any category 1 ISR will trigger tracing.

<ISRId> must be the identifier used during system
generation.

RTA-OSEK.

TriggerOnCat1ISRStop

Syntax:

Parameters:

void TriggerOnCatlISRStop (
ISRType <ISRIdA>)

ISRIA The identifier of the ISR.

Description:

In Particular:

Applies to:

Sets the trigger to be the end of <ISRId>.

If <ISRIA> is set to OSTRACE TRIGGER ANY, the stop
of any category 1 ISR will trigger tracing.

<ISRId> must be the identifier used during system
generation.

RTA-OSEK.

API Functions 41

3.7.12 TriggerOnCat2ISRStart
Syntax: void TriggerOnCat2ISRStart (
ISRType <ISRId>)

Parameters:
ISRIA The identifier of the ISR.

Description: Sets the trigger to be the start of <ISRId>.

In Particular: If <ISRId> isset to OSTRACE TRIGGER ANY, the start
of any category 2 ISR will trigger tracing.

<ISRId> must be the identifier used during system
generation.

Applies to: RTA-OSEK.

3.7.13 TriggerOnCat2ISRStop

Syntax: void TriggerOnCat2ISRStop (
ISRType <ISRId>)

Parameters:
ISRIA The identifier of the ISR.

Description: Sets the trigger to be the end of <ISRId>.

In Particular: If <ISRId> isset to OSTRACE TRIGGER ANY, the stop
of any category 2 ISR will trigger tracing.

<ISRId> must be the identifier used during system
generation.

Applies to: RTA-OSEK.

42 API Functions

3.7.14 TriggerOnlinitTaskStart

Syntax: void TriggerOnInitTaskStart (
AppModeType <modes)

Parameters:
mode An application mode.

Description: Sets the trigger to be the start of the init task in
application mode <mode>.

In Particular: The init-task is run when application mode <mode> is
entered.

Applies to: ERCOS™

3.7.15 TriggerOninitTaskStop

Syntax: void TriggerOnInitTaskStop (
AppModeType <modes)

Parameters:
mode An application mode.

Description: Sets the trigger to be the end of the init task in
application mode <mode>.

In Particular: The init-task is run when application mode <mode> is
entered.

Applies to: ERCOS™

API Functions 43

3.7.16 TriggerOnGetResource
Syntax: void TriggerOnGetResource (
ResourceType <Resourcelds>)

Parameters:
Resourceld |dentifier of resource.

Description: Sets the trigger to be an attempt to get the resource
<ResourceIds (i.e. a GetResource (
<ResourceIds>) call has been made).

In Particular: If <ResourceIds issetto OSTRACE TRIGGER ANY,
any call to GetResource () will trigger tracing.

Applies to: All OS.

3.7.17 TriggerOnReleaseResource
Syntax: void TriggerOnReleaseResource (
ResourceType <Resourcelds>)

Parameters:
Resourceld |dentifier of resource.

Description: Sets the trigger to be an attempt to release the resource
<ResourcelIds (i.e. a ReleaseResource (
<ResourceIds) call has been made).

In Particular: If <ResourceIds issetto OSTRACE TRIGGER ANY,
any call to ReleaseResource () will trigger tracing.

Applies to: All OS.

44 API Functions

3.7.18 TriggerOnSetEvent

Syntax:

Parameters:

TaskId

Description:

In Particular:

Applies to:

void TriggerOnSetEvent (
TaskType <TaskIds>)

Identifier of task.

Sets the trigger to be a SetEvent () call targeting the
specified task.

If <TaskIds> issetto OSTRACE TRIGGER ANY, any call
to SetEvent () will trigger tracing.

RTA-OSEK, Custom OS

Note: remember that this call requires a Task ID, not an Event

ID.

3.7.19 TriggerOnTracepoint

Syntax:

Parameters:

point

Description:

In Particular:

Applies to:

void TriggerOnTracepoint (
osTraceTracepointType <points>)

A Tracepoint ID.

Sets the trigger to be the logging of Tracepoint <points.

If <points> is set to OSTRACE TRIGGER ANY, any call
to LogTracepoint.. () will trigger tracing.

All OS.

API Functions 45

3.7.20 TriggerOnTaskTracepoint

Syntax: void TriggerOnTaskTracepoint (
osTraceTaskTracepointType <points,
TaskType <task>)

Parameters:

point A Task-Tracepoint ID.

task A task ID.

Description: Sets the trigger to be the logging of Task-Tracepoint
<point> from task <task>.

In Particular: If <task> is set to OSTRACE TRIGGER ANY, a call of
LogTaskTracepoint.. () from any Task will trigger
tracing.

Applies to: All OS.

3.7.21 TriggerOnintervalStart
Syntax: void TriggerOnIntervalStart (
osTraceIntervalType <intervalIds)
Parameters:

intervalId An Interval identifier.

Description: Sets the trigger to be the start of the interval referenced
by <intervallIds.

In Particular: If <intervalIds issetto OSTRACE TRIGGER ANY,
any call to LogIntervalStart.. () will trigger tracing.

Applies to: All OS.

46 API Functions

3.7.22 TriggerOnintervalEnd (TriggerOnintervalStop)

Syntax:

Parameters:

intervalld

Description:

In Particular:

Applies to:

void TriggerOnIntervalEnd (
osTraceIntervalType <intervalIds)

void TriggerOnIntervalStop (
osTraceIntervalType <intervalIds)

An Interval identifier.

Sets the trigger to be the end of the interval referenced by
<intervallIds>.

If <intervalIds issetto OSTRACE TRIGGER ANY,
any call to LogIntervalEnd... () will trigger tracing.

All OS.

3.7.23 TriggerOnTimetableExpiry

Syntax:

Parameters:

tt

Description:

In Particular:

Applies to:

void TriggerOnTimetableExpiry (
TimeTableType <tt>)

Identifier of the timetable to trigger on.

Sets the trigger to be the expiry of any point in timetable
<tts>.

If <tt>issetto OSTRACE TRIGGER ANY, the expiry of
any point in any timetable will trigger tracing.

ERCOS™

API Functions 47

438

3.7.24 TriggerOnTickSchedule

Syntax:

Parameters:

sched

Description:

In Particular:

Applies to:

void TriggerOnTickSchedule (
ScheduleType <scheds)

Identifier of the schedule to trigger on.

Sets the trigger to be the expiry of any point in schedule
<scheds>.

If <scheds is set to OSTRACE_TRIGGER ANY, the
expiry of any point in any schedule will trigger tracing.

RTA-OSEK

3.7.25 TriggerOnAdvanceSchedule

Syntax:

Parameters:

sched

Description:

In Particular:

Applies to:

API Functions

void TriggerOnAdvanceSchedule (
ScheduleType <scheds)

Identifier of the schedule to trigger on.

Sets the trigger to be the expiry of any point in schedule
<scheds.

If <sched> is set to OSTRACE TRIGGER ANY, the
expiry of any point in any advanced schedule will trigger
tracing.

RTA-OSEK

3.7.26 TriggerOnAlarmExpiry

Syntax:

Parameters:

alarm

Description:

In Particular:

Applies to:

void TriggerOnAlarmExpiry (
AlarmType <alarms)

Identifier of the alarm to trigger on.

Sets the trigger to be the expiry of <alarms.

If <alarms> is set to OSTRACE TRIGGER ANY, the
expiry of any alarm will trigger tracing.

All OS.

3.7.27 TriggerOnExplicitSendStateMessage

Syntax:

Parameters:

messageld

Description:

In Particular:

Applies to:

void TriggerOnExplicitSendStateMessage (
STATEMESSAGE <messageIds)

Identifier of the state message to trigger on.

Sets the trigger to be the sending of state message
<messagelds.

If <messageIds issetto OSTRACE TRIGGER ANY,
sending any state message will trigger tracing.

<messageId> must be the identifier used during system
generation.

ERCOS™

API Functions 49

50

3.7.28 TriggerOnExplicitReceiveStateMessage

Syntax:

Parameters:

messageld

Description:

In Particular:

Applies to:

void
TriggerOnExplicitReceiveStateMessage (
STATEMESSAGE <messagelds)

Identifier of the state message to trigger on.

Sets the trigger to be the reception of state message
<messagelds.

If <messageIds is set to OSTRACE TRIGGER ANY,
reception of any state message will trigger tracing.

<messageId> must be the identifier used during system
generation.

ERCOS™

3.7.29 TriggerOnSendMessage

Syntax:

Parameters:

messName

Description:

In Particular:

Applies to:

API Functions

void TriggerOnSendMessage (
SymbolicName <messName>)

Symbolic name of the OSEK COM message.

Sets the trigger to be the sending of OSEK COM message

<messName>

If <messNames> is set to OSTRACE TRIGGER ANY,
sending of any OSEK COM message will trigger tracing.

All OS supporting COM.

This includes messages logged by the OS instrumenting
kit.

3.7.30 TriggerOnReceiveMessage

Syntax:

Parameters:

messName

Description:

In Particular:

Applies to:

void TriggerOnReceiveMessage (
SymbolicName <messName>)

Symbolic name of the OSEK COM message.

Sets the trigger to be the reception of OSEK COM
message <messName>.

If <messNames> is set to OSTRACE TRIGGER ANY,
reception of any OSEK COM message will trigger tracing.

All OS supporting COM.

This includes messages logged by the instrumenting kit.

3.7.31 TriggerOnError

Syntax:
Parameters:

err

Description:

In Particular:

Applies to:

void TriggerOnError (StatusType <errs)

Error code.

Sets the trigger to be the error <errs.

If <err> isset to OSTRACE TRIGGER ANY, generation
of any error will trigger tracing.

Error codes are listed in the documentation for the
particular OS in use.

All OS.

3.7.32 TriggerOnShutdown

Syntax:
Parameters:

stat

Description:
In Particular:

Applies to:

void TriggerOnShutdown (StatusType <stats>)

Exit code.

Sets the trigger to be the shutdown of the application.

All OS.

API Functions 51

4 API Restrictions

4.1 Introduction

RTA-TRACE redefines many RTA-OSEK and ERCOS™ API symbols as macros in
order to instrument the operating system. In the great majority of cases, this
is completely transparent to the user. However it is possible in rare cases to
be caught out by a subtle issue outlined here.

4.2 General Problem

In a #defined macro with parameters, if a formal parameter appears more
than once then there are a few possible wrong or sub-optimal outcomes:

e If the supplied parameter has side effects and is evaluated more than
once then the side effect will occur multiple times and may constitute a
bug.

» If the supplied parameter is a call to a function of significant run-time and
is evaluated more than once then the overhead is multiplied.

» If the parameter is itself a macro then even if it is not evaluated more
than once (e.g. the macro expands to an if or switch statement) then
there is a multiplying of code-size overhead.

For these reasons it is undesirable for a macro's arguments to appear more

than once in the macro body. In some cases however it is not sensibly
avoidable.

4.3 Applicable Macros (ERCOS®¥)

The following identifiers expand one or more of their arguments more than
once. In each case, the replicated argument is shown in bold.

ActivateTask (task)
GetResource (res)
ReleaseResource (res)
ChainTask (task)
TriggerOnActivation (task)
TriggerOnChain (task)
TriggerOnTaskStart (task)
TriggerOnTaskStop (task)
TriggerOnGetResource (res)
TriggerOnReleaseResource (res)
TriggerOnTaskTracepoint (point, task)
SendMessage (msg, pointer)
ReceiveMessage (msg, pointer)

API Restrictions 53

54

Applicable Macros (RTA-OSEK)

The following identifiers expand one or more of their arguments more than
once. In each case, the replicated argument is shown in bold.

ActivateTask (task)
ActivateTaskset (taskset)
ChainTask (task)

ChainTaskset (taskset)
TickSchedule (schedule)
AdvanceSchedule (schedule, status)
SendMessage (msg, pointer)
ReceiveMessage (msg, pointer)
GetResource (res)
ReleaseResource (res)
SetEvent (task, mask)
WaitEvent (mask)

ClearEvent (mask)

ShutdownOS (mode)

API Restrictions

Index

C

(@) (=0 [o L <P P PSPPSR 18
CLASSES et 19
(@ LT To T 1= PRSP 35
D

DI o] S N g Tel @ £=To o] =PTSRS 22
DiSADIETIACECIASSES ... ettt 21
E

ENabIeTraceCategories . ..o it 22
ENADIETIACOCIASSES .. et 21
|

IAENEITIS .. et 18
L

LogCriticalEXECULIONENG ©....oooiiiiii e 34, 35
LOGINTEIVAIENG ... 31
LogINtervalENADataooiiiiiiii e 33, 34, 35
LOgINtervalENAValUeooiiiii e 32
LOGINTEIVAISTAN ..o 29
LOgINTErVAlSTartData ..coovviie e 31
LOgINtervalSTartValueooiiiici i 30
LOGPIOFIIESTAITo 33
LOGTaSKTIACEPOINTeiiiieii ettt 26
LOgTaskTracePOINTDAtaveiiieiieieiiii et 28
LogTaskTracePOINtVaAlUEoiueiiiiiii s 27
LOGTTACEPOINT ..ottt 23
LOGTracePOINTDAtE «...eei e 25
LOgTracepPOINtVAlUE ... 24
S

SETTTACEREPEAT. .. e e 16, 17
SETTHIGGENVINAOW ... 16, 37
STAMBUISTINGTIACE 1. 16
StArtFrEERUNNINGTIACE ... et 15
StAMtTIIGGENNGTIACE ©.eiiiiiieii et 16
SO T T ACE . e 17
T

THGGEINOW .ottt 36

55

56

TrHGGErONACHIVATION 1.ttt 38, 53

TriggerOnAdvanceSChedUlE 48
THGGEIONAIGIMEXDINY .. vttt 49
TrHGGErONCNAIN ... i 38, 53
THGGEIONEITON .. e 51
TriggerOnExplicitReceiveStateMesSage.ovviiiiiiiiii e 50
TriggerOnEXplicitSeNdStateMeSSAgE .. .coovviiiiiiiiii e 49
TrgGErONGETRESOUITE ©..iiiiiiii i 44, 53
TriggerONINItTAsSKSTAiiii e 43
TriggerONINItTASKSTOP «..coviiieii et 43
TrgGerONINTEIVAISTAIT . .eii i 46
TrHGGErONINTEIVAISTOD .. .viiiii e 47
THGGEIONISRSTAIT . .eiiii et 40, 41, 42
THGGEIONISRSTOD vttt 40, 41, 42
TrigGerONRECEIVEMESSAGEeeiiiiiiie et 51
TriggerONRElEASERESOUICE oo iiiieeic e 44, 53
TriggerONSENAMESSAGEo i ittt 50
TrHGGEIONSETEVENT. ..o e 45
TrigQerONTASKSTAM ..o 39, 53
TrGGErONTASKSTOP 1. ittt 39, 53
TriggerONTaskTraCePOINTcoiui ittt 46, 53
TriggerONTICKSChEAUIEiii e 48
TriggerONTIMEtabIEEXDINY . ..c.vviieiie e 47
TrHGGEIONTIACEPOINT ... eeite ittt ettt e e e ee e 45

Index

Support

For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
WWW.etasgroup.com.

Support 57

