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1 About this Guide 

This guide provides you with an introduction to RTA-OSEK. It describes the 
basic system concepts and shows you how to put these concepts into 
practice. 

You will find the complete technical details of RTA-OSEK Component in the 
RTA-OSEK Reference Guide.  These manuals describe the parts of RTA-OSEK 
that apply to all target hardware. If you require information on target-specific 
aspects of RTA-OSEK, refer to the supplied RTA-OSEK Binding Manual. 

1.1 Who Should Read this Guide? 

It is assumed that you are a system designer who wants to know how to 
model your system architecture using the RTA-OSEK GUI or that you are a C 
programmer who wants to know how to configure RTA-OSEK Component for 
integration with your application program. 

1.2 Conventions 

Important: Notes that appear like this contain important information that 
you need to be aware of. Make sure that you read them carefully and that 
you follow any instructions that you are given. 

Portability: Notes that appear like this describe things that you will need to 
know if you want to write code that will work on any processor running RTA-
OSEK Component. 

The following terms are used in this guide: 
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RTA-OSEK refers to the complete Real-Time Operating System 
product including the tools that run on the host PC, 
the target processor components and the 
documentation. 

Offline tools refers to the configuration, analysis and build tools 
that are run on the host PC. These include the RTA-
OSEK graphical user interface (GUI) that provides a 
wrapper around the command line offline tools. 

RTA-OSEK GUI refers to the RTA-OSEK graphical user interface 
(GUI) that provides a wrapper around the other 
offline tools. 

RTA-OSEK 
Component 

refers to the RTA-OSEK Real-Time Operating System 
kernel that runs on the target processor. Any 
references to the kernel in this guide refer to RTA-
OSEK Component. 

 

In this guide you’ll see that program code, header file names, C type names, C 
functions and RTA-OSEK API call names all appear in the courier typeface.  
When the name of an object is made available to the programmer the name 
also appears in the courier typeface, so, for example, a task named Task1 

appears as a task handle called Task1. 

1.2.1 Screenshots 

Please note that due to LiveDevices’ policy of continual product improvement, 
some of the screenshots reproduced in this manual may not exactly match the 
onscreen appearance of the GUI tool. GUI appearance may also be affected 
by your local Windows setup. 
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2 Introduction 

The core of RTA-OSEK consists of two main elements: 

• The RTA-OSEK offline tools. 
The RTA-OSEK offline tools include a code generation tool and an 
analysis tool that enables you to demonstrate that your system meets 
its timing requirements. These offline tools are driven by a graphical 
user interface (GUI) which supports OS configuration through the 
OSEK Implementation Language (OIL). You can find out more about 

the RTA-OSEK offline tools in Section  2.2 and OSEK is introduced in 

Section  2.4. 

• RTA-OSEK Component - the OSEK kernel.  
RTA-OSEK Component is an efficient, fast and predictable Real-Time 
Operating System (RTOS) that is fully compliant and independently 
certified with Version 2.2.x of the OSEK/VDX OS Standard. The RTA-
OSEK v5.x component also provides functionality of AUTOSAR OS 
(SC1) v1.0. Component has been designed to provide the necessary 
functions for building complex, yet efficient, real-time systems. You 

can find out more about RTA-OSEK Component in Section  2.1. 

RTA-OSEK supports the development of hard real-time systems. This means 
that system responses must be made within specific timing deadlines.  
Meeting hard deadlines involves calculating the worst-case response time of 
each task and Interrupt Service Routine (ISR) and ensuring that everything runs 
on time, every time. 

Any true RTOS must support these requirements by meeting the assumptions 
of fixed priority schedulability analysis*. RTA-OSEK Component meets these 
requirements and the RTA-OSEK offline tools automate the analysis to show 
whether deadlines will be met. 

                                                
* For further information refer to: N.C. Audsley, A. Burns, R. I. Davis, K.W. Tindell, and A.J. Wellings, 1995 “Fixed Priority Pre-
emptive Scheduling: An Historical Perspective” Real-Time Systems, 8, 173-198. 



 2
.1
 

 

2-2 Introduction RTA-OSEK v5.0.2 

 

Figure  2:1 - The Structure of RTA-OSEK 

2.1 RTA-OSEK Component 

The concepts behind RTA-OSEK Component are founded on the results of a 
decade of research into real-time systems and are shaped by the pressures of 
mass-production industries, such as the automotive industry. 

RTA-OSEK Component is fixed priority pre-emptive operating system that is 
certified to the OSEK OS Standard Version 2.2.x. RTA-OSEK Component 
supports all four OSEK conformance classes  (BCC1, BCC2, ECC1 and ECC2). 
It also provides message handling for intra-processor communication that 
satisfies the OSEK COM CCCA and CCCB conformance class.  

RTA-OSEK provides a number of kernel optimizations that contribute to 
reductions in unit cost of systems. The lightweight tasks optimization, for 
example, leads to RAM savings of up to 256 bytes of RAM per task.  This 
results in substantial savings in a 32 task system. Using static API 

optimization reduces the execution time of critical higher priority tasks, 
which means that the useable processing power is increased. 

The extremely low memory footprint of the RTA-OSEK Component makes it 
particularly suitable for systems manufactured in large quantities, where it is 
necessary to meet very tight constraints on hardware costs and where any 
final product must function correctly. 

RTA-OSEK offers support for a wide variety of microcontrollers and leads the 
class in its low memory footprint and CPU overhead. 

RTA-OSEK Component does not impose on hardware, where possible.  
Generally, there is no need to ‘hand over’ control of hardware, such as the 
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cache, watchdog timers and I/O ports.  As a result of this hardware can be 
used freely, allowing ‘legacy software’ to be brought to the system. 

RTA-OSEK builds on the OSEK standard to provide a set of unique features for 
the design and analysis of hard real-time systems. In particular, RTA-OSEK 
provides the ability to create and manipulate planned and periodic schedules. 
Schedules are a mechanism for managing activation of multiple tasks. 

All runtime overheads for RTA-OSEK, such as switching to and from tasks, 
handling interrupts and waking up tasks, have low worst-case bounds and 
little variability within execution times. In many cases, context switching 
happens in constant execution time. Conventional RTOS designs normally 
have unpredictable overheads, usually dependent on the number of tasks and 
the state of the system at each point in time. 

Unlike the conventional RTOS ‘infinite loop’ tasking (where tasks are not 
required to terminate), the single-shot execution model of OSEK’s basic tasks 
is an exact fit with the tasking model used in schedulability analysis. 

RTA-OSEK’s timing status build is added to OSEK’s Standard and Extended 
status builds and allows you to measure the worst-case execution time of 
tasks and interrupt service routines and to perform execution time 

monitoring (ensuring that tasks complete within specified times).  

 

2.2 RTA-OSEK tools 

When the correct functioning of an application depends upon performance 
requirements, such as how quickly responses to input events are needed, it is 
often extremely difficult to guarantee that these requirements have been met.  
RTA-OSEK is currently the only RTOS product on the market that allows such 
performance requirements to be guaranteed. 

A graphical user interface is provide to help you with the configuration 
process. This interface provides implementation obligations, which act as a 
checklist for developing source code to work with the architecture defined by 
your OS configuration. The advanced interface also supports stack usage 
analysis. This means that you can determine the worst-case stack 
requirements for the application, avoiding the need to over-engineer “just in 
case” RAM requirements are incorrect. All configuration data is held in an 
OSEK standard OIL file. 

RTA-OSEK is more than just a small and fast OSEK OS – RTA-OSEK is an OSEK 
OS with guaranteed timing behavior. Integrated in the GUI are modeling and 
schedulability analysis tools we call the RTA-OSEK Planner. Schedulability 
analysis is a mathematical technique used to prove that an application meets 
all of its deadlines. RTA-OSEK provides extensions to schedulability analysis 
that allow you to determine the maximum buffer sizes required by interrupts. 
You can use this to guide hardware selection and to determine the maximum 
activation count for BCC2 tasks. 

RTA-OSEK also includes sensitivity analysis. This can assist you in 
determining the possibility that the execution time tasks or interrupts can be 
extended. This is an invaluable aid when extending or enhancing a system, 
without violating its performance requirements. 
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The RTA-OSEK Planner can also be used to optimize your application 
automatically. Priority level optimization automatically calculates whether 
the preemption patterns of the system can be adjusted to reduce stack usage. 
Research has shown that even where systems are running at 99% CPU 
utilization, this technique can be used to modify preemption patterns, which 
can result in an 8-fold decrease in application stack requirements. Significant 
RAM reductions may be made and this can lead to reduced unit costs. 

Clock speed minimization is a further type of analysis that is provided by 
RTA-OSEK. This can be used to show the slowest speed that the application 
can run and still meet its deadlines. You can use this functionality to reduce 
power requirements, to avoid EMC problems or to determine whether 
cheaper silicon can be used to meet the same performance requirements. 

2.3 RTA-OSEK Debugging Support 

RTA-OSEK provides support for the ORTI (OSEK Run-Time Interface) 
standard. This allows any ORTI-aware debugger to provide access to RTOS 
variables. 

The list of ORTI-aware debuggers supported by each RTA-OSEK target port 
can be found in the relevant RTA-OSEK Binding Manual. 

You can use RTA-OSEK’s extensible ORTI support to add new debuggers†.  

2.4 OSEK 

OSEK is a European automotive industry standards effort to produce open 
systems interfaces for vehicle electronics. The full name of the project is 
OSEK/VDX. 

OSEK is an acronym formed from a phrase in German, which translates as 
“Open Systems and Corresponding Interfaces for Automotive Electronics”. 
VDX is based on a French standard (Vehicle Distributed eXecutive), which has 
now been merged with OSEK.  OSEK/VDX is referred to as OSEK in this guide. 

The goals of OSEK are to support portability and reusability of software 
components across a number of projects. This will allow vendors to specialize 
in “Automotive Intellectual Property”, where a vendor can develop a purely-
software solution and run software in any OSEK-compliant ECU. 

To reach this goal, however, detailed specifications of the interfaces to each 
non application-specific component are required. OSEK standards, therefore, 
include an Application Programming Interface (API) that abstracts away from 
the specific details of the underlying hardware and the configuration of the in-
vehicle networks. 

For further information see http://www.osek-vdx.org 

                                                
† Support for other ORTI-aware debuggers can also be provided as an engineering service. Please contact your local ETAS 
office for further details. 
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2.5 AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) is an open and 
standardized automotive software architecture, jointly developed by 
automobile manufacturers, suppliers and tool developers worldwide. 

AUTOSAR provides specifications for “Basic Software Modules” (BSW) like 
operating systems, communication drivers, memory drivers and other 
microcontroller abstractions. The AUTOSAR standard also defines a 
component-based architectures model. This model defines a “Virtual Function 
Bus” (VFB) that defines an abstraction for communication application software 
components (SW-Cs). The VFB allows SW-Cs to be independent of the 
underlying hardware, making them portable between different ECUs and 
reusable across multiple automotive projects. The VFB abstraction is 
encapsulated by the AUTOSAR Run-Time Environment (RTE). The RTE provides 
the “glue” between SW-Cs and the BSW. 

For further information see http://www.autosar.org 

2.6 New Features in RTA-OSEK 5.0 

RTA-OSEK 5.0 builds on the proven technology of earlier RTA-OSEK versions 
and adds the follows new features: 

• Support for features provided in Scalability Class 1 of the AUTOSAR 
OS v1.0 specification including 

o Schedule Tables 

o Runtime Stack Monitoring for Basic and Extended Tasks 

o A standardized API for ticked OSEK counters 

• Improved license management allowing multiple license files to be 
referenced 

• A new package mechanism for integrating non-OS libraries 

• A new macro mechanism that allows users to define custom macros to 
use when building systems in the RTA-OSEK Builder 

• Configurable over activation (E_OS_LIMIT) checking for tasks activated 
using RTA-OSEK’s taskset mechanism. 

• Native support for cooperative scheduling and processes to help users 
migrating from ETAS’ legacy ERCOSEK Operating System 

• Improved support for RTA-TRACE allowing you to configure task 
tracing on a per-task basis 

2.6.1 Compatibility with Earlier Versions 

It is possible for you to use the RTA-OSEK v5.0 tools with earlier versions of 
the RTA-OSEK kernel. 

The following table shows the compatibility of features in RTA-OSEK 5.0 with 
earlier kernels. 
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RTA-OSEK v5.x Tool Feature 
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AUTOSAR Schedule Tables � � 

Advanced Counter Interface � � 

Taskset Over-activation Checking �  

Stack Monitoring �  

Cooperative Scheduling Support � � 

Per-Task Tracing for RTA-TRACE �  

 

RTA-OSEK automatically identifies the version of the kernel you are 
configuring and presents user configuration options as appropriate through 
the RTA-OSEK GUI. 
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3 The Development Process 

This chapter will guide you through the processes involved in creating an 
application using the RTA-OSEK GUI. You can use the concepts explained in 
this guide to create your first RTA-OSEK application. 

You may find that in this chapter you see things that you haven’t learnt about 
yet. If this happens you can use the other chapters of this guide to find out 
the information that you need. 

The RTA-OSEK GUI has three views – these are accessed by using the tabs at 

the lower-left of the GUI (see Figure  3:1): 

• The Planner is described in Sections  3.1 to  3.4, and will be familiar to 
users of previous versions of RTA-OSEK. This is the preferred way of 
describing an application since verification of the application’s design 
can be carried out at this stage. 

• The Builder is for developers who are familiar with OSEK concepts and 
simply want to construct a system without using the design 
analysis/verification aspects of the Planner. This is described in section 

 3.5. 

• Finally, the RTA-TRACE view allows configuration of RTA-OSEK 
parameters related to the LiveDevices RTA-TRACE product (a software 
logic-analyzer for embedded systems – contact your local sales office 
for further details). 

 

Figure  3:1The view tabs 

3.1 Overview 

The process of creating a new application in the RTA-OSEK Planner has a 

number of stages. The diagram in Figure  3:2 shows how the development 
lifecycle works and how the steps fit together. 
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Timing Analysis

Specification

Implementation

Build

Functional

Testing

 

Figure  3:2 - The Development Process 

Figure  3:2 shows that a specification should exist before creating a new 
application. The application can then be constructed and the 
implementation can begin using the supplied specification. Once coding is 
complete you must build the application, before starting the functional 
testing and, optionally, the timing analysis. 

At the functional testing and timing analysis stages, the implementation may 
change, so the application must be built and tested again until it is finished. 

Each of these steps is explained in detail in the following sections. 

3.1.1 Specification 

When a new target application is being developed, a specification should be 

supplied. You can see an example specification in Section  3.3.1. 

A specification tells you things like: 

• The target platform details. 
These details include the processor type, clock speed and available 
memory. 

• A list of external real-world inputs to the system. 
The real-world inputs are called stimuli.  Stimuli are things like 
switches being closed, timers expiring, network messages being 
received and certain angular positions being reached in an engine.  
You can also think of time as a real-world input.  For example, if you 
have to poll hardware, you might create a stimulus that occurs every 
10ms.   

• A list of outputs from the system. 
The outputs are called responses.  Responses describe how the 
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system responds to stimuli.  Responses might include, for instance, 
turning a lamp on, updating an internal count, activating a motor or 
sending a message to another controller. 

• Performance requirements. 
For each stimulus, there will be at least one response that the system 
has to make. This response will have to be made within a time limit. 
The deadline is the latest time that the response is allowed to occur 
after the stimulus. Specification of system deadlines is important for 
timing analysis. The purpose of timing analysis is to show whether or 
not the system’s requirements will be met in the worst case system 
loading. 

Let’s look at a real-world example. In Figure  3:3, you can see a car hitting an 
object during an impact test – when the car hits the object, the airbag 
inflates. The car hitting the object is the stimulus; the airbag inflating is the 
response to the impact. For the response to be effective, it must occur before 
the deadline. In this case, the deadline for the airbag inflation must be set to 
minimize the chance of injury to the vehicle’s occupants. 

Stimulus

Impact

Response (Air bag inflates)

 

Figure  3:3 - Responding to a Stimulus 

3.1.2 Implementation 

Once the specification stage is complete, you’ll then need to think about the 
implementation. In the implementation phase, you will decide how the target 
detects the specified stimuli and how the responses are implemented. 

External stimuli are often detected by raising hardware interrupts. An interrupt 
service routine (ISR) will run when the target processor responds to the 
interrupt. 

Usually the ISR will activate a specific task that implements a response, 
although an ISR can implement a response directly, if required. Having short 
ISRs and appropriately prioritized tasks will give the most responsive results, 
particularly in heavily loaded systems. 
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On some targets each interrupt source has its own entry in the processor 
vector table, so one ISR is needed for each interrupt that can occur. Other 
targets allow several interrupt sources to use the same vector, so an ISR may 
need to decode which interrupt source is active.  

In simple systems, each response can be implemented in a separate task. The 
responses with the shortest deadlines should be assigned to the tasks with the 
highest priority. This gives the task the best chance of meeting the deadline. 
You can use schedulability analysis to confirm whether or not the task will 
always meet the deadline. 

A task can implement more than one response. For example, in Figure  3:4 you 

can see that stimulus S can be specified to result in response R1 within time 

T1, then response R2 within time T2 and then response R3 within time T3. 

 

Figure  3:4 - A Task Implementing More Than One Response 

You can usually use a single task to implement all of the responses in Figure 

 3:4. RTA-OSEK will be able to confirm whether or not it can meet each 
deadline. 

If the task can determine which stimulus it is responding to, it is also possible 
for a task to provide responses for more than one stimulus. There are a 
number of mechanisms that can be used to pass information to a task on 
which stimulus has occurred:  

• Global variables. 

• OSEK COM messages. 

• OSEK OS events. 

Once the structure of the application, in terms of tasks and ISRs, has been 
established it is then refined using OS features including resources, queuing 
mechanisms, events and messages. 

RTA-OSEK’s Builder generate skeleton source code files for each task and ISR 
that you need to implement. It is up to you to write the code that executes 
when the tasks and ISRs run. 

The RTA-OSEK Planner provides an implementation check list for your 
application showing the code that needs to be implemented. Once coding is 
complete the various files can be compiled and linked to generate the 
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application executable file. You will find out how to implement example 

applications in Section  3.3.2. 

 

Each of your tasks and ISRs should be written in its own C source file. There 
are a number of software engineering issues associated with this: 

• Task threads are isolated in the application source code. This is good 
development practice and allows your compiler to provide some 
protection against certain classes of bug. Using static variable 
declarations in a file, for example, protects those variables against 
being accidentally changed by other tasks or ISRs. 

• Configuration management is made easier because changes to tasks 
are limited to a single task in a single file. 

• Testing is made easier because it can be performed on a per task basis.  
Individual tasks can be replaced with stubs, where necessary, for 
integration with automated test management tools. 

When using RTA-OSEK, it is strongly recommended that you put the code 
relating to each task and ISR into individual files. This is because RTA-OSEK 
automatically creates optimized header files for each task and ISR. 

These header files provide access to optimized versions of RTA-OSEK’s API 
calls called the static interface . RTA-OSEK automatically selects the best 
implementation of an API call for each task and ISR at build time, based on 
RTA-OSEK’s knowledge of the application. The static interface provides link-
time checking of may of the runtime errors that can occur with using the RTA-
OSEK API. Checking errors at link time means that you don’t have to waste 
time checking API misuse with runtime testing. 

If you choose not to use the static interface, then all source files that use the 
RTA-OSEK component API must #include the file osek.h (or oseklib.h 
if you are creating code to go in a library), rather than the task or ISR-specific 
files. Your application will have the same functionality, but will be slower, 
larger and require more runtime debugging. 

If you must have multiple tasks or ISRs in a single source file, you must not mix 
tasks that use RTA-OSEK’s heavyweight and lightweight termination. You 
must #define OS_HEAVYWEIGHT or OS_LIGHTWEIGHT as appropriate 

and only #include “osek.h” . 

3.1.3 Build 

When the basic structure of your application is complete, the RTA-OSEK GUI 
can ‘build’ the assembler, C and header files that are needed to 
assemble/compile and link with your own source code files. You can then 
create your executable application. You can find out more about building an 

application in Section  3.6.2. 
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3.1.4 Functional Testing 

For functional testing the application must be downloaded to the target 
hardware. The first time you test an application it is recommend that, if 
possible, only one stimulus be triggered at a time. 

If you discover any problems during these tests you should modify the 
application, rebuild it and then retest it. You should repeat these steps until 
you are confident of the functionality of the application. The functional 

testing stage is explained in Section  3.3.4. 

3.1.5 Timing Analysis 

The final stage of testing is to prove that the application will meet its timing 
deadlines. To do this, you will need to measure the execution times of your 
code and enter this information into the RTA-OSEK GUI. 

Measurement of execution times can be complex, but this information is 
required to obtain accurate timing analysis. 

RTA-OSEK tells you whether your system is schedulable or not. An 
application is schedulable when all deadlines will be met. RTA-OSEK can tell 
you which deadlines are not met for a system which is not schedulable. 

You can try to make the system schedulable by:  

• Indicating the maximum allowed execution time for each task or ISR. 

• Rearrangement of task priorities. 

• Adjustment of the CPU clock. 

You can find out more about analysis in Section  3.3.5. 

3.2 A Simple Example 

In this section you will see how to build a simple application by configuring 
OSEK OS objects directly from the RTA-OSEK GUI. 

Our system specification is as follows: 

• The target processor is the Motorola HC12. (Select a different target if 
your installation does not include this processor.) 

• The target clock is 8MHz. 

• Incoming CAN bus messages will generate an interrupt to the CPU. An 
ISR must handle the initial processing of each message and then 
activate a worker task to complete the processing at a later time. 

• Three tasks must run periodically at 3ms, 6ms and 14ms rates. 

• The 14ms periodic task shares a data buffer with the CAN worker 
task. Mutually exclusive access to the data buffer must be enforced to 
avoid data corruption. 
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3.2.1 Creating a New Application using the RTA-OSEK GUI 

To create a new application, you’ll need to run the RTA-OSEK GUI and select 
New from the File menu.  The Select Target dialog will open.  Select the 
target processor from the Available Targets and Variant drop down lists.   

In Figure  3:5, the HC12/COSMIC 16 task target has been selected and the 
HC12 variant is being used. Remember that if your installation does not 
include the HC12, you must select a different processor. 

 

Figure  3:5 - Selecting a Target Processor 

Important: The Available Targets list will only show the targets that have 
been installed on your own computer, according to your license file. Please 
contact LiveDevices if you cannot see the targets that you expected to. Each 
target may have a number of variants to reflect different chip versions based 
on a common processor core. 

The Select Target dialog in Figure  3:5 can also be used to enter the 
Instruction Rate and Stopwatch Speed.  

The instruction rate tells RTA-OSEK how fast the CPU clock runs. This 
information is used by the RTA-OSEK Planner to convert real times 
(milliseconds, seconds etc) into CPU cycles.  

The stopwatch speed value tells RTA-OSEK the speed of the timer hardware 
used in the GetStopwatch() function to measure execution time in RTA-
OSEK’s Timing and Extended builds. The stopwatch speed is also used by the 
RTA-OSEK Builder to create the default value of OSEK’s OSTICKDURATION 
when you do not explicitly define a SystemTimer. The value is given in 

nanoseconds, so the settings in Figure  3:5 would give an OSTICKDURATION 
of 125ns. 

Ideally the stopwatch is run at the instruction rate. However, on some targets 
this may not be possible, for example when there is a mandatory pre-scalar on 
the timer peripheral. 

When the target information has been set and the OK button has been 
clicked, the RTA-OSEK GUI automatically displays a summary of the new 

application. You can see this in Figure  3:6. You can refer back to this 
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summary at any stage to see an overview of the entire system that you are 
creating. 

 

Figure  3:6 - Viewing a Summary of the New Application 

3.2.2 Saving the Application 

As soon as you create a new application, it is a good idea to save it. To save 
an application for the first time, from the File menu select Save As…. 

In the Save As dialog, use the Save In list to navigate to the location that you 
want to save the file in. For the File Name in this example, enter the name 
UserApp.  Click the Save button to save your new application. 

You can save the application at any time by using the File menu to select 
Save or by pressing the Ctrl key and the S key together on the keyboard 
(Ctrl+S). 

3.2.3 Viewing the OIL File 

The file that is created is saved using OIL syntax. This means that other OSEK 
compatible tools can read it. You can view the contents of the OIL file for the 
current application by clicking on the View menu and selecting OIL File. 

You’ll see the OIL file contents displayed in the lower half of the workspace, 

so it will look something like the example in Figure  3:7. 

In the upper part of the window you can see the details that were displayed in 
the workspace. In the lower part of the window you can now see the OIL file. 
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Figure  3:7 - Viewing an OIL File 

 

You can close the OIL view by clicking on the View menu and deselecting OIL 

File. 

3.2.4 Implementation 

You have now reached the implementation stage where you will learn how to 
configure the RTA-OSEK OS objects, such as tasks, ISRs, counters and alarms, 
which make up the application. 

In many of the following steps, you will be required to carry out certain 
actions on instances of OS objects; these actions are accessed from a common 

icon set, shown in Figure  3:8 – from the left, you can see the Add, Rename, 
and Delete icons. 

 

Figure  3:8 - Common Icons (Add, Rename, Delete) 

Creating ISRs 

This example has two interrupt sources - one that detects the arrival of a CAN 
message and another that is attached to a hardware timer that can provide 
interrupts every 1ms. 
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To create a new ISR, select the ISRs group from the navigation bar. 

Figure  3:9 shows how the ISRs group is selected and how the ISR Summary 
initially appears in the workspace. 

 

Figure  3:9 - Interrupts 

The ISRs to be added will be Category 2 ISRs since OS calls are going to be 
made from them (Category 1 ISRs are forbidden from making OS API calls). 

The first ISR to be added will be responsible for handling a 1ms tick generated 
by a hardware timer. 

• From the navigation bar, select the Category 2 ISRs subgroup. 

• Create the ISR by clicking the Add button in the workspace.  

• In the Add Cat 2 ISR dialog, enter the name TimerISR and click OK. 

• Depending upon the target type, you may need to enter an interrupt 
Vector and a Priority. Here we attach it to a timer peripheral – see 

Figure  3:10. 

 

Figure  3:10 - Setting Priority and Vector for an ISR 
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The workspace displays the default settings for the new ISR – see Figure  3:11. 

 

Figure  3:11 - Properties of the Newly-Created Interrupt 

Now repeat this procedure to create a Category 2 ISR called CanISR, 
responsible for handling the interrupts generated by incoming CAN messages. 

Creating Tasks 

You will now create the four tasks that perform the work of the application. 
Remember that three of these tasks are activated periodically at rates of 3ms, 
6ms and 14ms. The fourth task is activated by CanISR. 

To create a new Task, select the Tasks group from the Planner navigation bar. 

Figure  3:12 shows how the Tasks group is selected and how the Task 
Summary initially appears in the workspace. 

 

 

Figure  3:12 - System with no Tasks 

• From the navigation bar, select the Task Data subgroup.  

• Create a task by clicking the Add button in the workspace. 
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• In the Add Task dialog, enter the name Task1 and click OK. 

• In the Task “Task1” priority dialog (Figure  3:13), enter a priority of 
10 for this task. 

 

 

Figure  3:13 - Setting Task Priority 

 

The workspace displays the default settings for the new task, as shown in 

Figure  3:14 
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Figure  3:14 - Task Properties 

 

Now repeat this procedure to create another three tasks as follows: 

• Task2 with Priority 9 

• Task3 with Priority 8 

• CanWorker with Priority 3 

Creating a Counter and Alarms 

The three periodic tasks that have been created will be activated by the expiry 
of alarms attached to a counter. For this example, we will ‘tick’ the counter 
from TimerISR (invoked every 1ms), thus a counter tick is equivalent to 1ms. 
Alarms attached to the counter will expire after a specified number of ticks. 
When each alarm expires, an associated task will be activated by the OS. 

To create a new counter, select the Stimuli group from the navigation bar. 

Figure  3:15shows how the Stimuli group is selected and how the Stimuli 
Summary initially appears in the workspace. 

 

Figure  3:15 - System with no Alarms 

• From the navigation bar, select the Counters subgroup.  

• Create a counter by clicking the Add button in the workspace. 

• In the Add Counter dialog, enter the name TimerCounter and click 
OK. 
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• In the Tick rate for timebase “TimerCounter” dialog (Figure  3:16), 
enter a fastest tick rate of 1 realtime ms. 

 

Figure  3:16 - Setting Timer Tick Rate 

 

The workspace displays the default settings for the new counter (Figure  3:17). 

 

Figure  3:17 - Counter Properties 

Finally we need to indicate that the counter is ticked by TimerISR: 

• Click the Primary Profile button and select TimerISR from the 
primary profiles dropdown list and click OK. 
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Now we need to create the alarms responsible for activating the three tasks 
created previously. Task1 is to be run every 3ms, Task2 runs every 6ms, and 
Task3 runs every 14ms. 

• From the navigation bar, select the Stimuli subgroup. 

• Create a stimulus by clicking the Add button in the workspace. 

• In the Add stimulus dialog, enter the name Task1Alarm and click 
OK. 

• Click on the Arrival Type button and select periodic. 

• Click on the Schedule/Counter button and select TimerCounter as 
the counter for this alarm. 

• In the Arrival Pattern dialog, enter a cycle time of 3 TimerCounter 

ticks (equivalent to 3ms). 

 

The workspace, as shown in Figure  3:18, displays settings for the new alarm. 

 

 

Figure  3:18 - Alarm Properties 

 

We now need to make the alarm activate Task1 - this is the response to the 
alarm stimulus. 

• Click on the Implementation button, and select Task1 in the 
Implementer drop-down – there is no need to enter anything in the 
Execution time field yet. 

 

You can now repeat this procedure to create two other alarms as follows: 

• Task2Alarm which activates Task2 every 6ms; 

• Task3Alarm which activates Task3 every 14ms 



 3
.2
 

 

3-16 The Development Process RTA-OSEK v5.0.2 

Creating a Resource 

Resources are used to enforce mutually exclusive access to a critical section of 
application code. This is usually to prevent corruption of data in a global 
variable. In this application you must create a resource that is shared between 
the CanWorker and Task3 tasks. The task that has successfully locked this 
resource can safely modify a data buffer without the other task disrupting it. 

To create a new resource, select the Resources group from the navigation 
bar.  

Figure  3:19 shows how the Resources group is selected and how the 
Resource Summary initially appears in the workspace. 

 

Figure  3:19 - System with no User-Declared Resources 

• Select the Standard subgroup from the navigation bar.  

• Create a resource by clicking the Add button in the workspace. 

• In the Add resource dialog, enter the name CanResource and click 
OK. The workspace displays the default settings for the new resource. 

 

Now that the resource has been created, we need to indicate which tasks use 
it: 

• Click the Change Users button, select Task3 and CanWorker in the 
Select Users dialog and click OK. RTA-OSEK automatically calculates 
the effective task priority of this resource. 

The resultant workspace can be seen in Figure  3:20. 
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Figure  3:20 - Resource Properties after Users are Added 

 

Writing Task and ISR Code 

You will now need code for the ISRs TimerISR and CanISR, tasks Task1, Task2, 
Task3 and CanWorker, as well as the application’s main() function. The 

main() function includes the application startup as well as the OS idle 
mechanism. 

The C source code can be created outside of the RTA-OSEK GUI if you wish, 
but you can also create templates from the RTA-OSEK GUI to help get you 
started.  To do this: 

• Change to the Builder view, then from the navigation bar, select the 
Custom Build subgroup. 

• In the workspace, click the Create Templates button.  RTA-OSEK will 
create seven C source files and put skeleton code in each of them.  It 
also creates a batch file rtkbuild.bat, which you will use later in 
the build phase. 

Writing Code for TimerISR and CanISR 

Move back to the Planner view and select the ISRs group from the navigation 
bar. Then select the Category 2 ISRs subgroup and from the workspace, 
select TimerISR. 

You don’t have to worry if you can’t remember everything that has to be 
done in the ISR, because the RTA-OSEK GUI can tell you. Simply select the 
Implementation option from the View menu. The lower section of the ISR 
window is displayed and the implementation details for the ISR will appear.  
You can resize this window by moving your mouse over the blue horizontal 
‘splitter’ bar.  Click and hold the left mouse button and drag the bar up or 
down. 
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Figure  3:21 - Viewing the TimerISR Implementation Notes 

The sample code shows the ISR-specific header file TimerIsr.h being 

#included, followed by the ISR body.  Since we have made this ISR the 
primary profile for the counter TimerCounter, the implementation view 
indicates that this ISR is required to call Tick_TimerCounter(). This call 
‘ticks’ the TimerCounter so that the counter is made aware of time passing. 
You must ensure that your timer hardware is configured so as to cause these 
‘ticks’ to happen at the defined rate (1ms in this example). Otherwise, the 
alarms attached to this counter will not expire at the correct times and the 
various tasks will not be activated as desired.  

You can close the implementation notes by deselecting the Implementation 
option in the View menu. 

You can directly edit the source code for the ISR by selecting the  button 
in the Category 2 ISRs workspace. 

The code for CanISR can be written in a similar way. In this case, you should 
add an ActivateTask_CanWorker() call to activate the CanWorker task 
in the ISR body. 

Important: When editing files from within the RTA-OSEK GUI, the default 
editor is set to be the Windows Notepad application.  You can select your 
own preferred editor from the File menu, by selecting Options. 

Portability Note: The code that needs to be written here is target-specific, so 
no details are given where lines involve detection of pending interrupt sources 
and how they are acknowledged. 
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Writing Code for Task1 

From the Tasks group on the navigation bar, select the Task Data subgroup.  
Then select the task Task1. 

Use the Implementation View to check the code that is required for this 
task. 

 

Figure  3:22 - Viewing the Implementation Notes for Task1 

As with the ISR view, you can directly edit the source code for the task by 

selecting the  button in the workspace. The code you write will be target-
specific, but should follow the structure in the implementation view. 

Writing Code for the Remaining Tasks 

The code for tasks Task2, Task3 and CanWorker follow the same pattern. 

Whenever you modify the RTA-OSEK configuration always check that the 
suggested implementation matches the code you have written. 
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Writing Code for ‘main’ 

In C programs, main() is the starting point for the main application. It is 
called after the low-level startup initialization. Usually interrupts are disabled 
prior to main() being entered. 

The skeleton code generated by the RTA-OSEK for main() is shown in Code 

Example  3:1. 

 

/* Template code for 'main' in project: UserApp */ 

 

#include "osekmain.h" 

 

OS_MAIN() 

{ 

  StartOS(OSDEFAULTAPPMODE); 

  ShutdownOS(E_OK); 

} 

Code Example  3:1 - Template Code for main()  

Note that the OS_MAIN() macro is used rather than main().  Individual 
compilers have different criteria for the arguments and return types that are 
allowed for main(), so RTA-OSEK provides OS_MAIN() to assist portability.  

Portability: Using OS_MAIN(), rather than main(), in applications can help 
make them more portable to different RTA-OSEK targets. 

The StartOS(OSDEFAULTAPPMODE) call is used to start the operating 

system.  No operating system API calls should be made before StartOS() is 
called.  

The ShutdownOS() call is used to stop the OS when (and if) the application 

completes.  The default action for ShutdownOS() is to stay in an infinite 
loop and not to return. This call is not normally used because applications 
tend to run ‘forever’ (or until the processor loses power or is reset). 

In your example application, you need to perform some initialization of the 
target hardware before calling StartOS. This makes sure that the timer is set 
to interrupt every 100ms and the appropriate interrupt sources are enabled.   

After StartOS, you must set up the alarms that are used by the application. 

Use the SetAbsAlarm() API call to do this. SetAbsAlarm() takes three 
parameters: the name of the alarm that is being set up, its start time and its 
cycle time. The start time is the first time at which the alarm will expire. Be 
careful if you set this to 0. This will mean that the alarm counter must cycle 
through its entire range before wrapping around to 0. This can take a long 
time on some hardware. The cycle time sets up the periodic expiry of the 
alarm after the start time. In this application, each alarm is set to start at 1ms. 
The cycle times for Task1Alarm, Task2Alarm and Task3Alarm are 3ms, 6ms 
and 14ms respectively. 
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The code that executes after StartOS() belongs to the idle task.  The idle 

task is called osek_idle_task. The idle task can act like any other task; it 
can make API calls, use resources, send and receive messages, send and wait 
for events and so on. It cannot be directly activated because it only terminates 
when ShutdownOS() is called and it cannot use internal resources because 
it would prevent other tasks from starting. 

Important: Putting code in the idle task can be a very efficient way of 
implementing a system.  In particular, if you have only one task that needs to 
respond to OSEK events you should use the osek_idle_task. Your 
application will be significantly smaller and more responsive if the idle task 
waits for events, rather than any other task. 

The RTA-OSEK Planner will show you a suggested implementation for 
OS_MAIN() in Application -> Implementation. Select the osek_idle_task 
task in the Task Data subgroup (in the Tasks group on the navigation bar) 
and view the implementation details. 

Note that in this case, the idle task does no work.  On targets that support it, 
you can put the processor into a ‘sleep’ state in the idle task.  The processor 
must ‘wake-up’ if an interrupt occurs. 

Important: The idle task must not terminate. It must loop forever. 

Setting up Timer/Counter Hardware 

In Code Example  3:2, the function do_target_initialization() needs 

to initialize the interrupt sources to drive TimerISR. One of these sources is a 
hardware counter/timer that needs to provide an interrupt every 1ms.  

You may wish to use code based on Code Example  3:2 to do this. 

void do_target_initialization(void) 

{ 

 

  unsigned int timer_divide; 

  timer_divide = 

     OSTICKDURATION_TimerCounter / OS_NS_PER_CYCLE; 

 

  /* Initialize the timer hardware */ 

  SetupTimer(timer_divide); 

 

  /* Other target initialization */ 

  ... 

} 

Code Example  3:2 - Initializing Timer Hardware 

Code Example  3:2 shows initialization using the two RTA-OSEK-generated 

constants OSTICKDURATION_TimerCounter and OS_NS_PER_CYCLE.  
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The OSTICKDURATION_TimerCounter constant specifies the duration of 
the ‘tick’ of the counter in nanoseconds (ns), so in this example the 
OSTICKDURATION of 1ms is 1,000,000ns. 

The OS_NS_PER_CYCLE constant specifies the duration of the CPU 
instruction cycle in ns.  For an 8MHz CPU, this is 125ns. 

In this example, you require the timer to be configured to interrupt every 1ms.  
If you use these constants to calculate the divide ratio, the code will 
automatically adjust if the clock rate changes. 

OS Status, ErrorHook and Callbacks 

For preliminary testing, you should run the application using the operating 
system’s Extended build.  Extended build means that the OS performs 
rigorous checks in each API call.  Of course, this takes time and code space. 

Once the application is seen to be working correctly, you will usually switch to 
Standard build.  Very few checks are made with Standard build, so the OS 
can run much more efficiently. 

To choose Extended or Standard status: 

• Select the Application group from the Planner navigation bar and, 
select the OS configuration subgroup. 

• Click on OS Status, and choose the appropriate status level. 

When using Extended build, you can check the return status code from each 
API call or alternatively request that Error Hook be used.  This is a function 
that the OS will call whenever an error is detected.  You write the 
implementation of Error Hook in your application.  Normally you will use it to 
halt debugging and to alert you of errors. 

To use the Error Hook facility 

• Select the Application group from the Planner navigation bar and then 
select the OS Configuration subgroup.   

• Click the Hooks button.  The Select Hooks dialog opens. 

• Select the Error Hook checkbox and then click the OK button. 

You can see that the Error Hook has been selected in Figure  3:23. 

 

Figure  3:23 - Selecting the Error Hook 
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You can add the code needed to implement ErrorHook() in any source file, 

but main.c is a good place to start. Add the following code: 

#ifdef OSEK_ERRORHOOK 

 

OS_HOOK(void) ErrorHook(StatusType e) 

{ 

  /* Put a debugger breakpoint here. */ 

  while (1) { 

    /* Freeze. */ 

  } 

} 

#endif /* OSEK_ERRORHOOK */ 

Code Example  3:3 - The ErrorHook() 

You can find more information about using ErrorHook() for debugging 
purposes in Section 13 of this User Guide. 

There are three other functions that you must supply when using the Timing 
or Extended build. The operating system uses these to time the execution of 
your code. 

Don’t worry about the details at the moment; simply add the code in Code 

Example  3:9 after the ErrorHook(). 

#ifdef OS_ET_MEASURE 

OS_HOOK(void) OverrunHook(void) 

{ 

  /* Put a debugger breakpoint here. */ 

  while (1) { 

    /* Freeze. */ 

  } 

} 

OS_NONREENTRANT(StopwatchTickType) 

GetStopwatch(void) 

{ 

  /* Temporary implementation. A correct solution  

   * returns the current stopwatch value. */ 

  return 0; 

} 

OS_NONREENTRANT(StopwatchTickType) 

GetStopwatchUncertainty(void) 

{ 

  /* Temporary implementation. A correct solution  

   * returns the uncertainty in the stopwatch 

   * value. */ 

  return 0; 

} 

#endif /* OS_ET_MEASURE */ 

Code Example  3:4 - Timing Callbacks 
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Final Checks 

To view a complete implementation summary select the Implementation 
subgroup from the Application group on the navigation bar. 

Use this as a checklist to ensure that your application is fully implemented.  
You can print out this summary by selecting Print Selection from the File 
menu. 

3.2.5 Build 

If you have successfully completed all of the steps in creating this example 
application, you can now start the build process. Switch to the Builder, and 

refer to Section  3.6 where the build process is described. 

3.2.6 Functional Testing 

The executable file can be downloaded to your target hardware, so that you 
can test its behavior. 

Initial testing should always be performed using the Extended build with the 
Error Hook, because the OS will detect any misuse of API calls. Only once an 
application performs correctly should you switch to the Timing or Standard 
builds. 

3.3 A Simple Example Using Timing Analysis 

In this section you will see how to build a simple application using a stimulus-
response model to capture the performance requirements and perform timing 
analysis on the result. 

3.3.1 Your Specification 

For this example, the specification contains the following requirements. 

• The target processor is the Motorola HC12. (Select a different target if 
your installation does not include this processor.) 

• The target clock is 8MHz. 

• A button Button1 can be pressed many times, but never faster than 
twice per second. The minimum interval is 0.1s.   

Figure  3:24 illustrates these requirements (B is used in the diagram to indicate 
when the button is pressed). 
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Figure  3:24 - Button1 Requirements 

• A lamp Lamp1 must be lit within 10ms of Button1 being pressed. 

• Lamp2 must be switched off within 11ms of Button1 being pressed. 

• Motor Motor1 must be started within 200ms of Button1 being 
pressed. 

Figure  3:25 shows these requirements. 

10ms

11ms

200ms

B Lamp1 Lit Lamp1 Off Motor1

 

Figure  3:25 - Lamp1, Motor1 and Button1 Requirements 

• When Motor1 is up to speed, an interrupt is raised. 

• Lamp1 must be switched off within 11ms of the motor being up to 
speed. 

• Lamp2 must be switched on within 10ms of the motor being up to 
speed. 

Figure  3:26 illustrates these requirements. 

Motor up to Speed Lamp2 On

10ms

11ms

Lamp1 Off

 

Figure  3:26 - Lamp1, Lamp2 and Motor1 Requirements 

• Lamp3 must toggle on/off every 1s, with an accuracy of  +/- 2ms. 

You can see this requirement in Figure  3:27. 
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Figure  3:27 - Lamp3 Requirements 

• The debounce circuitry attached to button Button1 means that it takes 
between 0.1ms and 0.4ms from pressing the button to it being 
presented to the processor. 

• It takes 0.5ms from the processor applying current to a lamp to the 
filament in the lamp being actually to be ‘lit’. 

• It takes 0.3ms from the processor removing current to a lamp to the 
filament in the lamp being deemed to be ‘off’. 

• It takes 50ms to start Motor1 from the processor applying power to it. 

Creating a New Application using the RTA-OSEK GUI 

To create a new application, you’ll need to run the RTA-OSEK GUI and select 
New from the File menu.  The Select Target dialog will open.  Select the 
target processor from the Available Targets and Variant drop down lists.   

In Figure  3:28, the HC12/COSMIC 16 task target has been selected and the 
HC12 variant is being used.  Remember that if your installation does not 
include the HC12, you must select a different processor. 

 

Figure  3:28 - Selecting a Target Processor  

Important: The Available Targets list will only show the targets that have 
been installed on your own computer, according to your license file. Please 
contact LiveDevices if you cannot see the targets that you expect. Each target 
may have a number of variants to reflect different chip versions based on a 
common processor core. 
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The Select Target dialog in Figure  3:28 can also be used to enter the 
Instruction Rate and Stopwatch Speed.  The instruction rate should be set 
according to the smallest instruction cycle in the processor. 

The stopwatch speed value depends on the sample rate used by timer 
hardware attached to the GetStopwatch() function that is used in Timing 
and Extended builds.  This function is used to measure execution time in OS 
and application code.  Ideally the stopwatch is run at the instruction rate, but 
on some targets this may not be possible. 

When the target information has been set and the OK button has been 
clicked, the RTA-OSEK GUI automatically displays a summary of the new 

application. You can see this in Figure  3:6. You can refer back to this 
summary at any stage to see an overview of the entire system that you are 
creating. 

Saving the Application 

As soon as you create a new application, it is a good idea to save it.  To save 
an application for the first time, from the File menu select Save As…. 

In the Save As dialog, use the Save In list to navigate to the location that you 
want to save the file in.  For the File Name in this example, enter the name 
UserApp.  Click the Save button to save your new application. 

You can save the application at any time by using the File menu to select 
Save or by pressing the Ctrl key and the S key together on the keyboard 
(Ctrl+S). 

Viewing the OIL File 

The file that is created is saved using OIL v2.5 syntax. This means that other 
OSEK compatible tools can read it. You can view the contents of the OIL file 
for the current application by clicking on the View menu and selecting OIL 

File. 

You’ll see the OIL file contents displayed in the lower half of the workspace, 

an example was shown in Figure  3:7. 

In the upper part of the window you can see the details that were displayed in 
the workspace. In the lower part of the window you can now see the OIL file. 

Additional RTA-OSEK-specific information is saved in the OIL file using 
comments that start with //RTAOILCFG. These comments aren’t usually 

shown in the OIL view, but you can switch them on. 

To view the RTA-OSEK-specific comments, from the File menu, select 
Options. The Options dialog opens. Select the Show RTA Extended OIL in 

View option, shown in Figure  3:29. 
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Figure  3:29 – RTA-OSEK GUI Options Window 

If you click the OK button in the Options window, you’ll see the comments in 
the OIL file. 

If you are importing a legacy OIL file, comments placed within an OIL CPU 
object (other than those generated by RTA-OSEK) are not preserved.  
Comments outside the object and OIL descriptions are preserved. 

You can close the OIL view by clicking on the View menu and deselecting OIL 

File. 

Important: Do not hand-edit OIL files that use extended //RTAOILCFG 
syntax. Interdependencies exist that could cause you to lose important 
information when the RTA-OSEK GUI reads the file back in. 

Entering Stimuli and Responses 

To implement your specification, the first thing you’ll need to do is to enter 
the stimuli and responses.  Select the Stimuli group on the navigation bar, 

shown in Figure  3:30.  The workspace displays the Stimulus Summary.  
Here, the summary shows that there are no stimuli in this application. 

Four kinds of stimuli are available for use in an application: bursty, alarm, 
periodic and planned. Full details of these types of stimuli can be found in 
Sections 10 and 11 of this User Guide. In this example, you will create bursty 
stimuli to model the pressing of Button1 and Motor1 reaching its running 
state. You will also create an alarm stimulus that models Lamp3 toggling on 
and off every 1s. 
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Figure  3:30 - Viewing the Stimulus Summary 

To add a new bursty stimulus, select the Stimuli subgroup on the navigation 
bar. You’ll see a Select Stimulus drop down list and three buttons. 

When there are no stimuli in your application only the Add Stimulus button 
is enabled. 

Click the Add button in the Stimulus workspace. This opens the Add 
Stimulus dialog.  Enter the name Button1Press. 

 

 

Figure  3:31 - Entering a Name for the New Stimulus 
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Clicking the OK button, as shown in Figure  3:31, creates a new stimulus.  By 
default, the stimulus type is bursty. The default properties for this stimulus are 
displayed in the workspace. 

Across the top of the workspace, in Figure  3:32, you will see that there is now 
a Response drop down list and all of the buttons are now enabled. The 
buttons that appear down the left hand side of the workspace can be used to 
change the stimulus properties. 

 

Figure  3:32 - Viewing the New Bursty Stimulus 

You have now created a bursty stimulus called Button1Press that, by default, 
will only occur once. There is no primary profile set, so it will not yet be 
detectable. A bursty stimulus is used to model real-world events whose arrival 
time cannot be guaranteed, but where a maximum rate can be determined. 

You will notice that the RTA-OSEK GUI also created a default response called 
response1. 

The default details for this new response are shown in the workspace.  At the 
moment the response won’t have a deadline or an implementation. 

Your specification says that Button1Press can occur many times, but no faster 
than twice per second, with a minimum interval of 0.1s.  

To add this into your application: 

• Click the Arrival Pattern button in the Stimulus workspace.  This 
opens the Arrival Burst Pattern dialog. 

• In the first row of this dialog, enter the value 1 into the At Most… 
column.  Then enter 0.1 into the In Any… column and select real 
time and s from the drop down lists. 

Figure  3:33 shows the information you have just entered. 



 3
.3
 

 

RTA-OSEK v5.0.2 The Development Process 3-31 

 

Figure  3:33 - Entering the First Arrival Burst Pattern 

Now you will need to add another burst pattern of ‘at most 2 times in any 1 
real time s’. To add another burst pattern: 

In the Arrival Burst Pattern dialog, click the  button. 
This adds a new entry to the dialog. 

• Enter 2 into the At Most… column. Enter 1 into the In Any… column 
and select real time and s from the drop down lists. 

• Click the OK button to save the changes that you have made. 

 

Figure  3:34 - A Stimulus with a Complex Bursting Pattern 

The next part of your specification says that Lamp1 must be lit within 10ms of 
Button1Press. This is the deadline for Lamp1 to be lit 

There is a 0.5ms delay from switching on the current to the lamp being lit. 

• Click the Rename Response button in the Stimulus workspace.  In 
the Rename dialog that opens, rename response1 to Lamp1On.  
Renaming the response make it clearer which response is generated 
when the Button1Press stimulus is detected. 

• Click the OK button, as shown in Figure  3:35, to save the new name. 
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Figure  3:35 - Renaming a Response 

• Click the Deadline button and set the deadline to 10 real time ms, 

as shown in Figure  3:36. 

 

Figure  3:36 - Entering the Lamp1On Response Deadline 

• Click the Response Delay button.  Set the Max value to 0.5 real 
time ms and the Min value to 0. 

 

Figure  3:37 - Setting the Response Delay for the Lamp1On Response 

If you look at the workspace you will see a summary of the details you have 

entered.  Have a look at Figure  3:38. 
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Figure  3:38 - Viewing the Button1Press Stimulus and the Lamp1On Response  

The next part of the specification says that Lamp2 must be switched off within 
11ms of the Button1Press stimulus. It must also take into account that there is 
a 0.3ms delay from removing the current to the lamp being unlit. 

• Add a new response by clicking the Add button (to the right of the 
Response drop down list). 

• Enter the name Lamp2Off and click the OK button. 

• Click the Deadline button and set the deadline to 11 real time ms. 

• Click the Response Delay button and set the Max value to 0.3 real 
time ms and the Min value to 0. 

The current details are displayed in the workspace, shown in Figure  3:39. 

 

Figure  3:39 - Viewing the Details of the New Lamp2Off Response  

Next you will need to add a response that represents Motor1 being switched 
on. 
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• Add a new response called Motor1On.  Remember that you must 
click the Add button to the right of the Response drop down list to 
do this. 

• Set the Motor1On Deadline to 200 real time ms. 

• Set the Response Delay Max value to 50 real time ms and Min to 
0. 

 

The specification says that Lamp3 has to toggle on and off every 1 second (+/-
2ms).  To add this to your application, you will need to add a new stimulus 
and a new response.  

• Add a new stimulus by clicking the Add button (to the right of the 
Select Stimulus drop down list); 

• Enter the name Lamp3Toggle and click the OK button. 

• Click the Arrival Type button and set the stimulus to be periodic by 
selecting the Periodic option,  

• Click the Arrival Pattern button and set the period to 1 real time s. 

• To satisfy the requirement for a toggle variation of +/-2ms, click the 
Deadline button and enter of a 4 real time ms deadline for the 
response. 

• Click the Response Delay button and set Max to 0.5 real time ms 
(the lamp switch-on delay). 

A summary of the stimuli and responses can be seen in the workspace, as 

shown in Figure  3:40. 

 

Figure  3:40 - Viewing the Details of the New Lamp3Toggle Stimulus and Response  

Finally, you will need to enter the details for the motor reaching the running 
state. 

• Add a new bursty stimulus called Motor1Running. 

• Rename the default response to Lamp2On. 

• Enter a Deadline of 10 real time ms. 
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• Enter a maximum  Response Delay of 0.5 real time ms. 

• Create a new response called Lamp1Off. 

• Specify a Deadline of 11 real time ms. 

• Enter a Response Delay of 0.3 real time ms. 

Figure  3:41 shows the details of the Motor1Running stimulus. 

 

Figure  3:41 - Viewing the Details of the New Motor1Running Stimulus  

The information provided in the specification has now been entered.  Have a 
look at the Stimulus Summary to see an outline of the details you have 

specified.  The workspace should appear as shown in Figure  3:42. 
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Figure  3:42 - Reviewing the Stimulus Summary  

Remember that you should always save your application regularly, by selecting 
Save from the File menu. 

3.3.2 Implementation  

You have now reached the implementation stage.  It is now time to decide 
how the stimuli are detected and how responses are implemented.  You will 
also learn how to create ISRs and tasks using the RTA-OSEK GUI. 

Creating an ISR 

You will need three interrupt sources in this example.  One that detects the 
button press, another attached to a hardware timer that can provide 
interrupts every 100ms and the third attached to the motor. 

In this example, let’s assume that all three interrupt sources can be serviced by 
a single ISR.  This ISR will be called PrimaryISR. 

To create a new ISR, select the ISRs group from the navigation bar. 

Figure  3:43 shows the how the ISRs group is selected and how the ISR 
Summary initially appears in the workspace. 
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Figure  3:43 - Selecting the ISRs Group from the Navigation Bar 

In this example you must use a Category 2 ISR because you will need to 
activate tasks. Category 1 ISRs are not allowed to make OS API calls, so they 
cannot be used in this case. 

• From the navigation bar, select the Category 2 ISRs subgroup. 

• Create the ISR by clicking the Add button in the workspace. 

• In the Add Cat 2 ISR dialog, enter the name PrimaryISR and click 
OK. 

• Depending on the target type, you may need to enter an interrupt 

Vector and a Priority.  An example is shown in Figure  3:44. 

 

Figure  3:44 - Selecting the ISR Vector and Priority 

The workspace displays the default settings for the new ISR. 
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Figure  3:45 - Viewing the Details of the New PrimaryISR  

Notice that, at the top of the workspace, the RTA-OSEK GUI automatically 
created an execution profile called default_profile for the new ISR.   

Execution profiles are used to describe different paths of execution through a 
task or ISR for timing analysis purposes.  The ISR, in this example, has to 
establish which interrupt sources are pending, so that it can react to the 
correct stimulus. 

For the moment, the ISR will exit after reacting to an interrupt source rather 
than checking the other sources.  The execution path taken by the ISR can, 
therefore, take one of three paths.  The code will look something like Code 

Example  3:5. 

#include "PrimaryISR.h" 

ISR(PrimaryISR) 

{ 

  if (Button1PressInterruptPending()) { 

    /* Button1Press detected. */ 

  } else if (Motor1RunningPending()) { 

    /* Motor1Running detected. */ 

  } else { 

    /* Timer expiry detected. */ 

  } 

} 

Code Example  3:5 - Paths of Execution for an ISR 

Three execution profiles must be created. 

• Rename the existing execution profile by clicking the Rename button 
(to the right of the execution profile drop down list).  This is can be 

seen in Figure  3:46. 
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Figure  3:46 - Renaming an Execution Profile  

• In the Rename dialog, change the name of the execution profile from 
default_profile to pButtonPress. 

You can now enter the time allowance for the Button1 debounce circuitry. 
Recognition time only applies to primary profiles. It is the min/max time 
between a real-world event occurring and the resulting state change 
happening at the processor. Recognition time is an important value for timing 
analysis, particularly in distributed systems. 

• Click the Primary/Activated button. The Primary or Activated 
Profile dialog opens. 

• Set the interrupt Recognition Time to 0.4 real time ms for the Max 

value and 0.1 real time ms for Min. This is shown in Figure  3:47. 

• Click the OK button. 

 

Figure  3:47 - Entering the Primary Profile Settings 

• Create a new profile by clicking the Add button (to the right of the 

execution profiles drop down list) as shown in Figure  3:48. 
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Figure  3:48 - Adding a New Execution Profile  

• In the Add execution profile dialog, enter the name 
pMotor1Running. 

• Now create another new profile called pTimer. 

You must now tell the RTA-OSEK GUI that the three new profiles reflect 
individual sources and that only one is processed at a time. 

This is achieved by informing the RTA-OSEK GUI that the ISR is retriggering.  
This means that one interrupt is handled at a time by the ISR. The ISR then 
returns and pending interrupts will retrigger the ISR. 

• In the ISR workspace, click the Buffering button to launch the 

Specify ISR buffering behavior dialog box as shown in Figure  3:49. 
Clear the Simple – no buffering check box and set the ISR’s 
buffering to Retrigger after Leaving ISR and Buffer by Execution 
Profile.  

 

Figure  3:49 - Specifying ISR Buffering Behavior for PrimaryISR 

You can see a summary of the ISR by selecting the Summary subgroup, as 

shown in Figure  3:50. 
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Figure  3:50 - Viewing the ISRs Summary 

Attaching an ISR to a Stimulus 

The new ISR needs to be attached to the Button1Press and Motor1Running 
stimuli that you created earlier.  The RTA-OSEK GUI will then know that it will 
be responsible for generating the responses required when the stimuli are 
detected. 

• From the navigation bar, select the Stimuli group. 

• Select the Stimuli subgroup and then use the Select Stimulus drop 
down list to select Button1Press. 

• Click the Primary Profile button.  The Select Profile dialog opens. 

• From the Primary Profiles drop down list, select PrimaryISR.pButtonPress 
and click the OK button, as shown in Figure  3:51. 

 

Figure  3:51 - Selecting a Primary Profile for Button1Press 

You have now shown that the profile pButtonPress of ISR PrimaryISR is 
responsible for reacting to stimulus Button1Press. 
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• Use the Select Stimulus drop down list to select the Motor1Running 
stimulus. 

• Click the Primary Profile button.  In the Select Profile dialog, select 
PrimaryISR.pMotor1Running and then click the OK button. 

You will need to do more configuration before you can use the pTimer profile; 
remember that the timer interrupts every 100ms, but the Lamp3 toggle only 
occurs every 1s. You will need something that will count each interrupt tick 
and raise the stimulus Lamp3Toggle every 10 ticks.  This can be achieved 
simply by using an OSEK counter object. 

• From the Stimuli group on the navigation bar, select the Counters 
subgroup. 

• Click the Add button to create a new counter called TimerCounter. 

• When prompted, specify that the Fastest Tick Rate is 100 real time 

ms. 

 

Figure  3:52 - Viewing the Default Details for the new Counter 

• Click the Primary Profile button and use the Primary Profiles drop 
down list to select PrimaryISR.pTimer. 

• Now, from the navigation bar, go to the Stimuli group and select 
stimulus Lamp3Toggle. 

• On the Counter tab, click the Schedule/Counter button and specify 
that the stimulus is attached to counter TimerCounter. This is shown 

in Figure  3:53. (If you are familiar with OSEK concepts, you will 
recognize that this stimulus has now been implemented as an OSEK 
alarm.) 
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Figure  3:53 - Selecting a Counter for Lamp3Toggle 

In Figure  3:54, you can see that the Stimulus Summary shows that all three 
stimuli are now driven by the appropriate primary profiles. 

 

Figure  3:54 - Viewing the Primary Profiles on the Stimulus Summary 

Creating Responses 

You saw earlier that responses are normally implemented using tasks.  In this 
example you will need 4 tasks: 

1. Task Button1Response will be used to implement both responses 
Lamp1On and Lamp2Off when Button1 is pressed. 

2. Task MotorStart will be used to implement response MotorOn when 
Button1 is pressed. 

3. Task LampToggle will be used to implement response Lamp3Toggle 
when the alarm Lamp3Toggle occurs. 

4. Task MotorResponse will be used to implement both responses 
Lamp2On and Lamp1Off when the motor runs. 

Looking at the deadlines involved, LampToggle should have the highest 
priority, because it is associated with the shortest deadline.  MotorStart can be 
given the lowest priority, because its associated deadline is the longest.  The 
other two tasks can be given ‘medium’ priorities. 

Let’s start with the responses for stimulus Button1Press. 

• Select stimulus Button1Press and response Lamp1On. 

Click the Implementation button and then click the Add button.   



 3
.3
 

 

3-44 The Development Process RTA-OSEK v5.0.2 

 

Figure  3:55 - Creating a Task or ISR from the Implementation of Response Dialog 

The Create Task or ISR dialog opens (Figure  3:56).  

• Select the Task option and click the OK button. 

 

Figure  3:56 - Creating a New Task 

This opens the Add Task dialog. 

• Create a task named Button1Response.  Assign it priority 10 and 
click OK. 

• The execution profile can be left as default_profile.  At this stage, 
there is no need to specify an execution time. Click OK, then Ok again. 

 

Figure  3:57 - Viewing the Implementation Details for the Lamp1On Response 

• Now make sure that the Select Stimulus drop down list has 
Button1Press selected and use the Response drop down list to select 
Lamp2Off. 

• Click the Implementation button.  You can simply select 
Button1Response from the execution profile list because this time 
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you are going to implement the response in the task that you just 
created. Click OK. 

• From the Response drop down list in the workspace, select the 
Motor1On response. 

• Click the Implementation button to create a new task MotorStart 
with priority 5. Once again, there is no need to rename the 
default_profile and the execution time can be left undefined. 

 

Next add the response for stimulus Lamp3Toggle. 

• Select the stimulus Lamp3Toggle. 

• Click the Implementation button and add a new task called 
LampToggle with priority 20. 

 

Finally you can add the responses for stimulus Motor1Running. 

• Select stimulus Motor1Running and response Lamp2On. 

• Click the Implementation button and add a new task 
MotorResponse with priority 9. 

• Select response Lamp1Off. 

• Click the Implementation button and select task MotorResponse. 

The Stimulus Summary now shows all three stimuli and the primary profile.  
The configuration of the application is complete. 

 

Figure  3:58 - Viewing the Stimulus Summary with Primary Profile and Responses 

Writing Task and ISR Code 

You will now need code for the ISR PrimaryISR, tasks Button1Response, 
MotorStart, LampToggle and MotorResponse, as well as the application’s 
main() function (includes application startup and idle mechanism). 

The C source code can be created externally from the RTA-OSEK GUI if you 
wish, but you can also create templates from the RTA-OSEK GUI to help get 
you started. To do this: 

• Change to the Builder, then from the navigation bar, select the 
Custom Build group. 
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• In the workspace, click the Create Templates button.  RTA-OSEK will 
create seven C source files and put skeleton code in each of them.  It 
also creates a batch file rtkbuild.bat, which you will use later in 
the build phase. 

Writing Code for PrimaryISR 

From the navigation bar, select the ISRs group.  Then select the Category 2 
ISRs subgroup and from the workspace, select PrimaryISR. 

You don’t have to worry if you can’t remember everything that has to be 
done in the ISR, because the RTA-OSEK GUI can tell you. Simply select the 
Implementation option from the View menu. The lower section of the ISR 
window is displayed and the implementation details for the ISR will appear.  
You can resize this window by moving your mouse over the blue horizontal 
‘splitter’ bar. Click and hold the left mouse button and drag the bar up or 
down. 

 

Figure  3:59 - Viewing the PrimaryISR Implementation Notes 

The sample code shows the ISR-specific header file PrimaryISR.h being 

#included, followed by the ISR body. The three execution profiles are 

reflected in the three routes through the if…else…else construct.  

Notice that the tasks that provide the responses are activated in the 
appropriate execution profiles and counter TimerCounter is ticked in the 
pTimer profile. 

You can close the implementation notes by deselecting the Implementation 
option in the View menu. 
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Important: You must implement the flow of control exactly as shown by the 
RTA-OSEK GUI. If you don’t do this, the system you implement will have 
different timing characteristics from the system that RTA-OSEK will later use to 
perform timing analysis.  In particular, do not re-arrange the order of 
checking for interrupt sources and do not loop back to test for any 
interrupts that are still pending without specifying that the ISR has 
‘looping’ behavior. 

You can directly edit the source code for the ISR by selecting the  button 
in the Category 2 ISRs workspace. 

Important: When editing files from within the RTA-OSEK GUI, the default 
editor is set to be the Windows Notepad application.  You can select your 
own preferred editor from the File menu, by selecting Options. 

Portability note: The code that needs to be written here is target-specific, so 
no details are given where lines involve detection of pending interrupt sources 
and how they are acknowledged. 

Writing Code for Button1Response 

From the Tasks group on the navigation bar, select the Task Data subgroup. 
Then select the task Button1Response. 

Use the Implementation View to check the code that is required for this 
task. 
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Figure  3:60 - Viewing the Implementation Notes for Button1Response 

You can directly edit the source code for the task by selecting the  button 
in the workspace. The code you write will be target-specific, but should follow 
the structure in the implementation view. 

Writing Code for the Remaining Tasks 

The code for tasks LampToggle, MotorResponse and Motor1On follow the 
same pattern. 

Whenever you modify the RTA-OSEK configuration always check that the 
suggested implementation matches the code you have written. 

Writing Code for ‘main’ 

In C programs, main() is the starting point for the main application. It is 
called after the low-level startup initialization. Usually interrupts are disabled 
prior to main() being entered. 
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The skeleton code generated by the RTA-OSEK for main() is shown in Code 

Example  3:6. 

/* Template code for 'main' in project: UserApp */ 

 

#include "osekmain.h" 

 

OS_MAIN() 

{ 

  StartOS(OSDEFAULTAPPMODE); 

  ShutdownOS(E_OK); 

} 

Code Example  3:6 - Template Code for main()  

Note that the OS_MAIN() macro is used rather than main(). Individual 
compilers have different criteria for the arguments and return types that are 
allowed for main(), so RTA-OSEK provides OS_MAIN() to assist portability.  

Portability: Using OS_MAIN(), rather than main(), in applications can help 
make them more portable to different RTA-OSEK targets. 

The StartOS(OSDEFAULTAPPMODE) call is used to start the operating 

system.  No operating system API calls should be made before StartOS() is 
called.  

The ShutdownOS()call is used to stop the OS when (and if) the application 

completes. The default action for ShutdownOS() is to stay in an infinite loop 
and not to return. This call is not normally used because applications tend to 
run ‘forever’ (or until the processor loses power or is reset). 

In your example application, you need to perform some initialization of the 
target hardware before calling StartOS. This makes sure that the timer is set 
to interrupt every 100ms and the appropriate interrupt sources are enabled. 
Then, after StartOS(), the alarm should be enabled and an idle loop should 
be entered. 

In fact, the code that executes after StartOS belongs to the idle task.  he 

idle task is called osek_idle_task. 

The idle task can act like any other task; it can make API calls, use resources, 
send and receive messages, send and wait for events and so on. It cannot be 
directly activated because it only terminates when ShutdownOS is called and 
it cannot use internal resources because it would prevent other tasks from 
starting. 

Important: Putting code in the idle task can be a very efficient way of 
implementing a system. In particular, if you have only one task that needs to 
respond to OSEK events you should use the osek_idle_task. Your 
application will be significantly smaller and more responsive if the idle task 
waits for events, rather than any other task. 
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The RTA-OSEK GUI will show you a suggested implementation for 
OS_MAIN().  Select the osek_idle_task task in the Task Data subgroup (in 
the Tasks group on the navigation bar) and view the implementation details. 

Note that in this case, the idle task does no work.  On targets that support it, 
you can put the processor into a ‘sleep’ state in the idle task.  The processor 
must ‘wake-up’ if an interrupt occurs. 

Important: The idle task must not terminate. It must loop forever. 

Setting up Timer/Counter Hardware 

In Code Example  3:7, the function do_target_initialization() needs 
to initialize the interrupt sources. One of these sources is a hardware 
counter/timer that needs to provide an interrupt every 100ms.  

You may wish to use code based on Code Example  3:7 to do this. 

void do_target_initialization(void) 

{ 

 

  unsigned int timer_divide; 

  timer_divide = 

    OSTICKDURATION_TimerCounter / OS_NS_PER_CYCLE; 

 

  /* Target specific setup provided by user */ 

  SetupTimer(timer_divide); 

  EnableTimerInterrupt(); 

  EnableKeyPressInterrupt(); 

 

  /* Set up Button1 and Motor1 interrupts. */ 

  ... 

} 

Code Example  3:7 - Initializing Timer Hardware 

Code Example  3:7 shows initialization using the two RTA-OSEK-generated 

constants OSTICKDURATION_TimerCounter and OS_NS_PER_CYCLE.  

The OSTICKDURATION_TimerCounter constant specifies the duration of 
the ‘tick’ of the counter in nanoseconds (ns), so in this example the 
OSTICKDURATION is 100,000,000ns (1/10th of a second). 

The OS_NS_PER_CYCLE constant specifies the duration of the CPU 
instruction cycle in ns.  For a 10MHz CPU, this is 100ns.   

In this example, you require the timer to be configured to interrupt every 
1,000,000 instruction cycles.  If you use these constants to calculate the divide 
ratio, the code will automatically adjust if the clock rate changes. 
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OS Status, ErrorHook and Callbacks 

For preliminary testing, you should run the application using the operating 
system’s Extended build.  Extended build means that the OS performs 
rigorous checks in each API call. Of course, this takes time and code space. 

Once the application is seen to be working correctly, you will usually switch to 
Standard build. Very few checks are made with Standard build, so the OS 
can run much more efficiently. 

When using Extended build, you can check the return status code from each 
API call or alternatively request that Error Hook be used. This is a function that 
the OS will call whenever an error is detected. You write the implementation 
of Error Hook in your application. Normally you will use it to halt debugging 
and to alert you of errors. 

To use the Error Hook facility 

• Select the Application group from the navigation bar and then select the OS 
Configuration subgroup. 

• In the OS Configuration Summary workspace, click the Hooks 
button.  The Select Hooks dialog opens. 

• Select the Error Hook checkbox and then click the OK button. 

You can see that the Error Hook has been selected in Figure  3:61. 

 

Figure  3:61 - Selecting the Error Hook 

You can add the code needed to implement ErrorHook() in any source file, 

but main.c is a good place to start. Add the following code: 

#ifdef OSEK_ERRORHOOK 

 

OS_HOOK(void) ErrorHook(StatusType e) 

{ 

 /* Put a debugger breakpoint here. */ 

 while (1) { 

  /* Freeze. */ 

 } 

} 

#endif /* OSEK_ERRORHOOK */ 
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Code Example  3:8 - The ErrorHook() 

You can find more information about using ErrorHook() for debugging 
purposes in Section 13 of this User Guide. 

There are three other functions that you must supply when using the Timing 
or Extended build.  The operating system uses these to time the execution of 
your code. 

Don’t worry about the details at the moment; simply add the code in Code 

Example  3:9 after the ErrorHook(). 

#ifdef OS_ET_MEASURE 

OS_HOOK(void) OverrunHook(void) 

{ 

  /* Put a debugger breakpoint here. */ 

  while (1) { 

    /* Freeze. */ 

  } 

} 

OS_NONREENTRANT(StopwatchTickType) 

GetStopwatch(void) 

{ 

  /* Temporary implementation. A correct solution  

   * returns the current stopwatch value. */ 

  return 0; 

} 

OS_NONREENTRANT(StopwatchTickType) 

GetStopwatchUncertainty(void) 

{ 

  /* Temporary implementation. A correct solution  

   * returns the uncertainty in the stopwatch 

   * value. */ 

  return 0; 

} 

#endif /* OS_ET_MEASURE */ 

Code Example  3:9 - Timing Callbacks 

Final Checks 

To view a complete implementation summary, from the Application group 
on the navigation bar, select the Implementation subgroup. 

Use this as a checklist to ensure that your application is fully implemented.  
You can print out this summary by selecting Print Selection from the File 
menu. 

3.3.3 Build 

If you have successfully completed all of the steps in creating this example 
application, you can now start the build process. Switch to the Builder, and 

refer to Section  3.6.2 where the build process is described. 
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3.3.4 Functional Testing 

The executable file can be downloaded to your target hardware, so that you 
can test its behavior. 

Initial testing should always be performed using the Extended build with the 
Error Hook, because the OS will detect any misuse of API calls.  Only once an 
application performs correctly should you switch to the Timing or Standard 
builds. 

3.3.5 Analysis 

At this stage your application appears to work, but how do you know that it 
meets all of its deadlines every time?  If you do not use timing analysis you 
cannot be sure that there is no a rare combination of circumstances that will 
cause deadlines to be missed.  Even with thousands of hours of testing, you 
may not pick up that ‘once in a million’ failure.  

Later in this guide, you will find out how to measure the execution time of 
your task and ISR execution profiles.  For the moment, you can use some 
‘invented’ execution times.  This enables you to see how timing analysis is a 
simple step on from building your application. 

Let’s use the following times: 

• Execution time for ISR PrimaryISR.pButtonPress is 1,000 processor 
cycles. 

• Execution time for ISR PrimaryISR.pMotor1Running 1,500 processor 
cycles. 

• Execution time for ISR PrimaryISR.pTimer is 2,000 processor cycles. 

• Execution time for task LampToggle is 8,000 processor cycles.  It 
toggles Lamp3 on after 7,000 processor cycles. 

• Execution time for task Button1Response is 20,000 processor cycles.  It 
switches Lamp1 on after 12,000 processor cycles and turns Lamp2 off 
after 16,000 processor cycles. 

• Execution time for task MotorResponse is 20,000 processor cycles.  It 
switches Lamp2 on after 10,000 processor cycles and turns Lamp1 off 
after 14,000 processor cycles. 

• Execution time for task MotorStart is 40,000 processor cycles.  It 
applies power after 30,000 processor cycles. 

Notice that you have specified execution time in processor cycles, rather than 
in the seconds or milliseconds that were used when specifying the real-world 
stimuli and their deadlines.  RTA-OSEK knows that if the processor clock 
frequency doubles, the execution times halve, but that the stimuli and 
deadlines do not change.  Take care to use appropriate units when entering 
time values. 

Be aware that you can build some systems that RTA-OSEK cannot analyze.  
Fortunately, however, it is unlikely that you will come across this problem.  

There are three simple rules governing analyzable systems: 
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• A task cannot activate a higher priority task. In fact, in a well-designed 
real-time system, tasks are normally activated by ISRs.  The ISR reacts 
to a stimulus by activating one or more tasks to implement the 
responses.  Sometimes such a ‘response task’ may pass work down to 
a lower priority worker-task, but it rarely needs to pass it to a higher 
priority task because OSEK resources are a more efficient way to 
perform part of the processing at ‘high priority’. 

• Tasks must have different priorities. Shared task priorities are often 
used in OSEK systems to ensure that certain tasks run in mutual 
exclusion. In most cases, you can actually set different task priorities 
for each task and use internal resources to enforce mutual exclusion.  
Incidentally, the RTA-OSEK OS implementation for systems that do not 
use shared priorities is more efficient than one that does use shared 
priorities, because it does not have to manage a FIFO queue for the 
tasks at each shared priority. 

• The OSEK API call Schedule cannot be used. The Schedule() call 
has the effect of releasing all internal task resources.  This cannot be 
sensibly modeled by the timing analysis. You will find that it is very 
unlikely that you would need to use Schedule() in an application 
built with the RTA-OSEK GUI. 

Important: You cannot analyze the response times, the extended tasks and 
any basic tasks of lower priority that the highest priority extended task. 

Before RTA-OSEK will perform timing analysis on a system, you need to tell it 
that your application conforms to these rules.  

• From the navigation bar, select the Application group and then select the 
Optimizations subgroup.   

• Select the No Upward Activation, Unique Task Priorities and 
Disallow Schedule checkboxes. You can also select No 

RES_SCHEDULER, because this standard OSEK resource is not used 
and will only cause unnecessary warning messages during analysis.  
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Figure  3:62 - Selecting the Application Optimization Settings 

Entering the Execution Times 

To enter the execution times for the ISR PrimaryISR 

• select the ISRs group from the Planner navigation bar. 

• From the navigation bar, select the Category 2 ISRs subgroup. 

• Select the ISR PrimaryISR and then select profile pButtonPress.  Click 
the Execution Limits button and set the execution limit to 1000 

processor cycles, as shown in Figure  3:63.  If you wish, you can also 
specify the amount of stack that is used in this execution profile. 

 

Figure  3:63 - Entering the Worst-Case Values for pButtonPress 

• Select profile pMotor1Running and set its execution limit to 1500 
processor cycles.  
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• Select profile pTimer and set its execution limit to 2000 processor 
cycles. 

For the task LampToggle: 

• From the Tasks group on the navigation bar, select the Task Data 
subgroup. 

• Select task LampToggle and set its execution limit to 8000 processor 
cycles. 

• Select the Stimuli group on the navigation bar and then select the 
Stimuli subgroup.  Select the stimulus Lamp3Toggle from the drop 
down list. 

• Click the Implementation button and set the execution time to 7000 
processor cycles.  This reflects the fact that the code in the task 
actually toggles the lamp some time before the end of the task. 

 

Figure  3:64 - Specifying the Execution Time for Lamp3Toggle 

For task Button1Response: 

• From the Tasks group on the navigation bar, select Task Data 
subgroup. 

• Select task Button1Response and set its execution limit to 20000 
processor cycles. 

• Select the Stimuli group on the navigation bar and then select the 
Stimuli subgroup. Select the stimulus Button1Press from the drop 
down list.  

• Select response Lamp1On and set the implementation execution time 
to 12000 processor cycles. 

• Select response Lamp2Off and set the implementation execution time 
to 16000 processor cycles. 

For task MotorResponse: 

• Select Task Data from the Tasks group of the navigation bar. 

• Select task MotorResponse.  Set its execution limit to 20000 
processor cycles. 

• Select the Stimuli group on the navigation bar and then select the 
Stimuli subgroup. Select the stimulus Motor1Running from the drop 
down list.  
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• Select response Lamp2On and set the implementation execution time 
to 10000 processor cycles. 

• Select response Lamp1Off and set the implementation execution time 
to 14000 processor cycles. 

For task MotorStart: 

• Select Task Data from the Tasks group of the navigation bar. 

• Select task MotorStart and set its execution limit to 40000 processor 
cycles. 

• Select the Stimuli group on the navigation bar and then select the 
Stimuli subgroup. Select the stimulus Button1Press from the drop 
down list. 

• Select response Motor1On and set the implementation execution 
time to 30000 processor cycles. 

Performing Schedulability Analysis 

Now that you have got this far, you can perform timing analysis. 

• From the Analyze group on the navigation bar, select the 
Schedulability subgroup. 

The analysis results appear in the workspace. 

 

Figure  3:65 - Timing Analysis Text View  

You can switch between the text and graphic views of the results by clicking 
on the Text/Graphic tabs at the bottom of the screen. (Right-click on the 
graphic to access the zoom in/out options.) 
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Figure  3:66 - Timing Analysis Graphical View  

Figure  3:66 shows that this example system is schedulable.  There are some 
points that you should note about the analysis: 

• The profile pButtonPress of ISR PrimaryISR will always run and 
complete its execution within 775µs of Button1 being pressed.  This 
time includes up to 400µs for the button debounce delay, up to 250µs 
in which the profile can be blocked from starting by the execution of 
either pMotor1Running or pTimer and then the 125µs execution time 
of pButtonPress itself. 

• The profile pMotor1Running of ISR PrimaryISR will always run and 
complete its execution within 562.5µs of the motor getting up to 
speed.  This time includes up to 250µs in which the profile can be 
blocked from starting by the execution of pTimer, 125µs where 
pButtonPress can ‘interfere’ with it (if both interrupt sources are ready 
at the same time, pButtonPress takes precedence) and then the 
187.5µs execution time of pMotor1Running itself. 

• The profile pTimer of ISR PrimaryISR will always run and complete its 
execution within 562.5µs of the timer interrupt.  This time includes up 
to 312.5µs in which the profile can be blocked from starting by the 
execution of pButtonPress and pMotor1Running and then the 250µs 
execution time of pTimer itself. 

• Task LampToggle always terminates within 1.5625ms of the timer 
interrupt.  This comprises up to 562.5µs interference from the ISR and 
1ms execution time.  You can see that the deadline of 4ms is met with 
1.9375ms to spare, because the task issues the ‘toggle’ instruction by 
1.5625ms and then there is 0.5ms response delay bringing the total 
response time to 2.0625ms. 

• Task Button1Response completes within 4.4625ms and meets its 
deadlines.  
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• Task MotorResponse completes within 6.5625ms and meets its 
deadlines.  

• Task MotorStart completes within 11.9625ms and meets its deadline.  

You can try adjusting the execution times and deadlines to see the effect of 
the changes on the analysis results. 

Interrupt Recognition and System Timings 

In an actual system, the analysis must take account of time spent executing 
sections of OS code. For accurate analysis you should include the interrupt 
recognition and system timings. 

Later on you will find out more about these and you will see how they should 
be calculated.  

Performing Sensitivity Analysis 

Sensitivity is used to determine the limits of schedulability of a system.  
Sensitivity analysis changes one parameter at a time and determines the 
maximum value it can take in a schedulable system. 

To perform Sensitivity analysis 

• From the Analyze group on the navigation bar, select the Sensitivity 
subgroup. 

The analysis results appear in the workspace. 

 
 

Figure  3:67 - Sensitivity Analysis Text View  

You can also view the results of the analysis in graphical format. 



 3
.3
 

 

3-60 The Development Process RTA-OSEK v5.0.2 

 

 Figure  3:68 - Sensitivity Analysis Graphical View 

You should note the following points: 

• The code that turns Lamp1 on and Lamp2 off in task 
Button1Response can take as long as 20000 processor cycles to run 
and the system will still be schedulable.  This means that the ‘toggle’ 
can be the last instruction in the task.  In fact, at this clock speed, all 
of the ‘critical execution’ times in the system can be extended to the 
last instruction of the appropriate task. 

• Task Button1Response can actually run for as long as 6.688ms.  

• Task MotorStart can run for up to 93.138ms. 

• Task MotorResponse can run for up to 90.638ms. 

• Task LampToggle can run for up to 5.188ms. 

• Execution profiles in PrimaryISR can run for up to 2.188ms, 2.25ms 
and 2.313ms. 

• The CPU clock could be reduced to 58.13% of the declared value.  
This roughly halves the power needed by the processor. 

Bear in mind that these are ‘either/or’ options.  You should not expect to be 
able to apply all of these results and still have a schedulable system. 

Calculating Best Task Priorities 

Calculation of the “best task priorities” attempts to reduce the amount of 
task preemption (and hence stack usage) whilst keeping the system 
schedulable. It will suggest the ideal priority for each task, along with the 
internal resources that should be used.  

• Select Best Task Priorities from the Analyze group of the navigation 
bar. 

The results appear in the workspace. 
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Figure  3:69 - Priority Analysis Text View  

You can also see the results displayed graphically, as shown in Figure  3:70. 

 

Figure  3:70 - Priority Analysis Graphical View 
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In this case, changing the task priorities and ensuring that Tasks MotorStart, 
Button1Response and MotorResponse do not preempt each other, can 
reduced preemption.  This can be achieved by assigning them to an internal 
resource. 

The individual response times change when these settings are applied, but the 
system remains schedulable. 

Calculating the CPU Clock Rate 

CPU clock rate analysis attempts to reduce CPU clock rate whilst keeping the 
system schedulable. It will suggest the ideal priority for each task to achieve 
this clock rate.  

• Select CPU Clock Rate from the Analyze group of the navigation 
bar. 

The results appear in the workspace. 

 

Figure  3:71 - CPU Clock Rate Analysis Text View 

You can also see the results displayed graphically. 

 

Figure  3:72 - CPU Clock Rate Analysis Graphical View 
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3.4 Completion of the Examples 

You have now completed all of the stages required in these example 
applications. You have seen some sample specifications and the 
implementation of the requirements using the RTA-OSEK GUI.   

You have learnt the basic skills, which include creating new applications and 
working with stimuli, responses, tasks and ISRs. You have also seen how to 
write code for applications. 

You have learnt about functional testing and building an application. You 
have also seen a summary of the analysis options that are available.   

Now you are encouraged to read the remainder of this guide to find out more 
about the extensive features available in RTA-OSEK. 

3.5 Working with Multiple OIL files 

You may find that your project requires the use of multiple OIL files. For 
example, you may use other tools that generate OIL files or may use 3rd party 
software that is shipped as a complete OS application. 

The OIL standard defines a simple include mechanism for merging multiple 
files which works in the same way to C’s #include scheme. However, the 
syntax of OIL only allows a single CPU clause. This means that you must have 
a single syntactically correct “master” OIL file and multiple syntactically 
incorrect OIL file “fragments” that you include. 

RTA-OSEK provides two more flexible ways to work with multiple OIL files: 

1. Import 

2. Auxilliary OIL files  

3.5.1 Importing Files 

RTA-OSEK can merge the content of multiple syntactically complete external 
OIL files into the current project by importing the external file. (Menu option 
File / Import).  

The following points should be noted: 

• Imported OIL files should be syntactically ‘complete’. i.e. there must be 
a CPU clause around the subsystem declarations. 

• Settings in imported OIL files will override values previously set in the 
current project file. 

Important: When RTA-OSEK saves the project file, any imported values are 
saved in the project file. If you have a subsystem that adds or removes objects 
such as tasks depending upon the configuration then you must take care not 
to save the project file or use auxiliary OIL files instead. 
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3.5.2 Auxiliary OIL files 

When RTA-OSEK saves a project file, it writes the complete set of 
configuration data to a single .oil file. If the original .oil file that was read into 
RTA-OSEK was composed from separate OIL file fragments bound together 
via the #include mechanism, this structure is lost. 

Often this is what is desired. However there may be situations where some 
external tool is being used to maintain portions of the overall application (e.g. 
a TCP/IP stack), and that tool generates a file containing OIL declarations 
relating to the subsystem. 

If the content of the subsystem is changed, RTA-OSEK must update the 
project by re-reading the relevant OIL file fragment. 

This can be done manually by importing the file (Menu option File / Import), 
or alternatively the name of the file can be added to the project as an 
auxiliary OIL file.  

Auxiliary OIL files are read by RTA-OSEK after reading the main project file. 
They act similarly to using #include statements at the end of the project 
file. Auxiliary OIL files are intended to be used where a 3rd party tool is 
responsible for generating a partial OIL configuration that is then included in 
the main project OIL file. 

The following points should be noted: 

• Auxiliary OIL files should be syntactically ‘complete’. i.e. there must be 
a CPU clause around the subsystem declarations. 

• Settings in auxiliary OIL files will override values previously set in the 
project OIL file or any other auxiliary OIL files that are read before the 
current one. 

• When RTA-OSEK saves the project OIL file, any values that originated 
from an auxiliary or imported file get saved in the project file. If you 
have a subsystem that adds or removes objects such as tasks 
depending upon the configuration take care not to save the project 
OIL file. If you do, then you may have to use the GUI to remove the 
objects that are no longer required. 

• When changes to the configuration of an object in an auxiliary OIL file 
are made, these changes will be saved in the project OIL file and not 
the auxiliary OIL file. If the project OIL file is opened again, the 
previous object values from the auxiliary OIL file will be read in again 
and will overwrite the changes in the project OIL file. 

You can use File -> Options -> Auxiliary Files to specify the names and/or 
locations of your auxiliary OIL files: Paths can be absolute of relative to the 
project OIL file location.  
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3.6 RTA-OSEK Builder 

The RTA-OSEK Builder contains two parts: 

• A basic entry method for constructing an application, suitable for 
those already familiar with OSEK concepts. This is described in Section 

 3.6.1.  

• Application build (setting options and actually building the 

application). This is described in Section  3.6.2. 

In the following sections, we will go through the options available in the 
Builder. 

3.6.1 Basic Data Entry 

If you are already familiar with OSEK concepts, you may find that the extra 
features in the RTA-OSEK Planner are more than you need. The Builder 
provides another way to create and modify your application through a 
navigable grid-based interface that only shows standard OSEK features. 

Application data is entered using the ‘Basic Data Entry’ view. Each class of 
OSEK object has its own tab – use the Add and Remove buttons to create 
and delete OSEK objects. 

The tabbed data grids are selected to view all of the details for the individual 

OSEK objects. The Tasks tab is shown in Figure  3:73. 
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Figure  3:73 - Entering Tasks using the Basic Data Entry view 

3.6.2 Building an Application 

If you have successfully completed all of the steps in creating an application, 
you can now start the build process. The build process involves: 

• Compiling the task and ISR C files. 

• Compiling the RTA-OSEK generated C file osekdefs.c. This file 
contains data describing the RTA-OSEK component objects used in 
your application. 

• Assembling the RTA-OSEK generated assembler file osgen. (The file 
extension is target-specific).  This file contains data describing the low-
level RTA-OSEK OS data. 

• Compiling any additional supporting C files, such as target-specific 
files used to implement responses and initialize the hardware. 

• Linking the resulting files with the RTA-OSEK OS API library, the 
compiler’s run-time library and any run-time startup code. 

 

There are two different ways to build your application. You can build a system 
manually or use a custom build script: 

• A Manual Build refers to building the application outside of the RTA-
OSEK GUI. This is typically used in when integrating RTA-OSEK in a 
larger build process. The manual build process is outlined in Section 

 3.6.4. 

• A Custom Build refers to building the application inside the RTA-OSEK 
GUI. This is useful for constructing small sample applications. A 
Custom Build requires you to tell RTA-OSEK about your compiler 
toolchain and about the non-OS source code files, linker settings etc. 

The Custom Build process is described in Section  3.6.5 

3.6.3 Consistency Checking you RTA-OSEK Configurarion 

Clicking on the Build Checks button will check that the system has been 
specified completely enough to build. This step does not compile or check any 
code; it simply confirms that required objects have been defined (whether in 
Planner, or in the basic data entry view). 
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If all required objects have been defined, each check will be marked with 
'OK'. 

3.6.4 Manual Build 

For a manual build you need to run the RTA-OSEK Builder’s code generation 
tool to process the OS configuration and generate the source files (C source 
and header files, as well as assembler source files) for use in your own code 
These generated files need to be incorporated into an external build process 
(perhaps using make or similar). 

The process also creates an ORTI debugger file (if a debugger has been 
selected in the target configuration) and an RTA-TRACE description file (if 
tracing has been enabled). 

You can use the “Create Files” option in RTA-OSEK’s Builder to create the 
files.  

If there are no build errors, the RTA-OSEK GUI will create and list the 

necessary files. An example is shown in Figure  3:74. 

 

Figure  3:74 – Creating RTA-OSEK Files 
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By default, the generated files are create in the same directory as the 
application OIL file. You can change this for each project  or set a new 
default. 

In both case changes are made through the File -> Options... dialogue. 

The setting for the application are in the “Application Settings” tab . You can 
specify different locations for each different type of generated file. A period (.) 
indicates the current directory and a double period (..) indicates the parent 
directory. 

 

Figure  3:75 - Application File Location Setting 

Similarly, the global defaults can be set in “Global Settings” tab.  

Important: Application Settings override Global Settings. 

Using the RTA-OSEK GUI to process your OIL file is impractical when you want 
to make you OS generation part of a larger system build process. RTA-OSEK 
therefore allows you to run the Builder’s code generator from a command 
line: 

 

$ rtabuild application.oil 

RTABuild version 5.x.x 

Copyright © LiveDevices Ltd 2001-2007. 

$ 

 

A full list of command line options is available by executing rtabuild –h or 
by looking in the RTA-OSEK Reference Guide. 
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Once you have generated the RTA-OSEK files from your application OIL file 
you need to: 

• Place the header files in your include path 

• Compile osekdefs.c 

• Assemble osgen.<asm> 

• Linked with the correct RTA-OSEK component library. Remember that 
the library used depends on the build status (Standard, Timing or 
Extended). The name of the library and its location are shown in the 
application implementation notes. 

Important: When you are compiling and assembling your application, you 
can use the rtkbuild.bat file as a guide. The RTA-OSEK GUI can generate this 
file by using the Create 'rtkbuild.bat' button from the 'Custom Build' view.  
In particular, take great care if you use compiler or assembler options other 
than those specified for osekdefs.c and osgen.s. 

3.6.5 Custom Build 

The custom build process is controlled through a build script called 
rtkbuild.bat. This is an MS-DOS batch file that compiles/assembles your 

tasks, ISRs, osekdefs and osgen files. 

rtkbuild.bat is created automatically when you click Build Now. 

The custom build assumes that each of your tasks and ISRs lives in its own 
source file. It also knows which RTA-OSEK source files will be generated and 
how to compile them. 

The only steps you need to add are compilation/assembly for any other files 
that are needed and then link/locate the object modules. This is configured 
using Custom Build in the RTA-OSEK Builder workspace using the Configure 

button – See Section  3.6.6 for a full description. 

Once the build script has been finalized: 

• Save the application.   

• Click the Build Now button.  

The RTA-OSEK GUI checks for errors in the system description. If it detects a 
mistake, it will generate an error message and stop. If it discovers something 
that is unusual, but that may be correct, it will issue a warning and continue. 

The RTA-OSEK GUI then runs the script. You will see the tool output displayed 
in the RTA-OSEK GUI window as the script is executed. If the script completes 
successfully, a new executable file will have been created, ready for testing. 

3.6.6 Custom Build Options 

The Custom Build Options dialog box is displayed by clicking the Configure 
button. This dialog allows the build script to be edited, environment variables 
to be set, and custom buttons to be defined. The custom build script is 
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contained in a generated file called _rtkbuild.bat. This sets up your 

custom options before calling rtkbuild.bat. 

Environment 

In the Custom Build Options dialog the Environment section is used to 
declare any environment variables you need to use as part of the custom build 
process. You can use RTA-OSEK GUI macros when defining these. You can 
find a list of the Built-In macros in Application -> Macros -> Built-In Macros 
and also in the RTA-OSEK Reference Guide. 

The macros provide access to RTA-OSEK settings like the name of he RTA-
OSEK library to link against, the path to the RTA-OSEK include files etc. 

 

 

Figure  3:76 - Custom Build Environment 

Build Script 

By default, the build script simply contains ‘call rtkbuild.bat’. 

The first thing that rtkbuild.bat does is to set environment variables for 

your compiler toolchain by calling the Toolinit.bat script that in your 

RTA-OSEK <install dir>\rta\<target> directory. You must ensure 

that Toolinit.bat is correctly configured for your toolchain. 

Calling rtkbuild.bat will not be enough to build a complete application. 
Typically you will have other code that you need to compile and/or assemble, 
other libraries to link with etc. This means you need to extend the build script. 
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Let’s assume that you have put the target-specific initialization and response 
implementation code in a file called target.c. You must add a line like this 
to the build script: 

%CC% %COPTS% target.c  

Note here that cc and copts are environment variables that have already 

been set up in rtkbuild.bat. You may choose to name the compiler and 

options more explicitly. You can also add a –debug option to the compiler 
command-line. This is achieved by adding an environment variable 
APP_COPT. 

The link/locate stage tends to be more target-specific. An example version, in 
a single line of code, again showing the use of RTA-OSEK macros, is shown 
below. 

 

%lnk% -v -l%RTA_LIB% -l%CBASE%\lib -m$(NAME).map -

otemp.out link.lkf $(RTKOBJECTS) target.$(OBJEXT) 

$(RTKLIB) crtsi.$(LIBEXT) libm.$(LIBEXT) 

libi.$(LIBEXT) 

 

The Custom Build Options dialog will look something like Figure  3:77. 

 

Figure  3:77 - Creating a Custom Build Script 

The words starting with ‘%’ refer to environment variables set up via 

Toolinit.bat and rtkbuild.bat. 

Similarly, the words enclosed by ‘$()’ such as $(NAME) refer to RTA-OSEK 
GUI macro variables. These macros can be used in any of the custom build 
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configuration entries. They are expanded to the appropriate values during the 
final build. 

A full list of the environment variables and macros that are normally available 
can be found in the RTA-OSEK Reference Guide. 

Templates 

RTA-OSEK’s Custom Builder can generate template code for the tasks and 
ISRs that you have declared, together with the main program. 

You can configure the template code in the Templates section as shown in 

Figure  3:78. 

 

 

Figure  3:78 - Customizing Template Code 

When template code is generated the configured insertions are added 
verbatim to the generated code: 

/* Template code for 'T1' in project: MyProject */ 

#include "target.h" 

#include "Com.h" 

#include "T1.h" 

#define SOME_CONSTANT (42) 

TASK(T1) 

{ 

unsigned int InitialisedVariable = SOME_CONSTANT; 

        TerminateTask(); 

}  
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Custom Buttons 

The Custom Buttons section allows you to create up to five user-defined 
buttons for custom builds. By default the first button is set up as a ‘Quick 
Edit’. You can configure these buttons to launch any external programs, such 

as a source-code control system or debugger as shown in Figure  3:79. 

 

 

Figure  3:79 - Custom Button Configuration 

3.6.7 Working with Packages 

RTA-OSEK allows you to integrate the build of additional 3rd party software in 
a common way through the use of the packages scheme. A package defines 
the set of library functions that are provides and allows you to configure the 
worst-case execution time, stack and build information for the library 
functions.  

Package definitions are stored in <install dir>\rta\packages and 

have the extension .pdef. RTA-OSEK v5.0 supplies package definitions for 
RTA-COM.  

You can specify that a package is active for your application by setting the 

availability of the package to as shown in Figure  3:80 
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Figure  3:80 - Packages 

Active packages make their functions available to RTA-OSEK. Each task/ISR 
can specify which library function it calls (and the stack size at which the 
function is called) which then allows RTA-OSEK to include the stack use of the 
package function in stack usage calculations. 

 

Figure  3:81 - Using Functions from Packages 

For further details about the use of packages please contact Technical 
Support. 

3.7 Other Implementation Details 

When writing your own applications, you should consider the implementation 
details in this section. 



 3
.7
 

 

RTA-OSEK v5.0.2 The Development Process 3-75 

3.7.1 Namespace 

The RTA-OSEK component has a defined namespace.  Names cannot be 
created that conflict with existing names or names used internally.  Internal 
names used by the RTA-OSEK component generally begin with the prefixes 
‘os’ or ‘OS’ or ‘_os’ or ‘_OS’.  Other internal names include the tokens used in 
the enhanced OIL grammar.  Follow these simple rules: 

• Do not pick names beginning with ‘os’ or ‘OS’ or ‘_os’ or ‘_OS’. 
These are all reserved for the RTA-OSEK component. 

• Do not choose an object module or file name beginning with ‘os’. 

3.7.2 Reentrancy 

All calls to the RTA-OSEK component are reentrant where necessary.  Special 
protection to prevent reentry is not required. The C libraries provided by your 
compiler supplier, however, may not be reentrant (most C libraries are not). 

Floating-point support presents a common reentrancy problem with C 
libraries. The floating-point problem is not always obvious, since the compiler 
can insert calls to floating-point libraries silently. With the RTA-OSEK 
component, floating-point can be used safely in tasks and ISRs by specifying 
that the object uses floating-point. 

Portability: On some targets, reentrancy problems can occur when functions 
return structures.  If this is the case, protection against reentrancy must be 
performed before and after the call is made to a function that returns a 
structure. 

Important: It is your responsibility to prevent reentry to a non-reentrant 
function.  This is usually implemented by disabling interrupts or by using RTA-
OSEK component ‘resources’.  In fact, a C library of non-reentrant functions 
may contain ‘hooks’ where RTA-OSEK component resource get and release 
calls can be inserted to protect against reentry. 

Any reentrant function in a system running the RTA-OSEK component need 
only be serially reentrant, as opposed to fully reentrant. A serially 
reentrant function is one where it is acceptable to switch from a thread of 
control currently executing the function to a thread of control that is not yet 
executing the function, but will do so later. 

Some compilers can generate different code for reentrant and nonreentrant 
functions. For example, nonreentrant functions can use static data overlaying 
techniques for parameters and local variables. A reentrant version will use the 
stack. 

RTA-OSEK provides the OS_REENTRANT and OS_NONREENTRANT macros to 
ensure generation of the appropriate code. For compilers where there is no 
difference in code generated, these macros have no effect. However, it is 
recommended that they be used for portability. These macros are described in 
detail in the RTA-OSEK Reference Guide. 
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The RTA-OSEK component does not normally use any functions from the 
standard C library, but may need to use some target-specific code from the C 
compiler library. The RTA-OSEK component does not make floating-point 
calculations itself. Refer to the RTA-OSEK Binding Manuals for information on 
the requirements of the RTA-OSEK component on each particular target. 

3.8 Summary 

• RTA-OSEK provides facilities for the specification, design, 
implementation, building and analysis of hard real-time systems. 

• Applications are modeled as stimulus/response relationships. The 
associated performance constraints are expressed as deadlines on 
responses. 

• The design and implementation determines how stimuli are captured 
and how the responses are generated in terms of OSEK OS objects. 

• You can build entire applications using a custom or manual build in 
the simple development environment interface. 

• When execution times for tasks and ISRs in your application are 
determined, timing analysis can then be performed on the 
stimulus/response model to show that all performance constraints are 
satisfied at run-time.  
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4 Tasks 

A system that has to perform a number of different activities at the same time 
is known as concurrent. These activities may have some software part, so the 
programs that provide them must execute concurrently. The programs will 
have to cooperate whenever necessary, for example, when they need to share 
data. 

Each concurrent activity in a real-time system is represented by a task. The 
majority of the application code exists within tasks. 

If you have a number of tasks that must be executed at the same time, you 
will need to provide a means to allow concurrency. One way for you to do this 
is to have a separate processor for each task. You could use a parallel 
computer, but this solution is too expensive for many applications. 

A much more cost effective way for you to achieve concurrent behavior is to 
run one task at a time on a single processor.  You can then switch between 
tasks, so that they appear to be executing at the same time.   

4.1 Task Switching 

A scheduler is used to perform task switching.  It does this by implementing 
a scheduling policy. The policy dictates when one task should (temporarily) 
stop executing and another task should start. 

The OSEK operating system specifies a scheduler that uses a fixed priority 
scheduling policy.  

Under this policy, each task is assigned a fixed priority. The scheduler will 
always run the highest priority task that is ready to run. If a task is running 
and a higher priority task is made ready to run.  The higher priority task will 
pre-empt the lower priority task.  When the higher priority task has finished 
executing, the lower priority task is resumed at the point of pre-emption.   

You can see an illustration of this in Figure  4:1. 
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Figure  4:1 - Example Execution of Tasks 

In Figure  4:1 you can see that, initially, the idle task is running (you will learn 

about the idle task in Section  4.8).  At some point a low priority task, L, is 

activated.  A task switch takes place and L starts executing from the start of 
its entry function.  

Later, a higher priority task, H, is activated and again a task switch takes place.  

H starts executing from the beginning of its entry function. 

H then terminates and L resumes execution from the point it was preempted.  

L eventually terminates. Finally, the idle task resumes execution from the point 
at which it was preempted. 

4.2 Single Stack Architecture 

RTA-OSEK uses a single-stack model which means that all tasks and interrupts 
run on a single stack*. The single stack is simply the C stack for the 
application. 

As a task runs its stack usage grows and shrinks as normal. When a task is 
pre-empted the higher priority task’s stack usage continues on the same stack 
(just like a standard function call). When a task terminates the stack space it 
was using is reclaimed and then re-used for the next highest priority task to 
run (again, just as it would be for a standard function call). 

In the single stack model, the stack size is proportional to the number of 
priority levels in the system, not the number of tasks/ISRs. This means that 
tasks which share priorities, either directly, or by sharing internal resources, or 
through being configured as non-preemptive, can never be on the stack at 
the same time and therefore can safely share the stack space. The same is true 
of ISRs that share priorities in hardware.  

                                                
* Some microcontroller architectures provide hardware support for more than one stack, for example, an 
interrupt stack. In these cases RTA-OSEK may use these additional stacks. 
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The single stack model also significantly simplifies the allocation of stack space 
at link time as you need only allocate a single memory section for the entire 
system stack, in exactly the same way as if you were not using an OS. 

4.3 Basic and Extended Tasks 

OSEK operating systems define two types of task: basic tasks and extended 
tasks. The task type defines the states, in the operating system state model, 
that are valid for a particular task. 

Each task type has there are two levels called type 1 and type 2. You’ll learn 
about these later in this chapter. 

4.3.1 Basic Tasks 

Basic tasks are single-shot tasks.  This means that a task is made ready and 
then starts executing from its entry point.  During execution it may be 
preempted by other higher priority tasks, but it will continue to run (whenever 
there are no higher priority ready tasks) until termination.  It can be made 
ready again later and the task can execute again. 

Basic Task States 

Basic tasks can exist in the following states: 

• Ready. 

• Running. 

• Suspended. 

The default state for a task is suspended. A task is moved into the ready state 
either by an explicit activation API call or by some other method that will 
cause activation. The state transition diagram for basic tasks is shown in 

Figure  4:2. 
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Figure  4:2 - The State Transition Behavior for Basic Tasks 

Looking at Figure  4:2, you can see that when RTA-OSEK Component chooses 

to run a task it moves from the ready state to the running state. The execution 
of the task starts from the task entry point. 

If a higher priority task becomes ready to run, the currently executing task is 
preempted and is moved from the running state into the ready state. Only 
one task can be in the running state at any one time.  

A task returns to the suspended state by terminating. 

Important: Basic tasks cannot wait for a specific event or delay for a certain 

time (other than busy waiting). In Figure  4:2, you can see that the only way of 
a task becoming suspended is by terminating. 

Type 1 and Type 2 Basic Tasks (BCC1 and BCC2) 

You saw earlier that within each conformance class there are two levels.  The 
Basic Conformance Class (BCC) has type 1 and type 2 tasks. 

• Type 1 basic tasks (BCC1). 
These are single-shot tasks.  They have a unique task priority and they 
cannot be activated unless they are currently in the suspended state. 

• Type 2 basic tasks (BCC2). 
These are single-shot tasks. They can share a priority with another task 
and they can have multiple activations. Multiple activation means 
that a task can be activated, up to a specified number of times, whilst 
it is in the ready or running state. You’ll find out more about this in 

Section  4.4.2. 

If two or more tasks have the same priority, each task at the shared priority 
will run in mutual exclusion. This means that if one task is running, the 
other tasks sharing the same priority cannot pre-empt it. Their activations are 
queued in a FIFO manner.  As a result of this, you will not be able to perform 
timing analysis on the system. 
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Important: To make RTA-OSEK Component more efficient, you should assign 
unique task priorities and use internal resources to enforce mutual exclusion. 
If you do this timing analysis will also be possible. 

The RTA-OSEK GUI allows you to set the maximum number of times that task 
activations can be queued. RTA-OSEK Component will ensure that the task 
executes once for each of the activations that is recorded, up to limit that you 
set.  Where more than one task shares the same priority, the tasks are run 
strictly in the order that they were activated. 

4.3.2 Extended Tasks 

Extended tasks usually exist in infinite loops. Once they are running, they do 
not normally terminate. They can ‘sleep’ in a waiting state, pending the 
outcome of an event.  

Extended Task States 

Extended tasks can exist in the same three states as basic tasks: 

• Ready. 

• Running. 

• Suspended. 

In addition to these, they can also exist in an extra state: 

• Waiting. 

The state diagram, in Figure  4:3, shows the four states for an extended task in 
an OSEK operating system.  You will notice that the extended task behavior in 
the ready, running and suspended states is identical to behavior of basic tasks 

(in Figure  4:2). 
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Figure  4:3 - The State Transition Behavior for Extended Tasks 

An extended task moves from the running to the waiting state when it 
voluntarily suspends itself by waiting on an event.   

An event is simply a system object that is used to provide an indicator for a 
system event.  Examples of events include data becoming ready for use or 
sensor values being read.  When an event is set, the task is moved from the 
waiting to the ready state. 

If an extended task is waiting on an event, then tasks of lower priority are 
allowed to run. 

Type 1 and Type 2 Extended Tasks (ECC1 and ECC2) 

Again, as you saw earlier, each conformance class contains two levels.  The 
Extended Conformance Class (ECC) has type 1 and type 2 tasks. 

• Type 1 extended tasks (ECC1). 
These tasks can wait for events and have unique task priorities.  So, an 
ECC1 task is like a BCC1, but it can wait on events. 

• Type 2 extended tasks (ECC2). 
These tasks can wait for events and can have the same priority as 
other tasks.  Where more than one task shares the same priority, the 
tasks are run strictly in the order they were activated.  Note that, 
unlike type 2 basic tasks, type 2 extended tasks cannot use multiple 
activation. 
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Important: Extended tasks are not amenable to timing analysis.  RTA-OSEK 
will limit any analysis to basic tasks and ISRs that are of a higher priority than 
any extended task. This means that you should make sure that the hard real-
time aspects of your system are of a higher priority than the highest priority 
extended task. 

4.4 Task Configuration 

Unlike other real-time operating systems that you might have seen, the tasks 
in OSEK (and, therefore, in RTA-OSEK) are defined statically. This technique is 
used because it saves RAM and execution time. 

Tasks cannot be created or destroyed dynamically. Most of the information 
about a task can be calculated offline, allowing it to be stored in ROM. 

When you configure your task properties, you will use the RTA-OSEK GUI.  

Look at the example in Figure  4:4 to see how a task has been constructed. 

 

Figure  4:4 - Configuring a Task in the RTA-OSEK GUI 

An OSEK task has 5 attributes: 

• Name. 
The name is used to refer to, or provide a handle to, C code that you 
will write to implement the task functionality. 

• Priority. 
The priority is used by the scheduler to determine when the task runs. 
Priorities cannot be changed dynamically. In RTA-OSEK, 0 is the lowest 
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possible task priority. Higher task priorities are represented by larger 
integers. Tasks can share priorities, but if you are building a real-time 
system then you should not do this because it cannot be analysed. 

• Scheduling 
An OSEK task can run fully preemptively or non-preemptively. In 
general, fully preemptive should be selected over non-preemptive for 
best application performance. 

• Activations 
In OSEK you can only activate a task that is in the suspended state. In 
some cases you will need to queue task activations (for example to 
smooth out transient peak loads in your application). 

• Autostart 
This controls whether the task is started automatically when your start 
the OS. 

Portability: The number of tasks that can be defined is fixed for each target 
(it is usually 16 or 32, depending on the target processor). Your RTA-OSEK 
Binding Manual for your target will contain further information. 

4.4.1 Non-Preemptive Tasks 

A fully preemptable task can be preempted by a task of higher priority. You 
can prevent other tasks from preempting it by declaring the task to be non-
preemptable in the RTA-OSEK GUI†. 

Tasks that are declared as non-preemptive cannot be preempted by other 
tasks. When a non-preemptive task moves to the running state it will run to 
completion and then terminate (unless they make a Schedule() call, 

explained in Section  4.10). Non-preemptive tasks can still be interrupted by 
ISRs. 

You will often find that it is unnecessary to use non-preemptable tasks 
because there are other, more suitable methods, which you can use to 
achieve the same effect. If you use these other techniques, it will usually result 
in a more responsive system. You will find out more about these techniques 
later, but they include: 

• Using standard resources to serialize access to data or devices. 

• Using internal resources to specify exactly which other tasks cannot 
cause preemption. 

4.4.2 Multiple Activation 

Under most circumstances you will only activate a task when it is in the 
suspended state. However, you may need to implement a system where the 
same task must be activated a number of times and where the shortest time 
between successive activations is less than the time needed to run the task. 

                                                
 † The non-preemptive task itself, however, can call the Schedule() API call, which will cause a task switch if a higher priority 
task is ready to execute. 
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If this happens you will be activating the task while it is in the ready state or 
the running state. This means that activations will be lost. 

To prevent loss of activations, OSEK allows you to queue task activations for 
BCC2 tasks. Queued task activations are processed in first-in, first-out (FIFO) 
order, so the task in the queue will run in the order they were activated.  

Important: In accordance with the OSEK OS standard, this feature is only 
available for basic tasks. Remember that you cannot specify multiple 
activations for extended tasks. 

You must specify the maximum number of multiple activations required for 

the task. Figure  4:5 shows how this is done in the RTA-OSEK GUI. In the 
example, the maximum number of activations has been set to 10. 

 

Figure  4:5 - Specifying the Maximum Number of Activations 

When multiple activations are specified, RTA-OSEK automatically identified 
that the task is BCC2. When you perform analysis on your application, RTA-
OSEK will calculate the maximum size of the multiple activation queue needed 
for each BCC2 task. 

Optimizing Queued Task Activation 

When all the tasks in your system have unique priorities, RTA-OSEK does not 
need to maintain an explicit FIFO queue at runtime and automatically 
optimizes the FIFO queuing strategy to counted activation. . Counted 
activation is significantly more efficient than FIFO activation. 
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To get the best performance of an OSEK application that uses queued task 
activations, you should ensure that tasks do not share priorities.  

4.4.3 Autostarting Tasks 

Tasks can be autostarted, which means that when the operating system 
starts, they are activated automatically during StartOS().  

For basic tasks, which start, run and then terminate, autostarting a the task 
will make it run exactly once before it will return to the suspended state (from 
where it can be activated again). 

Autostarting is mainly useful for starting extended tasks that wait on events 
because it removes the need to write code to activate the tasks. 

The RTA-OSEK GUI can be used to specify that a task is only auto-activated in 
specific application modes – choose the application mode in question and 
select the tasks you want to autoactive in it. 

In Figure  4:6, t2 and t3 are autostarted in the default application mode. 

 

Figure  4:6 - Auto-Activating Tasks in Application Modes  

4.5 Implementing Tasks 

Tasks are similar to C functions that implement some form of system 
functionality when they are called by RTA-OSEK Component. 

Important: You do not need to provide any C function prototypes for task 
entry functions. These are provided in the header file generated by RTA-OSEK.  
The appropriate file for each task should be included because it contains 
declarations that are specific to the named task. 
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When a task starts running, execution begins at the task entry function. The 

task entry function is written using the C syntax in Code Example  4:1. 

TASK(task_identifier) 

{ 

  /* Your code */ 

}  

Code Example  4:1 - A Task Entry Function 

Remember that basic tasks are single-shot. This means that they execute from 
their fixed task entry point and terminate when completed.  

Code Example  4:2 shows the code for a basic task called Task1. 

 

/* Include header file generated RTA-OSEK. */ 

#include “BCC_Task.h”  

 

TASK(BCC_Task) { 

 

  do_something(); 

  /* Task must finish with TerminateTask() 

     or equivalent. */ 

  TerminateTask();  

} 

Code Example  4:2 - A Basic Task 

Now, compare the example in Code Example  4:2 with Code Example  4:3. 

Code Example  4:3 shows that extended tasks need not necessarily terminate 
and can remain in a loop waiting for events. 

 

/* Header file generated by RTA-OSEK */ 

#include “ECC_Task.h”    

TASK(ECC_Task) { 

 

  InitialiseTheTask(); 

 

  while (WaitEvent(SomeEvent)==E_OK) { 

    do_something(); 

    ClearEvent(SomeEvent); 

  } 

   

  /* Task never terminates. */ 

} 

Code Example  4:3 - Extended Task Waiting for Events 

4.6 Activating Tasks  

A task can only run after it has been activated. Activation either moves a task 
from the suspended state into the ready state or it adds another entry to the 
queue of ready tasks (if the task supports multiple activation). The task will 
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run once for each of the activations. It is an error to exceed the activation 
count and your application will generate E_OS_LIMIT errors when this 
happens (even in the Standard build). 

When a task becomes the highest priority ready task, it moves into the 
running state and RTA-OSEK Component calls the task’s entry function. 

Important: Activating a task does not cause the task to begin executing 
immediately.  

Tasks can be activated from both tasks and ISRs. When you activate a task 
from an ISR it is placed into the ready state. RTA-OSEK will only check if the 
task needs to enter running state when the ISR has completed and once any 
higher priority tasks that were ready or running have terminated. 

When you activate a task from another task, the behavior depends upon the 
relative task priorities. In general, if the activated task has higher priority than 
the task doing the activation, then the newly activated task will preempt the 
current task‡.  Otherwise, it will wait until the current task terminates and it 
becomes the highest priority ready task. 

Figure  4:7 shows how this preemption works. In this example, Task1 is 

running, but it is preempted by a higher priority task called Task2. Task2 

executes to completion and then Task1 resumes from the point that it was 
preempted, until it finishes. 
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Figure  4:7 - Preemption of a Running Task by a Higher Priority Task 

In a well-designed real-time system, it is unusual for a task to activate a higher 
priority task. Normally it is the ISRs that react to the incoming stimuli. They 
then activate the tasks that implement the responses. In turn, the tasks may 
activate lower priority tasks to implement the responses that have longer 
deadlines. 

Observing this fact leads to one of the major optimizations in RTA-OSEK 
Component. If you specify that your tasks never activate a higher priority task, 
RTA-OSEK Component can eliminate a large amount of internal code. It can 

                                                
‡ In fact, if the calling task has a resource locked, the activated task has to be of higher priority than the highest priority task 
locking the resource.  Also, if the calling task is non-preemptive, the activated task will not preempt. 
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do this because it never has to test within an API call to see if preemption 
should occur. 

4.6.1 Direct Activation 

Tasks can be activated in a number of different ways. The basic mechanism 
for task activation is the ActivateTask(TaskID) API call, which directly 
activates a task. 

The ActivateTask() call places the named task into the ready state.  

The ChainTask() call terminates the calling task (see Section  4.7) and 

places the named task into the ready state.  

 

API Call 

Name 
Description Static Version 

ActivateTask() A task or ISR can make 
this call to activate the 
task directly. 

ActivateTask_TaskID() 

The static version allows RTA-OSEK 
to optimize the code generated, 
based on the relative priority of the 
caller and activated task. 

ChainTask() A task can make this 
call to terminate the 
currently running task 
and to activate the 
task indicated. 

ChainTask_TaskID() 

 

4.6.2 Indirect Activation 

Besides directly activating tasks it is possible to use other OSEK and RTA-OSEK 
methods to indirectly activate a task. These methods are described in more 
detail in later chapters of this user guide. 

• Activation by an event  
For each event in the system, you can specify task(s) that are activated 
each time the event occurs. 

• Activation by a Message 
For each message in the system, you can specify a task that is 
activated each time the message is sent. 

• Activation by an Alarm 
For each alarm in the system, you can specify a task that is activated 
each time the alarm expires. 

• Activation by a Schedule Table  
For each alarm in the system, you can specify a task that is activated 
each time the alarm expires. 
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• Activation by a Periodic Schedule 
When you create a periodic schedule, a periodic activation pattern is 
specified for one or more tasks.  RTA-OSEK Component ensures that 
each task is activated according to the pattern specified. 

• Activation by a Planned Schedule 
When you create a planned schedule, you will specify a specific 
activation pattern for one or more tasks. RTA-OSEK Component 
ensures that each task is activated according to the pattern specified. 

4.6.3 Fast Task Activation 

In accordance with the OSEK standard, RTA-OSEK Component checks that the 
activation limit for the task is not exceeded each time that you make an API 
call which results in task activation. If this limit is exceeded, the E_OS_LIMIT 
error is raised. This check, however, approximately doubles the execution time 
of the ActivateTask() API call. 

If you use the RTA-OSEK Planner to verify that your application is schedulable 
you are, in fact, showing offline that E_OS_LIMIT will never be raised at run-
time. There is obviously little point in checking a runtime error that cannot 
actually occur, so RTA-OSEK allows you to use fast task activation that doesn’t 
need to make the E_OS_LIMIT check. 

Fast task activation is selected in the RTA-OSEK GUI using the Application 

Optimizations. In Figure  4:8, the system has been set to use fast task 
activation. 

 

Figure  4:8 - Using Fast Task Activation 



 4
.7

 

 

RTA-OSEK v5.0.2 Tasks 4-15 

4.7 Terminating Tasks 

Tasks that terminate in OSEK must make an API call to tell the OS that this is 
happening. 

The OSEK standard defines two API calls for task termination. One of these 
must be used to terminate any task. These API calls are: 

• TerminateTask() 

• ChainTask(TaskID) 

When a task has finished, it must make one of these API calls. This ensures 
that RTA-OSEK Component can correctly schedule the next task that is ready 
to run.  

TerminateTask() forces the calling task into the suspended state. RTA-
OSEK will then run the next highest priority task in the ready state. 

ChainTask(TaskID) also terminates the task but it also activates the task 
named in the API call. The API is therefore like executing a 
TerminateTask() followed immediately by 

ActivateTask(TaskID).Chaining a task places the named task into the 
ready state. 

Important: You should only call ChainTask() as the final statement in a 
task entry function. 

4.7.1 Optimising Termination in RTA-OSEK 

The OSEK operating system standard allows task termination API calls to be 
called by a task at any point, including within a deeply nested set of function 
calls.  

In Code Example  4:4, the task entry function makes nested calls to other 
functions. 

 

/* Include Header file generated by RTA-OSEK */  

#include “TaskA.h”  

 

void Function1(void) { 

  ... 

  Function2(); 

  ... 

} 

 

void Function2(void) { 

  if (SomeCondition) { 

    TerminateTask(); 

  } 

 

TASK(TaskA) { 

 

  /* Make a nested function call. */ 
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  Function1(); 

 

  /* Terminate the task in the entry function*/ 

  TerminateTask(); 

} 

Code Example  4:4 - Terminating a Task 

In Code Example  4:4, you can see that when Task1 runs, it calls 

Function1(). Function1() then calls Function2(). In Function2() 
there is some code that can terminate the calling task (in this example, this is 
TaskA).  

The example is valid in OSEK but is bad programming practice – equivalent to 
the use of goto. It should therefore be avoided wherever possible. If you 
follow this good practice then RTA-OSEK can offer significant stack space 
savings and performance improvements due to its single stack design. 

RTA-OSEK defines two different types of termination: 

• Lightweight termination  is used to describe cases where the 
terminating APIs are called only from the task entry function. 

• Heavyweight termination is used to describe cases where the 
terminating APIs can be called from within a nested function. 

In a single stack architecture, a task that terminates using lightweight 
termination can simply return from the entry function – TerminateTask() 
does not need to do anything. With heavyweight tasks, RTA-OSEK must store 
information that allows it to clear the stack when the task terminates 
somewhere other than the entry function. This is normally done using a 
setjmp/longjmp pair. 

If tasks are only terminated in the entry function, however, this information 
does not need to be stored. Specifying that a task is lightweight tells RTA-
OSEK not to generate code to save this information and, as a result, you will 
save stack space and terminating the task will be the same speed as returning 
from a C function call. 

In the RTA-OSEK GUI, you can set the default termination type to be either 
lightweight or heavyweight. When you configure an individual task, you can 
then set the termination type to the use the application default. 

It is recommended that the default termination type should be set to 
‘lightweight’ and, wherever possible, task termination should be set to 

‘default’.  Figure  4:9 shows how the default termination type is set. 
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Figure  4:9 - Setting Default Termination Type 

Important: To take advantage of the lightweight task optimization, you must 
include the correct task header file (called <TaskID>.h) when compiling the 

task. The generic osek.h or oseklib.h file will not give you the expected 
behavior. It is important that you do not configure a task to use lightweight 
termination and then include a generic header file. 

4.8 The Idle Task 

Any preemptive operating system must have something to do when there are 
no tasks or ISRs to run. In OSEK this is achieved by an idle mechanism. The 
idle mechanism is implemented in RTA-OSEK Component using an idle task, 
called osek_idle_task. The osek_idle_task is created automatically in 
each new OIL file. 
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Figure  4:10 - The osek_idle_task 

The osek_idle_task is the same as a normal task except that: 

• it cannot be activated 

• it cannot be terminated 

• it cannot be chained 

• it cannot use OSEK’s Internal Resources 

The osek_idle_task has the lowest priority of any task in the system, can 
use standard, linked or message resources and it does not count towards the 
maximum number of user tasks (usually 16 or 32) available on your target 
hardware. 

RTA-OSEK generates a special task-specific header file called osekmain.h for 
the idle task. This should normally be included in the file containing the 
osek_idle_task code. 

The code that implements the idle task is the code that executes after 
StartOS() returns.  Normally, this is the code in the application startup 

function. Code Example  4:5 shows an example startup function. 

#include “osekmain.h” 

OS_MAIN(main) 

{ 

  /* System hardware initialization. */ 

  StartOS(OSDEFAULTAPPMODE); 

  for (;;) { 

    /* This loop body is the osek_idle_task. */ 

  } 

} 

Code Example  4:5 - An Application Startup Function 

The osek_idle_task can be an extended task and wait for events. If you 

use the osek_idle_task to wait for events, rather than any other extended 
task, the OS overhead is much lower. 
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4.9 Working with Extended Tasks 

RTA-OSEK uniquely§ extends the single stack model to provide support for 
OSEK extended tasks without any impact on the performance of basic tasks. 

In RTA-OSEK, the lifecycle of an extended task is as follows: 

• Suspended->Ready 
The task is added to the ready queue. 

• Ready -> Running 
The task is dispatched but, unlike a basic task where the context is placed in the 
top of the stack, the context is placed in the stack space at the pre-calculated 
worst case pre-emption depth of all lower priority tasks.  

• Running -> Ready 
The extended task is pre-empted. If the pre-empting task is a basic task it is 
dispatched on the top of the stack as normal. If the pre-empting task is an 
extended task then it is dispatched at the pre-calculated worst case pre-emption 
depth of all lower priority tasks. 

• Running -> Waiting 
The task’s “Wait Event Stack” context, comprising the OS context, local data, 
stack frames for function calls etc, is saved to an internal OS buffer 

• Waiting -> Ready 
The task is added to the ready queue. 

• Running -> Suspended 
The task’s “Wait Event Stack” context is copied from the internal OS buffer back 
onto the stack at the pre-calculated worst case pre-emption depth of all lower 
priority tasks.  

This process allows the additional cost of managing extended tasks to apply 
only when an extended task is moved into the running state, allowing basic 
tasks to have the same performance, in the presence of extended tasks, as 
they would have in a purely basic task system.  

                                                
§
 UK patent: 0219936.2, US patent: 10/242,482 
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The key parts of this lifecycle are the dispatch/resume at the worst case pre-
emption depth and the copy on and off the stack. The dispatch at the worst 
case pre-emption point guarantees that whenever an extended task resumes 
after waiting it can resume with its local variables at exactly the same location 
in memory. We are guaranteed that every possible pre-emption pattern of 
lower priority tasks never exceeds the dispatch point of the extended task.  
The dispatch, wait resume cycle for an extended task D is illustrated in Figure 

4:12. 

The copy off and on allows the extended tasks stack context to be restored. 
This is necessary because higher priority tasks and/or ISRs may occur while the 
extended task is waiting. These may consume stack space greater than the 
worst case pre-emption point (remember that the worst case point is for 
lower priority objects only), thereby overwriting the context of the extended 
task. However, we are guaranteed by fixed priority pre-emptive scheduling 
that all no higher priority tasks can be ready to run at the point the extended 
task is resumed (it could not be resumed if this was the case).  

4.9.1 Specifying Stack Allocation 

In systems that contain only basic tasks it is not necessary to tell RTA-OSEK 
any stack allocation. You simply need to allocate a stack section large enough 
for your application in your linker/locator. This is one of the benefits of the 
single stack architecture. 

For applications that use extended tasks you allocate your linker section as 
before, but you must also tell RTA-OSEK the stack allocation for every task in 
your configuration that is lower priority than the highest priority extended 
task, even if they are basic tasks. RTA-OSEK uses the stack allocation 
information to calculate the worst case pre-emption point for each extended 
task off-line.  

Figure  4:11: Extended Task dispatch, wait and resume 
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Important: RTA-OSEK only uses the stack information you provide to 
calculate the worst case pre-emption point. RTA-OSEK does reserve any stack 
space. You must still specify the stack application stack space in the same way 
you would do for a normal application.  

The stack allocation is configured in Tasks -> Task Data -> Stack Allocation: 

 

 

Figure  4:12 - Stack Allocation Configuration 

If the task is an extended task, then a second dialogue asks you for the 
WaitEvent() stack. This defines the number of bytes that will be saved and 

restored when WaitEvent() is called. This defaults to “Automatic” which 
means RTA-OSEK will allocated a RAM buffer equal to the worst case stack 
allocation you specify: 

 

 

Figure  4:13 - Configuring the WaitEvent() Stack 

However, most extended tasks only execute WaitEvent() in their entry 
function so only space required for local data in the entry function needs to 
be reserved. You can control exactly how many bytes of stack are saved by 
RTA-OSEK by specifying the worst case stack depth at the point you call 
WaitEvent().  

 

 

Figure  4:14 - Specifying a WaitEvent() Stack allocation 

Using Default Values 

While you should set a stack value for each task for memory efficiency, RTA-
OSEK allows you to set a global default value that is used by all tasks in 
Application -> Defaults -> Default Task Stack.  

 



 4
.9

 

 

4-22 Tasks RTA-OSEK v5.0.2 

 
 

If a Stack Allocation is not configured for a task, then RTA-OSEK will use the 
default value for: 

1. Calculating the worst case stack offset 

2. Configuring the WaitEvent() save/restore area 

3. Stack Monitoring (when configured) 

When you run the RTA-OSEK Builder tool you will be told which tasks are 
using the default value. 

4.9.2 Providing the Base Address of the Stack 

The calculated worst case dispatch points are relative to the base address of 
the stack at the point the main program is entered. These offsets are stored as 
ROM data in the extended task control blocks and are added to the base stack 
pointer at runtime. 

This means that you need to tell RTA-OSEK the base address of the stack 
pointer The exact details of how this is done for target is target specific. On 
some targets the name of the initial stack pointer is defined by the compiler 
tool chain and will be used by RTA-OSEK automatically. On other targets you 
must specify the stack base address at link time. You should consult the 
example application and/or the RTA-OSEK Binding Manual for your target for 
additional guidance. 

4.9.3 Handling Extended Task Stack Faults 

If the stack allocation figures you provided to RTA-OSEK are wrong (i.e. they 
are too small) then this is a potential source of errors at runtime. To prevent 
these errors going unchecked, whenever the RTA-OSEK Component detects a 
problem with extended task stack management it will call the 
StackFaultHook() is called.  

The StackFaultHook() is a user provided callback that must be present in 
your system if you configure any extended tasks and has the following 
structure: 

 

#if defined(OSEK_ECC1) 

 || defined(OSEK_ECC2C) 

 || defined(OSEK_ECC2F) 

OS_HOOK(void) 

StackFaultHook(SmallType StackID, 

               SmallType StackError, 

               UIntType  Overflow) 

{ 
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  /* Identify problem */ 

 for(;;) { 

    /* Do not return! */ 

 } 

} 

#endif /*OSEK_ECC1||OSEK_ECC2C||OSEK_ECC2F*/ 

 

The hook is passed 3 parameters by RTA-OSEK: 

1. StackID 
This identifies the stack on which the fault occurred. For most targets there is 
only a single stack and StackID will be zero. However, some hardware forces the 
use of more than one so it is possible to have more than one stack even though 
RTA-OSEK has a single stack architecture. 

2. StackError 
Specifies what type of error RTA-OSEK has found. There are 3 errors: 

1. OS_EXTENDED_TASK_STARTING is passed if the stack pointer is 
higher than the calculated worst case dispatch point when RTA-
OSEK dispatches an extended task 

2. OS_EXTENDED_TASK_RESUMING is passed if the stack pointer is 
higher than the calculated worst case dispatch point when RTA-
OSEK resumes an extended task (e.g. when SetEvent() is 
called for an event on which the task is waiting). 

3. OS_EXTENDED_TASK_WAITING is passed if the amount of 
context to save is greater than the size of the WaitEvent() 
buffer. 

3. Overflow 
The meaning of the Overflow depends on the type of the StackError: 

1. For OS_EXTENDED_TASK_STARTING the Overflow is the number of 
bytes by which the current stack pointer exceeds the offline calculated 
worst case dispatch point. 

2. For OS_EXTENDED_TASK_RESUMING the Overflow is the number of 
bytes by which the current stack pointer exceeds the offline calculated 
worst case dispatch point. 

3. For OS_EXTENDED_TASK_WAITING the Overflow is the number of 
bytes by which the save context exceeds the configured WaitEvent() 
stack size. 

4.10 Co-operative Scheduling in OSEK 

When a task is running non-preemptively it prevents any task (including those 
of higher priority) from executing. Sometimes, however, it is useful for non-
preemptive tasks to offer explicit places where rescheduling can take place.  
This is more efficient than simply running non-preemptively because higher 
priority tasks can have shorter response times to system stimuli. 

A system where tasks run non-preemptively and offer points for rescheduling 
is known as a co-operatively scheduled system. 
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The Schedule() API call can be used to momentarily remove the 
preemption constraints imposed by both the non-preemptive tasks and the 
tasks using internal resources. 

When Schedule() is called, any ready tasks that have a higher priority than 

the calling task are allowed to run. Schedule() does not return until all 
higher priority tasks have terminated. 

In the following code example, the non-preemptive task Cooperative 
includes a series of function calls. Once started, each function runs to 
completion without preemption, but the task itself can be preempted 
between each function call. 

 

#include "Cooperative.h" 

TASK(Cooperative){ 

  Function1(); 

  /* Allow preemption here */ 

  Schedule(); 

  Function2(); 

  /* Allow preemption here */ 

  Schedule(); 

  Function3(); 

  /* Allow preemption here */ 

  Schedule(); 

  Function4(); 

  TerminateTask(); 

} 

Figure  4:15 shows how two tasks, Task1 and Task2, which are cooperative 
would interact. 

 

Figure  4:15 - Cooperative Tasks 

4.10.1 Support for Cooperative Scheduling in RTA-OSEK 

Cooperative scheduling is a common design mechanism and was natively 
supported by ETAS’ legacy operating system ERCOSEK. To help RTA-OSEK 
users who are migrating from ERCOSEK, RTA-OSEK 5.x provides automatic 
generation of task bodies from a list of functions called “processes” . 

A process is simply a parameterless (void-void) function provided by your 
application and called by RTA-OSEK automatically at runtime. 
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Portability: Automatic generation of cooperative tasks in RTA-OSEK is not 
part of the OSEK standard. 

Setting the Minimum Preemption Priority 

Typically, your cooperative tasks will be lower priority than all of your 
preemptive tasks. In Application -> OS Configuration you can set the 
Minimum Preemption Priority you can control which tasks run 
cooperatively and which tasks run preemptively. Any task, whether they use 
process or not, with a priority less than the minimum pre-emption priority will 
be cooperatively scheduled. 

 

Figure  4:16 - Setting the Minimum Preemption Priority 

Creating Processes 

Processes are created in RTA-OSEK in the Packages workspace as shown in 

Figure  4:17. Each process can optionally specify an execution time for 
schedulability analysis. If your process uses OSEK resources then you must 
specify the resources used so that RTA-OSEK can calculate the ceiling priority 
for resources correctly.  

 

 

Figure  4:17 - Creating Processes 
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Allocating Processes to Containers 

Processes themselves are not allocated directly to tasks. Instead, each process 
is associated with one (or more) containers. A container can hold multiple 
instances of the same process. Each container lists the processes in the order 
that they will be executed. Processes can be added [+] and removed [-] from 
the container as well as re-ordered [��]. 

 

Figure  4:18 - Assigning Processes to Containers 

Allocating Containers to Tasks 

Containers can be allocated to tasks and Category 2 ISRs. You can allocate at 
most one container to each task/ISR and containers can be allocated at most 
once. 

Important: Note that only processes in containers mapped to in tasks below 
the minimum preemption priority will run cooperatively. 

The entry functions for the tasks and ISRs that include a container are 
generated by RTA-OSEK automatically. Tasks that are cooperatively scheduled 
use an optimized version of the Schedule() API call that is inlined in the 
generated task body. 

However, you still need to provide the implementations of the processes. 

Each process is a void-void function: 

void Process1(void) { 

  /* Code implementing the process */ 

} 
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4.10.2 Optimising out the Schedule() API 

Schedule()is of no use in a fully preemptive system. If you do not intend to 

use it, you can disallow calls to Schedule() in the RTA-OSEK GUI using the 

Application Optimizations. Figure  4:19 shows how the Schedule() call can 
be disallowed. 

 

Figure  4:19 - Disallowing Calls to Schedule() 

If you disallow calls to Schedule() in the RTA-OSEK GUI, you will see the 
following benefits: 

• The worst-case stack requirement is reduced if Schedule() is not 
called. 

• Timing analysis is available. (You cannot currently perform timing 
analysis on systems that call Schedule()). 

4.11 Using Floating-Point 

Floating-point calculations are relatively time consuming to perform purely in 
software. They are also expensive, in terms of silicon, to implement in 
hardware. 

As a result of this, very few embedded systems make full use of floating-point 
calculations. RTA-OSEK, therefore, assumes by default that floating-point is 
not used in an application.  

If you choose to use floating point in any task or ISR then you must tell RTA-
OSEK so that the floating point context can be saved and restored over pre-
emptions. 

RTA-OSEK is able to calculate exactly how much memory to reserve in order to 
save your floating-point tasks and ISRs. It knows this because it can work out 
the worst-case preemption depth for tasks and ISRs that use floating-point 
and optimize the number of context saves that are needed. 

You can see the results of the calculation in the stack depth analysis in the 
RTA-OSEK GUI. 

Figure  4:20 shows a stack analysis example where t1, t2 and t3 use  
floating-point. 
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Figure  4:20 - Stack Depth Analysis Example 

Two floating-point save context areas are set aside because RTA-OSEK 
Component does not need to perform a save in the lowest priority task. 

If you only have one task or ISR that uses floating-point, for example, then no 
floating-point saves or restores are needed and RTA-OSEK Component 
imposes no floating-point overhead on the application at all. 

4.11.1 Customizing Floating-Point Operation 

Each target processor supported by RTA-OSEK is provided with support for 
floating-point tasks and ISRs. Some targets have software support for floating-
point implementations and others have support for hardware 
implementations. 

Some target hardware may not have the same floating-point implementation 
that is supported by RTA-OSEK. For example, your target may have an off-chip 
floating-point coprocessor. To overcome this, RTA-OSEK is supplied with two 
source files that you can modify and link with your application. 

The source files can be used to change how the floating-point save and 
restore is performed. The files are called osfptgt.c and osfptgt.h.  You 

will find them in the <install dir>\<target>\inc folder. 
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4.12 Tasksets 

Portability: Tasksets are an enhancement available in RTA-OSEK, but are not 
part of the OSEK standard. 

RTA-OSEK provides an extension to OSEK called tasksets. A taskset is simply 
a named collection of tasks that can be activated simultaneously with a single 
API call. Any task, except the idle task, can belong to a taskset and a task can 
belong to more than one taskset. 

Tasksets are declared in the RTA-OSEK GUI. Figure  4:21 shows you that ts1 

has been declared and that t2 and t4 belong to it. 

 

Figure  4:21 - Configuring a Taskset  

You can set the taskset access type to read-only or read-write.  The 
contents of the taskset can be modified at run-time if you set the access type 
to read-write. 

A read-write taskset allows you to add and remove tasks at runtime. RTA-
OSEK provides a set of API calls that can perform set operations on a taskset, 
for example adding a task to a taskset, removing a task, merging tasksets etc. 
If you want to find out more about the RTA-OSEK Component API calls that 
are used to manipulate tasksets, then have a look at the RTA-OSEK Reference 
Guide. 

4.12.1 Activating Tasksets 

RTA-OSEK provides an ActivateTaskset(TasksetID) API that activates 
every task in the taskset simultaneously. 

Tasksets provide a significant performance advantage where you need to 
activate multiple tasks at the same time because there is only one call into the 
RTA-OSEK kernel at runtime that has the same execution overhead as 
activating a single task. 

You can also chain a taskset using ChainTaskset(). Chaining a taskset 
allows multiple tasks to be chained with a single API call. 

 

API Call Name Description Static Version 
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API Call Name Description Static Version 

ActivateTaskset() A task or ISR can 
make this call to 
activate each task in 
the taskset. 

ActivateTaskset_TasksetID()

() 

The static version allows RTA-OSEK to 
optimize the code generated, based 
on the relative priority of the caller 
and activated tasks. 

ChainTaskset() A task can make this 
call to terminate the 
currently running 
task and to activate 
the tasks in the 
taskset indicated. 

ChainTaskset_TasksetID() 

4.12.2 Fast Taskset Activation 

The taskset API can also make use of the RTA-OSEK optimization to omit the 
over activation check for tasks. This is called fast taskset activation and, like 
fast task activation, does not check or raise the E_OS_LIMIT error. 
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4.12.3 Predefined Tasksets 

RTA-OSEK always generates the following predefined read-only tasksets. 

 

Taskset Description 

os_all_tasks Contains all the tasks in the system. 

osek_cc2_tasks Contains all the BCC2 and ECC2 tasks. 

osek_ecc_tasks Contains all the ECC1 and ECC2 tasks. 

os_no_tasks Contains no members (it is the empty set) 

os_ready_tasks Contains all tasks in the ready state and the running 
task. 

 

These tasksets are useful when manipulating read-write tasksets. They allow 
you to do things like membership tests to clear tasksets. 

4.13 Controlling Task Execution Ordering 

In many cases you will need to constrain the execution order of specific tasks.  
This is particularly true in data flow based designs where one tasks needs to 
perform some calculation before another task uses the calculated value. 

If the execution order is not constrained, a race condition may occur and the 
application behavior will be unpredictable.  Task execution ordering can be 
controlled in the following ways: 

• Direct activation chains (see Section  4.13.1). 

• Priority levels (see Section  4.13.2). 

• Non-preemptable tasks (see Section  4.4.1). 

4.13.1 Direct Activation Chains 

When you use direct activation chains to control the execution order, tasks 
make ActivateTask() calls on the task(s) that must execute following the 
task making the call. 

Let’s look at an example.  There are three tasks Task1, Task2 and Task3 

that must execute in the order Task1, then Task2, then Task3. 

In this example, you would write task bodies like the ones in Code Example 

 4:6. 

#include "Task1.h" 

TASK(Task1) { 
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  /* Task1 functionality. */ 

  ActivateTask(Task2); 

  TerminateTask(); 

} 

 

#include "Task2.h" 

TASK(Task2) { 

 

  /* Task2 functionality. */ 

  ActivateTask(Task3); 

  TerminateTask(); 

} 

 

#include "Task3.h" 

TASK(Task3) { 

 

  /* Task3 functionality. */ 

  TerminateTask(); 

} 

Code Example  4:6 - Using Direct Activation Chains 

To make the application suitable for timing analysis, you must be certain that 
all task activations are downward.  In other words, you must ensure that tasks 
only activate lower priority tasks. 

4.13.2 Using Priority Levels 

The priority level approach to constraining task execution ordering can be 
used to exploit the nature of the preemptive scheduling policy to control 
activation order. 

Remember that you learnt, in Section  4.1, that under fixed priority preemptive 
scheduling the scheduler would always run the highest priority task.  If a 
number of tasks are released onto the ready queue, they will execute in 
priority order. This means that you can use task priorities to control execution 
order. 

Following on from our previous example, in Code Example  4:6, let’s assume 

that Task1 has the highest priority and Task3 has the lowest priority.  This 
means that the task bodies can be rewritten to exploit priority level controlled 
activation. 

This can be seen in Code Example  4:7. 

#include “Task1.h” 

TASK(Task1) { 

  /* Task1 functionality. */ 

  ActivateTask(Task2);  /* Runs when Task1 

                         * terminates. */ 

  ActivateTask(Task3);  /* Runs when Task2 

                         * terminates. */ 

  TerminateTask(); 
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} 

 

#include “Task2.h” 

TASK(Task2) { 

  /* Task2 functionality. */ 

  TerminateTask(); 

 

} 

 

#include “Task3.h” 

TASK(Task3) { 

  /* Task3 functionality. */ 

  TerminateTask(); 

 

} 

Code Example  4:7 - Using Priority Level Controlled Activation 

This method of control is even more useful for tasksets, where you could 
make a single call to simultaneously activate Task1, Task2 and Task3. 

If you use automatic priority allocation, the priorities that you have specified 
can be changed.  This can affect priority level controlled activation. 

To make sure that the relative ordering of priorities is maintained, you can 
specify that a task has a set of required lower priority tasks.  These are the 
tasks that must execute after the selected task. 

Figure  4:22 shows that for t4, the required lower priority tasks are t3 and 

t1. 

 

Figure  4:22 - Setting the Required Lower Priority Tasks 
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4.14 Synchronization with Basic Tasks 

Basic tasks can only synchronize at the start or end of task execution.   
If other synchronization points are required, you must implement them 
yourself. 

For example, if a task is built as a state machine (using a C switch statement, 
for instance) then you can set a state variable, issue a TerminateTask()  

call and wait for re-activation.  Code Example  4:8 shows how this can be 
achieved. 

#include “Task1.h” 

 

int State; 

 

TASK(Task1) { 

 

  switch (State) { 

 

    case 0: 

      /* Synchronization point 0. */ 

      State = 1; 

      break; 

 

    case 1:  

      /* Synchronization point 1. */ 

      State = 2; 

      break; 

 

    case 2:  

      /* Synchronization point 2. */ 

      State = 0; 

      break; 

  } 

 

  TerminateTask(); 

 

} 

Code Example  4:8 - Multiple Synchronization Points in a Basic Task 

4.14.1 Simulating Waiting using Basic Tasks 

You may need to build a system containing only basic tasks where those tasks 

need to wait on some event (remember that in Section  4.3.2 you learnt that 
only extended tasks can wait on events). 

You can simulate this type of functionality in your application using tasksets.  
When you do this the taskset becomes a pseudo-event. 

You can see an example of this in Code Example  4:9. 

#include “Task1.h” 

TASK(Task1) { 
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  TasksetType Tmp; 

  /* Create a singleton set holding this task. */ 

  GetTasksetRef(Task1, &Tmp); 

  /* Subscribe. */ 

  MergeTaskset(DataReady, Tmp); 

  TerminateTask(); 

} 

 

#include “Task2.h” 

TASK(Task2) { 

  /* Process Data. */ 

  /* Notify any waiting tasks. */ 

  ActivateTaskset(DataReady); 

  AssignTaskset(DataReady, os_no_tasks); 

  TerminateTask(); 

 

} 

Code Example  4:9 - Subscribing to a Pseudo-Event 

In this example, Task1 needs to be informed when Task2 has completed 

data processing.  Task1 subscribes to a DataReady taskset.  When Task2 
has processed the data it notifies all tasks waiting on the data by activating 
the DataReady taskset. 

4.15 Maximising Performance and Minimising Memory  

RTA-OSEK is designed to be very aggressive at minimizing code and data 
usage on the target application. It will analyze the characteristics of the 
application and generate a system containing only the features that are 
required. 

Your choice of task characteristics has a major influence on the final 
application size and speed. Tasksets with BCC2 tasks, for instance, are very 
inefficient. 

If you want to create the most efficient application, your system should 
contain BCC1 tasks exclusively, each task should use lightweight termination 
and should not use floating-point. 

As you add features to your application, the system will inevitably become 
slightly larger and slower. 

A system with one or more BCC2 tasks has a greater overhead than one with 
only BCC1 tasks. A system without shared priorities, even if multiple 
activations are allowed, will be more efficient than one with shared priorities. 

A system with ECC1 tasks has an even greater overhead still and a system 
with one or more ECC2 tasks has the largest overhead of all. 

4.16 Summary 

• A task is a concurrent activity. 
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• There are two classes of tasks: basic and extended.  Each class has two levels: 
level 1 and level 2. 

• Tasks are scheduled according to priority.  When a higher priority task is 
made ready to run it will preempt lower priority tasks. 

• Tasks exist in states: ready, running, suspended or waiting (however, the 
waiting state exists for extended tasks only). 

• If a task terminates, it must call TerminateTask(), 

ChainTask(TaskID) or ChainTaskset(TasksetID) to do so. These 
calls should only be used as the final statement in a task entry function. 

• You must include the correct task specific header (<TaskID>.h) with your 
application code.  For this reason, it is best to put each task in a separate 
source file. 

• Tasks can only be activated when they are in the suspended state unless you 
specify multiple activations. 

• Tasksets are a special feature provided in RTA-OSEK to allow you to activate 
several tasks simultaneously.  In this case, ChainTaskset(TaskID) 
becomes an alternative way of terminating a task. 
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5 Interrupts 

Interrupts provide the interface between your application and the things that 
happen in the real-world. You could, for example, use an interrupt to capture 
a button being pressed, to mark the passing of time or to some capture some 
other stimulus. 

When an interrupt occurs, the processor usually looks at a predefined location 
in memory called a vector. A vector usually contains the address of the 
associated interrupt handler. Your processor documentation and the RTA-
OSEK Binding Manual for your target will give you further information on this. 
The block of memory that contains all the vectors in your application is known 
as the vector table. 

5.1 Single-Level and Multi-Level Platforms 

Target processors are categorized according to the number of interrupt 
priority levels that are supported*. You should make sure that you fully 
understand the interrupt mechanism on your target hardware. 

There are two different types of target:  

• Single-level. 
On single-level platforms there is a single interrupt priority.  If an 
interrupt is being handled, all other pending interrupts must wait until 
current processing has finished.   

• Multi-level. 
On multi-level platforms there are multiple interrupt levels.  If an 
interrupt is being handled, it can be pre-empted by any interrupt of 
higher priority. 

5.2 Interrupt Service Routines 

OSEK operating systems capture interrupts using Interrupt Service Routines 
(ISRs). ISRs are similar to tasks; however, ISRs differ because:  

• They cannot be activated by RTA-OSEK Component API calls. 

• They cannot make TerminateTask() and ChainTask() API calls. 

• They cannot appear in tasksets. 

• They start executing from their entry point at the associated interrupt 
priority level. 

• Only a subset of the RTA-OSEK Component API calls can be made. 
(To call an RTA-OSEK Component API call from within an ISR, refer to 
the function’s calling environment in the RTA-OSEK Reference Guide.) 

                                                
* Make sure that you don’t confuse interrupt priority levels on the target processor with the priority of tasks. 
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5.2.1 Category 1 and Category 2 Interrupts 

OSEK operating systems classify interrupts into two categories called 
Category 1 and Category 2. The category indicates whether or not the OS is 
involved with handling the interrupt. 

Category 1 Interrupts 

Category 1 interrupts do not interact with RTA-OSEK Component. They 
should always be the highest priority interrupts in your application. It is up to 
you to configure the hardware correctly, to write the handler and to return 
from the interrupt. 

You can find out about Category 1 interrupt handlers in Section  5.5.1. 

The handler executes at or above the priority level of RTA-OSEK Component.  
However, you can make RTA-OSEK Component API calls for 
enabling/disabling and resuming/suspending interrupts. 

Category 2 Interrupts 

With Category 2 interrupts, the interrupt vector points to internal RTA-OSEK 
Component code. When the interrupt is raised, RTA-OSEK Component 
executes the internal code and then calls the handler that you have supplied.  

The handler is provided as an ISR bound to the interrupt (which you can think 
of as a very high priority task). Execution starts at the specified entry point of 
the ISR and continues until the entry function returns. When the entry 
function returns, RTA-OSEK Component executes another small section of 
internal code and then returns from the interrupt.  

Figure  5:1 shows the state diagram for a Category 2 interrupt handler. 
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Figure  5:1 - Category 2 Interrupt Handling State Diagram 

Figure  5:2 shows how the internal RTA-OSEK Component code wrappers can 
be visualized. 

 

Figure  5:2 - Visualizing RTA-OSEK Component Category 2 Wrappers 

5.3 Interrupt Priorities 

Interrupts execute at an interrupt priority level (IPL). RTA-OSEK standardizes 
IPLs across all target microcontrollers, with IPL 0 indicating task level and an 
IPL of 1 or more indicating an interrupt has occurred It is important that you 
don’t confuse IPLs with task priorities.  An IPL of 1 is higher than the highest 
task priority used in your application. 

The IPL is a processor-independent description of the interrupt priority on your 
target hardware. The RTA-OSEK Binding Manual for your target will tell you 
more about how IPLs are mapped onto target hardware interrupt priorities. 

ISRs can be nested (assuming that the processor supports interrupt nesting).  
So, for example, a higher priority ISR can interrupt the execution of a low 
priority ISR. However, an ISR can never be preempted by a task. 

A Category 1 interrupt handler must never be interrupted by a Category 2 
interrupt. In other words, you must not have a Category 2 interrupt with a 
higher interrupt priority than a Category 1 interrupt. The RTA-OSEK GUI 
automatically checks this when you configure interrupts.  

The interrupt priority hierarchy is illustrated in Figure  5:3. 
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Figure  5:3 - The Interrupt Priority Hierarchy 

5.3.1 User Level 

User level is the lowest interrupt priority level that allows all interrupts to be 
handled.  All tasks start executing at user level from their entry point. 

A task will sometimes need to run above user level, so that it can access data 
shared with an interrupt handler.  While the data is being accessed it must 
prevent the interrupt being serviced.   

An ISR may preempt a task even when the task is running with interrupt 
priority level above user level.  It can only do this, however, if the ISR has a 
higher interrupt priority level than the current level. 

5.3.2 OS Level 

The highest priority Category 2 interrupt defines OS level. If execution occurs 
at OS level, or higher, then no other Category 2 interrupt can occur.  

RTA-OSEK Component uses OS level to guard against concurrent access to 
internal OS data structures. If a task executes at OS level then no RTA-OSEK 
Component operations will take place (except for calls made by the task). 

5.4 Interrupt Configuration 

In RTA-OSEK Component, interrupts are configured statically using the RTA-

OSEK GUI.  Figure  5:4 shows how an interrupt has been constructed. 
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Figure  5:4 - Configuring an Interrupt using the RTA-OSEK GUI 

At the simplest level, an interrupt has the following attributes: 

• An interrupt name. 
The name is used to refer to C code that you will write to implement 

the handler functionality (you will learn how to do this in Section  5.5). 

• An interrupt category 
This is either Category 1 if the handler does not need to execute RTA-
OSEK API calls and Category 2 otherwise 

• An interrupt priority. 
The priority is used by the scheduler to determine when the interrupt 
runs (in a similar way to a task priority being used for tasks). Note that 
some targets only support a single interrupt priority. 

Important: You must make sure that the programmed priority level of an 
interrupting device agrees with the level configured in the RTA-OSEK GUI.  

• An interrupt vector. 
RTA-OSEK uses the specified vector to generate the vector table entry 
for the interrupt. 

By default, RTA-OSEK provides symbolic names for the interrupt vectors that 
are controlled the target variant you select when creating a new OIL file. 

If you prefer to use interrupt vector addresses for the microcontroller family 
then you set this in File -> Options... by unchecking the “Show ISR vector 

descriptions” box as shown in Figure  5:5. 
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Figure  5:5 - Disabling ISR Vector Descriptions 

 

5.4.1 Vector Table Generation 

In most cases, RTA-OSEK can generate the vector table automatically. The 
RTA-OSEK Builder will create a vector table with the correct vectors pointing 
to the internal wrapper code and place this in the osgen.<asm> file. 

If you want to write your own vector table then you must make sure that 
RTA-OSEK does not generate a vector table itself. You can prevent a vector 

table being generated using the Target Vectors settings, shown in Figure  5:6. 

 

Figure  5:6 - Preventing RTA-OSEK from Automatically Generating a Vector Table 

The RTA-OSEK Binding Manual for your target explains how to provide your 
own vector table.  
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5.5 Implementing Interrupt Handlers 

You will now learn about interrupt handlers for Category 1 and Category 2 
interrupts. 

5.5.1 Category 1 Interrupt Handlers 

Generally, the binding of user core implementing Category 1 interrupt 
handlers is non-portable. You will usually write these using compiler-specific 
extensions to ANSI C. Some compilers, however, cannot do this. When this 
happens you will need to write an assembly language handler. 

You must make sure that the name of a Category 1 ISR entry function is the 
same as the name that you specified for the ISR during configuration.  

For Category 1 ISRs, there is usually a compiler-specific keyword that has to be 
used when defining entry functions.  
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An entry function for a Category 1 ISR is shown in Code Example  5:1. 

interrupt void Interrupt1(void) { 

  /* Handler body. */ 

  /* Return from interrupt. */ 

} 

Code Example  5:1 - Entry Function for a Category 1 ISR 

You will find any target specific information in the RTA-OSEK Binding Manual 
for your target. 

5.5.2 Category 2 Interrupt Handlers 

You saw earlier that Category 2 interrupts are handled under the control of 
RTA-OSEK Component. A Category 2 interrupt handler is similar to a task. It 
has an entry function that is called by RTA-OSEK Component when the 
interrupt handler needs to run. A Category 2 interrupt handler is written using 

the C syntax in Code Example  5:2. 

 

ISR(isr identifier){ … } 

Code Example  5:2 - Category 2 Interrupt Handler 

Code Example  5:3 shows the code for a simple interrupt handler called 

Interrupt1. 

#include “Interrupt1.h”  /* Header file generated 

                          * by RTA-OSEK. */ 

 

ISR(Interrupt1) { 

 

  DismissInterrupt();  /* User supplied function to  

                * cancel interrupt. */ 

  ActivateTask(Task1); /* Let Task1 do the work. */ 

 

} 

Code Example  5:3 - Entry Function for a Category 2 ISR 

Important: You do not need to provide any C function prototypes for 
Category 2 ISR entry functions. These are provided in the header file that is 
generated by RTA-OSEK. The appropriate file for each ISR should be included 
because it contains declarations that are specific to the named handler. ISRs 
should be in separate source files for this reason. 

 

Important: You should not place a “return from interrupt” command in your 
Category 2 handler. Returning from the interrupt is handled by RTA-OSEK. 
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5.5.3 Writing Efficient Interrupt Handlers 

When you write an interrupt handler it is better to make the handler as short 
as possible (especially on targets that support a single interrupt priority).  Long 
running handlers will add additional latency to the servicing of lower priority 
interrupts.  

With Category 2 handlers you can move the required functionality to a task, a 
simply use the interrupt handler activates the task and then terminates.  

Code Example  5:4 and Code Example  5:5 show how these techniques differ. 

#include “Interrupt1.h” 

ISR(Interrupt1) { 

  /* Long handler code. */ 

} 

Code Example  5:4 - Long Interrupt Handler (Long Blocking) 

#include “Interrupt1.h” 

 

ISR(Interrupt1) { 

  ActivateTask(Task1); 

} 

 

 

#include “Task1.h” 

 

TASK(Task1) { 

  /* Long handler code. */ 

  TerminateTask(); 

} 

Code Example  5:5 - Short Interrupt Handler (Short Blocking) 

5.6 Enabling and Disabling Interrupts 

Interrupts will only occur if they are enabled. By default, RTA-OSEK 
Component ensures that all interrupts are enabled when StartOS() returns. 

Important: OSEK uses the term “Disable” to mean masking interrupts and 
“Enable” to mean unmasking interrupts. The enable and disable API calls do 
not therefore enable or disable the interrupt source, they simply prevent the 
processor from recognizing the interrupt (usually my modifying the 
processor’s interrupt mask).  

You will often need to disable interrupts for a short amount of time to 
prevent interrupts occurring in a critical section of code in either tasks or 
ISRs. A critical section is a sequence of statements that accesses shared data. 

You can enable and disable interrupts using a number of different API calls: 
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• DisableAllInterrupts() and EnableAllInterrupts() 
Disable and enable all interrupts that can be disabled on the hardware 
(usually all those interrupts that can be masked). 
These calls cannot be nested. 

• SuspendAllInterrupts() and ResumeAllInterrupts() 
Suspend and resume all interrupts that can be disabled on the 
hardware (usually all those interrupts that can be masked).   
These calls can be nested. 

• SuspendOSInterrupts() and ResumeOSInterrupts() 
Suspend and resume all Category 2 interrupts on the hardware.   
These calls can be nested. 

Important: You must make sure that there are never more ‘Resume’ calls 

than ‘Suspend’ calls. If there are, it can cause serious errors and the behavior 

is undefined.  Subsequent ‘Suspend’ calls may not work. This will result in 
unprotected critical sections. 

Code Example  5:6 shows you how the interrupt control API calls are used and 
nested correctly. 

#include “Task1.h” 

TASK(Task1) { 

 

  DisableAllInterrupts(); 

  /* First critical section, nesting not allowed.*/ 

 

  EnableAllInterrupts(); 

  SuspendOSInterrupts(); 

 

  /* Second critical section, nesting allowed. */ 

 

  SuspendAllInterrupts(); 

 

  /* Third critical section. */ 

 

  ResumeAllInterrupts(); 

  ResumeOSInterrupts(); 

  TerminateTask(); 

} 

Code Example  5:6 - Nesting Interrupt Control API Calls 

In the case of Category 1 interrupts, you must make sure that no RTA-OSEK 
Component API calls are made (except for other Suspend/Resume calls) for 
the entire time that the interrupts are disabled. 

If a Category 2 ISR raises the interrupt level above OS level, it may not make 
any other RTA-OSEK Component API calls, except for the appropriate call to 
restore the interrupt priority.  When executing an ISR, you are not allowed to 
lower the interrupt priority level below the initial level. 
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5.7 Using Floating-Point 

As with tasks, RTA-OSEK generally assumes that floating-point is not used in 
your application. If an ISR does use floating-point, you must declare this in the 
RTA-OSEK GUI.  RTA-OSEK Component will then ensure that any hardware 
registers that are involved with floating-point calculations are saved and 
restored on entry or exit for the ISRs. 

RTA-OSEK is able to calculate exactly how much memory to reserve for saving 
the floating-point ISRs. It can do this because it can work out the worst-case 
preemption depth for ISRs that use floating-point. You can see the results of 
the calculation in the stack depth analysis of RTA-OSEK. 

5.8 The Default Interrupt 

If you are using RTA-OSEK to generate a vector table, then you may want to 
fill unused vector locations with a default interrupt.  

Figure  5:7 shows how the default interrupt is defined. 

 

Figure  5:7 - Placing a Default Interrupt in the Vector Table 

Portability: The default interrupt is not supported on all targets. 

The default interrupt is slightly different to other interrupts. It is used to fill 
every location in the vector table for which you have not defined an interrupt. 
This feature has been provided as a debugging aid and as a means of 
providing a “fail-stop” in the event of erroneous generation of interrupts in 
production systems. If you actually want to attach interrupt handlers to 
vectors to do useful work, you should explicitly create them as ISRs. 

There are limitations on the use of the default interrupt handler. It cannot 
make any OS calls, and system behavior is undefined if it ever returns. 

Important: You must not make any RTA-OSEK Component API calls from the 
default interrupt and you must not return from the handler.   



 5
.9
 

 

5-12 Interrupts RTA-OSEK v5.0.2 

The default interrupt is implemented like an OSEK Category 1 interrupt and 
must therefore be marked as an interrupt with the syntax defined by your 
compiler. The last statement in your default interrupt handler should be an 

infinite loop.  Code Example  5:7 shows how this can be done. 

__interrupt void default_handler(void) 

{ 

/* invoke target-specific code to lock interrupts 

*/ 

  asm(“di”); /* or whatever on your platform */ 

  for (;;) { 

  } 

  /* Do NOT return from default handler. */ 

} 

Code Example  5:7 - The Default Interrupt Handler 

5.9 Interrupt Arbitration 

If multiple interrupts share the same interrupt priority level, you must define 
an arbitration order in the RTA-OSEK GUI. This is used for analysis. 

The arbitration order is used to specify the order in which interrupts of the 
same priority are serviced when two or more are pending simultaneously.   

Figure  5:8 shows how the interrupt arbitration order is defined. 

 

Figure  5:8 - Defining the Arbitration Order 

In the example in Figure  5:8, you will see that the arbitration order specifies 

that ISR_1 be serviced first if both interrupts are pending simultaneously.  

For many processors, the interrupt arbitration order is fixed (details can be 
found in the processor reference manual). For other processors, you can 
define the arbitration order. 

Important: You should make sure that the arbitration order specified 
matches the arbitration order of the interrupts within your application. Ensure 
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that the information given in the configuration file correctly describes the run-
time behavior of the interrupts. 

5.10 Summary 

• Interrupts provide a mechanism to capture real-world stimuli. 

• OSEK supports two categories of interrupts: Category 1 and Category 2. 

• Category 1 interrupts are not processed by RTA-OSEK Component. 

• Category 2 interrupts are processed by RTA-OSEK Component. 
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6 Resources  

Access to hardware or data that needs to be shared between tasks and ISRs 
can be unreliable and unsafe. This is because task or ISR preemption can occur 
whilst a lower priority task or ISR is part way through updating the shared 
data. This situation is known as a race condition and is extremely difficult to 
test for. 

You learnt earlier that a sequence of statements that accesses shared data is 
known as a critical section. 

To provide safe access to code and data referenced in the critical section you 
need to enforce mutual exclusion. In other words, you must make sure that 
no other task or Category 2 ISR in the system is able to pre-empt the 
executing task during the critical section. 

In OSEK mutual exclusion is provided by resources. A resource in OSEK is just 
a binary semaphore. 

While a task or Category 2 ISR gets a resource, no other task or ISR can get 
the resource. When the critical section is finished, the task or ISR releases the 
resource. 

In OSEK, resources are locked according to a locking protocol. This locking 
protocol is called priority ceiling protocol, in particular a version called 
immediate inheritance priority ceiling protocol (or alternatively stack resource 
protocol). 

OSEK’s Priority ceiling protocol uses the concept of a ceiling priority for the 
resource that is the highest priority of any task or ISR that gets the resource. 
When a task or ISR gets a resource, its priority is immediately increased to the 
ceiling priority (if and only if this is higher than the current priority). When the 
resource is released, the priority of the task or reverts to the priority 
immediately prior to the task or ISR making the call. 

Immediate inheritance priority ceiling protocol provides two major benefits: 

• It is guaranteed to be deadlock free  
A task or ISR must be executing in order to make the lock. If another 
task or ISR already had the resource we wanted then, because that 
task or ISR would be running at the ceiling priority, we could not be 
executing (we would not be the highest priority task or ISR in the 
system) and could not be making requesting the resource. 

• Priority inversion is minimized  
A task or ISR can be blocked at most once during execution and the 
always blocking occurs at the start of execution. Each time a high 
priority task or ISR becomes ready, its execution can only be delayed 
by a single lower priority task or ISR that gets a resource. As there is 
no cumulative blocking, there is a strict bound on the worst-case 
blocking time. 

6.1 Resource Configuration 

RTA-OSEK needs to know which tasks and ISRs use which resources. It can 
then calculate the ceiling priorities used by the priority ceiling protocol. 
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Additional resource usage information for each task or ISR can be configured 
during task or ISR configuration.  This information is needed for analysis only.  
You can declare up to 255 resources in your application. 

At the most basic level, resources only need to be named. Look at the 

example in Figure  6:1 to see how resources are configured in the RTA-OSEK 
GUI. 

 

Figure  6:1 - Configuring Resources using the RTA-OSEK GUI 

Figure  6:1 shows that a resource called Resource1 has been declared.  
When you refer to this resource in your program you must use the same 
name. 

6.1.1 Resources on Interrupt Level  

Resources that are shared between tasks and interrupts are optional in OSEK. 
This optional feature is supported by RTA-OSEK. 

RTA-OSEK will automatically identify the resources that are combined 
resources, so you don’t need to do any special configuration. 

When a task gets a resource shared with an ISR, RTA-OSEK will mask all 
interrupts with interrupt priority less than or equal to the highest priority 
interrupt that shares the resource. 

This is simply an extension of priority ceiling protocol. 

Sharing resources between tasks and ISRs means that it is possible to mask 
individual interrupts at a particular priority level, providing better control for 
interrupt masking than the Enable/Disable and Suspend/Resume.  

Resources on interrupt level are therefore especially useful when using an 
RTA-OSEK port that supports nested interrupts. You can share a resource 
between tasks and the highest interrupt priority level that you want to disable 
to prevent those interrupts occurring. 
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6.2 Using Resources 

You can get a resource using the GetResource() API call. You can then 

release a resource using the ReleaseResource() call. A task or ISR must 
not terminate until it has released all resources that are still held. 

A task or ISR can only use the resources that you specify during RTA-OSEK 

Component configuration. Code Example  6:1 shows you how resources are 

used in Task1. 

#include “Task1.h” 

 

TASK(Task1) { 

 

  /* Task functionality. */ 

  GetResource(Resource1); 

  /* Critical section. */ 

  ReleaseResource(Resource1); 

  /* Remainder of task functionality. */ 

  TerminateTask(); 

} 

Code Example  6:1 - Using Resources 

Important: Calls to GetResource() and ReleaseResource()must be 
matched. You cannot get a resource that you have already got. You cannot 
release a resource you have not already got.  

When a GetResource() is made, it is boosts the priority of the calling task 
or ISR to the ceiling priority of the resource. The resource’s ceiling priority is 
the highest priority of any task or ISR that shares the resource and is 
automatically calculated by RTA-OSEK.  

In Figure  6:2, you can see that Task1 has priority 3. This task shares a 

resource called Resource1 with Task2. Task2 has priority 7, so the 
resource priority will be 7 (the highest priority of all tasks that share the 
resource). When the resource is held, Task1 runs at priority level 7, returning 

to priority level 3 when the resource is released. Note that if Task2 is 

activated while Task1 holds the resource, then Task2 is blocked until the 
resource is released. 
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Figure  6:2 - Tasks Using Resources 

6.2.1 Nesting Resource Calls 

You can get more than one resource concurrently, but the API calls must be 
strictly nested. Let’s look at two examples; one showing incorrectly nested 

calls and the other showing the API calls nested correctly. Code Example  6:2 

shows Resource1 and Resource2 being released in the wrong order.  

GetResource(Resource1); 

GetResource(Resource2); 

ReleaseResource(Resource1); /* Illegal! */ 

 

/* You must release Resource2 before Resource1 */ 

 

ReleaseResource(Resource2); 

Code Example  6:2 - Illegal Nesting of Resource Calls 

A correctly nested example is shown in Code Example  6:3. All of the resources 
are held and then released in the correct order. 

GetResource(Resource1); 

  GetResource(Resource2); 

    GetResource(Resource3); 

    ReleaseResource(Resource3); 

  ReleaseResource(Resource2); 

ReleaseResource(Resource1); 

Code Example  6:3 - Correctly Nested Resource Calls 
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6.2.2 Using the Static Interface 

If a task does not state that it uses a given resource, it should not attempt to 
get the resource. OSEK allows any task of lower priority than the resource 
ceiling priority to lock the resource, but will return an E_OS_ACCESS error if 

the GetResource() call is made from a task or ISR of higher priority than 
the resource’s ceiling priority. 

Better control checking of this is possible by using RTA-OSEK’s static 
interface. 

The static interface is a mechanism used by RTA-OSEK to generate optimized 
system calls that can be used by your application. Static versions of the 
GetResource() and ReleaseResource() API calls are provided. 

Look at the following two examples where Resource1 is held and then 

released. You can see that Code Example  6:4 uses dynamic calls.  Compare 

this with Code Example  6:5, which uses the static calls. 

GetResource(Resource1);     /* Dynamic call. */ 

/* Critical section. */ 

ReleaseResource(Resource1); 

Code Example  6:4 - Dynamic Resource Calls 

GetResource_Resource1();    /* Static call. */ 

/* Critical section. */ 

ReleaseResource_Resource1(); 

Code Example  6:5 - Static Resource Calls 

For optimum performance, you should use the static versions of the calls 
wherever possible. You will only need to use a dynamic call when a resource is 
unknown at compile time (for example, if it is passed as a parameter to a 
function in a library). 

Using the static version allows RTA-OSEK to calculate whether or not any 
action needs to be taken.  So, for instance, the highest priority task or ISR that 
locks a resource does not need to do anything. This is because the priority will 
already match the resource level. The GetResource() and 

ReleaseResource() calls are mapped to an empty statement. () 

6.3 Linked Resources 

In OSEK, GetResource() API calls for the same resource cannot be nested.  
However sometimes, there are cases where you may need to nest the calls. 

Your application may, for instance, use a function shared amongst a number 
of tasks.  What happens if the shared function needs to get a resource used 

by one of the tasks, but not by the others? Have a look at Code Example  6:6. 

#include “Task1.h” 

TASK(Task1) { 

  … 
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  GetResource(Resource1); 

  /* Critical section. */ 

  SomeFunction(); 

  ReleaseResource(Resource1); 

  … 

} 

 

#include “Task2.h” 

TASK(Task2) { 

  … 

  SomeFunction(); 

  … 

} 

 

#include “osek.h” /* Generic header file. */ 

void SomeFunction(void) { 

  … 

  GetResource(Resource1);      /* Not allowed! */ 

  /* Critical section. */ 

  ReleaseResource(Resource1);  /* Not allowed! */ 

  … 

} 

Code Example  6:6 - Illegally Nested Resource API Calls 

In these cases, the nesting of a (potentially) held resource must use linked 
resources.  A linked resource is an alias for an existing resource and protects 
the same, shared, object. 

Figure  6:3 shows how linked resources are declared using the RTA-OSEK GUI. 

 

Figure  6:3 - Configuring a Linked Resource in the RTA-OSEK GUI 
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Linked resources are held and released using the same API calls for standard 

resources (these are explained in Section  6.2). You can also create linked 
resources to existing linked resources. 

6.4 Internal Resources 

If a set of tasks share data very closely, it becomes too difficult for resources to 
guard each access to each item of data. You may not even be able to identify 
the places where resources need to be held. 

You can prevent concurrent access to shared data by using internal 
resources. Internal resources are resources that are allocated for the lifecycle 
of a task. 

Internal resources are configured offline using the RTA-OSEK GUI. Unlike 
normal resources, however, you cannot get and release them and they are not 
available to ISRs. 

Internal resources in RTA-OSEK Component do not consume any processor 
resources at run-time because RTA-OSEK performs calculations during the 
build process.  

The set of tasks that share an internal resource is defined at configuration 
time using the RTA-OSEK GUI.  This membership is static. 

Figure  6:4 shows the declaration of an internal resource, called 

IntResource1, which is shared between two tasks called t1 and t3. 

 

Figure  6:4 - Declaring an Internal Resource using the RTA-OSEK GUI 

If a task uses an internal resource, RTA-OSEK Component will automatically 
get the specified resource before calling the task’s entry function. The 
resource will then be automatically released after the task terminates, makes a 
Schedule() call or makes a WaitEvent() call. 

During task execution, all other tasks sharing the internal resource will be 
prevented from running until the internal resource is released. Preemption, 
however, is still possible by all higher priority tasks that do not share the 
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internal resource. You can see an illustration of this in Figure  6:5 where Task1 
shares an internal resource with priority 3. 

 

Figure  6:5 - Preemption of Tasks that do not Share an Internal Resource 

Figure  6:5 shows that Task A is running and Task B is ready, but Task B has a 
lower priority. When Task A terminates, Task B runs because it shares an 
internal resource with Task C and the resource has a priority level of 7. 

Task A is ready to run, but cannot preempt Task B because Task B still gets the 
resource with priority level 7.  When Task B terminates, Task A resumes 
running. 

Tasks that share an internal resource run non-preemptively with respect to 
each other.  You saw earlier that non-preemptive tasks can be used, but 
remember that they run non-preemptively with respect to the entire 
application. 

Using internal resources gives you greater control over the timing behavior of 
your application.  Internal resources are also useful for reducing the memory 
used by your system by limiting the total amount of preemption. 

Tasks that share an internal resource will run sequentially, but only one of the 
tasks will be held on the stack at any given time.  As a result, the overall stack 
space required is reduced. 

6.5 The Scheduler as a Resource 

A task can hold the scheduler if it has a critical section that must be executed 
without pre-emption from any other task in the system (remember that the 
scheduler is used to perform task switching). A predefined resource called 
RES_SCHEDULER is available to all tasks for this purpose. 

When a task gets RES_SCHEDULER, all other tasks will be prevented from 

preempting until the task has released RES_SCHEDULER. This effectively 
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means that the task becomes non-preemptive for the time that 
RES_SCHEDULER is held. This is better than making the entire task non-
preemptive, particularly when a task only needs to prevent pre-emption for a 
short part of its total execution time. 

Using RES_SCHEDULER can improve response times of the tasks that might 
otherwise suffer multiple preemptions by other tasks in the application. 

6.5.1 Disabling RES_SCHEDULER 

In RTA-OSEK, RES_SCHEDULER is simply an internally generated standard 

OSEK resource. If you have no need to use RES_SCHEDULER in your 
application then you can save ROM and RAM space by disabling its generation 

in Application -> Optimizations as shown in Figure  6:6. 

 

 

Figure  6:6 - Disabling RES_SCHEDULER 

6.6 Choosing a Pre-Emption Control Mechanism 

If code that does not require locks appears between a pair of 
GetResource() and ReleaseResource() calls, the system 
responsiveness can potentially be reduced. 

With this in mind, when you use resources in your application, you should 
place get calls as closely as possible around the section of code you are 
protecting with the resource. 

However, there is an exception to this rule. This exception occurs when you 
have a short running task or ISR that makes many GetResource() and 

ReleaseResource() calls to the same resource. The cost of the API calls 
may then make up a significant part of the overall task execution time and, 
therefore, potentially the response time. 

You may find that placing the entire task or ISR body between 
GetResource() and ReleaseResource() calls actually shortens the 
worst-case response time. 

You should avoid using non-preemptive tasks and getting RES_SCHEDULER 
wherever possible. System responsiveness and schedulability is improved when 
resources are held for the minimum amount of time and when this affects the 
smallest number of tasks. 
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6.7 Avoiding Race Conditions 

The OSEK standard specifies that resources must be released before a 
TerminateTask() call is made.  In some circumstances, this can introduce 
a race condition into your application.  This can cause task activations to be 
missed (you learnt about race conditions at the beginning of this chapter). 

Code Example  6:7 shows the type of system where race conditions can 
become a problem. Assume that two BCC1 tasks exchange data over a 
bounded buffer. 

#include “Write.h” 

 

TASK(Write) {  /* Highest priority .*/ 

 

  WriteBuffer(); 

  GetResource(Guard); 

  BufferNotEmpty = True; 

  ReleaseResource(Guard); 

  ChainTask(Read); 

 

} 

 

#include “Read.h” 

 

TASK(Read) {  /* Lowest priority. */ 

    

  ReadBuffer(); 

  GetResource(Guard); 

     

  if( BufferNotEmpty ) { 

    ReleaseResource(Guard); 

    /* Race condition occurs here. */ 

    ChainTask(Read); 

  } else { 

    ReleaseResource(Guard); 

    /* Race condition occurs here. */ 

    TerminateTask(); 

  } 

 

} 

Code Example  6:7 - A System where a Race Condition can Occur 

In Code Example  6:7, between the resource being released and the task 

terminating, Read can be pre-empted by Write.  When task Write chains 

task Read the activation will be lost.  This is because Read is still running.  In 
other words a task is being activated, but it is not in the suspended state. 

To solve this problem, you can allow queued activations of the Read task.  
This means that you should make the task BCC2. 
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6.8 Summary 

• Resources are used to provide mutual exclusion over access to shared data or 
hardware resources. 

• Tasks and ISRs can share any number of resources. 

• All GetResource() and ReleaseResource() calls must be properly 
nested. 

• All resources must be released before the task or ISR terminates. 

• The scheduler can be released as a resource, but internal resources should be 
used in preference, if possible. 

• Internal resources provide a cost free mechanism for controlling preemption 
between a group of tasks.  
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7 Events 

In an OSEK system, events are used to send signal information to tasks.  You 

will learn how to configure events in Section  7.1. 

Events can be used to provide multiple synchronization points for extended 

tasks. A visualization of synchronization is shown in Figure  7:1. 

 

Figure  7:1 - Visualizing Synchronization 

An extended task can wait on an event, causing the task to move into the 

waiting state. You’ll learn more about this in Section  7.1.1. 

When an event is set by a task or ISR in the system, the waiting task is 
transferred into the ready state. When it becomes the highest priority task it 
will be selected to run by RTA-OSEK Component. 

Events are owned by the extended task with which they are associated.  
Usually an extended task will be an infinite loop that contains a series of 
guarded wait calls for the events it owns. The event mechanism therefore 
allows you to build event driven state machines using OSEK. 

If timing behavior is important in your system, all of your extended tasks (in 
other words, any task that declares an event) must be lower priority than the 
basic tasks. 

7.1 Configuring Events 

Events are declared using the RTA-OSEK GUI.  The maximum number of 
events that can exist in your application is determined by your target 
hardware. You can see the maximum number of events by looking at the 
Target Summary in the RTA-OSEK GUI. 

In Figure  7:2, the target can wait on a maximum of 16 events. 
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Figure  7:2 - Viewing the Maximum Number of Events for a Target 

When an event is declared it must have: 

• A name. 
Names are used only to indicate the purpose of an event at 
configuration time. 

• At least one task that uses it.  

• An event mask. 
The event name that is specified in the RTA-OSEK GUI is used as a 
symbolic name for the event mask at run-time.  A mask is an N bit 

vector with a single bit set, where N is the maximum number of events 
on which a task can wait.  The set bit identifies a particular event. 

The event name is used at run-time as a symbolic name for the mask.  The 
mask can be declared explicitly or, alternatively, RTA-OSEK can generate the 
mask automatically for you.  When several tasks wait on many events, it is 
better to allow RTA-OSEK to generate the mask automatically. 

Figure  7:3 shows that an event called Event1 has been declared.  In this 
example, you can see that RTA-OSEK will automatically generate the event 
mask and the event is used by a task called t3. 
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Figure  7:3 - Declaring an Event in the RTA-OSEK GUI 

If an event is used by more than one task, each task has its own individual 
copy. When an event is set, a task must be specified at the same time.  So, for 
example, if you set an event called Event2 for a task called t3, this has no 

effect on Event2 for the task t4. When a task terminates all the events that 
it owns are cleared. 

7.1.1 Defining Waiting Tasks 

Waiting tasks are selected using the RTA-OSEK GUI. If you declare a task that 
waits on an event, it automatically means that it will be treated as an 
extended task. 

Figure  7:4 shows you that the event, called Event1, has been declared and 

that the tasks t2 and t3 are being configured to wait on the event. 

 

Figure  7:4 - Selecting a Task to Wait on an Event 

An extended task that waits on an event will usually be autostarted and the 
task will never terminate. When the task starts executing, all the events it 
owns are cleared by RTA-OSEK Component. 
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7.2 Waiting on Events 

A task waits for an event using the WaitEvent(EventMask) API call. The 

EventMask must correspond to the one that is declared in the RTA-OSEK 
GUI. 

The WaitEvent() takes an event as its sole parameter. When the call 
executes there are two possibilities: 

1. The event has not occurred 
In this case the task will enter the waiting state and RTA-OSEK will run 
the highest priority task in the ready state. 

2. The event has occurred 
In this case the task remains in the running state and will continue to 
execute at the statement immediately following the WaitEvent() 
call. 

7.2.1 Single Events 

To wait on a single event you simple pass in the event mask name to the API 

call Code Example  7:4 shows you how a task can vents. 

TASK(Task1) { 

  ... 

  WaitEvent(Event1); 

  /* Task enters waiting state 

     if event has not happened */ 

   

  /* Otherwise task continues execution 

     at next statement */ 

  ... 

} 

Code Example  7:1 – Waiting on Events 

The structure of a task that waits on events is typically an infinite loop that 
waits on events.  

TASK(Task1){ 

  /* Entry state */ 

  while(true){ 

    WaitEvent(Event1); 

    /* State 1 */ 

    WaitEvent(Event2); 

    /* State 2 */ 

    WaitEvent(Event3); 

    /* State 3 */ 

  } 

} 

Code Example  7:2 – Simple 3-state State Machine with Events 
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7.2.2 Multiple Events 

Because an OSEK event is just a bit mask, you can wait on multiple events at 
the same time by bitwise ‘OR’ing a set of bit masks. 

When your task waits on multiple events it will be resumed when any one of 
the events upon which you are waiting occurs. When you resume from 
waiting on multiple events then you will need to work out which event (or 
events) has occurred. 

OSEK provides the GetEvent()API call so that allows you to get the current 
set of events that are set for the task.  

The following example shows how a task can wait on multiple events 
simultaneously and then identify which of the events has been set when it 
resumes. 

TASK(Task1){ 

  EventMaskType WhatHappened; 

 

  while(true){ 

    WaitEvent(Event1|Event2|Event3); 

    GetEvent(Task1, &WhatHappened); 

    if( WhatHappened & Event1 ) { 

      /* Take action on Event1 */ 

      ... 

    } else if( WhatHappened & Event2 ) { 

      /* Take action on Event2 */ 

      ... 

    } else if( WhatHappened & Event3 ) { 

      /* Take action on Event3 */ 

      ... 

    } 

  } 

} 

Code Example  7:3 - Waiting on Multiple Events 

7.3 Setting Events 

Events are set using the SetEvent() API call. 

The SetEvent() call has two parameters, a task and an event mask. For the 

specified task, the SetEvent() call sets the events that are specified in the 
event mask. The call does not set the events for any other tasks that share the 
events. 

You can bitwise ‘OR’ multiple event masks in a call to SetEvent() to set 
multiple events for a task at the same time  

Events cannot be set for tasks that are in the suspended state*. So, before 
setting the event, you must be sure that the task is not suspended. 

An extended task is moved from the waiting state into the ready state when 
any one of the events that it is waiting on is set. 

                                                
* This implies that the body of extended tasks should be an infinite loop that waits on events. 
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Code Example  7:4 shows you how a task can set events. 

TASK(Task1) { 

      

  /* Set a single event */ 

  SetEvent(Task2, Event1); 

      

  /* Set multiple events */ 

  SetEvent(Task3, Event1 | Event2 | Event3); 

  ... 

  TerminateTask(); 

} 

Code Example  7:4 - Setting Events 

A number of tasks can wait on a single event. However you can see from 

Code Example  7:4 that there is no broadcast mechanism for events.  In other 
words, you cannot signal the occurrence of an event to all tasks waiting on 
the event with a single API call. If you do want to do this, then RTA-OSEK 
tasksets can provide similar functionality. 

Events can also be set with OSEK alarms and with messages. 

7.3.1 Static Interface 

RTA-OSEK provides static interface calls for SetEvent() with both the task 
and the event mask statically bound into the interface call. The static interface 
calls only provide support for a single event mask and therefore can only be 
used to set a single event: 

 

TASK(Task1) { 

      

  /* Set a single event */ 

  SetEvent_Task2_Event1(); 

      

  TerminateTask(); 

} 

Code Example  7:5 – Static Interface for SetEvent() 

7.3.2 Setting Events with an Alarm 

Alarms can be used to periodically activate extended tasks that don’t 
terminate.  Each time the alarm expires, the event is set. The task waiting on 
the event is then made ready to run. 

7.3.3 Setting Events with a Message 

COM messages can be configured to set an event on transmission.  Each time 
the message is sent the event is set. The task waiting on the event will be 
made ready to run. 
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7.4 Clearing Events 

An event can be set by any task or ISR, but only the owner of the event can 
clear it. 

When your task waits on an event, and the event occurs, then a subsequent 
call to WaitEvent() for the same event will return immediately because the 
event is still set.  

Before you wait for the event occurring again you need to clear the last event 
occurrence. 

Events are cleared using the ClearEvent(EventMask) API call. The 

EventMask must correspond to the one that is declared in the RTA-OSEK 
GUI.  

Code Example  7:3 shows how a task typically uses ClearEvent(). 

 

TASK(Task1){ 

  EventMaskType WhatHappened; 

  ... 

  while( WaitEvent(Event1|Event2|Event3)==E_OK ) { 

    GetEvent(Task1, & WhatHappened); 

    if(WhatHappened & Event1 ) { 

      ClearEvent(Event1); 

      /* Take action on Event1 */ 

      ... 

    } else if( WhatHappened & (Event2 | Event3 ) { 

      ClearEvent(Event2 | Event3); 

      /* Take action on Event2 or Event3*/ 

      ... 

    } 

  } 

} 

Code Example  7:6 - Clearing Events 

7.5 Waiting in the Idle Task 

You have seen that the idle task is the lowest priority task in the system. In 
RTA-OSEK Component the idle task can wait on events, which means that it 
can be an extended task. 

Unlike other extended tasks, an extended idle task will never need to be 
moved off the stack when it issues a WaitEvent() call. RTA-OSEK, 
therefore, does not need to allocate memory to save the current context. 

These facts provide a useful optimization.  If you need a single extended task 
in your application you can use the idle task, without any time or space 
penalty being applied to the rest of your application. 

A system with the idle task as the only extended task has exactly the same 
performance as strict basic conformance class systems. In practice, this means 
that the idle task can be turned into an extended task at no cost. 
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The idle task can be used if you want the system to remain BCC for timing 
analysis, but would like to use a single extended task. If you use this method 
you will avoid compromising the timing behavior of the rest of the system. 

7.6 Summary 

• Events are synchronization objects that can be waited on by extended tasks. 

• An event is owned by a single task. 

• Tasks, ISRs, alarms and messages can set events.  
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8 Messages 

Tasks and interrupts will often need to communicate. For example, a 
communication bus interrupt may want to pass information to a task telling it 
how many bytes to read from a shared buffer.   

Communication between objects can be achieved using message passing  In 
RTA-OSEK, message passing is asynchronous. This means that when the 
message is sent, the sender continues to execute. When the receiver begins to 
execute, it consumes the sent message. 

All data transmission is memory to memory because messages are only sent 
between objects on a single CPU. There is no concept of a transmission 
failure. 

8.1 Communication in OSEK 

Message passing in an OSEK operating system is defined by a subset of the 
OSEK Communications (COM) standard.  

In RTA-OSEK, message passing satisfies the OSEK COM conformance classes 
CCCA (non-queued messages)  and CCCB (queued messages)  CCCB for 
internal task and interrupt communication.  

OSEK COM CCCB provides facilities for communication between tasks and 
ISRs. CCCB supports both queued and non-queued message transmission. 

8.1.1 Versions of OSEK COM 

RTA-OSEK supports three different versions of COM: 

1. OSEK COM v2.2.2 – referred to as COM2 

2. OSEK COM v3.0.3 – referred to as COM3 

3. AUTOSAR COM v1.0 – referred to as RTA-COM 

Important: COM3 and AUTOSAR COM are provided by the RTA-COM 
product and not with RTA-OSEK 

This chapter discusses the configuration of COM2 in detail. The configuration 
and use of RTA-COM can be found in the RTA-COM User Guide.  

8.2 Configuring Messages 

If you want to use the communication facilities in RTA-OSEK Component 
you’ll need to declare a COM message in the RTA-OSEK GUI.   

There are a number of stages involved in configuring a COM message: 

• Declare the message. 

• Declare the sender and receiver(s). 

• Specify the accessors. 
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• Specify the transmission mechanism. 

Each of these stages will now be explained in more detail. 

8.2.1 Declaring Messages 

Messages are declared using the RTA-OSEK GUI.  You can see, from Figure 

 8:1, how a new message has been added to the application. 

 

Figure  8:1 - Declaring a New Message 

At the simplest level, each message must have: 

• A name. 
The name is used to refer to the message at run-time. 

• A data type. 
The data type specifies the content of the message.   
This is the C type of the actual message data.  This could be a simple 
type, such as unsigned char, or it could be a more complex type, 

such as struct myMessage. 

Figure  8:2 shows a message called Message1 that uses an integer data type. 

 

Figure  8:2 - Specifying the Data Type for a Message 
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COM does not need to know the type or even the content of a message.  
However, this information is needed by RTA-OSEK at build time, so that the 
correct amount of memory can be allocated for messages during the build 
process.  

Any type of data, such as integers, arrays, strings and linked lists can be 
passed as a message.  If the data type isn’t a standard C or standard RTA-
OSEK data type, it must be declared in a file. 

By default, the information is located in the file called comstrct.h.  You 

can, however, choose a different file for the data type definitions. 

The name of this file is specified in the RTA-OSEK GUI using the COM 

Options.  In Figure  8:3 the existing file is called comstrct.h.  The file can be 

renamed by typing in a new name.  If you do not want a #include file, 
delete the name and leave it blank. 

 

Figure  8:3 - Specifying the Name of the Include File 

The type specified for a COM message must be a complete C language type – 
i.e. the type must be something that could be used for declaring a variable. 
(Amongst other things RTA-OSEK uses the specified type to create message 
accessors.) For example, assume that the following declarations appear in 
comstruct.h: 

struct myStruct 

{ 

  char a; 

  char b; 

}; 

 

typedef struct 

{ 

  char x; 

  char y; 

} 

myRecord; 

 

typedef char myArray[10]; 
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The following would be valid message types:  

int  

struct myStruct 

myRecord  

myArray 

8.2.2 Declaring Senders and Receivers 

A message is sent by a single sender, but it can be received by multiple 
receivers.  This provides a mechanism for broadcasting information to the 
whole system. 

The sender and receiver of a particular message must be specified at 
configuration time using the RTA-OSEK GUI.  Both tasks and Category 2 ISRs 
can be senders or receivers. 

Figure  8:4 shows you how the sender, Task1, is specified for Message1.  
Notice how only one sender can be specified for each message. 

 

Figure  8:4 - Declaring a Sender for a Message 

In Figure  8:5, a Receiver called Task2 has been added to Message1.  Each 
message can have any number of receivers added in this way. 

 

Figure  8:5 - Adding Receivers to a Message 
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8.2.3 Specifying Accessors 

Senders and receivers manipulate message data using accessors.  Accessors 
are used by the application to send and receive message data using the 
corresponding API calls. 

Accessors must be declared for both the sender and receiver.  They are also 
unique to a task or ISR message pairing. 

An accessor is a reference to a data object with the same type as the 
message.  Depending on the message characteristics, an accessor can 
reference either the actual data in the message or a copy of it. 

Figure  8:6 shows how the RTA-OSEK GUI is used to create a send accessor 

called Message1_send. 

 

Figure  8:6 - Specifying a Send Accessor 

 

The diagram in Figure  8:7 shows how accessors are used to pass messages 
between tasks or ISRs. 

 

Figure  8:7 - Using Accessors to Send and Receive Message Data 

If tasks or ISRs want to send or receive the same message they must use  
different accessors.  RTA-OSEK creates an accessor named 
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<MessageID>_send for the sender and an accessor named 

<MessageID>_recN for the receiver where N is the number of the receiver.  
Accessor names are unique to each task and ISR. 

These symbolic names for the accessors can be changed, an example is shown 

in Figure  8:8.  Here Message1 has an accessor called Message1_rec1.  In 

this example, the accessor is being renamed to Rec1Message1. 

 

Figure  8:8 - Specifying a Receive Accessor 

Accessors are used as if they were a variable of the message type (actually 

they are). So continuing the example in section  8.2.1, if we had a message 

called message1 of type myArray with a send accessor called 

message1_send and a message called message2 of type struct 

myStruct with a send accessor called message2_send then the following 
uses of the accessors would be legal: 

for (i = 0; i < 10; i++) 

{ 

  message1_send[i] = (char) i; 

} 

 

message2_send.a = 1; 

message2_send.b = 2; 

Important: You must make sure that, when passing the accessor into an API 
call, you pass the address of the accessor (this means that all calls should use 
&AccessorName). 

8.2.4 Specifying Transmission Mechanisms 

Accessors provide access to the message area, but they do not specify how 
messages are sent.  OSEK COM defines two message transmission 
mechanisms: 

• WithCopy. 

• WithoutCopy. 
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WithCopy Mode 

In the WithCopy transmission mechanism, the accessor references a local 
copy of the message.  When a message is sent, RTA-OSEK Component copies 
the contents of the local copy into the message buffer. 

When the message is received, the contents of the message location are 
copied to the local copy area for the receiver. 

WithCopy mode can be used by both tasks and ISRs. 

Important: WithCopy is the only transmission mode available to ISRs. 

Have a look at the example in Figure  8:9 where both accessors are declared as 

WithCopy.  (In the example, the big arrows indicate the copying of the 
message data and the small arrows indicate references.) 

 

Figure  8:9 - Sending and Receiving Messages using WithCopy 

This mechanism can be expensive if the message types are large and/or if they 
are complex data structures.  However, WithCopy allows the sender and 
receiver to manipulate the copy of the message without affecting the 
message itself. 

WithoutCopy Mode 

Tasks can specify message transmission WithoutCopy (remember that ISRs 
cannot use this mode). 
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Using WithoutCopy, the accessor directly references the data buffer of the 
message, which saves the expensive copy operation that you saw in the 
previous example. 

So, let’s compare Figure  8:9 with our next example, Figure  8:10.   

Figure  8:10 illustrates the message transfer where both accessors are declared 

as WithoutCopy (remember that in the diagram, the small arrows indicate 
references). 

ReceiveMessageSendMessage

Message1_send
[Accessor]

Message1 data

Message1_rec1
[Accessor]

Message1
 

Figure  8:10 - Sending and Receiving Messages WithoutCopy 

In WithoutCopy mode many tasks can have access to the same data area at 
the same time.  It is up to you to make sure that no access conflicts occur 
(possibly by providing concurrency control over reads and writes to the 
message). 

You can use the RTA-OSEK GUI to create a message resource for each 
message.  A message resource is similar to a standard OSEK resource, but is 
specific to a particular message. 

The message resource has the same name as its message. It is also available to 
each task and ISR that can access the message. When you get a message 
resource, the system’s active priority should be raised to that of the highest 
priority task or ISR that can access the message. 

The resource is accessed by the GetMessageResource(MessageID) and 

ReleaseMessageResource(MessageID) API calls. You can find out 
more information about these calls in the RTA-OSEK Reference Guide. 

8.3 Sending and Receiving Messages 

A message is sent using the SendMessage(MessageID, &AccessorID) 
call. 

A task or ISR that wants to send a message must have a send accessor for that 
message.  This must be declared in the RTA-OSEK GUI.  Note that it is an error 
to call this API with an invalid message or accessor. 
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8.3.1 Sending a Message 

To send a message you must: 

• Copy the data that needs to be sent into the data buffer that 
AccessorID is pointing to.  The accessor that you use must be valid 
for the task or ISR. 

• Call the SendMessage(Message, &Accessor) API call.   

Message is the identifier of a declared message and Accessor is a 
reference to an accessor that the task or ISR is allowed to use. 

In Code Example  8:1, the message DataArrived is sent by an ISR.  The 

message type is defined by the struct MyMessage. 

struct MyMessage { 

 char text[6]; 

 bool aFlag; 

}; 

ISR (MessageArrived) { 

  

 /* Prepare data for sending. */ 

 DataArrived_send.aFlag = true; 

 memcpy(DataArrived_send.text, “HELLO”, 6); 

 

 /* Send the message. */ 

 SendMessage(DataArrived, &DataArrived_send); 

 

}  

Code Example  8:1 - Sending a Message from an ISR 

8.3.2 Receiving a Message 

The ReceiveMessage(MessageID, &AccessorID) API call is used to 
receive messages.  A task or ISR that wants to receive a message must have a 
receive accessor for that message declared in the RTA-OSEK GUI. 

To receive a message you must: 

• Call the ReceiveMessage(Message, &Accessor) API call. 

Message is the identifier of a declared message and Accessor is a 
reference to an accessor that the task or ISR is allowed to use. 

• After the call has returned, access the data from the data buffer that 
Accessor is pointing to. 

 

Code Example  8:2 shows the task ProcessData receiving a message. 

 

TASK(ProcessData) { 

 

  char buffer [6]; 
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  /* Receive the message. */ 

  ReceiveMessage(DataArrived, &DataArrived_Rec1); 

  

  /* Retrieve data from accessor. */ 

  memcpy(buffer, DataArrived_Rec1.text, 6); 

 

}  

Code Example  8:2 - A Task Receiving a Message 

8.4 Starting and Stopping COM 

The StartCOM() API call must be called before sending or receiving 
messages.  This call initializes the implementation specific internal states and 
variables. 

You can use StopCOM(COM_SHUTDOWN_IMMEDIATE) to stop COM at any 
time.  In extended error checking mode this will cause subsequent send and 
receive operations to return the status E_COM_SYS_STOPPED. 

8.5 Initialization and Shutdown of COM 

API calls are provided to initialize and shutdown COM.  These calls are 
intended for use where external hardware, such as a CAN driver, is used to 
pass messages to other processors.  This is not directly supported in RTA-OSEK 
Component; however, you can do this using other add-on libraries. 

The InitCOM() call can be used to initialize the network hardware.  This 

should be called before StartCOM() and it is usually called from the startup 
hook.  

The CloseCOM() API call is used to deactivate the network hardware.  It 

should be called after StopCOM() and it is normally called from the 
shutdown hook. 

Code Example  8:3 shows you how COM can be initialized and shutdown from 

the StartupHook() and ShutdownHook(). 

OS_HOOK(void) StartupHook(void) { 

  InitCOM; 

} 

 

OS_HOOK(void) ShutdownHook(StatusType status) { 

  CloseCOM(); 

} 

Code Example  8:3 - Hook Routines for Starting and Shutting Down COM 

The MessageInit() callback function can be used to initialize user message 
objects. This is a user provided function that is called automatically from 
StartOS(). By default, RTA-OSEK Component provides this function 
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automatically; however it can be overwritten by a user provided function, 

shown in Code Example  8:4. 

StatusType MessageInit(void) 

Code Example  8:4 - MessageInit() Callback Function 

The status type returned by MessageInit() will be passed back as the 

StartCOM() API call status code. 

8.6 Queued Messages 

The messages you have seen so far have been non-queued.  RTA-OSEK 
Component supports COM Conformance Class B (CCCB) that provides 
facilities for queued message transmission. 

For queued messages, RTA-OSEK Component maintains an internal FIFO (first-
in, first-out) queue. You must specify the size of the queue when configuring 
your message in the RTA-OSEK GUI.  When you do this, RTA-OSEK then 

knows how much space it needs to allocate.  Figure  8:11 shows how the 
queue size is specified. 

 

Figure  8:11 - Specifying the Queue Size 

Queued messages have the same message names and accessors as non-
queued messages, but there are important differences. 

For queued messages: 

• The transmission mode must always be WithCopy for both the 
sender and the receiver. 

• Only a single receiver can be declared for each queued message.  This 
is because queued messages have destructive read.  So, when a 
receiver reads the message at the head of the queue, that message is 
then deleted. 

• ISRs cannot send queued messages. 
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8.7 Mixed-Mode Transmission 

In Section  8.2.4 you learnt about Transmission Mechanisms. Remember that 
OSEK COM defines two different message transmission mechanisms called 
WithCopy and WithoutCopy. 

Senders and receivers can, in fact, transfer messages in mixed modes.  So, 
messages could, for example, be sent in WithoutCopy mode and received in 

WithCopy mode.  This is called Mixed Mode Transmission. 

8.8 Activating Tasks on Message Transmission 

When a message is sent, a task can be activated.  Only one task can be 
activated for each message. 

The task that is activated is normally a receiver of the message, but it does not 
have to be. 

If you are going to analyze your application for timing correctness, make sure 
that you only activate tasks of a lower priority than the message sender.  In 
other words, upward activation of tasks is not allowed. 

Figure  8:12 shows that Task1 has been selected as the task to be activated 

when Message1 is sent. 

 

Figure  8:12 - Activating a Task when a Message is sent 

8.9 Setting Events on Message Transmission 

If a message must be received by an extended task, it is possible to notify the 

task by setting an event when the message is sent.  Figure  8:13 shows how 
this can be achieved using the RTA-OSEK GUI. 



 8
.1
0
 

 

RTA-OSEK v5.0.2 Messages 8-13 

 

Figure  8:13 - Setting an Event on Message Transmission 

8.10 Callback Routines 

Messages can have callback routines.  A callback is a parameterless C 
function that is called by RTA-OSEK Component when a message is sent.  It is 
up to you to supply this C function.   

An example callback routine is shown in Code Example  8:5. 

void MyCallback (void) { 

  /* Callback code. */ 

} 

Code Example  8:5 - Writing a Callback Routine 

If, for example, you wanted to log a count of message transmissions during 
debugging, you could create a callback routine to increment a counter on 
each call. 

Have a look at Figure  8:14, where a callback has been specified in the RTA-
OSEK GUI. 
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Figure  8:14 - Specifying a Callback Function for a Message 

The callback routine can only use the SuspendAllInterupts() and 

ResumeAllInterrupts() API calls. 

8.11 Using Flags 

Flags have a Boolean state, so they can either be set or unset.  They are used 
to manage synchronization with messages.  A flag can be set when a message 
is sent.  This flag can be used wherever it is necessary to check for new 
messages before calling ReceiveMessage().   

The flag name, Flag1, has been specified in Figure  8:15 for Message1. 

 

Figure  8:15 - Activating a Flag when a Message is Sent 

There are two API calls that allow access to a message flag. ReadFlag() 

returns the current state for a given flag and ResetFlag() clears the flag. 

Important: It is your responsibility to make sure that the correct flag is being 
used. There are no checks to ensure that the flag name is correct. 
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Code Example  8:6 shows the code that is needed for a task to receive a 
message using an attached flag. 

 

TASK(ProcessData) 

{ 

  char buffer [8]; 

  

  /* Only receive message if the flag is set. */ 

  

  if( ReadFlag( DataHasArrived ) ) { 

 

    /* Receive the message. */ 

    ReceiveMessage(DataArrived, &ReceiveAccessor); 

 

    /* Retrieve data from accessor. */ 

    memcpy( buffer, ReceiveAccessor, 8 ); 

   

    /* Reset flag. */ 

    ResetFlag( DataHasArrived ); 

  } 

}  

Code Example  8:6 - Task Receiving a Message using the Attached Flag 

8.12 Summary 

• COM provides facilities for message passing between tasks and/or ISRs. 

• Non-queued messages have a single sender and multiple receivers.  They can 
be sent WithCopy or WithoutCopy. 

• Queued messages have a single sender and a single receiver. They can only 
be sent WithCopy. 

• Message sending and receiving is achieved using accessors. 

• You must ensure correct concurrency control when using WithoutCopy 
and queued messages.  

 



 9
.1
 

 

RTA-OSEK v5.0.2 Introduction to Stimulus/Response Modeling 9-1 

9 Introduction to Stimulus/Response Modeling 

So far you have seen how RTA-OSEK is used in the development process.  You 
have also seen how you can configure and use various operating system 
objects. 

In this chapter you will learn how you can model and build timing 
relationships into your application. 

Real-time systems receive inputs and generate outputs.  In RTA-OSEK, the 
inputs are called stimuli and the outputs are called responses. 

To build a successful real-time system you should be able to answer the 
following questions: 

• Which outputs are related to which inputs? 

• How often do inputs occur? 

The RTA-OSEK GUI captures this simple information in a stimulus/response 
model. If you want to analyze a system, however, you will need more 
information. You will learn more about this later in this guide. 

Using the RTA-OSEK GUI you can map your initial specification onto a design, 
in terms of system objects (tasks, interrupts, alarms, schedules and so on).  
This design can be analyzed for timing correctness. RTA-OSEK then generates 
code to implement the design, along with the functional code that is provided 
by you. 

In this chapter you’ll see the specification process that should be used when 
you design systems that use counters, alarms and schedules. 

When the development process is complete, each stimulus will be associated 
with a primary profile and each response will be associated with either a 
primary profile or activated profile. 

Stimuli can be either external or internal to your system. An external stimulus 
could be, for example, a press of a button. An internal stimulus could be a 
timer interrupt from the target hardware. 

Usually stimuli originate as interrupts in your application. The interrupt itself 
may be a stimulus or it could be used by RTA-OSEK Component to generate 
internal stimuli, such as generating an alarm. During the design process you 
will decide what form the stimulus takes. 

When a stimulus occurs, one or more responses must be generated in the 
system. As with stimuli, responses can be external or internal to your system. 
An external response could be the actuation of some hardware. An internal 
response may be the availability of some calculation. During the design you 
will decide what your program will do to generate the responses. 

9.1 Declaring Stimuli and Responses 

The first part of any specification involves declaring the stimuli in the system, 
along with their associated responses. 

Each stimulus and response must have a unique name.  When you declare a 
stimulus, the RTA-OSEK GUI generates a default response with the same 
name as the stimulus. Usually you will want to change this name. 
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Figure  9:1 shows how the response name is changed. 

 

Figure  9:1 - Renaming the Default Response 

A stimulus can be associated with multiple responses. Each response must 
have a unique name.  For example, a stimulus called 10ms_stimulus may 

have an associated response called checked_vessel_pressure.  A 

stimulus called brake_pressed may have responses called 

hydraulics_primed, pads_applied and brake_lights_on. 

9.2 Arrival Patterns and Arrival Rates 

Declaring the stimuli and responses in your system specifies which inputs are 
related to which outputs.  Once the stimuli and responses have been declared, 
the next thing to do is to specify how often the stimuli occur. 

Each stimulus has an arrival pattern.  The arrival patterns can be: 

• Bursting. 
A bursting arrival pattern is used to model the case where, generally, 
an interrupt is a stimulus and it is used to directly activate a task to 
generate a response. 

• Periodic. 
A periodic arrival pattern is used to model a periodic rate, for example 
when you want to generate a response every 20ms. 

• Planned (aperiodic). 

A planned arrival pattern is used to model an aperiodic series of 
stimuli.  For example, you may want to generate a response at 10ms, 
15ms, 50ms and so on. 

In the case of both periodic and planned arrival patterns, it is the behavior 
that is being specified.  During the design process it is up to you to decide 
how to achieve the specified behavior at run-time. 

An example of each type of arrival pattern is shown in Figure  9:2. 



 9
.3
 

 

RTA-OSEK v5.0.2 Introduction to Stimulus/Response Modeling 9-3 

Bursting

Periodic

Planned

0   5  10 50  55  60

0 20 40 60 80 100 120

0 5 30 50 8055 130

ms

ms

ms   

Figure  9:2 - Stimuli Arrival Pattern Examples 

Each arrival pattern has an associated arrival rate that specifies the required 
timing behavior of the arrival pattern. 

Bursting patterns are used only for timing analysis.  Periodic arrival patterns 
are used for analysis, as well as for generation of run-time data used by your 
application.  For planned arrivals, the actual timing specification is deferred 
until the design stage.  The plan that you create states when stimuli occur. 

9.3 Implemeting Stimuli 

Bursting stimuli are usually generated by ISRs, specified as the primary profile.  
This is the only thing that needs to be specified when you create a bursting 
stimulus. 

For periodic and planned stimuli you need to decide how the stimulus is going 
to be generated in RTA-OSEK Component. 

Periodic stimuli can be implemented by: 

• OSEK Alarms 

• AUTOSAR ScheduleTables 

• RTA-OSEK Periodic Schedules 

Planned stimuli can be implemented by: 

• RTA-OSEK Planned Schedules 

Figure  9:3 shows you how you can visualize the design of stimuli. 
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Figure  9:3 - Designing Stimuli 

 

9.4 Implementing Responses 

Each response that you declared during specification must be associated with 
an implementation. The implementation of a response is performed in 
functional code that you provide. 

Responses can be generated by any functional code in your application. You 
will also need to declare which task or ISR will implement the response. A task 
or ISR can implement more than one response, an example is shown in Figure 

 9:4. 
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Figure  9:4 - Implementation of a Stimulus and Responses 

Note that an ISR can both react to a stimulus and make a response. For 
example an interrupt handler may service the interrupt source, perform some 
processing and then return a result to the real-world. 

9.5 Summary 

• All practical systems have inputs and outputs. In RTA-OSEK, the inputs are 
called stimuli and the outputs are called responses. 

• A stimulus is associated with at least one response. 

• Stimuli have arrival types and arrival patterns.  Arrival information is used for 
analysis and, in the case of periodic and planned arrivals, for the generation 
of run-time information. 

• Responses are implemented by tasks or ISRs in your final application code. 

• For periodic and planned stimuli you must design how the stimuli will arrive 
in your application when running under RTA-OSEK Component. 
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10 Counters  

Counters register how many “things” have happened in the OS in ticks. A tick 
is an abstract unit. It is up to you to decide what you want a tick to mean and, 
therefore, what are the “things” the counter is counting. 

You might define a tick to be: 

• Time, for example a millisecond, microsecond, minute etc and the 
counter then tells you how much time has elapsed. 

• Rotation, for example in degrees or minutes, in which case the counter 
would tell you by how much something has rotated. 

• Button Presses, in which case the counter would tell you how many 
times the button has been pressed. 

• Errors, in which case the counter is counting how often an error has 
occurred. 

An ISR (or sometimes a task) is used to drive a counter. The driver is 
responsible for making the correct RTA-OSEK Component API call to ‘tick’ the 
counter or to tell RTA-OSEK that the counter has “ticked” to a required value. 

10.1 Configuring Counters 

Counters are declared using the RTA-OSEK GUI.  To declare a counter you 
must specify: 

• A counter name. 
RTA-OSEK creates a handle for each counter using an identifier of the 
same name as the counter. 

• The rate at which the counter is ticked. 

• A primary profile. 
This is usually the interrupt that you are using to tick the counter. 

Figure  10:1 shows how a counter called Counter1 has been declared. 
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Figure  10:1 - Declaring a Counter 

10.1.1 Specifying the Tick Rate 

When you specify the counter tick rate in the RTA-OSEK GUI, you can either 
specify the ticks in terms of their CPU clock rate or in terms of real-time 
(nanoseconds, microseconds and milliseconds for example) as shown in Figure 

 10:2. 

 

Figure  10:2 - Specifying the Counter Tick Rate 

For most of the applications that you write, the relative timing of events will 
be the real-time values determined by your system requirements.  This means 
that you will usually specify alarm and counter values in terms of real-time 
units. 

Using these units has an important advantage. If you use real-time units and 
then change the CPU clock rate, the counter timing values will be scaled 
automatically according to the new CPU clock rate. 
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10.1.2 Activation Type 

RTA-OSEK does not take control of any of your hardware to provide counter 
drivers. This makes RTA-OSEK very easy to integrate with any tick source for 
example timer ticks, error counts, button presses, TPU peripherals etc.  

This means that you need to provide a driver for every counter you 
declare in RTA-OSEK and interface this to the OS. 

There are two ways to interface a driver: 

1. Ticked 
The count value is held internally by RTA-OSEK. Your application 
makes an API call to tell RTA-OSEK to increment the counter by 
one tick. The counter always counts up from zero and wraps at 
MAXALLOWEDVALUE+1. In AUTOSAR OS this is called a Software 

Counter. . Further details are provided in Section  10.2. 

2. Advanced 
The count value is held in an external hardware peripheral. Your 
application must provide a more complex driver that tells RTA-
OSEK when a requested number of ticks have elapsed. The 
counter uses special callback  that are used by RTA-OSEK to set a 
requested number of ticks, cancel a request, get the current count 
value and get the status of the counter. In AUTOSAR OS this is called a 

Hardware Counter. . Further details are provided in Section  10.3. 

You should use ticked activation when you need relatively low resolution, 
for example greater than one millisecond. Advanced activation is used 
when you need very high resolution, for example in the microsecond 
range, or where you need to synchronize RTA-OSEK to a peripheral, for 
example a TPU or to a global (network) time source. 

The two types of activation are provided to allow you to make a trade-off 
between range and resolution. 

10.1.3 Counter Attributes 

Each counter has the following attributes: 

• A maximum value. 
Defines the maximum count value for the counter. The default setting 
is target dependent. This corresponds to the OSEK attribute 
MAXALLOWEDVALUE. See the RTA-OSEK Binding Manual for your 
target for further information.  
A minimum cycle value. 
Defines the shortest time unit you can use when setting a cycle value.  
By default this is 1 tick. This corresponds to the OSEK attribute 
MINCYCLE. 

• Ticks per base. 
You can assign any value to this attribute because it is not used by 
RTA-OSEK. This corresponds to the OSEK attribute TICKSPERBASE. 
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All of these values can be changed if required. You might, for example, want 
an 8-bit counter rather than a 16-bit counter. You may also, for instance, 
want to specify a minimum cycle value to use when debugging. This can 
prevent the counter being set to a value that has been reached when the set 
call is made. 

Important: For an advanced counter you must ensure that 
MAXALLOWEDVALUE+1 is equal to the modulus of the peripheral. 

10.1.4 Counter Units 

Counter simply register ticks provided by the primary profile. Counters can be 
ticked by any tick source. All alarms attached to the counter will be related to 
that tick source. Remember that you saw earlier that in an event-based 
operating system, such as RTA-OSEK Component, the tick could be anything 
that you can capture in the system. 

The RTA-OSEK GUI allows you to declare counter units. Units allow you to 
specify non-time related tick sources in terms of real-time units.  The time 
conversion between the unit and time must represent the worst-case 
conversion. For example, this could be the fastest rate a button is pressed or 
the fastest rotation speed of a timing wheel. 

Important: If the worst-case conversion rate is incorrectly specified, any 
analysis you perform on your application will not be accurate. 

You could have a counter, for instance, that counts errors occurring in the 
system and then activates tasks at certain threshold values. In the RTA-OSEK 
GUI you could declare an error unit. You can see how this can be achieved in 

Figure  10:3. 
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Figure  10:3 - Declaring an Error Counter with threshold Units 

10.1.5 Counter Constants 

The RTA-OSEK GUI allows you to declare symbolic constants for commonly 
used counter values. This is useful when you want to create symbolic names 
to use in your application, for example as start times, increments and cycle 
times for alarms. 

Figure  10:4 shows you how threshold values for the “error counter” have 
been defined with 10 errors treated as a “serious error” and 15 errors as a 
“catastrophic error”. 

 

Figure  10:4 - Declaring a Counter Constant 

Declared counter constants are available to your application code through the 
generated header files. 



 1
0
.2

 

 

10-6 Counters RTA-OSEK v5.0.2 

10.2 Incrementing Counters 

For each of your ticked counters you need to provide the driver that provides 
the tick. RTA-OSEK provides a well-defined interface for connecting the tick 
source to the OS. 

Although there is no restriction on where and when a counter can be 
incremented, it is usually implemented in a Category 2 ISR handler. A task 
could, however, also make the incrementing API call. 

10.2.1 OSEK OS 

RTA-OSEK generates a Tick_<CounterID>() API call for each counter that 

has been declared in the configuration file (where CounterID is the name of 
the counter). 

Portability: The counter driver interface is not defined by the OSEK standard 
so Tick_<CounterID>() is not necessarily portable to other OSEK OS 
implementations. 

Let’s look at an example. An application contains two counters, one called 
TimeCounter and one called AngularCounter. RTA-OSEK will generate 

the two API calls, shown in Code Example  10:1. 

Tick_TimeCounter(); 

Tick_AngularCounter(); 

Code Example  10:1 - Sample Counter API Calls Generated by RTA-OSEK 

The interrupt handlers that you supply to service the timer and angular 
interrupts must call these API calls. 

Code Example  10:2 shows how these interrupt handlers could look. 

 

#include “HandleTimerInterrupt.h” 

 

ISR(HandleTimerInterrupt) { 

  

  ServiceTimerInterrupt(); 

  Tick_TimeCounter(); 

 

} 
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#include “HandleAngularInterrupt.h” 

 

ISR(HandleAngularInterrupt) { 

 

  ServiceAngularInterrupt(); 

  Tick_AngularCounter(); 

 

} 

Code Example  10:2 - Interrupt Handlers for Code Example  10:1 

If you have multiple ticked counters that required the same tick rate then you 
are free to make multiple Tick_<CounterID>() calls within your handler: 

#include “MillisecondInterrupt.h” 

 

ISR(MillisecondInterrupt) { 

 

  ServiceTimerInterrupt(); 

  Tick_Counter1(); 

  Tick_Counter2(); 

  ... 

  Tick_CounterN(); 

 

} 

 

10.2.2 AUTOSAR OS 

Unlike OSEK OS, AUTOSAR OS defines a standardized API for ticking counters 
called IncrementCounter(). The API call takes the name of a counter as a 
parameter. This means that the API call is call slower and consumes more 
stack space at runtime than the RTA-OSEK Tick_<CounterID>() API call.  

By default, RTA-OSEK assumes you will be using the OSEK OS version of the 
API call – the counter is usually ticked in an ISR and you want to make your 
handler as fast an efficient as possible.  

The larger and slower AUTOSAR OS API call is must be specifically enabled if 
you want to use this functionality. The API is enabled in Application -> 

Optimizations ()as shown in Figure  10:5. 

 

 

Figure  10:5 - Enabling the IncrementCounter() API 
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10.3 Advancing Counters 

For each of your advanced counters you need to provide the counter driver 
and interface the driver to RTA-OSEK. As with ticked counters, RTA-OSEK 
provides a well-defined interface for connecting the advanced counter driver 
to the OS. 

Portability: The OSEK OS and AUTOSAR OS standards do not specify a 
standard API call for dealing with advanced counters. If you are porting your 
application from another OS to RTA-OSEK, then you may need to change the 
advanced counter driver API calls. 

RTA-OSEK internally knows the match value at which the next scheduling 
action needs to happen, where a scheduling action is to expire an alarm or 
processing a schedule table expiry point. 

When you use a ticked counter, you tell RTA-OSEK when a tick has elapsed. 
RTA-OSEK counts ticks and when the match value is reached the action is 
taken. The next match value is set up and the process repeats. 

When you use an advanced counter, RTA-OSEK tells you the match value at 
which the next action needs to happen and you tell RTA-OSEK when counter 
reaches the match value. RTA-OSEK takes the action and the process repeats. 

Normally you will use an interrupt to drive both ticked and advanced counters. 
With a ticked counter you will get an interrupt for each counter tick. With an 
advanced counter you get an interrupt only when an action needs to happen. 
This means that advanced counters can reduce interrupt interference when 
compared to ticked counters. 

10.3.1 Advancing the Counter 

You use the API call osAdvanceCounter_<CounterID>() () to tell RTA-
OSEK that the match value has been reached. The Application -> 
Implementation notes show you the basic structure. 

 

Figure  10:6 - Implementation Notes for Advanced Counter Driver 
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The osAdvanceCounter_<CounterID>() API call returns a structure that 
specifies the status of the counter and the next match value of the hardware 
counter, relative to the previous match value, at which RTA-OSEK must 
process the next action on the counter. 

Important: You are responsible for writing the driver that calls 
osAdvanceCounter_<CounterID>() and ensuring that the next action is 
taken at the correct time. For correct timing behavior, you must ensure that 
the tick source for your advanced counter has the same tick rate defined in 
the configuration file. 

Further information on writing advanced counter drivers can be found in 
Chapter 14. 

10.3.2  Callback Functions 

RTA-OSEK also needs to control the counter at runtime. This is done using a 
callback interface. More details about the requirements of the callback 
interface can be found in the RTA-OSEK Reference Guide. Further information 
on writing callbacks can be found in Chapter 14. 

Set_<CounterID> 

This callback sets up the state for an interrupt to occur when the next action is 
due. The callback is passed the absolute value of the counter at which an 
action should table place. For counters this callback is used for two distinct 
cases: 

1. Starting 
Setting the initial interrupt source when a schedule table or an alarm is 
started on the counter on the counter 

2. Resetting 
Shortening the time to the next action 

The second case is needed because you can, for example, make a 
SetRelAlarm(alrm, 100) call when next interrupt is not due for more 
than 100 ticks.  

State_<CounterID> 

This callback returns whether the next action on the counter is pending or not 
and, if the action is not pending, then number of ticks remaining until the 
match value is reached. 

Now_<CounterID> 

This callback needs to return the current value of the external counter. This is 

used for the GetCounterValue() API call. See Section  10.4. 
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Cancel_<CounterID> 

This callback must clear any pending interrupt for your counter and ensure 
that the interrupt cannot become pending until a Set_<CounterID> call is 
made. If you do not cancel all the alarms on the counter and/or stop schedule 
tables driven by the counter then this call is not needed.  

10.4 Setting an Initial Counter Value 

Ticked counters are initialized to zero by RTA-OSEK automatically at startup. 
By default, RTA-OSEK assumes that all advanced counters start counting from 
zero. 

If you want to force any counter to a different initial value then you can do 
this using RTA-OSEK’s InitCounter() API call:  

 

InitCounter(Counter1,(Ticktype)42); 

 

Portability: InitCounter() is specific to RTA-OSEK and is not portable to 
other implementations of OSE OS. 

As InitCounter() directly modifies the count value you should take great 
care when using it when alarms and/or schedule tables are running on the 
counter as you may disrupt their timing behavior.  

10.5 Getting the Current Counter Value 

RTA-OSEK provides an API to get the current count value of a counter called 
GetCounterValue(). 

 

TickType Now; 

GetCounterValue(Counter1,&Now); 

 

Portability: GetCounterValue() is specific to RTA-OSEK and is not portable 
to other implementations of OSEK OS. 

Important: When you use GetCounterValue() to get the value of an 
advanced counter remember that the peripheral hardware will still be 
incrementing when the call returns, so any calculations you make using the 
returned counter value will be based on old data. 
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10.6 Accessing Counter Attributes 

The RTA-OSEK Component API call GetAlarmBase() always returns the 

configured counter values.  The structure of GetAlarmBase() is shown in 

Code Example  10:3. 

AlarmBaseType Info; 

GetAlarmBase( Alarm2, &Info ); 

 

MaxValue  = Info.maxallowedvalue; 

BaseTicks = Info.ticksperbase; 

MinCycle  = Info.mincycle; 

Code Example  10:3 - The Return Structure of GetAlarmBase() 

The configured values are can be accessed as symbolic constants in the form 
shown below. In addition to the OSEK standard, RTA-OSEK provides a fourth 
constant called OSTICKDURATION_<CounterID>which provides the length of 
a tick of the counter in nanoseconds: 

OSMAXALLOWEDVALUE_<CounterID> 

OSTICKSPERBASE_<CounterID> 

OSMINCYCLE_<CounterID> 

OSTICKDURATION_<CounterID> 

Code Example  10:4 - Symbolic Constants 

10.7 Summary 

• Counters are used in OSEK to register a count of some tick source. 

• Counters can count any tick value and RTA-OSEK allows you to specify the 
actual counter units. 

• Counters can be ticked and RTA-OSEK maintains the current count vale. 

• Counters can be advanced and peripheral hardware maintains the current 
count value  
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11 Alarms 

It is possible to construct systems that activate tasks at different rates using 
ISRs. However, for complex systems, this can become inefficient and 
impractical. 

OSEK’s alarm mechanism consists of two parts: 

• A counter. 
You learnt about these earlier 

• One of more alarms attached to the counter. 
The alarm part specifies an action (or actions) to perform when a 
particular counter value is reached. Each counter in your system can 
have any number of alarms attached to it. 

An alarm is said to have expired when the value of a counter equals the 
value of an alarm attached to the counter. On expiry, RTA-OSEK Component 
will perform the action associated with the alarm. The action could be to 
activate a task, to execute an alarm callback routine or to set an event. 
AUTOSAR OS adds a fourth action; tick a ticked counter. 

The alarm expiry value can be defined relative to the actual counter value or 
as an absolute value. If the alarm expiry is defined as relative to the actual 
counter, it is known as a relative alarm. If it is defined as an absolute value, 
it is known as an absolute alarm.. 

Alarms can be configured to expire once.  An alarm that expires once is called 
a single-shot alarm. 

An alarm can also be specified to expire on a periodic basis.  This type of 
alarm is called a cyclic alarm.  You can find out more about cyclic alarms in 

Section  11.2. 

11.1 Configuring Alarms 

In RTA-OSEK an alarm is not declared directly. Alarms are created by: 

• Declaring a stimulus. 

• Attaching the stimulus to a counter. 

When a stimulus is attached to a counter it becomes an alarm on the counter.  

 

Figure  11:1 - Attaching a Stimulus to Counter1 

The implementation of the response to the stimulus becomes the action 
performed when the alarm expires. Each alarm that you create is associated 
with up to 4 actions: 
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• Activate a task. 

• Raise an event. 

• Execute a callback function. 

• Increment a counter [AUTOSAR only] 

Portability: In OSEK (and AUTOSAR) OS each alarm can activate a task, set 
an event, execute a callback function or increment a counter. In RTA-OSEK, 
however, you have more flexibility. You can activate a task, set an event 
execute a callback function and increment a counter from a single alarm. 

If you need to set multiple events, to make multiple callbacks or to activate 
multiple tasks on expiry, you will need multiple alarms with the same expiry 
value. (AUTOSAR Schedule Tables and RTA-OSEK Schedules provide an 
alternative mechanism for implementing multiple task activation without the 
need for multiple alarm objects. You will learn about these mechanisms later 
in this guide). 

Important: Only periodic stimuli can be attached to a counter. You are not, 
however, limited to periodic alarms in the implementation. Alarm periods can 
be set to any value at run-time*. 

11.1.1 Activating a Task 

When you attach a stimulus to a counter the implementation of the response 
becomes the alarm action. The most response implementation is a task. In 

Figure  11:2, Stimulus1 is created implemented as an alarm attached to 

Counter1. The response Response1 is implemented by Task1 so Task1 
becomes the action on the alarm. 

 

Figure  11:2 - Creating an Alarm 

                                                
* If you need to perform timing analysis on aperiodic alarms, then you will have to specify the shortest period in the alarm 
declaration. 
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The RTA-OSEK GUI can be used to show a graphical display of the alarms on 
each counter. You can see this by selecting the Graphic tab in the Counters 
workspace. The visualization shows the alarms that are attached to each 

counter. An example of the graphical view is shown in Figure  11:3. 

 

Figure  11:3 – Viewing Alarms on the Counter Graphically 

In the graphical view you can manipulate alarms on the counter by dragging 
the alarms to new locations. 

Stimuli with Multiple Responses Implemented by Tasks 

In OSEK you may only activate a single task for each alarm. If you have 
multiple responses to a stimulus and the stimulus is implemented using a 
alarm then only the highest priority response implementation profile will be 
activated when the alarm expires. 

Important: It is up to you to make sure that the other responses are 
generated by using chained activations of tasks. The RTA-OSEK GUI tells you 
that you must use direct activation chains to implement this activation 
scheme. 
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11.1.2 Setting an Event 

Each alarm can set an event for a specified task. When an event is set with an 
alarm, it has the same properties as it would if it were set using the 

SetEvent() API call.  Figure  11:4 shows you how to set an event action for 
an alarm. 

 

Figure  11:4 - Setting an Event Action for an Alarm 

11.1.3 Alarm Callbacks 

Each alarm can have an associated callback function. The callback is simply a 
C function that is called when the alarm expires. 

Figure  11:5 shows how to configure a callback routine for an alarm. 
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Figure  11:5 - Configuring a Callback Routine for an Alarm 

Each callback routine must be written using the ALARMCALLBACK() macro, 

shown in Code Example  11:1. 

 

ALARMCALLBACK(UserProvidedAlarmCallback) { 

  /* Callback code. */ 

} 

Code Example  11:1 - Writing a Callback Routine 

Important: Callback routines run at OS level, which means Category 2 
interrupts are disabled. You should therefore aim to keep your callback 
routines as short as possible to minimize the amount of blocking that your 
tasks and ISRs suffer at runtime. 

The only RTA-OSEK Component API calls that you can make are the 
SuspendAllInterrupts() and ResumeAllInterrupts() calls. 

11.1.4 Incrementing a Counter  

AUTOSAR OS introduces a fourth action for alarms, to tick a counter, in 
addition to the standard OSEK OS options of activating a task setting an event 
and/or executing a callback. 

Ticking a counter from an alarm allows you to cascade multiple counters from 
a single ISR. . A counter ticked from an alarm inherits the period of the alarm. 
So, if you have an alarm that expires every 5 milliseconds, you can use the 
alarm to drive a second ticked counter that ticks every 5 milliseconds. Figure 

 11:6 shows you how this is configured in RTA-OSEK. 
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Figure  11:6 - Cascading a ticked counter from an alarm 

Let’s now assume that you have an ISR which occurs every millisecond and 
ticks Counter1: 

 

#include “MillisecondInterrupt.h” 

ISR(MillisecondInterrupt){ 

  CLEAR_PENDING_INTERRUPT(); 

  Tick_Counter1(); 

  /* Every 5th call internally performs 

     Tick_Counter2() */ 

} 

 

Cascaded counters must have a tick rate that is an integer multiple of the 
counter driving the alarm. You can configure systems with multiple levels of 
cascading but you should not introduce cycles. 

Important: The timing properties of a cascaded counter are defined in terms 
of ticks on the counter to which the stimulus is attached. The earliest counter 
in the cascade therefore determines the base tick rate from which all other 
counters are defined. If you change the tick rate of the earliest counter then 
the entire timing behavior of the application will be scaled accordingly.  

11.2 Setting Alarms 

Two API calls are provided for setting alarms: 

• SetAbsAlarm(AlarmID, Start, Cycle); 
Sets the alarm to expire when the counter value next reaches the value 
Start. You should be aware that if the counter has just ticked by this 
value, it has to ‘wrap around’. This means that when it reaches its 
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maximum value it will have to count up again from 0 until the expiry is 
reached. 

• SetRelAlarm(AlarmID, Increment, Cycle); 

Sets the alarm to expire Increment number of ticks relative to the 

time at which you make the call. This means that, Increment is a 
tick offset from the current counter tick value. 

In these two API calls, a Cycle value of zero ticks indicates that the alarm is a 
single-shot alarm, which means that it will expire only once before being 
cancelled. A Cycle value greater than zero defines a cyclic alarm. This means 
that it will continue expiring, at the rate specified, after the first expiry has 
occurred. 

The RTA-OSEK GUI gives implementation guidelines that specify the cycle 
rates for alarms. An example of the implementation guidelines is shown in 

Figure  11:7. 

 

Figure  11:7 - Implementation Guidelines 

11.2.1 Absolute Alarms 

An absolute alarm specifies the absolute counter value of the underlying 

counter at which the alarm expires. Code Example  11:2 shows how an 
absolute single shot alarm can be set. 

/* Expire when counter value reaches 42. */ 

SetAbsAlarm(Alarm3, 42, 0); 

Code Example  11:2 - Example Absolute Single Shot Alarm 

Code Example  11:2 is illustrated in Figure  11:8. 
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Figure  11:8 - Illustration of an Absolute Single Shot Alarm 

A single shot alarm us useful when you need to program a timeout that waits 
for a fixed amount of time and then takes an action if the timeout occurs. 

When an absolute alarm specifies a non-zero Cycle value then it will first 

expire at the specified Start tick and then every Cycle ticks thereafter. 

 

/* Expire when counter value reaches 10 and then 

every 20 ticks therefafter */ 

SetAbsAlarm(Alarm1, 10, 20); 

Code Example  11:3 - Example Absolute Cyclic Alarms 

The behavior from the code example is illustrated in Figure  11:9. 

10

SetAbsAlarm(Alarm1,10,30);

Alarm1 first expiry

0

Counter

20 30 40 50 60

Alarm1 expires

70

Alarm1 expires

 

Figure  11:9 - Illustration of the Absolute Cyclic Alarm 

For absolute alarms, an absolute start value of zero ticks is treated in the same 
way as any other value. 

For example, if the current counter value was zero then you would not see 
your alarm expire until the MAXALLOWEVALUE+1 number of counter value 
ticks had happened. On the other hand, if the counter value was already at 
MAXALLOWEDVALUE then you would see the alarm expire on the next tick of 
the counter. 

Important: Specifying a very small relative increment or an absolute start 
value that is very close to the current counter value may cause undesired side 
effects. The alarm could go off while the task is still executing. 

If the activated task is BCC1 or ECC1 there will be no queued activation and 
several task executions could potentially be ‘lost’. You must make sure that 
enough time is allowed for the task to complete before the next alarm which 
results in a re-trigger of the task occurs. 
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Synchronizing an Absolute Periodic Alarms to a Counter Wrap 

Setting an alarm to occur periodically at a know synchronization point is 
extremely important for real-time systems. However, in OSEK, it is not possible 
to set an absolute alarm to occur periodically each time the underlying 
counter wraps around.  

For example, assume you have a counter that counts in degrees with a 
resolution of one degree and you want to activate a task at “top dead 
centre”, i.e. on each revolution of the crankshaft. Let’s assume that the 
counter has a modulus of 360 ticks. 

What you need to say is SetAbsAlarm(Alarm1, 0, 360). This is 

forbidden by the OSEK standard because the Cycle parameter cannot be 

greater than OSMAXALLOWEDVALUE, which is always the modulus -1 (in this 
case 359). 

If you need this type of functionality, you must provide code that resets an 
absolute single-shot alarm each time the alarm expires. 

For example, if Task1 is attached to Alarm1, then the body of Task1 will 
need reset the alarm when the task is activated as shown in Code Example 

 11:4. 

TASK(Task1) { 

     

  /* Single-shot alarm reset. */ 

  SetAbsAlarm(Alarm1, 10, 0);  

 

  /* User code. */ 

  TerminateTask(); 

 

} 

Code Example  11:4 - Resetting an Alarm when a Task is Activated 

11.2.2 Relative Alarms 

Code Example  11:5 shows a relative alarm that expires after 10 ticks and then 
every 20 ticks thereafter. 

/* Expire after 10 ticks, then every 20 ticks. */ 

SetRelAlarm(Alarm1, 10, 20);  

Code Example  11:5 - Relative Cyclic Alarm (with 20 ticks cycle) 

In Figure  11:10, you can see how this alarm can be visualized. 
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Figure  11:10 - Illustration of a Relative Cycling Alarm 

Semantics of Zero 

The OSEK standard does not define the semantics of a zero for Increment 

in SetRelAlarm(). By default, RTA-OSEK interprets zero to mean “now + 
modulus of the underlying counter”, i.e. now + MAXALLOWEDVALUE + 1 
ticks. This means you can set up a relative alarm that can expire on a full 
modulus of the counter which is extremely useful if you want to do accurate 
interval timing based on a hardware counter.  

Code Example  11:6 shows how a single relative alarm is set. 

/* Expire after MAXALLOWEDVALUE+ 1 ticks. */ 

SetRelAlarm (Alarm1, 0, 0);  

Code Example  11:6 - Setting a Relative Single Alarm 

The effect is shown in Figure  11:11. 

 

Figure  11:11 - Illustration of the Alarm in Code Example  11:6 

In AUTOSAR OS forbids the use of zero for SetRelAlarm(). If you use zero 

for Increment then an E_OS_VALUE error will be returned. 

As the AUTOSAR OS limits useful functionality, RTA-OSEK allows users to 
choose between these two semantics for zero in Applications -> Optimizations 

as shown in Figure  11:12 

 

Figure  11:12 - Selecting the semantics for SetRelAlarm(AlarmID,0,x) 
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11.2.3 Autostarting Alarms 

It is possible to start alarms by calling SetRelAlarm() or SetAbsAlarm() 
in the main program. However, the easiest way to set cyclic alarms is to make 
them autostarted. Autostarted alarms will be started during StartOS(). 

Autostarted alarms can be set on a per application mode basis. When you 
create an alarm it is automatically assigned a start time of 0 ticks. The start 
time specifies the time between the counter being started and the first expiry 
of the alarm.  The start time is used at run-time, but only when alarms are 
autostarted. 

Figure  11:13 shows how alarms can be set to autostart from the Startup 
Modes pane. 

 

Figure  11:13 - Autostarting Alarms 

Alarms that are auto started are set internally in RTA-OSEK using absolute 
values. At StartOS() the underlying counter is set to have an initial count 
value of 0 ticks. As a result of this, you must take care if you use the default 
start time of 0 ticks. The 0th tick has already happened when the alarms are 
started, so the first expiry of an alarm will not occur until the associated 
counter has wrapped around. 

Autostarted alarms should be used if you specify that alarms are synchronized.  
During StartOS(), RTA-OSEK Component will make sure that all 
autostarted alarms for a counter are synchronized at startup.  

Important: If you specify that your alarms are synchronized and you intend to 
perform timing analysis on your application, you must make sure that the start 
time is less than the period of the alarm. 

11.3 Canceling Alarms 

You can cancel an alarm using the CancelAlarm() API call. 
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An alarm may, for example, need to be cancelled to stop a particular task 
being executed. An alarm can be restarted using the SetAbsAlarm() or the 

SetRelAlarm() API call. 

 

11.4 Determining the Next Alarm Expiry 

The RTA-OSEK GUI allows you to determine the amount of time remaining 
before a particular alarm expires. You can do this, for example, to avoid 
setting an absolute alarm when the absolute value has already been reached. 

The GetAlarm() API call allows you to get the number of ticks before the 
specified alarm expires. 

11.5 Synchronization using Alarms 

The safest and easiest way to synchronize alarms is to set a number of 
absolute alarms that are linked to the same counter. Using absolute alarms 
does not affect the start time. This avoids potential problems with interfering 
interrupts. 

Synchronizing relative alarms is more complex because intermittent delays, 
due to interrupts and preemption, can result in different alarm offsets being 
set on startup. 

Alarm synchronization can be selected in the RTA-OSEK GUI during the 

configuration of a counter. This is shown in Figure  11:14. 
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Figure  11:14 - Alarm Synchronization 

To ensure synchronization between alarms on a counter at run-time, you must 
make sure that the alarms are autostarted. If an alarm is cancelled it must also 
be reset with a SetAbsAlarm() call. 

Important: If alarms are synchronized in the RTA-OSEK GUI this does not 
guarantee that the alarms are actually synchronized. It simply informs the 
RTA-OSEK Planner that you will guarantee synchronization. 

If you intend to build a system for timing analysis, it is better if you can 
guarantee synchronization. If synchronization is important, consider using 
AUTSOAR schedule tables or RTA-OSEK schedules. Both these mechanisms 
guarantee synchronization between tasks and offer a flexible approach to the 
design of event-based hard real-time systems. You can find out more about 
these approaches later in this guide. 

11.6 Aperiodic Alarms  

The RTA-OSEK GUI will suggest the implementation that you should use when 
you create a series of alarms. The suggestions will show you what you should 
do to give the specified timing behavior. 

To achieve aperiodic behavior you should use single-shot alarms that are set 
to the next expiry value by the activated task. 
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In Code Example  11:7, the alarm must expire after 10 ticks, then after a 

further 12 ticks. The alarm activates task Task1. The first alarm is autostarted 

by RTA-OSEK Component. In Task1 the alarm has to be reset for the next 
expiry. 

TASK(Task1) { 

 

  SetRelAlarm(Alarm1, 12, 0); 

  /* Rest of task. */ 

 

} 

Code Example  11:7 - Aperiodic Alarm Example 

If you choose to use this method then you must ensure that the times 
specified in the stimulus/response model represent the shortest time between 
successive alarm expiries. 

11.7 Summary 

• Alarms are set on an underlying counter 

• You can set multiple alarms on each counter 

• Each alarm specifies an action either: 

o activation of a task, 

o setting an event, 

o execution of a callback 

o ticking a ticked counter 

• Alarms can be set to expire at an absolute or relative (to now) counter value 

• Alarms be autostarted. 

• Alarms can treat as synchronized for the purposes of schedulabiltiy analysis 
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12 Schedule Tables 

You saw earlier that the OSEK standard provides alarms and counters. They 
can be used to construct systems that require recurring task activations. 

However, you also saw that alarms are not well suited to systems where you 
need to guarantee some separation in time (temporal separation) between 
stimuli. While it is possible to build such a system with OSEK’s alarms, there is 
nothing, other than code review, that prevents the timing properties of the 
application being accidentally modified at runtime. Furthermore, you saw that 
if you wanted to define multiple task activations at a single point in time, you 
were forced to create multiple alarms when what you really want to do is to 
activate multiple tasks from a single alarm. 

AUTOSAR OS addresses the limitations of alarms by providing Schedule 
Tables.  

Portability: Schedule Tables are a feature of AUTOSAR OS and are not 
portable to OSEK OS 

A schedule table is associated with exactly one OSEK counter and logically 
comprises a set of expiry points separated by delays. Delays are in ticks of 
the underlying counter. The schedule table itself may define a period which 
defines the number of ticks between successive starts of the schedule table.  

 

Figure  12:1 - Visualizing a Schedule Tables 

The difference between the sum of the inter-expiry point delays and the 
period (when defined) is called the delta. 

An expiry point is similar to an alarm in that it indicates a point in time at 
which RTA-OSEK needs to take some action. The difference between expiry 
points and alarms is what actions can be taken as shown in the following 
table. 

 

Action Alarm Expiry Point 

ActivateTask Yes - 1 Task Yes – N Tasks 

SetEvent Yes – 1 Event Yes – N Events 

Callback Yes No 

Increment Counter Yes No 
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Portability: RTA-OSEK allows an expiry point to make multiple callbacks and 
increment multiple counters. This is not part of the AUTOSAR OS standard 
and is not necessarily portable across other implementations. 

12.1 Configuring a Schedule Table 

Each schedule table is driven by an OSEK counter. The counter provides the 
schedule table with a tick source. You can use the same counter to drive 
multiple schedule tables. However, at runtime you can only have one schedule 
table per counter in the running state at any point in time. 

You may choose to share a counter between schedule tables and any number 
of alarms.  

Each schedule table must define a period. When the period is greater than 
zero, the schedule table will repeat at the specified period. A period of zero is 
interpreted as “single-shot”. This means that the schedule will stop after the 
final expiry point is processed. Single-shot schedule tables are useful when 
you want to start a phased sequence of actions, for example when building 
closed-loop control systems. 

Figure  12:2 shows the configuration of a schedule table called Table. 

 

Figure  12:2 - Schedule Table Configuration 

12.2 Configuring Expiry Points 

Expiry points in RTA-OSEK, like alarms, are not declared directly. You must 
first define your stimuli and associated response (or responses).  

Stimuli that plan to implement using a schedule table must have a periodic 
arrival pattern. You do not need to specify the arrival rate – this will be 
determined from the schedule table period when you the stimulus is attached 

Figure  12:3 shows how to attach the stimulus to the schedule table.  
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Figure  12:3 - Attaching a Stimulus to a Schedule Table 

The response to the stimulus becomes the action performed on the expiry 
point. It is also possible to specify that a stimulus activates a task, sets an 
event, executes a callback routine and increments a ticked counter. All of 
these actions will be attached to the expiry point. 

Important: If you want an expiry point action to occur multiple times on the 
same schedule table then you must specify multiple stimuli that have the same 
response. As a result of this, in general you will not be able to perform 
schedulability analysis on systems that contain schedule tables. 

12.2.1 Setting Offsets 

Each stimulus you attach to a schedule table occurs exactly once. By default, 
the stimulus will occur at offset zero from the logical start of the schedule 
table. You can plan where stimuli appear on the schedule table by using 
offsets.  

An offset sets count on the schedule table at which the stimulus happens. 
Thus, the offset specifies when actions happen on the schedule table. Each 
stimulus on the schedule table can be given an offset in the range 0 to Peroid-

1. Figure  12:4 shows how to specify offsets. 

 

Figure  12:4 - Specifying Stimulus Offsets 

The expiry points on the table are defined as the set non-empty set of stimuli 

that happen at the same offset. In Figure  12:4 there are 3 expiry points: 



 1
2
.3
 

 

12-4 Schedule Tables RTA-OSEK v5.0.2 

1. Expiry Point 1: Stimulus2 

2. Expiry Point 2: Stimuli 1 and 3 

3. Expiry Point 3: Stimuli 4 

This is illustrated in Figure  12:5. 

 

Figure  12:5 - Using Offsets 

There is no constraint on placing an expiry point at notional time zero – all 
offsets may be greater than zero is required.  

Important: If two stimuli have responses that do the same action then the 
when the expiry point is processed the action will occur multiple times. This 
might be useful when you want to activate a task multiple times. While an 
event will be set multiple times, the event mechanism of OSEK means only 
one SetEvent() will be registered. You should exercise caution where a 
callback is executed multiple times at the same expiry point because a callback 
runs at OS level and will block the whole system. Similarly, incrementing a 
counter multiple times at one expiry point should be avoided.  

12.3 Starting Schedule Tables 

The StartScheduleTable(ScheduleTableID, Offset) API call is 
used to start a schedule table.  

The Offset parameter of the StartScheduleTable() call specifies the 
relative number of ticks from now at which the RTA-OSEK will process the 
first expiry point and can be zero.  

 

/* Start Table1 20 ticks from now */ 

StartScheduleTable(Table1, 20); 

Code Example  12:1 - Starting Schedule Tables 

Portability: RTA-OSEK interprets Offset zero to means “on the next tick”. 

This means that when you specify an Offset of N then the schedule table 
will process its first expiry point on the N+1th tick. As the exact behavior is not 
specified by the AUTOSAR OS v1.0 standard other implementations may 
differ. 
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Important: If you create a schedule table where all initial offsets are non-zero 
then any leading offset on the schedule table will be overridden by the call to 
StartScheduleTable(). 

Unlike alarms and RTA-OSEK schedules, it is not possible to start a schedule 
table automatically during startup. To achieve the same effect, you should 
normally start a schedule table in the StartupHook().  

Important: You must make sure that the Offset value that is passed to 

StartScheduleTable() is sufficiently long, so that it has not already 
expired before the call returns. For schedule tables that are driven by a ticked 
counter the counter will default to zero at startup, so 
StartScheduleTable(Table,N) will process the next expiry point after 
N ticks of the underlying counter. 

12.4 Stopping Schedules 

A schedule table with period equal to zero (i.e. a single shot schedule table) 
will stop automatically immediately after RTA-OSEK has processed the final 
expiry point. 

Periodic schedule tables will run until the table is switched (see Section  12.5) 

or until you call StopScheduleTable(ScheduleID). 

12.4.1 Restarting Schedule Tables 

A schedule table which is stopped can be started by calling 
StartScheduleTable(). A schedule table is always restarted at the first 
expiry point. 

12.5 Switching Schedule Tables  

You can switch from one schedule table to another at runtime using the 
NextScheduleTable() API call. The switch between schedule tables 
always occurs at the notional end of the table. 

For a single shot schedule table the notional end of the table is immediately 
after the final expiry point is processed. 

For a periodic schedule table, the notional end of the table is defined by the 
Period. 

The following code shows how the API call is made: 

 

/* Start New after Current has finished */ 

NextScheduleTable(Current, Next); 
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The delay between the last expiry point on Current and the first expiry point 

on Next is equal to 

Delay = Delta(Current) + OffsetToFirstExpiryPoint(Next) 

When the Current schedule table is single shot and the Next has an expiry 

point at offset zero the first expiry point on Next will be processed on the 
next tick of the underlying counter. 

If you make multiple calls to NextScheduleTable() while Current is 

running then the Next table that runs will be the one you specified in your 
most recent call. 

12.6 Schedule Table Status 

You can query the state of a schedule table using the 
GetScheduleTableStatus() API call. The call returns the status through 
an out parameter. 

 

ScheduleTableStatusType State; 

 

GetScheduleTableStatus(Table, &State); 

 

The status will be either: 

• SCHEDULETABLE_NOT_STARTED if the table is not started and has is 
not the most recent Next parameter to a NextScheduleTable() 
call 

• SCHEDULE_TABLE_ASYNCHRONOUS if the schedule table is started. 

12.7  Summary 

• Schedules tables provide a way of planning a series of actions statically at 
configuration time 

• A schedule table is associated with exactly one OSEK counter, may specify a 
period, and contains one or more expiry points 

• Expiry points in RTA-OSEK are created implicitly by specifying offsets for 
stimuli implemented on a schedule table 

• Schedules tables started with the StartScheduleTable() always start 
processing at the first expiry point. 

• You can switch between schedule tables, but only at the notional end of the 
table. 
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13 Schedules 

You saw earlier that the OSEK standard provides alarms and counters. They 
can be used to construct systems that require recurring task activations. 
AUTOSAR OS provides schedule tables that allow sets of actions ot be 
controlled as a composite object. 

In addition to these schemes, RTA-OSEK also provides schedules. Schedules 
provide more flexibility counter/alarms and AUTOSAR Schedule Tables. 

Portability: Schedules are provided by RTA-OSEK for building and controlling 
complex systems. Schedules are not part of the OSEK OS standard. 

13.1 Using Schedules 

If you use schedules, you can configure systems where multiple tasks can be 
released at a single point in time (rather than having to specify multiple 
alarms). You can also change the relative times between task activations, 
whilst retaining synchronization across the whole schedule.  

13.1.1 Types of Schedules 

There are two types of schedule: 

• Periodic. 
A periodic schedule allows you to implement periodic stimuli. 

• Planned. 
A planned schedule allows you to implement aperiodic stimuli. 

Planned schedules provide much more flexibility than periodic schedules.  You 
can switch in and switch out of sections of the schedule at run-time and 
specify that the whole schedule is single-shot (to allow for the phased release 
of a number of sequences of tasks, for example). 

13.1.2 Arrivalpoints 

Periodic and planned schedules consist of a series of arrivalpoints and a set 
of state variables.  When a schedule reaches an arrivalpoint it is said to have 
arrived. 

The arrivalpoints for a periodic schedule are implicit.  They are automatically 
generated by RTA-OSEK and used internally by RTA-OSEK Component.  For 
planned schedules, however, you must configure the arrivalpoints yourself. 

Arrivalpoints are similar to alarms.  They are used to implement stimuli in the 
system; however, arrivalpoints differ from alarms in a number of ways: 

• An arrivalpoint can implement multiple stimuli (i.e. dispatch multiple 
tasks). 

• When a stimulus generates multiple responses, RTA-OSEK Component 
manages the activation of multiple tasks to generate the responses.  
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This means that you don’t need to implement the chained task 
activation that is required when using the counter/alarm mechanism. 

• Arrivalpoints cannot set events or make callbacks. 

Arrivalpoints have the following properties: 

• A set of stimuli to trigger on arrival. 

• A delay until the next arrivalpoint occurs. 

• A next arrivalpoint. 

• A set of analysis attributes. 

For each stimulus associated with an arrivalpoint, the responses triggered by 
the stimulus will be released on arrival.  The responses to the stimulus must be 
generated by tasks.  At run-time, RTA-OSEK Component will simultaneously 
release all the tasks associated with all the stimuli on an arrivalpoint. 

When a stimulus is attached to an arrivalpoint, the arrivalpoint becomes the 
implementation of the stimulus at run-time.  The associated responses are the 
tasks that are released simultaneously on arrival. 

The schedule records four status variables in addition to the arrivalpoints: 

• State. 
Records whether the schedule is running or stopped. 

• Next. 
Records which arrivalpoint will be processed next. 

• Now. 
Holds the current value of the schedule tick. 

• Match. 
Holds the tick value at which the next arrivalpoint will be processed. 

 

Figure  13-1 – Anatomy of a Schedule 
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13.1.3 Ticked and Advanced Schedules 

Schedules can be either:  

• Ticked. 
Ticking a schedule is similar to ticking a counter.  The schedule 
maintains an internal count of the number of ticks that have elapsed.  
It processes the arrivalpoint when the counter value reaches the 
match value. 

• Advanced. 
An advanced schedule allows the counter-compare hardware to be 
exploited on the target hardware. It generates an interrupt to tell the 
schedule that it must process the next arrivalpoint immediately.  This 
minimizes the number of tick interrupts that will need to be handled.  
When an advanced schedule is used, an interrupt will only occur when 
an arrivalpoint needs to be processed. 

When you use a ticked or an advanced schedule, you are responsible for 
providing the driver. For a ticked schedule the driver will simply be a periodic 
interrupt.  For an advanced schedule a series of callback routines need to be 
provided so that RTA-OSEK Component can manage the counter-compare 

hardware.  You can find out more about callback functions in Section  13.5.1. 

13.2 Configuring Periodic Schedules 

Periodic schedules are declared using the RTA-OSEK GUI. Each schedule must 
have a unique name and a specified tick rate (that can be different in every 

application mode). You can see from Figure  13-2 how a periodic schedule is 
declared. 

 

Figure  13-2 - Configuring a Periodic Schedule 

A schedule is driven by a primary profile. In your application, this primary 
profile will usually be an ISR.  By default, all periodic schedules are configured 
as ticked (remember that schedules can be either ticked or advanced). If you 
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want to change the schedule to be advanced, have a look at Section  13.5 for 
more information. 

Important: The intended behavior of a schedule will only occur if the arrival 
pattern of the primary profile can be achieved within the resolution of a 
schedule tick. If you specify an arrival pattern outside the resolution of your 
schedule, the arrival rate is rounded up to the next arrival pattern achievable 
with the specified tick rate resolution. 

13.2.1 Creating Arrivalpoints 

Periodic schedules are built by attaching a periodic stimulus to a periodic 

schedule. Figure  13-3 shows you how to do this. 

 

Figure  13-3 - Attaching a Periodic Stimulus to a Periodic Schedule 

Attaching a stimulus to the schedule creates an implicit arrivalpoint that can 
be used by RTA-OSEK at run-time. The arrivalpoint will release all tasks 
required to generate the responses for the stimuli that it implements on 
arrival. 

The period of the arrivalpoint is taken from the period specified in the 
stimulus arrival pattern, but is presented in terms of ticks of the schedule. 

If, for example, a 20ms stimulus is defined and a tick rate of 1 tick in 5ms is 
specified, the stimulus will have a schedule period of 4 schedule ticks. This is 

shown in Figure  13-4. 
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Figure  13-4 - Specifying a Periodic Arrival Pattern 

Important: The intended behavior of a schedule will only occur if the arrival 
pattern of the stimulus can be achieved within the resolution of a schedule 
tick. If you specify an arrival pattern outside the resolution of your schedule, 
the arrival rate is rounded up to the next arrival pattern achievable with the 
specified tick rate resolution. 

13.2.2 Visualizing Periodic Schedules 

Schedules can be viewed graphically in RTA-OSEK. You can see this by 
selecting the Graphic tab in the Periodic Schedule workspace. The graphical 
view will only be available if execution times have been specified for your 
tasks and ISRs implementing the responses for the stimuli involved. 

The visualization will show the arrival of stimuli on the schedule and the 
primary profile. However, it will not show execution times for stimuli 
responses, unless you have specified execution profiles. 

In Figure  13-5 there are three stimuli, Stimulus1, Stimulus2 and Stimulus3 
with periods of 5ms, 10ms and 20ms respectively. These have been attached 
to a periodic schedule that has a tick rate of 1 tick in 5ms. 
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Figure  13-5 - A Graphical Representation of a Periodic Schedule 

13.2.3 Editing Periods 

To change the period for a stimulus on a periodic schedule, you can modify 
the stimulus arrival pattern in the Stimulus dialog. You can, however, also do 
this using the Stimuli Editor on the Graphic tab in the Periodic Schedule 
workspace. The period must be an integer multiple of the schedule tick rate. 

Each Stimulus in the Stimuli Editor has a bounding box indicating its period – 
the right-hand end of this box can be dragged left and right to shorten/extend 
the stimulus period. Once the period has been changed, the System Period 
area updates to show the new pattern of execution. 

13.2.4 Editing Offsets 

The behavior within a schedule is constrained. Following the construction of a 
schedule, you know which tasks will execute at specific times, relative to the 
schedule itself. 

This fact can be exploited in periodic schedules by using offsets. Offsets allow 
you to offset the release of a particular arrivalpoint. The amount of 
interference and/or blocking suffered by tasks released from other 
arrivalpoints is, therefore, minimized. 

It is also possible to apply an offset to each stimulus (at least one stimulus 
must have an offset of zero) to even out processor load – in the above 
example, we see all three stimuli being triggered at time zero; by offsetting 
stimulus3 by 1 tick, we can ensure that no more than two stimuli occur 
simultaneously. This may help when confronted with an ‘unschedulable’ 
system. 

Offsets must be less than the period of the associated stimulus and at least 
one stimulus in the schedule must have an offset of zero. 
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Let’s look at Figure  13-6.  Viewing the schedule graphically, using the 

visualization that you learnt about in Sections  13.2.2 and  13.3.4, you can see 

that Task3 is released at the same time as Task1 and Task2. 

 

Figure  13-6 - Using Periodic Offsets 

The tasks that are released as a result of Stimulus3 do not get access to the 
CPU until up to 3ms after release.  Once running, they are preempted by a 

subsequent arrival of Stimulus1. So, Figure  13-6 shows that there is a 
timeframe during which no tasks on this schedule are running.  You can see 
here that the timeframe is longer than the execution time of Stimulus3. 

 

By offsetting the release of Task3 by 5ms (by dragging the left-hand side of 
the task along to the offset you require), you can remove preemption on the 
schedule and shorten the response time for the task itself. The effect of 

modifying the offset is shown in Figure  13-7. 
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Figure  13-7 - Changing the Offset 

Note that other task activations in your application might mean that this 
offset, while better for this single schedule, actually results in a worse 
performance overall. You can check whether this is the case using timing 
analysis. 

13.2.5 Schedule/Arrivalpoint Tradeoffs 

When stimuli are added to a periodic schedule, RTA-OSEK creates implicit 
arrivalpoints. These arrivalpoints are used by RTA-OSEK Component at run-
time to give the specified timing behavior. 

Any number of periodic rates can be attached to a periodic schedule and the 
rates do not need to be harmonic. RTA-OSEK will automatically create the 
necessary arrival points to create the behavior you need. However, the 
number of arrivalpoints can be quite large.  

For example, assume you create a periodic schedule and attach stimuli with 
periodic rates of 8ms, 13ms, 16ms, 32ms and 1024ms. The calculation of the 
number of arrival points is then: 

Least common multiple  = 13 x 1024  

= 13312 

Arrivalpoints per lowest non-harmonic rate = 13313/8 + 13312/13 

= 2688 

Coincident arrivalpoints for non-harmonic periods  = 13312/(8x13) 

= 128 

Total arrivalpoints  = 2688-128 

= 2560 
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This means RTA-OSEK would need to create 2560 arrivalpoints. As each 
arrivalpoint consumes memory, this particular configuration would be very 
wasteful. As an alternative, you could declare two schedules, one for the 
1024ms stimulus and one for the remaining stimuli. This solution would 
require 80+1 = 81 arrivalpoints. 

An even better way to do this is to declare a third schedule for the stimulus 
with the 13ms period. This solution would require 4 + 1 + 1 = 6 arrivalpoints 
in total.  

Important: The exact number of arrivalpoints that are generated for a given 
number of stimuli will also depend upon the offsets between the stimuli. 

13.3 Configuring Planned Schedules  

Systems where the stimuli occur aperiodically can be built using planned 
schedules. 

Each schedule must have a unique name and a specified tick rate. You can see 

from Figure  13-8 how a planned schedule can be configured. 

 

Figure  13-8 - Configuring a Planned Schedule 

A schedule is driven by a primary profile. The primary profile is usually an ISR 
in your application. By default, all planned schedules are configured as ticked. 
You learnt earlier that schedules could be either ticked or advanced. If you 
want to change the schedule to be advanced, you can find out how to do this 

in Section  13.5. 

13.3.1 Associating Stimuli with a Planned Schedule 

When a periodic schedule is built, the stimulus period is used as a specification 
of the occurrence of the stimuli. For example, a 20ms period implies that a 
stimulus occurs at 0ms, 20ms, 40ms … and so on. 

With a planned schedule, a full specification of the arrivals of planned stimuli 
must be provided (this is why planned stimuli do not have arrival patterns 
defined in the Stimulus workspace in the same way as periodic stimuli). 
Timing information is only associated with planned stimuli. 



 1
3
.3
 

 

13-10 Schedules RTA-OSEK v5.0.2 

When building a planned schedule you must: 

• Attach planned stimuli to the planned schedule. 
This tells RTA-OSEK which stimuli are implemented by the schedule 

• Specify which stimuli are attached to which arrivalpoints. 
This tells RTA-OSEK when the stimuli occur. 

Figure  13-9  shows how planned stimuli are attached to a planned schedule. 

 

Figure  13-9 - Attaching Planned Stimuli to a Planned Schedule 

13.3.2 Creating Arrivalpoints 

Each planned schedule has a single plan that contains a set of arrivalpoints. 
You should use the plan to specify when the stimuli occur. Each arrivalpoint 
can contain multiple stimuli and the same stimulus can be attached to more 
than one arrivalpoint. 

Figure  13-10 shows how arrivalpoints are configured. 

 

Figure  13-10 - Configuring Arrivalpoints 

Each arrivalpoint has: 

• A unique name.  

• A delay to the next arrivalpoint.  
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• A set of stimuli that will be triggered on arrival. 

For each arrivalpoint you can set the analysis overrides. This is used in timing 
analysis only. 

A plan is created by entering a sequence of arrivalpoints that must be 
specified at run-time. Configuration of schedules in RTA-OSEK can be 
compared with creating a linked-list. Arrivalpoints can be inserted into the 
schedules or appended to the schedule. 

RTA-OSEK processes arrivalpoints in the order that they are listed. This 
ordering can be viewed in the workspace. 

You can use the dialog in Figure  13-10 to insert arrivalpoints before the 
selected point or to append them to the end of the list. 

A schedule is single-shot if the repeat arrivalpoint is not selected.  This means 
that when the schedule is started it will run to completion then stop. You will 
find this useful for creating phased sequences of internal stimuli that can be 
released in response to some sporadic external stimulus (for example, a real-
world interrupt). 

Planned schedules can be created with loops. . The next attribute of the final 
arrivalpoint in the list can be set to ‘point’ to any earlier arrivalpoint. To do this 
a repeat arrivalpoint must be specified. 

The default minimum delay between arrivalpoints is 1 schedule tick. For most 
applications this default will need to be modified. For a single-shot periodic 
schedule, the delay for the final arrivalpoint in the list does not matter. 

13.3.3 Attaching Stimuli to Arrivalpoints 

Stimuli that must be triggered on arrival are said to be auto-activated. These 
stimuli are selected from the set of available stimuli attached to your schedule. 
Any number of stimuli can be attached to an arrivalpoint and the same 
stimulus can be attached to more than one arrivalpoint in your schedule. All 
stimuli that are attached to your schedule must be attached to at least one 
arrivalpoint. 

In the following example there are 2 stimuli, Stimulus1 and Stimulus2, with 
the following required arrivals: 

• Stimulus1 must run at 0, 5, 20, 25, 40, 45ms … and so on. 

• Stimulus2 must run every 10ms periodically. 

This system can be implemented using a planned schedule with 3 
arrivalpoints. 

The arrivalpoints are: 

• ap1 auto-activates Stimulus1 and Stimulus2 and has a 5ms delay to 

ap2. 

• ap2 auto-activates Stimulus1 and has a 5ms delay to ap3. 

• ap3 auto-activates Stimulus2 and has a 10ms delay to ap1. 

Figure  13-11 shows how the Planned Schedule workspace will look once the 
plan has been entered. 
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Figure  13-11 - Attaching Stimuli to Arrivalpoints 

13.3.4 Visualizing Planned Schedules 

When you have created a plan for a planned schedule you can then view it 
graphically. This visualization shows stimuli and arrivalpoints. It also shows the 
execution time information for tasks and ISRs, if this has been specified. 

The visualization of the schedule can be seen on the Graphic tab in the 

Planned Schedule workspace, shown in Figure  13-12. The graphical view 
shows the arrival of stimuli on the schedule and the primary profile. 

 

Figure  13-12 - A Graphical Representation of a Planned Schedule 
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13.3.5 Editing Plans 

The planned schedule plan can be edited graphically on the Graphic tab in the 
Planned Schedule workspace. Moving the mouse over the arrivalpoint, a 
tooltip appears showing the current delay for the arrivalpoint. 

Delays can be changed by dragging the arrivalpoint’s time indicator (the 
vertical bar) left or right. The repeat properties of a planned schedule can also 
be changed by right-clicking on the arrivalpoint which is to be the start of the 
repeated sequence, and selecting ‘Repeat Arrivalpoint’.  

13.4 Ticking Schedules 

When a schedule is used in an application you must drive the schedule by 
providing a tick source.  There is no restriction on how a schedule is ticked, 
but Category 2 ISRs are generally used. 

When RTA-OSEK is used to build your application the API call 
TickSchedule_<ScheduleID> is created automatically for each ticked 
schedule that has been defined. This API call must be made whenever it is 
necessary to tick the schedule. 

If, for example, Schedule1 and Schedule2 are both defined in your 
application as ticked schedules, then RTA-OSEK will generate the following 
API calls: 

TickSchedule_Schedule1() 

TickSchedule_Schedule2() 

Code Example  13:1 - TickSchedule() API Calls Generated by RT-OSEK 

The interrupt handler that you provide to tick the schedule must call this API.  

Have a look at Code Example  13:2 to see how a ticked schedule driver is 
written. 

ISR(ISR1) { 

  ServiceInterrupt(); 

  TickSchedule_Schedule1(); 

} 

Code Example  13:2 - Writing a Ticked Schedule Driver 

. 
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Figure  13-13 - Ticked Activation Operationl 

13.4.1 Autostarting Ticked Schedules 

Ticked schedules can be configured to autostart a specified number of ticks 
after StartOS() returns. 

To start the schedule immediately it should be set to autostart after 1 tick.  In 
this case, the first arrivalpoint will be processed on the next call to 
TickSchedule_<ScheduleID>. A schedule will always start at the first 
arrivalpoint. 

Figure  13-14 shows how a schedule is set to autostart. 
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Figure  13-14 - Autostarting a Schedule 

13.5 Advancing Schedules 

So far you have looked at ticked schedules, which are useful when arrivalpoint 
delays have a coarse resolution. The internal counter that RTA-OSEK 
Component uses to log the current count value has a resolution limited by the 
size of a TickType. You can see the size of a TickType in the Target 
Details in the RTA-OSEK GUI. 

If a tick is 1ms, the longest delay that can be specified with a 16-bit 
TickType is 65.535 seconds. If a tick is 1µs, then the longest delay is 65.535 
milliseconds.   

If you use a ticked schedule you might have to trade off resolution against 
range.  Advanced schedules provide a possible solution to this problem. They 
allow you to use counter-compare hardware on your target to achieve long 
ranges at fine resolution*. 

Figure  13-15 shows how an advanced schedule operates. 

                                                
* The scope for doing this depends on the configuration of your target hardware. 
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Normal Execution

Category 2 Interrupt handler

Interrupt

Call AdvanceSchedule_<ScheduleID>(&State)

Release arrivalpoint tasks

state.expiry := match

Set next arrivalpoint

Return

 

Figure  13-15 - Advanced Activation Operation 

In an advanced schedule, an interrupt is only generated when an arrivalpoint 
needs to be processed. For example, if a schedule has arrivalpoints at 0, 3 and 
7ms and the schedule tick rate is 1ms, then the system is suffering 
interference from 8 interrupts if the schedule is ticked. 

If the schedule is advanced, you will only receive an interrupt for each of the 3 
arrivalpoints, reducing the interference from the interrupt by over 50%. This 
allows you to reduce the amount of interference that your application will 
suffer due to schedule driver interrupts. 

Figure  13-16 and Figure  13-17 show the relative effect of this in visualizations 

for the ticked and advanced version of this schedule. Figure  13-16 shows a 
graphical view of the ticked schedule. 

 

Figure  13-16 - Ticked Schedule Graphical View 

Figure  13-17 shows the advanced version of this schedule.  You can see here 
how the amount of interference has been reduced. 
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Figure  13-17 - Advanced Schedule Graphical View 

13.5.1 Advanced Schedule Driver Callbacks 

For an advanced schedule, RTA-OSEK Component needs to access the 
counter-compare hardware, so that the next expiry time can be processed. 
You will need to provide functions that RTA-OSEK Component can use to 
control this hardware. 

Four callback functions must be provided for each advanced schedule.   
These are: 

• Set_<ScheduleID>  
Sets up the counter compare hardware.  The function prototype is: 
OS_CALLBACK(void) Set_<ScheduleID>(TickType 

Match); 

• State_<ScheduleID>  
Returns the status of the schedule and the time that the schedule next 
expires. 
The function prototype is:  
OS_CALLBACK(void) State_<ScheduleID> 
 (ScheduleStatusRefType State); 

• Now_<ScheduleID>  
Returns the current value of the counter.  The function prototype is:  
OS_CALLBACK(TickType) Now_<ScheduleID>(void); 

• Cancel_<ScheduleID>. 
Cancels any outstanding counter expiry.  The function prototype is:  
OS_CALLBACK(void) Cancel_<ScheduleID>(void); 

The first three of these functions correspond to three of the schedule state 
variables. The cancel function provides a handle for RTA-OSEK Component to 
stop the counter. With an advanced schedule this information is maintained 
by the counter-compare hardware rather than by RTA-OSEK Component.  
Further information on the Advanced Schedule Driver Interface can be found 
in the RTA-OSEK Reference Guide. 
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13.6 Starting Schedules 

Schedules are started using the StartSchedule(ScheduleID, 

TickType) API call.  Schedules are normally started in OS_MAIN, but they 
can be started anywhere in the application. 

The TickType parameter of the StartSchedule() call specifies the 
absolute time at which the schedule will process the first arrivalpoint. In other 
words, it sets the match value for the first arrivalpoint on the schedule. Code 

Example  13:3 shows how two schedules can be started. 

 

StartSchedule(PeriodicSchedule1, 20); 

StartSchedule(PlannedSchedule1, 200);    

Code Example  13:3 - Starting Schedules 

In the first case the PeriodicSchedule1 is started when its internal 

counter reaches the value 20. In the second case the PlannedSchedule1 is 
started when its internal counter reaches the value 200. 

Important: You must make sure that the match value that is passed to 

StartSchedule() is sufficiently long, so that it has not already expired 
before the call returns. 

13.6.1 Restarting Single-Shot Schedules 

You will need to take special care when you restart a single-shot schedule that 
has terminated. When this happens, the next value of the schedule will be 
pointing to the last arrivalpoint. To repeat the entire schedule, you will need 
to use the API call SetScheduleNext(ScheduleID, ArrivalpointID) 
to make sure that the next pointer is reset to the first arrivalpoint in the 
schedule. 

 

13.7 Stopping Schedules 

The StopSchedule(ScheduleID) API call can be used at any time to stop 
a schedule. 

This halts the schedule at the current count value. If a single-shot schedule is 
being used, it will stop automatically after the final arrivalpoint has been 
processed. 
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13.8 Using Non-Time Based Schedule Units 

Up to now you have seen schedules that use time as the tick. The RTA-OSEK 
GUI provides a facility to declare schedule units. Units allow schedule ticks to 
be specified in terms of the real-world unit. 

You might, for example, have a schedule that counts teeth on a toothed 
timing wheel and activates tasks at specific angular rotations. A possible 
abstraction for this would be to declare a degree unit and specify that there 

are 360 degrees in a revolution. This is shown in Figure  13-18. 

 

Figure  13-18 - Declaring an Angular Unit 

If, for example, an angular schedule uses 1 tick per 5 degrees, you must make 
sure that your interrupt source provides a tick for each 5 degrees of rotation. 

13.9 Specifying Schedule Constants 

Delay values can be specified when a schedule is modified at run-time. The 
delay value is the time that must elapse before the next arrivalpoint is 
processed. You can declare symbolic constants for commonly used delay 
values. 

If you use hard coded numbers in your application, you must ensure that they 
are scaled appropriately in your application code. If you use constants, 
however, you will be able to change values (such as the tick resolution) and 
the value of the constants will remain correct for your application. 

You should use schedule constants wherever possible to define any schedule 
tick value that you pass into the schedule API calls. The constants are available 
to your application code through the generated header files. 

In Figure  13-19 the constant Revolution has been set as 360 degrees. 
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Figure  13-19 - Declaring a Schedule Constant 

13.10 Modifying Planned Schedules at Run-time 

Planned schedules offer a degree of flexibility because the schedule and the 
associated arrivalpoints can be modified at run-time. 

You might be using schedules, for instance, in an engine control application 
to provide a phased release of tasks where the phasing must change as 
engine speed increases or decreases. 

Alternatively, you might want to provide some run-time fault tolerance.  You 
can do this by allowing a task that reads a sensor value to be replaced with 
one that synthesizes a value if a fault is detected with the sensor hardware. 

RTA-OSEK Component provides API calls to get the current state of the 
schedule and associated arrivalpoints. API calls are also provided to set the 
properties to new values. 

The status of the schedule is always located in RAM because RTA-OSEK 
Component needs to update these values at run-time. Arrrivalpoints are 
located in ROM by default.   

Specifying that an arrivalpoint is read-write allows you to modify, at run-time, 
the taskset that it releases in response to its associated stimuli (you will learn 

about this in Section  13.10.3). It will also allow you to modify the delay or 

next attribute at run-time (explained in Sections  13.10.1 and  13.10.2). 

Read-write arrivalpoints will be located in RAM. You can set arrivalpoints to be 

read-write using the RTA-OSEK GUI, as shown in Figure  13-20. 
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Figure  13-20 - Specifying a Read-Write Arrivalpoint 

Important: If you intend to perform timing analysis on your application then 
you must provide additional details about the worst-case modifications to the 
schedule that you make. 

13.10.1 Modifying Delays 

There are two API calls that can be used to modify delay values. 

• GetArrivalpointDelay(ArrivalpointID, TickType) 
Accesses the current delay value for an arrivalpoint. 

• SetArrivalpointDelay(ArrivalpointID, TickType) 
Sets the delay values for read-write arrivalpoints. 

Important: A delay of zero for the GetArrivalpointDelay() and the 

SetArrivalpointDelay() API calls does not indicate a zero delay; it 
indicates that the delay is the schedule modulus. 

13.10.2 Modifying Next Values 

Both the schedule and arrivalpoint next values can be changed.  If you modify 
the schedule next value you can change the next arrivalpoint that will be 
processed.  

You will normally edit the schedule next value when you want to make 
temporary changes to the schedule. 

If you want to make permanent changes to the schedule, you should edit the 
arrivalpoint list so that the changes will continue to exist each time the 
schedule is processed. 
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Modifying the next values allows you to create a schedule with optional 
arrivalpoints. These arrivalpoints can be switched in or out of the schedule at 
run-time. Any arrivalpoint that you want to switch in, however, must be 
declared during configuration. An arrivalpoint cannot be dynamically created 
at run-time. 

There are two API calls that can be used to modify next values. 

• SetScheduleNext() 

Used to modify the schedule next value. 

• SetArrivalpointNext() 
Used to modify arrivalpoint next attributes at run-time. 

In the following example a schedule has three arrivalpoints, 
Arrivalpoint1, Arrivalpoint2 and Arrivalpoint3. In the main 

program the next arrivalpoint for Arrivalpoint1 is set to 

Arrivalpoint3. 

OSMAIN { 

  ... 

  StartOS(OSDEFAULTAPPMODE); 

  SetArrivalpointNext(Arrivalpoint1,Arrivalpoint3); 

  ... 

} 

 

TASK(Task1) { 

  ... 

  /* Switch in the pre-declared Arrivalpoint2. 

   * Note that the next for Arrivalpoint2 is 

   * already set to Arrivalpoint3 during 

   * configuration. */ 

 

  SetArrivalpointNext( Arrivalpoint1, 

                       Arrivalpoint2 ); 

  ... 

} 

Code Example  13:4 - Modifying the Arrivalpoint Next Values 

If you need to modify the repeat behavior of a schedule, you can set the next 
arrivalpoint for the repeat to a different arrivalpoint in your application. 

13.10.3 Modifying Auto-Activated Tasks 

Each arrivalpoint holds a taskset.  This taskset represents the tasks that are 
auto-activated on arrival to generate the responses for the associated stimuli.  
The taskset is accessible at run-time using 
GetArrivalpointTasksetRef(). If the arrivalpoint is read-write, this API 
call returns a pointer to a read-write taskset. 

The arrivalpoint taskset behaves in the same way as any other taskset in an 
application, so you can modify the contents at run-time. 
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Using this feature allows you to dynamically change which tasks are released 

at run-time.  An example is shown in Code Example  13:5. 

GetArrivalpointTasksetRef( Arrivalpoint1, 

                           &TmpTaskset ); 

MergeTaskset( TmpTaskset, NewTasks ); 

Code Example  13:5 - Modifying Tasks Activated from an Arrivalpoint 

13.11 Minimizing Schedule RAM Usage 

For periodic schedules, state information is maintained in RAM and the 
(implicit) arrivalpoints are held in ROM. 

For a planned schedule you have the option to locate the arrivalpoints in 
either ROM or RAM.  If you need to write to a single arrivalpoint, the rest of 
the schedule should be located in ROM. 

13.12  Summary 

• Schedules provide a more flexible alternative to the OSEK 
counter/alarm mechanism for building complex event-based systems. 

• Schedules are not part of the OSEK standard. 

• Schedules consist of four state variables and a list of arrivalpoints. 

• Arrivalpoints are used to release tasks (or, from an analysis point of 
view, to implement stimuli) at run-time. 

• Arrivalpoints on a schedule are guaranteed to be synchronized at all 
times. 

• On arrival at an arrivalpoint, RTA-OSEK Component will activate the 
set of tasks required to generate responses to stimuli that the 
arrivalpoint implements. 

• Periodic schedules offer a shorthand way of specifying periodic 
behavior. All arrivalpoints are implicit and are only used internally by 
RTA-OSEK Component. 

• Planned schedules require an explicit plan of the schedule timing 
characteristics to be created. 

• Planned schedules can be modified at run-time to cater for special 
system behavior.  
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14 Writing Advanced Drivers 

You have seen that RTA-OSEK provides a simple, elegant and powerful 
interface for driving counters and RTA-OSEK schedules. The advanced driver 
mechanism provides great flexibility by placing the software/hardware 
interaction in the domain of user-supplied code. This allows easy integration 
of drivers for novel hardware and application requirements, and the ability to 
“piggyback” driver operation on hardware that is also used for other 
functions. 

As owner of your hardware you best know how you want to use it in your 
application and therefore you are responsible for providing the advanced 
driver functions. 

This chapter offers some guidelines to help you in the construction of 
advanced drivers. Much of this has been gained while constructing drivers for 
assorted peripheral timers, but it should be applicable to other peripherals 
which increment in response to some external event (e.g. interrupts generated 
by the rotation of a toothed wheel). 

The example code is structured for ease of explanation and understanding. 
Different control structures may result in small improvements in the quality of 
generated code on some targets (e.g. replacing a while(1) loop using if 

.. break exits with a do .. while loop with appropriately modified 
conditions). If you choose to make this type of optimization then you should 
take care to ensure that the required semantics and orderings of operations 
are maintained (e.g. note that the && logical operator in C imposes both 
ordering and lazy evaluation). 

14.1 The Advanced Driver Model 

The advanced driver concept assumes an underlying free-running peripheral 
counter. The counter has an initial value established by the user, counts up 
from zero and wraps back to zero as it reaches its modulus. 

Important: These are the assumptions of the model. In the later sections of 
this chapter you will see how to implement this model with hardware which 
does not meet these assumptions.  

An advanced counter driver tells RTA-OSEK to processes an alarms and/or 
expiry points associated with a counter as soon as possible after it/they 
become due using the osAdvanceCounter_<CounterID> API call. 
Similarly, an advanced schedule driver tells RTA-OSEK to process the next 
arrivalpoint as soon as possible after it becomes due using the 
AdvanceSchedule_<ScheduleID> API call. If the counter/schedule is still 
running, action must be taken in your handler to ensure that the next 
alarm/expiry point/arrivalpoint will be processed at the appropriate time.  
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Both of these API calls return a SchedulesStatusType which is a C struct of the 
form: 

struct { 

 SmallType status; 

 TickType  expiry; 

} 

 

Status defines the current driver status which can be: 

• OS_STATUS_RUNNING – running but a point is not ready to be 
processed 

• OS_STATUS_PENDING – running and a point is ready to be processed 

The Expiry, when defined, gives the number of ticks from now at which the 
next point is due to be processed. Expiry is therefore a relative time to now. 

Typically you will call RTA-OSEK’s advanced driver interface from a user-
supplied Category 2 interrupt service routine. 

 

Obviously, the two schemes are very similar in concept. For purposes of clear 
explanation the following conventions are used: 

• We use a “fake” API call called Advance() to indicate either of the 

real RTA-OSEK API calls, osAdvanceCounter_<CounterID> or 

AdvanceSchedule_<ScheduleID>. Where a specific distinction 
between behaviors needs to be made this is noted in the text. 

• We use the term “point” to mean alarm or expiry point or arrivalpoint. 
Where a specific distinction between behaviors needs to be made this 
is noted in the text. 

• We use the name “Advanced” to indicate an advanced counter or an 
advanced schedule in the callback functions. 

14.1.1 Interrupt Service Routine (ISR) 

The interrupt service task (ISR) is triggered by each point becoming due to be 
processed. For an advanced driver, the ISR will call Advance() to indicate 
that the current point has expired and to obtain the delay until the next point 
occurs. The ISR is also responsible for setting the hardware to generate an 
interrupt after the delay has passed. In general, we can identify three classes 
of behavior for IRSs. These are described here, along with their implications 
for system behavior and schedulability analysis, in order that appropriate 
choices can be made when implementing the interrupt handler component of 
fine activator drivers. 

A simple handler is able to deal with a single point. This class of handler must 
complete before the next interrupt becomes due. When it can be guaranteed 
that this is the case, simple handlers are an appropriate choice because they 
typically have a smaller worst-case execution time than the other two classes. 

A retriggering handler is able to deal with one or more points becoming due 
before it completes handling of the interrupt which first triggers it. Such a 
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handler processes one point per invocation, and exits with the invoking 
interrupt still pending if another point is already due. 

A looping handler is able to deal with one or more points becoming due 
before it completes handling of the interrupt which first triggers it. Such a 
handler is able to process multiple points in turn, and only exits when either 
no point is due or when an interrupt is pending. 

It is important to note that any interrupt handler which is capable of looping is 
a looping handler. When a simple handler is not sufficient, a choice must be 
made between retriggering and looping. 

Three factors influence this choice: 

1. Some hardware will not support retriggering behavior, so a looping 
handler must be used. 

2. When the interrupt that invokes the handler is at the same level as 
another interrupt in the system, and that other interrupt has a higher 
arbitration precedence (i.e. will be handled first if both are pending) 
then a retriggering handler is preferred because it reduces latency for 
the other interrupt. In practice, this is of particular concern for 
architectures with a single interrupt priority level. 

3. A retriggering handler typically has smaller execution time than a 
looping handler when a single point is processed. Note that it is not 
normally relevant that a looping handler may be "more efficient" 
when several points are handled in one invocation. Worst case 
behavior occurs when each point is handled by a separate invocation. 

We recommend that a simple handler be used if the handler's worst case 
response time is known to be smaller than the minimum interval between 
interrupts. Otherwise, a retriggering handler should be used unless the 
hardware characteristics prohibit it. 

14.1.2 Callbacks 

Four call back functions are also required as part of the activator driver. The 
call back functions that must be supplied are: 

1. Now_Advanced which must return the current value of the peripheral 
counter 

2. Cancel_Advanced which clears any pending interrupt for the counter 
and ensures that the interrupt will not become pending until after a 
Set_Advanced() call has been made. This behavior is required if 
the alarms/schedule tables/schedules driven by the counter are ever 
stopped directly by the application or by reaching the end of a 
schedule table or schedule. Otherwise a stub call can be provided.  

3. State_Advanced is called only when the alarms/schedule 
tables/schedules are running. It returns either the ticks remaining until 
the next point becomes due or that the next point is already pending. 
This behavior is required if the application interrogates the status.  

4. Set_Advanced establishes a state in which an interrupt will become 
due the next time the counter matches the supplied value. The 
callback is passed the absolute match value at which the next point is 
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to be processed. For schedules, the Set callback is used only to start 
the schedule. For counters, the callback is used to start the schedule 
but also to shorten the time to the next point. This secondary behavior 
is needed because you can set alarms (or start schedule tables) that 
need to begin at point closer to now then the currently programmed 
match value.  

It should be noted that all of these calls are made at OS level. This means that 
they will not be preempted by Category 2 ISRs and do not, therefore, need to 
be reentrant. 

14.2 Using “Output Compare” Hardware 

This section considers the construction of drivers for output compare 
(sometimes known as compare/match) counter hardware. Such hardware has 
the property that an interrupt is raised when a counter value (advanced by 
some outside process such as a clock frequency or events detected by some 
sensor) matches a compare value set by software. It is assumed that both the 
counter value and the current compare value can be read by software. In this 
section, it is assumed that the registers of the counter hardware are mapped 
to the variables OUTPUT_COMPARE and COUNTER. The section outlines 
appropriate call back functions, followed by several interrupt handlers making 
different assumptions about required behavior and hardware facilities.  

Initially, a counter with the same modulus as TickType is considered. 

TickType usually has a modulus of 216 on 16-bit targets and 232 on 32-bit 
targets.  

With full modulus arithmetic, the number of ticks in a delay can be 
determined by subtracting the start value from the end value. When the 
current counter value (COUNTER) is subtracted from the next compare value 
(OUTPUT_COMPARE), the result is the number of ticks before the compare 
point is reached. If this value is read after the compare point is set, and found 
to be greater than the currently required delay, then the counter has passed 
the compare point and there will be an extra modulus wrap (i.e. TickType 
ticks) before the compare occurs. This can happen if the delay before the next 
point is very short (for instance, one tick), in which case there is a race 
condition between the counter passing the intended compare point and the 
setting of that compare point. 

14.2.1 Callbacks 

Set 

The Set_Advanced() call causes the interrupt to become pending when 
the counter value next matches the supplied parameter value. This is achieved 
by disabling compare matching, clearing any pending interrupt, setting the 
compare value, and ensuring that the interrupt is enabled. If the hardware 
does not provide the ability to disable compare matching, this can be 
simulated by setting the compare value to one less than the current counter 
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value (thus ensuring that a match will not occur before the next time that the 
compare value is set). 

Note that it may not be necessary to disable compare matching: if it can be 
guaranteed that a match will not occur between system start up and the point 
at which the activator is started, disabling compare matching is not necessary. 
In the example below, this is achieved by setting the compare register to the 
previous value of the counter, thus ensuring that a “match” interrupt will not 
be generated until ticks equal to the modulus of the counter have occurred. 
This will be long enough to perform the rest of the Set_Advanced() 
function. (Note that this approach can only be used if the compare register is 
not shared with anything else). 

 

OS_CALLBACK(void) Set_Advanced(TickType Match) 

{ 

  /*prevent match interrupts for “modulus” ticks*/ 

  OUTPUT_COMPARE = COUNTER – 1u;  

  dismiss_interrupt(); 

  OUTPUT_COMPARE = Match; 

  enable_interrupt(); 

} 

Note that the above code, and in subsequent pieces of code, we use the 
functions: 

• dismiss_interrupt() 

• enable_interrupt()  

• disable_interrupt() 

These functions refer to operations performed on the status/control registers 
of the counter peripheral used to provide the fine activator functionality. You 
are responsible for providing these factions (or equivalent code) in your 
advanced drivers. 

Important: The above code is carefully structured to avoid two potential race 
conditions. These race conditions can arise from dismissing the interrupt in a 
way that can result in unexpected interrupts being generated or expected 
interrupts being lost. These race conditions are as follows: 

1. Pre-existing values of the compare and counter values may lead to an 
interrupt being raised before the compare register is set, which results in a 
situation where the interrupt appears to have been caused by the action of 
Set_Advanced() (rather than previous compare/counter values). 

2. Using the dismiss_interrupt() call after the compare register is set 
avoids the first race condition (without the need to disable the match 
interrupt), but may result in the situation where a very short delay (for 
instance, one tick after the value of the counter register when 
Set_Advanced() is called) is ignored. In some cases, a full counter wrap 
will occur before the compare causes an interrupt. Depending on the 
hardware, this may result in no interrupt occurring (even after a counter 
wrap). 
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In any case, careful consideration should be given to the use of very short 
delays, as the counter may reach the compare point even before the compare 
point is set, particularly if the execution path between user code which reads 
the current value of the clock and calculates the set point and setting the 
point is long. If this occurs, a full counter wrap will need to occur before the 
time expires. 

In the above example, match interrupts are prevented by means of changing 
the output compare register. In subsequent examples, the way in which this is 
achieved is not specified: it is assumed that a function disable_compare() 
is provided to prevent the hardware from generating match interrupts. 

Important: If the counter is used for some other purpose (in addition to this 
fine activator), the disable_compare() function must not halt the 
counter, as this will lead to drift in the timeline. 

The re-enabling of compare matching needs to be done atomically with the 
assignment of the compare register. If this is not done, another race condition 
may exist if a short delay is set into the output compare register. 

The callback shown above works for schedules and for alarms/schedule tables 
that you do not adjust once they have been started. If you plan to make 
Set[Abs|Rel]Alarm() calls or to NextScheduleTable() calls then 

you need a different Set_Advanced() callback. The callback needs to be 
able to reset a currently programmed match value for a point nearer to now. 

In the following discussion we use the terms: 

• now is the counter’s current (continuously increasing) value. 

• old is the previously programmed compare value. 

• match is the (absolute value of the) new, earlier compare value. 

• “–” is a binary subtraction modulo the counter’s modulus.  

We also assume that delays due to higher priority interrupts are relatively small 
compared with an entire wrap of the counter modulus. 

A naïve implementation would (atomically) reprogram the compare value with 
match. This is wrong because a higher priority (e.g. Category 1) interrupt 
could delay the write to the hardware register, so that by the time you write 
match to the compare register, now is already greater than match. This 
would cause all processing of the whole schedule to cease for 216 (or 232 or 
something) ticks. In fact, it is perfectly possible that, by the time we are ready 
to write match to the compare register, now is already greater than both 
match and old. 

Your implementation of Set_<CounterID>() must distinguish between 
the starting case (where interrupts are stopped) and the resetting case (where 
the schedule is running and it is being used to shorten the delay to an existing 
OLD compare value). 

In this second case, your implementation of Set_<CounterID>() must 
return with the compare register containing the new match value; and either 

• now has not exceeded match; or 
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• the compare interrupt flag is already pending. Note that if the 
interrupt flag is pending, it does not matter if match or even old has 
been passed by now as the advanced counter driver code you write 
that deals with osAdvanceCounter_<CounterID> will 
(eventually) catch up to the correct time. 

First you must write match to the compare register.  

If now is between match and old, i.e. old– match > now – match, then 
now has already passed match. You must ensure that the interrupt flag is 
pending before returning. 

If now is not between match and old then either you can return with no flag 
pending or both match and old have been passed and you must ensure the 
pending flag is set before returning. You can test for both values having been 
passed using the test now –old < old– now *. 

Set_Counter1(TickType Match) 

{ 

  TickType Old = (TickType)COMPARE; 

  TickType Now = (TickType)COUNT; 

 

  /* Update COMPARE with new Match */ 

  COMPARE = Match; 

 

  if ( (Old-Match > Now-Match)  

     || (Now-Old < Old-Now) ) 

  { 

    SET_INTERRUPT_PENDING(); 

  } 

} 

State 

The State_Advanced() call is only made when the counter or schedule is 
running, and must first check whether the next match has already occurred 
(i.e. the interrupt is pending, this can occur because all of the callbacks are 
executed at OS level, which will prevent the resulting ISR from preempting the 
currently executing task). If this is not the case, the remaining time to expiry is 
also required 

 

OS_CALLBACK(void) State_Advanced( 

                     ScheduleStatusRefType State) 
{ 

  State.expiry = OUTPUT_COMPARE - COUNTER; 

  if (interrupt_pending()) { 

    State.status = 

      OS_STATUS_PENDING | OS_STATUS_RUNNING; 

  } else { 

    State.status = OS_STATUS_RUNNING; 

  } 

} 

                                                
* If the counter modulus is m then this test can be expressed as now–old < m/2. 
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Important: The expiry value is calculated before checking whether the 
interrupt is pending. This is necessary to avoid a race condition in which the 
interrupt became pending after checking but before calculating expiry, which 
would result in an invalid value. 

Now 

The Now_Advanced() call reads the free-running counter to provide the 
current timebase counter value. 

 

OS_CALLBACK(TickType)Now_Advanced(void) 

{ 

  return (TickType)COUNTER; 

} 

 

Important: Note that care may be required when reading the counter on 8-
bit devices to ensure that a consistent value is obtained: in some cases, the 
high and low bytes must be read in a particular order in order to latch then 
release the counter. Similar considerations may apply when writing compare 
values. 

Cancel 

The Cancel() call must ensure that no further interrupts will be taken. This 
is a hardware dependent operation, but might typically be achieved by 
disabling interrupt generation by the counter device. 

 

OS_CALLBACK(void) Cancel_Advanced(void) 

{ 

  disable_interrupt(); 

} 

14.2.2 Interrupt Handler 

Simple 

In the simplest case, it is only necessary to clear the interrupt, make the 
required Advance() call, and – if the counter/schedule is still running – 
advance the compare point to when the next point is due. This assumes that 
the latency of the handler (to the point at which it has moved on the compare 
value) is known to be less than the shortest expiry value for the 
counter/schedule being driven, so the new compare point will be ahead of the 
counter. 
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#include “Advanced_Driver.h” 

ISR(Advanced_Driver) 

{ 

  ScheduleTableStatusType State; 

  dismiss_interrupt(); 

  Advance(&CurrentState); 

  if (State.status & OS_STATUS_RUNNING) { 

    OUTPUT_COMPARE += State.expiry; 

  } 

} 

It is essential that the output compare point is always advanced to be ahead 
of the timer. If the expire time is shorter than the handler response time then 
this will not be the case and an additional full wrap of the timer will be 
introduced before the next point is processed. In order to verify that a simple 
handler may be used safely, use the RTA-OSEK Planner to perform 
schedulability analysis. Your application will only be schedulable if the simple 
handler can complete before its next invocation. 

Retriggering 

When points may be too close together for the handler to advance the 
compare value before the next point is due then the handler must account for 
the situation in which the next point is already due. 

This example considers the use of an output compare timer with hardware 
interlocking to prevent the accidental clearing of an interrupt which is raised 
during the clearing sequence. It is assumed that for this type of interlock 
clearing the interrupt is achieved by reading the status register, then writing 
the status register (with a bit pattern that clears the interrupt bit). In this 
example, the interlock consists of two functions:  

• prepare_interrupt_clear() 

• commit_interrupt_clear() 

While the driver is still running, the compare point is advanced (in the case of 
a full “wrap”, advancing by 0 is correct) and the first part of the interrupt 
clearing sequence is performed (reading the status register). Then the check is 
made for the new compare point being ahead of the timer. If this check 
shows that an interrupt will not be raised when the counter advances to the 
compare value (i.e. the next point is not yet due) then the interrupt clearing 
sequence is completed (by writing to the status register with the flag bit 
clear). If the check fails (i.e. the new expire is already due) then the interrupt is 
left pending and the handler will be re-triggered to deal with the next point. 
Note that the two-stage interrupt clearing sequence is required to avoid a race 
in which the counter reaches the match point between being tested and the 
interrupt being cleared. This would otherwise result in the interrupt for the 
next point being cleared. The required hardware behavior is that if the 
interrupt is raised again after the first stage of the sequence then the second 
stage will not clear the interrupt. 

A similar approach can be taken with devices where the interrupt can be re-
asserted by software. In these case, the interrupt can be cleared on entry to 
the handler, then re-asserted if the next point is due, in which case no race 
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condition can occur (assuming there is no problem associated with software 
asserting an interrupt which the hardware is already asserting). 

 

ISR(Advanced_Driver) 

{ 

  ScheduleTableStatusType State; 

  TickType remaining_ticks; 

  osUint16Type clear_tmp; 

  Advance(&State); 

  if (State.status & OS_STATUS_RUNNING) { 

    OUTPUT_COMPARE += State.expiry; 

    clear_tmp = prepare_interrupt_clear(); 

    remaining_ticks = OUTPUT_COMPARE - COUNTER; 

    if ((State.expiry == 0u) || 

        ((remaining_ticks != 0u) && 

         (remaining_ticks <= State.expiry))) { 

      commit_interrupt_clear(clear_tmp); 

    } 

  } 

} 

 

Important: Some output compare hardware requires that the compare 
register be written to arm each interrupt. In such cases it is necessary to 
structure the code (as is the case above) so that the compare register is 
written to its previous value in the case of an expiry value of 0. 

Looping 

This section considers a generic looping ISR structure TickType modulus 
counter with programmable output compare. 

This interrupt handler first dismisses the invoking interrupt, then enters a loop 
which processes a point and checks whether any further points need to be 
processed by this invocation. This check has four exit conditions, which must 
be evaluated in the order shown. 

1. Exit 1 is taken if the counter/schedule has now stopped, so no further 
action is necessary. If the counter/schedule has not stopped, then the 
compare point is advanced by the required number of ticks (which will 
be zero in the case of a full wrap). Checks must then be made to 
determine whether an interrupt will be raised when the next point is 
due. 

2. Exit 2 is taken if the expiry value indicates that a full “wrap” of the 
timer is required before the next point is due to be processed. 
Therefore, no change to the compare/match value is necessary. An 
expiry value of 0 ensures that the new compare point is ahead of the 
timer (and consequently that the interrupt will be asserted when it is 
reached). Exiting at this point ensures that the following checks will 
not misidentify a match between counter and compare point as an 
event being due now when a full wrap has been requested and the 
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counter has not yet moved on (it is assumed that the interrupt will not 
be re-asserted while the counter and compare point continue to 
match, only when the match first occurs: if this is not the case, it must 
be ensured that the handler never exits in that state, perhaps by 
avoiding expiry values of 0). 

3. Exit 3 is taken if the current timer value has not yet reached the new 
compare point. This check is done by determining if the time until the 
next interrupt (i.e. OUTPUT_COMPARE – COUNTER) is less than the 
delay until the next point. Note that the cast to TickType is 
necessary to ensure that the counter modulo behavior is accounted 
for. The counter modulus must the same TickType for this to work 
correctly: see “notes on counter modulus” for how to handle arbitrary 
modulus values. If the counter has moved on by less than the expiry 
value, then an interrupt will be raised at the correct time and the 
handler can exit, otherwise, the new compare point may have been 
missed. 

4. Exit 4 accounts for a “race” between setting the new compare point 
and checking that it is ahead of the counter, since the counter can 
advance before the exit 3 check is made. If exit 3 is not taken, the next 
point is now due. If the interrupt is pending, expiry has already been 
recognized by the hardware, so the handler can exit and be re-invoked 
by the pending interrupt (it would not be acceptable to exit with an 
interrupt pending yet no point due). Note that this construction means 
that it does not matter whether the interrupt is pending or not when 
exit 3 is not taken because the counter has advanced by exactly the 
expiry value: either the pending interrupt or looping results in the next 
point being processed. 

If no exit is taken then the next point is due (or overdue), and the loop makes 
the required expire call then repeats the exit checks for the next point. 

Note that the typical behavior of this handler is expected to be a single 
Advance() call, because the next point will be in the future. Consequently, 
the handler should be as fast as possible for that case (since the worst-case 
behavior is that the processing of each point is triggered by a separate 
interrupt). 

 

#include “Advanced_Driver.h” 

ISR(Advanced_Driver) 

{ 

  ScheduleTableStatusType State; 

  TickType remaining_ticks; 

  dismiss_interrupt(); 

  while(1) { 

    Advance(&State); 

    if (!(State.status & OS_STATUS_RUNNING)) { 

      return; /* exit 1: activator stopped */ 

    } 

    OUTPUT_COMPARE += State.expiry; 

    if (State.expiry == 0u) { 

      return; /* exit 2: full wrap */ 

    } 
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    remaining_ticks = OUTPUT_COMPARE - COUNTER; 

    if ((remaining_ticks != 0u) && 

        (remaining_ticks <= State.expiry)) { 

      return; /* exit 3: compare point 

               * is in the future */ 

    } 

    if (interrupt_pending()) { 

      return; /* exit 4: interrupt pending */ 

    } 

  } 

} 

 

Important: It is important that you understand the interrupt behavior of the 
counter/compare hardware in use. When the compare value is set equal to 
the counter, there are three possible behaviors: the interrupt becomes 
pending as the value is set, the interrupt becomes pending as the counter 
moves beyond the compare point, or the counter needs to completely wrap 
around before the interrupt becomes pending again. 

In the example above, the test for exit 3 assumes the counter/match hardware 
exhibits the first or third behavior. With the second behavior, it is necessary to 
exit if remaining_ticks is zero, as the interrupt will be asserted after the 
counter and match value have been observed as equal. 

14.2.3 Counter Hardware Narrower than TickType 

The driver outlines presented above have assumed that the counters and 
compare registers are the same width as TickType and arithmetic is 

unsigned modulo TickType. Some hardware may not have this property. 

In this case, we assume that the counter itself wraps to zero after some value 
(m – 1) (i.e. has modulus m, where m is smaller than TickType). This 
increases the complexity of the drivers, but might be imposed by hardware 
behavior or necessary to support some other system requirement. For 
example, a timer set up with a modulus of 50000 and tick of 1ms could 
provide a 50ms interrupt via overflow used to drive a ticked counter or 
schedule and output compare interrupts used to provide the advanced driver. 

Such a modulus requires modification to calculations which derive new 
compare values and which check the relationship between compare and 
counter values. In this example we’ll assume that TickType has modulus 
216. 

If m is 2x (where x < 16) then it is simple to apply explicit modulus 
adjustments to arithmetic results by ANDing with 2x-1. For 8 bit modulus, this 
would allow a compare value to be advanced by: 

 

new_cmp = (old_cmp + ret.expiry) & 0xFF; 
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A similar operation can be applied to the result of calculating the ticks 
remaining to a compare point. 

The calculations become more complex if the modulus value is not a power of 
two. Possible techniques are presented below. 

When calculating a new compare value we must account for four possible 
results when the sum of the old compare and the new expiry value is 
calculated using the TickType modulus of 216: 

1. The expiry value is zero. A full modulus wrap leaves the compare value 
unchanged. 

2. The sum is greater than the old compare value, but less than m. The 
result of the addition is the desired result. 

3. The sum is greater than m. The result of the addition needs to be 
wrapped at m. This can be achieved by subtracting m, avoiding the 
(often costly) modulus operator. 

4. The sum is less than the old compare value. The result of the addition 
wrapped at 216, so the sum must have (216

 – m) added to it to give the 
result of wrapping at m. 

Note that if m is less than or equal to half the arithmetic modulus (i.e. ≤ half 
of 216) then the fourth case can never occur. 

When checking whether the new output compare value has been set ahead 
of the counter, we consider three circumstances. No subtraction underflows 
the 216

 arithmetic modulus. 

1. The expiry value is zero, so the new compare point is known to be in 
the future. The handler is required to complete in less than the 
counter modulus. 

2. The new compare value is greater than or equal to the counter so we 
can subtract counter from compare to give the interval until next 
match then check whether this is less than or equal to the required 
expiry time (otherwise, the next point is already due). 

3. The new compare value is less than the counter value. Subtracting 
compare from counter gives the interval that remains when the 
interval to next match is subtracted from the modulus. Thus, we can 
calculate the interval to next match as m – (COUNTER – 

OUTPUT_COMPARE), then check this result against the required expiry 
time. 

The same approach can be applied to the calculation of remaining time to 
expiry in the State_Advanced() call back. 

Adding the mechanisms described above to our generic “output compare” 
driver gives the following: 

 

#include “Advanced_Driver.h” 

/* Next line should result in a constant being  

   Substituted. We assume that the expression will 

   be evaluated at compile time, avoiding modulus  

   overflow at run time */ 

 

#define CMP_ADJUST ((TickType)65536u – m) 
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/* Where m is the timebase modulus */ 

 

ISR(Advanced_Driver){ 

  ScheduleTableStatusType State; 

  TickType counter_cache; 

  TickType remaining_ticks; 

  TickType new_cmp; 

  dismiss_interrupt(); 

  while(1) { 

    AdvanceSchedule(&State); 

    if (!(State.status & OS_STATUS_RUNNING)) { 

      return; /* exit 1: activator stopped */ 

    } 

    if (State.expiry == 0u) { 

      /* OUTPUT_COMPARE = OUTPUT_COMPARE if  

       * needed to arm next interrupt */ 

      return; /* exit 2: full wrap */ 

    } 

    new_cmp = OUTPUT_COMPARE + State.expiry; 

    if (new_cmp > OUTPUT_COMPARE) { 

      if (new_cmp >= m) { 

        new_cmp -= m; 

      } 

    } else { 

      new_cmp += (CMP_ADJUST); 

    } 

    OUTPUT_COMPARE = new_cmp; 

    counter_cache = COUNTER; 

    if (new_cmp >= counter_cache) { 

      remaining_ticks = new_cmp – counter_cache; 

    } else { 

      remaining_ticks = 

        m – (counter_cache–new_cmp); 

    } 

    if ((remaining_ticks != 0u) &&  

        (remaining_ticks <= State.expiry)) { 

      return; /* exit 3: compare in the future */ 

    } 

    if (interrupt_pending()) { 

      return; /* exit 4: interrupt pending */ 

    } 

  } 

} 

 

14.2.4 Counter Hardware wider then TickType 

We consider now the alternative case where a hardware counter has a 
modulus that exceeds TickType. With a little care, such counters can be 

used to provide the behavior required for a TickType with a modulus of 216. 
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We restrict our consideration to modulus values that are a power of two (e.g. 
a 32 bit counter). In these cases the low 16 bits of the counter have the 
desired behavior, but overflow effects must be taken into account. 

When the compare value is advanced in the interrupt handler, overflow from 
the bottom 16 bits must be propagated through the rest of the compare 
register. In addition, an expiry value of 0 indicates that 216

 must be added to 
the compare value. Since the compare point can never be advanced by more 
than this, checks for the timer having passed the compare point can be 
carried out using the low 16 bits of the counter and compare registers. 

When the Set_Advanced() call back is used, the compare point must be 
set so that it matches the counter when the low 16 bits of the counter next 
have the same value as the parameter passed to Set_Advanced(). This can 
be achieved as follows (assuming that counter and compare are 32 bit 
unsigned values): 

 

 

OS_CALLBACK(void) Set_Advanced(TickType Match) 

{ 

  osUint32Tye to_compare; 

  disable_interrupt(); 

  disable_compare(); 

  dismiss_interrupt(); 

  OUTPUT_COMPARE = 

    (COUNTER & 0xFFFF0000ul) | Match; 

  to_compare = OUTPUT_COMPARE - COUNTER; 

  if ((to_compare == 0ul) || 

      (to_compare >= 0x10000ul) { 

    if(!(interrupt_pending())) { 

      OUTPUT_COMPARE += 0x10000ul; 

      to_compare = OUTPUT_COMPARE - COUNTER; 

      if ((to_compare == 0ul) || 

          (to_compare >= 0x10000ul)){ 

        if(!(interrupt_pending())) { 

          OUTPUT_COMPARE += 0x10000ul; 

        } 

      } 

    } 

  } 

  enable_interrupt(); 

} 

 

The operations are carried out with interrupts from the hardware device 
disabled, in order to make them atomic with respect to the handler. First any 
pending interrupts are cleared: this must be done after disabling comparison 
(for instance, setting the compare point to ensure that a pending interrupt 
can only be due to a match with the new compare value). Then the compare 
register is set to the counter value with its lower 16 bits replaced by the 
supplied parameter. 
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If the compare point lies in the future by less than 216
 ticks then it has been set 

correctly. If there is a pending interrupt then the compare point must have 
been reached so the interrupt should be handled. Otherwise, the compare 
point is advanced by 216. The check must then be repeated to account for a 
race in which the counter could overtake the new compare point before it has 
been set. Checking twice is sufficient, assuming that the Set_Advanced() 
call completes in less than 216 timer ticks. 

This code assumes that the interrupt may or may not be pending if the 
compare value is set equal to the counter. If the interrupt is known to become 
pending when (or after) the two match then the check for to_compare 
being zero should be removed. 

Note that this function can be much simplified based on knowledge of 
application behavior. For example, if the counter is zeroed at startup and the 
activator is started only once less than Match ticks after startup it is sufficient 

to set the compare value to Match. 

Important: Modulus 216 behavior is not exhibited by the low 16 bits of a 
counter which has a modulus that is not a power of two: the last interval 
before the timer wraps consist of (counter modulus MOD 216) ticks. 

14.3 Free Running Counter and Interval Timer 

The counter compare/match handlers described above allow the 
implementation of drift-free fine activator drivers. However, not all target 
platforms provide such counter facilities. 

Drift can be avoided when using a down counter if a separate free running 
counter is also available. The free running counter is used to provide a drift-
free time reference, and the down counter is set up to interrupt when the 
next point becomes due. Some jitter (delay) may be introduced to individual 
expiry times due to delays in setting the down counter, but these do not 
accumulate: such jitter can be accounted for in the same way as jitter 
introduced in the handling of the interrupt. In this section, the down counter 
is considered to provide registers COUNTER and DOWN_COUNTER that can 
be used as variables. As in the previous example, both registers are taken to 
be TickType wide registers, and the values they use are taken to be 

unsigned TickType size integers. 

14.3.1 Callbacks 

The next match value is maintained in software, and used in calculation of the 
down count value to the next interrupt. 

TickType next_match; 

Set 

OS_CALLBACK(void) Set_Advanced(TickType Match) 
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{ 

  /* Record value at which expire is due */ 

  next_match = Match; 

  disable_compare(); 

  dismiss_interrupt(); 

  /* set up interrupt when counter reaches match 

     value */ 

  DOWN_COUNTER = next_match – COUNTER; 

  enable_interrupt(); 

} 

State 

Note that the State_Advanced() call, below, could return 

DOWN_COUNTER as the Status.expiry value. If there is any jitter 
introduced by setting the down counter, this will reflect in the time at which 
the expiry will be signaled, rather than when it is due. However, particularly 
with a non- TickType modulus where more calculation is avoided, the 
following may be acceptable. 

 

OS_CALLBACK(void) State_Advanced( 

                     ScheduleStatusRefType State) 

{ 

  State.expiry = next_match - COUNTER; 

  if (interrupt_pending()) { 

    State.status = 

      OS_STATUS_RUNNING | OS_STATUS_PENDING; 

  } else { 

    State.status = OS_STATUS_RUNNING; 

  } 

  return; 

} 

Now 

The Now callback function is implemented as before. 

OS_CALLBACK(TickType) Now_Advanced(void) 

{ 

  return (TickType)COUNTER; 

} 

Cancel 

The Cancel callback function is implemented as before. 

OS_CALLBACK(void) Cancel_Advanced(void) 

{ 

  disable_interrupt(); 

} 
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14.3.2 ISR 

#include “Advanced_Driver.h” 

ISR(Advanced_Driver) 

{ 

  ScheduleStatusType State; 

  TickType remaining_ticks; 

  dismiss_interrupt(); 

  while(1) { 

    AdvanceSchedule(&State); 

    if (!(State.status & OS_STATUS_RUNNING)) { 

      return; /* exit 1: activator stopped */ 

    } 

    next_match += State.expiry; 

    /* also subtract adjustment for */ 

    /* delay before COUNTER is set? */ 

    remaining_ticks = next_match – COUNTER; 

    if (State.expiry == 0u) { 

      DOWN_COUNTER = remaining_ticks; 

      return; /* exit 2: full wrap */ 

    } 

    if ((remaining_ticks!= 0u) && 

        (remaining_ticks <= State.expiry)) { 

      DOWN_COUNTER = remaining_ticks; 

      return; /* exit 3: 

                 counter set for next expire */ 

    } 

    /* assume we only get an interrupt due to  

       setting the counter and we only set the 

       counter when we are going to exit so no  

       need to test for pending interrupt */ 

  } 

} 

 

This demonstrates a looping form of ISR: it loops until no due points remain, 
rather than handling one point per invocation of the routine, as in a 
retriggering form of ISR. 

Note that exit 2 assumes that setting the counter to zero will result in an 
interrupt after one full “wrap” of ticks. 

14.4 Using “Match on Zero” Down Counters 

Some hardware might not provide a free running counter (or you might not 
want to use this for your advanced driver.  

In this case you will have to use just the interval timer. This example assumes a 
16-bit decrementing counter that raises an interrupt on reaching 0, and 
continues to decrement. Because the counter continues to decrement, the 
start point for the new countdown can be determined by adding the expiry 
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time to the counter value (assuming modulo 216
 arithmetic). It is desirable to 

minimize drift during the counter update. Preventing interrupts during the 
update, and adding an adjustment for the known time taken for update (to 
both the counter and next_match) may be able to reduce this to one “tick” 
per counter adjust (assuming the counter is asynchronous to the update, there 
will always be some uncertainty). counter_adjust is introduced to allow 
calculation of a “now” value: subtracting the counter value from 
next_match gives this. Note that the counter update and 

counter_adjust update must be atomic with respect to any call to obtain 
“now” for this to give the correct result. 

When the driver is not running, the down counter is assumed to free-run. 
From start-up it runs downwards from zero and the value of “now” is (0 – 
counter). counter_adjust always holds the actual tick value that the “free 
running” counter will have next time the down counter has the value 0. 

14.4.1 Callbacks 

Set 

 

TickType counter_adjust = 0; 

OS_CALLBACK(void) Set_Advanced(TickType Match) 

{ 

  TickType AdjustedMatch; 

  AdjustedMatch =  

    Match – (counter_adjust – DOWN_COUNTER); 

  /* dismiss interrupt in a way that avoids race 

     conditions */ 

  disable_compare(); 

  dismiss_interrupt(); 

  DOWN_COUNTER = AdjustedMatch; 

  counter_adjust += AdjustedMatch; 

  enable_interrupt(); 

} 

 

The race conditions discussed earlier are still present. If the interrupt is 
dismissed before the down counter is set, there is a risk that an interrupt may 
occur between dismissing the interrupt and setting the down counter. If the 
interrupt is set after the down counter is set, a small delay could result in the 
expected interrupt being discarded. In the absence of specialized hardware 
protection, this can be avoided by the disable_compare() function 
setting the counter to modulus – 1, then dismissing the interrupt between 
determining the AdjustedMatch value and setting the counter (as shown 
in the above example). 
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State 

State_Advanced() is defined as before, except that the expiry time can 
be read directly from the down counter. 

 

OS_CALLBACK(void) State_Advanced( 

                     ScheduleStatusRefType State) 

{ 

  State.expiry = DOWN_COUNTER; 

  if (interrupt_pending()) { 

    State.status =  

      OS_STATUS_PENDING | OS_STATUS_RUNNING; 

  } else { 

    State.status = OS_STATUS_RUNNING; 

  } 

} 

 

Now 

To determine the correct value of “now”, the below calculation is used. 

 

OS_CALLBACK(TickType) Now_Advanced(void) 

{ 

  return (counter_adjust – DOWN_COUNTER); 

  /* counter_adjust is still correct adjustment 

   * as counter runs to and through 0 */ 

} 

 

Cancel 

Canceling the driver is achieved as before. 

 

OS_CALLBACK(void) Cancel_Advanced(void) 

{ 

  disable_interrupt(); 

} 

 

14.4.2 Interrupt Handler 

#include “Advanced_Driver.h” 

ISR(Advanced_Driver) 

{ 

  ScheduleStatusType State; 

  TickType counter_cache; 
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  dismiss_interrupt(); 

  while(1) { 

    Advance(&State); 

    if (!(State.status & OS_STATUS_RUNNING)) { 

      return; /* exit 1: activator stopped */ 

    } 

    if (State.expiry == 0u) { 

      return; /* exit 2: full wrap */ 

    } 

    counter_cache = COUNTER + State.expiry; 

    COUNTER = counter_cache; 

    counter_adjust += State.expiry; 

    if ((counter_cache != 0u) && 

        (counter_cache <= State.expiry)) { 

      return; /* exit 3: 

               * next time point has not yet 

               * been reached */ 

    } 

    if (interrupt_pending()) { 

      return; /* exit 4: interrupt pending */ 

    } 

  } 

} 

 

The condition on exit 3 assumes that the interrupt becomes pending when 
(not after!) the counter reaches zero, but may not do so if it is set to zero (if 
the counter is zero then the point is due and will be dealt with either by 
looping or re-entering via the pending interrupt). The same counter value 
must be used for both parts of the test otherwise races can occur if the 
counter changes between the two comparisons (hence the use of 
counter_cache). 

 

If the behavior of the interrupt when the counter is set to zero is known, the 
code can be simplified by removing exit 4 and the associated test (since the 
interrupt status when counter_cache is zero will be known). If setting the 
counter to zero never causes the interrupt to become pending then that is the 
only change required. If setting the counter to zero always causes the 
interrupt to become pending then exit 3 should only check for 
counter_cache less than or equal to expiry: if the counter is zero, the 
interrupt will be pending and will cause the next event to be handled. 

In the case of a very fast running clock (where the clock speed is greater than 
or equal to the processor speed), it will be necessary to add a correction to the 
counter to offset the number of ticks that occur between reading the counter 
and setting its new value. In any case, a drift of up to one tick cannot be 
avoided whenever the down counter is set. On a multiple interrupt level 
platform, it is desirable to disable all interrupts whilst reading/writing 
COUNTER to avoid the possibility of interruption between these and a large 
amount of drift. 
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14.5 Software Counters Driven by an Interval Timer 

Using a periodic interval timer (or any per-event interrupt source) it is possible 
to synthesize counter and compare in software. Note that, because the 
counter and compare values are only changed by the handler, no race 
conditions need to be accounted for. However, a handler of this form is of 
limited practical interest because there is one interrupt per tick, and therefore 
ticked activation should be used. 

14.6 Summary 

• You need to provide an advanced driver for every advanced counter and 
advanced schedule 

• The driver interface comprises 

o A Category 2 interrupt handler that tells RTA-OSEK to take action 

o Four callback functions used by RTA-OSEK to control the 
counter/schedule 

• If possible, you should use a free running counter with associated compare 
hardware and a simple interrupt handler 
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15 Startup and Shutdown 

Some operating systems that you might have used before will take control of 
the hardware. RTA-OSEK Component, however, is different. 

Initially the operating system is not running, so you are free to use the 
hardware as if no real-time operating system is being used. Until you explicitly 
start the operating system with an API call, it is not running.  

RTA-OSEK Component can be started in different application modes. A 
mode is a set or subset of the complete application functionality that 
corresponds with a specific function of the application.  You will learn more 

about application modes in Section  15.2.1. 

15.1 From System Reset to StartOS() 

This section looks at what has to be done between an embedded processor 
“coming into life” when power is applied and the StartOS() API call being 
made to start RTA-OSEK Component and your application. The details of 
what goes on in this period are naturally dependent on the particular 
embedded processor in use – the underlying principles are however the same. 
You should read this section in conjunction with the reference manual for 
your target processor and apply the concepts we describe to your own 
platform. 

15.1.1 Power-on or Reset to main() 

When power is applied to an embedded processor, or the processor is reset, 
the processor does one of two things (depending on the type of processor). 

It may start executing code from a fixed location in memory, or it may read an 
address from a fixed location in memory and then start executing from this 
address. The fixed location in memory that contains the address of the first 
instruction to execute is often called the “reset vector” and is sometimes an 
entry in the interrupt vector table. 

In a production environment the reset vector and/or the first instruction to be 
executed is usually in non-volatile memory of some variety. In a development 
environment it is often in RAM to permit easy re-programming of the 
embedded processor. Some evaluation boards (EVBs) have switches or 
jumpers that permit the reset vector and/or the first instruction to be in 
EEPROM or RAM. 

Going from power-on or reset to the first instruction being executed is often 
referred to as “coming out of reset”. After a processor has come out of reset 
it usually: 

• has interrupts disabled, 

• is in supervisor mode (if the processor supports it) - i.e. it can execute 
all instructions and access all addresses without causing an exception 
and has all forms of memory and I/O protection turned off. 
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• is in single-chip mode (if the processor supports it) – i.e. the chip is in a 
“self-contained mode” where external memory is not usable and 
external buses are disabled. 

It is possible to have any code you like executed when a processor comes out 
of reset but it is normal if using a high-level language such as C for this 
bootstrap code supplied with your compiler. 

The compiler vendor supplies an object module or library that contains the 
bootstrap code. The bootstrap code usually does two key things: 

1. it carries out basic processor configuration, for example bus 
configuration, enabling of access to internal RAM 

2. it invokes the C language start-up code. Most of this is concerned 
with initializing data structures, clearing memory, setting up the stack 
pointer, etc. 

Directives in the object module/library or in the linker configuration file are 
used to ensure that the bootstrap code (and reset vector value if needed) are 
placed in the correct location in memory. 

C Language Start-up Code 

The C language start-up code is either supplied by the compiler vendor or (on 
some platforms, in a slightly modified version) by LiveDevices. The start-up 
code is often supplied in an object module with a name like “crt0” or 

“startup” and the code can usually be identified in a map file by looking 

for a symbol with a name something like “_start” or “__main”. The 
source to this module is usually available to the user. 

On some platforms LiveDevices supplies a different version of the standard 
startup code that should be used with RTA-OSEK applications. The RTA-OSEK 
Binding Manual and the example supplied with RTA-OSEK will tell you how to 
use this. 

The start-up code initializes the C language environment. For example it sets 
up the stack pointer, the heap used for malloc() and it initializes global 
variables by copying their default values from ROM into RAM. Finally the start-
up code invokes the application start-up code. 

15.1.2 The Application Start-up Code 

The application start-up code is the function called “main()” or in an RTA-

OSEK application the function declared with the macro “OS_MAIN()”. The 
application start-up function has three things to do in an RTA-OSEK 
application: 

• Initialize the target hardware into a state where RTA-OSEK and the 
application can run 

• Call StartOS() to start RTA-OSEK Component running. 

• Carry out idle-task processing. 

For example the application start-up code for an RTA-OSEK application may 
look like: 
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OS_MAIN()  

/* note that we use this macro for portability 

rather than main() as some compilers expect strange  

declarations of main() */ 

{ 

  init_target(); 

 

  StartOS(OSDEFAULTAPPMODE); 

 

  /* Code that makes up the idle task */ 

  /* functionality. */ 

 

  /* The idle task must never terminate so if */ 

  /* there is no idle task functionality then */ 

  /* use something like: */ 

 

  for (;;) { /* Do nothing. */ } 

} 

Figure  15:1 : A Typical Main and Idle Task 

StartOS() starts RTA-OSEK Component running. Once the kernel is running 
ISRs will be called in response to interrupts occurring and tasks will be 
scheduled. When StartOS() returns the application start-up code is running 
as the idle task. The idle task must never terminate so if there is nothing for 
the idle task to do an infinite loop must be used. 

The init_target() function in the above example is supplied by the user 
and is used to initialize the target hardware. The remainder of this section 
describes the types of things that you may have to do to initialize target 
hardware into a state where your application and RTA-OSEK Component can 
run. This description is necessarily generic as every embedded processor is 
slightly different. It is probably wise to read this section in conjunction with 
the RTA-OSEK Binding Manual for your processor and the processor’s 
reference guide. 

A Note on the Startup Hook 

If enabled – using “Application / OS Configuration” in the RTA-OSEK 
configuration tool – the StartOS() function will call the startup hook after 
it has initialized RTA-OSEK Component but before it lowers the interrupt 
priority level to user level and schedules any tasks. This feature can be used to 
carry out the final stages of target initialization – see the section on interrupts 
below. The startup hook is an application provided function called 
StartupHook(). 

Setting up Memory 

In general memory configuration is carried out by the bootstrap code that is 
run before the application start-up code is executed. In more complex 
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embedded processors, however, the memory configuration set-up by the 
bootstrap code may not be what is required for the application. For example, 
if the processor has internal RAM and an external memory bus it is most likely 
that the bootstrap code will have configured the processor to use the internal 
RAM. If your application needs to use RAM on the external memory bus then 
you will need to configure the processor to use the external RAM. Configuring 
access to RAM typically involves programming bank select and mask registers 
– however the details depend on the embedded processor. 

Setting up Peripherals 

Most embedded applications make use of peripheral devices which may be 
part of the embedded processor or attached through I/O or memory buses. 
Examples are CAN controllers, Ethernet controllers and UARTs. It is generally a 
good idea to set-up peripheral devices before RTA-OSEK Component is 
started since at this point the application code cannot be pre-empted and has 
complete control over interrupts. 

Setting up Timers 

Most embedded applications use hardware timers. Timers are usually 
configured to “tick” and generate interrupts at a fixed frequency. The ISR 
associated with the timer interrupts then either activates a task directly or ticks 
an OSEK counter (i.e. calls Tick_xxxx() where xxxx is the name of the 
counter). 

Setting up a hardware timer depends on the design of the timer but there are 
two common forms. In the first, a count register is set to zero and a bound 
register is set to the maximum value for the count register. The count register 
is incremented by the processor at a given frequency and when it reaches the 
value in the bound register it generates an interrupt and resets the count 
register to 0. In the second form a count register is loaded with the number of 
ticks to occur before an interrupt should be generated. The processor 
decrements the count register at a given frequency. When the register reaches 
zero an interrupt is generated. Usually the ISR that handles the interrupt is 
responsible for reloading the count register. 

The frequency at which timers must run will depend on your application. It is 
vital that OSEK counters are ticked at the frequency specified in their 
definition. 

In extended and timing builds of RTA-OSEK applications a callback function 
called GetStopwatch() must be supplied that returns the value of a free 
running timer that is incremented at the frequency specified via the RTA-OSEK 
configuration tool under “Target / Timing Data”. See the “Execution Time” 
section of the RTA-OSEK Reference Guide for details.  

You will also need to set-up timers to drive Advanced Schedules. See the 
section on Advanced Schedules in the RTA-OSEK Reference Guide for details 
of what must be done. 
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Setting up Interrupts 

Interrupt sources for category 1 and 2 interrupts should be configured before 
StartOS() is called. Category 1 interrupts may also be enabled so that they 
generate interrupts immediately as the handling of category 1 interrupts is 
completely outside the scope of RTA-OSEK Component. Category 2 interrupt 
sources must not actually generate interrupts until after StartOS() has 
completed initialization. 

Set-up the category 2 interrupt sources before calling StartOS() and then 

enable actual generation of interrupts in the StartupHook() function called 

by StartOS(). StartOS() raises the interrupt priority level (IPL) to OS level 
as soon as it is called and lowers it to user level just before it returns. Thus 
enabling interrupt generation in StartupHook() will not actually result in 

an interrupt occurring until StartOS() lowers the IPL just before it returns. 

Ensure that the IPL is set to OS level and then both configure interrupt sources 
and enable interrupts. Interrupts will not actually be generated until 
StartOS() lowers the IPL just before it returns. 

 

Figure  15:2: System Startup 

15.1.3 Memory Images and Linker Files 

When you build your application, the various pieces of code, data, ROM and 
RAM must be located at the right place in memory. This is typically done by 
the linker which resolves references made by user-supplied code to the RTA-
OSEK Component library, binds together the relevant object modules and 
allocates the resultant code and data to addresses in memory before 
producing an image that can be loaded onto the target. 

But how does the linker know what to put where in memory? How does it 
know where to find ROM and RAM, for example, and what must be allocated 
to each of them? 

Sections 

Code and data output by compilers and assemblers is typically organized into 
“sections”, with each “section”. You might see a piece of assembler that says 
something like 
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.section CODE 

.public MYPROC 

mov  r1, FRED 

add  r1, r1 

ret 

.end CODE 

.section DATA 

.public FRED 

.word 100, 200, 300, 400 

.end DATA 

.section BSS 

.public WORKSPACE 

.space 200 

.end BSS 

 

Figure  15:3: Example Assembler Output Showing Sections 

This means that the code for MYPROC should be assembled and the object 
code should assume that it will be located in a section of memory called 
“CODE” whose location we will later define in the linker. Similarly, the data 
labeled “FRED” will be placed in a section called “DATA”, and a space of 200 
bytes labeled “WORKSPACE” allocated in section “BSS”.  

C compilers typically output your code into a section called “code” or “text”, 
constants that must go into ROM in a section called something like “const”, 
and variables into “data”. There will usually be more – consult the reference 
manual for your toolchain for more details on what the sections are called and 
familiarize yourself with where they need to go. 

RTA-OSEK itself uses several sections that must be correctly located. 

 

Section ROM/RAM Description 

os_intvec ROM The interrupt vector table, if generated 
by RTA-OSEK. Name may vary – consult 
the RTA-OSEK Binding Manual 

os_pur RAM RTA-OSEK uninitialized data 

os_pid ROM  RTA-OSEK read-only data 

os_pir RAM  RAM data used by RTA-OSEK that must 
be initialized at runtime – the initializer 
for this is in os_pird and it will be 
initialized by the StartOS() API. 

os_pird ROM  The initializer for os_pir 
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Section ROM/RAM Description 

The following two sections may be used on some platforms that support 
separate “near” and “far” address spaces (see below) 

os_pnir RAM  RAM data used by RTA-OSEK that must 
be initialized at runtime – the initializer 
for this is in os_pird and it will be 

initialized by the StartOS() API. 

os_pnird ROM  The initializer for os_pnir 

 

So far we have yet to map these onto addresses in “real” memory. We must 
therefore look at how these sections are mapped into a memory image. 

“Near” and “Far” space 

On some processors there exist regions of memory space that can be 
addressed economically (typically with shorter, smaller instructions that have 
simpler effective-address calculations), are located on-chip rather than off-
chip, or that are fabricated in a technology such that they are more cycle-
efficient to access. RTA-OSEK terms this memory “near” space and on these 
processors places some key data in these areas. On such platforms you will be 
supplied with information on where you must locate “near” space in ROM 
and/or RAM, and told in the binding manual what data is placed in it. “Far” 
space refers to the whole of memory. 

Program and Data Space on Harvard Architectures 

Most of the discussion about memory so far has assumed the conventional 
“von Neumann” architecture, in which data and code occupy one address 
space with ROM and RAM located at different offsets inside this. Some 
processors (typically very small microcontrollers like PICs, or high-performance 
Digital Signal Processors) adopt a “Harvard” architecture, in which there are 
distinct address spaces for code and data (there are some performance 
advantages to this that offset the programming disadvantages). On a Harvard-
architecture processor, RTA may use data space (typically RAM) to store data 
that would normally be ROM constants on a von Neumann architecture 
processor, and the startup code will typically contain code to fetch the a copy 
of the constant data into data space. If you are using a Harvard architecture 
processor, the RTA-OSEK binding manual will contain information on any use 
of RAM to store copies of constants. 

The Linker Control File 

The linker control file governs the placement of code, data and reserved space 
in the image that is downloaded to the target microcontroller. Linker files vary 
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considerably between platforms and targets, but typically include at least the 
following: 

• declarations of where ROM and RAM are located on chip – these vary 
across different variants in a CPU family. 

• Lists of sections that can be placed into each memory space 

• Initialization of the stack pointer, reset address, interrupt vectors etc. 

Let us examine a hypothetical linker control file: 

ONCHIPRAM start 0x0000 { 

  Section .stack size 0x200 align 16 # system stack 

  Section .sdata align 16 # small data 

  Section os_pnir align 16 # RTA near data 

} 

 

def __SP = start stack    # initialize stack ptr 

 

RAM start 0x4000 { 

  Section .data align 16  # compiler data 

  Section .bss align 16   # compiler BSS 

  Section os_pur align 16 # RTA zeroed RAM 

  Section os_pir align 16 # RTA initialized RAM 

} 

 

ROM start 0x8000 { 

  Section .text       # compiler code 

  Section .const       # compiler constants 

  Section os_pid align 16   # RTA data 

  Section os_pird align 16  # RTA initializer 

  Section os_pnird align 16 # RTA initializer 

} 

 

VECTBL start 0xFF00 { 

  Section os_vectbl  # RTA vector table 

} 

 

def __RESET = __main  # reset to __main 

 

Figure  15:4 A Linker Control File 

The file above defines four separate parts of memory – “ONCHIPRAM”, 
“RAM”, “ROM”, and “VECTBL”.  Into each section are placed the 
appropriate data, as described by the comments. 

The example application supplied with RTA-OSEK will contain a fully-
commented linker control file; consult this and the RTA-OSEK Binding Manual 
for details of how to locate the sections correctly for your target platform. 

15.1.4 Downloading to your Target 

The output of the linker is typically a binary file in some well-known format 
(e.g. a.out, coff, elf or IEEE695). These can typically be read by debuggers, in-
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circuit emulators or in-circuit programming equipment, although in some 
cases it is necessary to convert the output from this binary format into a text-
based form (such as S-Records or Intel Hex) that can be transmitted to a 
simple boot monitor on the target over a serial link. Tools to do this are 
usually supplied with your development environment. Consult the 
documentation on your target platform and development toolchain for details 
of how to program applications into non-volatile memory. 

15.1.5 ROMability 

All ports of RTA-OSEK are ROMable and are tested running on a target CPU 
without any debugger or development equipment connected. 

15.2 Starting RTA-OSEK Component 

RTA-OSEK Component is started only when a StartOS() call is made.  This 

call is usually made from main()*.  It is up to you to perform any hardware 
initialization that is necessary for the application.  The initial state of RTA-
OSEK Component is described in the RTA-OSEK Reference Guide. 

StartOS(Appmode) takes a single application mode parameter.  This 

parameter is either the default mode OSDEFAULTAPPMODE or another mode 
that has been configured in the RTA-OSEK GUI. 

Have a look at the example main function in Code Example  15:1, which starts 
the operating system in the default application mode. 

#include "osekmain.h" 

 

OS_MAIN(main) 

{ 

  InitializeTarget();  

 

  StartOS(OSDEFAULTAPPMODE); 

 

  for (;;) { 

    /* Idle task. */ 

  } 

} 

Code Example  15:1 - Example Main Function 

When the call StartOS() returns, RTA-OSEK Component is running and all 

interrupts are enabled. Code that appears after StartOS(), in the calling 
function, is treated as the idle task. 

Remember that the idle task is just like any other task except that it can never 
terminate.  If you do not want RTA-OSEK Component to terminate, you must 
make sure that the idle task is an infinite loop. 

Most RTA-OSEK Component API calls can be made from the idle task.  
However, you cannot use any calls that require the idle task to terminate.  If 

                                                
* RTA-OSEK applications tend to use OS_MAIN() rather than main().  This is so that applications are portable. 
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you want to find out more about these API calls, have a look at the RTA-OSEK 
Reference Guide. 

Important: RTA-OSEK Component API calls cannot be made and Category 2 
interrupts are not handled before a call to StartOS(Appmode) has 
returned. 

RTA-OSEK Component can be suspended by disabling all Category 2 
interrupts and ensuring that they will not be raised on some future event, 
such as an output compare match. 

RTA-OSEK Component will be suspended when no Category 2 interrupts are 
raised and the idle task is running. You can resume RTA-OSEK Component by 
re-enabling Category 2 interrupts and then resume making RTA-OSEK 
Component calls. 

15.2.1 Application Modes 

OSEK provides application modes. These allow you to control which tasks 
and alarms are automatically started when the operating system starts (and 
also allow you to specify different timing behaviors for the system in each 
mode). 

Applications can be started in different modes, which are part of the complete 
functionality. These modes correspond with specific functions of the 
application. You could have, for example, an end-of-line programming mode, 
a transport mode and a normal mode. 

OSDEFAULTAPPMODE is the default application mode. You can define as 
many application modes as you want using the RTA-OSEK GUI. You can see, 

from Figure  15:5, how they are added to an application. 

 

Figure  15:5 - Configuring Application Modes 

StartOS(Appmode) will activate any tasks and set any alarms that you have 
specified to be autostarted. 
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15.2.2 Autostarting Tasks 

The RTA-OSEK GUI is used to set tasks to autostart during a call to 

StartOS(). Figure  15:6 shows how the task autostart options are set. 

 

Figure  15:6 - Declaring an Autostarted Task 

You can specify that autostarting occurs in whichever application modes you 
choose. All of the autostarted tasks will have run when StartOS() returns. 

In this case Task1 has been autostarted in OSEKDEFAULTAPPMODE and 

Production application modes. 

15.2.3 Autostarting Alarms 

Alarms can be autostarted in the RTA-OSEK GUI. When StartOS() returns, 

all autostarted alarms will have been enabled. Figure  15:7 shows you how an 
alarm is set to autostart. 
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Figure  15:7 - Autostarting an Alarm 

Alarms are autostarted through the application modes pane, so you are in 
effect selecting which alarms are autostarted on a per-application-mode basis.  

The alarm in Figure  15:7 has been set to autostart in the MyAppMode 
application modes. 

If you want a number of alarms to be synchronized at run-time, then you 
must make sure that the alarms are autostarted. This is the only way to 
guarantee alarm synchronization. 

15.3 Shutting Down RTA-OSEK Component 

The operating system can be shutdown at any point by making the 
ShutdownOS() API call. When this happens, RTA-OSEK Component will 
immediately disable interrupts and then enter an infinite loop. If you have 
configured the ShutdownHook() it is called before the infinite loop is 
entered. 

15.4 Restarting RTA-OSEK Component 

RTA-OSEK provides the osResetOS() API call to reset the kernel to its 

initialized state. You can then call StartOS() again to run your application 
in a different application mode. 

Portability: osResetOS() is unique to RTA-OSEK and is not part of the 
OSEK or AUTOSAR standards. 

To use osResetOS() in your application you must enable it as shown in 

Figure  15:8. 
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Figure  15:8 – Enabling osResetOS() 

When using osResetOS() in your application, there are two important 
conditions that you must observe.  

Firstly, osResetOS() must only ever be called from the application’s idle task 
when all other kernel services, such as alarms, schedule tables and schedules, 
are inactive, and no other application tasks are in the running, waiting or 
ready states. Any interrupt sources that could cause task activations should 
also be disabled. 

Secondly, the structure of the idle task must reflect the fact that the kernel 

can be restarted. Such an idle task is shown in Code Example  15:2. 

OS_MAIN(){ 

  AppModeType CurrentAppMode; 

 

  InitialiseTarget(); 

 

  /* Set up normal application mode */ 

  CurrentAppMode = Default; 

 

  while(1){ 

    StartOS(CurrentAppMode); 

    /* Idle task */ 

    while(1) { 

      /* Test for mode switch */ 

      if( ModeSwitchNecessary ) 

        break; 

    } 

    /* Reset OS */ 

    osResetOS() 

  } 

} 

Code Example  15:2 – Using osResetOS() in the idle task 
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15.5 Summary 

• RTA-OSEK will not work unless everything is located in the right place in 
memory. 

• There are several operations that must be carried out before RTA-OSEK 
Component can run. 

• RTA-OSEK Component doesn’t run until the StartOS() call is made. 

• RTA-OSEK Component can be stopped at any time using the 
ShutdownOS() call. 

• RTA-OSEK Component can be reset using the osResetOS() call. It can 
then be restarted in a different application mode. 

• Application modes allow you to control the tasks and alarms that are 
autostarted.
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16 Error Handling and Execution Monitoring 

During the early stages of development you will need to debug and monitor 
the execution of your application. Execution monitoring can be as 
straightforward as generating a trace of the tasks as they run.  You might, 
however, need to monitor the actual execution time or stack usage of tasks to 
obtain worst-case values for timing and stack analysis. 

RTA-OSEK provides OSEK hooks. A hook is a user provided C function with a 
specified API.  The hooks are called by RTA-OSEK Component at particular 
points during its operation. 

Code that runs inside a hook function can make a restricted number of API 
calls. The RTA-OSEK Reference Guide lists these restrictions. 

OSEK defines the following hooks: 

• Startup Hook. 

• Shutdown Hook. 

• Error Hook. 

• PreTask Hook. 

• PostTask Hook. 

The OSEK hook routines are optional and can be used in any build of RTA-
OSEK Component. In addition to the OSEK hook routines, RTA-OSEK defines 
two additional hooks: 

• Stack Fault Hook. 

• Overrun Hook. 

RTA-OSEK hook routines are mandatory. The Stack Fault Hook is only used in 
if you have extended tasks configured. The Overrun Hook is only used in the 
Timing and Extended builds. 

You will find out more about each of these hooks later in this chapter. 

16.1 Enabling Hook Routines 

In the RTA-OSEK GUI you can select the hooks that you want to use in your 

application. Have a look at Figure  16:1. 
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Figure  16:1 - Configuring OSEK Hooks for an Application 

Figure  16:1 shows how the Startup Hook and Error Hook have been enabled 
(remember that OSEK hooks are optional). 

Important: If you do not provide code for a hook that you have enabled, 
your program will not link correctly. 

RTA-OSEK defines a set of macros that are only defined if the corresponding 
hook is enabled. These macros are called: 

OSEK_STARTUPHOOK 

OSEK_SHUTDOWNHOOK 

OSEK_PRETASKHOOK 

OSEK_POSTTASKHOOK 

OSEK_ERRORHOOK 

These macros allow you to conditionally compile the optional hooks routines 
into your code: 

#ifdef OSEK_STARTUPHOOK 

OS_HOOK(void) StatupHook (void) 

{ 

  /* Your code */ 

} 

#endif /* OSEK_STARTUPHOOK */ 
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16.2 Startup Hook 

The Startup Hook is called by RTA-OSEK Component during the 
StartOS(OSDEFAULTAPPMODE) call after the kernel has been initialized, 

but before the scheduler is running. Figure  16:2 shows the execution of the 
Startup Hook relative to the initialization of RTA-OSEK Component. 

 

Figure  16:2 - Execution of the Startup Hook 

Code Example  16:1 shows how Startup Hook should appear in your code. 

#ifdef OSEK_STARTUPHOOK 

 

OS_HOOK(void) StartupHook(void) { 

  /* Startup hook code. */ 

} 

 

#endif 

Code Example  16:1 - Using the Startup Hook 

The Startup Hook is often used for the initialization of OSEK COM or 
initialization of target hardware (configuration and initialization of interrupts 
sources, for example). 

16.3 Shutdown Hook 

The Shutdown Hook is called during the execution of the ShutdownOS() 

API call. Figure  16:3 shows the execution of the Shutdown Hook with respect 

to a ShutdownOS() API call. 

 

Figure  16:3 - Execution of the Shutdown Hook 

Code Example  16:2 shows how Shutdown Hook should appear in your code. 

#ifdef OSEK_SHUTDOWNHOOK 

 

OS_HOOK(void) ShutdownHook(StatusType s) { 

  /* Shutdown hook code. */ 

} 

 

#endif 

Code Example  16:2 - Using the Shutdown Hook 

The Shutdown Hook is often used for shutting down COM. 
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You should not normally return from the Shutdown Hook.  If you do, 
however, the behavior of RTA-OSEK Component is to enter an infinite loop 
running at OS level. 

16.4 Error Hook 

All RTA-OSEK Component API calls return a status code.  You can find out 
more about the status codes in the RTA-OSEK Reference Guide.  

The status code returned by an API call can be checked at run-time. This 
means that you can build some degree of run-time fault tolerance into your 
application. 

This may be useful if you want to check for error conditions that can occur in 
the Standard build (such as, ActivateTask() returning E_OS_LIMIT). 

Code Example  16:3 shows you how this can be done. 

if (ActivateTask(Task1) != E_OK) { 

 

  /* Handle error during task activation. */ 

 

} 

Code Example  16:3 - “On-the-Fly” Error Checking 

It is also possible to configure a “catch all” error handler in OSEK. This is 
called the Error Hook . If the Error Hook is enabled then it is called by RTA-
OSEK when any API call is about to return a status code that is not E_OK. The 
status code is passed into the Error Hook routine to determine the type of 
error. 

Depending on the severity of the error you can decide whether to terminate 
(by calling ShutdownOS()) or to resume (by handling or logging the error 

and then returning from ErrorHook()). 

Code Example  16:4 shows you the usual structure of the Error Hook. 

#ifdef OSEK_ERRORHOOK 

     

OS_HOOK(void) ErrorHook(StatusType status) { 

  switch (status) { 

             

    case E_OS_ACCESS: 

      /* Handle error then return. */ 

      break; 

             

    case E_OS_LIMIT: 

      /* Terminate. */ 

      ShutdownOS(status); 

             

    default: 

      break; 

  } 

} 
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#endif 

Code Example  16:4 - Suggested Structure of the Error Hook 

The Error Hook is adequate for coarse debugging. Sometimes, however, you 
will need to know more about the error. You may wish to know, for example, 
which API call resulted in the error being generated and which parameters 
were passed to that API call. This information is available at run-time by 
configuring advanced error logging using the RTA-OSEK GUI. 

16.4.1 Configuring Advanced Error Logging 

In RTA-OSEK, two levels of detail are available: 

1. Do not record the service details (default) 

2. Record the API name only. 

3. Record the API name and the associated parameters. 

Figure  16:4 shows how the level of detail is defined in the RTA-OSEK GUI. 

 

Figure  16:4 - Configuring Advanced Error Logging 

If you choose not to record the service details, your application does not need 
to pay the additional overheads associated with collecting this information. 
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16.4.2 Using Advanced Error Logging 

When error logging is enabled, RTA-OSEK provides a set of macros for 
accessing the name and the associated parameters of the API call that caused 
the error. 

You can find out which API call caused the error using the 
OSErrorGetServiceId() macro. This macro returns an 

OSServiceIdType of the form OSServiceId_<API name>. If, for 

instance, an ActivateTask() call results in an error, 

OSErrorGetServiceId will return OSServiceId_ActivateTask.  

The parameters to the API call are available using macros in the form shown in 

Code Example  16:5. A macro is defined for each parameter of each API call.   

OSError_<API Name>_<API Parameter Name> 

Code Example  16:5 - Advanced Error Logging 

Using the ActivateTask() example again, 

OSError_ActivateTask_TaskId will return the TaskId parameter 

passed to ActivateTask(). This additional error logging information can 

be usefully incorporated into the ErrorHook() code. This is shown in Code 

Example  16:6. 

#ifdef OSEK_ERRORHOOK 

 

OS_HOOK(void) ErrorHook(StatusType status) { 

 

  OSServiceIdType callee; 

 

  switch (status) { 

 

    case E_OS_ID: 

      /* API call called with invalid handle. */ 

      callee = OSErrorGetServiceId(); 

 

      switch (callee) { 

 

        case OSServiceId_ActivateTask: 

          /* Handle error. */ 

          break; 

 

        case OSServiceId_ChainTask: 

          /* Handle error. */ 

          break; 

 

        case OSServiceId_SetRelAlarm: 

          /* Handle error. */ 

          break; 

 

        default: 

          break; 

      }   
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      break; 

 

    case E_OS_LIMIT: 

      /* Terminate. */ 

      ShutdownOS(); 

 

    default: 

      break; 

  } 

} 

 

#endif 

Code Example  16:6 - Additional Error Logging Information 

The macros for obtaining the API name and the associated parameters should 
only be used from within the Error Hook.  The values they represent do not 
persist outside the scope of the hook. 

Important: When you use extended error logging the value returned by 
OSErrorGetServiceId() may be misleading.  This generally happens 
when API calls have a side effect.  For example if you send a message using 
COM, a possible side effect is to activate a task. If that task activation results 
in an error then OSErrorGetServiceId() will return 

OSServiceId_ActivateTask even though the API call that you made 

was SendMessage(). 

16.4.3 Working out which Task/ISR is Running 

When debugging your RTA-OSEK applications you will probably want to know 
which task or Category 2 ISR is responsible for raising the error. OSEK OS 
provides the GetTaskID() API call to tell you which task is running.  

Code Example  16:7 shows you how to do this. 

TaskType CurrentTaskID; 

 

  /* Passes a TaskRefType for the return 

   * value of GetTaskID) */ 

  GetTaskID (&CurrentTaskID);  

 

  if (CurrentTaskID == Task1) {  

    /* Code for task 1 */ 

  } else { 

    if (CurrentTaskID == Task2) { 

      /* Code for task 2 */ 

    } 

    ... 

  } 

} 

Code Example  16:7  - Using GetTaskID() 
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AUTOSAR OS extends the OSEK scheme to Category 2 ISRs with the 
GetISRID() API call. 

In RTA-OSEK the presence of GetISRID() is configuration option. This 
means you can switch off the API to maintain OSEK OS compatibility or 

enable the API to ease your debugging as shown in Figure  16:5. 

 

Figure  16:5 - Enabling GetISRID() 

Unlike GetTaskID(), GetISRID() returns the ID of the ISR through the 
return value of the function rather than as an out parameter to the function 
call. If you call GetISRID() and a task is executing then the function 

returns INVALID_ISR. 

The following code shows how to use GetISRID() together with 

GetTaskID(). 

ISRType  CurrentISRID 

TaskType CurrentTaskID; 

 

  /* Is an ISR running? */ 

  CurrentISRID = GetISRIS(); 

  if ( CurrentISRID /= INVALID_ISR ) 

  { 

    if (CurrentISRID == ISR1) {  

      /* Work out which ISR */ 

    } 

 

  } else { 

    GetTaskID(&CurrentTaskID); 

    if ( CurrentTaskID == Task1 ) {  

      /* Work out which task */ 
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    } 

  } 

} 

16.5 Pre and Post Task Hooks 

The PreTask Hook is called by RTA-OSEK Component whenever a task moves 
into the running state.  This means that the PreTask Hook will also be called 
whenever a task is resumed after preemption. 

The PostTask Hook is called by RTA-OSEK Component whenever a task 
moves out of the running state. The PostTask Hook will be called when the 
task terminates and each time a task is preempted. 

Figure  16:6 shows where the PreTask and PostTask Hooks are called relative 
to task preemption. 

 

Figure  16:6 -The PreTaskHook() and PostTaskHook() Relative to Task Preemption 

Code Example  16:8 shows how the hooks should appear in your code. 

#ifdef OSEK_PRETASKHOOK 

 

OS_HOOK(void) PreTaskHook(void) { 

  /* PreTask hook code. */ 

} 

 

#endif 

 

#ifdef OSEK_POSTTASKHOOK 

 

OS_HOOK(void) PostTaskHook(void) { 

  /* PostTask hook code. */ 

} 

 

#endif 

Code Example  16:8 - The OSEK PreTaskHook and PostTaskHook 

The PreTask and PostTask Hooks are called on entry and exit of tasks and for 
each preemption/resumption. This means that it is possible to use these hooks 
to log an execution trace of your application. Since the same PreTask and 
PostTask Hooks must be used for all of the tasks in the application, it is 
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necessary to use the GetTaskID() API call to work out which task has been 
or will be running when the hook routine is entered.  

16.6 Stack Fault Hook 

The StackFaultHook() is called: 

1. whenever RTA-OSEK Component detects a problem with stack 
management when using extended tasks. 

2. whenever RTA-OSEK detetcts a stack overflow when Stack Monitoring 
is enabled and configured to call the StackFaultHook(). 

The first of these cases is discussed in this section. The second case is 

discussed in Section  16.8.2. 

Important: If you use any extended tasks, you must provide a handling 
function for StackFaultHook() in your application code 

Portability: The Stack Fault Hook is only used in RTA-OSEK; it is not part of 
the OSEK OS standard. 

StackFaultHook() is called from RTA-OSEK Component with 3 
parameters:  

� StackID. 
This will always be zero for targets with a single stack.  Otherwise it will 
be an integer indicating which stack the fault applies to.  The RTA-OSEK 
Binding Manual explains how stacks are numbered on your target. 

� StackError. 
This is an integer indicating the cause of the error. 
OS_EXTENDED_TASK_STARTING:  
The task could not have the starting stack pointer set because the 
application stack pointer was already too high or too low. 
OS_EXTENDED_TASK_RESUMING: 
The task could not have the resuming stack pointer set because the 
application stack pointer was already too high or too low. 
OS_EXTENDED_TASK_WAITING:   
The task could not be moved off the stack into the waiting state because 
it has used more stack than declared for it during configuration with the 
RTA-OSEK GUI. 

� Overflow. 

When the StackError is OS_EXTENDED_TASK_STARTING or 

OS_EXTENDED_TASK_RESUMING the Overflow is the number of 
bytes by which the current stack pointer exceeds the worst case 
dispatched point calculated by RTA-OSEK from the Stack Allocation 
figures you provided. You will need to determine in your application 
which task of lower priority than the extended task has the wrong stack 
allocation declared and then add Overflow bytes to the Stack Allocation 
for that task. 
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When the StackError is OS_EXTENDED_TASK_WAITING the 

Overflow is the number of bytes by which the stack use of the task 

currently executing WaitEvent() exceeds the configured 

WaitEvent() stack size. To fix this error you need to add Overflow 

bytes to the configured WaitEvent() stack allocation for the task. 

The Stack Fault Hook is shown in Code Example  16:9. 

OS_HOOK(void) StackFaultHook( 

  SmallType StackID,  

  SmallType StackError, 

  UIntType  Overflow) { 

 

  for (;;) { 

    /* Loop forever. */ 

  } 

} 

Code Example  16:9 - The Stack Fault Hook 

StackFaultHook() can only occur when the wrong stack usage 
information is entered into the RTA-OSEK GUI.  Check the stack declarations 
for each task that has lower priority than the currently running task. 

Important: You should not return from the StackFaultHook(). Entering 
the hook usually means that your stack is corrupt. If you do return from the 
hook then the behavior of your application is undefined. 

16.7 Measuring and Monitoring Execution Time 

Portabilty: All timing monitoring and measuring facilities provided by RTA-
OSEK are not part of the OSEK or AUTOSAR standards and are therefore not 
portable. 

RTA-OSEK Component provides facilities for measuring the execution times of 
user code at the kernel level. Normally you will use the Timing build to 
measure the execution time for your application. However, the timing 
measurement facilities are available in both the Timing build and Extended 
build of RTA-OSEK Component. If you use timing measurement facilities in 
Extended build, the times that you obtain will include the additional overhead 
required to perform more extensive error checking. 

The kernel and application code are identical for Timing build and Standard 
build, other than the code needed to support the timing measurement. 

16.7.1 Enabling Timing Measurement 

For timing measurement a ‘stopwatch’ source must be provided. This is 
usually a free running counter on your target hardware. RTA-OSEK 
Component accesses the stopwatch using the GetStopwatch() callback 

function.  This function is shown in Code Example  16:10. 
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OS_NONREENTRANT(StopwatchTickType) 

GetStopwatch(void) { 

  return CurrentValueOfFreeRunningCounter; 

} 

Code Example  16:10 - Accessing the Stopwatch 

If the stopwatch runs slower than the processor clock, subtraction of two 
values to provide an execution time has inherent uncertainty. As a result of 
this you must also provide a function that allows RTA-OSEK Component to 

compensate for this uncertainty. Code Example  16:11 shows how 

GetStopwatchUncertainty() is used. 

OS_NONREENTRANT(StopwatchTickType) 

GetStopwatchUncertainty(void){ 

  return Uncertainty; 

} 

Code Example  16:11 - Compensating for Uncertainty 

The returned uncertainty value is usually 0 if the stopwatch tick length is the 
same as a CPU instruction cycle and 1 otherwise. 

You may find that there are some systems where the uncertainty can be 
greater than 1. This is rare, but you can declare that the stopwatch runs at 
40MHz and the counter hardware only runs at 10MHz. You can then multiply 
the counter value by 4 in GetStopwatch() and report an uncertainty of 4. 

Important: Implementations of GetStopwatchUncertainty() and 

GetStopwatch() must be provided if you are using the Timing or Extended 
builds. If you do not provide these functions, your program will not link 
correctly. 

16.7.2 Measuring Execution Times 

When your application uses the Timing or Extended builds, RTA-OSEK 
Component measures the execution times of each task and Category 2 ISR in 
your application.   

RTA-OSEK Component maintains a log of the longest observed execution time 
over all executions for each task or Category 2 ISR. You can get the largest 
observed execution time for each task and ISR using the 
GetLargestExecutionTime() API call. 

16.7.3 Setting Timing Budgets 

The execution time budgets for each task and Category 2 ISR can be set in 
your application. These values are optional and do not have to be supplied.  

An execution budget has been specified in Figure  16:7. 
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Figure  16:7 - Specifying the Execution Time Budgets 

When using the Timing or Extended build, RTA-OSEK Component will check 
to see whether tasks or Category 2 ISRs consume more time than is specified 
in the budget. If the budget is exceeded, RTA-OSEK Component will call the 
OverrunHook() when the task terminates (or, in the case of an extended 

task, when it calls WaitEvent()). This allows you to log the budget overrun. 

Important: OverrunHook() is mandatory if you use the Timing or Extended 
builds of RTA-OSEK Component.   

The prototype for OverrunHook() is shown in Code Example  16:12. 

 

#ifdef OS_ET_MEASURE 

 

OS_HOOK(void) OverrunHook(void) { 

  /* Log budget overruns. */ 

} 

 

#endif 

 Code Example  16:12 - The OverrunHook Prototype 

You should be aware that, for extended tasks, the execution time is reset to 
zero at the start of the task and when resuming from WaitEvent().  
Normally the budget is used to check the execution time between consecutive 
WaitEvent() calls. 

You should also be aware that the execution time is only sampled by RTA-
OSEK Component when a task is preempted by another task or ISR.   
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In some unusual circumstances, it is possible for a budget overrun to be 
missed. This could happen when the interval between preemptions 
approaches the maximum interval that can be measured by a 
StopwatchTickType. The range of a StopwatchTickType is target 
dependent, but is normally 216 or 232. 

16.7.4 Obtaining Blocking Times 

You can prevent timing analysis from being too pessimistic. To do this you will 
need to provide accurate timings both for the time spent inside critical 
sections protected by resources and for the amount of time that interrupts are 
disabled. 

The timing API call GetStopwatch() or GetExecutionTime() can be 
used to get the current stopwatch value immediately before and immediately 
after these sections of code. Additional code must be provided to hold 
intermediate values and to maintain the ‘high watermark’ times. 

Any code that your application uses to obtain execution times should be 
conditionally compiled. RTA-OSEK provides the macro OS_ET_MEASURE, 

which allows you to do this. Code Example  16:13 shows an example of 
conditional compilation when getting the time that a resource is held. 

TASK(Task1) { 

  ... 

#if defined(OS_ET_MEASURE) 

 

  /* Get time for GetExecutionTime() call */ 

  /* itself. */ 

  start = GetExecutionTime(); 

  finish = GetExecutionTime(); 

  correction = finish – start –  

               GetStopwatchUncertainty(); 

 

  /* Measure resource lock time. */ 

  start = GetExecutionTime; 

 

#endif 

 

  GetResource(Resource1); 

  /* Critical section. */ 

  ReleaseResource(Resource1); 

 

#if defined(OS_ET_MEASURE) 

 

  finish = GetExecutionTime(); 

  /* Calculate amount of time used. */ 

  used = finish – start – correction +  

           GetStopwatchUncertainty(); 

#endif 

} 
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Code Example  16:13 - Use of Conditional Compilation 

16.7.5 Imprecise Computation 

Because the overheads imposed by the additional timing facilities are small, 
the Timing build can be used for production code. You can exploit this fact to 
perform imprecise computation. 

Imprecise computation is useful in applications that iteratively converge on a 
result. For example, you might use Newton-Raphson to converge on a value. 

If a task has not traveled down the worst-case path, then it will not have run 
in the worst-case execution time. If this is the case, any ‘spare’ CPU cycles 
available to the task can be used to refine a result. This technique is illustrated 

in Code Example  16:14.  

TASK(Task1) { 

  ... 

  while ((Budget – GetExecutionTime()) > LoopTime) 

  { 

    /* Perform iterative refinement of output. */ 

  } 

  ... 

} 

Code Example  16:14 - Imprecise Computation 

16.8 Measuring and Monitoring Stack Use 

16.8.1 Measurement 

Each task profile can include an optional stack space figure that is used by 
RTA-OSEK to calculate the worst-case stack usage of your entire application. 

The figures that you supply should represent the worst-case stack used by 
each task and should be the sum of the space required by the task, plus the 
space required for each function call made by the task on the worst-case path 
in the function call hierarchy. 

Normally you would obtain this information from your linker or from your 
debugging/emulation environment. This is the preferred method, however, if 
your toolchain does not provide this, you can use internal facilities provided by 
RTA-OSEK Component to measure these figures. 

The GetStackOffset() API call is used for stack measurement in RTA-

OSEK Component. On targets that have a single stack, GetStackOffset() 
returns a scalar value indicating the number of bytes of stack space 
consumed. If your target has multiple stacks, however, GetStackOffset() 
returns a data structure containing the number of bytes used on each stack.  
The RTA-OSEK Binding Manual for your target will tell you how to extract 
stack space information from this data structure. 
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Portability: Stack measurement is a feature of RTA-OSEK and is not portable 
to other implementations of the OSEK or AUTOSAR OS standards. 

The values returned are measured from the initial location of the stack 
pointer. So, when you make the call in a task or ISR, the value returned will 
include the stack consumed by C startup code, the main program (the idle 
task) and all pre-empted tasks or ISRs (including the space consumed by OS 
context idle task and main program).  The figures returned by 
GetStackOffset() do not include the stack space required for the call 

itself.  Figure  16:8 shows the size returned by GetStackOffset() when it 

is called from task TaskHIGH. 

 

Figure  16:8 - Stack Diagram 

To calculate the worst-case stack usage for each task or ISR, you will need to 
make a GetStackOffset() call at each leaf of your function call hierarchy.  
You will also have to calculate the maximum value returned by these calls.  
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If you have leaves that are library functions then you will need to make a 
GetStackOffset() call in the parent function and determine the worst-
case stack space of the library call. You can find the worst-case stack space 
requirements for the RTA-OSEK Component API in the RTA-OSEK Binding 
Manual for your target. 

If you make calls to other libraries at the leaves of your call hierarchy, you 
must contact the vendor to obtain the worst-case stack requirements for the 
library calls you make. 

Code Example  16:15 shows a task that makes a number of function calls.  It 

shows the placement of GetStackOffset() calls required to measure stack 
usage.   

StackOffsetRefType Measurement1; 

StackOffsetRefType Measurement2; 

StackOffsetRefType Measurement3; 

 

void f1(void) { 

  ... 

  GetStackOffset(&Measurement1); 

  ActivateTask(TaskB); 

  ... 

} 

void f2(void) { 

  ... 

  f3(); 

  GetStackOffset(&Measurement2); 

  memcpy(x,y); 

  ... 

} 

void f3(void) { 

  ... 

  GetStackOffset(&Measurement3); 

  ... 

} 

TASK(Task3) { 

  f1(); 

  f2(); 

  TerminateTask(); 

} 

Code Example  16:15 - Measuring Stack Usage 

The worst-case stack usage for Code Example  16:15 is the maximum value of: 

Measurement1 

+ Stack space requirements for ActivateTask() call  
– Stack offset for pre-empted task  
– Stack space for OS context 

Measurement2 

+ Stack space requirements for C library memcpy call 
– Stack offset for pre-empted task  
– Stack space for OS context 
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Measurement3 
– Stack offset for pre-empted task  
– Stack space for OS context 

The easiest way to measure the stack space required per task (without having 
to worry about the size of the stack at the point of pre-emption) is to run 
each task in isolation with interrupts disabled. 

Normally you would make a GetStackOffset() call immediately after 

StartOS() to baseline the stack pointer.  You can then use this in your 
calculation. 

This method, however, will only work correctly if StartOS() returns.  If you 
have autostarted tasks that never return, you will never return from 
StartOS() and the baseline value will never be set. 

If this happens, you must baseline your stack in some other way.  You could 
do this, for example by recording the value of the stack pointer prior to 
making the StartOS() call. 

16.8.2 Monitoring 

AUTOSAR OS allows you to monitor the stack for overruns. The feature is 
available for all RTA-OSEK build levels.  

To use stack monitoring you need to specify a stack allocation for every task in 
your application. RTA-OSEK uses this information to calculate the worst case 
stack usage at which each task in your system will start. 

When stack monitoring is enabled, RTA-OSEK checks whether the current 
stack pointer is higher than the pre-calculated worst case stack value.  

Important: Enabling stack monitoring prevents you from performing 
schedulability analysis (a system which contains stack overruns cannot be 
correct in the time domain). You should ensure that your application runs 
correctly, using stack monitoring as a debugging aid, before performing 
schedulability analysis.  

You can choose between two reactions when Stack Monitoring is enabled: 

� Call ShutdownOS() 
This the behavior specified by AUTOSAR OS. When the stack fault occurs, 
RTA-OSEK will automatically call ShutdownOS(). If you have configured 

a ShutdownHook() then this will be called as normal. 

� Call StackFaultHook() 

Calling StackFaultHook() is RTA-OSEK specific. This allows you to 

work out from the parameters passed to the StackFaultHook() by 
how much your declared task/ISR stack usage is in error 

Details about the StackFaultHook() are given in Section  16.6.  

Important: The only StackError code that can occur as a result of the 
stack monitoring functionality detecting an error is when a task starts. In RTA-
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OSEK this condition is represented by OS_EXTENDED_TASK_STARTING. This 
code will be returned for both basic and extended tasks when the current 
stack pointer is higher than the worst case dispatch point calculated from the 
Stack Allocation figures you provided to RTA-OSEK.  

When using stack monitoring, the task that has consumed too much stack 
space will be that immediately below the currently running task on the stack. 
You can use the post-task hook and GetTaskID() to identify the task in 
error and add Overflow bytes to the configured stack allocation to correct 
your problem. 

Stack monitoring impacts both the memory footprint and the run-time 
performance of RTA-OSEK and is therefore disabled by default. Stack 

monitoring is enabled in Application -> OS Configuration. Figure  16:9 shows 
how to select your chosen option. 

 

Figure  16:9 - Enabling Stack Monitoring 

When you configure Stack Monitoring you need to define a stack allocation 
for each task and Category 2 ISR. You do not need to configure the stack 
sizes for RTA-OSEK context – this is built into the tools already. The only 
figures you need to provide are the worst case usages for the tasks and ISRs 
themselves. 

RTA-OSEK provides 3 ways to define the stack allocation: 

1. Task/ISR defaults 

2. Per task/ISR configuration 

3. Execution profile information 

These are the same schemes that you can use when configuring the stack 
usage for extended tasks and the same precedence rules apply as shown in 

Figure  16:10. 
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Figure  16:10 - Stack Allocation Override Precedence 

Setting Defaults 

Default settings set the stack allocation for all tasks, all Category 2 ISRs and all 

Category 1 ISRs. You can see how to do this in Figure  16:11. If no other stack 
allocation is specified elsewhere then RTA-OSEK uses the default value.  

 

Figure  16:11 - Setting default stack allocation 
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Configuring Stack Allocation per Task/ISR 

Each task and ISR can specify its own stack allocation as part of the task/ISR 

configuration as shown in Figure  16:12 and Figure  16:13 respectively. 
Whenever you specify a stack allocation value for a task/ISR the value 
configured overrides any default value that you might have set. 

 

Figure  16:12 - Setting Stack Allocation for Tasks 

 

Figure  16:13 - Setting Stack Allocation for Category 2 ISRs 

If a stack allocation is specified with this method then it will override 
automatic calculation from the execution profile. 

Automatically calculate Stack Allocation from the Execution 

The third option for specify stack allocation is to use the execution profile 
information. Execution profile information overrides and default stack 
allocation provided. 

Users who build a timing model and use the schedulability analysis features of 
the RTA-OSEK Planner can create a more sophisticated model of stack usage 
for analysis.  

The execution profile for each task contains information about the worst case 
execution time and worst case stack usage. Your timing model can include 
multiple profiles for tasks and ISRs to reflect differing execution times and/or 
stack space requirements when the task/ISRs are invoked at different times. 
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RTA-OSEK can use the execution profile information to calculate the required 
stack allocation. 

16.9 Catching Errors at Compile Time 

So far you have learnt about error checking at run-time. It is better, however, 
to try and remove errors at compile time. RTA-OSEK can help with this if you 
use the static interface wherever possible. 

When you use the static interface you can only use API calls and objects that 
are valid for a specific task or ISR. Consequently you can only make API calls 
that RTA-OSEK has already checked for validity during the build process.   

Any attempt to use invalid parameters will be detected by the compiler, which 
can potentially save you a significant amount of debugging time. 

16.10 Summary 

� OSEK provides facilities for debugging through its hook mechanisms. 

� The Startup, Shutdown, PreTask and PostTask Hooks allow you to profile 
your application at run-time. 

� The Error Hook provides a mechanism for trapping exceptional conditions 
at run-time.  It can provide a resumption model of exception handling. 

� Further information on the source of an error is available through macros 
accessible in the Error Hook. 

� RTA-OSEK supports AUTOSAR OS Stack monitoring plus additional 
special features for stack measurement. 

� RTA-OSEK provides additional support for execution time measurement 
and runtime monitoring. The Timing and Extended builds of RTA-OSEK 
Component allow you to measure the execution times of user provided 
code. 
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17 Building Timing Models 

You have seen how systems receive stimuli and generate responses.  You have 
also seen how stimulus/response models are used in RTA-OSEK to capture a 
specification of system behavior and how you can use that specification in the 
design process. 

If you are building a real-time system, there is an extra dimension to this 
model. A specification of the required real-time performance is needed. 

The meaning of the term ‘real-time’ is often misunderstood.  People tend to 
think that real-time means ‘real-fast’. Real-time systems are systems where 
every response must always be generated on time whenever the associated 
stimulus arrives. 

You might need to generate a response in minutes, hours or even years after 
the stimulus arrives.  So, no matter how long it takes, if the response must be 
generated within a specific time frame, then the system is real-time. 

The latest time by which a response must be generated is called its deadline. 

Figure  17:1 illustrates the relationship between stimuli, responses, deadlines 
and periods. 

Time

Response A

needed

Response B

needed

Stimulus SStimulus S

D
A
 = Deadline for Response A

D
B
 = Deadline for Response B

T
S
 = Period of Stimulus S

 

Figure  17:1 - A Stimulus/Response Model 
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A deadline will be met if the response implementation generates the response 
before the deadline. The time that it takes for the response to be made is 
called the response time. If the response time is less than the deadline then 
the deadline is met. 

Figure  17:2 shows a task being used as a response implementation. Here the 
task generates the response at the end of the execution. 

 

Figure  17:2 - A Task used as a Response Implementation 

The time taken to generate the response is called the response time. If the 
response is generated before the deadline, then the deadline is met.  

The response need not be generated at the end of the task and more than 

one response can be generated from a response implementation.  Figure  17:3 
shows a task response being generated before the end of the task. 

 

Figure  17:3 - Generating a Response before the Deadline Expires 

In a real-time system, you need to show that every response occurs before its 
associated deadline.  The RTA-OSEK GUI uses RTA-OSEK Planner to calculate 
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the worst-case response time for each response in your application.  It then 
checks that all the responses meet their deadlines. 

For each task, the worst-case response time for a response implementation 
consists of: 

� Worst-case execution time. 
This is the longest time between the task starting and the task 
terminating, assuming that there are no preemptions. 

� Interference. 
This is the maximum time that the task is preempted by other higher 
priority tasks and ISRs in the system. 

� Blocking. 
This is the maximum time that the task is prevented from running by 
lower priority tasks. 

RTA-OSEK Planner calculates the interference suffered by each task or ISR.   
It calculates this using the worst-case execution time for the response 
implementation and the times that resources are used and interrupts are 
disabled (the blocking times). 

So, RTA-OSEK Planner can calculate the worst-case response time with the 
worst-case execution time and blocking times for the response. 

To analyze a real-time system you must provide: 

� A description of the software architecture in terms of the tasks, 
interrupts, tasksets, resources, counters, alarms and schedules. 

� A stimulus/response model defining the timing relationship between 
executable objects.  This defines the periods and deadlines for your 
application. 

� The execution times for each task and ISR. 

� Target specific timing information. 

You learnt about describing the software architecture in previous chapters.  
You will now learn about defining the stimulus/response model, execution 
times and target specific timing information. 

When you provide data to model the system for analysis, there are two 
important principles that need to be followed: 

� Accuracy. 
It is important to provide data that is as accurate as possible. 

� Pessimism. 
If you cannot guarantee that your data is accurate, you must supply data 
that is pessimistic.  You can make your data pessimistic by supplying 
execution times that are longer than the actual execution times, for 
example.  You could also declare delays between stimuli as shorter than 
the actual delays. 

Important: When you provide data for analysis, be careful not to 
underestimate execution times and to overestimate minimum periods.   
If you do this then RTA-OSEK could say that your system is schedulable when 
it is, in fact, unschedulable. 
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17.1 Configuring Applications for Analysis 

If you want to build an application for timing analysis you will need to follow 
these rules: 

� Upward activation of tasks is not allowed. A task can only activate tasks 
of lower priority. 

� Tasks must be assigned unique priorities.  

� The Schedule() API call cannot be used to force rescheduling to take 
place. 

� You cannot use AUTOSAR Schedule Tables.  

The RTA-OSEK GUI allows you to enforce these rules, using the Application 

Optimizations. Figure  17:4 shows where these settings can be found. 

 

Figure  17:4 - Configuring the Application Optimization Settings 

When you try to analyze a system, the RTA-OSEK Planner will tell you if an 
application is not suitable for analysis. 

17.2 Defining Stimulus/Response Timing Relationships 

You have already seen how you can create stimulus/response models to build 
applications using the RTA-OSEK GUI. You’ll now see some of this information 
again, but this time you’ll also see how you can add extra information for 
timing analysis. 

17.2.1 Stimulus Arrival Types and Patterns Revisited 

Remember that each stimulus is associated with an arrival type. The arrival 
type specifies the class of the stimulus. 
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You saw that there are 3 arrival types: 

� Bursty. 

� Periodic. 

� Planned. 

Bursty stimuli are used to model simple cases where a stimulus is captured by 
an interrupt directly. Periodic and planned stimuli are used to model more 
complex arrivals, where the stimulus is modeled by an alarm attached to a 
counter or by arrivalpoints on a schedule. 

Each type of arrival has a distinct arrival pattern. Let’s look at each of these 
arrival patterns in more detail. 

17.2.2 Bursty Arrival Patterns 

Bursty arrival patterns allow you to define a set of rules called bursting 
clauses. These clauses describe the arrival pattern of the stimulus. 

A simple bursty arrival pattern could specify the arrival of a periodic timer 

interrupt. In Figure  17:5 you can see that a bursty arrival for a 10ms periodic 
interrupt has been defined.  In this case, a single bursting clause is used. 

 

 Figure  17:5 - Single Bursting Clauses 

Figure  17:6 shows a more complex example of a bursty arrival pattern using 
multiple arrival rules. 
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Figure  17:6 - Multiple Bursting Clauses 

In Figure  17:6, the bursting clause of the transaction specifies the following 
rules.  The stimulus will occur: 

Rule 1. No more than once in any one millisecond. 

Rule 2. No more than twice in any five milliseconds. 

Rule 3. No more than three times in any twenty milliseconds. 

You can combine these rules to form a worst-case arrival pattern as follows: 

� 0ms, 1ms, 2ms, 3ms ... (Rule 1 allows the minimum inter-arrival time of 
1ms). 

0 1 2 3 4  5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 

Figure  17:7 - Rule 1 Arrival Pattern 

� 0ms, 1ms, 5ms, 6ms, 10ms, 11ms ... (Rule 2 prevents more than 2 
arrivals in a period of 5ms, so bursts of 2 are separated by 5ms periods). 

0 1      5    6                  10   11     15  16                  20   21                25

 

Figure  17:8 - Rule 2 Arrival Pattern 

� 0ms, 1ms, 5ms, 20ms, 21ms, 25ms … (Rule 3 prevents more than 3 
arrivals within a 20 millisecond interval). 

0 1                     5                                                                                 20  21                  25  

Figure  17:9 - Rule 3 Arrival Pattern 

If more than one arrival rule is given, another rule covers the values that are 
allowed. If values are arranged in increasing order, each successive pair of 
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values (arrivals, interval) must be greater than the previous pair. The rate of 
arrivals (that is, arrivals/interval) must strictly decrease.  

Following on from the previous example you can see that: 

• 1 time < 2 times < 3 times 

• 1ms < 5ms < 20ms 

• 1/ms (1 time in 1ms) > 0.4/ms (2 times in 5ms) > 0.15/ms (3 times in 
20ms) 

Generally, pessimism in analysis will become lower the more bursting clauses 
that are given. However, if the bursting interval is greater than the longest 
busy period for the system, the arrival rule doesn’t give you any benefit. So, in 
this example, if you know that the system will never run for longer than 20ms 
before the idle task runs, then Rule 3 will not improve the accuracy of the 
analysis. 

The idle task is the lowest priority task in the system and will only run when all 
other tasks and ISRs are in the suspended or waiting state. 

The number of arrivals allowed during an operating cycle of a system can be 
limited to a finite number. The operating cycle is the time between system 
start and the point at which it is reset. In this case the ‘forever’ interval can be 
used to limit the number of arrivals. 

A bursting clause of ‘1 times in forever’ means that the arrival of the event 
can only occur once during the operating cycle of the system. This could be 
used to represent the triggering of a one-off safety device, such as an airbag 

in a vehicle. Have a look at Figure  17:10 to see how the clause has been 
specified. 

 

 

Figure  17:10 - Specifying a ‘One Time in Forever’ Bursting 

17.2.3 Periodic Arrival Patterns 

Periodic arrival patterns specify how often a stimulus arrives. This information 
is required for generating run-time information, such as alarm or schedule 
periods, and is also used to provide the implicit deadlines for analysis.   
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17.2.4 Planned Arrival Patterns 

Planned arrival patterns are not specified at the stimulus/response modeling 
stage. The arrivals are planned at design time during the construction of the 
plan.  RTA-OSEK Planner uses the timings on the plan.  It then calculates the 
relative periods of stimuli and implicit deadlines of associated responses. 

17.2.5 Setting Deadlines for Responses 

Responses can have implicit deadlines. A 20ms periodic stimulus, for instance, 
may have to generate its response once in 20ms. 

Responses can also have explicit deadlines. For example a 20ms stimulus 
might have to generate its response no later then 10ms after arrival. 

Figure  17:11 shows an example of an explicit response deadline. 

Responder Profile
[Task Profile]

Time

Response R1

required

Stimulus R1

Implicit Deadline

Explicit Deadline

Stimulus R1

 

Figure  17:11 - Explicit Response Deadline 

All responses have an implicit deadline, depending on whether the response is 
generated by a task or by an ISR and the properties of that executable object.   

Tasks must complete before their next activation or, in the case of tasks with 
queued activation, before the queue is filled. ISRs must also complete before 
they are next triggered unless you have specified that the interrupts are 
buffered. 

Response deadlines can be specified to provide additional timing performance 
constraints. The deadline is the elapsed time after the occurrence of the 

stimulus by which the response must be generated. Figure  17:12 shows you 
how explicit deadlines are defined using the RTA-OSEK GUI. 
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Figure  17:12 - Specifying a Response Deadline 

17.2.6 Specifying Response Generation Time 

The implementation of a response is performed by a task or ISR. The RTA-
OSEK GUI assumes, by default, that the response will have been generated 
when the task or ISR terminates. 

This can result, however, in pessimistic schedulability analysis. Let’s look at an 
example where a stimulus occurs every 10ms and the associated response 
must be generated 1ms later. 

If the response is generated by a task that executes for 2ms, then this system 
will not be schedulable. It isn’t possible for the task to complete before the 
deadline. However, if you know that the response is generated after the task 
has been running for 0.5ms, the response generation time can be set to 
0.5ms after the task start. The deadline can now be met. 

So, in this example, you can see that there is an implicit and an explicit 
deadline on the task execution. 

There is a 1ms explicit deadline from the arrival of the stimulus and a 10ms 
implicit deadline from the task period for the task to complete execution. 

For each response implementation you can specify how much execution time 

must elapse before the response is generated. Have a look at Figure  17:13. 
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Figure  17:13 - Specifying Execution Time to Elapse before Response Generation 

17.2.7 Modeling Jitter 

When an embedded real-time system is being analyzed it is important that 
timing figures relate to the stimuli and responses in the embedding system. 
RTA-OSEK Planner allows you to model the differences in time between the 
embedding system receiving stimuli and generating responses and the 
embedded system processing the stimuli and generating responses. 

Sometimes there is a delay between the actual occurrence of a stimulus in the 
real-world and the notional release of the primary profile with the stimulus. 
There are many possible causes for this delay.  It can be caused by, for 
example, slow hardware (such as some A/D converters) performing the 
detection.  

The recognition time for stimuli is bounded by a minimum time representing 
the earliest release and maximum time representing the latest release. You 

can see an illustration of this in Figure  17:14. 
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Figure  17:14 - Recognition Time 

The difference between maximum and minimum recognition time is called the 
input jitter. The input jitter can be specified for each primary profile in the 
application.  

For example, all real-world stimuli handled by a primary profile may be subject 
to jitter of 50ns. This is the difference between the minimum response delay 
of 170ns and the maximum response delay of 220ns (220ns - 170ns = 50ns). 

In a similar way, output jitter can be specified for responses. It can be used, 
for instance, to model situations that require an actuator to be driven when 
you must take account of hysteresis in the physical device. 

Each response can be associated with a minimum and a maximum response 
delay that allows the latest time to be specified before a deadline that the 
response must be generated. 
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A response delay is illustrated in 

Figure  17:15. 

Figure  17:15 - Response Delay 

In Figure  17:16, the response EnergizeCoil is specified with a deadline of 
70ms, a minimum response delay of 20ms and a maximum response delay of 
50ms. 

 

Figure  17:16 - Specifying a Deadline and a Response Delay 

Important: A default value of 0 is assumed if response delays or minimum 
and maximum recognition times are not defined. 
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17.3 Capturing Execution Information 

If you want to perform timing analysis on your application, the execution time 
behavior of each task and ISR in the system must be known. 

You can determine this statically by counting CPU cycles or by using static 
timing analysis tools. Another way to do this is to use the Timing build of RTA-
OSEK Component to measure execution times. You will find out more about 
the Timing build later in this guide. 

If you supply the worst-case stack usage for each task and ISR, the RTA-OSEK 
GUI can provide facilities for calculating the worst-case stack usage. The 
worst-case stack usage information for each task and ISR is often available 
from your compiler. 

The execution characteristics of tasks and ISRs are declared in execution 

profiles. For analysis you must define at least one execution profile for each 
task and ISR. You can also use multiple profiles, which are explained in 

Section  17.3.5. 

The execution profile declares the worst-case execution time and worst-case 
stack usage of the corresponding task and ISR. Worst-case execution times are 
usually determined by the amount of code executed, so they are measured in 
processor cycles. This means that if you change the CPU clock rate, the 
execution time for your tasks and ISRs will scale automatically. 

Tasks that perform imprecise computation are an exception to this rule. This 
type of task executes until it observes a value in a particular time. You should, 
therefore, express execution time using ‘real-world’ time units. Worst-case 
stack usage figures are specified in bytes. 

17.3.1 Primary and Activated Profiles 

Each task and ISR in your application will be associated with at least one 
profile. A profile is used to: 

� Capture execution (timing and stack usage) information about the task  
or ISR. 

� Indicate whether the task or ISR is used in the capture of a stimulus or 
the generation of a response. If it can be used to capture a stimulus 
directly, to drive a counter or to drive a schedule, then it is a primary 
profile otherwise it is an activated profile.  

RTA-OSEK assumes, by default, that all ISRs are primary profiles and that all 
tasks are activated profiles. 

You will only need to change this setting in a few cases. When you need to 
drive a counter or schedule using a task rather than an ISR, for instance, the 
task will need to be a primary profile. 

For tasks or ISRs with a single profile, the profile is accessed using the task or 
ISR name.  For multiple profiles (which you can find out more about in Section 

 17.3.5) they are accessed using dot notation. For example, if Task1 has 

profiles Profile1 and Profile2, these are accessed using the names 

Task1.Profile1 and Task1.Profile2 respectively. 
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There are restrictions on how profiles can be used by your application: 

� Single primary profile. 
Can be associated with exactly one bursty stimulus, exactly one advanced 
schedule or one or more counters and ticked schedules. For the first two 
of these options you cannot expect that two bursts or advanced 
activations will line up in time. For the last option, however, you know 
that the profile is being ticked at a constant rate. This means that it is 
feasible to tick more than one counter/schedule (even if the tick rates are 
not identical). 

� Multiple primary profiles 
Can be associated with different stimuli as long as they are buffered by 
and execution profile. 

� Single activated profile. 
Can be associated with exactly one primary profile. 

� Multiple activated profile. 
Can either be associated with exactly one counter/schedule or each 
profile must be driven by a different primary profile. 

17.3.2 Tasks and ISRs 

The worst-case execution time for tasks and ISRs is measured from the start of 
the first machine code instruction of the task entry function, through the 
longest path in time and then to the end of the ‘return’ instruction. It excludes 
the effects of preemption or interrupts. 

The worst-case execution times for Category 1 ISRs must make sure that the 
effects of any cache or instruction pipelines are at their most pessimistic. 

The worst-case stack usage for tasks and Category 2 ISRs is taken from the 
entry function. It must also include the worst-case nested function call 
sequence, but the stack cost of entry to the task or Category 2 ISR does not 
need to be accounted for.  This is added automatically during analysis. 

Worst-case stack usage for Category 1 interrupt handlers must include the 
processor interrupt stack frame as well as the stack consumed by the handler. 

Figure  17:17 shows how the worst-case execution time and stack usage are 
entered into the RTA-OSEK GUI. 
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Figure  17:17 - Specifying the Worst-Case Values 

In this example, the task uses 5000 processor cycles and consumes 15 bytes of 
stack space in the worst-case. 

17.3.3 Modeling the Idle Task 

If the idle task makes any RTA-OSEK Component API calls other than the 
initial call to StartOS(OSDEFAULTAPPMODE), it can introduce blocking.  
This must be considered in the analysis. 

A profile for the idle task is specified in the same way as for any other task.  If 
the idle task has no deadlines to meet, however, the exact value of the 
execution time specified is irrelevant. 

You should be aware that the worst-case stack usage for the idle task is 
measured from the initial stack pointer value, normally set in the C run-time 
startup code. 

17.3.4 Resource and Interrupt Locks 

Tasks and ISRs that get resources or disable interrupts can block the execution 
of higher priority tasks and ISRs. Let’s look at an example of a system that 
contains two tasks. The tasks are called Task1 and Task2 and they share a 

resource.  Task2 has a higher priority than Task1. 

If Task2 becomes ready when Task1 owns the resource, it is blocked until 

Task1 releases the resource.  Have a look at the illustration in Figure  17:18. 
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Figure  17:18 - Task Blocking and Interference 

To determine whether your application is schedulable, RTA-OSEK Planner 
must know how long resources are held and how long interrupts are disabled 
for. 

During analysis, it is assumed that resources are held at a time that gives the 
worst-case response time. This means that RTA-OSEK Planner does not need 
to know the time when the resource is held relative to the start of the task or 
ISR that gets the resource. 

Locking times are specified in the RTA-OSEK GUI using the resource use and 
interrupt lock sections of the execution profile.  Locking times, like execution 
times, are usually specified in processor cycles. 

You can reduce the pessimism in the analysis by supplying accurate timing 
values. If you do not specify resource and interrupts locking times, then RTA-
OSEK Planner assumes that the resource is held or that the interrupt is 
disabled for the entire execution time of the task or ISR. 

Figure  17:19 shows how resource use times are specified in the RTA-OSEK 
GUI.  Only the longest single execution time needs to be specified. 
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Figure  17:19 - Specifying Resource Use Times 

Figure  17:20 shows how interrupt lock times are specified in the RTA-OSEK 
GUI. Again, for interrupt locking times, only the longest single execution time 
for the lock needs to be specified. 
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Figure  17:20 - Specifying Interrupt Lock Times 

Code Example  17:1 shows that Resource1 is held on two separate 
occasions, for 100 cycles and then 300 cycles. Only the longest time needs to 
be specified, but you can specify both if you want to. 

TASK(Task1) { 

  ... 

  GetResource(Resource1); 

  /* Held for 100 processor cycles. */ 

  ReleaseResource(Resource1); 

  ... 

  GetResource(Resource1); 

  /* Held for 300 processor cycles. */ 

  ReleaseResource(Resource1); 

  TerminateTask(); 

} 

Code Example  17:1 - Occupying Resources 

It is better if each separate period is specified, even though you only need to 
specify the longest single execution time. If you specify each period separately 
it will improve the clarity and will help with the maintenance of the 
configuration file. No single locking time can exceed the task’s execution time. 

You do not need to distinguish whether or not resource requests are nested. 
RTA-OSEK Planner takes account of this automatically during analysis. 

For each resource or interrupt that is held, you can specify additional stack 
usage information. It is better if you enter the stack usage figures for each 
resource or interrupt. RTA-OSEK Planner cannot take into account any 
possible stack overlays if you only specify a single stack usage figure. 

If RTA-OSEK Planner knows about stack overlays it can reduce stack usage 
when resources are held or interrupts are disabled. 
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Figure  17:21 shows the stack space required for Task1 during its execution. 

Figure  17:21 - Stack Space Required for Task1 

To get a more accurate figure you will need to make a number of 
measurements. These measurements are required to determine the worst-case 
stack usage. Knowledge of the application functions will be needed to 
determine at which point in the task the most stack is consumed. 

The measurements that you will need are: 

• The worst-case stack usage from the first machine-code instruction in 
the task or ISR entry to any point, excluding places where code 
executes with resources held or where interrupts are disabled or 
suspended.  
This figure is the stack usage for the task or ISR. 
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• The worst-case stack usage from where a resource is held (for each  
held resource).  
This figure is the stack usage for the resource. 

• The worst-case stack usage from where interrupts are suspended or 
disabled (for each interrupt level).  
This figure gives the stack use for each interrupt lock. 

17.3.5 Specifying Multiple Execution Profiles 

Tasks or ISRs can occur in several different execution contexts. If this happens, 
the pessimism in analysis can be reduced if multiple execution profiles are 
declared. 

Multiple profiles are useful when tasks or ISRs have very short execution times 
when they are called in some contexts, but much longer execution times in 
others. 

Code Example  17:2 shows how multiple execution profiles are specified. 

if (Condition) { 

 

  /* Short computation. */ 

 

} else { 

 

  /* Long computation. */ 

 

} 

Code Example  17:2 - Specifying Multiple Execution Profiles 

Multiple execution profiles should be used where: 

� An ISR services several different sources of interrupt and its execution 
behavior is different for each source. 

� A task implements round-robin scheduling of its activities. For example, 
the first time it is activated, it performs A; the second time it performs B 
and so on. 

� A task or ISR has different behavior depending on the current application 
mode. 

When constructing multiple profiles for tasks or ISRs that can get resources or 
disable interrupts, you must consider whether or not each profile gets each 
specific resource. 

In Code Example  17:3, Task1 gets resource Resource1 in one profile and 
disables interrupts in another profile. 

TASK(Task1) { 

  if (Condition) { 

    ... 

    GetResource_Resource1(); 

    ... 

    ReleaseResource_Resource1(); 

    ... 
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  } else { 

    ... 

    DisableAllInterrupts(); 

    ... 

    EnableAllInterrupts(); 

  } 

  TerminateTask(); 

} 

Code Example  17:3 - Using Multiple Profiles to Get Resources and Disable Interrupts 

You only need to specify execution times and stack usage for the profiles 
where a resource is used or where an interrupt is disabled. You can enter zero 
execution times for the profiles that do not lock the resource or disable the 
interrupt. 

If any information is missing you may receive inaccurate results from the 
analysis of your application. 

Important: Make sure that where multiple profiles are defined, they are used 
in the model or are auto-activated (either directly or by an autostarted alarm). 
If a profile is omitted it will not be included in the analysis. 

17.3.6 Looping and Retriggering Interrupt Behavior 

So far we have assumed that the deadlines for the responses to stimuli are 
less than or equal to the arrival period of the stimuli. In these systems, each 
task and ISR must complete before it is next invoked. Sometimes, though, the 
stimuli may arrive faster than they can be handled by the associated task or 
ISR. You will see this if, for instance, you have to deal with the arrival of 
bursting messages over a network. In these cases the deadline for responding 
to the stimulus is longer than its period. 

RTA-OSEK’s Planner automatically handles the behavior of tasks that can be 
queued (BCC2 tasks). These tasks “re-trigger” i.e. the first instance terminates 
before the next instance starts. 

For ISRs you will need to provide some means of buffering the interrupts until 
they can be processed. This can be provided by some external interrupt 
control logic or, alternatively, your target microprocessor might support this.  
CAN controllers, for example, usually provide some hardware buffering for 
messages arriving over the network. 

There are two ways that ISRs can deal with buffered interrupts: 

• Looping. 
The outermost level of the ISR consists of a loop that checks whether 
unprocessed interrupts remain and, if so, repeats the processing. 

• Retriggering. 
The final instruction(s) of the ISR checks whether unprocessed events 
remain and, if so, causes the interrupt to trigger the handler again. 
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Portability: The interrupt mechanism on your target platform affects the way 
that retriggering is achieved. Usually you must reassert the interrupt. 

If you want RTA-OSEK Planner to take account of buffered behavior when 
analysis is performed, you must specify: 

• That buffering is used. 

• Whether the buffer is processed by retriggering the ISR or looping 
within it. 

• The size of the buffer. 

Figure  17:22 shows how the ISR buffering behavior is entered in the RTA-
OSEK GUI. 

 

Figure  17:22 - Specifying Buffering Behavior 

When buffered interrupts are handled by an ISR, you have seen that you can 
choose between retriggering and looping behavior.  Normally retriggering 
behavior is recommended.  There are some factors that will influence your 
choice of behavior. 

Firstly, some hardware will not support retriggering behavior for interrupts.  If 
this happens, a looping ISR must be used. 

Secondly, a retriggering handler may be better if the interrupt that invokes the 
handler is at the same level as another interrupt in the system and if that 
other interrupt has a higher arbitration precedence.  Higher arbitration 
precedence means that it will be handled first if both are pending.  This may 
reduce the amount of blocking suffered by the other interrupt, which is 
important if your target only supports a single interrupt level. 

Thirdly, a retriggering ISR could have a smaller execution time than a looping 
executable object when a single interrupt is processed.  It doesn’t matter that 
a looping handler may be ‘more efficient’ when several events are handled in 
one invocation, because the analysis must assume worst-case behavior. This is 
where interrupts occur in a pattern that results in each one being handled by 
a separate invocation of the ISR. 
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Code Example  17:4 shows another example of multiple profiles. This ISR 

handles three interrupt sources detected by functions Source1(), 

Source2() and Source3(). 

ISR(isr1) { 

 

  if (Source1()) { 

 

    /* Handle Source1. */ 

 

  } else if (Source2()) { 

 

    /* Handle Source2. */ 

 

  } else if (Source3()) { 

 

    /* Handle Source3. */ 

 

  } 

} 

Code Example  17:4 - Using Multiple Profiles 

Three separate execution profiles are defined for the ISR in Code Example 

 17:4.  They can be characterized by the results of the tests: 

� Source1() returns true. 
The profile for this situation will include the worst-case execution time of 
the successful check of Source1 handler code. 

� Source1() returns FALSE and Source2() returns TRUE. 
The execution time for this profile will include the worst-case execution 
time required for the unsuccessful check of Source1, the successful 

check of Source2 and the Source2 handler code. 

� Source1() and Source2() return FALSE and Source3() returns 

TRUE.   
The execution time of this profile is calculated in a similar way to the two 
profiles above. 

Each of these profiles represents a complete path through the ISR (from the 
first instruction until the end of the final return instruction).  Note that no 
profile exists for the case where all checks fail.  This is because there is no way 
that the interrupt could be entered without one of the above conditions being 
true. 

In some situations you will need a single handler that can handle multiple 
interrupt sources and each of these profiles must react to a different stimulus.  
In these cases, you should specify that the profiles are buffered by execution 

profile. This is shown in Figure  17:23. 
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Figure  17:23 - Buffering by Execution Profile 

Code Example  17:4 should be modified to look like Code Example  17:5. 

ISR(LoopingHandler) {  

  do { 

 

    if (Source1()) { 

      /* Handle Source1. */ 

    } else if (Source2()) { 

      /* Handle Source2. */ 

    } else if (Source3())  { 

      /* Handle Source3. */ 

    } 

  } while (interrupt_pending()); 

} 

Code Example  17:5 - Buffering by Execution Profile 

Tasks can also be buffered, but this is handled by allowing the task to have 
queued activation. In this case you don’t need to provide any additional 
modeling information. RTA-OSEK Planner already knows the size of the buffer 
from configuration of RTA-OSEK Component. The task will be retriggered 
until the queue is empty. 

17.4 Target Specific Timing Information 

The timing information that you have looked at, so far, has been for your 
application. To provide an accurate analysis, however, RTA-OSEK Planner 
needs to know information about the timing and operation of your target 
hardware. 

• System timings. 
These are the execution times of aspects of RTA-OSEK Component, 
such as task entry and exit times. 
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• Interrupt recognition time. 
This is the maximum delay caused by the hardware before the first 
instruction of an interrupt can be acted upon. 

• Arbitration ordering. 
This is the order in which interrupts of the same priority are processed. 

Interrupt recognition time and arbitration ordering are target specific. The 
system timings depend on how your application makes use of certain target 
specific features. 

Normally you will require some knowledge of how the application will be 
implemented on the target. This information is not always available during the 
early stages of design. When this happens, reasonable assumptions will have 
to be made and ‘real’ data will need to be substituted whenever it becomes 
available. 

17.4.1 System Timings 

In order to provide accurate timing analysis, RTA-OSEK must be told about 
how to account for operating system overheads. System timing data describes 
how many processor cycles particular operating systems take. 

Because of the wide variety of possible target platforms and implementations, 
the best approach to measuring system timing information is to work in 
conjunction with ETAS’ Engineering Services – consult us for details of how 
you can determine this information on your intended hardware platform. 

Important: System timing information is specific to a particular hardware 
configuration. If you change your hardware or locate the application in a 
different memory area (by moving from on-chip to off-chip ROM, for instance) 
the system timings will need to be measured again. The values may also differ 
if you change the characteristics of an application by, for example, adding an 
extended task or an alarm. 

System timing values must be generated to perform accurate analysis. If you 
cannot generate these values you will need to supply a set of plausible system 
timings. You could do this, for example to scope the timing behavior of a 
proposed system early in the development lifecycle.  If you do not provide any 
set values, RTA-OSEK Planner will assume that they are zero. 

17.4.2 Interrupt Recognition Time 

The interrupt recognition represents the maximum time during which an 
interrupt will not be recognized by your target hardware. This is a single value 
and is entered in terms of CPU cycles.  

Interrupt recognition time is usually at least equal to the execution time of the 
longest instruction (unless lengthy instructions can be interrupted part way 
through). Have a look at the RTA-OSEK Binding Manual and the 
manufacturers’ data book for your target to find out how to obtain this 
information. 
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Figure  17:24 shows how the interrupt recognition time is specified. 

 

Figure  17:24 - Specifying the Interrupt Recognition Time 

Interrupt recognition time is treated as blocking time by the analysis. This 
means that, for the entire duration of the interrupt recognition time, the 
processor will be executing instructions of a (soon to be interrupted) task, as if 
no interrupt had occurred.  You must make sure that you do not classify 
interrupt handling overhead as interrupt recognition time. 

17.4.3 Interrupt Arbitration 

When ISRs share an interrupt priority level, you will have to enter an interrupt 
arbitration order. The arbitration order is the sequence in which interrupts of 
the same priority are serviced if several are pending at the same time.  You 
can usually find this information in the data book for your target processor. 
The arbitration ordering allows RTA-OSEK Planner to determine interrupt 

blocking correctly for the specified interrupts. In Figure  17:25, Bursting, 

Timer1 and Timer2 share interrupt priority level 1. If all three interrupts are 

pending simultaneously, the RTA-OSEK Planner knows that Bursting will be 

processed first, followed by Timer1 and finally Timer2. 

  

Figure  17:25 - Interrupt Arbitration Order 

17.5 Modeling Alarms 

When an application uses a counter and a series of alarms to implement a 
sequence of task activations, RTA-OSEK Planner assumes that each alarm can 
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be stopped and restarted independently. This ensures that the worst-case 
timing behavior of the alarms on the counter is accounted for. 

However, if the alarms are autostarted and they are not modified at run-time, 
this model is unnecessarily pessimistic. You can reduce this pessimism by 
specifying that the counter has synchronized alarms. 

Figure  17:26 shows you how to select the alarm synchronization setting in the 
RTA-OSEK GUI.  You must make sure that synchronization is maintained. 

 

Figure  17:26 - Selecting Alarm Synchronization Settings 

17.6 Modeling Schedule Tables 

It is not presently possible to use the RTA-OSEK Planner to analyze systems 
that use AUTOSAR Schedule Tables.  

17.7 Modeling Planned Schedules 

You saw earlier how planned schedules could be used to implement complex 
sequences of stimuli. If you are going to analyze your application for timing 
correctness, extra timing information must be supplied. 

To change the behavior of an application, it is possible to modify planned 
schedules at run-time.  You can modify delays, additional responses can be 
added to arrivalpoints and next clauses can be changed to switch specific 
responses in and out of the schedule. 

To use this flexibility at run-time additional information about the worst-case 
behavior of the schedule must be provided.  Worst-case behavior is 
represented by: 

• The shortest delays between arrivalpoints. 

• The maximum number of stimuli notionally triggered on each 
arrivalpoint. 

Changes to the structure of a planned schedule are specified as analysis 
overrides. Additional information about the stimuli triggered from an 
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arrivalpoint, including potential changes, is specified as indirectly activated 
stimuli. 

Important: You will need to provide worst-case information about the 
schedule; otherwise RTA-OSEK Planner may indicate that the application is 
schedulable, even though modifications you make at run-time cause it to be 
unschedulable. 

17.7.1 Specifying Analysis Overrides 

You can use analysis overrides to tell RTA-OSEK Planner how the structure of 
the schedule may change at run-time. For timing analysis, when both analysis 
overrides and implementation details are present, the delay and next 
analysis attributes override the application attributes. 

If the delay is changed at run-time, so that it is shorter than the 
implementation delay, then the shorter delay should be specified as an 

analysis override. Have a look at Figure  17:27. 

 

Figure  17:27 - Best Case and Worst Case 

17.7.2 Indirectly Activated Stimuli 

When you learnt about planned schedules you only specified the stimuli that 
were auto-activated on arrival.  For analysis, RTA-OSEK Planner needs to know 
if any stimuli are indirectly activated.  

An indirect activation is, for instance, when an auto-activated stimulus triggers 
a response that subsequently activates another task. Indirect activations need 
to be specified when you want to model things like a task activating another 
task or additions to an arrivalpoint taskset at run-time. 
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Multiple indirectly activated stimuli can be specified for each arrivalpoint. The 
same stimulus can be both auto and indirectly activated. This, in fact, models 
the situation where a task chains itself. 

For analysis there is no difference between a stimulus being directly activated 
and being indirectly activated.  The observed behavior of the two situations is 
identical because there can be no upward activation in an analyzable system. 

For timing analysis, RTA-OSEK Planner assumes that all auto and indirectly 
activated stimuli are triggered at once. For example, if an arrivalpoint auto-
activates Stimulus1 and indirectly activates Stimulus2, RTA-OSEK Planner 
assumes that the arrivalpoint releases the tasks generating the responses 
simultaneously. This represents the worst-case for the arrivalpoint. 

17.8 Modeling Single-Shot Schedules 

RTA-OSEK Planner assumes that a single-shot schedule only runs once in the 
entire run-time of the application. 

A single-shot schedule may, however, be processed repeatedly by the system. 
If this happens, you will need to indicate that the implementation of the 
schedule is single-shot, but that it repeats for analysis purposes only. 

A repeat for analysis purposes only is specified as an analysis override for the 
final arrivalpoint on the planned schedule. The next override must specify the 
first arrivalpoint on the schedule and the delay to next must specify the 
minimum time between successive activations of the schedule. 

Have a look at Figure  17:28 to see how this is specified in the RTA-OSEK GUI. 

 

Figure  17:28 - Modeling a Single-Shot Schedule 

Important: The value selected for the delay between subsequent repetitions 
of a single-shot schedule needs to be based upon knowledge of the 
application. Selecting a delay that is larger than the minimum delay may result 
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in optimistic analysis. It could falsely indicate that a system is schedulable. If 
the value is too small, however, it may result in unnecessary pessimism. 

17.9 Modeling with Extended Tasks 

When you use extended tasks in your application you can only analyze the set 
of basic tasks that are of higher priority than all extended tasks. This is 
because extended tasks wait on events and RTA-OSEK Planner cannot analyze 
this. 

You must still specify resource and interrupt locking times because this will 
affect the amount of blocking suffered by all higher priority basic tasks. 

Important: If you want to use extended task behavior, but want to analyze 
your entire application, you should consider simulating extended tasks using 
the scheme that is outlined in the chapter on Tasks. 

17.10 Summary 

� If you need to do analysis of your application then you must specify 
execution performance constraints for your stimulus/response model, 
worst-case execution times for each task or ISR and target timings. 

� Performance constraints are specified as part of your stimulus/response 
model. 

� Bursty stimuli are used to model simple cases where a primary profile 
captures a stimulus directly. 

� Planned and periodic stimuli are used to model more complex cases 
where a primary profile drives a counter or schedule to generate stimuli. 

� Each task and ISR in your application must have at least one profile that 
specifies execution information and whether the profile can be used in 
the capture or generation of a stimulus. 

� You can reduce pessimism in the system by specifying, where possible, 
that alarms are synchronized. 

� You can also reduce pessimism using multiple profiles for each task and 
ISR. 

� Interrupt buffering can be modeled. 

� If your timing needs to be correct with respect to your embedding 
system, you need to specify input and output jitter for each primary 
profile and each response respectively. 

� Planned schedules must include analysis information to capture stimuli 
that trigger other stimuli and to capture changes to schedule behavior at 
run-time.
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18 Analyzing Timing Models 

The  RTA-OSEK GUI provides access to RTA-OSEK Planner for analyzing your 
application. There are 5 analysis options: 

• Stack Depth analysis. 

• Schedulability analysis. 

• Sensitivity analysis. 

• Best Task Priorities analysis. 

• CPU Clock Rate analysis. 

Stack depth, schedulability and sensitivity analysis are used to tell you about 
the memory usage and timing behavior of your application.  Best task 
priorities and clock rate analysis suggest ways that your application can be 
optimized for either space or time. 

To make use of analysis, you must specify execution time and stack space 
information.  This is provided in an execution profile for each task and ISR in 
your application.  If any of this information is not present, the analysis 
summary will tell you which parts are missing. 

It is important to make sure that your RTA-OSEK Planner model accurately 
reflects your application. If you create tasks and ISRs that are not attached to 
a stimulus/response model, they will not be included in the analysis.   

18.1 Stack Depth Analysis 

If you have specified worst-case stack usage figures for each task and ISR in 
your application, then RTA-OSEK Planner can determine the worst-case stack 

usage for your application. Figure  18:1 shows how these values are gathered. 
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Figure  18:1 - Worst-Case Stack Usage 

When you run the stack depth analysis, the stack analysis report appears on 
the workspace.  There are two tabs that can be used to view the results of the 

analysis.  The results are available in text format, as shown in Figure  18:2. 

 

Figure  18:2 - Stack Analysis Results in Text Format 

You can also view the results on the Graphic tab.  The analysis shows the 
maximum size of the stack in the workspace.  An example is shown in Figure 

 18:3. 
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Figure  18:3 - Stack Analysis Results in Graphical Format 

The analysis uses the following information when calculating the worst-case 
stack usage: 

� Worst-case stack usage for each task and ISR profile. 

� RTA-OSEK Component overheads for each task and ISR. 

� Non-preemption information based on internal resources. 

� Non-preemption information based on resources being held. 

� Non-preemption information based on when interrupts are disabled. 

The stack used in hook functions, callbacks or GetStopwatch() is not 
included in the calculation of the stack requirement for the application.  

Normally, the application’s total stack requirement is not changed by use of 
these functions.  However, if you need to calculate the exact worst-case stack 
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usage of an application that uses hooks or callbacks and stack in 
GetStopwatch(), you may need to contact LiveDevices. 

You will see that GetStopwatch() normally returns just the contents of a 
timer register. It does not place anything on the stack. 

18.1.1 Floating-Point Context Saving 

When tasks or ISRs use floating-point, RTA-OSEK Component saves a floating-
point context whenever necessary.  RTA-OSEK uses the architecture of your 
application to work out the maximum number of floating-point contexts that 
must be saved at run-time.   

If, for example, two tasks use floating-point and share an internal resource 
they will never preempt each other.  This means that they will never need to 
save any floating-point context.  The RTA-OSEK GUI shows the maximum 
number of floating-point contexts required in your application. 

18.1.2 Minimizing Stack Usage 

You might find that the stack space required by your application is greater 
than the space available on your target hardware.  If this happens, there are a 
number of things you can do to minimize application stack space. 

� Share an internal resource between tasks.  This means that the tasks will 
never preempt each other, so they will never require space on the stack 
at the same time.  This effectively overlays the stack usage of all the tasks 
that share the internal resource.  This can be done automatically using 

best task priorities analysis (see Section  18.4). 

� If a task calls a function that uses a lot of stack space, you can get a 
resource around the function call.  You can then share that resource with 
higher priority tasks (the higher priority tasks do not need to use the 
resource).  This prevents the higher priority tasks from preempting the 
task calling the function while it uses a lot of stack space.  This reduces 
overall usage. 

� Interrupts can be disabled or combined resources can be used in the 
previous method.  This allows you to prevent interrupts occurring while 
the function is being called.  In this case, however, you will pay a penalty 
in interrupt latency. 

18.2 Schedulability Analysis 

Schedulability analysis is used to work out whether each response can be 
generated before its deadline.  The deadline can be either explicit or implicit. 

An explicit deadline is when, for example, you specify that a task must 
generate a response no more than 5ms after it is released.  An example of an 
implicit deadline is when a task must finish before it is next made ready to 
run.  For example, when a basic unqueued task is activated every 20ms, it 
must complete before it is next released.  This means that it has an implicit 
deadline of 20ms. 
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Schedulability analysis calculates the worst-case response time for each 
execution profile in your application and then determines if these response 
times are less than the associated deadlines.  The RTA-OSEK GUI shows the 

results of schedulability analysis.  You can see an example in Figure  18:4. 

 

Figure  18:4 - Results of Schedulability Analysis  

The results of analysis can also be viewed graphically.  An example is shown in 

Figure  18:5. 
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Figure  18:5 - Graphical Results of Schedulability Analysis 

Each bar in the graphical analysis report shows the response time for the 
execution profile.  Each bar has up to 5 sections: 

� Delay/Jitter. 
This is the maximum amount of time that the primary profile, which 
responds to a stimulus, takes to recognize the stimulus. This is specified 
in the Primary or Activated Profile dialog for the appropriate primary 
profile. 

� Blocking time. 
This is the amount of time that the execution profile is prevented from 
executing by a lower priority profile that holds a shared resource or has 
disabled interrupts. 

� Interference. 
This is the amount of time that the execution profile is prevented from 
running by higher priority tasks or ISRs.  This is the total amount of time 
that the profile is preempted during execution. 

� Execution time. 
This is the worst-case execution time that you specified for the execution 
profile. 

� Response delay. 
This is the time from the response being generated by the software to it 
being observable in the external environment.  This is usually only 
specified when the response drives some external hardware. 
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In the graphical display, a ‘tool-tip’ will appear (shown in Figure  18:6) when 
you hover the mouse pointer over the execution time component for each 
task or ISR.  This tells you the actual times for each of these components. 

 

Figure  18:6 - Tool-tip Showing the Actual Times 

If you have specified explicit deadlines for responses, these are represented on 
the bar as small tags with the deadline specified.  Implicit deadlines are not 
shown.   

In addition to this information, the textual output will tell you about queued 
activation counts, buffered interrupts and the parts of the system that 
contribute to the blocking time. 

For any analyzable system, schedulability analysis reports that a system is 
either schedulable or not schedulable.  If a system is schedulable, this 
means that all tasks or ISRs in the system will always meet all of their 
deadlines.  

If the system is reported to be not schedulable, this is because either:  

� Some responses in the system cannot be generated before their 
deadlines. The system is unschedulable. 

� It is not possible to determine whether or not the system is schedulable.  
The system has indeterminate schedulability. 

You’ll see later what you should do if your application has indeterminate 
schedulability or is unschedulable. 

You can also use sensitivity analysis to direct you to the parts of the system 
that would benefit from the most attention.  You’ll learn about this in Section 

 18.3. 

Important: You should never change the configuration of your application 
without first validating those changes against detailed system analysis.  RTA-
OSEK Planner can only assess the timing correctness using the information 
that you provide. 

18.2.1 Unschedulable Systems 

Systems can be unschedulable for a variety of reasons: 

� A task or ISR cannot complete before its next release. 

� A task or ISR does not generate a response before a specified deadline. 

� An ISR with looping or retriggering behavior exceeds the buffer limit or a 
basic task with queued activation exceeds the queue limit. 

� The system exceeds 100% CPU utilization. 

You’ll now see each of these situations in more detail.  You will also find out 
how you can modify your system so that it can be scheduled. 
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Taskor ISRs Cannot Complete Before Next Release 

If a task or ISR cannot complete before its next release, RTA-OSEK Planner will 

generate the message in Figure  18:7. In this example, Task2 is not 
schedulable. 

 

Figure  18:7 - Task Execution not Complete before the Next Release of the Task 

There are a number of approaches you can use to make this type of system 
schedulable: 

� Reduce the execution time of the task or any other higher priority tasks 
or interrupts.  By reducing execution times you can reduce the amount of 
interference suffered by lower priority tasks and interrupts. 

� If the task or any higher priority tasks or interrupts are periodic, their 
periods can be increased.  If the task being adjusted has multiple offsets, 
these can be altered. 

� Introduce queued activation for tasks or buffer interrupts to ensure that 
activations made whilst the tasks or ISRs are executing are not lost.  

� Other tasks within the system may be making a specific task 
unschedulable.  You could use best task priorities analysis (which you’ll 

find out more about in Section  18.4) to see if a different priority ordering 
will make the system schedulable. 

� If the unschedulable task or ISR shares a resource with lower priority task 
or ISR then you could try reducing the amount of time for which the 
resource is held by these tasks and ISRs.  This reduces blocking times and 
may make the task schedulable. 

These measures can also be used where systems are found not to be 
schedulable for other reasons. 

A Task or ISR Cannot Meet its Deadline 

If a task or ISR cannot meet a deadline, this results in an unschedulable 
system.  There are two scenarios for detection: 

� Non-queued task activation and non-buffered ISRs. 
A specific profile is found to be not schedulable because the deadline has 
been exceeded.  In this case, other profiles of the same task or ISR might 
also be found to be schedulable (or unschedulable). 
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� Queued task activations (BCC2 tasks) and buffered ISRs.   
The task or ISR is not schedulable because the deadline of one of its 
profiles has been exceeded.  In this case, none of the other profiles of the 
task or ISR will be found to be schedulable. 

When a task or ISR is not schedulable because its deadline cannot be met, you 
can try to: 

� Increase the deadline. 

� Move the response generation code earlier in the program.   
This shortens the amount of time that the task or ISR must execute to 
generate the response. 

� Use the suggestions for unschedulable systems that are mentioned 
above. 

Queuing Task Activations and Buffered Interrupts Exceeded 

Sometimes a system will not be schedulable because the queue for queued 
task activations is not long enough to hold the maximum number of 
activations that can occur whilst the task is running.  Similarly, for interrupts 
that are buffered, the number of interrupts that need to be buffered may 
exceed the buffer size.   

Figure  18:8 shows RTA-OSEK Planner output where the number of buffered 
activations for an interrupt is too small. 

 

Figure  18:8 - Results of Schedulability Analysis Showing Buffered Activation 

There are two things that may be causing this problem: 

� The tasks or interrupts are being activated more frequently than they can 
be handled. 

� The buffer sizes are too small. 
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Systems, which are unschedulable for these reasons, can be made 
schedulable. You can try to: 

� Change the priorities to ensure that the task can handle the inputs at a 
required rate. If you do this, try using best task priorities analysis (see 

Section  18.4). 

� Decrease the period of the task or ISR. 

� Increase the buffer size. 

� Decrease the execution time of the task. 

If the analysis is repeated with a queue size or buffer size larger than needed, 
RTA-OSEK Planner reports the buffer size required to make the system 
schedulable. 

Utilization Greater Than 100% 

RTA-OSEK Planner may report that utilization is greater than 100%. This 
means that your application requires more time to execute than the time 

available on your target hardware. Figure  18:9 shows RTA-OSEK Planner 
report for a system with greater than 100% utilization. 

 

Figure  18:9 - Utilization of the Process is Greater than 100% 

There are a number of strategies you can use to rectify this problem: 

� Increase the CPU speed. 
This may be possible by specifying a faster part in your hardware design. 

� Reduce the execution times for tasks and ISRs. 

� Increase the periods for system stimuli. 
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18.2.2 Indeterminate Schedulability 

Indeterminate schedulability occurs when: 

� The busy period is too long to analyze. 

� There is indeterminate blocking from lower priority tasks. 

� Tractable analysis cannot determine schedulability. 

You can use the methods described in Section  18.2.1 to try to fix 
indeterminate schedulability. 

Busy Period too Long to Analyze 

The busy period is the sum of the time that a task is in the ready or running 
state and the maximum recognition time.   

RTA-OSEK Planner considers that the busy period is too long to analyze when 
it exceeds 232 instruction cycles. In a valid real-world system, it is very unlikely 
that you will reach this value. 

Indeterminate Blocking from Lower Priority Tasks or ISRs 

If there is indeterminate blocking from lower priority tasks then RTA-OSEK 
Planner cannot calculate the response times of any tasks that share resources 
with the lower priority task.  Sample output from RTA-OSEK Planner is shown 

in Figure  18:10. 

 

Figure  18:10 - Results of Schedulability Analysis Showing Indeterminate Blocking 

Fixing this situation requires an incremental approach.  Make the lower 
priority task schedulable first then iteratively apply schedulability analysis until 
your system is schedulable. 



 1
8
.3
 

 

18-12 Analyzing Timing Models RTA-OSEK v5.0.2 

Tractable Analysis cannot Determine Schedulability 

When driven by the RTA-OSEK GUI, RTA-OSEK Planner is set to use exact 
analysis by default (Analysis Depth 9). If you have configured the analysis 
depth for tractable analysis (Analysis Depth 1) then tractable analysis may not 
be able to determine schedulability. 

 

Figure  18:11 - Setting Analysis Depth to 1 

Tractable analysis uses two approximations, a schedulability test and an 
unschedulability test. These approximations divide systems into categories. 

Those that are: 

� Definitely schedulable. 

� Definitely unschedulable. 

� Indeterminately schedulable.   
In this case the analysis depth should be set to 9. The schedulability 
analysis should then be re-run to find out if an indeterminately 
schedulable system is schedulable or not. 

18.3 Sensitivity Analysis 

Sensitivity analysis is used to explore the boundaries for your system.  It allows 
you to answer questions like: 

� What variation of clock speed is feasible? 

� What is the maximum execution time allowed for a task or ISR? 

� How long can I get a particular resource for? 

� How long can I disable interrupts for? 

� Can I vary the execution time for a response and still meet my deadline? 
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Sensitivity analysis allows you to determine what changes may make an 
unschedulable system schedulable. You might be able to optimize task and 
ISR execution times and a small reduction may be enough to make the system 
schedulable. 

Alternatively, if you want to add additional functionality to an existing 
application then you can use sensitivity analysis to investigate how much 
headroom is available on which tasks or ISRs. 

The sensitivity of the tasks and ISRs is considered against the following factors: 

� Sensitivity to processor clock speed. 

� Sensitivity to execution times. 

� Sensitivity to resource and interrupt holding times. 

� Sensitivity to response deadlines. 

Figure  18:12 shows sensitivity analysis performed on a sample system. 

 

Figure  18:12 - Viewing Sensitivity Analysis Results in Graphical Format 

The upper part of the sensitivity workspace shows the minimum clock speed 
required for the system to be schedulable.  The sensitivity for execution times, 
lock times and response generation times is shown in the lower part of the 
workspace. 

The results are displayed in color.  Blue indicates current times, green indicates 
maximum available time and red indicates overrun. 

The figures at the end of each bar give the maximum execution time, resource 
holding time or interrupt disabling time.  You can use these values and still 
have a system that is schedulable.   

The figures that are displayed are generally mutually exclusive, which means 
that you can implement any one of them and the system will become ‘just’ 
schedulable. 
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The sensitivity analysis report is also available in text format.  You can see an 

example of this in Figure  18:13. 

 

Figure  18:13 - Viewing Sensitivity Analysis Results in Text Format 

The sensitivity analysis results can be used to modify your application.  The 
following sections explain how you can interpret the results. 

18.3.1 Sensitivity to Clock Speed  

The current speed that is displayed will always be 100% of the CPU clock 
frequency.  The new speed will be a percentage of the clock speed required 
so that the system is schedulable. 

If the new figure is less than 100% then there is scope for reducing the clock 
speed of your target hardware.  This can be useful, for instance, in the case of 
devices that must minimize power consumption. 

If the new figure is greater than 100% then you will have to increase your 
CPU clock speed to make the system schedulable.  The analysis gives you the 
smallest increase required for your application to become schedulable. 
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18.3.2 Sensitivity to Execution Times 

 When the sensitivity analysis finishes, the workspace shows sensitivity to 
execution times by default.  Each bar shows the current execution time in blue 
and the maximum execution time for that task or ISR in green.   

If the system is not schedulable, then the bar will show a red overrun. This 
indicates the amount by which the current task or ISR is exceeding its 
maximum permitted execution time, such that the system is schedulable.  

Overrun can be seen in Figure  18:14. 

 

Figure  18:14 - Sensitivity Analysis Showing Overrun 

The reported limits of maximum execution are mutually exclusive.  For any 
single task or ISR you can change the execution time to the value shown by 
sensitivity analysis and the system will remain (or become) schedulable.   

If you change the execution time of more than one task or ISR you will have 
to re-run sensitivity analysis to validate those changes. 

In some cases the analysis will work out that changes to some of your tasks or 
ISRs will have no effect (even if they execute in zero time).  These will not be 
shown graphically.  The textual report will state, however, that it will have no 
effect if you change the execution times for those task and ISRs. 

This feature allows you to target your effort.  It is extremely useful when you 
are trying to reduce execution times to make an unschedulable system 
schedulable. 

When sensitivity analysis finishes, the workspace shows sensitivity to execution 
times by default.  You can view sensitivity to resource and interrupt lock times 

by expanding the information for each task or ISR, shown in Figure  18:15. 



 1
8
.4
 

 

18-16 Analyzing Timing Models RTA-OSEK v5.0.2 

 

Figure  18:15 - Viewing Interrupt and Lock Times from Sensitivity Analysis  

For each resource or interrupt that is locked or disabled by the task or ISR, 
sensitivity analysis reports the current lock time and the maximum time for 
which the resource can be locked or the interrupt disabled. 

Resource and interrupt lock times for each task or ISR are mutually exclusive.  
If there is additional overhead for resource and interrupt locking times, you 
can only use the maximum execution time determined by sensitivity analysis 
for a single resource or interrupt lock.  You can, of course, use part of the 
time for each lock and re-run sensitivity analysis to validate the changes. 

18.3.3 Sensitivity to Deadlines 

When the sensitivity analysis finishes, the workspace shows sensitivity to 
execution times by default.  You can view sensitivity to explicit response 
deadlines by expanding the information for each task or ISR. 

For each response with a specified deadline, sensitivity analysis reports the 
current execution time of the response implementation (this is specified by 
you when constructing the timing model) and the maximum amount of time 
for which the response implementation can execute, while the system remains 
schedulable.  Any overruns are shown in red. 

The results of sensitivity analysis to deadlines for each task or ISR are 
complementary.  You can set the execution time for each response to the 
maximum value determined by analysis and the system will remain 
schedulable. 

18.4 Best Task Priorities Analysis 

Best task priorities analysis is used to allocate task priorities to make the 
system schedulable, if this is possible.  It will also determine the tasks that 
could share an internal resource to minimize the stack space required by your 
application.  If your application already includes internal resources, they are 
included in the analysis.  
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The RTA-OSEK GUI presents the results of the analysis graphically.  An 

example is shown in Figure  18:16. 

 

Figure  18:16 - Viewing Best Task Priority Analysis Results in Graphical Format 

The result of Best task priorities analysis is also available in textual form as 

shown in Figure  18:17. 
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Figure  18:17 - Viewing Best Task Priorities Analysis Results in Text Format 

In priority allocation, each task is shown with its calculated best priority. Tasks 
are also grouped according to whether they could share an internal resource 
(and therefore minimize application stack space).  The lower section of the 
workspace shows the schedulability analysis assuming that you were to apply 
these changes. 

Maximizing the number of tasks that share an internal resource has two 
important effects on the system: 

� Total required stack for the system is minimized. 
The worst-case stack usage for an arbitrary set of tasks is normally the 
sum of the worst-case stack usages for each of the tasks.  When these 
tasks share an internal resource, the worst-case stack usage is the single 
largest stack usage of any of the tasks sharing the resource.  

� A system is expected to become less schedulable as tasks share an 
internal resource (because slack time is traded with reduced stack usage).  
However, if the additional overhead of switching from one task to 
another is a significant proportion of the task execution time, then 
sharing an internal resource between these tasks may improve 
schedulability. 
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18.4.1 Required Lower Priority Tasks 

If you know that certain tasks must have a higher priority than others, you 
should enter these constraints into the RTA-OSEK GUI. 

You can do this, for example, to ensure a specific execution order.  So, for 
instance, if Task3 and Task4 may be activated together, but Task3 

prepares some data that is used by Task4, then Task3 must execute first.  

Task3 is, therefore, a required lower priority task for Task4. 

You should specify the required lower priority tasks for the tasks that are of 

interest.  This information has been specified in Figure  18:18. 

 

Figure  18:18 - Selecting the Required Lower Priority Tasks 

When best task priorities analysis performs priority allocation, it uses the 
required lower priority constraints and searches for the priority ordering that 
best allows the system to meet its schedulability requirements. 

In general, when using automatic priority allocation, the fewer priority 
constraints that are placed on the system, the better the priority ordering that 
can be defined.  This means that only priority constraints that are absolutely 
necessary should be given in the priority constraints declaration. 

18.5 CPU Clock Rate Optimization 

 CPU clock rate optimization is similar in concept to best task priorities, but it 
optimizes for time rather than space. It looks for the lowest possible clock rate 
that gives a schedulable system. 

CPU clock rate optimization will rearrange task priorities if this results in a 
system that is schedulable at a lower clock frequency.
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Figure  18:19 shows the results of CPU clock rate optimization in text format. 

 

Figure  18:19 - Viewing CPU Clock Rate Optimization Analysis Results in Text Format 

Figure  18:20 shows the results of CPU clock rate optimization in graphical 
format. 
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Figure  18:20 - Viewing CPU Clock Rate Optimization Analysis Results in Graphical Format 

Clock optimization can be thought of as a combination of sensitivity analysis 
and priority allocation from best task priorities analysis. 

� As with clock sensitivity (explained in Section  18.3), it is assumed that the 
effect of changing the clock frequency only impacts on execution times 
(including critical execution times, resource and interrupt lock times).  
Deadlines and delays between alarms and arrivalpoints on schedules are 
not scaled.  

� As with priority allocation, task priorities may be rearranged.  You should 
specify required lower priority tasks where there are necessary constraints 
on reprioritization. 

If it is important that your system has critical requirements for power 
consumption or heat dissipation, then you should consider using clock 
optimization on your final application. 

18.6 Summary 

� RTA-OSEK provides facilities for analyzing the timing model of your 
application using RTA-OSEK Planner. 

� Stack analysis allows you to determine the worst-case stack usage for 
your application, accounting for situations where stack space can be 
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effectively overlaid due to the calculated run-time behavior of your 
application. 

� Schedulability analysis tells you whether or not every response deadline in 
your application will be met at run-time for all possible arrivals of stimuli.  
If your application is found to be unschedulable, there are a number of 
approaches your can use to make it schedulable. 

� Sensitivity analysis lets you explore the boundaries of your application, 
either to detect areas that are making your system unschedulable or to 
look at the scope for possible future enhancements. 

� Best task priorities analysis determines the best priority allocation for your 
tasks, such that the system is schedulable.  Required lower priority tasks 
can be specified for tasks whose execution ordering is important.  Best 
task priorities analysis also determines which tasks can share an internal 
resource, so that stack space can be minimized. 

� CPU clock rate optimization is similar to best task priorities, but optimizes 
for minimum CPU clock rate rather than for minimum stack space. 
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19 Using RTA-OSEK from the Command Line 

19.1 Overview of Operation 

19.1.1 Functionality 

The tool rtabuild is a command line program that invokes the various tools 
of the RTA-OSEK development suite to provide the following functions: 

� Build Kernel and application support data. 
This is used to create the RTA-OSEK header, C and assembler files that 
you need in order to compile and link your application.  

� Schedulability analysis. 
Determines whether all tasks and ISRs meet their deadlines and other 
constraints in the worst-case. 

� Sensitivity analysis. 
Calculates how far a range of timing parameters for each task and ISR 
can be varied to achieve a system that is only just schedulable. 

� Best Task Priorities. 
Allocates task priorities to give the minimum number of preemption 
levels, commensurate with a schedulable system. 

� Clock Optimization. 
Determines the lowest processor clock rate that can be achieved for a 
schedulable system and the task priorities that are necessary to run at this 
rate. 

rtabuild reads input configuration file(s) written in OIL syntax. 

19.1.2 Messages 

During its operation, rtabuild reports various messages. They can be: 

� Information messages. 
Reports useful information such as the amount of memory used or the 
size of a data structure. 

� Warning messages. 
Occur when the input file specifies an unusual condition, something that 
is redundant or a value that cannot be represented precisely and is 
therefore subject to rounding error.  When warnings have been 
produced, the output files are created and the application can be built.  

� Error messages. 
Generated where there are conflicts in the input file that make it 
impossible to perform analysis correctly or produce correct output.  The 
tool attempts to report all the errors it can find and then exits.  All errors 
should be removed and the operation should be repeated before 
attempting to use the results or output of rtabuild. 

� Fatal messages. 
Caused where there are conditions in the input file, from which recovery 
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is not possible. rtabuild stops processing immediately after detecting 
and reporting a fatal error message. 

19.1.3 Return Values 

At the end of its execution rtabuild will return a code  as indicated by the 
table below: 

  

Value Description 

0 Success in the requested operation. 

1 Termination as a result of an error or fatal message. 

2 User cancelled processing (ESC) while running RTA-OSEK 
Planner. 

3 User abort (^C/^Break). 

4 System is not schedulable. (0 is returned if –u command line 
option is specified). 

5 Priority allocation failed to generate a schedulable system. 

  

19.1.4 Command Line Options 

rtabuild is invoked from the command line using:  

rtabuild [[*options*]] [*input_file*] 

Command line options are identified by a preceding hyphen. Any valid 
combination of command line options can be specified in any order. 

One or more input files can be specified on the command line. All files must 
be written using OIL syntax. Where more than one input file is specified, the 
files are processed in the order that they appear. The text of each file is 
appended to the previous file to create a temporary file that is processed.  

A full list of command-line options is provided in the RTA-OSEK Reference 

Guide. 

19.1.5 Output Files 

During processing, rtabuild may generate intermediate, temporary and 
listing files. Temporary files are always removed on completion.  Intermediate 
files are normally deleted, but can be retained using the –k option. Listing 

files are only generated if the –o option is selected. 



 2
0
.1
 

 

RTA-OSEK v5.0.2 Using RTA-OSEK with RTA-TRACE 20-1 

20 Using RTA-OSEK with RTA-TRACE 

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with 
a suitably enhanced application, it provides the embedded application 
developer with a unique set of services to assist in debugging and testing a 
system. Foremost amongst these is the ability to see exactly what is happening 
in a system at runtime with a production build of the application software. 

Configuration of RTA-TRACE parameters for RTA-OSEK is carried out using 
the RTA-OSEK GUI. The GUI is largely self-explanatory, so this section will 
simply describe a set of tasks and how one might achieve them. 

It is assumed that you have some knowledge of using the RTA-OSEK 
configuration tool, so creation/configuration of the application is not 
discussed here. 

All of the configuration tasks relating to RTA-TRACE are accessed from the 
RTA-TRACE tab at the bottom left-hand side of the GUI. 

20.1 Configuration 

The following options can be set from this pane: 

Trace Type Disables or enables (either simple or advanced) tracing. 

Advanced tracing provides more detailed tracing than simple 
tracing, with a corresponding increase in trace-records. 

 

Compact IDs The compact trace format saves buffer space by only allowing 4 
bits for task tracepoint ID values, and 8-bits for tracepoint and 
interval ID values. Other identifiers (Tasks, Resources etc.) use 8 
bits. 

If compact identifiers are not selected, 12 bits are used for 
tracepoint, task tracepoint, and interval ID values, with 16 bits 
being used for other identifiers. 

Compact Time Select compact (16-bit); or extended (32-bit) time format. This 
option may not be available for every target. 

Trace Stack Select whether or not to record stack usage or not. 

Target 

Triggering 
Select whether or not runtime target triggering is available. 
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Buffer Size This controls the size of the buffer reserved on the target for the 
tracing information. Note that the number is in records, not bytes, 
so the actual buffer size in bytes depends upon sizes selected for 
time and identifier. 

 
Autostart Select whether tracing is started automatically, and which trace 

mode to start in. 

For triggering operation, the trigger setup (TriggerOn…) code is 
entered here. Details of the triggering API can be found in the 
RTA-TRACE User Manual. 
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Initial Categories If run-time categories have been defined (See Section  20.5 and 
the RTA-TRACE User Manual for more details about categories), 
this dialog allows you to choose which run-time, user-defined 
categories are enabled when tracing starts. Below, we can see 
three run-time, user-defined categories, one of which is initially 
disabled. 

 
Initial Classes Choose which record classes are enabled when tracing starts. 

Below we can see that task and ISR, activation, and event tracing 
are able to be enabled and disabled at run-time and that, initially, 
event tracing is disabled. 
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Stopwatch This dialog allows the user to specify what function is used to 

implement GetStopwatch(). In the dialog below, this is a user-

supplied function called now(). The header file supporting this 

function is called now.h. 

 
 

20.2 Tracepoints 

This pane allows tracepoints to be defined. New tracepoints are initially given 
auto-generated identifiers, but this can be over-ridden using the ID button: 
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If the tracepoint has associated data, it is possible to supply a format-string 

(see section  20.8 for more information about format strings) to govern how 
the data will be displayed: 

 

20.3 Task Tracepoints 

This pane allows task-tracepoints to be defined. New task-tracepoints are 
initially given auto-generated identifiers, but this can be over-ridden using the 
ID button as for tracepoints. 

Format strings are entered in the same way as for tracepoints. 

20.4 Intervals 

This pane allows intervals to be defined. New intervals are initially given 
autogenerated identifiers, but this can be over-ridden using the ID button as 
for tracepoints. 

Format strings are entered in the same way as for tracepoints. 

20.5 Categories 

This pane allows trace categories to be defined, along with their mask-value. 
See the RTA-TRACE User Manual for more details about categories. 
Categories can be always enabled, always disabled, or enabled/disabled at 

run-time by using the filter pane (see section  20.7 below). 

20.6 Enumerations 

This pane allows enumerated identifiers to be specified, along with numeric 
values. The example shown illustrates how the first few OSEK error codes 
might be enumerated. 
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20.7 Filters 

This pane configures the filtering of event classes and categories and the 
tracing of tasks and ISRS. By default, everything is traced. However, you may 
find it useful to disable the tracing of classes of objects at runtime. Similarly, 
you may want to disable the tracing of some of your tasks and/or ISRs.  

 

Filters have three states: 

1. Always – tracing is always enabled (default) 

2. Never – tracing is never enabled; 

3. Runtime – tracing can be enabled and disabled at runtime. 
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A runtime filter defaults to an initial state of disabled. You can change the 
default state using the ‘Initial Classes’ button on the configuration pane (See 

Section  20.1). 

20.8 Format Strings 

Format strings specify how a tracing item's data should be displayed. Simple 
numeric data can be displayed using a single format specifier. More complex 
data, e.g. a C struct, can be displayed by repeatedly moving a cursor 
around the data block and emitting data according to more complex format 
specifiers. 

If a format string is not supplied, data is displayed in the following manner: 

• If the data size is no greater than the size of the target's int type, 

data is decoded as if “%d” had been specified. 

• Otherwise the data is displayed in a hex dump, e.g. 

0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 

0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 

• A maximum of 256 bytes is shown. 

Note: when format specifiers are given, the target's endian-ness is taken into 
account. When a hex dump is shown, the target's memory is dumped byte-
for-byte. In particular, you may not get the same output from a hex dump as 
from the %x format specifier. 
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20.8.1 Rules 

Format strings are similar to the first parameter to the C function printf(): 

• Format strings are surrounded by double-quote ( " ) symbols. 

• A format string may contain two types of object: ordinary characters, 
which are copied to the output stream, and format elements, each of 
which causes conversion and printing of data supplied with the 
event. 

• A format element comprises a percent sign, zero or more digits and a 
single non-digit character, with the exception of the %E element – 
see below. 

• The format element is decoded according to the rules in the table 
below, and the resulting text is added to the output string. 

• The special format element %% emits a %. 

• In addition to ordinary characters and conversion specifications, 
certain characters may be emitted by using a ‘backslash-escape-
sequence’. To emit a double-quote ( " ) character, \" is used, and to 
emit a \ character, \\ is used. 

• The optional size parameter to integer format specifiers defines the 
field's width in bytes. Valid values are 1, 2, 4 or 8. 

Note: An important difference from printf() is that the cursor does not 
automatically move on from the current field when a field is emitted. This is to 
facilitate multi-format output of a single field. 

 

Format Element Meaning 

%offset@ Moves the cursor offset bytes into the data. This can 
be used to extract values from multiple fields in a 
structure. 

%[size]d Interpret the current item as a signed integer. Output 
the value as signed decimal. 

%[size]u Interpret the current item as an unsigned integer. 
Output the value as unsigned decimal. 

%[size]x Interpret the current item as unsigned integer. Output 
the value as unsigned hexadecimal. 

%[size]b Interpret the current item as an unsigned integer. 
Output the value as unsigned binary. 

%enum[:size]E Interpret the current item as an index into the 
enumeration class who’s ID is enum. Emit the text in 
that enumeration class that corresponds with the 
item's value. 

The enumeration class should be defined using ENUM 

directives. An exception is implicitly defined enum class 



 2
0
.8
 

 

RTA-OSEK v5.0.2 Using RTA-OSEK with RTA-TRACE 20-9 

99, which is the set of ERCOSEK errors. 

%F Treat the current item as an IEEE ‘double’. Output the 
value as a double, in exponent format if necessary. 

%? Emit in the form of a hex dump. 

%% No conversion is carried out; emit a %. 
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20.8.2 Examples 

Description Format String Example Notes 

A native integer 
displayed in 
decimal and 
hexadecimal 

“%d 0x%x” 10 0xA The “0x” is not emitted 

by the %x format specifier 
but is specified in literal 
characters in the string. 

Absence of size specifier 
means the target’s int 
size is assumed. This 
example is a 16-bit 
processor. 

A single 
unsigned byte 
representing a 
percentage. 

“%1u%%” 73% Use of size specifier 
of 1 byte. 

Use of %% to emit %. 

struct{ 

 int x; 

 int y; 

}; 

… on a 32-bit 
processor. 

 

“(%d,%4@%d)” (20,-15) Use of %offset@ to 
move to byte-offset 
within the structure. 

A value of type 
enum 

e_Rainbow, 
(defined as the 
colours of the 
rainbow!) 

“%1E” Yellow The number 1 refers 
to the ID of the 
enum class in the 
ENUM directives, not 
to the width of the 
field. 
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Support 

Getting Help 

There are a number of ways to contact LiveDevices for technical support.  When you 
contact our support team, please provide your customer number. 

Email 

The preferred method for dealing with support inquiries is via email. 
Any issues should be sent to support@livedevices.com 

Telephone 

You can contact us by telephone during our normal office hours (0900-1730 
GMT/BST).  Our telephone number is +44 (0) 19 04 56 26 24 

Fax 

Our Fax number is +44 (0) 19 04 56 25 81 


