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About this Guide

11

This guide provides you with an introduction to RTA-OSEK. It describes the
basic system concepts and shows you how to put these concepts into
practice.

You will find the complete technical details of RTA-OSEK Component in the
RTA-OSEK Reference Guide. These manuals describe the parts of RTA-OSEK
that apply to all target hardware. If you require information on target-specific
aspects of RTA-OSEK, refer to the supplied RTA-OSEK Binding Manual.

Who Should Read this Guide?

1.2

It is assumed that you are a system designer who wants to know how to
model your system architecture using the RTA-OSEK GUI or that you are a C
programmer who wants to know how to configure RTA-OSEK Component for
integration with your application program.

Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any processor running RTA-
OSEK Component.

The following terms are used in this guide:

RTA-OSEK v5.0.2 About this Guide
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RTA-OSEK refers to the complete Real-Time Operating System
product including the tools that run on the host PC,
the target processor components and the
documentation.

Offline tools refers to the configuration, analysis and build tools
that are run on the host PC. These include the RTA-
OSEK graphical user interface (GUI) that provides a
wrapper around the command line offline tools.

RTA-OSEK GUI refers to the RTA-OSEK graphical user interface
(GUI) that provides a wrapper around the other
offline tools.

RTA-OSEK refers to the RTA-OSEK Real-Time Operating System

Component kernel that runs on the target processor. Any

references to the kernel in this guide refer to RTA-
OSEK Component.

In this guide you'll see that program code, header file names, C type names, C
functions and RTA-OSEK API call names all appear in the courier typeface.
When the name of an object is made available to the programmer the name
also appears in the courier typeface, so, for example, a task named Task 1
appears as a task handle called Task1.

1.2.1 Screenshots

Please note that due to LiveDevices' policy of continual product improvement,
some of the screenshots reproduced in this manual may not exactly match the
onscreen appearance of the GUI tool. GUI appearance may also be affected
by your local Windows setup.
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2 Introduction

The core of RTA-OSEK consists of two main elements:

e The RTA-OSEK offline tools.
The RTA-OSEK offline tools include a code generation tool and an
analysis tool that enables you to demonstrate that your system meets
its timing requirements. These offline tools are driven by a graphical
user interface (GUI) which supports OS configuration through the
OSEK Implementation Language (OIL). You can find out more about
the RTA-OSEK offline tools in Section 2.2 and OSEK is introduced in
Section 2.4.

e RTA-OSEK Component - the OSEK kernel.
RTA-OSEK Component is an efficient, fast and predictable Real-Time
Operating System (RTOS) that is fully compliant and independently
certified with Version 2.2.x of the OSEK/VDX OS Standard. The RTA-
OSEK v5.x component also provides functionality of AUTOSAR OS
(SC1) v1.0. Component has been designed to provide the necessary
functions for building complex, yet efficient, real-time systems. You

can find out more about RTA-OSEK Component in Section 2.1.

RTA-OSEK supports the development of hard real-time systems. This means
that system responses must be made within specific timing deadlines.
Meeting hard deadlines involves calculating the worst-case response time of
each task and Interrupt Service Routine (ISR) and ensuring that everything runs
on time, every time.

Any true RTOS must support these requirements by meeting the assumptions
of fixed priority schedulability analysis’. RTA-OSEK Component meets these
requirements and the RTA-OSEK offline tools automate the analysis to show
whether deadlines will be met.

* For further information refer to: N.C. Audsley, A. Burns, R. I. Davis, K.W. Tindell, and A.J. Wellings, 1995 “Fixed Priority Pre-
emptive Scheduling: An Historical Perspective” Real-Time Systems, 8, 173-198.
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Figure 2:1 - The Structure of RTA-OSEK

2.1 RTA-OSEK Component

The concepts behind RTA-OSEK Component are founded on the results of a
decade of research into real-time systems and are shaped by the pressures of
mass-production industries, such as the automotive industry.

RTA-OSEK Component is fixed priority pre-emptive operating system that is
certified to the OSEK OS Standard Version 2.2.x. RTA-OSEK Component
supports all four OSEK conformance classes (BCC1, BCC2, ECC1 and ECC2).
It also provides message handling for intra-processor communication that
satisfies the OSEK COM CCCA and CCCB conformance class.

RTA-OSEK provides a number of kernel optimizations that contribute to
reductions in unit cost of systems. The lightweight tasks optimization, for
example, leads to RAM savings of up to 256 bytes of RAM per task. This
results in substantial savings in a 32 task system. Using static API
optimization reduces the execution time of critical higher priority tasks,
which means that the useable processing power is increased.

The extremely low memory footprint of the RTA-OSEK Component makes it
particularly suitable for systems manufactured in large quantities, where it is
necessary to meet very tight constraints on hardware costs and where any
final product must function correctly.

RTA-OSEK offers support for a wide variety of microcontrollers and leads the
class in its low memory footprint and CPU overhead.

RTA-OSEK Component does not impose on hardware, where possible.
Generally, there is no need to ‘hand over’ control of hardware, such as the
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cache, watchdog timers and I/O ports. As a result of this hardware can be
used freely, allowing ‘legacy software’ to be brought to the system.

RTA-OSEK builds on the OSEK standard to provide a set of unique features for
the design and analysis of hard real-time systems. In particular, RTA-OSEK
provides the ability to create and manipulate planned and periodic schedules.
Schedules are a mechanism for managing activation of multiple tasks.

All runtime overheads for RTA-OSEK, such as switching to and from tasks,
handling interrupts and waking up tasks, have low worst-case bounds and
little variability within execution times. In many cases, context switching
happens in constant execution time. Conventional RTOS designs normally
have unpredictable overheads, usually dependent on the number of tasks and
the state of the system at each point in time.

Unlike the conventional RTOS ‘infinite loop’ tasking (where tasks are not
required to terminate), the single-shot execution model of OSEK'’s basic tasks
is an exact fit with the tasking model used in schedulability analysis.
RTA-OSEK'’s timing status build is added to OSEK’s Standard and Extended
status builds and allows you to measure the worst-case execution time of
tasks and interrupt service routines and to perform execution time
monitoring (ensuring that tasks complete within specified times).

2.2 RTA-OSEK tools

When the correct functioning of an application depends upon performance
requirements, such as how quickly responses to input events are needed, it is
often extremely difficult to guarantee that these requirements have been met.
RTA-OSEK is currently the only RTOS product on the market that allows such
performance requirements to be guaranteed.

A graphical user interface is provide to help you with the configuration
process. This interface provides implementation obligations, which act as a
checklist for developing source code to work with the architecture defined by
your OS configuration. The advanced interface also supports stack usage
analysis. This means that you can determine the worst-case stack
requirements for the application, avoiding the need to over-engineer “just in
case” RAM requirements are incorrect. All configuration data is held in an
OSEK standard OIL file.

RTA-OSEK is more than just a small and fast OSEK OS — RTA-OSEK is an OSEK
OS with guaranteed timing behavior. Integrated in the GUI are modeling and
schedulability analysis tools we call the RTA-OSEK Planner. Schedulability
analysis is a mathematical technique used to prove that an application meets
all of its deadlines. RTA-OSEK provides extensions to schedulability analysis
that allow you to determine the maximum buffer sizes required by interrupts.
You can use this to guide hardware selection and to determine the maximum
activation count for BCC2 tasks.

RTA-OSEK also includes sensitivity analysis. This can assist you in
determining the possibility that the execution time tasks or interrupts can be
extended. This is an invaluable aid when extending or enhancing a system,
without violating its performance requirements.

RTA-OSEK v5.0.2 Introduction 2-3



The RTA-OSEK Planner can also be used to optimize your application
automatically. Priority level optimization automatically calculates whether
the preemption patterns of the system can be adjusted to reduce stack usage.
Research has shown that even where systems are running at 99% CPU
utilization, this technique can be used to modify preemption patterns, which
can result in an 8-fold decrease in application stack requirements. Significant
RAM reductions may be made and this can lead to reduced unit costs.

Clock speed minimization is a further type of analysis that is provided by
RTA-OSEK. This can be used to show the slowest speed that the application
can run and still meet its deadlines. You can use this functionality to reduce
power requirements, to avoid EMC problems or to determine whether
cheaper silicon can be used to meet the same performance requirements.

2.3 RTA-OSEK Debugging Support

RTA-OSEK provides support for the ORTI (OSEK Run-Time Interface)
standard. This allows any ORTI-aware debugger to provide access to RTOS
variables.

The list of ORTI-aware debuggers supported by each RTA-OSEK target port
can be found in the relevant RTA-OSEK Binding Manual.

You can use RTA-OSEK's extensible ORTI support to add new debuggers’.

24 OSEK

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. The full name of the project is
OSEK/VDX.

OSEK is an acronym formed from a phrase in German, which translates as
"Open Systems and Corresponding Interfaces for Automotive Electronics”.
VDX is based on a French standard (Vehicle Distributed eXecutive), which has
now been merged with OSEK. OSEK/VDX is referred to as OSEK in this guide.

The goals of OSEK are to support portability and reusability of software
components across a number of projects. This will allow vendors to specialize
in “Automotive Intellectual Property”, where a vendor can develop a purely-
software solution and run software in any OSEK-compliant ECU.

To reach this goal, however, detailed specifications of the interfaces to each
non application-specific component are required. OSEK standards, therefore,
include an Application Programming Interface (API) that abstracts away from
the specific details of the underlying hardware and the configuration of the in-
vehicle networks.

For further information see http://www.osek-vdx.org

" Support for other ORTl-aware debuggers can also be provided as an engineering service. Please contact your local ETAS
office for further details.
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2.5

AUTOSAR

2.6

AUTOSAR (AUTomotive Open System ARchitecture) is an open and
standardized automotive software architecture, jointly developed by
automobile manufacturers, suppliers and tool developers worldwide.

AUTOSAR provides specifications for “Basic Software Modules” (BSW) like
operating systems, communication drivers, memory drivers and other
microcontroller abstractions. The AUTOSAR standard also defines a
component-based architectures model. This model defines a “Virtual Function
Bus” (VFB) that defines an abstraction for communication application software
components (SW-Cs). The VFB allows SW-Cs to be independent of the
underlying hardware, making them portable between different ECUs and
reusable across multiple automotive projects. The VFB abstraction is
encapsulated by the AUTOSAR Run-Time Environment (RTE). The RTE provides
the “glue” between SW-Cs and the BSW.

For further information see http://www.autosar.org

New Features in RTA-OSEK 5.0

RTA-OSEK 5.0 builds on the proven technology of earlier RTA-OSEK versions
and adds the follows new features:

e Support for features provided in Scalability Class 1 of the AUTOSAR
OS v1.0 specification including

o Schedule Tables
o Runtime Stack Monitoring for Basic and Extended Tasks
o A standardized API for ticked OSEK counters

e Improved license management allowing multiple license files to be
referenced

e A new package mechanism for integrating non-OS libraries

e A new macro mechanism that allows users to define custom macros to
use when building systems in the RTA-OSEK Builder

e Configurable over activation (E_OS_LIMIT) checking for tasks activated
using RTA-OSEK's taskset mechanism.

¢ Native support for cooperative scheduling and processes to help users
migrating from ETAS' legacy ERCOS® Operating System

e Improved support for RTA-TRACE allowing you to configure task
tracing on a per-task basis

2.6.1 Compatibility with Earlier Versions

It is possible for you to use the RTA-OSEK v5.0 tools with earlier versions of
the RTA-OSEK kernel.

The following table shows the compatibility of features in RTA-OSEK 5.0 with
earlier kernels.
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RTA-OSEK automatically identifies the version of the kernel you are
configuring and presents user configuration options as appropriate through

the RTA-OSEK GUI.
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3 The Development Process

This chapter will guide you through the processes involved in creating an
application using the RTA-OSEK GUI. You can use the concepts explained in
this guide to create your first RTA-OSEK application.

You may find that in this chapter you see things that you haven't learnt about
yet. If this happens you can use the other chapters of this guide to find out
the information that you need.

The RTA-OSEK GUI has three views — these are accessed by using the tabs at
the lower-left of the GUI (see Figure 3:1):

e The Planner is described in Sections 3.1 to 3.4, and will be familiar to
users of previous versions of RTA-OSEK. This is the preferred way of
describing an application since verification of the application’s design
can be carried out at this stage.

e The Builder is for developers who are familiar with OSEK concepts and
simply want to construct a system without using the design
analysis/verification aspects of the Planner. This is described in section
3.5.

e Finally, the RTA-TRACE view allows configuration of RTA-OSEK
parameters related to the LiveDevices RTA-TRACE product (a software
logic-analyzer for embedded systems — contact your local sales office
for further details).

| [ eil] HEFUrUrLCe y
There is one stande
| Ahalyze BFS SrHFNINF

W Elanner IS Buider | ¥ RTATRACE

Higtary 4] l'h J |.-’-'-.|:||:|Iin:atiu:|n Surnmary

B

Figure 3:1The view tabs

3.1 Overview

The process of creating a new application in the RTA-OSEK Planner has a

number of stages. The diagram in Figure 3:2 shows how the development
lifecycle works and how the steps fit together.
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Specification

Functional

Testing

Figure 3:2 - The Development Process

Figure 3:2 shows that a specification should exist before creating a new
application. The application can then be constructed and the
implementation can begin using the supplied specification. Once coding is
complete you must build the application, before starting the functional
testing and, optionally, the timing analysis.

At the functional testing and timing analysis stages, the implementation may
change, so the application must be built and tested again until it is finished.

Each of these steps is explained in detail in the following sections.

3.1.1 Specification

When a new target application is being developed, a specification should be
supplied. You can see an example specification in Section 3.3.1.

A specification tells you things like:

e The target platform details.
These details include the processor type, clock speed and available
memory.

e Alist of external real-world inputs to the system.
The real-world inputs are called stimuli. Stimuli are things like
switches being closed, timers expiring, network messages being
received and certain angular positions being reached in an engine.
You can also think of time as a real-world input. For example, if you
have to poll hardware, you might create a stimulus that occurs every
10ms.

e Alist of outputs from the system.
The outputs are called responses. Responses describe how the
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system responds to stimuli. Responses might include, for instance,
turning a lamp on, updating an internal count, activating a motor or
sending a message to another controller.

e Performance requirements.
For each stimulus, there will be at least one response that the system
has to make. This response will have to be made within a time limit.
The deadline is the latest time that the response is allowed to occur
after the stimulus. Specification of system deadlines is important for
timing analysis. The purpose of timing analysis is to show whether or
not the system’s requirements will be met in the worst case system
loading.

Let’s look at a real-world example. In Figure 3:3, you can see a car hitting an
object during an impact test — when the car hits the object, the airbag
inflates. The car hitting the object is the stimulus; the airbag inflating is the
response to the impact. For the response to be effective, it must occur before
the deadline. In this case, the deadline for the airbag inflation must be set to
minimize the chance of injury to the vehicle’s occupants.

Response (Air bag inflates)

(T /\
g

‘ 4

Impact

Stimulus

Figure 3:3 - Responding to a Stimulus

3.1.2 Implementation

Once the specification stage is complete, you'll then need to think about the
implementation. In the implementation phase, you will decide how the target
detects the specified stimuli and how the responses are implemented.

External stimuli are often detected by raising hardware interrupts. An interrupt
service routine (ISR) will run when the target processor responds to the
interrupt.

Usually the ISR will activate a specific task that implements a response,
although an ISR can implement a response directly, if required. Having short
ISRs and appropriately prioritized tasks will give the most responsive results,
particularly in heavily loaded systems.
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On some targets each interrupt source has its own entry in the processor
vector table, so one ISR is needed for each interrupt that can occur. Other
targets allow several interrupt sources to use the same vector, so an ISR may
need to decode which interrupt source is active.

In simple systems, each response can be implemented in a separate task. The
responses with the shortest deadlines should be assigned to the tasks with the
highest priority. This gives the task the best chance of meeting the deadline.
You can use schedulability analysis to confirm whether or not the task will
always meet the deadline.

A task can implement more than one response. For example, in Figure 3:4 you
can see that stimulus S can be specified to result in response R1 within time
T1, then response R2 within time T2 and then response R3 within time T3.

—x— I X I

Stimulus R Response R’ Response RZ Response R

A

Time T*

Timg T2

Time T3

v

Time
Figure 3:4 - A Task Implementing More Than One Response

You can usually use a single task to implement all of the responses in Figure
3:4. RTA-OSEK will be able to confirm whether or not it can meet each
deadline.

If the task can determine which stimulus it is responding to, it is also possible
for a task to provide responses for more than one stimulus. There are a
number of mechanisms that can be used to pass information to a task on
which stimulus has occurred:

e Global variables.
e (OSEK COM messages.
e (OSEK OS events.

Once the structure of the application, in terms of tasks and ISRs, has been
established it is then refined using OS features including resources, queuing
mechanisms, events and messages.

RTA-OSEK's Builder generate skeleton source code files for each task and ISR
that you need to implement. It is up to you to write the code that executes
when the tasks and ISRs run.

The RTA-OSEK Planner provides an implementation check list for your
application showing the code that needs to be implemented. Once coding is
complete the various files can be compiled and linked to generate the
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application executable file. You will find out how to implement example
applications in Section 3.3.2.

Each of your tasks and ISRs should be written in its own C source file. There
are a number of software engineering issues associated with this:

e Task threads are isolated in the application source code. This is good
development practice and allows your compiler to provide some
protection against certain classes of bug. Using static variable
declarations in a file, for example, protects those variables against
being accidentally changed by other tasks or ISRs.

e Configuration management is made easier because changes to tasks
are limited to a single task in a single file.

e Testing is made easier because it can be performed on a per task basis.
Individual tasks can be replaced with stubs, where necessary, for
integration with automated test management tools.

When using RTA-OSEK, it is strongly recommended that you put the code
relating to each task and ISR into individual files. This is because RTA-OSEK
automatically creates optimized header files for each task and ISR.

These header files provide access to optimized versions of RTA-OSEK's API
calls called the static interface . RTA-OSEK automatically selects the best
implementation of an API call for each task and ISR at build time, based on
RTA-OSEK'’s knowledge of the application. The static interface provides link-
time checking of may of the runtime errors that can occur with using the RTA-
OSEK API. Checking errors at link time means that you don't have to waste
time checking APl misuse with runtime testing.

If you choose not to use the static interface, then all source files that use the
RTA-OSEK component APl must #include the file osek.h (or oseklib.h
if you are creating code to go in a library), rather than the task or ISR-specific
files. Your application will have the same functionality, but will be slower,
larger and require more runtime debugging.

If you must have multiple tasks or ISRs in a single source file, you must not mix
tasks that use RTA-OSEK’s heavyweight and lightweight termination. You
must #define OS_HEAVYWEIGHT or OS_LIGHTWEIGHT as appropriate
andonly #include “osek.h” .

3.1.3 Build

When the basic structure of your application is complete, the RTA-OSEK GUI
can ‘build” the assembler, C and header files that are needed to
assemble/compile and link with your own source code files. You can then
create your executable application. You can find out more about building an

application in Section 3.6.2.

RTA-OSEK v5.0.2 The Development Process 3-5



3.1.4 Functional Testing

3.1.5

For functional testing the application must be downloaded to the target
hardware. The first time you test an application it is recommend that, if
possible, only one stimulus be triggered at a time.

If you discover any problems during these tests you should modify the
application, rebuild it and then retest it. You should repeat these steps until
you are confident of the functionality of the application. The functional
testing stage is explained in Section 3.3.4.

Timing Analysis

The final stage of testing is to prove that the application will meet its timing
deadlines. To do this, you will need to measure the execution times of your
code and enter this information into the RTA-OSEK GULI.

Measurement of execution times can be complex, but this information is
required to obtain accurate timing analysis.

RTA-OSEK tells you whether your system is schedulable or not. An
application is schedulable when all deadlines will be met. RTA-OSEK can tell
you which deadlines are not met for a system which is not schedulable.

You can try to make the system schedulable by:
e Indicating the maximum allowed execution time for each task or ISR.
e Rearrangement of task priorities.
e Adjustment of the CPU clock.

You can find out more about analysis in Section 3.3.5.

3.2 A Simple Example
In this section you will see how to build a simple application by configuring
OSEK OS objects directly from the RTA-OSEK GUI.
Our system specification is as follows:

e The target processor is the Motorola HC12. (Select a different target if
your installation does not include this processor.)

e The target clock is 8MHz.

e Incoming CAN bus messages will generate an interrupt to the CPU. An
ISR must handle the initial processing of each message and then
activate a worker task to complete the processing at a later time.

e Three tasks must run periodically at 3ms, 6ms and 14ms rates.

e The 14ms periodic task shares a data buffer with the CAN worker
task. Mutually exclusive access to the data buffer must be enforced to
avoid data corruption.
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3.2.1 Creating a New Application using the RTA-OSEK GUI

To create a new application, you'll need to run the RTA-OSEK GUI and select
New from the File menu. The Select Target dialog will open. Select the
target processor from the Available Targets and Variant drop down lists.

In Figure 3:5, the HC12/COSMIC 16 task target has been selected and the
HC12 variant is being used. Remember that if your installation does not
include the HC12, you must select a different processor.

Select Target

fwvailable Targets |HC12/COSMIC 16 task -]

Wariant [HC12 |

Inztruction Rate [MHz] |B
Stopwatch Speed [MHz) |E=

Cancel

Figure 3:5 - Selecting a Target Processor

Important: The Available Targets list will only show the targets that have
been installed on your own computer, according to your license file. Please
contact LiveDevices if you cannot see the targets that you expected to. Each
target may have a number of variants to reflect different chip versions based
ON @ CommoN Processor core.

The Select Target dialog in Figure 3:5 can also be used to enter the
Instruction Rate and Stopwatch Speed.

The instruction rate tells RTA-OSEK how fast the CPU clock runs. This
information is used by the RTA-OSEK Planner to convert real times
(milliseconds, seconds etc) into CPU cycles.

The stopwatch speed value tells RTA-OSEK the speed of the timer hardware
used in the GetStopwatch () function to measure execution time in RTA-
OSEK’s Timing and Extended builds. The stopwatch speed is also used by the
RTA-OSEK Builder to create the default value of OSEK’S OSTICKDURATION
when you do not explicitly define a SystemTimer. The value is given in
nanoseconds, so the settings in Figure 3:5 would give an OSTICKDURATION
of 125ns.

Ideally the stopwatch is run at the instruction rate. However, on some targets
this may not be possible, for example when there is a mandatory pre-scalar on
the timer peripheral.

When the target information has been set and the OK button has been
clicked, the RTA-OSEK GUI automatically displays a summary of the new
application. You can see this in Figure 3:6. You can refer back to this
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summary at any stage to see an overview of the entire system that you are
creating.

& unnamed - RTA-OSEK
File View Application Target Stimuli ISRs Tasks Resources Ewvents COM  Build  Analyze Trace Help
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Implementation The targetwvariantis 'HC12"
SHmuli
There are no stimuli.
Target JSRs 7
There are no ISRs
Stimuli
ISRs Tasks
The application only contains an idle task.
Tasks
Resources Rasources
There is one standard resource: RES SCHEDULER.
Events BES SCHEDULER is used by all tasks.
com Mo internal resources are used.
MNalinked resources are used
Analyze v

W Blanner 'S Buider | ¥ RTATRACE |

Histary 4 ':J 13 |Apphcal\on5ummaw j

&

Figure 3:6 - Viewing a Summary of the New Application

3.2.2 Saving the Application

As soon as you create a new application, it is a good idea to save it. To save
an application for the first time, from the File menu select Save As....

In the Save As dialog, use the Save In list to navigate to the location that you
want to save the file in. For the File Name in this example, enter the name
UserApp. Click the Save button to save your new application.

You can save the application at any time by using the File menu to select
Save or by pressing the Ctrl key and the S key together on the keyboard
(Ctrl+S).

3.2.3 Viewing the OIL File

The file that is created is saved using OIL syntax. This means that other OSEK
compatible tools can read it. You can view the contents of the OIL file for the
current application by clicking on the View menu and selecting OIL File.

You'll see the OIL file contents displayed in the lower half of the workspace,
so it will look something like the example in Figure 3:7.

In the upper part of the window you can see the details that were displayed in
the workspace. In the lower part of the window you can now see the OIL file.
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05 RTLOS {

STATUS = EXTENDED:

STARTUPHOOK = FALSE:
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ERRORHOOK = FALSE;

PRETASKHOOK = FALSE:

POSTTASKHOOK = FALSE;

USEGETSERVICEID = FALSE;

USEPARAMETERACCESS = FALSE: v

DescnpllonJFeedback DIL File | Implementation

B

Figure 3:7 - Viewing an OIL File

You can close the OIL view by clicking on the View menu and deselecting OIL
File.

3.2.4 Implementation

You have now reached the implementation stage where you will learn how to
configure the RTA-OSEK OS objects, such as tasks, ISRs, counters and alarms,
which make up the application.

In many of the following steps, you will be required to carry out certain
actions on instances of OS objects; these actions are accessed from a common

icon set, shown in Figure 3:8 — from the left, you can see the Add, Rename,

and Delete icons.
@®®@

Figure 3:8 - Common Icons (Add, Rename, Delete)

Creating ISRs

This example has two interrupt sources - one that detects the arrival of a CAN
message and another that is attached to a hardware timer that can provide
interrupts every 1ms.
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To create a new ISR, select the ISRs group from the navigation bar.

Figure 3:9 shows how the ISRs group is selected and how the ISR Summary
initially appears in the workspace.

I n= =10 M aian 1aryeL an J ) %} (=l g ) PSSO LSS

Application ISR Summary

Target The application has no ISRs.

Stimuli

ISRs

@

Summanny

@

Category 1 15Rs

@

Category 2 |SRs

@

Arhitration

Figure 3:9 - Interrupts

The ISRs to be added will be Category 2 ISRs since OS calls are going to be
made from them (Category 1 ISRs are forbidden from making OS API calls).

The first ISR to be added will be responsible for handling a 1ms tick generated
by a hardware timer.

e From the navigation bar, select the Category 2 ISRs subgroup.
e C(reate the ISR by clicking the Add button in the workspace.
e In the Add Cat 2 ISR dialog, enter the name TimerISR and click OK.

e Depending upon the target type, you may need to enter an interrupt
Vector and a Priority. Here we attach it to a timer peripheral — see

Figure 3:10.

Select ISR settings

Fricrity 1 j

ok LCancel

Figure 3:10 - Setting Priority and Vector for an ISR
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The workspace displays the default settings for the new ISR — see Figure 3:11.

lalgsL lmun 1oRs jamns Resuuies L Lo oo Anages nawe neEp

_ cazin [fmesn (@) @@ [ - @ @ @
ISR "TimerlSR"
= Priority / Vector Pricrity 1. Wector "Timer channel 0"
[ Floating paint Floating-pointis not used
Stack allocation The ISR's stack reguirements are automatically calculated.
| Buffering Mo bufter.
| Budaet The execution budget is undefined
H Execution profile "defavit_profile”
Execution limits Worst-case undefined execution time, undefined stack,
Resource use Mo resource locks
Intermupt locks Mo interrupt locks

Primary ¢ Activated This is a prirmary profile with minimum recognition 0 processor cycles and maximum recognition 0 processor cycles

P Detail

Figure 3:11 - Properties of the Newly-Created Interrupt

Now repeat this procedure to create a Category 2 ISR called CaniSR,
responsible for handling the interrupts generated by incoming CAN messages.

Creating Tasks

You will now create the four tasks that perform the work of the application.
Remember that three of these tasks are activated periodically at rates of 3ms,
6ms and 14ms. The fourth task is activated by Can/SR.

To create a new Task, select the Tasks group from the Planner navigation bar.

Figure 3:12 shows how the Tasks group is selected and how the Task
Summary initially appears in the workspace.

(1= viEw  HppnLdun Tdryen aan 13RS IdsEs  RESUUTLES  EWEILS LY DUND Sy LE
Application Tasks Summary
Ve Aulostant
Stimuli There are no autostared tasks.
I3RS Tasks
Tasks The application only contains an idle task.
osek idle taskis BCC, autostarted, non-floating-point.
@ [tuses resource BES SCHEDULER.
Summary There is one execution profile: default profile.
[t does not respond to any stimulus.
Tyl itz Tasksals
There are no tasksets.
Tasksets

Figure 3:12 - System with no Tasks

e From the navigation bar, select the Task Data subgroup.
e C(reate a task by clicking the Add button in the workspace.

RTA-OSEK v5.0.2 The Development Process 3-11




3-12

¢ In the Add Task dialog, enter the name Task1 and click OK.

e In the Task “Task1” priority dialog (Figure 3:13), enter a priority of
10 for this task.

Task “Task1™ priority

T azk Pricrity ; |'| 1] ar.

Bequired loveer priority tagks:

Figure 3:13 - Setting Task Priority

The workspace displays the default settings for the new task, as shown in
Figure 3:14

TQIYEL WU LOnD 13RI RSEULILSR  LYGILD LU LUIO SDdipes 11aus 1 ioip

1 Select Task: 'ﬁ@ @ @ ’W‘ ® @ @
Task "Task1" [BCC1]
| Pricrity Priority 10.
] Scheduling Scheduling is preemptable.
Activations Maxirmurm number of simultaneous task activations is 1.
— Autostart Mot autostared.
Floating poirit Floating-paintis not used.
Stack allocation The task's stack requirerments are automatically calculated.
Termination Termination type is taken from the defaultvalue (heawweight).
Eudget The execution budget is undefined
Exacufion profife "defaull_profile”
Execution limits YWarst-case undefined execution time, undefined stack.
Besource use Locks resource BES SCHEDULER.
Intermupt locks Mo interrupt locks.
Prirnary ¢ &ctivated This is an activated profile.

— Datail

Task Taskl starts executing at task priority 10.
— ﬂ ﬂ j Taskl can lock resource BES SCHEDULER.

der | 7 RTA-TRACE
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Figure 3:14 - Task Properties

Now repeat this procedure to create another three tasks as follows:
e Task2 with Priority 9
e Task3 with Priority 8
e CanWorker with Priority 3

Creating a Counter and Alarms

The three periodic tasks that have been created will be activated by the expiry
of alarms attached to a counter. For this example, we will ‘tick’ the counter
from TimerISR (invoked every 1ms), thus a counter tick is equivalent to Tms.
Alarms attached to the counter will expire after a specified number of ticks.
When each alarm expires, an associated task will be activated by the OS.

To create a new counter, select the Stimuli group from the navigation bar.

Figure 3:15shows how the Stimuli group is selected and how the Stimuli

Summary initially appears in the workspace.
fiew  Application  Target Stimuli ISRs Tasks Resources Ewents CCM  Build

Application Stimulus Summary
Target Stimuli
Stimuli There are no stiruli.
@ Counfars
Summary There are no counters.
@ Autostart
Stirmuli There are no autostarted alarms.
@ Pariodic Schadulas
B There are no petiodic schedules.
@ Plannad Scheduias
P There are no planned schedules.
atindic Schedules
anned Schedules
ISRs
Tasks

RTA-OSEK v5.0.2

Figure 3:15 - System with no Alarms

e From the navigation bar, select the Counters subgroup.
e C(Create a counter by clicking the Add button in the workspace.

¢ In the Add Counter dialog, enter the name TimerCounter and click
OK.
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¢ In the Tick rate for timebase “TimerCounter” dialog (Figure 3:16),
enter a fastest tick rate of 1 realtime ms.

Tick rates for timebase TimerCounter

Mode |0SDEFAULTAPPMODE | Assigntoal |
Fastest |'| |real tirme j =
Slomest |'I | J| J

ok Cancel

Figure 3:16 - Setting Timer Tick Rate

The workspace displays the default settings for the new counter (Figure 3:17).

Select counter: |TimerEu:uunter j @ @ @

Counter "TimerCounter"®
Erirnary Prafile Mo primary profile.
Tick Rate 1tickis 1 realtime ms.
Unitz < ho units >
Constants € no constants >,
M ax Walue b tick walue BRE3E.
Min Cycle in cycle value 1.
Ticks Per Base Ticks perbase 1.
Synchronized Alarms Alarms are not synchronized.
Trace Format <Mones.

Figure 3:17 - Counter Properties

Finally we need to indicate that the counter is ticked by TimerISR:

e (lick the Primary Profile button and select TimerISR from the
primary profiles dropdown list and click OK.
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Now we need to create the alarms responsible for activating the three tasks
created previously. Task7 is to be run every 3ms, Task2 runs every 6ms, and
Task3 runs every 14ms.

e From the navigation bar, select the Stimuli subgroup.
e C(Create a stimulus by clicking the Add button in the workspace.
¢ In the Add stimulus dialog, enter the name Task1Alarm and click

OK.

e C(lick on the Arrival Type button and select periodic.

e C(lick on the Schedule/Counter button and select TimerCounter as
the counter for this alarm.

¢ In the Arrival Pattern dialog, enter a cycle time of 3 TimerCounter
ticks (equivalent to 3ms).

The workspace, as shown in Figure 3:18, displays settings for the new alarm.

Select Stimulus: |Task1AIalm j @ @ @ Response: |resp0nse1 ﬂ @ @ @

Aival Modes
Anival Type
Arrival Pattern
Schedule/Counter
Event Raized
Callback.

Deadline
Responze Delay
Implementation

We now need to
alarm stimulus.

e (lick on

Stimulus/Alarm "TasklAlarm®

The arrival is handled in all AppModes.

The arrival type is periodic.

lthas period 3 TimerCounter ticks (3 real tirme ms). Starttime 0 TimerCourter ticks.
This stimulus is implemented as an alarm attached to counter TimerCounter.

Mo eventis setwhen the alarm expires.

Mo callback function runs when the alarm expires.

Rasponsa “rasponsal”.

The response is made in all applicable Apphdodes.

There is no deadline.

Minimur response delay 0 processor cycles, maximurm response delay 0 processor cycles.

Mothing implements this response.

Figure 3:18 - Alarm Properties

make the alarm activate Task7 - this is the response to the

the Implementation button, and select Task? in the

Implementer drop-down — there is no need to enter anything in the
Execution time field yet.

You can now repeat this procedure to create two other alarms as follows:

e Task2Alarm which activates Task2 every 6ms;
e Task3Alarm which activates Task3 every 14ms

RTA-OSEK v5.0.2
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Creating a Resource

Resources are used to enforce mutually exclusive access to a critical section of
application code. This is usually to prevent corruption of data in a global
variable. In this application you must create a resource that is shared between
the CanWorker and Task3 tasks. The task that has successfully locked this
resource can safely modify a data buffer without the other task disrupting it.

To create a new resource, select the Resources group from the navigation
bar.

Figure 3:19 shows how the Resources group is selected and how the
Resource Summary initially appears in the workspace.

rie L) =10 L | /NI RIEY] I dryes Jnan 1ak.5% | d&Fh .S L CwElLS [ L | [=]N ][N} Hildl L Ir
Application Resource Summary
ez There is one standard resource: BES SCHEDULER.
Stirmuli BES SCHEDULER is used by all tasks.
ISks Mo linked resources are used.
Tasks ]
Mo internal resources are used.
Resources
@ Fesource BES SCHEDULER has effective task priority 0.
Summary

[t P e |

Figure 3:19 - System with no User-Declared Resources

e Select the Standard subgroup from the navigation bar.
e C(reate a resource by clicking the Add button in the workspace.

¢ In the Add resource dialog, enter the name CanResource and click
OK. The workspace displays the default settings for the new resource.

Now that the resource has been created, we need to indicate which tasks use
it:

e Click the Change Users button, select Task3 and CanWorker in the
Select Users dialog and click OK. RTA-OSEK automatically calculates
the effective task priority of this resource.

The resultant workspace can be seen in Figure 3:20.
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Standard resource "CanResource"®

Change Lsers | | Used bytask Taskd and task Can'Worker.

take linked

Datail

Fesource CanBesource has effective task priarity 8.

Figure 3:20 - Resource Properties after Users are Added

Writing Task and ISR Code

You will now need code for the ISRs TimerISR and CanlSR, tasks Task1, Task2,
Task3 and CanWorker, as well as the application’s main () function. The
main () function includes the application startup as well as the OS idle
mechanism.

The C source code can be created outside of the RTA-OSEK GUI if you wish,
but you can also create templates from the RTA-OSEK GUI to help get you
started. To do this:

e Change to the Builder view, then from the navigation bar, select the
Custom Build subgroup.

e In the workspace, click the Create Templates button. RTA-OSEK will
create seven C source files and put skeleton code in each of them. It
also creates a batch file rtkbuild.bat, which you will use later in
the build phase.

Writing Code for TimerISR and CaniSR

Move back to the Planner view and select the ISRs group from the navigation
bar. Then select the Category 2 ISRs subgroup and from the workspace,
select TimerlISR.

You don’t have to worry if you can’t remember everything that has to be
done in the ISR, because the RTA-OSEK GUI can tell you. Simply select the
Implementation option from the View menu. The lower section of the ISR
window is displayed and the implementation details for the ISR will appear.
You can resize this window by moving your mouse over the blue horizontal
‘splitter’ bar. Click and hold the left mouse button and drag the bar up or
down.
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#include "TimerISE.h"

ISR(TinerISR)

{

service_interrupt():
ick_TimerCounter():

: .
Auwailable 'static interace versions of API A
Description | Feedback | DILFile mplementation

Figure 3:21 - Viewing the TimerISR Implementation Notes

The sample code shows the ISR-specific header file TimerIsr.h being
#included, followed by the ISR body. Since we have made this ISR the
primary profile for the counter TimerCounter, the implementation view
indicates that this ISR is required to call Tick_TimerCounter (). This call
"ticks’ the TimerCounter so that the counter is made aware of time passing.
You must ensure that your timer hardware is configured so as to cause these
‘ticks’ to happen at the defined rate (1ms in this example). Otherwise, the
alarms attached to this counter will not expire at the correct times and the
various tasks will not be activated as desired.

You can close the implementation notes by deselecting the Implementation
option in the View menu.

You can directly edit the source code for the ISR by selecting the ﬂ button
in the Category 2 ISRs workspace.

The code for CaniSR can be written in a similar way. In this case, you should
add an ActivateTask_CanWorker () call to activate the CanWorker task
in the ISR body.

Important: When editing files from within the RTA-OSEK GUI, the default
editor is set to be the Windows Notepad application. You can select your
own preferred editor from the File menu, by selecting Options.

Portability Note: The code that needs to be written here is target-specific, so
no details are given where lines involve detection of pending interrupt sources
and how they are acknowledged.
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Writing Code for Task1

From the Tasks group on the navigation bar, select the Task Data subgroup.
Then select the task Task1.

Use the Implementation View to check the code that is required for this

task.

£ unnamed - RTA-OSEK
File Wiew Application Target  Stimuli

I5Rs Tasks Resources Events COM  Buld Analvze Trace Help

CBX

Application
Target

Stimuli

Select Task: | Taskl - @ @ @ default_profile - @ @ @;

Task "Task1® [BCC1]

T — Pririty Priarity 10.

Tasks Scheduling | Scheduling is preemptable.

Sumrmary

Events

CoM

@ Activations

Analyze E xecution limits

————— Autostart Mot autostarted
Tazk Data Floating point Floating-pointis not used.
@ Stack allocation
Tasksets o
T erminatian
& Budget The execution budgetis undefined.

Execution profile “defauil_profifa”

MaEximurm number of simultaneous task activations is 1
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Termination type is taken from the defaultvalue theawweight).
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W Blanner [ Builder | 7 RTATRACE |

Histary 4 ':J 3 |Task1.default_prnli|e

Implementation Details - Task

Task Taskl runs at priority 10.

eq.
#include "Taskl. h"
TASK({Ta=kl)
{

Awailable 'static interface’ versions
ActivateTask_Task1()
ChainTask_Taskl()

=1

inplement_.

Desciiplion | Feedback | DILFile  implementation

Taskl must execute its single profile and then terminate.
Taskl! rustimplement response responsel.

response responsel();

TerminateTask();

of AP

Figure 3:22 - Viewing the Implementation Notes for Task1

As with the ISR view, you can directly edit the source code for the task by

selecting the ﬂ button in the workspace. The code you write will be target-

specific, but should follow the structure in the implementation view.

Writing Code for the Remaining Tasks

The code for tasks Task2, Task3 and CanWorker follow the same pattern.
Whenever you modify the RTA-OSEK configuration always check that the

suggested implementation matches the code you have written.
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Writing Code for ‘main’

In C programs, main () is the starting point for the main application. It is
called after the low-level startup initialization. Usually interrupts are disabled
prior tomain () being entered.

The skeleton code generated by the RTA-OSEK for main () is shown in Code
Example 3:1.

/* Template code for 'main' in project: UserApp */
#include "osekmain.h"

OS_MAIN()

{
StartOS (OSDEFAULTAPPMODE) ;
ShutdownOS (E_OK) ;

}

Code Example 3:1 - Template Code for main()

Note that the 0S_MAIN () macro is used rather than main (). Individual
compilers have different criteria for the arguments and return types that are
allowed for main (), so RTA-OSEK provides 0S_MAIN () to assist portability.

Portability: Using 0S_MATIN (), rather than main (), in applications can help
make them more portable to different RTA-OSEK targets.

The StartOS (OSDEFAULTAPPMODE) call is used to start the operating
system. No operating system API calls should be made before start0s () is
called.

The shutdownOs () call is used to stop the OS when (and if) the application
completes. The default action for shutdownOSs () is to stay in an infinite
loop and not to return. This call is not normally used because applications
tend to run ‘“forever’ (or until the processor loses power or is reset).

In your example application, you need to perform some initialization of the
target hardware before calling start0s. This makes sure that the timer is set
to interrupt every 100ms and the appropriate interrupt sources are enabled.

After start0S, you must set up the alarms that are used by the application.
Use the SetAbsAlarm() API call to do this. SetAbsAlarm() takes three
parameters: the name of the alarm that is being set up, its start time and its
cycle time. The start time is the first time at which the alarm will expire. Be
careful if you set this to 0. This will mean that the alarm counter must cycle
through its entire range before wrapping around to 0. This can take a long
time on some hardware. The cycle time sets up the periodic expiry of the
alarm after the start time. In this application, each alarm is set to start at Tms.
The cycle times for Task1Alarm, Task2Alarm and Task3Alarm are 3ms, 6ms
and 14ms respectively.
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The code that executes after start0s () belongs to the idle task. The idle
task is called osek_idle_task. The idle task can act like any other task; it
can make API calls, use resources, send and receive messages, send and wait
for events and so on. It cannot be directly activated because it only terminates
when ShutdownOS () is called and it cannot use internal resources because
it would prevent other tasks from starting.

Important: Putting code in the idle task can be a very efficient way of
implementing a system. In particular, if you have only one task that needs to
respond to OSEK events you should use the osek_idle_task. Your
application will be significantly smaller and more responsive if the idle task
waits for events, rather than any other task.

The RTA-OSEK Planner will show you a suggested implementation for
OS_MAIN() in Application -> Implementation. Select the osek_idle_task
task in the Task Data subgroup (in the Tasks group on the navigation bar)
and view the implementation details.

Note that in this case, the idle task does no work. On targets that support it,
you can put the processor into a ‘sleep’ state in the idle task. The processor
must ‘wake-up’ if an interrupt occurs.

Important: The idle task must not terminate. It must loop forever.

Setting up Timer/Counter Hardware

In Code Example 3:2, the function do_target_initialization () needs
to initialize the interrupt sources to drive TimerISR. One of these sources is a
hardware counter/timer that needs to provide an interrupt every 1ms.

You may wish to use code based on Code Example 3:2 to do this.

void do_target_initialization(void)

{
unsigned int timer_divide;
timer divide =

OSTICKDURATION_TimerCounter / OS_NS_PER_CYCLE;

/* Initialize the timer hardware */
SetupTimer (timer_divide) ;

/* Other target initialization */

Code Example 3:2 - Initializing Timer Hardware

Code Example 3:2 shows initialization using the two RTA-OSEK-generated
constants OSTICKDURATION TimerCounter and OS_NS_PER_CYCLE.
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The OSTICKDURATION_TimerCounter constant specifies the duration of
the ‘tick’ of the counter in nanoseconds (ns), so in this example the
OSTICKDURATION of 1ms is 1,000,000ns.

The OS_NS_PER_CYCLE constant specifies the duration of the CPU
instruction cycle in ns. For an 8MHz CPU, this is 125ns.

In this example, you require the timer to be configured to interrupt every 1ms.
If you use these constants to calculate the divide ratio, the code will
automatically adjust if the clock rate changes.

OS Status, ErrorHook and Callbacks

For preliminary testing, you should run the application using the operating
system’s Extended build. Extended build means that the OS performs
rigorous checks in each API call. Of course, this takes time and code space.

Once the application is seen to be working correctly, you will usually switch to
Standard build. Very few checks are made with Standard build, so the OS
can run much more efficiently.

To choose Extended or Standard status:

e Select the Application group from the Planner navigation bar and,
select the OS configuration subgroup.

e Click on OS Status, and choose the appropriate status level.
When using Extended build, you can check the return status code from each
API call or alternatively request that Error Hook be used. This is a function
that the OS will call whenever an error is detected. You write the

implementation of Error Hook in your application. Normally you will use it to
halt debugging and to alert you of errors.

To use the Error Hook facility

e Select the Application group from the Planner navigation bar and then
select the OS Configuration subgroup.

e (lick the Hooks button. The Select Hooks dialog opens.
e Select the Error Hook checkbox and then click the OK button.
You can see that the Error Hook has been selected in Figure 3:23.

Select hooks E| E|

[ Startup Hook
[ Shutdawn Hoal:,

[ Pre Task Hook
[ Post Tazk Hoak:

[]4 LCancel

Figure 3:23 - Selecting the Error Hook
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You can add the code needed to implement ErrorHook () in any source file,

but main.c is a good place to start. Add the following code:

#ifdef OSEK_ERRORHOOK

OS_HOOK (void) ErrorHook (StatusType e)
{
/* Put a debugger breakpoint here. */
while (1) {
/* Freeze. */
}

}
#endif /* OSEK_ERRORHOOK */

Code Example 3:3 - The ErrorHook()

You can find more information about using ErrorHook () for debugging

purposes in Section 13 of this User Guide.

There are three other functions that you must supply when using the Timing
or Extended build. The operating system uses these to time the execution of

your code.

Don’t worry about the details at the moment; simply add the code in Code

Example 3:9 after the ErrorHook ().

#ifdef OS_ET_MEASURE
OS_HOOK (void) OverrunHook (void)
{
/* Put a debugger breakpoint here. */
while (1) {
/* Freeze. */
}
}
OS_NONREENTRANT (StopwatchTickType)
GetStopwatch (void)
{
/* Temporary implementation. A correct solution
* returns the current stopwatch value. */
return 0;
}
OS_NONREENTRANT (StopwatchTickType)
GetStopwatchUncertainty (void)
{
/* Temporary implementation. A correct solution
* returns the uncertainty in the stopwatch
* value. */
return 0;
}
#endif /* OS_ET_MEASURE */

Code Example 3:4 - Timing Callbacks
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Final Checks

To view a complete implementation summary select the Implementation
subgroup from the Application group on the navigation bar.

Use this as a checklist to ensure that your application is fully implemented.
You can print out this summary by selecting Print Selection from the File
menu.

3.2.5 Build

If you have successfully completed all of the steps in creating this example
application, you can now start the build process. Switch to the Builder, and
refer to Section 3.6 where the build process is described.

3.2.6 Functional Testing

The executable file can be downloaded to your target hardware, so that you
can test its behavior.

Initial testing should always be performed using the Extended build with the
Error Hook, because the OS will detect any misuse of API calls. Only once an
application performs correctly should you switch to the Timing or Standard
builds.

3.3 A Simple Example Using Timing Analysis

In this section you will see how to build a simple application using a stimulus-
response model to capture the performance requirements and perform timing
analysis on the result.

3.3.1 Your Specification

For this example, the specification contains the following requirements.

e The target processor is the Motorola HC12. (Select a different target if
your installation does not include this processor.)

e The target clock is 8MHz.

e A button Button? can be pressed many times, but never faster than
twice per second. The minimum interval is 0.1s.

Figure 3:24 illustrates these requirements (B is used in the diagram to indicate
when the button is pressed).
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B B B B

<—0.1s— <—0.1s—>
Figure 3:24 - Button1 Requirements

e Alamp Lamp7 must be lit within 10ms of Button1 being pressed.
e [amp2 must be switched off within 11ms of Button1 being pressed.

e Motor Motor? must be started within 200ms of Buttonl being
pressed.

Figure 3:25 shows these requirements.

B Lamp1 Lit Lamp1 Off Motor1
< 10ms >

< 11ms >

< 200ms »

Figure 3:25 - Lamp1, Motor1 and Button1 Requirements

e \When MotorT is up to speed, an interrupt is raised.
e [ampT must be switched off within 11ms of the motor being up to

speed.
e [amp2 must be switched on within 10ms of the motor being up to
speed.
Figure 3:26 illustrates these requirements.
Motor up to Speed Lamp2 On Lamp1 Off
< 10ms > .
< 11ms >

Figure 3:26 - Lamp1, Lamp2 and Motor1 Requirements

e [amp3 must toggle on/off every 1s, with an accuracy of +/- 2ms.
You can see this requirement in Figure 3:27.
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Lamp3 Toggle Lamp3 Toggle

2ms 2ms 2ms 2ms

A

Yy

A
A 4
A

1s 1s

Figure 3:27 - Lamp3 Requirements

e The debounce circuitry attached to button Button1 means that it takes
between 0.1ms and 0.4ms from pressing the button to it being
presented to the processor.

e |t takes 0.5ms from the processor applying current to a lamp to the
filament in the lamp being actually to be “lit’.

e |t takes 0.3ms from the processor removing current to a lamp to the
filament in the lamp being deemed to be ‘off’.

e |t takes 50ms to start Motor1 from the processor applying power to it.

Creating a New Application using the RTA-OSEK GUI

To create a new application, you'll need to run the RTA-OSEK GUI and select
New from the File menu. The Select Target dialog will open. Select the
target processor from the Available Targets and Variant drop down lists.

In Figure 3:28, the HC12/COSMIC 16 task target has been selected and the
HC12 variant is being used. Remember that if your installation does not
include the HC12, you must select a different processor.

Select Target

fwvailable Targets |HC12/COSMIC 16 task -]

Wariant [HC12 |

Inztruction Rate [MHz] |B
Stopwatch Speed [MHz) |E=

Lk Cancel

Figure 3:28 - Selecting a Target Processor

Important: The Available Targets list will only show the targets that have
been installed on your own computer, according to your license file. Please
contact LiveDevices if you cannot see the targets that you expect. Each target
may have a number of variants to reflect different chip versions based on a
common processor core.
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The Select Target dialog in Figure 3:28 can also be used to enter the
Instruction Rate and Stopwatch Speed. The instruction rate should be set
according to the smallest instruction cycle in the processor.

The stopwatch speed value depends on the sample rate used by timer
hardware attached to the GetStopwatch () function that is used in Timing
and Extended builds. This function is used to measure execution time in OS
and application code. Ideally the stopwatch is run at the instruction rate, but
on some targets this may not be possible.

When the target information has been set and the OK button has been
clicked, the RTA-OSEK GUI automatically displays a summary of the new
application. You can see this in Figure 3:6. You can refer back to this
summary at any stage to see an overview of the entire system that you are
creating.

Saving the Application

As soon as you create a new application, it is a good idea to save it. To save
an application for the first time, from the File menu select Save As....

In the Save As dialog, use the Save In list to navigate to the location that you
want to save the file in. For the File Name in this example, enter the name
UserApp. Click the Save button to save your new application.

You can save the application at any time by using the File menu to select
Save or by pressing the Ctrl key and the S key together on the keyboard
(Ctrl+S).

Viewing the OIL File

The file that is created is saved using OIL v2.5 syntax. This means that other
OSEK compatible tools can read it. You can view the contents of the OIL file
for the current application by clicking on the View menu and selecting OIL
File.

You'll see the OIL file contents displayed in the lower half of the workspace,
an example was shown in Figure 3:7.

In the upper part of the window you can see the details that were displayed in
the workspace. In the lower part of the window you can now see the OIL file.
Additional RTA-OSEK-specific information is saved in the OIL file using
comments that start with //RTAOILCFG. These comments aren’t usually
shown in the OIL view, but you can switch them on.

To view the RTA-OSEK-specific comments, from the File menu, select
Options. The Options dialog opens. Select the Show RTA Extended OIL in
View option, shown in Figure 3:29.
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3-28

options 2 x|

application 5ettings |.-'1'-.u3iliar_lrl Filesl Global Settingsl I:in::ensingl

e —Location of file
Chow ISP wector descripion: v .z Fileg I
|lze hexadecimal for timings [ hFilez I
Show Extended DIL in view v Assembler Files I
Iz hyperlink: v
sEnpErnes o Object Files |
Seek to object in OIL wiew [
Intermediate Filesl.
Application Files I
—Build —Analysi
k.eep intermediate build files [ F.eep intermediate analvsis files [
Stop build on warnings [ Analyziz Depth IEI "I
Pricrity Pack [epth |1

ok, Cancel |

Figure 3:29 - RTA-OSEK GUI Options Window

If you click the OK button in the Options window, you'll see the comments in
the OIL file.

If you are importing a legacy OIL file, comments placed within an OIL CPU
object (other than those generated by RTA-OSEK) are not preserved.
Comments outside the object and OIL descriptions are preserved.

You can close the OIL view by clicking on the View menu and deselecting OIL
File.

Important: Do not hand-edit OIL files that use extended //RTAOILCEG
syntax. Interdependencies exist that could cause you to lose important
information when the RTA-OSEK GUI reads the file back in.

Entering Stimuli and Responses

To implement your specification, the first thing you'll need to do is to enter
the stimuli and responses. Select the Stimuli group on the navigation bar,
shown in Figure 3:30. The workspace displays the Stimulus Summary.
Here, the summary shows that there are no stimuli in this application.

Four kinds of stimuli are available for use in an application: bursty, alarm,
periodic and planned. Full details of these types of stimuli can be found in
Sections 10 and 11 of this User Guide. In this example, you will create bursty
stimuli to model the pressing of Button? and Motor! reaching its running
state. You will also create an alarm stimulus that models Lamp3 toggling on
and off every 1s.
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fiew  Application  Target Stimuli ISRs Tasks Resources Ewents COM Build

Application
Target
Stimuli

@

Summary

@

Stitmuli

@

Counters

@

atindic Schedules

@

anned Schedules

ISRz
Tasks

Stimulus Summary

Stimuli
There are no stimuli.

Countars
There are no counters.

Aulostar
There are no autostarted alarms.

Parniodic Schaedules
There are no periodic schedules.

Planned Schedulas
There are no planned schedules.

Figure 3:30 - Viewing the Stimulus Summary

To add a new bursty stimulus, select the Stimuli subgroup on the navigation
bar. You'll see a Select Stimulus drop down list and three buttons.

When there are no stimuli in your application only the Add Stimulus button

is enabled.

Click the Add button in the Stimulus workspace. This opens the Add
Stimulus dialog. Enter the name Button1Press.

Application
Target
Stirnuli

@

Summary

@
Stirnuli
@
I5Rs
Tasks
Resources
Ewvents
COM

analira

C0®@

Select Stirulus:

Add stimulus

Enter name for stimulus

|Button‘| Pressz

[ ]

Cancel

Figure 3:31 - Entering a Name for the New Stimulus
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Clicking the OK button, as shown in Figure 3:31, creates a new stimulus. By
default, the stimulus type is bursty. The default properties for this stimulus are
displayed in the workspace.

Across the top of the workspace, in Figure 3:32, you will see that there is now
a Response drop down list and all of the buttons are now enabled. The
buttons that appear down the left hand side of the workspace can be used to
change the stimulus properties.

Select Stimulus: || RTEES @ @ @ Response: |resp0nse1 j @ Qi\) Qm-)

Stimulus "Button1Press"

Airival Modes The arrival is handled in all Apphodes.

Arival Pattern It occurs at most 1 time in 'forever'.

Ayrival Type ‘ The arrival type is bursty.

Primary profile Mo primary profile has been set.
Hesponse “responsai”
Resp. Modes The response is made in all applicable Apphodes.

Response Delay Minimurn response delay 0 processor cycles, maximum response delay 0 processor cycles.

Deadline ‘ There ig no deadline.

Implementatian Mothing implements this response.

Figure 3:32 - Viewing the New Bursty Stimulus

You have now created a bursty stimulus called ButtonPress that, by default,
will only occur once. There is no primary profile set, so it will not yet be
detectable. A bursty stimulus is used to model real-world events whose arrival
time cannot be guaranteed, but where a maximum rate can be determined.

You will notice that the RTA-OSEK GUI also created a default response called
responsel.

The default details for this new response are shown in the workspace. At the
moment the response won't have a deadline or an implementation.

Your specification says that Button1Press can occur many times, but no faster
than twice per second, with a minimum interval of 0.1s.

To add this into your application:

e Click the Arrival Pattern button in the Stimulus workspace. This
opens the Arrival Burst Pattern dialog.

e In the first row of this dialog, enter the value 1 into the At Most...
column. Then enter 0.1 into the In Any... column and select real
time and s from the drop down lists.

Figure 3:33 shows the information you have just entered.
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Arrival Burst Pattern |?|f'5_<|

At most. . inany...

m 01 caitme ] ER - |

LCancel

b

Figure 3:33 - Entering the First Arrival Burst Pattern

Now you will need to add another burst pattern of ‘at most 2 times in any 1
real time s’. To add another burst pattern:

In the Arrival Burst Pattern dialog, click the @ button.
This adds a new entry to the dialog.

e Enter 2 into the At Most... column. Enter 1 into the In Any... column
and select real time and s from the drop down lists.

e (lick the OK button to save the changes that you have made.

Arrival Burst Pattern

At most. . inany...
|‘l |D.1 |rea| timne jl g j o
[ | |2 |1 |rea| time j_ w7 LCancel

fh if

[ Femove

Figure 3:34 - A Stimulus with a Complex Bursting Pattern

The next part of your specification says that Lamp7 must be lit within 10ms of
Button1Press. This is the deadline for Lamp1 to be lit

There is a 0.5ms delay from switching on the current to the lamp being lit.

e (lick the Rename Response button in the Stimulus workspace. In
the Rename dialog that opens, rename response! to Lamp10n.
Renaming the response make it clearer which response is generated
when the Button1Press stimulus is detected.

e (lick the OK button, as shown in Figure 3:35, to save the new name.
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) @ @ Response: |response1 j @ @ @

Rename response]

AppModes.
Enter new name
|Lam|:u‘|Dn

| real tirme 5. at most
)4 | Cancel

1 5et

| applicakble Appkodes.
Figure 3:35 - Renaming a Response

¢ (lick the Deadline button and set the deadline to 10 real time ms,
as shown in Figure 3:36.

Heasponse "tampiQn®

Resp. Modes | Bl Enter the response deadline
Deadii T
Deakee | o feattme =] RS~ |
Fesponze Delay | fd i

\ B2 =

Implementation

Figure 3:36 - Entering the Lamp10n Response Deadline

e C(Click the Response Delay button. Set the Max value to 0.5 real
time ms and the Min value to 0.

Response "LampiOn”.

Fesp. Modes | llil=] Response delay
Deadiire | The
kax |D.5 |real time j|ms j
Response Delay | kdini [
in E ||:|n:u:essor j|c_l,lcles j
Implementation | Mot

Figure 3:37 - Setting the Response Delay for the Lamp10n Response

If you look at the workspace you will see a summary of the details you have
entered. Have a look at Figure 3:38.
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Select Stimulus: |Butt0n1F‘ress ﬂ ® @ @ Response: |LamplOn ﬂ ® @ @

Stimulus "Button1Press®

Aival Modes The arrival is handled in all Apphaodes.
Agrival Type The arrival type is bursty.
Arival Pattern It occurs atmost 1 time in 0.1 real time s, atmost 2 times in 1 realtime s.
Primary prafile Mo primary profile has been set.
Response "Lampiln”
Resp. Modes The response is made in all applicable AppModes.
Deadline Theresponse deadline is 10 realtime ms.

tinimum response delay 0 processor cycles, maximum response delay 0.5 real ime ms.

Implementation Mothing implements this response.

Figure 3:38 - Viewing the Button1Press Stimulus and the Lamp10n Response

The next part of the specification says that Lamp2 must be switched off within
11ms of the Button1Press stimulus. It must also take into account that there is
a 0.3ms delay from removing the current to the lamp being unlit.

e Add a new response by clicking the Add button (to the right of the
Response drop down list).

e Enter the name Lamp20ff and click the OK button.
e C(lick the Deadline button and set the deadline to 11 real time ms.

e C(lick the Response Delay button and set the Max value to 0.3 real
time ms and the Min value to 0.

The current details are displayed in the workspace, shown in Figure 3:39.

Select Stimulug: |Butt0n1 Press ﬂ @ @ @ Response: |Lamp2fo j @ @ @

Stimulus "Button1Press”

Arrival Modes The arrival is handled in all Apphodes.
Agrival Type The arrival type is bursty.
Arrival Pattern ltoccurs at most 1 time in 0.1 real tirme 5, at most 2 times in 1 real time s.
Primary profile Mo primary prafile has been set,
Rasponsa " amp2Of”.
Resp. Modes The response is made in all applicable AppModes.
Deadline The response deadline is 11 real time ms.
Response Delay Minirmurn response delay 0 processor oycles, maximum response delay 0.3 real time ms.

Maothing implements this response.

Figure 3:39 - Viewing the Details of the New Lamp20ff Response

Next you will need to add a response that represents Motor! being switched
on.
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e Add a new response called Motor1On. Remember that you must
click the Add button to the right of the Response drop down list to
do this.

e Set the Motor10n Deadline to 200 real time ms.

e Set the Response Delay Max value to 50 real time ms and Min to
0.

The specification says that Lamp3 has to toggle on and off every 1 second (+/-
2ms). To add this to your application, you will need to add a new stimulus
and a new response.

e Add a new stimulus by clicking the Add button (to the right of the
Select Stimulus drop down list);

e Enter the name Lamp3Toggle and click the OK button.

e Click the Arrival Type button and set the stimulus to be periodic by
selecting the Periodic option,

e Click the Arrival Pattern button and set the period to 1 real time s.

e To satisfy the requirement for a toggle variation of +/-2ms, click the
Deadline button and enter of a 4 real time ms deadline for the
response.

e Click the Response Delay button and set Max to 0.5 real time ms
(the lamp switch-on delay).

A summary of the stimuli and responses can be seen in the workspace, as
shown in Figure 3:40.

Select Stimuluz: |Lamp3ToggIe ﬂ @ @ @ Response: |resp0nse1 ﬂ @ @ (

Stimulus "Lamp3Toggle"

Arival Modes The arrival is handled in all Apphodes.

Aival Pattem Ithas period 1 real time s

Agrival Type ‘ The arrival type is periodic.

Schedule/Counter This stimulus is not attached to a counter or schedule.

Response “responsai”

Resp. Modes ‘ The response is made in all applicable Apphodes.

Deadline ‘ The response deadline is 4 realtime ms.

Minimurm response delay 0 processar cycles, maximum response delay 0.5 real time ms.

Implementation ‘ Mathing irmplements this response.

Figure 3:40 - Viewing the Details of the New Lamp3Toggle Stimulus and Response

Finally, you will need to enter the details for the motor reaching the running
state.

e Add a new bursty stimulus called Motor1Running.
e Rename the default response to Lamp20n.
e Enter a Deadline of 10 real time ms.
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e Enter a maximum Response Delay of 0.5 real time ms.
e (Create a new response called Lamp10ff.

e Specify a Deadline of 11 real time ms.

e Enter a Response Delay of 0.3 real time ms.

Figure 3:41 shows the details of the Motor1Running stimulus.

Select Stimulus: |Moto[1Hunning j @ @ @ Fesponse: |80l

Amival Modes

Arrival Type

Arival Pattern

Primary profile

Resp. Modes

Deadine

Fesponse Delay

Implementation

@®

Stimulus "Motor1Running®

The arrival is handled in all Apphodes.

The arrival type is bursty.

[t occurs at most 1 time in forever'.

Mo primary profile has been set.

Response "LampZ0n”

The response is made in all applicable Apphodes.

The response deadline is 10 real time ms.

Minimum response delay 0 processaor cycles. maximum response delay 0.5 real ime ms.

Mathing implements this response.

Figure 3:41 - Viewing the Details of the New Motor1Running Stimulus

The information provided in the specification has now been entered. Have a
look at the Stimulus Summary to see an outline of the details you have

specified. The workspace should appear as shown in Figure 3:42.
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Stimulus Summary

Stimuli
There are 3 stirmuli.

Stirnulus Button1Press occurs at most 1 time in 0.1 realtime s, atmost 2 times in 1 real ime s.
The stimulus is handled in all AppModes.

There are 3 responses: Lamp10n, Lamp20ff and kotor] On.

Fesponse LamplOn is made in all applicable Apphodes.

Fesponse LampzOff is made in all applicable Apphodes.

Fesponse Motor]l On is made in all applicable Apphodes.

Stimulus Lamp3Toggle has period 1 real time s, notyet attached to & counter or schedule |
The stimulug is handled in all Apphdodes.

There is one response: responsel.

Response responsel is made in all applicable Apphdodes.

Stimulus Motorl Bunning occurs atmost 1 time in 'forever',
The stimulus is handled in all AppModes.

There are 3 responses: responsel, LampdOn and Lampl Off.
Fesponse responsel is made in all applicable Apphodes.
Fesponse LampeOn is made in all applicable Apphdodes.
Fesponse Lampl Off is made in all applicable Apphodes.

Counlers
There are no counters.

Auvlosiarn
There are no autostarted alarms.

Pernodic Schaedules
There are no periodic schedules.

_|| Plannad Schedules
There are no planned schedules.

Figure 3:42 - Reviewing the Stimulus Summary

Remember that you should always save your application regularly, by selecting
Save from the File menu.

3.3.2 Implementation

You have now reached the implementation stage. It is now time to decide
how the stimuli are detected and how responses are implemented. You will
also learn how to create ISRs and tasks using the RTA-OSEK GUI.

Creating an ISR

You will need three interrupt sources in this example. One that detects the
button press, another attached to a hardware timer that can provide
interrupts every 100ms and the third attached to the motor.

In this example, let's assume that all three interrupt sources can be serviced by
a single ISR. This ISR will be called PrimaryISR.

To create a new ISR, select the ISRs group from the navigation bar.

Figure 3:43 shows the how the ISRs group is selected and how the ISR
Summary initially appears in the workspace.
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Application

Target

Stirmuli

ISRz

@

Summary

@

Category 1 1SRs

@

Category 2 1S5RS

N

ISR Summary

The application has na ISRs.

Figure 3:43 - Selecting the ISRs Group from the Navigation Bar

In this example you must use a Category 2 ISR because you will need to
activate tasks. Category 1 ISRs are not allowed to make OS API calls, so they

cannot be used in this case.

e From the navigation bar, select the Category 2 ISRs subgroup.
e (Create the ISR by clicking the Add button in the workspace.
e In the Add Cat 2 ISR dialog, enter the name PrimaryISR and click

OK.

e Depending on the target type, you may need to enter an interrupt
Vector and a Priority. An example is shown in Figure 3:44.

Select ISR settings

Eriority

Wector Timer channel 0

ak

1 =

LCancel

Figure 3:44 - Selecting the ISR Vector and Priority

The workspace displays the default settings for the new ISR.
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cazisp [Fimaisn (@ @ @ [ < @ @ @
ISR "PrimarylSR"
Pricrity / Wectar Priority 1. Yector "Real time interrupt”
Flaating paint Floating-point is not used
Stack allocation The I3R's stack requirements are automatically calculated.
Buffering Mo buffer.
Budget The execution budgetis undefined.
Execution profife “default profife”
E zecution limits YWorst-case undefined execution time, undefined stack.
Fesource use Mo resource locks
Interrupt Jocks Mo interrupt locks |

Primary / Activated Thig is & primary profile with minimurm recognition 0 processor cycles and maximurm recognition 0 processor cycles.

Dataif

Figure 3:45 - Viewing the Details of the New PrimaryISR

Notice that, at the top of the workspace, the RTA-OSEK GUI automatically
created an execution profile called default_profile for the new ISR.

Execution profiles are used to describe different paths of execution through a
task or ISR for timing analysis purposes. The ISR, in this example, has to
establish which interrupt sources are pending, so that it can react to the
correct stimulus.

For the moment, the ISR will exit after reacting to an interrupt source rather
than checking the other sources. The execution path taken by the ISR can,
therefore, take one of three paths. The code will look something like Code
Example 3:5.

#include "PrimaryISR.h"
ISR(PrimaryISR)
{
if (ButtonlPressInterruptPending()) {
/* ButtonlPress detected. */
} else if (MotorlRunningPending()) {
/* MotorlRunning detected. */
} else {
/* Timer expiry detected. */

Code Example 3:5 - Paths of Execution for an ISR

Three execution profiles must be created.

e Rename the existing execution profile by clicking the Rename button
(to the right of the execution profile drop down list). This is can be

seen in Figure 3:46.
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._b @ ||:Iefault_|:|rnfile j @ @ @

Rename default_profile D_<|

Enter new name

|pEuttn:-nF'ress

k. | Cancel

i

Figure 3:46 - Renaming an Execution Profile

¢ In the Rename dialog, change the name of the execution profile from
default_profile to pButtonPress.
You can now enter the time allowance for the Button! debounce circuitry.
Recognition time only applies to primary profiles. It is the min/max time
between a real-world event occurring and the resulting state change
happening at the processor. Recognition time is an important value for timing
analysis, particularly in distributed systems.

e Click the Primary/Activated button. The Primary or Activated
Profile dialog opens.

e Set the interrupt Recognition Time to 0.4 real time ms for the Max
value and 0.1 real time ms for Min. This is shown in Figure 3:47.

¢ (lick the OK button.

Primary or, Activated Profile

| Primary Profile

Recognition time
b |EI.4 |rea| tirne ﬂ| s ﬂ
Min |U.1 |IE-EI| time: ﬂ| s ﬂ

LCancel

Figure 3:47 - Entering the Primary Profile Settings

e Create a new profile by clicking the Add button (to the right of the
execution profiles drop down list) as shown in Figure 3:48.
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) forem T0@@

Enter name for execution praofile

||:|M|:|t|:|r1 Fiunning

3
0k, | Cancel

Figure 3:48 - Adding a New Execution Profile

e In the Add execution profile dialog, enter the name
pMotorTRunning.

e Now create another new profile called pTimer.
You must now tell the RTA-OSEK GUI that the three new profiles reflect
individual sources and that only one is processed at a time.

This is achieved by informing the RTA-OSEK GUI that the ISR is retriggering.
This means that one interrupt is handled at a time by the ISR. The ISR then
returns and pending interrupts will retrigger the ISR.

e In the ISR workspace, click the Buffering button to launch the

Specify ISR buffering behavior dialog box as shown in Figure 3:49.
Clear the Simple - no buffering check box and set the ISR’s
buffering to Retrigger after Leaving ISR and Buffer by Execution

Profile.
Priarity  Wectar Friority 1. %ector "Real time interrupt".
Flogting point Specify ISR buffering behavior,

Stack allocation Smple
[ Simple - no buffering
Buffering
Buffered
Budget {+" Retigaer after leaving ISR

" Loop within [SH

Epecution limits [v Buffer by execution profile

ISR Buffer size

Resource uze

Interrupt Jocks

Frimary / Activated

Figure 3:49 - Specifying ISR Buffering Behavior for PrimaryISR

You can see a summary of the ISR by selecting the Summary subgroup, as
shown in Figure 3:50.
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Application ISR Summary

Target The application contains ane ISR,
Tasts primarylSH is a category 2 ISR, non-floating-point.
ISRs lt= priority is 1 on vector "Real time interrupt”.
There are 3 execution profiles:
@ Frofile ;f[ButtunF'ress:
Surnrmary Does ot respond to any stimulus,
Iz a primary profile,
@
Frofile phator! Funning:
ol Lok Does not respond to any stimulus,
@ Iz a primary profile,
Category 2 I15Rs Profile pTimer:
Does not respond to any stimulus,
@ |5 a primary prafile.
P ¥p
Arbitration

Figure 3:50 - Viewing the ISRs Summary

Attaching an ISR to a Stimulus

The new ISR needs to be attached to the Button1Press and Motor1Running
stimuli that you created earlier. The RTA-OSEK GUI will then know that it will
be responsible for generating the responses required when the stimuli are
detected.

e From the navigation bar, select the Stimuli group.

e Select the Stimuli subgroup and then use the Select Stimulus drop
down list to select Button1Press.

e Click the Primary Profile button. The Select Profile dialog opens.
e From the Primary Profiles drop down list, select PrimaryISR.pButtonPress
and click the OK button, as shown in Figure 3:51.

Select profile

Erimary profiles

Primaryl5F. pButtonPresz &, Add

ok LCancel

Figure 3:51 - Selecting a Primary Profile for Button1Press

You have now shown that the profile pButtonPress of ISR PrimaryISR is
responsible for reacting to stimulus Button1Press.
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Use the Select Stimulus drop down list to select the Motor1Running
stimulus.

Click the Primary Profile button. In the Select Profile dialog, select
PrimaryISR.pMotor1Running and then click the OK button.

You will need to do more configuration before you can use the pTimer profile;
remember that the timer interrupts every 100ms, but the Lamp3 toggle only
occurs every 1s. You will need something that will count each interrupt tick
and raise the stimulus Lamp3Toggle every 10 ticks. This can be achieved
simply by using an OSEK counter object.

From the Stimuli group on the navigation bar, select the Counters
subgroup.

Click the Add button to create a new counter called TimerCounter.

When prompted, specify that the Fastest Tick Rate is 100 real time
ms.

Application Select counter: |TimerEounter j @ @ @
Target Counter "TimerCounter®
Stimuli

@ Primary Profile ‘ MNa primary profile.
@
Summary Tick Bate ‘ 1tick is 100 real time ms.
@ Urits ‘ <nounits >
Stimuli
Constants ‘ < ho constants ».
Chintare M Value | | Mextick value B5535.
@ tin Cycle ‘ Min cyclevalue 1.
e R Ticks Per Base ‘ Ticks per base 1.
@ Synchronized Alarms ‘ Alarms are not synchronized.
Planned Schedules
Trace Format ‘
ISRs
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Figure 3:52 - Viewing the Default Details for the new Counter

Click the Primary Profile button and use the Primary Profiles drop
down list to select PrimaryISR.pTimer.

Now, from the navigation bar, go to the Stimuli group and select
stimulus Lamp3Toggle.

On the Counter tab, click the Schedule/Counter button and specify
that the stimulus is attached to counter TimerCounter. This is shown
in Figure 3:53. (If you are familiar with OSEK concepts, you will
recognize that this stimulus has now been implemented as an OSEK
alarm.)
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Select counter or schedule

Periadic zchedule ]

Select Counter |TimerEDunter

-] @gdd

Cancel

ak

Figure 3:53 - Selecting a Counter for Lamp3Toggle

In Figure 3:54, you can see that the Stimulus Summary shows that all three
stimuli are now driven by the appropriate primary profiles.

Targst

ISRs

Resaurces

Ccom
Build

@

Summary

@

Bursty Stimuli

Application
Tasks
Alarms / Schedules

Events

Stimuli

Stimulus Summary

Stimuii
There are 3 stimuli.

Stimulus ButtonlPress occurs at most 1 time in forever', driven by primary profile primarylSR pButtonPress
The stimulus i handled in all Apphiodes

There are 3 responses: Lamp1On, Lamp20f and MotorlOn

Response Lamp10n is mads in all applicable Apphodes

Response Lamp20ft is mads in all applicable Apphades

Response lotorlOn is made in all applicable AppModes

Stimulus Motorl Running occurs at most 1 time in forever', driven by primary profile primarylSR.piotor Running,
The stimulus is handled in all Apphodes

There are 2 responses: Lamp20n and Lamp10ft

Response Lamp20n is made in all applicable AppModes:

Response Larnpl Offis made in l applicable Apphodes |

Stimulus Lamp3Taggle has period 10 TimerCounter ticks (1 real time s). Start time O TimerCounter ticks. It is implemented as an alarm attached counter TimerCounter, driv
The stirulus is handled in all Appiodes.

There is one response: responsel

Respanse respansel is made in all applicable Apphodes.

Figure 3:54 - Viewing the Primary Profiles on the Stimulus Summary

Creating Responses

You saw earlier that responses are normally implemented using tasks. In this
example you will need 4 tasks:

1. Task Button1Response will be used to implement both responses
Lamp10n and Lamp20ff when ButtonT is pressed.

2. Task MotorStart will be used to implement response MotorOn when
ButtonT is pressed.

3. Task LampToggle will be used to implement response Lamp3Toggle
when the alarm Lamp3Toggle occurs.

4. Task MotorResponse will be used to implement both responses
Lamp20n and Lamp10ff when the motor runs.

Looking at the deadlines involved, LampToggle should have the highest
priority, because it is associated with the shortest deadline. MotorStart can be
given the lowest priority, because its associated deadline is the longest. The
other two tasks can be given ‘medium’ priorities.

Let's start with the responses for stimulus Button1Press.
e Select stimulus Button1Press and response Lamp10n.
Click the Implementation button and then click the Add button.

RTA-OSEK v5.0.2
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Implementation of response

Implementer

E xecution time

|[ma:-:imum] | processor - | cycles -

ok LCancel

Figure 3:55 - Creating a Task or ISR from the Implementation of Response Dialog

The Create Task or ISR dialog opens (Figure 3:56).
e Select the Task option and click the OK button.

Create task or ISR

f+ Taszk
(" Cat215R
" Cat1I15R

LCancel

Figure 3:56 - Creating a New Task

This opens the Add Task dialog.

e C(reate a task named Button1Response. Assign it priority 10 and
click OK.

e The execution profile can be left as default_profile. At this stage,
there is no need to specify an execution time. Click OK, then Ok again.

ielect Bursty Stimulus. [Buttontpress v | (@) @D @ zesponse: [Lampion | (@ @D @
Stimulus "Button1Press”

Arrival Modes Elftom Press is handled in all Apphodes.

Primary profile Driven by primary profile primarylSR. pButtonPress.

Arrival Pattern It occurs at most 1 time in forever'

Response “Lamp10n®,

Figure 3:57 - Viewing the Implementation Details for the Lamp10n Response

e Now make sure that the Select Stimulus drop down list has
Button1Press selected and use the Response drop down list to select
Lamp2Off.

e C(Click the Implementation button. You can simply select
Button1Response from the execution profile list because this time
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you are going to implement the response in the task that you just
created. Click OK.

e From the Response drop down list in the workspace, select the
Motor10n response.

e (lick the Implementation button to create a new task MotorStart
with priority 5. Once again, there is no need to rename the
default_profile and the execution time can be left undefined.

Next add the response for stimulus Lamp3Toggle.
e Select the stimulus Lamp3Toggle.

e (lick the Implementation button and add a new task called
LampToggle with priority 20.

Finally you can add the responses for stimulus Motor1Running.
e Select stimulus Motor1Running and response Lamp20n.

e (lick the Implementation button and add a new task
MotorResponse with priority 9.

e Select response Lamp10ff.

e (lick the Implementation button and select task MotorResponse.

The Stimulus Summary now shows all three stimuli and the primary profile.
The configuration of the application is complete.

Stimulus Summary

Stimuli
There are 3 stimuli.

Stimulus Button1Press occurs at most 1 time in forever, driven by primary profile primarylSR. pButtonPress
The stimulus is handled in all Apphiodes.

There are 3 resy Lamp10n, Lamp20ff and Motorl On

Response LamplOn is made in all applicable Apphodes

Response Lamp20ff is made in all applicable AppMaodes.

Response MotorlOn is made in all applicable Apphodes

Stimulus Motor] Running occurs at most 1 time in farever', driven by primary profile primarylSR. phMaotor] Running.
The stimulus is handled in all Apphodes

There are 2 responses: Lamp20n and Larpl Off.

Response Lamp20n is made in all applicable Apphodes

Response LamplOff is made in all applicable AppModas.

Stimulus Lamp3Toggle has period 10 TimerCounter ticks (1 real time s). Start time O TimerCounter ticks. It is implemented as an alarm sttached counter TimerCounter, driv
The stimulus is handled in all Apphodes I

There is one response: responsel

Response responzel is made in all applicable Apphodes

Figure 3:58 - Viewing the Stimulus Summary with Primary Profile and Responses

Writing Task and ISR Code

You will now need code for the ISR PrimaryISR, tasks Button1Response,
MotorStart, LampToggle and MotorResponse, as well as the application’s
main () function (includes application startup and idle mechanism).

The C source code can be created externally from the RTA-OSEK GUI if you

wish, but you can also create templates from the RTA-OSEK GUI to help get
you started. To do this:

e Change to the Builder, then from the navigation bar, select the
Custom Build group.
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e In the workspace, click the Create Templates button. RTA-OSEK will
create seven C source files and put skeleton code in each of them. It
also creates a batch file rtkbuild.bat, which you will use later in
the build phase.

Writing Code for PrimaryISR

From the navigation bar, select the ISRs group. Then select the Category 2
ISRs subgroup and from the workspace, select PrimaryISR.

You don’t have to worry if you can’t remember everything that has to be
done in the ISR, because the RTA-OSEK GUI can tell you. Simply select the
Implementation option from the View menu. The lower section of the ISR
window is displayed and the implementation details for the ISR will appear.
You can resize this window by moving your mouse over the blue horizontal
‘splitter’ bar. Click and hold the left mouse button and drag the bar up or
down.

Fie Wiew Application Target Stmui ISRs Tasks Resources Events COM Euild Andlyze Trace Help

FllEin Cat215F: [Primamish @ @ @ o 1@®@
s ISR *PrimarylSR*
Stimuli
R Briarity  Vectar Priarity 1. Vectar "Timer channel 0"
s
@ i Floating-pointis not used
S Stack lacation The ISR's stack requirements are automatically calculated
@ Buffering Buffered by execution profile, with retriggering implementatian,
Category 1 15Rs
@ Budget The execution budget is undefined
@
Category 2 1SRs Execution profile "pTimer”
@ Ezeoution limits ‘orst-case undefined execution time, undefined stack.
Arbitration
Resource use No resource locks
Tasks
e Interupt locks Na interrupt locks
Events Piimay ¢ Activated This is & primany profile with minimurn recognition 0 processor eyeles and maximum recognition 0 processor cycles
COM
[l Detail
Analyze ﬂ ﬂ j

Wy Planner [ Buider | ¥ RTATRACE |

Histos 4 # b [PrimaplSR.pTimer |
Profile pButtonPress must activate task Button1 Response -

Profile pButtonPress must activate task MotorStart.
Profile phdotori Running must activate task MotorResponse.
Profile pTimer must tick counter TimerCounter every 100 real time ms
eg
#include "PrimaryISR h"
ISR(PrimaryISR)

if (<pending_source_for_default_profiles) {

ervice_source_for_default_profile(): L
} else if (¢pending_socurce_for_pBuftonPress:) {

service_source_for_pButtonPress():

Activatelask ButtonlResponse();

ActivateTask MotorStart():
} elss if (<pending_source_for_pHotorlRunnings) {

service_source_for_photorlRunning(): -
Desciption | Feedback | OILFile implemertation

&

Figure 3:59 - Viewing the PrimaryISR Implementation Notes

The sample code shows the ISR-specific header file PrimaryISR.h being
#included, followed by the ISR body. The three execution profiles are
reflected in the three routes through the i f..else..else construct.

Notice that the tasks that provide the responses are activated in the
appropriate execution profiles and counter TimerCounter is ticked in the
pTimer profile.

You can close the implementation notes by deselecting the Implementation
option in the View menu.

The Development Process
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Important: You must implement the flow of control exactly as shown by the
RTA-OSEK GUI. If you don’t do this, the system you implement will have
different timing characteristics from the system that RTA-OSEK will later use to
perform timing analysis. In particular, do not re-arrange the order of
checking for interrupt sources and do not loop back to test for any
interrupts that are still pending without specifying that the ISR has
‘looping’ behavior.

You can directly edit the source code for the ISR by selecting the ﬂ button
in the Category 2 ISRs workspace.

Important: When editing files from within the RTA-OSEK GUI, the default
editor is set to be the Windows Notepad application. You can select your
own preferred editor from the File menu, by selecting Options.

Portability note: The code that needs to be written here is target-specific, so
no details are given where lines involve detection of pending interrupt sources
and how they are acknowledged.

Writing Code for Button1Response

From the Tasks group on the navigation bar, select the Task Data subgroup.
Then select the task Button1Response.

Use the Implementation View to check the code that is required for this
task.
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Select Task: |Elutt0n1RespDnse ﬂ@ @ @\) |defau|t_pmﬁ|e ﬂ ® @ @

Task "Button1Response™ [BCC1]

Priority Priority 10.
Scheduling Scheduling is preemptable.
Activations Maximurm number of simultaneous task activations is 1.

Floating point Floating-point is not used.

Stack allocation The task's stack requirements are automatically calculated.

Termination

|
|
|
Autostart ‘ Mot autostarted.
|
|
|

Termination type is taken from the default value (heawyweight).

Task Button1Response runs at priority 10.
Button1Response must execute its single profile and then terminate.
Button1Response must implerment response LamplOn.
Button1Response must implement response Lamp2 Off.
e.qg.
#include "ButtonlResponse.h"
TASE (ButtonlResponse) I
i
implement response LamplOn():
implement_ response_ LampZ0ff():

TerminateTask():

Available 'static interface' versions of APl
ActivateTask_MotorStart()
ChainTask_MatarStart()
ActivateTask_MotorResponse()
ChainTask_MotarResponse()
ActivateTask_Button1Response()
ChainTask Button1Response()

Description | Feedback | QILFile  |mplementation

Figure 3:60 - Viewing the Implementation Notes for Button1Response

You can directly edit the source code for the task by selecting the ﬂ button
in the workspace. The code you write will be target-specific, but should follow
the structure in the implementation view.

Writing Code for the Remaining Tasks

The code for tasks LampToggle, MotorResponse and Motor10n follow the
same pattern.

Whenever you modify the RTA-OSEK configuration always check that the
suggested implementation matches the code you have written.

Writing Code for ‘main’

In C programs, main () is the starting point for the main application. It is
called after the low-level startup initialization. Usually interrupts are disabled
prior tomain () being entered.
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The skeleton code generated by the RTA-OSEK for main () is shown in Code
Example 3:6.

/* Template code for 'main' in project: UserApp */
#include "osekmain.h"

OS_MAIN ()

{
StartOS (OSDEFAULTAPPMODE) ;
ShutdownOS (E_OK) ;

}

Code Example 3:6 - Template Code for main()

Note that the 0S_MAIN() macro is used rather than main (). Individual
compilers have different criteria for the arguments and return types that are
allowed for main (), so RTA-OSEK provides 0S_MAIN () to assist portability.

Portability: Using 0S_MAIN (), rather than main (), in applications can help
make them more portable to different RTA-OSEK targets.

The startOS (OSDEFAULTAPPMODE) call is used to start the operating
system. No operating system API calls should be made before start0s () is
called.

The Shutdownos () call is used to stop the OS when (and if) the application
completes. The default action for ShutdownOSs () is to stay in an infinite loop
and not to return. This call is not normally used because applications tend to
run ‘forever’ (or until the processor loses power or is reset).

In your example application, you need to perform some initialization of the
target hardware before calling start0S. This makes sure that the timer is set
to interrupt every 100ms and the appropriate interrupt sources are enabled.
Then, after start0os (), the alarm should be enabled and an idle loop should
be entered.

In fact, the code that executes after start0s belongs to the idle task. he
idle task is called osek_idle_ task.

The idle task can act like any other task; it can make API calls, use resources,
send and receive messages, send and wait for events and so on. It cannot be
directly activated because it only terminates when Shutdown0S is called and
it cannot use internal resources because it would prevent other tasks from
starting.

Important: Putting code in the idle task can be a very efficient way of
implementing a system. In particular, if you have only one task that needs to
respond to OSEK events you should use the osek_idle_task. Your
application will be significantly smaller and more responsive if the idle task
waits for events, rather than any other task.
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The RTA-OSEK GUI will show you a suggested implementation for
OS_MAIN (). Select the osek_idle_task task in the Task Data subgroup (in
the Tasks group on the navigation bar) and view the implementation details.

Note that in this case, the idle task does no work. On targets that support it,

you can put the processor into a ‘sleep’ state in the idle task. The processor
must ‘wake-up’ if an interrupt occurs.

Important: The idle task must not terminate. It must loop forever.

Setting up Timer/Counter Hardware

In Code Example 3:7, the function do_target_initialization () needs
to initialize the interrupt sources. One of these sources is a hardware
counter/timer that needs to provide an interrupt every 100ms.

You may wish to use code based on Code Example 3:7 to do this.

void do_target_initialization(void)

{

unsigned int timer_divide;
timer divide =
OSTICKDURATION_TimerCounter / OS_NS_PER_CYCLE;

/* Target specific setup provided by user */
SetupTimer (timer_divide) ;
EnableTimerInterrupt () ;
EnableKeyPressInterrupt () ;

/* Set up Buttonl and Motorl interrupts. */

Code Example 3:7 - Initializing Timer Hardware

Code Example 3:7 shows initialization using the two RTA-OSEK-generated
constants OSTICKDURATION TimerCounter and OS_NS_PER_CYCLE.

The OSTICKDURATION_TimerCounter constant specifies the duration of
the ‘tick’ of the counter in nanoseconds (ns), so in this example the
OSTICKDURATION is 100,000,000ns (1/10" of a second).

The OS_NS_PER_CYCLE constant specifies the duration of the CPU
instruction cycle in ns. For a T0MHz CPU, this is 100ns.

In this example, you require the timer to be configured to interrupt every
1,000,000 instruction cycles. If you use these constants to calculate the divide
ratio, the code will automatically adjust if the clock rate changes.
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OS Status, ErrorHook and Callbacks

For preliminary testing, you should run the application using the operating
system’s Extended build. Extended build means that the OS performs
rigorous checks in each API call. Of course, this takes time and code space.

Once the application is seen to be working correctly, you will usually switch to
Standard build. Very few checks are made with Standard build, so the OS
can run much more efficiently.

When using Extended build, you can check the return status code from each
API call or alternatively request that Error Hook be used. This is a function that
the OS will call whenever an error is detected. You write the implementation
of Error Hook in your application. Normally you will use it to halt debugging
and to alert you of errors.

To use the Error Hook facility

e Select the Application group from the navigation bar and then select the OS
Configuration subgroup.

e In the OS Configuration Summary workspace, click the Hooks
button. The Select Hooks dialog opens.

e Select the Error Hook checkbox and then click the OK button.
You can see that the Error Hook has been selected in Figure 3:61.

Application
@

Summary

@

08 Configuration

@

AppModes

@

Timebases

@

Optimizations

@

Defaults

@

Implementation

)

(3

Target

T T

QIL Yersion
Kernel Version
05 Status
Error logging

08 Configuration Summary
The OIL version is 2.3

The kernel version is ¥3.11
The OF status is extended
The application uses no hooks

Errar logging does not record the 1D of the serice detecting the error.

[ Startup Hook
[ Shutdown Hook,

[« Errar Hook,

r\Pre Task Hook
[ Check this if you want ErrorHook () to be called when errors are detected

| QK | | LCancel |

Figure 3:61 - Selecting the Error Hook

You can add the code needed to implement ErrorHook () in any source file,
but main.c is a good place to start. Add the following code:

#ifdef OSEK_ERRORHOOK

OS_HOOK (void)
{
/* Put a debugger breakpoint here. */
while (1) {
/* Freeze. */

ErrorHook (StatusType e)

}
}
#endif /* OSEK_ERRORHOOK */
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Code Example 3:8 - The ErrorHook()

You can find more information about using ErrorHook () for debugging
purposes in Section 13 of this User Guide.

There are three other functions that you must supply when using the Timing
or Extended build. The operating system uses these to time the execution of
your code.

Don’t worry about the details at the moment; simply add the code in Code
Example 3:9 after the ErrorHook ().

#ifdef OS_ET_MEASURE
OS_HOOK (void) OverrunHook (void)
{
/* Put a debugger breakpoint here. */
while (1) {
/* Freeze. */
}
}
OS_NONREENTRANT (StopwatchTickType)
GetStopwatch (void)
{
/* Temporary implementation. A correct solution
* returns the current stopwatch value. */
return 0;
}
OS_NONREENTRANT (StopwatchTickType)
GetStopwatchUncertainty (void)
{
/* Temporary implementation. A correct solution
* returns the uncertainty in the stopwatch
* value. */
return 0;
}
#fendif /* OS_ET_MEASURE */

Code Example 3:9 - Timing Callbacks

Final Checks

To view a complete implementation summary, from the Application group
on the navigation bar, select the Implementation subgroup.

Use this as a checklist to ensure that your application is fully implemented.
You can print out this summary by selecting Print Selection from the File
menu.

3.3.3 Build

If you have successfully completed all of the steps in creating this example
application, you can now start the build process. Switch to the Builder, and
refer to Section 3.6.2 where the build process is described.
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3.3.4 Functional Testing

3.35

The executable file can be downloaded to your target hardware, so that you
can test its behavior.

Initial testing should always be performed using the Extended build with the
Error Hook, because the OS will detect any misuse of API calls. Only once an
application performs correctly should you switch to the Timing or Standard
builds.

Analysis

At this stage your application appears to work, but how do you know that it
meets all of its deadlines every time? If you do not use timing analysis you
cannot be sure that there is no a rare combination of circumstances that will
cause deadlines to be missed. Even with thousands of hours of testing, you
may not pick up that ‘once in a million” failure.

Later in this guide, you will find out how to measure the execution time of
your task and ISR execution profiles. For the moment, you can use some
‘invented’ execution times. This enables you to see how timing analysis is a
simple step on from building your application.

Let's use the following times:

e Execution time for ISR PrimarylSR.pButtonPress is 1,000 processor
cycles.

e Execution time for ISR PrimarylSR.pMotor1Running 1,500 processor
cycles.

e Execution time for ISR PrimaryISR.pTimer is 2,000 processor cycles.

e Execution time for task LampToggle is 8,000 processor cycles. It
toggles Lamp3 on after 7,000 processor cycles.

e Execution time for task Button1Response is 20,000 processor cycles. It
switches Lamp1 on after 12,000 processor cycles and turns Lamp2 off
after 16,000 processor cycles.

e Execution time for task MotorResponse is 20,000 processor cycles. It
switches Lamp2 on after 10,000 processor cycles and turns Lamp1 off
after 14,000 processor cycles.

e Execution time for task MotorStart is 40,000 processor cycles. It
applies power after 30,000 processor cycles.

Notice that you have specified execution time in processor cycles, rather than
in the seconds or milliseconds that were used when specifying the real-world
stimuli and their deadlines. RTA-OSEK knows that if the processor clock
frequency doubles, the execution times halve, but that the stimuli and
deadlines do not change. Take care to use appropriate units when entering
time values.

Be aware that you can build some systems that RTA-OSEK cannot analyze.
Fortunately, however, it is unlikely that you will come across this problem.

There are three simple rules governing analyzable systems:
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e A task cannot activate a higher priority task. In fact, in a well-designed
real-time system, tasks are normally activated by ISRs. The ISR reacts
to a stimulus by activating one or more tasks to implement the
responses. Sometimes such a ‘response task’ may pass work down to
a lower priority worker-task, but it rarely needs to pass it to a higher
priority task because OSEK resources are a more efficient way to
perform part of the processing at ‘high priority’.

e Tasks must have different priorities. Shared task priorities are often
used in OSEK systems to ensure that certain tasks run in mutual
exclusion. In most cases, you can actually set different task priorities
for each task and use internal resources to enforce mutual exclusion.
Incidentally, the RTA-OSEK OS implementation for systems that do not
use shared priorities is more efficient than one that does use shared
priorities, because it does not have to manage a FIFO queue for the
tasks at each shared priority.

e The OSEK API call schedule cannot be used. The Schedule () call
has the effect of releasing all internal task resources. This cannot be
sensibly modeled by the timing analysis. You will find that it is very
unlikely that you would need to use Schedule () in an application
built with the RTA-OSEK GUI.

Important: You cannot analyze the response times, the extended tasks and
any basic tasks of lower priority that the highest priority extended task.

Before RTA-OSEK will perform timing analysis on a system, you need to tell it
that your application conforms to these rules.

e From the navigation bar, select the Application group and then select the
Optimizations subgroup.

e Select the No Upward Activation, Unique Task Priorities and
Disallow Schedule checkboxes. You can also select No
RES_SCHEDULER, because this standard OSEK resource is not used
and will only cause unnecessary warning messages during analysis.
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Figure 3:62 - Selecting the Application Optimization Settings

Entering the Execution Times

To enter the execution times for the ISR PrimaryISR
e select the ISRs group from the Planner navigation bar.
e From the navigation bar, select the Category 2 ISRs subgroup.

e Select the ISR PrimaryISR and then select profile pButtonPress. Click
the Execution Limits button and set the execution limit to 1000
processor cycles, as shown in Figure 3:63. If you wish, you can also
specify the amount of stack that is used in this execution profile.

Enter worst case values

Time 1000

j cycles

| proceszar

Stack |[undefined] [bytesz)

Cancel

Figure 3:63 - Entering the Worst-Case Values for pButtonPress

e Select profile pMotor1Running and set its execution limit to 7500
processor cycles.
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e Select profile pTimer and set its execution limit to 2000 processor

cycles.
For the task LampToggle:
e From the Tasks group on the navigation bar, select the Task Data
subgroup.
o Select task LampToggle and set its execution limit to 8000 processor
cycles.

e Select the Stimuli group on the navigation bar and then select the
Stimuli subgroup. Select the stimulus Lamp3Toggle from the drop
down list.

e (lick the Implementation button and set the execution time to 7000
processor cycles. This reflects the fact that the code in the task
actually toggles the lamp some time before the end of the task.

Implementation of response 7%

E wecution profile

| LampT oggle j w Add

E wecution time

|?'EIEIEI | PrOCESFON ﬂ| cycles j

0k, Cancel

Figure 3:64 - Specifying the Execution Time for Lamp3Toggle

For task Button1Response:

e From the Tasks group on the navigation bar, select Task Data
subgroup.

e Select task Button1Response and set its execution limit to 20000
processor cycles.

e Select the Stimuli group on the navigation bar and then select the
Stimuli subgroup. Select the stimulus Button1Press from the drop
down list.

e Select response Lamp10n and set the implementation execution time
to 12000 processor cycles.

e Select response Lamp20Off and set the implementation execution time
to 16000 processor cycles.

For task MotorResponse:
e Select Task Data from the Tasks group of the navigation bar.

e Select task MotorResponse. Set its execution limit to 20000
processor cycles.

e Select the Stimuli group on the navigation bar and then select the
Stimuli subgroup. Select the stimulus Motor1Running from the drop
down list.
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e Select response Lamp20n and set the implementation execution time
to 10000 processor cycles.

e Select response Lamp10ff and set the implementation execution time
to 14000 processor cycles.

For task MotorStart:
e Select Task Data from the Tasks group of the navigation bar.

e Select task MotorStart and set its execution limit to 40000 processor
cycles.

e Select the Stimuli group on the navigation bar and then select the
Stimuli subgroup. Select the stimulus Button1Press from the drop
down list.

e Select response Motor10On and set the implementation execution
time to 30000 processor cycles.

Performing Schedulability Analysis

Now that you have got this far, you can perform timing analysis.

e From the Analyze group on the navigation bar, select the
Schedulability subgroup.

The analysis results appear in the workspace.
Schedulability Analysis

Checking
Warning: Interrupt recognition is not set.
Warning: Systerm timings are not set.

Creating files
Analysis
= Schedulability Analysis results =

task MotorStart is schedulable.

Calculated response time on MotorStart. default_profile for response Button1Press Motor! On is 485700 cycles (B0.7125 ms)
Calculated response time on MotorStart. default_profile is 95700 cycles (11.9625 ms), with blocking O cycles.

task MotorResponse is schedulable.

Calculated response time on MotorResponse. default_profile for response Motor! Running. Lamp20n is 46500 cycles (5.8125 ms)
Calculated response time on MotorResponse. default_profile for response Motor! Running.Lamp10ff is 48900 cycles (6.1125 ms).
Calculated response time on MotorResponse. default_profile is 52600 cycles (5.5625 ms), with blocking 0 cycles.

task Button1Response is schedulable,

Calculated response time on Button1|Response.default_profile for response Button1Press. Lamp10n is 27700 cycles (3.4625 ms).
Calculated response time on Button1Response.default_profile for response Button1Press. Lamp20ff is 34100 cycles (4.2625 ms).
Calculated response time on Button1Response.default_profile is 35700 cycles (4.4625 ms), with blocking O cycles.

task LampToggle is schedulable.

Calculated response time on LampToggle. default_profile is 12500 cycles (1.5625 ms), with blocking 0 cycles.

interrupt primarylSR is schedulable.

Calculated response time on primarylSR. pButtonPress is 6200 cycles (775 us), with blocking 2000 cycles (250 us), caused by IST
prirmarylSR. pTirmer executing at interrupt priority 1.

Maximum buffer required on primary|SR.pButtonPress is 1

Calculated response time on primarylSR. pMotor! Running is 4500 cycles (562.5 us), with blocking 2000 cycles (250 us), caused by IST
prirmarylSR. pTimer executing at interrupt priority 1

Maximum buffer required on primary|SR.pMotor1Running is 1.

Calculated response time on primarylSR. pTimer is 4500 cycles (562.5 us), with blocking O cycles.

Maxirmum buffer required on primarylSR.pTimer is 1

Maximum retriggers is 3.

The system is schedulable

Figure 3:65 - Timing Analysis Text View

You can switch between the text and graphic views of the results by clicking
on the Text/Graphic tabs at the bottom of the screen. (Right-click on the
graphic to access the zoom in/out options.)
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Schedulability Analysis Zoom: 800%

interrupt primanyl SR pButtanFrass | HI775 us
interrupt primary SR phdotor Running | BI562.5 us
interrupt primandShpTimer | B562.5 us
task LampToggle default_prafile | Hl1.5625 ms
task Button1Response default_prafile | 44625 ms
[11 ms
|10 ms
task MotorResponse.default_profile 8625 ms
S
S
task MotorStart. default_profile @ —11-9525 s

e

Figure 3:66 - Timing Analysis Graphical View

Figure 3:66 shows that this example system is schedulable. There are some
points that you should note about the analysis:

e The profile pButtonPress of ISR PrimarylSR will always run and
complete its execution within 775pus of Button? being pressed. This
time includes up to 400us for the button debounce delay, up to 250us
in which the profile can be blocked from starting by the execution of
either pMotor1Running or pTimer and then the 125us execution time
of pButtonPress itself.

e The profile pMotor1Running of ISR PrimaryISR will always run and
complete its execution within 562.5us of the motor getting up to
speed. This time includes up to 250ps in which the profile can be
blocked from starting by the execution of pTimer, 125us where
pButtonPress can ‘interfere’ with it (if both interrupt sources are ready
at the same time, pButtonPress takes precedence) and then the
187.5us execution time of pMotor1Running itself.

e The profile pTimer of ISR PrimaryISR will always run and complete its
execution within 562.5us of the timer interrupt. This time includes up
to 312.5ps in which the profile can be blocked from starting by the
execution of pButtonPress and pMotor1Running and then the 250us
execution time of pTimer itself.

e Task LampToggle always terminates within 1.5625ms of the timer
interrupt. This comprises up to 562.5ps interference from the ISR and
1ms execution time. You can see that the deadline of 4ms is met with
1.9375ms to spare, because the task issues the ‘toggle’ instruction by
1.5625ms and then there is 0.5ms response delay bringing the total
response time to 2.0625ms.

e Task Button1Response completes within 4.4625ms and meets its
deadlines.
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e Task MotorResponse completes within 6.5625ms and meets its
deadlines.

e Task MotorStart completes within 11.9625ms and meets its deadline.

You can try adjusting the execution times and deadlines to see the effect of
the changes on the analysis results.

Interrupt Recognition and System Timings

In an actual system, the analysis must take account of time spent executing
sections of OS code. For accurate analysis you should include the interrupt
recognition and system timings.

Later on you will find out more about these and you will see how they should
be calculated.

Performing Sensitivity Analysis

Sensitivity is used to determine the limits of schedulability of a system.
Sensitivity analysis changes one parameter at a time and determines the
maximum value it can take in a schedulable system.

To perform Sensitivity analysis

e From the Analyze group on the navigation bar, select the Sensitivity
subgroup.

The analysis results appear in the workspace.
Sensitivity Analysis

Checking
Warning: Interrupt recognition is not set.
Warning: System timings are not set.

Creating files
Analysis
= Sensitivity Analysis results ™

--- Deadline sensitivity

In task MotorStart. default_profile, the deadline for response Button1Press. Motor! On can be et for execution time up to 40000 cycles (5 ms)
In task MotorResponse. default_profile, the deadline for response Motorl Running. Lamp2C0n can be met for execution tirme up to 20000 cycles
(2.5 ms).

In task MotorResponse. default_profile, the deadline for response Motor! Running. Larnp1 Off can be met for execution time up to 20000 cycles
(2.5 ms).

In task Button1Response.default_profile, the deadline for response Button1Press.LamplOn can be et for execotion time up to 20000 cycles
(2.5 ms).

In task Button1Response.default_profile, the deadline for response Button1Press. Lamp20ff can be met for execution time up to 20000 cycles
(2.5 ms).

--- System sensitivity to execution and lock times

In task MotorStar. default_profile, the system can be schedulable for execution time up to 745100 cycles (33.1375 ms).

In task MotorResponse. default_profile, the system can be schedulable for execution time up to 725100 cycles (30.6375 ms).
In task Button1Response.default_profile, the system can be schedulable for execution time up to 53500 cycles (5.6575 ms).
In task LampToggle.default_profile, the systern can be schedulable for execution time up to 41500 cycles (51575 ms)

In interrupt primarylSR.pButtonPress, the system can be schedulable for execution time up to 34500 cycles (4.3125 ms)

In interrupt primarylSR.phaotor1Running, the system can be schedulable for execution time up to 35000 cycles (4.375 ms)
In interrupt primarylSR.pTimer, the systemn can be schedulable for execution time up to 35300 cycles (4.4375 ms)

--- System sensitivity to clock speed
The systern remains schedulable if processor clock speed is reduced to 58.13% of its current value.

Figure 3:67 - Sensitivity Analysis Text View

You can also view the results of the analysis in graphical format.
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Clock Speed
' Current
Mew

Execution Times Zoom: 100%

100%

BB.13%

priman SR pTimer = [l 2.438 ms
primary! SR photor Running -4.3?5 ms
primaryl3R.pButtonPress -4.313ms
LampToggle.default_profile -5.188 ms

Buttan1 Fesponse.default_profile -E BEB ms

MotarRespanse default profle | [ - 535
MotorStarceteut profie | N - 135

Figure 3:68 - Sensitivity Analysis Graphical View

You should note the following points:

e The code that turns Lamp? on and Lamp2 off in task
Button1Response can take as long as 20000 processor cycles to run
and the system will still be schedulable. This means that the ‘toggle’
can be the last instruction in the task. In fact, at this clock speed, all
of the “critical execution’ times in the system can be extended to the
last instruction of the appropriate task.

e Task Button1Response can actually run for as long as 6.688ms.
e Task MotorStart can run for up to 93.138ms.

e Task MotorResponse can run for up to 90.638ms.

e Task LampToggle can run for up to 5.188ms.

e Execution profiles in PrimarylSR can run for up to 2.188ms, 2.25ms
and 2.313ms.

e The CPU clock could be reduced to 58.13% of the declared value.
This roughly halves the power needed by the processor.

Bear in mind that these are ‘either/or’ options. You should not expect to be
able to apply all of these results and still have a schedulable system.

Calculating Best Task Priorities

Calculation of the “best task priorities” attempts to reduce the amount of
task preemption (and hence stack usage) whilst keeping the system
schedulable. It will suggest the ideal priority for each task, along with the
internal resources that should be used.

e Select Best Task Priorities from the Analyze group of the navigation
bar.

The results appear in the workspace.
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* Priority Allocation results =

Task MotorStart is schedulable at priority level 2

Task MotorResponse is schedulable at priority levl 3.

Task Button1Respanse is schedulable at priority ievel 4.

Task LampToggle is schedulable at priority level 1.

Tasks LampToggle, MotorStart, MotorResponse, Button1Response must not preempt each other.

*=* Schedulability Analysis results =

task MotarStart is schedulable.

Calculated response time on MotorStart. default_profile for response Button1Press. Motor! On is 485700 cycles (B0.7125 ms).

Calculated response time on MotorStart. default_profile is 25700 cycles (11.9625 ms), with blocking 8000 cycles {1 ms), caused by task
LampToggle.default_profile executing at its dispatch priornity.

task MotorResponse is schedulable.

Calculated response time on MotorResponse.default_profile for response Motor!Running. Lamp2On is 78500 cycles {(3.56125 ms).
Calculated response time on MotorResponse. default_profile for response MotorlRunning. Lamp? Off is 80900 cycles (10.1125 ms).
Calculated response time on MotorResponse. default_profile is 84500 cycles (10.5625 ms), with blocking 40000 cycles (5 ms), caused by
task MotorStart.default_profile executing st its dispatch priority.

task Button1Response is schedulable.

Calculated response time on Button1Response.default_profile for response Button1Press. Lamp1On is 39700 cycles (4.9625 ms)
Calculated response time on Button1Response.default_praofile far respanse Button1Press. Lamp20ff is 46100 cycles (5.7625 ms).
Calculated response time on Button1Response default_profile is 47700 cycles {59625 ms), with blocking 20000 cycles (2.5 ms), caused
task MotorResponse default_profile executing at its dispatch priority.

task LampToggle is schedulable.

Calculated response time on LampToggle. default_profile is 92500 cycles [11.5625 ms), with blocking O cycles

interrupt primarylSR is schedulable.

Calculated response time on primarylSR. pButtonPress is 6200 cycles (775 us), with blocking 2000 cycles (250 us), caused by IST
primarylSR. pTirmer executing at interrupt priority 1.

Maxirmurm buffer required on primarylSR. pButtonPress is 1.

Calculated response time on primary|SR. pMotorT Running is 4500 cycles (562.5 us), with blocking 2000 cycles (250 us), caused by IST
primarylSR. pTirmer executing at interrupt priority 1.

Maximum buffer required on primarylSR. photor! Running is 1.

Calculated response time on primaryl 3R, pTimer is 4500 cycles (562.5 us), with blocking O cycles.

Maxirnurn buffer required on primaryl SR pTimer is 1.

Maximum retriggers is 3.

The systern is schedulable.

Figure 3:69 - Priority Analysis Text View

You can also see the results displayed graphically, as shown in Figure 3:70.

Priority allocation Apply these values

:
3
2
1

Tasks in the same box must share an intemnal resource

Schedulability Analysis  Zoom: 800%

interrupt PrimarylSA. pButtonPress
interrupt Primaryl 5A. phd otor! Funning
interrupt Primaryl SR pTimer

task LampT oggle.defaul_profile

task MotorResponse.default_prafile

task Button1FAesponse.default_profile

task botorStart. default_profile

DelayAlitter Blacking

775 us
F 05625 us
P5s25us
1.5625 ms
- 4 ms
Lo — 90625 ms
—ﬁhgm1 1 mz
[ £.9625 ms
H'I 1 ms
z EEEE R 10«

Interference . Execution D Response delay

KN —

Test Graphic
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The Development Process

3-61




3-62

In this case, changing the task priorities and ensuring that Tasks MotorStart,
Button1Response and MotorResponse do not preempt each other, can
reduced preemption. This can be achieved by assigning them to an internal
resource.

The individual response times change when these settings are applied, but the
system remains schedulable.

Calculating the CPU Clock Rate

CPU clock rate analysis attempts to reduce CPU clock rate whilst keeping the
system schedulable. It will suggest the ideal priority for each task to achieve
this clock rate.

e Select CPU Clock Rate from the Analyze group of the navigation
bar.

The results appear in the workspace.

Clock Rate Analysis

Chacking

Warning: Interrupt recognition is not set.

Warning: System timings are not set.

Creating files

Analysis

*** Clock Optimization results ==

The system is schedulable if processor clock speed is reduced to 59% of its current value based on the following task priorities.
1 schedulable solution found. Current minimurm 4 preemption levels.
Task MotorStart is schedulable at priority level 1.

Task MotorResponse is schedulable at priority lewvel 2.

Task Button1Response is schedulahle at priority level 3.
Task LampToggle is schedulable at priority level 4.

Figure 3:71 - CPU Clock Rate Analysis Text View
You can also see the results displayed graphically.

Clock Speed

Current
Mew

100%

53%

Priority allocation Apply these values

4 LampToggle

Figure 3:72 - CPU Clock Rate Analysis Graphical View
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3.4 Completion of the Examples

You have now completed all of the stages required in these example
applications. You have seen some sample specifications and the
implementation of the requirements using the RTA-OSEK GUI.

You have learnt the basic skills, which include creating new applications and
working with stimuli, responses, tasks and ISRs. You have also seen how to
write code for applications.

You have learnt about functional testing and building an application. You
have also seen a summary of the analysis options that are available.

Now you are encouraged to read the remainder of this guide to find out more
about the extensive features available in RTA-OSEK.

3.5 Working with Multiple OIL files

3.5.1

You may find that your project requires the use of multiple OIL files. For
example, you may use other tools that generate OIL files or may use 3™ party
software that is shipped as a complete OS application.

The OIL standard defines a simple include mechanism for merging multiple
files which works in the same way to C's #include scheme. However, the
syntax of OIL only allows a single CPU clause. This means that you must have
a single syntactically correct “master” OIL file and multiple syntactically
incorrect OIL file “fragments” that you include.

RTA-OSEK provides two more flexible ways to work with multiple OIL files:
1. Import
2. Auxilliary OIL files

Importing Files

RTA-OSEK can merge the content of multiple syntactically complete external
OIL files into the current project by importing the external file. (Menu option
File / Import).

The following points should be noted:

e Imported OIL files should be syntactically ‘complete’. i.e. there must be
a CPU clause around the subsystem declarations.

e Settings in imported OIL files will override values previously set in the
current project file.

Important: When RTA-OSEK saves the project file, any imported values are
saved in the project file. If you have a subsystem that adds or removes objects
such as tasks depending upon the configuration then you must take care not
to save the project file or use auxiliary OIL files instead.
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3.5.2 Auxiliary OIL files

When RTA-OSEK saves a project file, it writes the complete set of
configuration data to a single .oil file. If the original .oil file that was read into
RTA-OSEK was composed from separate OIL file fragments bound together
via the #include mechanism, this structure is lost.

Often this is what is desired. However there may be situations where some
external tool is being used to maintain portions of the overall application (e.g.
a TCP/IP stack), and that tool generates a file containing OIL declarations
relating to the subsystem.

If the content of the subsystem is changed, RTA-OSEK must update the
project by re-reading the relevant OIL file fragment.

This can be done manually by importing the file (Menu option File / Import),
or alternatively the name of the file can be added to the project as an
auxiliary OIL file.

Auxiliary OIL files are read by RTA-OSEK after reading the main project file.
They act similarly to using #include statements at the end of the project
file. Auxiliary OIL files are intended to be used where a 3" party tool is
responsible for generating a partial OIL configuration that is then included in
the main project OIL file.

The following points should be noted:

e Auxiliary OIL files should be syntactically ‘complete’. i.e. there must be
a CPU clause around the subsystem declarations.

e Settings in auxiliary OIL files will override values previously set in the
project OIL file or any other auxiliary OIL files that are read before the
current one.

e When RTA-OSEK saves the project OIL file, any values that originated
from an auxiliary or imported file get saved in the project file. If you
have a subsystem that adds or removes objects such as tasks
depending upon the configuration take care not to save the project
OIL file. If you do, then you may have to use the GUI to remove the
objects that are no longer required.

e When changes to the configuration of an object in an auxiliary OIL file
are made, these changes will be saved in the project OIL file and not
the auxiliary OIL file. If the project OIL file is opened again, the
previous object values from the auxiliary OIL file will be read in again
and will overwrite the changes in the project OIL file.

You can use File -> Options -> Auxiliary Files to specify the names and/or
locations of your auxiliary OIL files: Paths can be absolute of relative to the
project OIL file location.
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3.6 RTA-OSEK Builder

The RTA-OSEK Builder contains two parts:

e A basic entry method for constructing an application, suitable for
those already familiar with OSEK concepts. This is described in Section

3.6.1.

e Application build (setting options and actually building the
application). This is described in Section 3.6.2.

In the following sections, we will go through the options available in the
Builder.

3.6.1 Basic Data Entry

If you are already familiar with OSEK concepts, you may find that the extra
features in the RTA-OSEK Planner are more than you need. The Builder
provides another way to create and modify your application through a
navigable grid-based interface that only shows standard OSEK features.

Application data is entered using the ‘Basic Data Entry’ view. Each class of
OSEK object has its own tab — use the Add and Remove buttons to create
and delete OSEK objects.

The tabbed data grids are selected to view all of the details for the individual
OSEK objects. The Tasks tab is shown in Figure 3:73.
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Figure 3:73 - Entering Tasks using the Basic Data Entry view

3.6.2 Building an Application

If you have successfully completed all of the steps in creating an application,
you can now start the build process. The build process involves:

Compiling the task and ISR C files.

Compiling the RTA-OSEK generated C file osekdefs.c. This file
contains data describing the RTA-OSEK component objects used in
your application.

Assembling the RTA-OSEK generated assembler file osgen. (The file
extension is target-specific). This file contains data describing the low-
level RTA-OSEK OS data.

Compiling any additional supporting C files, such as target-specific
files used to implement responses and initialize the hardware.

Linking the resulting files with the RTA-OSEK OS API library, the
compiler’s run-time library and any run-time startup code.

There are two different ways to build your application. You can build a system
manually or use a custom build script:

A Manual Build refers to building the application outside of the RTA-
OSEK GUI. This is typically used in when integrating RTA-OSEK in a
larger build process. The manual build process is outlined in Section
3.6.4.

A Custom Build refers to building the application inside the RTA-OSEK
GUI. This is useful for constructing small sample applications. A
Custom Build requires you to tell RTA-OSEK about your compiler
toolchain and about the non-OS source code files, linker settings etc.

The Custom Build process is described in Section 3.6.5

3.6.3 Consistency Checking you RTA-OSEK Configurarion

3-66

Clicking on the Build Checks button will check that the system has been
specified completely enough to build. This step does not compile or check any
code; it simply confirms that required objects have been defined (whether in
Planner, or in the basic data entry view).
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If all required objects have been defined, each check will be marked with
'OK".

3.6.4 Manual Build

For a manual build you need to run the RTA-OSEK Builder’'s code generation
tool to process the OS configuration and generate the source files (C source
and header files, as well as assembler source files) for use in your own code
These generated files need to be incorporated into an external build process
(perhaps using make or similar).

The process also creates an ORTI debugger file (if a debugger has been
selected in the target configuration) and an RTA-TRACE description file (if
tracing has been enabled).

You can use the “Create Files” option in RTA-OSEK’s Builder to create the
files.

If there are no build errors, the RTA-OSEK GUI will create and list the
necessary files. An example is shown in Figure 3:74.

& ex2 - RTA-OSEK =13
File Wiew Application Target Stimuli ISAs  Tasks Resources Ewents COM Bulld  Analyze Trace Help

Builder Create Files
@ Build Check
Summary
Craating filas
@ The build files hawe been created in:
Basic Data Entry - CAs\COSTZ1BWER
@ The header files created are:
Build Checks -osekh
-osgenh
@ -oscomn.h
L -oseklibh
Build the application kc:u:nmn.h
@— = krmain.h
S -LampToggle.h
Custom Build - Buttan1Respaonse h
- MotorResponse.h
- MotorStarth
- FrimaryISR.h
The data files created are:
-osekdefs o
- Osgen.s

¥ Planner  Builder [ pTa TRACE

History 4 % b |EreateBuiId Files j

I @' Build the application I

Figure 3:74 - Creating RTA-OSEK Files
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By default, the generated files are create in the same directory as the
application OIL file. You can change this for each project or set a new
default.

In both case changes are made through the File -> Options... dialogue.

The setting for the application are in the “Application Settings” tab . You can
specify different locations for each different type of generated file. A period (.)
indicates the current directory and a double period (..) indicates the parent
directory.

options 2 x|

application 5ettings |.-'1'-.u3iliar_lrl Filesl Global Settingsl I:in::ensingl

e —Location of file
Chow ISP wector descripion: v .z Fileg I
|lze hexadecimal for timings [ ] .h Files I.'\inu:
Show Extended OIL in view [ Assembler Files I.'\asm
Uze hyperlink. W -
sefiperits g Object Files  |-\abi
Seek to object in OIL wiew v

Intermediate Filesl.'\tmp

Application Files I

~EBuild dnalysi
k.eep intermediate build files [ F.eep intermediate analvsis files [

Analyziz Depth I 9 - I
Pricrity Pack Depth |1

ok, Cancel |

Figure 3:75 - Application File Location Setting

A

Stop build on warnings

Similarly, the global defaults can be set in “Global Settings” tab.

Important: Application Settings override Global Settings.

Using the RTA-OSEK GUI to process your OIL file is impractical when you want
to make you OS generation part of a larger system build process. RTA-OSEK
therefore allows you to run the Builder's code generator from a command
line:

$ rtabuild application.oil

RTABuild version 5.x.x

Copyright © LiveDevices Ltd 2001-2007.
$

A full list of command line options is available by executing rtabuild -h or
by looking in the RTA-OSEK Reference Guide.
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Once you have generated the RTA-OSEK files from your application OIL file
you need to:

e Place the header files in your include path
e Compile osekdefs.c
e Assemble osgen.<asm>

e Linked with the correct RTA-OSEK component library. Remember that
the library used depends on the build status (Standard, Timing or
Extended). The name of the library and its location are shown in the
application implementation notes.

Important: When you are compiling and assembling your application, you
can use the rtkbuild.bat file as a guide. The RTA-OSEK GUI can generate this
file by using the Create ‘rtkbuild.bat’' button from the ‘Custom Build" view.
In particular, take great care if you use compiler or assembler options other
than those specified for osekdefs.c and osgen.s.

3.6.5 Custom Build

The custom build process is controlled through a build script called
rtkbuild.bat. This is an MS-DOS batch file that compiles/assembles your
tasks, ISRs, osekdefs and osgen files.

rtkbuild.bat is created automatically when you click Build Now.

The custom build assumes that each of your tasks and ISRs lives in its own
source file. It also knows which RTA-OSEK source files will be generated and
how to compile them.

The only steps you need to add are compilation/assembly for any other files
that are needed and then link/locate the object modules. This is configured
using Custom Build in the RTA-OSEK Builder workspace using the Configure

button — See Section 3.6.6 for a full description.
Once the build script has been finalized:

e Save the application.

e Click the Build Now button.

The RTA-OSEK GUI checks for errors in the system description. If it detects a
mistake, it will generate an error message and stop. If it discovers something
that is unusual, but that may be correct, it will issue a warning and continue.
The RTA-OSEK GUI then runs the script. You will see the tool output displayed
in the RTA-OSEK GUI window as the script is executed. If the script completes
successfully, a new executable file will have been created, ready for testing.

3.6.6 Custom Build Options

The Custom Build Options dialog box is displayed by clicking the Configure
button. This dialog allows the build script to be edited, environment variables
to be set, and custom buttons to be defined. The custom build script is
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contained in a generated file called _rtkbuild.bat. This sets up your
custom options before calling rtkbuild.bat.

Environment

In the Custom Build Options dialog the Environment section is used to
declare any environment variables you need to use as part of the custom build
process. You can use RTA-OSEK GUI macros when defining these. You can
find a list of the Built-In macros in Application -> Macros -> Built-In Macros
and also in the RTA-OSEK Reference Guide.

The macros provide access to RTA-OSEK settings like the name of he RTA-
OSEK library to link against, the path to the RTA-OSEK include files etc.

Custom build options 2=

Environment |Euild Scriptl Iemplatesl Cuigtam Bgtlonsl

DEST=%(DIR)|

O LCancel

Figure 3:76 - Custom Build Environment

Build Script

By default, the build script simply contains ‘call rtkbuild.bat’.

The first thing that rtkbuild.bat does is to set environment variables for
your compiler toolchain by calling the Toolinit.bat script that in your
RTA-OSEK <install dir>\rtal\<target> directory. You must ensure
that Toolinit.bat is correctly configured for your toolchain.

Calling rtkbuild.bat will not be enough to build a complete application.

Typically you will have other code that you need to compile and/or assemble,
other libraries to link with etc. This means you need to extend the build script.
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Let's assume that you have put the target-specific initialization and response
implementation code in a file called target.c. You must add a line like this
to the build script:

%$CC% %COPTS% target.c ‘

Note here that cc and copts are environment variables that have already
been set up in rtkbuild.bat. You may choose to name the compiler and
options more explicitly. You can also add a —debug option to the compiler
command-line. This is achieved by adding an environment variable
APP_COPT.

The link/locate stage tends to be more target-specific. An example version, in

a single line of code, again showing the use of RTA-OSEK macros, is shown
below.

%$1lnk% —-v —-1%RTA_LIB% —-1%CBASE%\1lib -m$ (NAME) .map -
otemp.out link.lkf $(RTKOBJECTS) target.$ (OBJEXT)
S (RTKLIB) crtsi.S$(LIBEXT) libm.$(LIBEXT)

libi.$ (LIBEXT)

The Custom Build Options dialog will look something like Figure 3:77.

Custom build options x|

Erwironment  Build Seript |lemplates| Custaom Bgttonsl

call rtkbuild bat |

rem Compile other user code
Mook XCOPTSY reset . c

ook XCOPTSY% target .o

Mook XCOPTSX: hooks .o

rem Linlk the application
¥lnkk -18(TGTBASE)~1lib -1XxCBASEX~1ib —m%(HAME) map —of%(HAM]

rem Conwert executable to flash file format
RCBASEX~cv695 S{NAME) hlZ

(] Cancel |

Figure 3:77 - Creating a Custom Build Script

The words starting with ‘%’ refer to environment variables set up via
Toolinit.bat and rtkbuild.bat.

Similarly, the words enclosed by ‘s ()’ such as $ (NAME) refer to RTA-OSEK
GUI macro variables. These macros can be used in any of the custom build
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configuration entries. They are expanded to the appropriate values during the
final build.

A full list of the environment variables and macros that are normally available
can be found in the RTA-OSEK Reference Guide.

Templates

RTA-OSEK’s Custom Builder can generate template code for the tasks and
ISRs that you have declared, together with the main program.

You can configure the template code in the Templates section as shown in
Figure 3:78.

Custom build options 2=l

En\-’imnmentl Build Script - Templates | Cuztom Bgttunsl

1. Inzert before RTA Hinclude: — [#include "target b
finclude "Cormn.h"

I

. Inzert after RTA Hinclude: tdefine SOME_COMNSTAMT [42]

(%]

- Inzert 4t start of body unsigned int Initialisedyariable = SOME_COMSTANT]

0k LCancel

Figure 3:78 - Customizing Template Code

When template code is generated the configured insertions are added
verbatim to the generated code:

/* Template code for 'T1l' in project: MyProject */

#include "target.h"

#include "Com.h"

#include "T1.h"

#define SOME_CONSTANT (42)

TASK(T1)

{

unsigned int InitialisedVariable = SOME_CONSTANT;
TerminateTask () ;

}
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Custom Buttons

The Custom Buttons section allows you to create up to five user-defined
buttons for custom builds. By default the first button is set up as a ‘Quick
Edit’. You can configure these buttons to launch any external programs, such
as a source-code control system or debugger as shown in Figure 3:79.

|—

I&Duick Edit |$[EDITDH]$[DF‘ENFILE]

(%]

|&D egugger |I::\F'ru:|gram FilezhMoral\Flex BDMCPUT2WFLEXUILEXE

]
L
| | =l
L
=]

(LE%]

|=

lon

af. Cancel |

Figure 3:79 - Custom Button Configuration

3.6.7 Working with Packages

RTA-OSEK allows you to integrate the build of additional 3" party software in
a common way through the use of the packages scheme. A package defines
the set of library functions that are provides and allows you to configure the
worst-case execution time, stack and build information for the library
functions.

Package definitions are stored in <install dir>\rta\packages and
have the extension .pdef. RTA-OSEK v5.0 supplies package definitions for
RTA-COM.

You can specify that a package is active for your application by setting the
availability of the package to as shown in Figure 3:80

RTA-OSEK v5.0.2 The Development Process

3-73




Application Select package: IEDM 'l
JLaros] Package "COM"
Stimuli
e — Ayailability | The package is available for use.
@ Configuration averides | Mo override. Configuration information is read from the package definition file.
e — Datait
@ The package is specified in file 'Citalpackagesyta-com. pdef'.
= k.) The package wersion is: 1.0.1.
ackages
It contains 11 function definitions:
@ COM.Sendiessage (hotused)
Functions COM Receivelessage (not used)
COM.Com UpdateShadowSignal {not used)
@ COM.SendDynamictessage (hot used)
Frocesses COM Send’erabdessage (notused)
Com ReceiveShadowSignal (notuse
COM.Com ReceiveShadowSignal | o)
@ COM Beceielynamickessage (not used)
BEmEineE COM.Com_SendSignalGroup (ot used)
COM.Com FeceiveSignalGroup (not used)
COM.GetCOMApplicationtdode (not used)
COM.Com GetCOMApplicationtdode (not used)

Figure 3:80 - Packages

Active packages make their functions available to RTA-OSEK. Each task/ISR
can specify which library function it calls (and the stack size at which the
function is called) which then allows RTA-OSEK to include the stack use of the

package function in stack usage calculations.
Functions 21|

Functions uzed

3.7

COM.ReceiveMessagelrourMeszage]: stacl
LM, 5endh eszzage(M it

k. offet 12

et 42

yhezzage] 2

Bemove
Stack

Parameters

L

Figure 3:81 - Using Functions from Packages

For further details about the use of packages please contact Technical

Support.

Other Implementation Details
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When writing your own applications, you should consider the implementation
details in this section.
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3.7.1 Namespace

The RTA-OSEK component has a defined namespace. Names cannot be
created that conflict with existing names or names used internally. Internal
names used by the RTA-OSEK component generally begin with the prefixes
‘0os’ or ‘OS" or '_os’ or '_0OS’. Other internal names include the tokens used in
the enhanced OIL grammar. Follow these simple rules:

e Do not pick names beginning with ‘os’ or ‘OS" or
These are all reserved for the RTA-OSEK component.

¢ Do not choose an object module or file name beginning with ‘os’.

1

_os’" or "_0OS".

3.7.2 Reentrancy

All calls to the RTA-OSEK component are reentrant where necessary. Special
protection to prevent reentry is not required. The C libraries provided by your
compiler supplier, however, may not be reentrant (most C libraries are not).

Floating-point support presents a common reentrancy problem with C
libraries. The floating-point problem is not always obvious, since the compiler
can insert calls to floating-point libraries silently. With the RTA-OSEK
component, floating-point can be used safely in tasks and ISRs by specifying
that the object uses floating-point.

Portability: On some targets, reentrancy problems can occur when functions
return structures. If this is the case, protection against reentrancy must be
performed before and after the call is made to a function that returns a
structure.

Important: It is your responsibility to prevent reentry to a non-reentrant
function. This is usually implemented by disabling interrupts or by using RTA-
OSEK component ‘resources’. In fact, a C library of non-reentrant functions
may contain "hooks’ where RTA-OSEK component resource get and release
calls can be inserted to protect against reentry.

Any reentrant function in a system running the RTA-OSEK component need
only be serially reentrant, as opposed to fully reentrant. A serially
reentrant function is one where it is acceptable to switch from a thread of
control currently executing the function to a thread of control that is not yet
executing the function, but will do so later.

Some compilers can generate different code for reentrant and nonreentrant
functions. For example, nonreentrant functions can use static data overlaying
techniques for parameters and local variables. A reentrant version will use the
stack.

RTA-OSEK provides the 0S_REENTRANT and OS_NONREENTRANT macros to
ensure generation of the appropriate code. For compilers where there is no
difference in code generated, these macros have no effect. However, it is
recommended that they be used for portability. These macros are described in
detail in the RTA-OSEK Reference Guide.
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The RTA-OSEK component does not normally use any functions from the
standard C library, but may need to use some target-specific code from the C
compiler library. The RTA-OSEK component does not make floating-point
calculations itself. Refer to the RTA-OSEK Binding Manuals for information on
the requirements of the RTA-OSEK component on each particular target.

3.8 Summary

e RTA-OSEK provides facilities for the specification, design,
implementation, building and analysis of hard real-time systems.

e Applications are modeled as stimulus/response relationships. The
associated performance constraints are expressed as deadlines on
responses.

e The design and implementation determines how stimuli are captured
and how the responses are generated in terms of OSEK OS objects.

® You can build entire applications using a custom or manual build in
the simple development environment interface.

e When execution times for tasks and ISRs in your application are
determined, timing analysis can then be performed on the
stimulus/response model to show that all performance constraints are
satisfied at run-time.
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4 Tasks

A system that has to perform a number of different activities at the same time
is known as concurrent. These activities may have some software part, so the
programs that provide them must execute concurrently. The programs will
have to cooperate whenever necessary, for example, when they need to share
data.

Each concurrent activity in a real-time system is represented by a task. The
majority of the application code exists within tasks.

If you have a number of tasks that must be executed at the same time, you
will need to provide a means to allow concurrency. One way for you to do this
is to have a separate processor for each task. You could use a parallel
computer, but this solution is too expensive for many applications.

A much more cost effective way for you to achieve concurrent behavior is to
run one task at a time on a single processor. You can then switch between
tasks, so that they appear to be executing at the same time.

4.1 Task Switching

A scheduler is used to perform task switching. It does this by implementing
a scheduling policy. The policy dictates when one task should (temporarily)
stop executing and another task should start.

The OSEK operating system specifies a scheduler that uses a fixed priority
scheduling policy.

Under this policy, each task is assigned a fixed priority. The scheduler will
always run the highest priority task that is ready to run. If a task is running
and a higher priority task is made ready to run. The higher priority task will
pre-empt the lower priority task. When the higher priority task has finished
executing, the lower priority task is resumed at the point of pre-emption.

You can see an illustration of this in Figure 4:1.
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Task HIGK
T_ask HIGH starts running Task HIGK
in entry functior i

(i.e
returns from
entry function)

entry function)

Task LOW starts Task LOW
in entry functior Ewitch to Task terminates (i.e
HI

GH returns from
Idle Task
running

Priority

Idle Task
running

Switch tc Task
LOW

A\ 4

Eask Low Eask HIGK
activated activated
Figure 4:1 - Example Execution of Tasks

In Figure 4:1 you can see that, initially, the idle task is running (you will learn
about the idle task in Section 4.8). At some point a low priority task, L, is
activated. A task switch takes place and L starts executing from the start of
its entry function.

Later, a higher priority task, H, is activated and again a task switch takes place.
H starts executing from the beginning of its entry function.

H then terminates and L resumes execution from the point it was preempted.
L eventually terminates. Finally, the idle task resumes execution from the point
at which it was preempted.

Single Stack Architecture

RTA-OSEK uses a single-stack model which means that all tasks and interrupts
run on a single stack’. The single stack is simply the C stack for the
application.

As a task runs its stack usage grows and shrinks as normal. When a task is
pre-empted the higher priority task’s stack usage continues on the same stack
(just like a standard function call). When a task terminates the stack space it
was using is reclaimed and then re-used for the next highest priority task to
run (again, just as it would be for a standard function call).

In the single stack model, the stack size is proportional to the number of
priority levels in the system, not the number of tasks/ISRs. This means that
tasks which share priorities, either directly, or by sharing internal resources, or
through being configured as non-preemptive, can never be on the stack at
the same time and therefore can safely share the stack space. The same is true
of ISRs that share priorities in hardware.

* Some microcontroller architectures provide hardware support for more than one stack, for example, an
interrupt stack. In these cases RTA-OSEK may use these additional stacks.
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The single stack model also significantly simplifies the allocation of stack space
at link time as you need only allocate a single memory section for the entire
system stack, in exactly the same way as if you were not using an OS.

4.3 Basic and Extended Tasks

4.3.1

OSEK operating systems define two types of task: basic tasks and extended
tasks. The task type defines the states, in the operating system state model,
that are valid for a particular task.

Each task type has there are two levels called type 1 and type 2. You'll learn
about these later in this chapter.

Basic Tasks

Basic tasks are single-shot tasks. This means that a task is made ready and
then starts executing from its entry point. During execution it may be
preempted by other higher priority tasks, but it will continue to run (whenever
there are no higher priority ready tasks) until termination. It can be made
ready again later and the task can execute again.

Basic Task States

Basic tasks can exist in the following states:
e Ready.
e Running.
e Suspended.

The default state for a task is suspended. A task is moved into the ready state
either by an explicit activation APl call or by some other method that will
cause activation. The state transition diagram for basic tasks is shown in
Figure 4:2.
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Preempt
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Figure 4:2 - The State Transition Behavior for Basic Tasks

Looking at Figure 4:2, you can see that when RTA-OSEK Component chooses
to run a task it moves from the ready state to the running state. The execution
of the task starts from the task entry point.

If a higher priority task becomes ready to run, the currently executing task is
preempted and is moved from the running state into the ready state. Only
one task can be in the running state at any one time.

A task returns to the suspended state by terminating.

Important: Basic tasks cannot wait for a specific event or delay for a certain

time (other than busy waiting). In Figure 4:2, you can see that the only way of
a task becoming suspended is by terminating.

Type 1 and Type 2 Basic Tasks (BCC1 and BCC2)

You saw earlier that within each conformance class there are two levels. The
Basic Conformance Class (BCC) has type 1 and type 2 tasks.

e Type 1 basic tasks (BCC1).
These are single-shot tasks. They have a unique task priority and they
cannot be activated unless they are currently in the suspended state.

e Type 2 basic tasks (BCC2).
These are single-shot tasks. They can share a priority with another task
and they can have multiple activations. Multiple activation means
that a task can be activated, up to a specified number of times, whilst
it is in the ready or running state. You'll find out more about this in

Section 4.4.2.

If two or more tasks have the same priority, each task at the shared priority
will run in mutual exclusion. This means that if one task is running, the
other tasks sharing the same priority cannot pre-empt it. Their activations are
gueued in a FIFO manner. As a result of this, you will not be able to perform
timing analysis on the system.
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Important: To make RTA-OSEK Component more efficient, you should assign
unique task priorities and use internal resources to enforce mutual exclusion.
If you do this timing analysis will also be possible.

The RTA-OSEK GUI allows you to set the maximum number of times that task
activations can be queued. RTA-OSEK Component will ensure that the task
executes once for each of the activations that is recorded, up to limit that you
set. Where more than one task shares the same priority, the tasks are run
strictly in the order that they were activated.

4.3.2 Extended Tasks

Extended tasks usually exist in infinite loops. Once they are running, they do
not normally terminate. They can ’‘sleep’ in a waiting state, pending the
outcome of an event.

Extended Task States

Extended tasks can exist in the same three states as basic tasks:

* Ready.

e Running.

e Suspended.
In addition to these, they can also exist in an extra state:

e Waiting.
The state diagram, in Figure 4:3, shows the four states for an extended task in
an OSEK operating system. You will notice that the extended task behavior in
the ready, running and suspended states is identical to behavior of basic tasks
(in Figure 4:2).
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Figure 4:3 - The State Transition Behavior for Extended Tasks

An extended task moves from the running to the waiting state when it
voluntarily suspends itself by waiting on an event.

An event is simply a system object that is used to provide an indicator for a
system event. Examples of events include data becoming ready for use or
sensor values being read. When an event is set, the task is moved from the
waiting to the ready state.

If an extended task is waiting on an event, then tasks of lower priority are
allowed to run.

Type 1 and Type 2 Extended Tasks (ECC1 and ECC2)

Again, as you saw earlier, each conformance class contains two levels. The
Extended Conformance Class (ECC) has type 1 and type 2 tasks.

e Type 1 extended tasks (ECC1).
These tasks can wait for events and have unique task priorities. So, an
ECC1 task is like a BCC1, but it can wait on events.

e Type 2 extended tasks (ECC2).
These tasks can wait for events and can have the same priority as
other tasks. Where more than one task shares the same priority, the
tasks are run strictly in the order they were activated. Note that,
unlike type 2 basic tasks, type 2 extended tasks cannot use multiple
activation.
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Important: Extended tasks are not amenable to timing analysis. RTA-OSEK
will limit any analysis to basic tasks and ISRs that are of a higher priority than
any extended task. This means that you should make sure that the hard real-
time aspects of your system are of a higher priority than the highest priority
extended task.

4.4 Task Configuration

Unlike other real-time operating systems that you might have seen, the tasks
in OSEK (and, therefore, in RTA-OSEK) are defined statically. This technique is
used because it saves RAM and execution time.

Tasks cannot be created or destroyed dynamically. Most of the information
about a task can be calculated offline, allowing it to be stored in ROM.

When you configure your task properties, you will use the RTA-OSEK GUI.
Look at the example in Figure 4:4 to see how a task has been constructed.

j@ @ @\) Idefault_profile j ® @ @

Select Tazk: I 11

Task "t1" [BCC1]

Stack allocation

Temination

Budget

Execution limits

Besource uze

Interrupt locks

Primary / &ctivated

Pricrity Friarity 4.
Scheduling Scheduling is preemptakble.
Activations Maximum nurnber of simultaneous task activations is 1.
Avtostart Mot autostarted.
Floating point Floating-pointis not used.

Stack allocation is automatically calculated from execution profile information.
Termination type is taken from the defaultwvalue (heawaweight).

The execution budgetis undefined.

Exacutfion profila "default_profile”

Worst-case 3000 processor cycles, stack 20 bytes.

Mo resource locks.

Ma interrupt locks.

This is an activated profile.

Deatail

11 executes for 3000 processor cycles, stack 20 bytes.
Task il stars executing attask priority 4.

Figure 4:4 - Configuring a Task in the RTA-OSEK GUI

An OSEK task has 5 attributes:

e Name.

The name is used to refer to, or provide a handle to, C code that you
will write to implement the task functionality.

e Priority.

The priority is used by the scheduler to determine when the task runs.
Priorities cannot be changed dynamically. In RTA-OSEK, 0O is the lowest
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possible task priority. Higher task priorities are represented by larger
integers. Tasks can share priorities, but if you are building a real-time
system then you should not do this because it cannot be analysed.

e Scheduling
An OSEK task can run fully preemptively or non-preemptively. In
general, fully preemptive should be selected over non-preemptive for
best application performance.

e Activations
In OSEK you can only activate a task that is in the suspended state. In
some cases you will need to queue task activations (for example to
smooth out transient peak loads in your application).

e Autostart
This controls whether the task is started automatically when your start
the OS.

Portability: The number of tasks that can be defined is fixed for each target
(it is usually 16 or 32, depending on the target processor). Your RTA-OSEK
Binding Manual for your target will contain further information.

4.4.1 Non-Preemptive Tasks

A fully preemptable task can be preempted by a task of higher priority. You
can prevent other tasks from preempting it by declaring the task to be non-
preemptable in the RTA-OSEK GUI'.

Tasks that are declared as non-preemptive cannot be preempted by other
tasks. When a non-preemptive task moves to the running state it will run to
completion and then terminate (unless they make a Schedule() call,
explained in Section 4.10). Non-preemptive tasks can still be interrupted by
ISRs.

You will often find that it is unnecessary to use non-preemptable tasks
because there are other, more suitable methods, which you can use to
achieve the same effect. If you use these other techniques, it will usually result
in @ more responsive system. You will find out more about these techniques
later, but they include:

e Using standard resources to serialize access to data or devices.

e Using internal resources to specify exactly which other tasks cannot
cause preemption.

4.4.2 Multiple Activation

Under most circumstances you will only activate a task when it is in the
suspended state. However, you may need to implement a system where the
same task must be activated a number of times and where the shortest time
between successive activations is less than the time needed to run the task.

¥ The non-preemptive task itself, however, can call the schedule () API call, which will cause a task switch if a higher priority
task is ready to execute.
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If this happens you will be activating the task while it is in the ready state or
the running state. This means that activations will be lost.

To prevent loss of activations, OSEK allows you to queue task activations for

BCC2 tasks. Queued task activations are processed in first-in, first-out (FIFO)
order, so the task in the queue will run in the order they were activated.

Important: In accordance with the OSEK OS standard, this feature is only
available for basic tasks. Remember that you cannot specify multiple
activations for extended tasks.

You must specify the maximum number of multiple activations required for
the task. Figure 4:5 shows how this is done in the RTA-OSEK GUI. In the
example, the maximum number of activations has been set to 10.

Select Tazk: |t3 j@ @ @ |default_pl0file j

Task "13" [BCC1]

Ericiity Priority 2.
Scheduling Scheduling is preemptable.
Activations Maximurm number of simultaneous task activations is 1.
Autostart Autostarted in AppMode: OSDEFAULTAPPMODE
Floating paint Floating-point is used.

Stack allocation B00 bytes of stack are allocated for the task.

T ermination

Specify activation limit

Max activations |10

Besaurce use | Locks resource BES SCHEDULER

Budaget

E xecution limits

Interrupt locks Mo interrupt locks.

Primary # Activated This iz an activated profile.

Datail

Task 3 starts executing at task priority 2.
t3 can lock resource BES SCHEDULER.

Figure 4:5 - Specifying the Maximum Number of Activations

When multiple activations are specified, RTA-OSEK automatically identified
that the task is BCC2. When you perform analysis on your application, RTA-
OSEK will calculate the maximum size of the multiple activation queue needed
for each BCC2 task.

Optimizing Queued Task Activation

When all the tasks in your system have unique priorities, RTA-OSEK does not
need to maintain an explicit FIFO queue at runtime and automatically
optimizes the FIFO queuing strategy to counted activation. . Counted
activation is significantly more efficient than FIFO activation.
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To get the best performance of an OSEK application that uses queued task
activations, you should ensure that tasks do not share priorities.

4.4.3 Autostarting Tasks

Tasks can be autostarted, which means that when the operating system
starts, they are activated automatically during starto0s ().
For basic tasks, which start, run and then terminate, autostarting a the task

will make it run exactly once before it will return to the suspended state (from
where it can be activated again).

Autostarting is mainly useful for starting extended tasks that wait on events
because it removes the need to write code to activate the tasks.

The RTA-OSEK GUI can be used to specify that a task is only auto-activated in
specific application modes — choose the application mode in question and
select the tasks you want to autoactive in it.

In Figure 4:6, t2 and t3 are autostarted in the default application mode.

BT Select AppMode: [DsDEFAULTAPPMODE ] (B (3D (@
@ AppMode "0SDEFAULTAPPMODE"
Summary

(\ There is one autostarted task: 3.

@

05 Configuration Aubostart Alarms There are no autostarted alarms.
@ <Motimehases exist>

Startup Modes

@
Timehases
@ Select autostarted tasks
Qptimizations Talee
® 7
: v 13
Defaults
v
W
@ ozek_idle_task

Implementation

Figure 4:6 - Auto-Activating Tasks in Application Modes

4.5 Implementing Tasks

Tasks are similar to C functions that implement some form of system
functionality when they are called by RTA-OSEK Component.

Important: You do not need to provide any C function prototypes for task
entry functions. These are provided in the header file generated by RTA-OSEK.
The appropriate file for each task should be included because it contains
declarations that are specific to the named task.
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When a task starts running, execution begins at the task entry function. The
task entry function is written using the C syntax in Code Example 4:1.

TASK (task_identifier)
{

/* Your code */

}

Code Example 4:1 - A Task Entry Function

Remember that basic tasks are single-shot. This means that they execute from
their fixed task entry point and terminate when completed.

Code Example 4:2 shows the code for a basic task called Task1.

/* Include header file generated RTA-OSEK. */
#include “BCC_Task.h”

TASK (BCC_Task) {

do_something () ;

/* Task must finish with TerminateTask ()
or equivalent. */

TerminateTask () ;

}

Code Example 4:2 - A Basic Task

Now, compare the example in Code Example 4:2 with Code Example 4:3.

Code Example 4:3 shows that extended tasks need not necessarily terminate
and can remain in a loop waiting for events.

/* Header file generated by RTA-OSEK */
#include “ECC_Task.h”
TASK (ECC_Task) {

InitialiseTheTask();
while (WaitEvent (SomeEvent)==E_OK) {
do_something() ;

ClearEvent (SomeEvent) ;

}

/* Task never terminates. */

Code Example 4:3 - Extended Task Waiting for Events

4.6 Activating Tasks

A task can only run after it has been activated. Activation either moves a task
from the suspended state into the ready state or it adds another entry to the
queue of ready tasks (if the task supports multiple activation). The task will
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run once for each of the activations. It is an error to exceed the activation
count and your application will generate E_0S_LIMIT errors when this
happens (even in the Standard build).

When a task becomes the highest priority ready task, it moves into the
running state and RTA-OSEK Component calls the task’s entry function.

Important: Activating a task does not cause the task to begin executing
immediately.

Tasks can be activated from both tasks and ISRs. When you activate a task
from an ISR it is placed into the ready state. RTA-OSEK will only check if the
task needs to enter running state when the ISR has completed and once any
higher priority tasks that were ready or running have terminated.

When you activate a task from another task, the behavior depends upon the
relative task priorities. In general, if the activated task has higher priority than
the task doing the activation, then the newly activated task will preempt the
current task*. Otherwise, it will wait until the current task terminates and it
becomes the highest priority ready task.

Figure 4:7 shows how this preemption works. In this example, Task1l is
running, but it is preempted by a higher priority task called Task2. Task2
executes to completion and then Task1 resumes from the point that it was
preempted, until it finishes.

A ‘I

A

>
=
—
.8
-
o
o Task2
£
% Task2 terminates
i <
Q Task2 activatec q
G Task* preempted Task? resumes \ 4
£
Task’ ir Ready state
| -
B L
Time

Figure 4:7 - Preemption of a Running Task by a Higher Priority Task

In a well-designed real-time system, it is unusual for a task to activate a higher
priority task. Normally it is the ISRs that react to the incoming stimuli. They
then activate the tasks that implement the responses. In turn, the tasks may
activate lower priority tasks to implement the responses that have longer
deadlines.

Observing this fact leads to one of the major optimizations in RTA-OSEK

Component. If you specify that your tasks never activate a higher priority task,
RTA-OSEK Component can eliminate a large amount of internal code. It can

*In fact, if the calling task has a resource locked, the activated task has to be of higher priority than the highest priority task

locking the resource. Also, if the calling task is non-preemptive, the activated task will not preempt.
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do this because it never has to test within an API call to see if preemption
should occur.

4.6.1 Direct Activation

Tasks can be activated in a number of different ways. The basic mechanism
for task activation is the ActivateTask (TaskID) APl call, which directly
activates a task.

The ActivateTask () call places the named task into the ready state.

The ChainTask () call terminates the calling task (see Section 4.7) and
places the named task into the ready state.

API Call

Description Static Version
Name

ActivateTask () | A task or ISR can make | ActivateTask _TaskID()

:ngk cda;llezayactlvate the The sta'tic. version allows RTA-OSEK

' to optimize the code generated,
based on the relative priority of the
caller and activated task.

ChainTask () A task can make this | ChainTask_TaskID()
call to terminate the
currently running task
and to activate the
task indicated.

4.6.2 Indirect Activation

Besides directly activating tasks it is possible to use other OSEK and RTA-OSEK
methods to indirectly activate a task. These methods are described in more
detail in later chapters of this user guide.

e Activation by an event
For each event in the system, you can specify task(s) that are activated
each time the event occurs.

e Activation by a Message
For each message in the system, you can specify a task that is
activated each time the message is sent.

e Activation by an Alarm
For each alarm in the system, you can specify a task that is activated
each time the alarm expires.

e Activation by a Schedule Table
For each alarm in the system, you can specify a task that is activated
each time the alarm expires.
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e Activation by a Periodic Schedule
When you create a periodic schedule, a periodic activation pattern is
specified for one or more tasks. RTA-OSEK Component ensures that
each task is activated according to the pattern specified.

[}

Activation by a Planned Schedule

When you create a planned schedule, you will specify a specific
activation pattern for one or more tasks. RTA-OSEK Component
ensures that each task is activated according to the pattern specified.

4.6.3 Fast Task Activation

In accordance with the OSEK standard, RTA-OSEK Component checks that the
activation limit for the task is not exceeded each time that you make an API
call which results in task activation. If this limit is exceeded, the E_0S_LIMIT
error is raised. This check, however, approximately doubles the execution time
of the ActivateTask () API call.

If you use the RTA-OSEK Planner to verify that your application is schedulable
you are, in fact, showing offline that E_os_L1MIT will never be raised at run-
time. There is obviously little point in checking a runtime error that cannot
actually occur, so RTA-OSEK allows you to use fast task activation that doesn’t
need to make the E_0S_LIMIT check.

Fast task activation is selected in the RTA-OSEK GUI using the Application

Optimizations. In Figure 4:8, the system has been set to use fast task
activation.

Optirizations mainly affecting
ahalyziz
v Mo upward activation

¥ Unique task pricrities

v Disallow Schedule()

Optimizations mainly affecting
performance

v DOptimize static interface

I~ Use fast tagkset activation
¥ Lightweight termination
[~ Default lightweight
[~ lgnare FE declaration
O ptirizations mainly affecting size
[¥ Omit 05 Restart
¥ Omit RES_SCHEDULER
v Omit IncrementCounterd)

v Allow SetReldlarn(,0)

Tasks

Application Optimizations

Tasks may not activate higher priority tasks.
Tasks must hawe unique priorities.

The application does not call Schedule().

— Timing analysis can be performad on s applicafion —

COffline static analysis code optimizations are enabled.

Fast Activate Task/ThainTask implementation is used. (No runtime E_OS_LIMIT checks).
Standard Activate Taskset/ChainTaskset implementation is used.

The application may use lightweight task termination.

Tasks default to heawvyweight termination.

Floating-paint tasks and ISRs are treated normally.

The O35 can only be restarted via processor reset.
RES_SCHEDULER is never used.
IncrementCounter() can not be called from project code.

SetReldlarm( ) is legal and represents an interval equal to the counter modulus,

Figure 4:8 - Using Fast Task Activation
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4.7 Terminating Tasks
Tasks that terminate in OSEK must make an API call to tell the OS that this is
happening.
The OSEK standard defines two API calls for task termination. One of these
must be used to terminate any task. These API calls are:
® TerminateTask ()
® ChainTask (TaskID)
When a task has finished, it must make one of these API calls. This ensures
that RTA-OSEK Component can correctly schedule the next task that is ready
to run.
TerminateTask () forces the calling task into the suspended state. RTA-
OSEK will then run the next highest priority task in the ready state.
ChainTask (TaskID) also terminates the task but it also activates the task
named in the APl call. The APl is therefore like executing a
TerminateTask () followed immediately by
ActivateTask (TaskID) .Chaining a task places the named task into the
ready state.
Important: You should only call ChainTask () as the final statement in a
task entry function.
4.7.1 Optimising Termination in RTA-OSEK

The OSEK operating system standard allows task termination API calls to be
called by a task at any point, including within a deeply nested set of function
calls.

In Code Example 4:4, the task entry function makes nested calls to other
functions.

/* Include Header file generated by RTA-OSEK */
#include “TaskA.h”

void Functionl (void) {
Function2 () ;
}
volid Function2(void) {
if (SomeCondition) {
TerminateTask () ;

}

TASK (TaskA) {

/* Make a nested function call. */

RTA-OSEK v5.0.2 Tasks

4-15




Functionl () ;

/* Terminate the task in the entry function*/
TerminateTask () ;

}

Code Example 4:4 - Terminating a Task

In Code Example 4:4, you can see that when Taskl runs, it calls
Functionl (). Functionl () then calls Function2 (). In Function? ()
there is some code that can terminate the calling task (in this example, this is
TaskA).

The example is valid in OSEK but is bad programming practice — equivalent to
the use of goto. It should therefore be avoided wherever possible. If you
follow this good practice then RTA-OSEK can offer significant stack space
savings and performance improvements due to its single stack design.

RTA-OSEK defines two different types of termination:

e Lightweight termination is used to describe cases where the
terminating APIs are called only from the task entry function.

e Heavyweight termination is used to describe cases where the
terminating APIs can be called from within a nested function.

In a single stack architecture, a task that terminates using lightweight
termination can simply return from the entry function — TerminateTask ()
does not need to do anything. With heavyweight tasks, RTA-OSEK must store
information that allows it to clear the stack when the task terminates
somewhere other than the entry function. This is normally done using a
setjmp/longjmp pair.

If tasks are only terminated in the entry function, however, this information
does not need to be stored. Specifying that a task is lightweight tells RTA-
OSEK not to generate code to save this information and, as a result, you will
save stack space and terminating the task will be the same speed as returning
from a C function call.

In the RTA-OSEK GUI, you can set the default termination type to be either
lightweight or heavyweight. When you configure an individual task, you can
then set the termination type to the use the application default.

It is recommended that the default termination type should be set to
‘lightweight’ and, wherever possible, task termination should be set to

‘default’. Figure 4:9 shows how the default termination type is set.
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Select Task: lt3 Aﬂ@ @ @ ]default_prnfile :_J

Priaiity

Scheduling

Activations

Autostart

Floating point

Stack. allocation

Termination

Budget

Execution limitz

Bezource uze

Interrupt locks

Primary ¢ &ctivated

Task "t3" [BCC1]

Priority 2.

Scheduling is preemptable.

taximum number of simultaneous task activations is 1.

Autostarted in Apphode: OSDEFAULTAPFRMODE

Flaating-point is used.

500 bytes of stack are allocated for the task.

T  Lightweight

&
£ :
i Usge ap%catinn default [heawmmeight]

Mo interrupt locks,

L

This is an activated profile.
Datail

Task 13 starts executing attask priarity 2.
t3 can lock resource BES SCHEDULER.

Figure 4:9 - Setting Default Termination Type

Important: To take advantage of the lightweight task optimization, you must
include the correct task header file (called <TaskID>.h) when compiling the
task. The generic osek.h or oseklib.h file will not give you the expected
behavior. It is important that you do not configure a task to use lightweight
termination and then include a generic header file.

4.8 The Idle Task

Any preemptive operating system must have something to do when there are
no tasks or ISRs to run. In OSEK this is achieved by an idle mechanism. The
idle mechanism is implemented in RTA-OSEK Component using an idle task,
called osek_idle_task. The osek_idle_task is created automatically in

each new OIL file.
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Select Tazk: @ @ @ Idefault_profile j @ @ @
Task "osek_idle_task" [BCC1]
Prierity [ | Prioriy ‘e
Scheduling | Scheduling is preemptahble.
Flaating pairt | Floating-point is not used.
|

Stack allocation Stack allocation is automatically calculated from execution profile information.

Exacution profile "defaull_profile”

Execution lirits | Undefined stack,

Besource use | Mo resource locks.

Interupt locks | Mo interrupt locks.
Datait

osek idle task uses undefined stack.
The idle task runs after Stan0S().

Figure 4:10 - The osek_idle_task
The osek_idle_task is the same as a normal task except that:
e it cannot be activated
e it cannot be terminated
e it cannot be chained
e it cannot use OSEK's Internal Resources

The osek_idle_task has the lowest priority of any task in the system, can
use standard, linked or message resources and it does not count towards the
maximum number of user tasks (usually 16 or 32) available on your target
hardware.

RTA-OSEK generates a special task-specific header file called osekmain.h for
the idle task. This should normally be included in the file containing the
osek_idle_task code.

The code that implements the idle task is the code that executes after
Start0S () returns. Normally, this is the code in the application startup
function. Code Example 4:5 shows an example startup function.

#include “osekmain.h”
OS_MAIN (main)
{
/* System hardware initialization. */
StartOS (OSDEFAULTAPPMODE) ;
for (;7) |
/* This loop body is the osek_idle_task. */

Code Example 4:5 - An Application Startup Function

The osek_idle_task can be an extended task and wait for events. If you
use the osek_idle_task to wait for events, rather than any other extended
task, the OS overhead is much lower.
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4.9

Working with Extended Tasks

RTA-OSEK uniquely® extends the single stack model to provide support for
OSEK extended tasks without any impact on the performance of basic tasks.

In RTA-OSEK, the lifecycle of an extended task is as follows:

Suspended->Ready
The task is added to the ready queue.

Ready -> Running

The task is dispatched but, unlike a basic task where the context is placed in the
top of the stack, the context is placed in the stack space at the pre-calculated
worst case pre-emption depth of all lower priority tasks.

Running -> Ready

The extended task is pre-empted. If the pre-empting task is a basic task it is
dispatched on the top of the stack as normal. If the pre-empting task is an
extended task then it is dispatched at the pre-calculated worst case pre-emption
depth of all lower priority tasks.

Running -> Waiting

The task’s “Wait Event Stack” context, comprising the OS context, local data,
stack frames for function calls etc, is saved to an internal OS buffer

Waiting -> Ready

The task is added to the ready queue.

Running -> Suspended

The task’s “Wait Event Stack” context is copied from the internal OS buffer back

onto the stack at the pre-calculated worst case pre-emption depth of all lower
priority tasks.

This process allows the additional cost of managing extended tasks to apply
only when an extended task is moved into the running state, allowing basic
tasks to have the same performance, in the presence of extended tasks, as
they would have in a purely basic task system.

§ UK patent: 0219936.2, US patent: 10/242,482
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The key parts of this lifecycle are the dispatch/resume at the worst case pre-
emption depth and the copy on and off the stack. The dispatch at the worst
case pre-emption point guarantees that whenever an extended task resumes
after waiting it can resume with its local variables at exactly the same location
in memory. We are guaranteed that every possible pre-emption pattern of
lower priority tasks never exceeds the dispatch point of the extended task.
The dispatch, wait resume cycle for an extended task D is illustrated in Figure

Task D Task D
[Priority 4] [Priority 4]
Worst Case Stack Usage for all tasks lower priority than Task D
OS context
Task C Task C Task C Task C
[Priority 3] [Priority 3] [Priority 3] [Priority 3]

A

]

x OS context OS context OS context OS context
[5] 0S context
]
- _—
(2]
TaoeE o Task B Task B Task B Task B Task B
25 e Priority 2 Priority 2] Priority 2] Priority 2] Priority 2
[Priority 2] [Priority 2] L 2l I el L e I e L 2zl
OS context 0OS context OS context OS context OS context OS context OS context
Time
Task B has Task Dis Task D executes Task C activated Task C Task E Task C executes
preempted activated. The WaitEvent() and and preempts preempted by terminates. Task SetEvent()/
Basic1 which OS context is context is saved. Task Basic 2 Task E. C resumed. Task D resumes.
itself preempted stored on the top Task B resumes OS context
osek_idle_task of the stack but and consumes placed on top of
(the main the task’s context more stack (€.g. stack. User
program) starts at the by calling a context
calculated worst function)
case offset
Figure 4:11: Extended Task dispatch, wait and resume

The copy off and on allows the extended tasks stack context to be restored.
This is necessary because higher priority tasks and/or ISRs may occur while the
extended task is waiting. These may consume stack space greater than the
worst case pre-emption point (remember that the worst case point is for
lower priority objects only), thereby overwriting the context of the extended
task. However, we are guaranteed by fixed priority pre-emptive scheduling
that all no higher priority tasks can be ready to run at the point the extended
task is resumed (it could not be resumed if this was the case).

4.9.1 Specifying Stack Allocation

In systems that contain only basic tasks it is not necessary to tell RTA-OSEK
any stack allocation. You simply need to allocate a stack section large enough
for your application in your linker/locator. This is one of the benefits of the
single stack architecture.

For applications that use extended tasks you allocate your linker section as
before, but you must also tell RTA-OSEK the stack allocation for every task in
your configuration that is lower priority than the highest priority extended
task, even if they are basic tasks. RTA-OSEK uses the stack allocation
information to calculate the worst case pre-emption point for each extended
task off-line.
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Important: RTA-OSEK only uses the stack information you provide to
calculate the worst case pre-emption point. RTA-OSEK does reserve any stack
space. You must still specify the stack application stack space in the same way
you would do for a normal application.

The stack allocation is configured in Tasks -> Task Data -> Stack Allocation:

Specify stack allocation d |
Stack [bytes] |'| 23 il

Figure 4:12 - Stack Allocation Configuration

If the task is an extended task, then a second dialogue asks you for the
WaitEvent () stack. This defines the number of bytes that will be saved and
restored when wWaitEvent () is called. This defaults to “Automatic” which
means RTA-OSEK will allocated a RAM buffer equal to the worst case stack
allocation you specify:

Specify WaitEvent stack allocation A |
WaltE vent stack [bytes] |!ﬂuulomatic il

Figure 4:13 - Configuring the WaitEvent() Stack

However, most extended tasks only execute WaitEvent () in their entry
function so only space required for local data in the entry function needs to
be reserved. You can control exactly how many bytes of stack are saved by
RTA-OSEK by specifying the worst case stack depth at the point you call
WaitEvent ().

Specify WaitEvent stack allocation 2%
W aitE vent stack [bytes) |42 ﬂ

Figure 4:14 - Specifying a WaitEvent() Stack allocation

Using Default Values

While you should set a stack value for each task for memory efficiency, RTA-
OSEK allows you to set a global default value that is used by all tasks in
Application -> Defaults -> Default Task Stack.
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4.9.2

Specify default task stack A |
Stack [bytes) ;3'

If a Stack Allocation is not configured for a task, then RTA-OSEK will use the
default value for:

1. Calculating the worst case stack offset
2. Configuring the WaitEvent () save/restore area
3. Stack Monitoring (when configured)

When you run the RTA-OSEK Builder tool you will be told which tasks are
using the default value.

Providing the Base Address of the Stack

49.3

The calculated worst case dispatch points are relative to the base address of
the stack at the point the main program is entered. These offsets are stored as
ROM data in the extended task control blocks and are added to the base stack
pointer at runtime.

This means that you need to tell RTA-OSEK the base address of the stack
pointer The exact details of how this is done for target is target specific. On
some targets the name of the initial stack pointer is defined by the compiler
tool chain and will be used by RTA-OSEK automatically. On other targets you
must specify the stack base address at link time. You should consult the
example application and/or the RTA-OSEK Binding Manual for your target for
additional guidance.

Handling Extended Task Stack Faults

4-22

If the stack allocation figures you provided to RTA-OSEK are wrong (i.e. they
are too small) then this is a potential source of errors at runtime. To prevent
these errors going unchecked, whenever the RTA-OSEK Component detects a
problem with extended task stack management it will call the
StackFaultHook () is called.

The stackFaultHook () is a user provided callback that must be present in
your system if you configure any extended tasks and has the following
structure:

#if defined (OSEK_ECC1)
| | defined (OSEK_ECC2C)
| | defined (OSEK_ECC2F)
OS_HOOK (void)
StackFaultHook (SmallType StackID,
SmallType StackError,
UIntType Overflow)
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/* Identify problem */
for(;;) |

/* Do not return! */
}

}
#endif /*OSEK_ECC1| |OSEK_ECC2C| |OSEK_ECC2F*/

The hook is passed 3 parameters by RTA-OSEK:

1. StackiD
This identifies the stack on which the fault occurred. For most targets there is
only a single stack and StackID will be zero. However, some hardware forces the
use of more than one so it is possible to have more than one stack even though
RTA-OSEK has a single stack architecture.

2. StackError
Specifies what type of error RTA-OSEK has found. There are 3 errors:

1. OS_EXTENDED_TASK_STARTING is passed if the stack pointer is
higher than the calculated worst case dispatch point when RTA-
OSEK dispatches an extended task

2. OS_EXTENDED_TASK_RESUMING is passed if the stack pointer is
higher than the calculated worst case dispatch point when RTA-
OSEK resumes an extended task (e.g. when SetEvent () is
called for an event on which the task is waiting).

3. OS_EXTENDED_TASK_WAITING is passed if the amount of
context to save is greater than the size of the waitEvent ()
buffer.

3. Overflow
The meaning of the Overflow depends on the type of the StackError:

1. For OS_EXTENDED_TASK_STARTING the Overflow is the number of
bytes by which the current stack pointer exceeds the offline calculated
worst case dispatch point.

2. For OS_EXTENDED_TASK_RESUMING the Overflow is the number of
bytes by which the current stack pointer exceeds the offline calculated
worst case dispatch point.

3. For OS_EXTENDED_TASK_WAITING the Overflow is the number of
bytes by which the save context exceeds the configured WwaitEvent ()
stack size.

4.10 Co-operative Scheduling in OSEK

When a task is running non-preemptively it prevents any task (including those
of higher priority) from executing. Sometimes, however, it is useful for non-
preemptive tasks to offer explicit places where rescheduling can take place.
This is more efficient than simply running non-preemptively because higher
priority tasks can have shorter response times to system stimuli.

A system where tasks run non-preemptively and offer points for rescheduling
is known as a co-operatively scheduled system.
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The Schedule() APl call can be used to momentarily remove the
preemption constraints imposed by both the non-preemptive tasks and the
tasks using internal resources.

When schedule () is called, any ready tasks that have a higher priority than
the calling task are allowed to run. Schedule () does not return until all
higher priority tasks have terminated.

In the following code example, the non-preemptive task Cooperative
includes a series of function calls. Once started, each function runs to
completion without preemption, but the task itself can be preempted
between each function call.

#include "Cooperative.h"

TASK (Cooperative) {
Functionl () ;
/* Allow preemption here */
Schedule () ;
Function2 () ;
/* Allow preemption here */
Schedule () ;
Function3 () ;
/* Allow preemption here */
Schedule () ;
Functiond () ;
TerminateTask () ;

}

Figure 4:15 shows how two tasks, Task1 and Task2, which are cooperative
would interact.

A
Taskz terminates
Task1 is resumed
Task: activated but a
> cannot start until Task1 Taske
= offers a premption point /
o
S A
o A
g
D Task1 offers a
[ preemption point using Y
o the schedule (; APl cal
(_é) Task: preempts
>
- >
Time

Figure 4:15 - Cooperative Tasks

4.10.1 Support for Cooperative Scheduling in RTA-OSEK
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Cooperative scheduling is a common design mechanism and was natively
supported by ETAS' legacy operating system ERCOS™. To help RTA-OSEK
users who are migrating from ERCOS®, RTA-OSEK 5.x provides automatic
generation of task bodies from a list of functions called “processes” .

A process is simply a parameterless (void-void) function provided by your
application and called by RTA-OSEK automatically at runtime.
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Portability: Automatic generation of cooperative tasks in RTA-OSEK is not
part of the OSEK standard.

Setting the Minimum Preemption Priority

Typically, your cooperative tasks will be lower priority than all of your
preemptive tasks. In Application -> OS Configuration you can set the
Minimum Preemption Priority you can control which tasks run
cooperatively and which tasks run preemptively. Any task, whether they use
process or not, with a priority less than the minimum pre-emption priority will
be cooperatively scheduled.

Enter priority d |
Min. Preemption Pricrity IE £ |

ok LCancel

Figure 4:16 - Setting the Minimum Preemption Priority

Creating Processes

Processes are created in RTA-OSEK in the Packages workspace as shown in
Figure 4:17. Each process can optionally specify an execution time for
schedulability analysis. If your process uses OSEK resources then you must
specify the resources used so that RTA-OSEK can calculate the ceiling priority
for resources correctly.

B RTA-DSEK

Ele Wiew Application Target Stimuli Packages ISRs Tasks Respurces Ewents COM  Build  Analyze Trace Help

Application Select Process: |Process1 = @ @ @

TRt Process "Process1®

Stimuli

Execution limitz | Worstcase undefined execution time, undefined stack.
Fackages —

@ Resource use | Mo resource locks.
) u

Summary Intermupt locks | Mointerrupt locks.

@ Datail

@

Functions

@

Frocesses

@

Containers

Figure 4:17 - Creating Processes
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Allocating Processes to Containers

Processes themselves are not allocated directly to tasks. Instead, each process
is associated with one (or more) containers. A container can hold multiple
instances of the same process. Each container lists the processes in the order
that they will be executed. Processes can be added [+] and removed [-] from
the container as well as re-ordered [4A v].

Processzd
Process1
Proceszs3
Process1 N o
Procezs? C
g
-

Figure 4:18 - Assigning Processes to Containers

Allocating Containers to Tasks

Containers can be allocated to tasks and Category 2 ISRs. You can allocate at
most one container to each task/ISR and containers can be allocated at most
once.

Important: Note that only processes in containers mapped to in tasks below
the minimum preemption priority will run cooperatively.

The entry functions for the tasks and ISRs that include a container are
generated by RTA-OSEK automatically. Tasks that are cooperatively scheduled
use an optimized version of the Schedule () API call that is inlined in the
generated task body.

However, you still need to provide the implementations of the processes.
Each process is a void-void function:

void Processl (void) {
/* Code implementing the process */

}
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4.10.2 Optimising out the Schedule() API

Schedule ()is of no use in a fully preemptive system. If you do not intend to
use it, you can disallow calls to Schedule () in the RTA-OSEK GUI using the
Application Optimizations. Figure 4:19 shows how the schedule () call can
be disallowed.

Application Application Optimizations

@
O [~ Moupward activation Atask may activate any task. The application iz not suitable fortiming analysis.
Summary
o jv Lightweight termination The application may use lightweight task termination
@

08 Configuration Default value Tasks defaultto heawyweight termination

Startup Modes

M. [Disallow Schedule(f The application does not call Schedulel)
T\me(:\ases v Enable static interface Offline static analysis code optimizations are enabled
@ I~ Use fast activation Standard Activate Task/ChainTask implementation is used.
Optimizations I Ignare FE declaration Floating-pointtasks and ISRs are treated normally,
@ [ MWoRES_SCHEDULER RES_SCHEDULER: is used.
Defaults
@ **Timing analysis can NOT be perdormed with the current oplimizations **

Implementation

Figure 4:19 - Disallowing Calls to Schedule()

If you disallow calls to Schedule () in the RTA-OSEK GUI, you will see the
following benefits:

e The worst-case stack requirement is reduced if Schedule () is not
called.

e Timing analysis is available. (You cannot currently perform timing
analysis on systems that call Schedule ()).

4.11 Using Floating-Point

Floating-point calculations are relatively time consuming to perform purely in
software. They are also expensive, in terms of silicon, to implement in
hardware.

As a result of this, very few embedded systems make full use of floating-point
calculations. RTA-OSEK, therefore, assumes by default that floating-point is
not used in an application.

If you choose to use floating point in any task or ISR then you must tell RTA-
OSEK so that the floating point context can be saved and restored over pre-
emptions.

RTA-OSEK is able to calculate exactly how much memory to reserve in order to
save your floating-point tasks and ISRs. It knows this because it can work out
the worst-case preemption depth for tasks and ISRs that use floating-point
and optimize the number of context saves that are needed.

You can see the results of the calculation in the stack depth analysis in the
RTA-OSEK GUI.

Figure 4:20 shows a stack analysis example where t1, t2 and t3 use
floating-point.
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Events
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@

Summary

tagk 2"
task "t2"

@
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@
Schedulability

@
Sensitivity
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Best Task Priorities
CPU Clock Rate

task "osek_idle_task"
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Tt Graphic

W Planner [ Buider | *F RTA-TRACE |

Figure 4:20 - Stack Depth Analysis Example

Two floating-point save context areas are set aside because RTA-OSEK
Component does not need to perform a save in the lowest priority task.

If you only have one task or ISR that uses floating-point, for example, then no
floating-point saves or restores are needed and RTA-OSEK Component
imposes no floating-point overhead on the application at all.

4.11.1 Customizing Floating-Point Operation
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Each target processor supported by RTA-OSEK is provided with support for
floating-point tasks and ISRs. Some targets have software support for floating-
point implementations and others have support for hardware
implementations.

Some target hardware may not have the same floating-point implementation
that is supported by RTA-OSEK. For example, your target may have an off-chip
floating-point coprocessor. To overcome this, RTA-OSEK is supplied with two
source files that you can modify and link with your application.

The source files can be used to change how the floating-point save and
restore is performed. The files are called osfptgt.c and osfptgt.h. You
will find them in the <install dir>\<target>\inc folder.
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4.12 Tasksets

Portability: Tasksets are an enhancement available in RTA-OSEK, but are not
part of the OSEK standard.

RTA-OSEK provides an extension to OSEK called tasksets. A taskset is simply
a named collection of tasks that can be activated simultaneously with a single
API call. Any task, except the idle task, can belong to a taskset and a task can
belong to more than one taskset.

Tasksets are declared in the RTA-OSEK GUI. Figure 4:21 shows you that ts1
has been declared and that t2 and t4 belong to it.
Application Select Taskset  [ts1 - @ @ @

Target Taskset "ts1"

L Change contents Contains t4 and 12,
@

Sum%ary Access type Read-wite. BEHEEEEN T

@ Tasks:
3
@ V|2 BT
Tasksets 11 e

Figure 4:21 - Configuring a Taskset

You can set the taskset access type to read-only or read-write. The
contents of the taskset can be modified at run-time if you set the access type
to read-write.

A read-write taskset allows you to add and remove tasks at runtime. RTA-
OSEK provides a set of API calls that can perform set operations on a taskset,
for example adding a task to a taskset, removing a task, merging tasksets etc.
If you want to find out more about the RTA-OSEK Component API calls that
are used to manipulate tasksets, then have a look at the RTA-OSEK Reference
Guide.

4.12.1 Activating Tasksets

RTA-OSEK provides an ActivateTaskset (TasksetID) APl that activates
every task in the taskset simultaneously.

Tasksets provide a significant performance advantage where you need to
activate multiple tasks at the same time because there is only one call into the
RTA-OSEK kernel at runtime that has the same execution overhead as
activating a single task.

You can also chain a taskset using ChainTaskset (). Chaining a taskset
allows multiple tasks to be chained with a single API call.

' API Call Name | Description | Static Version |
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API Call Name

Description

Static Version

ActivateTaskset ()

A task or ISR can
make this call to
activate each task in
the taskset.

ActivateTaskset_TasksetID()
()

The static version allows RTA-OSEK to
optimize the code generated, based
on the relative priority of the caller
and activated tasks.

ChainTaskset ()

A task can make this
call to terminate the
currently running
task and to activate
the tasks in the
taskset indicated.

ChainTaskset_TasksetID()

4.12.2 Fast Taskset Activation

The taskset API can also make use of the RTA-OSEK optimization to omit the
over activation check for tasks. This is called fast taskset activation and, like
fast task activation, does not check or raise the E_0S_LIMIT error.

4-30 Tasks
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4.12.3 Predefined Tasksets

4.13

RTA-OSEK always generates the following predefined read-only tasksets.

Taskset Description

os_all_tasks Contains all the tasks in the system.

osek_cc2_tasks | Contains all the BCC2 and ECC2 tasks.

osek_ecc_tasks | Contains all the ECC1 and ECC2 tasks.

os_no_tasks Contains no members (it is the empty set)

os_ready_tasks | Contains all tasks in the ready state and the running
task.

These tasksets are useful when manipulating read-write tasksets. They allow
you to do things like membership tests to clear tasksets.

Controlling Task Execution Ordering

In many cases you will need to constrain the execution order of specific tasks.
This is particularly true in data flow based designs where one tasks needs to
perform some calculation before another task uses the calculated value.

If the execution order is not constrained, a race condition may occur and the
application behavior will be unpredictable. Task execution ordering can be
controlled in the following ways:

e Direct activation chains (see Section 4.13.1).
e Priority levels (see Section 4.13.2).
e Non-preemptable tasks (see Section 4.4.1).

4.13.1 Direct Activation Chains

When you use direct activation chains to control the execution order, tasks
make ActivateTask () calls on the task(s) that must execute following the
task making the call.

Let's look at an example. There are three tasks Task1l, Task2 and Task3
that must execute in the order Task1, then Task?2, then Task3.

In this example, you would write task bodies like the ones in Code Example
4:6.

#include "Taskl.h"
TASK (Taskl) {
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/* Taskl functionality. */
ActivateTask (Task2) ;
TerminateTask () ;

}

#include "Task2.h"
TASK (Task2) {

/* Task2 functionality. */
ActivateTask (Task3) ;
TerminateTask () ;

}

#include "Task3.h"
TASK (Task3) {

/* Task3 functionality. */
TerminateTask () ;

}

Code Example 4:6 - Using Direct Activation Chains
To make the application suitable for timing analysis, you must be certain that
all task activations are downward. In other words, you must ensure that tasks
only activate lower priority tasks.

4.13.2 Using Priority Levels
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The priority level approach to constraining task execution ordering can be
used to exploit the nature of the preemptive scheduling policy to control
activation order.

Remember that you learnt, in Section 4.1, that under fixed priority preemptive
scheduling the scheduler would always run the highest priority task. If a
number of tasks are released onto the ready queue, they will execute in
priority order. This means that you can use task priorities to control execution
order.

Following on from our previous example, in Code Example 4:6, let's assume
that Task1 has the highest priority and Task3 has the lowest priority. This
means that the task bodies can be rewritten to exploit priority level controlled
activation.

This can be seen in Code Example 4:7.

#include “Taskl.h”
TASK (Taskl) {
/* Taskl functionality. */
ActivateTask (Task2); /* Runs when Taskl
* terminates. */
ActivateTask (Task3); /* Runs when Task?2
* terminates. */

TerminateTask () ;
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#include “Task2.h”

TASK (Task2) {
/* Task2 functionality. */
TerminateTask () ;

#include “Task3.h”

TASK (Task3) {
/* Task3 functionality. */
TerminateTask () ;

Code Example 4:7 - Using Priority Level Controlled Activation

This method of control is even more useful for tasksets, where you could
make a single call to simultaneously activate Task1, Task2 and Task3.

If you use automatic priority allocation, the priorities that you have specified
can be changed. This can affect priority level controlled activation.

To make sure that the relative ordering of priorities is maintained, you can
specify that a task has a set of required lower priority tasks. These are the
tasks that must execute after the selected task.

Figure 4:22 shows that for t 4, the required lower priority tasks are £3 and

tl.
Jepplication Select Task: [0 @ @ @ [vefaur pronie  ~| @ @D @
Target Task “t4” [BCC1]
Ik Priority 3. Must be higher than tasks: t3, t1.

@

Sumr;ary Scheduling & Task "t4" priority
@ Activations il
' Task P
Task Data i Loy |E OK
Bequired lower priority tasks:
Tasksets
Stack allocation 5 V13 ks
12 Priority must be > 2

Termination il vt
Budget T

Execution limits

Resource use |L

Figure 4:22 - Setting the Required Lower Priority Tasks
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4.14 Synchronization with Basic Tasks

Basic tasks can only synchronize at the start or end of task execution.
If other synchronization points are required, you must implement them
yourself.

For example, if a task is built as a state machine (using a C switch statement,
for instance) then you can set a state variable, issue a TerminateTask ()
call and wait for re-activation. Code Example 4:8 shows how this can be
achieved.

#include “Taskl.h”

int State;
TASK (Taskl) {

switch (State) {

case 0:
/* Synchronization point 0. */
State = 1;
break;

case 1:
/* Synchronization point 1. */
State = 2;
break;

case 2:
/* Synchronization point 2. */
State = 0;
break;

}

TerminateTask () ;

Code Example 4:8 - Multiple Synchronization Points in a Basic Task

4.14.1 Simulating Waiting using Basic Tasks
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You may need to build a system containing only basic tasks where those tasks
need to wait on some event (remember that in Section 4.3.2 you learnt that
only extended tasks can wait on events).

You can simulate this type of functionality in your application using tasksets.
When you do this the taskset becomes a pseudo-event.

You can see an example of this in Code Example 4:9.

#include “Taskl.h”
TASK (Taskl) {
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TasksetType Tmp;

/* Create a singleton set holding this task. */
GetTasksetRef (Taskl, &Tmp);

/* Subscribe. */

MergeTaskset (DataReady, Tmp);

TerminateTask () ;

}

#include “Task2.h”

TASK (Task2) {
/* Process Data. */
/* Notify any waiting tasks. */
ActivateTaskset (DataReady) ;
AssignTaskset (DataReady, os_no_tasks);
TerminateTask () ;

Code Example 4:9 - Subscribing to a Pseudo-Event

In this example, Task1 needs to be informed when Task2 has completed
data processing. Task1 subscribes to a DataReady taskset. When Task2
has processed the data it notifies all tasks waiting on the data by activating
the DataReady taskset.

4.15 Maximising Performance and Minimising Memory

RTA-OSEK is designed to be very aggressive at minimizing code and data
usage on the target application. It will analyze the characteristics of the
application and generate a system containing only the features that are
required.

Your choice of task characteristics has a major influence on the final
application size and speed. Tasksets with BCC2 tasks, for instance, are very
inefficient.

If you want to create the most efficient application, your system should
contain BCC1 tasks exclusively, each task should use lightweight termination
and should not use floating-point.

As you add features to your application, the system will inevitably become
slightly larger and slower.

A system with one or more BCC2 tasks has a greater overhead than one with
only BCC1 tasks. A system without shared priorities, even if multiple
activations are allowed, will be more efficient than one with shared priorities.
A system with ECC1 tasks has an even greater overhead still and a system
with one or more ECC2 tasks has the largest overhead of all.

4.16 Summary

e Atask is a concurrent activity.
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e There are two classes of tasks: basic and extended. Each class has two levels:
level 1 and level 2.

e Tasks are scheduled according to priority. When a higher priority task is
made readly to run it will preempt lower priority tasks.

e Tasks exist in states: ready, running, suspended or waiting (however, the
waiting state exists for extended tasks only).

e If a task terminates, it must call TerminateTask(),
ChainTask (TaskID) or ChainTaskset (TasksetID) to do so. These
calls should only be used as the final statement in a task entry function.

e You must include the correct task specific header (<TaskID>.h) with your
application code. For this reason, it is best to put each task in a separate
source file.

e Tasks can only be activated when they are in the suspended state unless you
specify multiple activations.

e Tasksets are a special feature provided in RTA-OSEK to allow you to activate
several tasks simultaneously. In this case, ChainTaskset (TaskID)
becomes an alternative way of terminating a task.
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5 Interrupts

Interrupts provide the interface between your application and the things that
happen in the real-world. You could, for example, use an interrupt to capture
a button being pressed, to mark the passing of time or to some capture some
other stimulus.

When an interrupt occurs, the processor usually looks at a predefined location
in memory called a vector. A vector usually contains the address of the
associated interrupt handler. Your processor documentation and the RTA-
OSEK Binding Manual for your target will give you further information on this.
The block of memory that contains all the vectors in your application is known
as the vector table.

5.1 Single-Level and Multi-Level Platforms

Target processors are categorized according to the number of interrupt
priority levels that are supported”. You should make sure that you fully
understand the interrupt mechanism on your target hardware.

There are two different types of target:

e Single-level.
On single-level platforms there is a single interrupt priority. If an
interrupt is being handled, all other pending interrupts must wait until
current processing has finished.

e Multi-level.
On multi-level platforms there are multiple interrupt levels. If an
interrupt is being handled, it can be pre-empted by any interrupt of
higher priority.

5.2 Interrupt Service Routines

OSEK operating systems capture interrupts using Interrupt Service Routines
(ISRs). ISRs are similar to tasks; however, ISRs differ because:

e They cannot be activated by RTA-OSEK Component API calls.
e They cannot make TerminateTask() and ChainTask() API calls.
e They cannot appear in tasksets.

e They start executing from their entry point at the associated interrupt
priority level.

e Only a subset of the RTA-OSEK Component APl calls can be made.
(To call an RTA-OSEK Component API call from within an ISR, refer to
the function’s calling environment in the RTA-OSEK Reference Guide.)

" Make sure that you don’t confuse interrupt priority levels on the target processor with the priority of tasks.
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5.2.1 Category 1 and Category 2 Interrupts

OSEK operating systems classify interrupts into two categories called
Category 1 and Category 2. The category indicates whether or not the OS is
involved with handling the interrupt.

Category 1 Interrupts

Category 1 interrupts do not interact with RTA-OSEK Component. They
should always be the highest priority interrupts in your application. It is up to
you to configure the hardware correctly, to write the handler and to return
from the interrupt.

You can find out about Category 1 interrupt handlers in Section 5.5.1.

The handler executes at or above the priority level of RTA-OSEK Component.
However, you can make RTA-OSEK Component APl calls for
enabling/disabling and resuming/suspending interrupts.

Category 2 Interrupts

With Category 2 interrupts, the interrupt vector points to internal RTA-OSEK
Component code. When the interrupt is raised, RTA-OSEK Component
executes the internal code and then calls the handler that you have supplied.

The handler is provided as an ISR bound to the interrupt (which you can think
of as a very high priority task). Execution starts at the specified entry point of
the ISR and continues until the entry function returns. When the entry
function returns, RTA-OSEK Component executes another small section of
internal code and then returns from the interrupt.

Figure 5:1 shows the state diagram for a Category 2 interrupt handler.

> Normal Execution
[

Interrupt

Interrupt Vector Loaded

I
Jump to RTA-OSEK wrapper

Return from interrupt RTA-OSEK Context Save

I
RTA-OSEK calls user ISR entry functior

v
ISR(Handler) executes
I

User ISR handler returns

v
RTA-OSEK Context Restore
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Figure 5:1 - Category 2 Interrupt Handling State Diagram
Figure 5:2 shows how the internal RTA-OSEK Component code wrappers can

be visualized.
RTA-OSEK RTA-OSEK
A [ISR entry latency’ [ISR exit latency]
A A
2 A4
S Category 2 User
a Interrupt Handler
A\ 4

|-
Lad
First instruction of user
Interrupt occuﬂ Category2 ISR interrupt Interrupted thread resumes executior
handler
Last instruction of user
Category2 ISR interrupi
handler
Figure 5:2 - Visualizing RTA-OSEK Component Category 2 Wrappers

5.3 Interrupt Priorities

Interrupts execute at an interrupt priority level (IPL). RTA-OSEK standardizes
IPLs across all target microcontrollers, with IPL O indicating task level and an
IPL of 1 or more indicating an interrupt has occurred It is important that you
don’t confuse IPLs with task priorities. An IPL of 1 is higher than the highest
task priority used in your application.

The IPL is a processor-independent description of the interrupt priority on your
target hardware. The RTA-OSEK Binding Manual for your target will tell you
more about how IPLs are mapped onto target hardware interrupt priorities.

ISRs can be nested (assuming that the processor supports interrupt nesting).
So, for example, a higher priority ISR can interrupt the execution of a low
priority ISR. However, an ISR can never be preempted by a task.

A Category 1 interrupt handler must never be interrupted by a Category 2
interrupt. In other words, you must not have a Category 2 interrupt with a
higher interrupt priority than a Category 1 interrupt. The RTA-OSEK GUI
automatically checks this when you configure interrupts.

The interrupt priority hierarchy is illustrated in Figure 5:3.
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5.3.1

/ Single Interrupt Level \ / Multiple Interrupt Levels \

IPLi+1 .. MAX

Category 2 ISRs Category 2 ISRs

AN

Figure 5:3 - The Interrupt Priority Hierarchy

User Level

5.3.2

User level is the lowest interrupt priority level that allows all interrupts to be
handled. All tasks start executing at user level from their entry point.

A task will sometimes need to run above user level, so that it can access data
shared with an interrupt handler. While the data is being accessed it must
prevent the interrupt being serviced.

An ISR may preempt a task even when the task is running with interrupt
priority level above user level. It can only do this, however, if the ISR has a
higher interrupt priority level than the current level.

OS Level

The highest priority Category 2 interrupt defines OS level. If execution occurs
at OS level, or higher, then no other Category 2 interrupt can occur.

RTA-OSEK Component uses OS level to guard against concurrent access to
internal OS data structures. If a task executes at OS level then no RTA-OSEK
Component operations will take place (except for calls made by the task).

Interrupt Configuration

5-4

In RTA-OSEK Component, interrupts are configured statically using the RTA-
OSEK GUI. Figure 5:4 shows how an interrupt has been constructed.
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Figure 5:4 - Configuring an Interrupt using the RTA-OSEK GUI
At the simplest level, an interrupt has the following attributes:

e Aninterrupt name.
The name is used to refer to C code that you will write to implement

the handler functionality (you will learn how to do this in Section 5.5).

e Aninterrupt category
This is either Category 1 if the handler does not need to execute RTA-
OSEK API calls and Category 2 otherwise

e Aninterrupt priority.
The priority is used by the scheduler to determine when the interrupt
runs (in a similar way to a task priority being used for tasks). Note that
some targets only support a single interrupt priority.

Important: You must make sure that the programmed priority level of an
interrupting device agrees with the level configured in the RTA-OSEK GUI.

e An interrupt vector.
RTA-OSEK uses the specified vector to generate the vector table entry
for the interrupt.

By default, RTA-OSEK provides symbolic names for the interrupt vectors that
are controlled the target variant you select when creating a new OIL file.

If you prefer to use interrupt vector addresses for the microcontroller family
then you set this in File -> Options... by unchecking the “Show ISR vector

descriptions” box as shown in Figure 5:5.
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Figure 5:5 - Disabling ISR Vector Descriptions

5.4.1 Vector Table Generation

In most cases, RTA-OSEK can generate the vector table automatically. The
RTA-OSEK Builder will create a vector table with the correct vectors pointing
to the internal wrapper code and place this in the osgen. <asm> file.

If you want to write your own vector table then you must make sure that
RTA-OSEK does not generate a vector table itself. You can prevent a vector

table being generated using the Target Vectors settings, shown in Figure 5:6.

Anplication Target Vectors

Target Default Interrupt Mo default interrupt is specified.
@ wector Generation A vector table will be generated
Summary i

@ Select vector table option 18‘

Target Type

@

“Yectors

@ oK Cancel |

Timing Data

@

Debugger

(" Generate vectar tahle

i@ Do not generate vector table;

Figure 5:6 - Preventing RTA-OSEK from Automatically Generating a Vector Table

The RTA-OSEK Binding Manual for your target explains how to provide your
own vector table.
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5.5 Implementing Interrupt Handlers

You will now learn about interrupt handlers for Category 1 and Category 2
interrupts.

5.5.1 Category 1 Interrupt Handlers

Generally, the binding of user core implementing Category 1 interrupt
handlers is non-portable. You will usually write these using compiler-specific
extensions to ANSI C. Some compilers, however, cannot do this. When this
happens you will need to write an assembly language handler.

You must make sure that the name of a Category 1 ISR entry function is the
same as the name that you specified for the ISR during configuration.

For Category 1 ISRs, there is usually a compiler-specific keyword that has to be
used when defining entry functions.
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5.5.2

An entry function for a Category 1 ISR is shown in Code Example 5:1.

interrupt void Interruptl (void) {
/* Handler body. */
/* Return from interrupt. */

}

Code Example 5:1 - Entry Function for a Category 1 ISR

You will find any target specific information in the RTA-OSEK Binding Manual
for your target.

Category 2 Interrupt Handlers

You saw earlier that Category 2 interrupts are handled under the control of
RTA-OSEK Component. A Category 2 interrupt handler is similar to a task. It
has an entry function that is called by RTA-OSEK Component when the
interrupt handler needs to run. A Category 2 interrupt handler is written using

the C syntax in Code Example 5:2.

‘ISR(isr identifier){ .. } ‘

Code Example 5:2 - Category 2 Interrupt Handler

Code Example 5:3 shows the code for a simple interrupt handler called
Interruptl.

#include “Interruptl.h” /* Header file generated
* by RTA-OSEK. */

ISR(Interruptl) {
DismissInterrupt(); /* User supplied function to

* cancel interrupt. */
ActivateTask (Taskl); /* Let Taskl do the work. */

Code Example 5:3 - Entry Function for a Category 2 ISR

Important: You do not need to provide any C function prototypes for
Category 2 ISR entry functions. These are provided in the header file that is
generated by RTA-OSEK. The appropriate file for each ISR should be included
because it contains declarations that are specific to the named handler. ISRs
should be in separate source files for this reason.

Important: You should not place a “return from interrupt” command in your
Category 2 handler. Returning from the interrupt is handled by RTA-OSEK.
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5.5.3 Writing Efficient Interrupt Handlers

When you write an interrupt handler it is better to make the handler as short
as possible (especially on targets that support a single interrupt priority). Long
running handlers will add additional latency to the servicing of lower priority
interrupts.

With Category 2 handlers you can move the required functionality to a task, a
simply use the interrupt handler activates the task and then terminates.

Code Example 5:4 and Code Example 5:5 show how these techniques differ.

#include “Interruptl.h”
ISR(Interruptl) {
/* Long handler code. */

}

Code Example 5:4 - Long Interrupt Handler (Long Blocking)

#include “Interruptl.h”

ISR(Interruptl) {
ActivateTask (Taskl);

}

#include “Taskl.h”

TASK (Taskl) {
/* Long handler code. */
TerminateTask () ;

}

Code Example 5:5 - Short Interrupt Handler (Short Blocking)

Enabling and Disabling Interrupts

Interrupts will only occur if they are enabled. By default, RTA-OSEK
Component ensures that all interrupts are enabled when start0s () returns.

Important: OSEK uses the term “Disable” to mean masking interrupts and
“Enable” to mean unmasking interrupts. The enable and disable API calls do
not therefore enable or disable the interrupt source, they simply prevent the
processor from recognizing the interrupt (usually my modifying the
processor’s interrupt mask).

You will often need to disable interrupts for a short amount of time to
prevent interrupts occurring in a critical section of code in either tasks or
ISRs. A critical section is a sequence of statements that accesses shared data.

You can enable and disable interrupts using a number of different API calls:
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° DisableAllInterrupts()andEnableAllInterrupts()
Disable and enable all interrupts that can be disabled on the hardware
(usually all those interrupts that can be masked).

These calls cannot be nested.

° SuspendAllInterrupts()andResumeAllInterrupts()
Suspend and resume all interrupts that can be disabled on the
hardware (usually all those interrupts that can be masked).

These calls can be nested.

° SuspendOSInterrupts()andResumeOSInterrupts()
Suspend and resume all Category 2 interrupts on the hardware.
These calls can be nested.

Important: You must make sure that there are never more ‘Resume’ calls
than ‘suspend’ calls. If there are, it can cause serious errors and the behavior
is undefined. Subsequent ‘Suspend’ calls may not work. This will result in
unprotected critical sections.

Code Example 5:6 shows you how the interrupt control API calls are used and
nested correctly.

#include “Taskl.h”
TASK (Taskl) {

DisableAllInterrupts();
/* First critical section, nesting not allowed.*/

EnableAllInterrupts();
SuspendOSInterrupts();

/* Second critical section, nesting allowed. */
SuspendAllInterrupts () ;

/* Third critical section. */
ResumeAllInterrupts();

ResumeOSInterrupts () ;
TerminateTask () ;

Code Example 5:6 - Nesting Interrupt Control API Calls

In the case of Category 1 interrupts, you must make sure that no RTA-OSEK
Component API calls are made (except for other Suspend/Resume calls) for
the entire time that the interrupts are disabled.

If a Category 2 ISR raises the interrupt level above OS level, it may not make
any other RTA-OSEK Component API calls, except for the appropriate call to
restore the interrupt priority. When executing an ISR, you are not allowed to
lower the interrupt priority level below the initial level.
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5.7

Using Floating-Point

5.8

As with tasks, RTA-OSEK generally assumes that floating-point is not used in
your application. If an ISR does use floating-point, you must declare this in the
RTA-OSEK GUI. RTA-OSEK Component will then ensure that any hardware
registers that are involved with floating-point calculations are saved and
restored on entry or exit for the ISRs.

RTA-OSEK is able to calculate exactly how much memory to reserve for saving
the floating-point ISRs. It can do this because it can work out the worst-case
preemption depth for ISRs that use floating-point. You can see the results of
the calculation in the stack depth analysis of RTA-OSEK.

The Default Interrupt

If you are using RTA-OSEK to generate a vector table, then you may want to
fill unused vector locations with a default interrupt.

Figure 5:7 shows how the default interrupt is defined.

Application Target Vectors

Target Default Interrupt Mo default interrupt is specified.
@ YWector Generation A vector table will be generated.
q
Surnmary —

@ Enter name of default interrupt

Target Type

@ Mame |def_handled

Vectors k

:

Timing Data

@

Debugger

Figure 5:7 - Placing a Default Interrupt in the Vector Table

Portability: The default interrupt is not supported on all targets.

The default interrupt is slightly different to other interrupts. It is used to fill
every location in the vector table for which you have not defined an interrupt.
This feature has been provided as a debugging aid and as a means of
providing a “fail-stop” in the event of erroneous generation of interrupts in
production systems. If you actually want to attach interrupt handlers to
vectors to do useful work, you should explicitly create them as ISRs.

There are limitations on the use of the default interrupt handler. It cannot
make any OS calls, and system behavior is undefined if it ever returns.

Important: You must not make any RTA-OSEK Component API calls from the
default interrupt and you must not return from the handler.
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The default interrupt is implemented like an OSEK Category 1 interrupt and
must therefore be marked as an interrupt with the syntax defined by your
compiler. The last statement in your default interrupt handler should be an

infinite loop. Code Example 5:7 shows how this can be done.

_ interrupt void default_handler (void)

{

/* invoke target-specific code to lock interrupts
*/
asm(“di”); /* or whatever on your platform */
for (;;)
}
/* Do NOT return from default handler. */

Code Example 5:7 - The Default Interrupt Handler

Interrupt Arbitration

5-12

If multiple interrupts share the same interrupt priority level, you must define
an arbitration order in the RTA-OSEK GUI. This is used for analysis.

The arbitration order is used to specify the order in which interrupts of the
same priority are serviced when two or more are pending simultaneously.

Figure 5:8 shows how the interrupt arbitration order is defined.

Application Interrupt Arbitration
Target There is one interrupt level shared by more than one ISR: 4.
Tasks
I15Rs
Summary
Interrupt Arbitration Order '? B|
@ Ly
i B Interrupt leyel |4 ﬂ B
@
; Cancel
Category 2 ISRs Interupts o] i
IST.
® |

Arbitration
lnd

All1SRs have had interrupt arbitration information entered.

Level 4 ordering: 562, 513,

Figure 5:8 - Defining the Arbitration Order
In the example in Figure 5:8, you will see that the arbitration order specifies
that ISR_1 be serviced first if both interrupts are pending simultaneously.
For many processors, the interrupt arbitration order is fixed (details can be

found in the processor reference manual). For other processors, you can
define the arbitration order.

Important: You should make sure that the arbitration order specified
matches the arbitration order of the interrupts within your application. Ensure
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that the information given in the configuration file correctly describes the run-
time behavior of the interrupts.

5.10 Summary

e Interrupts provide a mechanism to capture real-world stimuli.

e OSEK supports two categories of interrupts: Category 1 and Category 2.
e Category 1 interrupts are not processed by RTA-OSEK Component.

e (Category 2 interrupts are processed by RTA-OSEK Component.
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6

Resources

Access to hardware or data that needs to be shared between tasks and ISRs
can be unreliable and unsafe. This is because task or ISR preemption can occur
whilst a lower priority task or ISR is part way through updating the shared
data. This situation is known as a race condition and is extremely difficult to
test for.

You learnt earlier that a sequence of statements that accesses shared data is
known as a critical section.

To provide safe access to code and data referenced in the critical section you
need to enforce mutual exclusion. In other words, you must make sure that
no other task or Category 2 ISR in the system is able to pre-empt the
executing task during the critical section.

In OSEK mutual exclusion is provided by resources. A resource in OSEK is just
a binary semaphore.

While a task or Category 2 ISR gets a resource, no other task or ISR can get
the resource. When the critical section is finished, the task or ISR releases the
resource.

In OSEK, resources are locked according to a locking protocol. This locking
protocol is called priority ceiling protocol, in particular a version called
immediate inheritance priority ceiling protocol (or alternatively stack resource
protocol).

OSEK's Priority ceiling protocol uses the concept of a ceiling priority for the
resource that is the highest priority of any task or ISR that gets the resource.
When a task or ISR gets a resource, its priority is immediately increased to the
ceiling priority (if and only if this is higher than the current priority). When the
resource is released, the priority of the task or reverts to the priority
immediately prior to the task or ISR making the call.

Immediate inheritance priority ceiling protocol provides two major benefits:

e |tis guaranteed to be deadlock free
A task or ISR must be executing in order to make the lock. If another
task or ISR already had the resource we wanted then, because that
task or ISR would be running at the ceiling priority, we could not be
executing (we would not be the highest priority task or ISR in the
system) and could not be making requesting the resource.

e Priority inversion is minimized
A task or ISR can be blocked at most once during execution and the
always blocking occurs at the start of execution. Each time a high
priority task or ISR becomes ready, its execution can only be delayed
by a single lower priority task or ISR that gets a resource. As there is
no cumulative blocking, there is a strict bound on the worst-case
blocking time.

6.1 Resource Configuration
RTA-OSEK needs to know which tasks and ISRs use which resources. It can
then calculate the ceiling priorities used by the priority ceiling protocol.
RTA-OSEK v5.0.2 Resources
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Additional resource usage information for each task or ISR can be configured
during task or ISR configuration. This information is needed for analysis only.
You can declare up to 255 resources in your application.

At the most basic level, resources only need to be named. Look at the

example in Figure 6:1 to see how resources are configured in the RTA-OSEK
GUL.

Application Select Resource: |Resourcel | @ @ @

Target Standard resource "Resource1”

Mot used.

Tasks
Change users ‘
IS3Rs

Make linked
Alarms f Schedules I

Detail

Resources

@ Resource Resourcel has effective task priority 0.
Summary

@

Standard

Linked

Internal

Figure 6:1 - Configuring Resources using the RTA-OSEK GUI
Figure 6:1 shows that a resource called Resourcel has been declared.

When you refer to this resource in your program you must use the same
name.

6.1.1 Resources on Interrupt Level

Resources that are shared between tasks and interrupts are optional in OSEK.
This optional feature is supported by RTA-OSEK.

RTA-OSEK will automatically identify the resources that are combined
resources, so you don’t need to do any special configuration.

When a task gets a resource shared with an ISR, RTA-OSEK will mask all
interrupts with interrupt priority less than or equal to the highest priority
interrupt that shares the resource.

This is simply an extension of priority ceiling protocol.

Sharing resources between tasks and ISRs means that it is possible to mask
individual interrupts at a particular priority level, providing better control for
interrupt masking than the Enable/Disable and Suspend/Resume.
Resources on interrupt level are therefore especially useful when using an
RTA-OSEK port that supports nested interrupts. You can share a resource
between tasks and the highest interrupt priority level that you want to disable
to prevent those interrupts occurring.
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6.2 Using Resources

You can get a resource using the GetResource () APl call. You can then
release a resource using the ReleaseResource () call. A task or ISR must
not terminate until it has released all resources that are still held.

A task or ISR can only use the resources that you specify during RTA-OSEK
Component configuration. Code Example 6:1 shows you how resources are
used in Task1.

#include “Taskl.h”

TASK (Taskl) {

/* Task functionality. */

GetResource (Resourcel) ;

/* Critical section. */
ReleaseResource (Resourcel) ;

/* Remainder of task functionality. */
TerminateTask () ;

Code Example 6:1 - Using Resources

Important: Calls to GetResource () and ReleaseResource () must be
matched. You cannot get a resource that you have already got. You cannot
release a resource you have not already got.

When a GetResource () is made, it is boosts the priority of the calling task
or ISR to the ceiling priority of the resource. The resource’s ceiling priority is
the highest priority of any task or ISR that shares the resource and is
automatically calculated by RTA-OSEK.

In Figure 6:2, you can see that Task1l has priority 3. This task shares a
resource called Resourcel with Task2. Task2 has priority 7, so the
resource priority will be 7 (the highest priority of all tasks that share the
resource). When the resource is held, Task1 runs at priority level 7, returning
to priority level 3 when the resource is released. Note that if Task2 is
activated while Task1l holds the resource, then Task?2 is blocked until the
resource is released.
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Task1 calls
GetResource (Resourcel)
Priority is boosted to 7

Increasing Priority

Task1 calls
ReleaseResource (Resourcel
Priority is returned to 3

Time

Figure 6:2 - Tasks Using Resources

6.2.1 Nesting Resource Calls

You can get more than one resource concurrently, but the API calls must be
strictly nested. Let's look at two examples; one showing incorrectly nested
calls and the other showing the API calls nested correctly. Code Example 6:2
shows Resourcel and Resource?2 being released in the wrong order.

GetResource (Resourcel) ;
GetResource (Resource?) ;

ReleaseResource (Resource?) ;

ReleaseResource (Resourcel); /* Illegal! */

/* You must release Resource2 before Resourcel */

Code Example 6:2 - lllegal Nesting of Resource Calls

A correctly nested example is shown in Code Example 6:3. All of the resources

are held and then released in the correct order.

GetResource (Resourcel) ;
GetResource (Resource?) ;
GetResource (Resourcel) ;
ReleaseResource (Resourcel);
ReleaseResource (Resource?) ;
ReleaseResource (Resourcel) ;

Code Example 6:3 - Correctly Nested Resource Calls

Resources
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6.2.2 Using the Static Interface

If a task does not state that it uses a given resource, it should not attempt to
get the resource. OSEK allows any task of lower priority than the resource
ceiling priority to lock the resource, but will return an E_0S_ACCESS error if
the GetResource () call is made from a task or ISR of higher priority than
the resource’s ceiling priority.

Better control checking of this is possible by using RTA-OSEK's static
interface.

The static interface is a mechanism used by RTA-OSEK to generate optimized
system calls that can be used by your application. Static versions of the
GetResource () and ReleaseResource () APl calls are provided.

Look at the following two examples where Resourcel is held and then
released. You can see that Code Example 6:4 uses dynamic calls. Compare
this with Code Example 6:5, which uses the static calls.

GetResource (Resourcel) ; /* Dynamic call. */
/* Critical section. */
ReleaseResource (Resourcel) ;

Code Example 6:4 - Dynamic Resource Calls

GetResource_Resourcel () ; /* Static call. */
/* Critical section. */
ReleaseResource_Resourcel () ;

Code Example 6:5 - Static Resource Calls

For optimum performance, you should use the static versions of the calls
wherever possible. You will only need to use a dynamic call when a resource is
unknown at compile time (for example, if it is passed as a parameter to a
function in a library).

Using the static version allows RTA-OSEK to calculate whether or not any
action needs to be taken. So, for instance, the highest priority task or ISR that
locks a resource does not need to do anything. This is because the priority will
already match the resource level. The GetResource/() and
ReleaseResource () callsare mapped to an empty statement. ()

6.3 Linked Resources

In OSEK, GetResource () API calls for the same resource cannot be nested.
However sometimes, there are cases where you may need to nest the calls.

Your application may, for instance, use a function shared amongst a number
of tasks. What happens if the shared function needs to get a resource used
by one of the tasks, but not by the others? Have a look at Code Example 6:6.

#include “Taskl.h”
TASK (Taskl) {
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GetResource (Resourcel) ;

/* Critical section. */
SomeFunction () ;
ReleaseResource (Resourcel) ;

#include “Task2.h”
TASK (Task2) {

SomeFunction () ;

#include “osek.h” /* Generic header file. */
volid SomeFunction (void) {

GetResource (Resourcel) ; /* Not allowed! */
/* Critical section. */

ReleaseResource (Resourcel); /* Not allowed! */

Code Example 6:6 - lllegally Nested Resource API Calls

In these cases, the nesting of a (potentially) held resource must use linked
resources. A linked resource is an alias for an existing resource and protects
the same, shared, object.

Figure 6:3 shows how linked resources are declared using the RTA-OSEK GUI.

Application Select Resource: ||_Resnurce1 ﬂ @ @ @
Target Linked resource “LResourcel™
Tasks
Change users | Mot used.
I15Rs
Change link | Linked to Resourcel.
Alarms £ Schedules
Detail
Resources
@ Resource LResourcel has effective task priority 3.
4 Resource LResourcel is linked with Resourcel].
=
urnmary
® X
Standard
@
Linked
@

Internal

Figure 6:3 - Configuring a Linked Resource in the RTA-OSEK GUI
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Linked resources are held and released using the same API calls for standard
resources (these are explained in Section 6.2). You can also create linked
resources to existing linked resources.

Internal Resources

If a set of tasks share data very closely, it becomes too difficult for resources to
guard each access to each item of data. You may not even be able to identify
the places where resources need to be held.

You can prevent concurrent access to shared data by using internal
resources. Internal resources are resources that are allocated for the lifecycle
of a task.

Internal resources are configured offline using the RTA-OSEK GUI. Unlike
normal resources, however, you cannot get and release them and they are not
available to ISRs.

Internal resources in RTA-OSEK Component do not consume any processor
resources at run-time because RTA-OSEK performs calculations during the
build process.

The set of tasks that share an internal resource is defined at configuration
time using the RTA-OSEK GUI. This membership is static.

Figure 6:4 shows the declaration of an internal resource, called
IntResourcel, which is shared between two tasks called t1 and t3.

Application Select Resource: |IntResource! i @ @ @
Target Internal resource "IntResource1”

R RS ML s us%E | |Used by i and 12

I15Rs
Detait
Alarms / Schedules

Resource IntResourcel has effective task priority 2.

Resources

@ Task t1 starts executing at task priority 2.
5 Task 13 starts executing at task priority 2.
ummary
@ Select tasks W|§|
Standard
Tasks:
@
Linked 1
vt

Internal

Figure 6:4 - Declaring an Internal Resource using the RTA-OSEK GUI

If a task uses an internal resource, RTA-OSEK Component will automatically
get the specified resource before calling the task’s entry function. The
resource will then be automatically released after the task terminates, makes a
Schedule () call or makes a WwaitEvent () call.

During task execution, all other tasks sharing the internal resource will be
prevented from running until the internal resource is released. Preemption,
however, is still possible by all higher priority tasks that do not share the
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internal resource. You can see an illustration of this in Figure 6:5 where Task1
shares an internal resource with priority 3.

A

A

Eskz terminates
Task2 Task2
[Priority 2 [Priority 2]

Increasing Priority

TaskZ ready to run but blocked by
Task1 running with the internal
resource locked

Time

Task1 is ready to run
at Priority 1

Figure 6:5 - Preemption of Tasks that do not Share an Internal Resource

Figure 6:5 shows that Task A is running and Task B is ready, but Task B has a
lower priority. When Task A terminates, Task B runs because it shares an
internal resource with Task C and the resource has a priority level of 7.

Task A is ready to run, but cannot preempt Task B because Task B still gets the
resource with priority level 7. When Task B terminates, Task A resumes
running.

Tasks that share an internal resource run non-preemptively with respect to
each other. You saw earlier that non-preemptive tasks can be used, but
remember that they run non-preemptively with respect to the entire
application.

Using internal resources gives you greater control over the timing behavior of
your application. Internal resources are also useful for reducing the memory
used by your system by limiting the total amount of preemption.

Tasks that share an internal resource will run sequentially, but only one of the
tasks will be held on the stack at any given time. As a result, the overall stack
space required is reduced.

6.5 The Scheduler as a Resource

A task can hold the scheduler if it has a critical section that must be executed
without pre-emption from any other task in the system (remember that the
scheduler is used to perform task switching). A predefined resource called
RES_SCHEDULER is available to all tasks for this purpose.

When a task gets RES_SCHEDULER, all other tasks will be prevented from
preempting until the task has released RES_SCHEDULER. This effectively
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means that the task becomes non-preemptive for the time that
RES_SCHEDULER is held. This is better than making the entire task non-
preemptive, particularly when a task only needs to prevent pre-emption for a
short part of its total execution time.

Using RES_SCHEDULER can improve response times of the tasks that might
otherwise suffer multiple preemptions by other tasks in the application.

6.5.1 Disabling RES_SCHEDULER

In RTA-OSEK, RES_SCHEDULER is simply an internally generated standard
OSEK resource. If you have no need to use RES_SCHEDULER in your
application then you can save ROM and RAM space by disabling its generation
in Application -> Optimizations as shown in Figure 6:6.

Optimizations mainly affecting zize

W Omit 05 Festart The OS can only be restatted via processor reset.

D FES_SCHEDULER is never used.

¥ Omit [ncrementCounter) InerementCounter) can not be called from project code.

¥ Sl SetFellam, 0] SetRelAlarm(,0) is legal and represents an interval equal to the counter modulus.

Figure 6:6 - Disabling RES_SCHEDULER

6.6 Choosing a Pre-Emption Control Mechanism

If code that does not require locks appears between a pair of
GetResource () and ReleaseResource () calls, the system
responsiveness can potentially be reduced.

With this in mind, when you use resources in your application, you should
place get calls as closely as possible around the section of code you are
protecting with the resource.

However, there is an exception to this rule. This exception occurs when you
have a short running task or ISR that makes many GetResource () and
ReleaseResource () calls to the same resource. The cost of the API calls
may then make up a significant part of the overall task execution time and,
therefore, potentially the response time.

You may find that placing the entire task or ISR body between
GetResource () and ReleaseResource() calls actually shortens the
worst-case response time.

You should avoid using non-preemptive tasks and getting RES_SCHEDULER
wherever possible. System responsiveness and schedulability is improved when
resources are held for the minimum amount of time and when this affects the
smallest number of tasks.
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6.7 Avoiding Race Conditions

The OSEK standard specifies that resources must be released before a
TerminateTask () callis made. In some circumstances, this can introduce
a race condition into your application. This can cause task activations to be
missed (you learnt about race conditions at the beginning of this chapter).

Code Example 6:7 shows the type of system where race conditions can
become a problem. Assume that two BCC1 tasks exchange data over a
bounded buffer.

#include “Write.h”

TASK (Write) { /* Highest priority .*/

WriteBuffer();
GetResource (Guard) ;
BufferNotEmpty = True;
ReleaseResource (Guard) ;
ChainTask (Read) ;

}
#include “Read.h”
TASK (Read) { /* Lowest priority. */

ReadBuffer () ;
GetResource (Guard) ;

if ( BufferNotEmpty ) {
ReleaseResource (Guard) ;
/* Race condition occurs here. */
ChainTask (Read) ;

} else {
ReleaseResource (Guard) ;
/* Race condition occurs here. */
TerminateTask () ;

Code Example 6:7 - A System where a Race Condition can Occur

In Code Example 6:7, between the resource being released and the task
terminating, Read can be pre-empted by Write. When task Write chains
task Read the activation will be lost. This is because Read is still running. In
other words a task is being activated, but it is not in the suspended state.

To solve this problem, you can allow queued activations of the Read task.
This means that you should make the task BCC2.
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6.8 Summary

e Resources are used to provide mutual exclusion over access to shared data or
hardware resources.

e Tasks and ISRs can share any number of resources.

e All GetResource () and ReleaseResource () calls must be properly
nested.

o All resources must be released before the task or ISR terminates.

e The scheduler can be released as a resource, but internal resources should be
used in preference, if possible.

e Internal resources provide a cost free mechanism for controlling preemption
between a group of tasks.
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7 Events

In an OSEK system, events are used to send signal information to tasks. You
will learn how to configure events in Section 7.1.

Events can be used to provide multiple synchronization points for extended
tasks. A visualization of synchronization is shown in Figure 7:1.

A
Task2 waits for an
> event
=
Re)
S
o
=2 Task2 Waiting Task2
w
(4]
9 Task1 sets the event
8 for which Task2 is
>

Time

Figure 7:1 - Visualizing Synchronization
An extended task can wait on an event, causing the task to move into the
waiting state. You'll learn more about this in Section 7.1.1.
When an event is set by a task or ISR in the system, the waiting task is
transferred into the ready state. When it becomes the highest priority task it
will be selected to run by RTA-OSEK Component.
Events are owned by the extended task with which they are associated.
Usually an extended task will be an infinite loop that contains a series of
guarded wait calls for the events it owns. The event mechanism therefore
allows you to build event driven state machines using OSEK.
If timing behavior is important in your system, all of your extended tasks (in
other words, any task that declares an event) must be lower priority than the
basic tasks.

7.1  Configuring Events

Events are declared using the RTA-OSEK GUI. The maximum number of
events that can exist in your application is determined by your target
hardware. You can see the maximum number of events by looking at the
Target Summary in the RTA-OSEK GUI.

In Figure 7:2, the target can wait on a maximum of 16 events.
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Application

Target

Summary

@

Target Type

“ectors

Tiring Data

@

Debugger

Target Summary

The application is built for the target TMS320/TI version v3.1.
The target variant is 'Generic TMSZ20C23x

The target supports 17 interrupt priarities.
The target supports 123 interrupt vectors.

32 tasks are supported (excluding the idle task).

Each task or ISR can use a maximum of B5535 resources.

TickType has a maximum value of 4294967235,
StopwatchTickType has a maximum value of 42943967295

Mo default interrupt is specified.

A vectar table will be generated.

The instruction cycle rate is 150MHz and the stopwatch rate is 150MHz.
Mo timing correction values have been specified.

Mo systemn timing values have been specified.

Mo interrupt recagnition time has been specified.

Mo debugger output is selected.

Figure 7:2 - Viewing the Maximum Number of Events for a Target

When an event is declared it must have:

e A name.

Names are used only to indicate the purpose of an event at
configuration time.

e At least one task that uses it.

e An event mask.
The event name that is specified in the RTA-OSEK GUI is used as a
symbolic name for the event mask at run-time. A mask is an N bit
vector with a single bit set, where N is the maximum number of events
on which a task can wait. The set bit identifies a particular event.

The event name is used at run-time as a symbolic name for the mask. The
mask can be declared explicitly or, alternatively, RTA-OSEK can generate the
mask automatically for you. When several tasks wait on many events, it is
better to allow RTA-OSEK to generate the mask automatically.

Figure 7:3 shows that an event called Event1 has been declared. In this
example, you can see that RTA-OSEK will automatically generate the event
mask and the event is used by a task called t3.

Events
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Application

Taryet

Tasks

Select Event:  |Eventt

MWask

- 0@@

Event "Eventl1”

Mask walue is AUTO,

I5Rs

Alarms f Schedules

Waiting Tasks

Resources

Alarms

Mo alarm sets this event.

Events

Messages

| The event is used by task t3.
| Mo message sets this event.

@

Sumrnary

@

Event Data

o

Figure 7:3 - Declaring an Event in the RTA-OSEK GUI

If an event is used by more than one task, each task has its own individual
copy. When an event is set, a task must be specified at the same time. So, for
example, if you set an event called Event2 for a task called t3, this has no
effect on Event2 for the task t 4. When a task terminates all the events that

it owns are cleared.

7.1.1 Defining Waiting Tasks

Waiting tasks are selected using the RTA-OSEK GUI. If you declare a task that
waits on an event, it automatically means that it will be treated as an

extended task.

Figure 7:4 shows you that the event, called Event1, has been declared and
that the tasks t2 and t3 are being configured to wait on the event.

Application Select Event.  |Eventi - @ @ @
Target Event "Event1”
il Mask Mask value is AUTO.
I5Rs
Waiting Tasks The event is used by task t3
Alarms / Schedules —
Resources Alarms Select tasks @z’

Events

@

Summary

@

Event Data

Messages |

Tasks:

4

v[13

v
tl
osek_idle_task

N

A ticked task can wait for the event|

Cancel

=]
=

Figure 7:4 - Selecting a Task to Wait on an Event
An extended task that waits on an event will usually be autostarted and the

task will never terminate. When the task starts executing, all the events it
owns are cleared by RTA-OSEK Component.
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7.2  Waiting on Events

A task waits for an event using the WaitEvent (EventMask) APl call. The
EventMask must correspond to the one that is declared in the RTA-OSEK
GUL

The waitEvent () takes an event as its sole parameter. When the call
executes there are two possibilities:

1. The event has not occurred
In this case the task will enter the waiting state and RTA-OSEK will run
the highest priority task in the ready state.

2. The event has occurred
In this case the task remains in the running state and will continue to
execute at the statement immediately following the WaitEvent ()
call.

7.2.1 Single Events

To wait on a single event you simple pass in the event mask name to the API
call Code Example 7:4 shows you how a task can vents.

TASK (Taskl) {

WaitEvent (Eventl) ;
/* Task enters waiting state
if event has not happened */

/* Otherwise task continues execution
at next statement */

Code Example 7:1 - Waiting on Events

The structure of a task that waits on events is typically an infinite loop that
waits on events.

TASK (Taskl) {

/* Entry state */

while (true) {
WaitEvent (Eventl);
/* State 1 */
WaitEvent (Event?2);
/* State 2 */
WaitEvent (Event3);
/* State 3 */

Code Example 7:2 - Simple 3-state State Machine with Events
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7.2.2 Multiple Events

Because an OSEK event is just a bit mask, you can wait on multiple events at
the same time by bitwise ‘OR’ing a set of bit masks.

When your task waits on multiple events it will be resumed when any one of
the events upon which you are waiting occurs. When you resume from
waiting on multiple events then you will need to work out which event (or
events) has occurred.

OSEK provides the GetEvent () APl call so that allows you to get the current
set of events that are set for the task.

The following example shows how a task can wait on multiple events
simultaneously and then identify which of the events has been set when it
resumes.

TASK (Taskl) {
EventMaskType WhatHappened;

while (true) {
WaitEvent (Eventl|Event2|Event3);
GetEvent (Taskl, &WhatHappened) ;
if ( WhatHappened & Eventl ) {
/* Take action on Eventl */

} else if( WhatHappened & Event2 ) {
/* Take action on Event2 */

} else if( WhatHappened & Event3 ) {
/* Take action on Event3 */

Code Example 7:3 - Waiting on Multiple Events

7.3  Setting Events

Events are set using the setEvent () API call.

The setEvent () call has two parameters, a task and an event mask. For the
specified task, the SetEvent () call sets the events that are specified in the
event mask. The call does not set the events for any other tasks that share the
events.

You can bitwise ‘OR" multiple event masks in a call to SetEvent () to set
multiple events for a task at the same time

Events cannot be set for tasks that are in the suspended state”. So, before
setting the event, you must be sure that the task is not suspended.

An extended task is moved from the waiting state into the ready state when
any one of the events that it is waiting on is set.

" This implies that the body of extended tasks should be an infinite loop that waits on events.
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Code Example 7:4 shows you how a task can set events.
TASK (Taskl) {

/* Set a single event */
SetEvent (Task2, Eventl);

/* Set multiple events */
SetEvent (Task3, Eventl | Event2 | Event3);

TerminateTask () ;

Code Example 7:4 - Setting Events

A number of tasks can wait on a single event. However you can see from

Code Example 7:4 that there is no broadcast mechanism for events. In other
words, you cannot signal the occurrence of an event to all tasks waiting on
the event with a single API call. If you do want to do this, then RTA-OSEK
tasksets can provide similar functionality.

Events can also be set with OSEK alarms and with messages.

7.3.1 Static Interface

RTA-OSEK provides static interface calls for SetEvent () with both the task
and the event mask statically bound into the interface call. The static interface
calls only provide support for a single event mask and therefore can only be
used to set a single event:

TASK (Taskl) {

/* Set a single event */
SetEvent_Task2_Eventl();

TerminateTask () ;

}

Code Example 7:5 - Static Interface for SetEvent()

7.3.2 Setting Events with an Alarm

Alarms can be used to periodically activate extended tasks that don’t
terminate. Each time the alarm expires, the event is set. The task waiting on
the event is then made ready to run.

7.3.3 Setting Events with a Message

COM messages can be configured to set an event on transmission. Each time
the message is sent the event is set. The task waiting on the event will be
made ready to run.
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7.4 Clearing Events
An event can be set by any task or ISR, but only the owner of the event can
clear it.
When your task waits on an event, and the event occurs, then a subsequent
call to waitEvent () for the same event will return immediately because the
event is still set.
Before you wait for the event occurring again you need to clear the last event
occurrence.
Events are cleared using the ClearEvent (EventMask) APl call. The
EventMask must correspond to the one that is declared in the RTA-OSEK
GUL.
Code Example 7:3 shows how a task typically uses ClearEvent () .
TASK (Taskl) {
EventMaskType WhatHappened;
while( WaitEvent (Eventl|Event2|Event3)==E_OK ) {
GetEvent (Taskl, & WhatHappened);
if (WhatHappened & Eventl ) {
ClearEvent (Eventl) ;
/* Take action on Eventl */
} else if( WhatHappened & (Event2 | Event3 ) {
ClearEvent (Event2 | Event3);
/* Take action on Event2 or Event3*/
}
}
}
Code Example 7:6 - Clearing Events
7.5 Waiting in the Idle Task

You have seen that the idle task is the lowest priority task in the system. In
RTA-OSEK Component the idle task can wait on events, which means that it
can be an extended task.

Unlike other extended tasks, an extended idle task will never need to be
moved off the stack when it issues a WaitEvent () call. RTA-OSEK,
therefore, does not need to allocate memory to save the current context.

These facts provide a useful optimization. If you need a single extended task
in your application you can use the idle task, without any time or space
penalty being applied to the rest of your application.

A system with the idle task as the only extended task has exactly the same
performance as strict basic conformance class systems. In practice, this means
that the idle task can be turned into an extended task at no cost.
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The idle task can be used if you want the system to remain BCC for timing
analysis, but would like to use a single extended task. If you use this method
you will avoid compromising the timing behavior of the rest of the system.

7.6  Summary

e Events are synchronization objects that can be waited on by extended tasks.
e An event is owned by a single task.
e Tasks, ISRs, alarms and messages can set events.
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Messages

8.1

Tasks and interrupts will often need to communicate. For example, a
communication bus interrupt may want to pass information to a task telling it
how many bytes to read from a shared buffer.

Communication between objects can be achieved using message passing In
RTA-OSEK, message passing is asynchronous. This means that when the
message is sent, the sender continues to execute. When the receiver begins to
execute, it consumes the sent message.

All data transmission is memory to memory because messages are only sent
between objects on a single CPU. There is no concept of a transmission
failure.

Communication in OSEK

8.2

Message passing in an OSEK operating system is defined by a subset of the
OSEK Communications (COM) standard.

In RTA-OSEK, message passing satisfies the OSEK COM conformance classes
CCCA (non-queued messages) and CCCB (queued messages) CCCB for
internal task and interrupt communication.

OSEK COM CCCB provides facilities for communication between tasks and
ISRs. CCCB supports both queued and non-queued message transmission.

8.1.1 Versions of OSEK COM

RTA-OSEK supports three different versions of COM:
1. OSEK COM v2.2.2 — referred to as COM?2
2. OSEK COM v3.0.3 —referred to as COM3
3. AUTOSAR COM v1.0 - referred to as RTA-COM

Important: COM3 and AUTOSAR COM are provided by the RTA-COM
product and not with RTA-OSEK

This chapter discusses the configuration of COM2 in detail. The configuration
and use of RTA-COM can be found in the RTA-COM User Guide.

Configuring Messages

If you want to use the communication facilities in RTA-OSEK Component
you'll need to declare a COM message in the RTA-OSEK GUI.

There are a number of stages involved in configuring a COM message:
e Declare the message.
e Declare the sender and receiver(s).
e Specify the accessors.
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e Specify the transmission mechanism.
Each of these stages will now be explained in more detail.

8.2.1 Declaring Messages

Messages are declared using the RTA-OSEK GUI. You can see, from Figure
8:1, how a new message has been added to the application.

Application Select Message: q = @ @ @ Recever| <] @ @
Target tessage "Message!”
ks Data Type The data type is '< undefined »'
IZRs
Sender Task osek_idle_task sends this message
Alarms / Schedules =
Ehii QUeUe SiZe Cueue size 0.
Events Send Accessor Accessor Messagel_send is used to send the message (with copy on send)
COM Activated Task Mo task is activated when the message is sent.
C Event Raised Mo event is set when the message is sent
Summary
@ Callpack Mo callback function executes when the message is sent.
@
Options Activated Flag Mo flag is activated when the message is sent
@
Messages

Figure 8:1 - Declaring a New Message

At the simplest level, each message must have:

e A name.
The name is used to refer to the message at run-time.

e A data type.
The data type specifies the content of the message.
This is the C type of the actual message data. This could be a simple
type, such as unsigned char, or it could be a more complex type,
such as struct myMessage.

Figure 8:2 shows a message called Messagel that uses an integer data type.

Application Select Message:  [Message1 - @ @ @ Recsiver: It @ @
Target Message "Messagel”™
TEEE Data Type The data type is Integer’
IZRs

Sender
Queue Size

Specify the data type for Message1

Alarms / Schedules

Resources
Events Send Accessor
COM

Activated Task
@ Event Raised Pr
Summary
Callback

Cancel

Mo callback function executes when the message is sent.

Options Activated Flag Mo flag is activated when the message is sent
@
Messages

Figure 8:2 - Specifying the Data Type for a Message
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COM does not need to know the type or even the content of a message.
However, this information is needed by RTA-OSEK at build time, so that the
correct amount of memory can be allocated for messages during the build
process.

Any type of data, such as integers, arrays, strings and linked lists can be
passed as a message. If the data type isn't a standard C or standard RTA-
OSEK data type, it must be declared in a file.

By default, the information is located in the file called comstrct.h. You
can, however, choose a different file for the data type definitions.

The name of this file is specified in the RTA-OSEK GUI using the COM
Options. In Figure 8:3 the existing file is called comstrct.h. The file can be
renamed by typing in a new name. If you do not want a #include file,
delete the name and leave it blank.

Application COM Options
Target [ Message resources |No message resources exist.
Tasks [ Message status Mo message status is recorded.
I1SRs
#nclude file COM-specific definitions are found in "comstret.h".
Alarms { Schedules
pola Edit Specify include file
Events
COm
@
Summary
@
Options
@ N
Messages

Figure 8:3 - Specifying the Name of the Include File

The type specified for a COM message must be a complete C language type —
i.e. the type must be something that could be used for declaring a variable.
(Amongst other things RTA-OSEK uses the specified type to create message
accessors.) For example, assume that the following declarations appear in
comstruct.h:

struct myStruct

{
char a;
char b;

bi

typedef struct
{

char x;
char y;

}

myRecord;

typedef char myArray[1l0];

RTA-OSEK v5.0.2 Messages 8-3



8-4

8.2.2

The following would be valid message types:

int

struct myStruct
myRecord
myArray

Declaring Senders and Receivers

A message is sent by a single sender, but it can be received by multiple
receivers. This provides a mechanism for broadcasting information to the
whole system.

The sender and receiver of a particular message must be specified at
configuration time using the RTA-OSEK GUI. Both tasks and Category 2 ISRs
can be senders or receivers.

Figure 8:4 shows you how the sender, Task1, is specified for Messagel.
Notice how only one sender can be specified for each message.

_ Application | Select Message:  |Message! hd @ @ @ Recewer| v @ @

Target Message "Message1”
ekl Data Type The data type is Integer’
I15Rs

T e Task Taskl sends this message
Alarms / Schedules =
Resources M Select message sender
Events Send Accessor
Com Activated Task
& Add
@ Event Raised
Sumrmary
Optiong Activated Flag Mo flag is activated when the message is sent

@

Messages

Figure 8:4 - Declaring a Sender for a Message

In Figure 8:5, a Receiver called Task2 has been added to Messagel. Each
message can have any number of receivers added in this way.

Application Select Message;  |Message! - @@@ Receiver:| Task2 hi @@
Target Message "Message1”

Tasks . ,
TR TR Data Type The data type is Integer Select message receiver
ISRs
,Wl Task Taskl sends this message
Alarms / =~

Resourcas Queue Size Queue size D

Events Send ACCESSO0r | Accessor Messagel_send is used

com Activated Task Mo task is activated when the med

@ Event Raised Mo event is set when the message is sent

Summary
@ Callback Mo callback function executes when the message is sent
@

Options Activated Flag Mo flag is activated when the message is sent.

Beceiver

@ Receiver task "Task2"
it
R Receive ACCessar Meszagel _recl is used by task Task? to receive the message (with copy on receive)

Figure 8:5 - Adding Receivers to a Message
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8.2.3 Specifying Accessors

Senders and receivers manipulate message data using accessors. Accessors
are used by the application to send and receive message data using the
corresponding API calls.

Accessors must be declared for both the sender and receiver. They are also
unigue to a task or ISR message pairing.

An accessor is a reference to a data object with the same type as the
message. Depending on the message characteristics, an accessor can
reference either the actual data in the message or a copy of it.

Figure 8:6 shows how the RTA-OSEK GUI is used to create a send accessor
called Messagel_send.

Application Select Message:  |Messagel - ® @ @ Receiver| Task2 = @ @
Target Message "Message1”

L Data Type The data type is Integer'
I5Rs

| Sender Task Task1 sends this message.

Alarms / Schedules =
Eennllee dueue Size Clueue size 0
Events | Send Accessgr | Accessor Messagel_send is used to send the message (with copy on send).
A 5
COM Activated Task Specify send accessor
@ Event Raised
Surmmary

Callback
® _ Caack |

New name (U

[+ Copyonsend
Options Activated Flag
|
I
i Receive Accessor Messagel_recl is used by task Task2 to receive the message (with copy on receive).

Messagel_recl is used by task Task? to receive the message (with copy on receive)

Figure 8:6 - Specifying a Send Accessor

The diagram in Figure 8:7 shows how accessors are used to pass messages
between tasks or ISRs.

Task(ISR)3

Accessor
3.2

Figure 8:7 - Using Accessors to Send and Receive Message Data

If tasks or ISRs want to send or receive the same message they must use
different  accessors. RTA-OSEK  creates an  accessor named
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8.2.4

<MessageID>_send for the sender and an accessor named
<MessageID>_recN for the receiver where N is the number of the receiver.
Accessor names are unigue to each task and ISR.

These symbolic names for the accessors can be changed, an example is shown

in Figure 8:8. Here Messagel has an accessor called Messagel_recl. In
this example, the accessor is being renamed to Rec1Messagel.

Application Select Message: | Message - @ @ @ Receiver:| Task2 i @ @
Target Message "Message1”

flEshe Data Type The data type is ‘Integer’.

I5Rs

| % Task Taskl sends this message.
Alarms / Schedules G
Resources M Queue size 0.

Events Send Accessor Accessor Messagel_send is used to send the message (with copy on send)
COM Activated Task Specify receive accessor
@ Event Raised
Summary MNew name |RE:1 Messageﬂ
Callback
- - [v Copyonreceive
Options Activated Flag
T
Messages

| RECEIVE ACCESSOr | Messagel_recl is used by task Task2 to receive the message (with copy on receive).
] 1_tect is used by task Task? to receive the message (with copy on receive).

Figure 8:8 - Specifying a Receive Accessor

Accessors are used as if they were a variable of the message type (actually
they are). So continuing the example in section 8.2.1, if we had a message
called messagel of type myArray with a send accessor called
messagel_send and a message called message2 of type struct
myStruct with a send accessor called message2_send then the following
uses of the accessors would be legal:

for (1 = 0; i < 10; i++)
{

messagel_send[i] = (char) 1i;

message2_send.a = 1;
messageZ_send.b = 2;

Important: You must make sure that, when passing the accessor into an AP
call, you pass the address of the accessor (this means that all calls should use
&AccessorName).

Specifying Transmission Mechanisms

Accessors provide access to the message area, but they do not specify how
messages are sent.  OSEK COM defines two message transmission
mechanisms:

e WithCopy.
¢ WithoutCopy.
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WithCopy Mode

In the WithCopy transmission mechanism, the accessor references a local
copy of the message. When a message is sent, RTA-OSEK Component copies
the contents of the local copy into the message buffer.

When the message is received, the contents of the message location are
copied to the local copy area for the receiver.

WithCopy mode can be used by both tasks and ISRs.

Important: WithCopy is the only transmission mode available to ISRs.

Have a look at the example in Figure 8:9 where both accessors are declared as
WithCopy. (In the example, the big arrows indicate the copying of the
message data and the small arrows indicate references.)

Figure 8:9 - Sending and Receiving Messages using WithCopy

This mechanism can be expensive if the message types are large and/or if they
are complex data structures. However, WithCopy allows the sender and
receiver to manipulate the copy of the message without affecting the
message itself.

WithoutCopy Mode

Tasks can specify message transmission WithoutCopy (remember that ISRs
cannot use this mode).
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8.3

Using WithoutCopy, the accessor directly references the data buffer of the
message, which saves the expensive copy operation that you saw in the
previous example.

So, let's compare Figure 8:9 with our next example, Figure 8:10.
Figure 8:10 illustrates the message transfer where both accessors are declared

as WithoutCopy (remember that in the diagram, the small arrows indicate
references).

ReceiveMessage

4

Message1_rec1
[Accessor]

Message1 data

T

Message1 «

\ 4

Figure 8:10 - Sending and Receiving Messages WithoutCopy

In WithoutCopy mode many tasks can have access to the same data area at
the same time. It is up to you to make sure that no access conflicts occur
(possibly by providing concurrency control over reads and writes to the
message).

You can use the RTA-OSEK GUI to create a message resource for each
message. A message resource is similar to a standard OSEK resource, but is
specific to a particular message.

The message resource has the same name as its message. It is also available to
each task and ISR that can access the message. When you get a message
resource, the system’s active priority should be raised to that of the highest
priority task or ISR that can access the message.

The resource is accessed by the GetMessageResource (MessageID) and
ReleaseMessageResource (MessageID) APl calls. You can find out
more information about these calls in the RTA-OSEK Reference Guide.

Sending and Receiving Messages

8-8

A message is sent using the SendMessage (MessageID, &AccessorID)
call.

A task or ISR that wants to send a message must have a send accessor for that
message. This must be declared in the RTA-OSEK GUI. Note that it is an error
to call this APl with an invalid message or accessor.
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8.3.1 Sending a Message

To send a message you must:

e Copy the data that needs to be sent into the data buffer that
AccessorID is pointing to. The accessor that you use must be valid
for the task or ISR.

e (Call the SendMessage(Message, &Accessor) APl call
Message is the identifier of a declared message and Accessor is a
reference to an accessor that the task or ISR is allowed to use.

In Code Example 8:1, the message DataArrived is sent by an ISR. The
message type is defined by the struct MyMessage.

struct MyMessage {
char text[6];

bool aFlag;

i

ISR (MessageArrived) {

/* Prepare data for sending. */
DataArrived_send.aFlag = true;
memcpy (DataArrived_send.text, “HELLO”, 6);

/* Send the message. */
SendMessage (DataArrived, &DataArrived_send);

Code Example 8:1 - Sending a Message from an ISR

8.3.2 Receiving a Message

The ReceiveMessage (MessagelID, &AccessorID) APl call is used to
receive messages. A task or ISR that wants to receive a message must have a
receive accessor for that message declared in the RTA-OSEK GUI.

To receive a message you must:

e (all the ReceiveMessage (Message, &Accessor) APl call
Message is the identifier of a declared message and Accessor is a
reference to an accessor that the task or ISR is allowed to use.

o After the call has returned, access the data from the data buffer that
Accessor Is pointing to.

Code Example 8:2 shows the task ProcessData receiving a message.

TASK (ProcessData) {

char buffer [6];
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/* Receive the message. */
ReceiveMessage (DataArrived, &DataArrived_Recl);

/* Retrieve data from accessor. */
memcpy (buffer, DataArrived_Recl.text, 6);

Code Example 8:2 - A Task Receiving a Message

8.4 Starting and Stopping COM

The startcoM() APl call must be called before sending or receiving
messages. This call initializes the implementation specific internal states and
variables.

You can use StopCOM (COM_SHUTDOWN_IMMEDIATE) to stop COM at any
time. In extended error checking mode this will cause subsequent send and
receive operations to return the status E_COM_SYS_ STOPPED.

8.5 Initialization and Shutdown of COM

APl calls are provided to initialize and shutdown COM. These calls are
intended for use where external hardware, such as a CAN driver, is used to
pass messages to other processors. This is not directly supported in RTA-OSEK
Component; however, you can do this using other add-on libraries.

The InitcoM() call can be used to initialize the network hardware. This
should be called before startcoM () and it is usually called from the startup
hook.

The CclosecoM () API call is used to deactivate the network hardware. It
should be called after StopcoM() and it is normally called from the
shutdown hook.

Code Example 8:3 shows you how COM can be initialized and shutdown from
the StartupHook () and ShutdownHook ().

OS_HOOK (void) StartupHook (void) {
InitCOM;

}

OS_HOOK (void) ShutdownHook (StatusType status) {
CloseCOM() ;

}

Code Example 8:3 - Hook Routines for Starting and Shutting Down COM
The MessageInit () callback function can be used to initialize user message

objects. This is a user provided function that is called automatically from
Start0S (). By default, RTA-OSEK Component provides this function
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automatically; however it can be overwritten by a user provided function,
shown in Code Example 8:4.

‘ StatusType MessagelInit (void) ‘

Code Example 8:4 - Messagelnit() Callback Function

The status type returned by MessageInit () will be passed back as the
StartCcoM() API call status code.

Queued Messages

The messages you have seen so far have been non-queued. RTA-OSEK
Component supports COM Conformance Class B (CCCB) that provides
facilities for queued message transmission.

For queued messages, RTA-OSEK Component maintains an internal FIFO (first-
in, first-out) queue. You must specify the size of the queue when configuring
your message in the RTA-OSEK GUI. When you do this, RTA-OSEK then
knows how much space it needs to allocate. Figure 8:11 shows how the
queue size is specified.

Application Select Message:  |[Message! - @ @ @ Receiver| Task2 ¥ @ @
Target Message "Messagel”

L Data Type The data type is 'Integer’.
I1SRs
| Sender Task Taskl sends this message
Alarms / Schedules B
Events Send Accessor Specify queue size
com Activated Task
@ Event Raised
Summary
Callpack

Options Activated Flag Feerrr

@ Receiver tash "Task2"
Messages
Receive Accessor | |BeclhMessagel is used by task Task2 to receive the message (with copy on receme).

Reclbessagel is used by task Task? to receive the message (with copy on receive)

Figure 8:11 - Specifying the Queue Size

Queued messages have the same message names and accessors as non-
gueued messages, but there are important differences.

For queued messages:

e The transmission mode must always be WithCopy for both the
sender and the receiver.

e Only a single receiver can be declared for each queued message. This
is because queued messages have destructive read. So, when a
receiver reads the message at the head of the queue, that message is
then deleted.

e |SRs cannot send queued messages.
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Mixed-Mode Transmission

In Section 8.2.4 you learnt about Transmission Mechanisms. Remember that
OSEK COM defines two different message transmission mechanisms called
WithCopy and WithoutCopy.

Senders and receivers can, in fact, transfer messages in mixed modes. So,
messages could, for example, be sent in WithoutCopy mode and received in
WithCopy mode. This is called Mixed Mode Transmission.

Activating Tasks on Message Transmission

When a message is sent, a task can be activated. Only one task can be
activated for each message.

The task that is activated is normally a receiver of the message, but it does not
have to be.

If you are going to analyze your application for timing correctness, make sure
that you only activate tasks of a lower priority than the message sender. In
other words, upward activation of tasks is not allowed.

Figure 8:12 shows that Task1 has been selected as the task to be activated
when Messagel is sent.

Application Select Message  |Messaged - @ @ @ Receiver:|Task2 b @ @
Target Message "Messagel”

T Data Type The data type is Integer’
I15Rs

| Sender Task Taskl sends this message.
Alarms / Schedules =
Blesiee Quele Size Cueus size .

Events Send Accessor Accessor Messagel_send is used to send the message (with copy on send).

COM Activatei Task Mo task is activated when the message is sent
@ - 7
@ Event Raised Select task activated by message
Surnmary

@ (Gl Activated task
Dptions Activated Flag ask =2 Add

@

Messages Cancel :
REeceive ACCESSOr b receive)
T L el I

T receive).

Figure 8:12 - Activating a Task when a Message is sent

Setting Events on Message Transmission

If a message must be received by an extended task, it is possible to notify the
task by setting an event when the message is sent. Figure 8:13 shows how
this can be achieved using the RTA-OSEK GUI.
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w Select Message:  |Messagel A @ @ @ RECEIVBr:’m @ @
Target Message "Messagel™
Tt Data Type The data type is ‘Integer.
I5Rs

Alarms / Schedules

Sender

Task Taskl sends this message

e ClUeUe Size Cueue size 0.
Events Send AcCessor | Accessor Messagel_send is used to send the message (with copy on send).
COM Activated Task Task Taskl is activated when the message is sent.
@ Event Raised Mo event is set when the message is sent.
Summary
Callback
@ Select event
Options Activated Flag
@
Messages

Receive Accessor

receive).
receive)

LCancel

Figure 8:13 - Setting an Event on Message Transmission

8.10 Callback Routines

RTA-OSEK v5.0.2

Messages can have callback routines. A callback is a parameterless C
function that is called by RTA-OSEK Component when a message is sent. It is
up to you to supply this C function.

An example callback routine is shown in Code Example 8:5.

void MyCallback (void) {
/* Callback code. */

Code Example 8:5 - Writing a Callback Routine

If, for example, you wanted to log a count of message transmissions during
debugging, you could create a callback routine to increment a counter on
each call.

Have a look at Figure 8:14, where a callback has been specified in the RTA-
OSEK GUI.
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Application Select Message  |Messagel [ @ @ @\) Receiver|[Taske ~ +| @ @

Target Message "Messagel”
Ikl Diata Type The data type is Integer.
ISRs

.

Alarms / Schedules
Resources M
i __ senn accessor | Collback [rGomt

RO Activated Task

Summary

® Callhack Mo callback function executes when the message is sent
& |:;|
Options Activated Flag Mo flag is activated when the message is sent

Specify the callback function for Message1 @E|

@ Receiver task "Task2"
il
e Receive Accessor Becltessagel is used by task Task? to receive the message (with copy on receive).

BeclMessagel is used by task Task? to receive the message (with copy on receive).

Figure 8:14 - Specifying a Callback Function for a Message

The callback routine can only use the SuspendAllInterupts() and
ResumeAllInterrupts () APl calls.

8.11 Using Flags

Flags have a Boolean state, so they can either be set or unset. They are used
to manage synchronization with messages. A flag can be set when a message
is sent. This flag can be used wherever it is necessary to check for new
messages before calling ReceiveMessage ().

The flag name, F1agl, has been specified in Figure 8:15 for Messagel.
Application Select Message.  |Messagel i @ @ @ Receiver| Task? i @ @

Target Message "Messagel”
Trehis Data Type The data type is Integer.
ISRs

| Sender Task Task1 sends this message.
Alarms / Schedules =
Resources QueLe Size B8 specify flag name for Message1

Events Send Accessar Ac
Name |Flagl|
comM Activated Task Tag o

@ Event Raised Evel
Sumnrnary oK | ‘ Cancel |
Callpack Fu
@ #
Options Activated Flag Mo flag is activated when the message is sent.
@ Receiver task "Task2"
I
SR Receive Accessor Recltessagel is used by task TaskZ to receive the message (with copy on receive)
ReclMessagel is used by task Task? to receive the message (with copy on receive)

Figure 8:15 - Activating a Flag when a Message is Sent

There are two API calls that allow access to a message flag. ReadFlag ()
returns the current state for a given flag and ResetFlag () clears the flag.

Important: It is your responsibility to make sure that the correct flag is being
used. There are no checks to ensure that the flag name is correct.
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Code Example 8:6 shows the code that is needed for a task to receive a
message using an attached flag.

TASK (ProcessData)
{
char buffer [8];
/* Only receive message 1f the flag is set. */

if ( ReadFlag( DataHasArrived ) ) {

/* Receive the message. */
ReceiveMessage (DataArrived, &ReceiveAccessor);

/* Retrieve data from accessor. */
memcpy ( buffer, ReceiveAccessor, 8 );

/* Reset flag. */
ResetFlag( DataHasArrived );

Code Example 8:6 - Task Receiving a Message using the Attached Flag

8.12 Summary

e COM provides facilities for message passing between tasks and/or ISRs.

e Non-queued messages have a single sender and multiple receivers. They can
be sent WithCopy or WithoutCopy

e Queued messages have a single sender and a single receiver. They can only
be sent WithCopy.

® Message sending and receiving is achieved using accessors.

e You must ensure correct concurrency control when using WithoutCopy
and queued messages.
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9 Introduction to Stimulus/Response Modeling

So far you have seen how RTA-OSEK is used in the development process. You
have also seen how you can configure and use various operating system
objects.

In this chapter you will learn how you can model and build timing
relationships into your application.

Real-time systems receive inputs and generate outputs. In RTA-OSEK, the
inputs are called stimuli and the outputs are called responses.

To build a successful real-time system you should be able to answer the
following questions:

e Which outputs are related to which inputs?
e How often do inputs occur?

The RTA-OSEK GUI captures this simple information in a stimulus/response
model. If you want to analyze a system, however, you will need more
information. You will learn more about this later in this guide.

Using the RTA-OSEK GUI you can map your initial specification onto a design,
in terms of system objects (tasks, interrupts, alarms, schedules and so on).
This design can be analyzed for timing correctness. RTA-OSEK then generates
code to implement the design, along with the functional code that is provided
by you.

In this chapter you'll see the specification process that should be used when
you design systems that use counters, alarms and schedules.

When the development process is complete, each stimulus will be associated
with a primary profile and each response will be associated with either a
primary profile or activated profile.

Stimuli can be either external or internal to your system. An external stimulus
could be, for example, a press of a button. An internal stimulus could be a
timer interrupt from the target hardware.

Usually stimuli originate as interrupts in your application. The interrupt itself
may be a stimulus or it could be used by RTA-OSEK Component to generate
internal stimuli, such as generating an alarm. During the design process you
will decide what form the stimulus takes.

When a stimulus occurs, one or more responses must be generated in the
system. As with stimuli, responses can be external or internal to your system.
An external response could be the actuation of some hardware. An internal
response may be the availability of some calculation. During the design you
will decide what your program will do to generate the responses.

9.1 Declaring Stimuli and Responses

The first part of any specification involves declaring the stimuli in the system,
along with their associated responses.

Each stimulus and response must have a unique name. When you declare a
stimulus, the RTA-OSEK GUI generates a default response with the same
name as the stimulus. Usually you will want to change this name.
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Figure 9:1 shows how the response name is changed.

Application select Alarm Stimulus:  |Alm1 - @ @ @ iesponse; |responsel ht @ @ @
Target Stimulus "Alm1” N

Tasks i
_—_— Arrival Modes

IS5Rs

Alarme / Schedules

Alml is handled in all AppModes.

Rename response

Ent
Flenufies The response is forced to apply for all Ap iR
il b s ‘Du_sumeihmg
Events Deadline There is no deadline
COM Response Delay | Minirmum response delay 0 processor oy 0K Cancel
* Implementation Mothing implements this response.
Stimuli
@
Summary
@
Bursty Stirmuli
@
Alarrn Stimuli
@
Perindic Stirmuli

Figure 9:1 - Renaming the Default Response

A stimulus can be associated with multiple responses. Each response must
have a unique name. For example, a stimulus called 10ms_stimulus may
have an associated response called checked_vessel_pressure. A
stimulus  called brake_pressed may have responses called
hydraulics_primed, pads_applied and brake_lights_on.

9.2  Arrival Patterns and Arrival Rates
Declaring the stimuli and responses in your system specifies which inputs are
related to which outputs. Once the stimuli and responses have been declared,
the next thing to do is to specify how often the stimuli occur.
Each stimulus has an arrival pattern. The arrival patterns can be:
e Bursting.
A bursting arrival pattern is used to model the case where, generally,
an interrupt is a stimulus and it is used to directly activate a task to
generate a response.
e Periodic.
A periodic arrival pattern is used to model a periodic rate, for example
when you want to generate a response every 20ms.
e Planned (aperiodic).
A planned arrival pattern is used to model an aperiodic series of
stimuli. For example, you may want to generate a response at 10ms,
15ms, 50ms and so on.
In the case of both periodic and planned arrival patterns, it is the behavior
that is being specified. During the design process it is up to you to decide
how to achieve the specified behavior at run-time.
An example of each type of arrival pattern is shown in Figure 9:2.
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Figure 9:2 - Stimuli Arrival Pattern Examples

Each arrival pattern has an associated arrival rate that specifies the required
timing behavior of the arrival pattern.

Bursting patterns are used only for timing analysis. Periodic arrival patterns
are used for analysis, as well as for generation of run-time data used by your
application. For planned arrivals, the actual timing specification is deferred
until the design stage. The plan that you create states when stimuli occur.

9.3 Implemeting Stimuli

Bursting stimuli are usually generated by ISRs, specified as the primary profile.
This is the only thing that needs to be specified when you create a bursting
stimulus.

For periodic and planned stimuli you need to decide how the stimulus is going
to be generated in RTA-OSEK Component.

Periodic stimuli can be implemented by:
e OSEK Alarms
e AUTOSAR ScheduleTables
e RTA-OSEK Periodic Schedules
Planned stimuli can be implemented by:
e RTA-OSEK Planned Schedules
Figure 9:3 shows you how you can visualize the design of stimuli.
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Figure 9:3 - Designing Stimuli

9.4 Implementing Responses

Each response that you declared during specification must be associated with
an implementation. The implementation of a response is performed in
functional code that you provide.

Responses can be generated by any functional code in your application. You
will also need to declare which task or ISR will implement the response. A task
or ISR can implement more than one response, an example is shown in Figure
9:4.
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Figure 9:4 - Implementation of a Stimulus and Responses

Note that an ISR can both react to a stimulus and make a response. For
example an interrupt handler may service the interrupt source, perform some
processing and then return a result to the real-world.

9.5 Summary

e All practical systems have inputs and outputs. In RTA-OSEK, the inputs are
called stimuli and the outputs are called responses.

e A stimulus is associated with at least one response.

e Stimuli have arrival types and arrival patterns. Arrival information is used for
analysis and, in the case of periodic and planned arrivals, for the generation
of run-time information.

® Responses are implemented by tasks or ISRs in your final application code.

e For periodic and planned stimuli you must design how the stimuli will arrive
in your application when running under RTA-OSEK Component.
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10 Counters

Counters register how many “things” have happened in the OS in ticks. A tick
is an abstract unit. It is up to you to decide what you want a tick to mean and,
therefore, what are the “things” the counter is counting.

You might define a tick to be:

e Time, for example a millisecond, microsecond, minute etc and the
counter then tells you how much time has elapsed.

e Rotation, for example in degrees or minutes, in which case the counter
would tell you by how much something has rotated.

e Button Presses, in which case the counter would tell you how many
times the button has been pressed.

e Errors, in which case the counter is counting how often an error has
occurred.

An ISR (or sometimes a task) is used to drive a counter. The driver is
responsible for making the correct RTA-OSEK Component API call to ‘tick’ the
counter or to tell RTA-OSEK that the counter has “ticked” to a required value.

10.1 Configuring Counters

Counters are declared using the RTA-OSEK GUI. To declare a counter you
must specify:

e A counter name.
RTA-OSEK creates a handle for each counter using an identifier of the
same name as the counter.

e The rate at which the counter is ticked.

e A primary profile.
This is usually the interrupt that you are using to tick the counter.

Figure 10:1 shows how a counter called Counter1 has been declared.
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Applicatian
Target
Stirmuli
Primary Prafile |
@
Summary Activation Twpe |
@ Tick Rate |
Stirmuli
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@
Counters Constants |
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ScheduleTahles Min Cycle |
@ ;
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Feriodic Schedules
Synchronized Alarms |
@
Planned Schedules Trace Fomat |

J@e@

Counter "Counter1®

Oriven by primary profile Timerlnterrugpt,
Activation type is ticked,

1tickis 1 real time ms.

<no units >

< no constants >,

hax tick walue 65535,

bdin cycle value 1.

Ticks perbase 1.

Alarms are not synchronized.

<MNonesr.

Figure 10:1 - Declaring a Counter

10.1.1 Specifying the Tick Rate

When you specify the counter tick rate in the RTA-OSEK GUI, you can either
specify the ticks in terms of their CPU clock rate or in terms of real-time
(nanoseconds, microseconds and milliseconds for example) as shown in Figure

10:2.

Tick rates for timebase Counterl

21

Mode |0SDEFALLTAPPMODE |~ |

Assign to all |

Bate |1

real time

=18

Zms

Figure 10:2 - Specifying the Counter Tick Rate

For most of the applications that you write, the relative timing of events will
be the real-time values determined by your system requirements. This means
that you will usually specify alarm and counter values in terms of real-time

units.

Using these units has an important advantage. If you use real-time units and
then change the CPU clock rate, the counter timing values will be scaled
automatically according to the new CPU clock rate.

Counters
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10.1.2 Activation Type

RTA-OSEK does not take control of any of your hardware to provide counter
drivers. This makes RTA-OSEK very easy to integrate with any tick source for
example timer ticks, error counts, button presses, TPU peripherals etc.

This means that you need to provide a driver for every counter you
declare in RTA-OSEK and interface this to the OS.

There are two ways to interface a driver:

1.

Ticked

The count value is held internally by RTA-OSEK. Your application
makes an API call to tell RTA-OSEK to increment the counter by
one tick. The counter always counts up from zero and wraps at
MAXALLOWEDVALUE+1. In AUTOSAR OS this is called a Software
Counter. . Further details are provided in Section 10.2.

Advanced

The count value is held in an external hardware peripheral. Your
application must provide a more complex driver that tells RTA-
OSEK when a requested number of ticks have elapsed. The
counter uses special callback that are used by RTA-OSEK to set a
requested number of ticks, cancel a request, get the current count
value and get the status of the counter. In AUTOSAR OS this is called a
Hardware Counter. . Further details are provided in Section 10.3.

You should use ticked activation when you need relatively low resolution,
for example greater than one millisecond. Advanced activation is used
when you need very high resolution, for example in the microsecond
range, or where you need to synchronize RTA-OSEK to a peripheral, for
example a TPU or to a global (network) time source.

The two types of activation are provided to allow you to make a trade-off
between range and resolution.

10.1.3 Counter Attributes

Each counter has the following attributes:

RTA-OSEK v5.0.2

A maximum value.

Defines the maximum count value for the counter. The default setting
is target dependent. This corresponds to the OSEK attribute
MAXALLOWEDVALUE. See the RTA-OSEK Binding Manual for your
target for further information.

A minimum cycle value.

Defines the shortest time unit you can use when setting a cycle value.
By default this is 1 tick. This corresponds to the OSEK attribute
MINCYCLE.

Ticks per base.
You can assign any value to this attribute because it is not used by
RTA-OSEK. This corresponds to the OSEK attribute TTCKSPERBASE.

Counters
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All of these values can be changed if required. You might, for example, want
an 8-bit counter rather than a 16-bit counter. You may also, for instance,
want to specify a minimum cycle value to use when debugging. This can
prevent the counter being set to a value that has been reached when the set
call is made.

Important: For an advanced counter you must ensure that
MAXALLOWEDVALUE+1 is equal to the modulus of the peripheral.

10.1.4 Counter Units

Counter simply register ticks provided by the primary profile. Counters can be
ticked by any tick source. All alarms attached to the counter will be related to
that tick source. Remember that you saw earlier that in an event-based
operating system, such as RTA-OSEK Component, the tick could be anything
that you can capture in the system.

The RTA-OSEK GUI allows you to declare counter units. Units allow you to
specify non-time related tick sources in terms of real-time units. The time
conversion between the unit and time must represent the worst-case
conversion. For example, this could be the fastest rate a button is pressed or
the fastest rotation speed of a timing wheel.

Important: If the worst-case conversion rate is incorrectly specified, any
analysis you perform on your application will not be accurate.

You could have a counter, for instance, that counts errors occurring in the
system and then activates tasks at certain threshold values. In the RTA-OSEK
GUI you could declare an error unit. You can see how this can be achieved in
Figure 10:3.
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Figure 10:3 - Declaring an Error Counter with threshold Units

10.1.5 Counter Constants

The RTA-OSEK GUI allows you to declare symbolic constants for commonly
used counter values. This is useful when you want to create symbolic names
to use in your application, for example as start times, increments and cycle

times for alarms.

Figure 10:4 shows you how threshold values for the “error counter” have
been defined with 10 errors treated as a “serious error” and 15 errors as a

" catastrophic error”.

Name sefious efror [~ Output as foat Add
Yalue I'l ] IEnunteH ﬂl enar j Bemove |
ar.

Figure 10:4 - Declaring a Counter Constant

Declared counter constants are available to your application code through the

generated header files.

RTA-OSEK v5.0.2
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10.2

Incrementing Counters

For each of your ticked counters you need to provide the driver that provides
the tick. RTA-OSEK provides a well-defined interface for connecting the tick
source to the OS.

Although there is no restriction on where and when a counter can be
incremented, it is usually implemented in a Category 2 ISR handler. A task
could, however, also make the incrementing API call.

10.2.1 OSEK OS

10-6

RTA-OSEK generates a Tick_<CounterID> () APl call for each counter that
has been declared in the configuration file (where CounterID is the name of
the counter).

Portability: The counter driver interface is not defined by the OSEK standard
SO Tick_<CounterID> () is not necessarily portable to other OSEK OS
implementations.

Let's look at an example. An application contains two counters, one called
TimeCounter and one called AngularCounter. RTA-OSEK will generate

the two API calls, shown in Code Example 10:1.

Tick_TimeCounter () ;
Tick_AngularCounter () ;

Code Example 10:1 - Sample Counter API Calls Generated by RTA-OSEK

The interrupt handlers that you supply to service the timer and angular
interrupts must call these API calls.

Code Example 10:2 shows how these interrupt handlers could look.

#include “HandleTimerInterrupt.h”
ISR(HandleTimerInterrupt) {

ServiceTimerInterrupt () ;
Tick_TimeCounter () ;
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#include “HandleAngularInterrupt.h”
ISR (HandleAngularInterrupt) {

ServiceAngularInterrupt () ;
Tick_AngularCounter () ;

Code Example 10:2 - Interrupt Handlers for Code Example 10:1

If you have multiple ticked counters that required the same tick rate then you
are free to make multiple Tick_<CounterID> () calls within your handler:

#include “MillisecondInterrupt.h”

ISR(MillisecondInterrupt) {
ServiceTimerInterrupt () ;
Tick_Counterl () ;

Tick_Counter2();

Tick_CounterN() ;

10.2.2 AUTOSAR OS

Unlike OSEK OS, AUTOSAR OS defines a standardized API for ticking counters
called IncrementCounter (). The APl call takes the name of a counter as a
parameter. This means that the API call is call slower and consumes more
stack space at runtime than the RTA-OSEK Tick_<CounterID> () APl call.

By default, RTA-OSEK assumes you will be using the OSEK OS version of the
API call — the counter is usually ticked in an ISR and you want to make your
handler as fast an efficient as possible.

The larger and slower AUTOSAR OS API call is must be specifically enabled if
you want to use this functionality. The API is enabled in Application ->

Optimizations ()as shown in Figure 10:5.

Optimizations mainly affecting size

v Omit 05 Restart The 05 can only be restarted wia processor reset.

[~ Omit RES_SCHEDULER RES_SCHEDULER is used.

IncrementCounter() can be called from project code.

v Allow SetReldlam] 0] SetRelalarm(0)is legal and represents an interval equal to the counter modulus.

Figure 10:5 - Enabling the IncrementCounter() API
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10.3 Advancing Counters

For each of your advanced counters you need to provide the counter driver
and interface the driver to RTA-OSEK. As with ticked counters, RTA-OSEK
provides a well-defined interface for connecting the advanced counter driver
to the OS.

Portability: The OSEK OS and AUTOSAR OS standards do not specify a
standard API call for dealing with advanced counters. If you are porting your
application from another OS to RTA-OSEK, then you may need to change the
advanced counter driver API calls.

RTA-OSEK internally knows the match value at which the next scheduling
action needs to happen, where a scheduling action is to expire an alarm or
processing a schedule table expiry point.

When you use a ticked counter, you tell RTA-OSEK when a tick has elapsed.
RTA-OSEK counts ticks and when the match value is reached the action is
taken. The next match value is set up and the process repeats.

When you use an advanced counter, RTA-OSEK tells you the match value at
which the next action needs to happen and you tell RTA-OSEK when counter
reaches the match value. RTA-OSEK takes the action and the process repeats.

Normally you will use an interrupt to drive both ticked and advanced counters.
With a ticked counter you will get an interrupt for each counter tick. With an
advanced counter you get an interrupt only when an action needs to happen.
This means that advanced counters can reduce interrupt interference when
compared to ticked counters.

10.3.1 Advancing the Counter

10-8

You use the API call osAdvanceCounter_<CounterID> () () to tell RTA-
OSEK that the match value has been reached. The Application ->
Implementation notes show you the basic structure.

Application ‘ Catl ISRs
ISR Catl must run at pricrity 16 and respond 1o interrupts on vector 'CPU machine check!.
@ Catl must service a single interrupt source and then exit
Summary e.q.
#include <osek h»
@ void Catliwvoid)
i {
08 Configuration service_interrupt():
@ ¥
Startup Modes
Cat? ISRs
@ ISR Advanced Driver must run at priority 1 and respond to interrupts onwvector 'INTC software interrupt 0
Tir Advanced Driver must service a single interrupt source and then exit
@ Advanced Driver must call 'osAdvanceCounter_Counter1(_)' each time it executes.
- e.q.
Optimizations #include "idvanced Driver.h"
ISE{advanced Driver)
@ {
C\ ScheduleStatusType stat_Counterl;
Defaults service_interrupt ().
osAdvanceCounter_Counterlifstat_Counterl):
@ if (stat_Counterl. status & OS_STATUS_RUNNING) {
W % Hote: Simple solution. Does not test to see if the next interrupt is already dus =~
acros increment_tine_compare_register_by(stat_Counterl.espiry).
@
Implementation }

Figure 10:6 - Implementation Notes for Advanced Counter Driver
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The osAdvanceCounter_<CounterID> () APl call returns a structure that
specifies the status of the counter and the next match value of the hardware
counter, relative to the previous match value, at which RTA-OSEK must
process the next action on the counter.

Important: You are responsible for writing the driver that calls
osAdvanceCounter_<CounterID> () and ensuring that the next action is
taken at the correct time. For correct timing behavior, you must ensure that
the tick source for your advanced counter has the same tick rate defined in
the configuration file.

Further information on writing advanced counter drivers can be found in
Chapter 14.

10.3.2 Callback Functions

RTA-OSEK also needs to control the counter at runtime. This is done using a
callback interface. More details about the requirements of the callback
interface can be found in the RTA-OSEK Reference Guide. Further information
on writing callbacks can be found in Chapter 14.

Set_<CounteriD>

This callback sets up the state for an interrupt to occur when the next action is
due. The callback is passed the absolute value of the counter at which an
action should table place. For counters this callback is used for two distinct
cases:
1. Starting
Setting the initial interrupt source when a schedule table or an alarm is
started on the counter on the counter
2. Resetting
Shortening the time to the next action
The second case is needed because you can, for example, make a
SetRelAlarm(alrm, 100) call when next interrupt is not due for more
than 100 ticks.

State_<CounterID>
This callback returns whether the next action on the counter is pending or not

and, if the action is not pending, then number of ticks remaining until the
match value is reached.

Now_ <CounterlD>

This callback needs to return the current value of the external counter. This is
used for the GetCountervalue () API call. See Section 10.4.
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Cancel_<CounterID>

This callback must clear any pending interrupt for your counter and ensure
that the interrupt cannot become pending until a Set_<CounterID> call is
made. If you do not cancel all the alarms on the counter and/or stop schedule
tables driven by the counter then this call is not needed.

10.4 Setting an Initial Counter Value

Ticked counters are initialized to zero by RTA-OSEK automatically at startup.
By default, RTA-OSEK assumes that all advanced counters start counting from
zero.

If you want to force any counter to a different initial value then you can do
this using RTA-OSEK's TnitCounter () APl call:

‘InitCounter(Counterl,(Ticktype)42); ‘

Portability: TnitCounter() is specific to RTA-OSEK and is not portable to
other implementations of OSE OS.

As InitCounter () directly modifies the count value you should take great
care when using it when alarms and/or schedule tables are running on the
counter as you may disrupt their timing behavior.

10.5 Getting the Current Counter Value

RTA-OSEK provides an APl to get the current count value of a counter called
GetCounterValue ().

TickType Now;
GetCounterValue (Counterl, &Now) ;

Portability: Get Countervalue() is specific to RTA-OSEK and is not portable
to other implementations of OSEK OS.

Important: When you use GetCounterValue () to get the value of an
advanced counter remember that the peripheral hardware will still be
incrementing when the call returns, so any calculations you make using the
returned counter value will be based on old data.

10-10 Counters RTA-OSEK v5.0.2



10.6 Accessing Counter Attributes

The RTA-OSEK Component APl call GetAlarmBase () always returns the
configured counter values. The structure of GetAlarmBase () is shown in
Code Example 10:3.

AlarmBaseType Info;
GetAlarmBase ( Alarm2, &Info );

MaxValue = Info.maxallowedvalue;
BaseTicks = Info.ticksperbase;
MinCycle = Info.mincycle;

Code Example 10:3 - The Return Structure of GetAlarmBase()

The configured values are can be accessed as symbolic constants in the form
shown below. In addition to the OSEK standard, RTA-OSEK provides a fourth
constant called OSTICKDURATION_<CounterlD>which provides the length of
a tick of the counter in nanoseconds:

OSMAXALLOWEDVALUE_<CounterID>
OSTICKSPERBASE <CounterID>
OSMINCYCLE_<CounterID>
OSTICKDURATION_<CounterID>

Code Example 10:4 - Symbolic Constants

10.7 Summary

Counters are used in OSEK to register a count of some tick source.

Counters can count any tick value and RTA-OSEK allows you to specify the
actual counter units.

Counters can be ticked and RTA-OSEK maintains the current count vale.

Counters can be advanced and peripheral hardware maintains the current
count value
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Alarms

1.1

It is possible to construct systems that activate tasks at different rates using
ISRs. However, for complex systems, this can become inefficient and
impractical.

OSEK's alarm mechanism consists of two parts:

e A counter.
You learnt about these earlier

e One of more alarms attached to the counter.
The alarm part specifies an action (or actions) to perform when a
particular counter value is reached. Each counter in your system can
have any number of alarms attached to it.

An alarm is said to have expired when the value of a counter equals the
value of an alarm attached to the counter. On expiry, RTA-OSEK Component
will perform the action associated with the alarm. The action could be to
activate a task, to execute an alarm callback routine or to set an event.
AUTOSAR OS adds a fourth action; tick a ticked counter.

The alarm expiry value can be defined relative to the actual counter value or
as an absolute value. If the alarm expiry is defined as relative to the actual
counter, it is known as a relative alarm. If it is defined as an absolute value,
it is known as an absolute alarm..

Alarms can be configured to expire once. An alarm that expires once is called
a single-shot alarm.

An alarm can also be specified to expire on a periodic basis. This type of
alarm is called a cyclic alarm. You can find out more about cyclic alarms in
Section 11.2.

Configuring Alarms

In RTA-OSEK an alarm is not declared directly. Alarms are created by:
e Declaring a stimulus.
e Attaching the stimulus to a counter.
When a stimulus is attached to a counter it becomes an alarm on the counter.

Select counter or schedule 21|

| Periodic schedule I ScheduleT able I

Select Counter IEDunteﬂ j & Add

Figure 11:1 - Attaching a Stimulus to Counter1

The implementation of the response to the stimulus becomes the action
performed when the alarm expires. Each alarm that you create is associated
with up to 4 actions:
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e Activate a task.

e Raise an event.

e Execute a callback function.

e Increment a counter [AUTOSAR only]

Portability: In OSEK (and AUTOSAR) OS each alarm can activate a task, set
an event, execute a callback function or increment a counter. In RTA-OSEK,
however, you have more flexibility. You can activate a task, set an event
execute a callback function and increment a counter from a single alarm.

If you need to set multiple events, to make multiple callbacks or to activate
multiple tasks on expiry, you will need multiple alarms with the same expiry
value. (AUTOSAR Schedule Tables and RTA-OSEK Schedules provide an
alternative mechanism for implementing multiple task activation without the
need for multiple alarm objects. You will learn about these mechanisms later
in this guide).

Important: Only periodic stimuli can be attached to a counter. You are not,
however, limited to periodic alarms in the implementation. Alarm periods can
be set to any value at run-time".

11.1.1 Activating a Task

When you attach a stimulus to a counter the implementation of the response
becomes the alarm action. The most response implementation is a task. In
Figure 11:2, stimulusl is created implemented as an alarm attached to
Counterl. The response Responsel is implemented by Task1l so Task1
becomes the action on the alarm.

Applieation Select Stimulus: ISt\mqus'l b @ @ @ Fesponse: |Responsel 'l @ @ @

Target Stimulus/Alarm "Stimulus1®

Stirmuli

O Airival Modes | The arrival is handled in all Apphodes
@
Surmrnary Ayrival Type | The arrival type is periodic
@ Arrival Pattern | lthas period & Counterl ticks (5 real time ms)
Stimuli .
Schedule/Counter | This stimulus is implemented as an alarm attached to counter Counterl
@
Counters Evert Set | Mo event is setwhen the alarm expires.
@ Callback | Mo callback function runs when the alarm expires.

EECEMETERES Tick Caunter/Sched | MNa Counter or Schedule is incremented when the alarm expires

@ Response "Responsal”
Periodic Schedules

@ Fesp. Modes | The respaonse is made in all applicable Appkiodes.
Flanned S.’chedules Deadine | There is no deadline.
Fesponze Delay | Meximum response delay 0 processor cycles.
Implementation | The response is implermented by Task Taskl

Figure 11:2 - Creating an Alarm

" If you need to perform timing analysis on aperiodic alarms, then you will have to specify the shortest period in the alarm

declaration.

11-2
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The RTA-OSEK GUI can be used to show a graphical display of the alarms on
each counter. You can see this by selecting the Graphic tab in the Counters
workspace. The visualization shows the alarms that are attached to each

counter. An example of the graphical view is shown in Figure 11:3.

|C0urﬂer1 j ﬂ E E

Alarm editor

Stimnulus1

Stimulus2

Zoom: 1007 Resultant System Period: 12 ticks
System period [V Auto-update
T
wez | (][] [ O O OO OO OO OO OO OO [

1
Stirulus1 :

Stimnulug2

oo 05 10 A LD 40 4 fi a5 100 105 110 115

Schedule Period: 12 ticks  Zoom: 100%  Cursor: 0.000/12.000 ticks

Figure 11:3 - Viewing Alarms on the Counter Graphically

In the graphical view you can manipulate alarms on the counter by dragging
the alarms to new locations.

Stimuli with Multiple Responses Implemented by Tasks

In OSEK you may only activate a single task for each alarm. If you have
multiple responses to a stimulus and the stimulus is implemented using a
alarm then only the highest priority response implementation profile will be
activated when the alarm expires.

Important: It is up to you to make sure that the other responses are
generated by using chained activations of tasks. The RTA-OSEK GUI tells you
that you must use direct activation chains to implement this activation
scheme.

RTA-OSEK v5.0.2 Alarms
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11.1.2 Setting an Event

Each alarm can set an event for a specified task. When an event is set with an
alarm, it has the same properties as it would if it were set using the

SetEvent () APl call. Figure 11:4 shows you how to set an event action for

an alarm.

Arrival Modes |
Agrival Type |
Ayrival Pattern |
Schedule/Counter |
Callback |

Tick Courter/Sched |

Fesp. Modes |
Deadline |
Responze Delay |
Implementation |

Select Stimulus: IStimqus1

10®@ I0@@

Responze: |FResponzel

StimulusfAlarm "Stimulus1®

The arrival is handled in all Apphodes.

The arrival type is periodic.

It has period 5 Counter? ticks (5 real time ms).

This stimulus is implemented as an alarm attached to counter Counterl.

Mo eventis setwhen the alarm expires.

Mo callback function runs when the alarm expires.

MNo Counter or Schedule is incremented when the alarm expires.
Responsa "F LA, el 3

The response is Event

There is no dea

Mexirmurn respo aK I | Cancel I

The response is implemented by Task Task].

Figure 11:4 - Setting an Event Action for an Alarm

11.1.3 Alarm Callbacks

114

Each alarm can have an associated callback function. The callback is simply a
C function that is called when the alarm expires.

Figure 11:5 shows how to configure a callback routine for an alarm.

Alarms
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Select Stimulus: IStimquﬂ j @ @ @ Rezponge: IHesponse‘I j @ @ @

StimulusfAlarm "Stimulus1®

Agrival Modes | The arrival is handled in all AppModes.
Agrival Type | The arrival type is periodic.
Arival Pattern | Ithas period & Counter? ticks (5 real time ms).
Schedule/Counter | This stimulus is implemented as an alarm aftached to counter Counter].
Event Set | Ewvent Eventl:Task? is setwhen the alarm expires.
Ma callback function runs when the alarm expires.
Tick Counter/Sched | Mo Counter ar Schedule is incremented when the alarm expires.

Fresp. Modes | Callback IUserProvided&larmCallback
Deadline
S —

Response Delay |

Implementation | The response is implemented by Task Taskl

Figure 11:5 - Configuring a Callback Routine for an Alarm

Each callback routine must be written using the ALARMCALLBACK () macro,
shown in Code Example 11:1.

ALARMCALLBACK (UserProvidedAlarmCallback) {
/* Callback code. */

Code Example 11:1 - Writing a Callback Routine

Important: Callback routines run at OS level, which means Category 2
interrupts are disabled. You should therefore aim to keep your callback
routines as short as possible to minimize the amount of blocking that your
tasks and ISRs suffer at runtime.

The only RTA-OSEK Component API calls that you can make are the
SuspendAllInterrupts () and ResumeAllInterrupts () calls.

11.1.4 Incrementing a Counter

AUTOSAR OS introduces a fourth action for alarms, to tick a counter, in
addition to the standard OSEK OS options of activating a task setting an event
and/or executing a callback.

Ticking a counter from an alarm allows you to cascade multiple counters from
a single ISR. . A counter ticked from an alarm inherits the period of the alarm.
So, if you have an alarm that expires every 5 milliseconds, you can use the
alarm to drive a second ticked counter that ticks every 5 milliseconds. Figure

11:6 shows you how this is configured in RTA-OSEK.

RTA-OSEK v5.0.2 Alarms
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Select Stimulus: lm @ @ @ Responze: lm @ @ @
Stimulus/Alarm "Stimulus1®
Arrival Modes | The arrival is handled in all Apphodes.
Agrival Type | The arrival type is periodic.
Arival Pattern | lthas period 5 Counterl ticks (b real ime ms).
Schedule/Counter | This stimulus is implemented as an alarm attached to counter Counter].
Event Set | Ewent Eventl:Task? is set when the alarm expires.
Callback. | Callback function 'UserProvidedAlarmCallback! runs when the alarm expires.
MNao Counter or Schedule is incremented when the alarm expires.
Response *F YT 21
Fesp, Modes | Theresponseis | Name
Deadline | There is no dead
Response Delay | Maximum respon oK I | Cancel I
Implementation | The response is MpIEMEmed By | o5k 1askl.

Figure 11:6 - Cascading a ticked counter from an alarm

Let’s now assume that you have an ISR which occurs every millisecond and
ticks Counter1:

#include “MillisecondInterrupt.h”
ISR(MillisecondInterrupt) {
CLEAR_PENDING_INTERRUPT () ;
Tick_Counterl();
/* Every 5 call internally performs
Tick Counter2() */

Cascaded counters must have a tick rate that is an integer multiple of the
counter driving the alarm. You can configure systems with multiple levels of
cascading but you should not introduce cycles.

Important: The timing properties of a cascaded counter are defined in terms
of ticks on the counter to which the stimulus is attached. The earliest counter
in the cascade therefore determines the base tick rate from which all other
counters are defined. If you change the tick rate of the earliest counter then
the entire timing behavior of the application will be scaled accordingly.

11.2 Setting Alarms

Two API calls are provided for setting alarms:

® SetAbsAlarm(AlarmID, Start, Cycle);
Sets the alarm to expire when the counter value next reaches the value
Start. You should be aware that if the counter has just ticked by this
value, it has to ‘wrap around’. This means that when it reaches its
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maximum value it will have to count up again from O until the expiry is
reached.

® SetRelAlarm(AlarmID, Increment, Cycle);
Sets the alarm to expire Increment number of ticks relative to the
time at which you make the call. This means that, Increment is a
tick offset from the current counter tick value.

In these two API calls, a Cycle value of zero ticks indicates that the alarm is a
single-shot alarm, which means that it will expire only once before being
cancelled. A cycle value greater than zero defines a cyclic alarm. This means

that it will continue expiring, at the rate specified, after the first expiry has
occurred.

The RTA-OSEK GUI gives implementation guidelines that specify the cycle
rates for alarms. An example of the implementation guidelines is shown in
Figure 11:7.

L e [ R e e e R T e e

S timul,

Task "Task1" will be activated when alarm "Stimulus!" expires.

Task "Task1" must directly activate task "Task2".

Alarm "Stimulus1” must be started by "SetRelAlarm(Stimulus1 0,57 or "SetAbsAlarm(Stimulus1 05).

Counters

ISR "CounterTick” drives counter "Counter?”.

It must call Tick_Counter()' every 1 real time ms.
It drives alarm "Stirnulus1".

Cat2 ISRs

ISR "CounterTick" must run at priority 1 and respond to interrupts on vector ‘Real time interrupt’.
"CounterTick" must service a single interrupt source and then exit.

"CounterTick” must tick counter "Counter!” every 1 real time ms.

..
#nclude "CounterTick. h"
ISR(CounterTick)
{
serice_interrupt();
Tick_Counter();
}
Tasks
Tacl "TanlI" viime ot wriaribe 1

Figure 11:7 - Implementation Guidelines

11.2.1 Absolute Alarms

An absolute alarm specifies the absolute counter value of the underlying

counter at which the alarm expires. Code Example 11:2 shows how an
absolute single shot alarm can be set.

/* Expire when counter value reaches 42. */
SetAbsAlarm(Alarm3, 42, 0);

Code Example 11:2 - Example Absolute Single Shot Alarm

Code Example 11:2 is illustrated in Figure 11:8.
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*

Counter'
c 42

Figure 11:8 - lllustration of an Absolute Single Shot Alarm

A single shot alarm us useful when you need to program a timeout that waits
for a fixed amount of time and then takes an action if the timeout occurs.

When an absolute alarm specifies a non-zero Cycle value then it will first
expire at the specified start tick and then every Cyc1le ticks thereafter.

/* Expire when counter value reaches 10 and then
every 20 ticks therefafter */
SetAbsAlarm(Alarml, 10, 20);

Code Example 11:3 - Example Absolute Cyclic Alarms

The behavior from the code example is illustrated in Figure 11:9.

‘Alarml first expiry‘ ‘Alarml expires‘ Alarml expires

E EO EO EO EO EO EO Eo Counter

Figure 11:9 - lllustration of the Absolute Cyclic Alarm

For absolute alarms, an absolute start value of zero ticks is treated in the same
way as any other value.

For example, if the current counter value was zero then you would not see
your alarm expire until the MAXALLOWEVALUE+1 number of counter value
ticks had happened. On the other hand, if the counter value was already at
MAXALLOWEDVALUE then you would see the alarm expire on the next tick of
the counter.

Important: Specifying a very small relative increment or an absolute start
value that is very close to the current counter value may cause undesired side
effects. The alarm could go off while the task is still executing.

If the activated task is BCC1 or ECC1 there will be no queued activation and
several task executions could potentially be ‘lost’. You must make sure that
enough time is allowed for the task to complete before the next alarm which
results in a re-trigger of the task occurs.
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Synchronizing an Absolute Periodic Alarms to a Counter Wrap

Setting an alarm to occur periodically at a know synchronization point is
extremely important for real-time systems. However, in OSEK, it is not possible
to set an absolute alarm to occur periodically each time the underlying
counter wraps around.

For example, assume you have a counter that counts in degrees with a
resolution of one degree and you want to activate a task at “top dead
centre”, i.e. on each revolution of the crankshaft. Let’'s assume that the
counter has a modulus of 360 ticks.

What you need to say is SetAbsAlarm(Alarml, 0, 360). This is
forbidden by the OSEK standard because the Cycle parameter cannot be
greater than OSMAXALLOWEDVALUE, which is always the modulus -1 (in this
case 359).

If you need this type of functionality, you must provide code that resets an
absolute single-shot alarm each time the alarm expires.

For example, if Task1 is attached to Alarml, then the body of Task1 will
need reset the alarm when the task is activated as shown in Code Example
11:4.

TASK (Taskl) {

/* Single-shot alarm reset. */
SetAbsAlarm(Alarml, 10, 0);

/* User code. */
TerminateTask () ;

}

Code Example 11:4 - Resetting an Alarm when a Task is Activated

11.2.2 Relative Alarms

Code Example 11:5 shows a relative alarm that expires after 10 ticks and then
every 20 ticks thereafter.

/* Expire after 10 ticks, then every 20 ticks. */
SetRelAlarm(Alarml, 10, 20);

Code Example 11:5 - Relative Cyclic Alarm (with 20 ticks cycle)

In Figure 11:10, you can see how this alarm can be visualized.

‘Alarml first expiry‘ ‘Alarml expires‘ ‘Alarml expires‘

Count >
Bow @ow +1C @ow +30 @ow +50 o
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Figure 11:10 - lllustration of a Relative Cycling Alarm

Semantics of Zero

The OSEK standard does not define the semantics of a zero for Increment
in SetRelAlarm(). By default, RTA-OSEK interprets zero to mean “now +
modulus of the underlying counter”, i.e. now + MAXALLOWEDVALUE + 1
ticks. This means you can set up a relative alarm that can expire on a full
modulus of the counter which is extremely useful if you want to do accurate
interval timing based on a hardware counter.

Code Example 11:6 shows how a single relative alarm is set.

/* Expire after MAXALLOWEDVALUE+ 1 ticks. */
SetRelAlarm (Alarml, 0, 0);

Code Example 11:6 - Setting a Relative Single Alarm

The effect is shown in Figure 11:11.

Alarml expires

—— — —e
Counter

E MAXALLOWEDVALUE

Counter Wraps to C
Figure 11:11 - lllustration of the Alarm in Code Example 11:6

In AUTOSAR OS forbids the use of zero for SetRelAlarm(). If you use zero
for Increment then an E_OS_VALUE error will be returned.

As the AUTOSAR OS limits useful functionality, RTA-OSEK allows users to
choose between these two semantics for zero in Applications -> Optimizations
as shown in Figure 11:12

Optimizationsz mainly affecting size

v Omit 05 Restart The 0% can only be restarted via processar reset,
[ Omit RES_SCHEDLILER RES_SCHEDULER is used.

V¥ Omit InerementCournter) IncrementCounter() can not be called from project cade.

I il SetRelalarm(0) raises eror E_OS_WALUE.

Figure 11:12 - Selecting the semantics for SetRelAlarm(AlarmID,0,x)
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11.2.3 Autostarting Alarms

It is possible to start alarms by calling SetRelAlarm() or SetAbsAlarm()
in the main program. However, the easiest way to set cyclic alarms is to make
them autostarted. Autostarted alarms will be started during Start0s ().

Autostarted alarms can be set on a per application mode basis. When you
create an alarm it is automatically assigned a start time of O ticks. The start
time specifies the time between the counter being started and the first expiry
of the alarm. The start time is used at run-time, but only when alarms are
autostarted.

Figure 11:13 shows how alarms can be set to autostart from the Startup
Modes pane.

Application Select Apphlods: [05DEFALLTAPPMODE ~] (B (D) (@)
@ AppMode "OSDEFAULTAPPMODE"
Sumrmary

(_\ Autostart Tasks There are no autostarted tasks.
@
0S5 Configuration There are no autostaned alarms.

@ Tick Rates 1 Periodic] tick is frorm 1 FlanSched] ticks (1 real time ms) 1o 5 Plan

Startup Modes 1 Plogg
¥ e Select autostarted alarms

@ Alarms:
Timebases

@

Optimizations j

Target

Stiruli

ISRs

Figure 11:13 - Autostarting Alarms

Alarms that are auto started are set internally in RTA-OSEK using absolute
values. At start0s () the underlying counter is set to have an initial count
value of O ticks. As a result of this, you must take care if you use the default
start time of 0 ticks. The Oth tick has already happened when the alarms are
started, so the first expiry of an alarm will not occur until the associated
counter has wrapped around.

Autostarted alarms should be used if you specify that alarms are synchronized.
During start0s(), RTA-OSEK Component will make sure that all
autostarted alarms for a counter are synchronized at startup.

Important: If you specify that your alarms are synchronized and you intend to
perform timing analysis on your application, you must make sure that the start
time is less than the period of the alarm.

11.3 Canceling Alarms

You can cancel an alarm using the CancelAlarm() API call.
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An alarm may, for example, need to be cancelled to stop a particular task
being executed. An alarm can be restarted using the SetAbsAlarm() or the
SetRelAlarm() API call.

11.4 Determining the Next Alarm Expiry

The RTA-OSEK GUI allows you to determine the amount of time remaining
before a particular alarm expires. You can do this, for example, to avoid
setting an absolute alarm when the absolute value has already been reached.

The GetAlarm() API call allows you to get the number of ticks before the
specified alarm expires.

11.5 Synchronization using Alarms

11-12

The safest and easiest way to synchronize alarms is to set a number of
absolute alarms that are linked to the same counter. Using absolute alarms
does not affect the start time. This avoids potential problems with interfering
interrupts.

Synchronizing relative alarms is more complex because intermittent delays,
due to interrupts and preemption, can result in different alarm offsets being
set on startup.

Alarm synchronization can be selected in the RTA-OSEK GUI during the
configuration of a counter. This is shown in Figure 11:14.
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Select counter: IEounteﬂ j @ @ @

Counter "Counterl®

Mo prirmary profile.

Frimary Profile

Activation Type Activation type is ticked.

Tick Bate 1tickis 10 realtime ms.
Units < ho units »

Constants < ho constants ».

Max Walue hax tick value 4294967295,

Min Cucle Min cycle value 1.

Ticks Per Base Ticks perbase 1.

Synchronized Alarms Alarms are not synchronized.

<MNones,

select alarm synchronization e |

i Unsynchronized

Trace Format

ized

Figure 11:14 - Alarm Synchronization

To ensure synchronization between alarms on a counter at run-time, you must
make sure that the alarms are autostarted. If an alarm is cancelled it must also
be reset with a SetAbsAlarm() call.

Important: If alarms are synchronized in the RTA-OSEK GUI this does not
guarantee that the alarms are actually synchronized. It simply informs the
RTA-OSEK Planner that you will guarantee synchronization.

If you intend to build a system for timing analysis, it is better if you can
guarantee synchronization. If synchronization is important, consider using
AUTSOAR schedule tables or RTA-OSEK schedules. Both these mechanisms
guarantee synchronization between tasks and offer a flexible approach to the
design of event-based hard real-time systems. You can find out more about
these approaches later in this guide.

11.6 Aperiodic Alarms

The RTA-OSEK GUI will suggest the implementation that you should use when
you create a series of alarms. The suggestions will show you what you should
do to give the specified timing behavior.

To achieve aperiodic behavior you should use single-shot alarms that are set
to the next expiry value by the activated task.
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In Code Example 11:7, the alarm must expire after 10 ticks, then after a
further 12 ticks. The alarm activates task Task1. The first alarm is autostarted
by RTA-OSEK Component. In Task1 the alarm has to be reset for the next
expiry.

TASK (Taskl) {

SetRelAlarm(Alarml, 12, 0);
/* Rest of task. */

Code Example 11:7 - Aperiodic Alarm Example

If you choose to use this method then you must ensure that the times
specified in the stimulus/response model represent the shortest time between
successive alarm expiries.

11.7 Summary

e Alarms are set on an underlying counter
e You can set multiple alarms on each counter
e FEach alarm specifies an action either:
o activation of a task,
o setting an event,
o execution of a callback
o ticking a ticked counter
e Alarms can be set to expire at an absolute or relative (to now) counter value
e Alarms be autostarted.
e Alarms can treat as synchronized for the purposes of schedulabiltiy analysis
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Schedule Tables

You saw earlier that the OSEK standard provides alarms and counters. They
can be used to construct systems that require recurring task activations.

However, you also saw that alarms are not well suited to systems where you
need to guarantee some separation in time (temporal separation) between
stimuli. While it is possible to build such a system with OSEK'’s alarms, there is
nothing, other than code review, that prevents the timing properties of the
application being accidentally modified at runtime. Furthermore, you saw that
if you wanted to define multiple task activations at a single point in time, you
were forced to create multiple alarms when what you really want to do is to
activate multiple tasks from a single alarm.

AUTOSAR OS addresses the limitations of alarms by providing Schedule
Tables.

Portability: Schedule Tables are a feature of AUTOSAR OS and are not
portable to OSEK OS

A schedule table is associated with exactly one OSEK counter and logically
comprises a set of expiry points separated by delays. Delays are in ticks of
the underlying counter. The schedule table itself may define a period which
defines the number of ticks between successive starts of the schedule table.

Perioc

| Delay I Delay | Delay I Delay |: Delta —>

xplry Point - xplry Point 2 xplry Point 3 xplry Point 4 xplry Point 5

Figure 12:1 - Visualizing a Schedule Tables

The difference between the sum of the inter-expiry point delays and the
period (when defined) is called the delta.

An expiry point is similar to an alarm in that it indicates a point in time at
which RTA-OSEK needs to take some action. The difference between expiry
points and alarms is what actions can be taken as shown in the following
table.

Action Alarm Expiry Point
ActivateTask Yes - 1 Task Yes — N Tasks
SetEvent Yes — 1 Event Yes — N Events
Callback Yes No
Increment Counter Yes No

RTA-OSEK v5.0.2 Schedule Tables
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12.1

Portability: RTA-OSEK allows an expiry point to make multiple callbacks and
increment multiple counters. This is not part of the AUTOSAR OS standard
and is not necessarily portable across other implementations.

Configuring a Schedule Table

Each schedule table is driven by an OSEK counter. The counter provides the
schedule table with a tick source. You can use the same counter to drive
multiple schedule tables. However, at runtime you can only have one schedule
table per counter in the running state at any point in time.

You may choose to share a counter between schedule tables and any number
of alarms.

Each schedule table must define a period. When the period is greater than
zero, the schedule table will repeat at the specified period. A period of zero is
interpreted as “single-shot”. This means that the schedule will stop after the
final expiry point is processed. Single-shot schedule tables are useful when
you want to start a phased sequence of actions, for example when building
closed-loop control systems.

Figure 12:2 shows the configuration of a schedule table called Table.

Application Select ScheduleT able: ITable ﬂ @ @ @
vorpe ScheduleTable *Table"
Stirnuli
@ LCounter | Driven by Counterl.
Summary Perind | Period 100 Counter? ficks.
@ Synchnonization | Mot synchronized.
Stimuli
Stimuli
@
Counters Change Offsets | The ScheduleTahle schedule does not contain any stimuli.
@
ScheduleTahles

Figure 12:2 - Schedule Table Configuration

12.2 Configuring Expiry Points

12-2

Expiry points in RTA-OSEK, like alarms, are not declared directly. You must
first define your stimuli and associated response (or responses).

Stimuli that plan to implement using a schedule table must have a periodic
arrival pattern. You do not need to specify the arrival rate — this will be
determined from the schedule table period when you the stimulus is attached

Figure 12:3 shows how to attach the stimulus to the schedule table.

Schedule Tables
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Select counter or schedule d |

Select ScheduleTable | Table = & gddl
oK Cancel |

Figure 12:3 - Attaching a Stimulus to a Schedule Table

The response to the stimulus becomes the action performed on the expiry
point. It is also possible to specify that a stimulus activates a task, sets an
event, executes a callback routine and increments a ticked counter. All of
these actions will be attached to the expiry point.

Important: If you want an expiry point action to occur multiple times on the
same schedule table then you must specify multiple stimuli that have the same
response. As a result of this, in general you will not be able to perform
schedulability analysis on systems that contain schedule tables.

12.2.1 Setting Offsets

Each stimulus you attach to a schedule table occurs exactly once. By default,
the stimulus will occur at offset zero from the logical start of the schedule
table. You can plan where stimuli appear on the schedule table by using
offsets.

An offset sets count on the schedule table at which the stimulus happens.
Thus, the offset specifies when actions happen on the schedule table. Each
stimulus on the schedule table can be given an offset in the range 0 to Peroid-

1. Figure 12:4 shows how to specify offsets.

Task Offset
Stimulus2 0 Counterl ™ ||ticks i
StimulusT £ Counterl jl ticks j Ceroa] |
Stimulus3 3 Counter] jlticks j —
Bl Stimulusd 9 Counterl *||ticks =]

Figure 12:4 - Specifying Stimulus Offsets

The expiry points on the table are defined as the set non-empty set of stimuli
that happen at the same offset. In Figure 12:4 there are 3 expiry points:
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1. Expiry Point 1: Stimulus2
2. Expiry Point 2: Stimuli 1 and 3
3. Expiry Point 3: Stimuli 4

This is illustrated in Figure 12:5.

Expiry Point 1
Stimulus2: ActivateTask(B) ; Callback(MyFunction)
—3 Expiry Point 2
Stimulus1: ActivateTask(A) ; SetEvent(B,X)
Stimulus3: ActivateTask(C) ; IncrementCounter(Counter1)

—9
Expiry Point 3
Stimulus4: ActivateTask(A) ; Callback(MyOtherFunction);

Figure 12:5 - Using Offsets

There is no constraint on placing an expiry point at notional time zero — all
offsets may be greater than zero is required.

Important: If two stimuli have responses that do the same action then the
when the expiry point is processed the action will occur multiple times. This
might be useful when you want to activate a task multiple times. While an
event will be set multiple times, the event mechanism of OSEK means only
one SetEvent () will be registered. You should exercise caution where a
callback is executed multiple times at the same expiry point because a callback
runs at OS level and will block the whole system. Similarly, incrementing a
counter multiple times at one expiry point should be avoided.

12.3 Starting Schedule Tables

12-4

The StartScheduleTable (ScheduleTableID, Offset) APl call is
used to start a schedule table.

The offset parameter of the StartScheduleTable () call specifies the
relative number of ticks from now at which the RTA-OSEK will process the
first expiry point and can be zero.

/* Start Tablel 20 ticks from now */
StartScheduleTable (Tablel, 20);

Code Example 12:1 - Starting Schedule Tables

Portability: RTA-OSEK interprets Of fset zero to means “on the next tick”.
This means that when you specify an offset of N then the schedule table
will process its first expiry point on the N+1th tick. As the exact behavior is not
specified by the AUTOSAR OS v1.0 standard other implementations may
differ.
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Important: If you create a schedule table where all initial offsets are non-zero
then any leading offset on the schedule table will be overridden by the call to
StartScheduleTable ().

Unlike alarms and RTA-OSEK schedules, it is not possible to start a schedule
table automatically during startup. To achieve the same effect, you should
normally start a schedule table in the startupHook ().

Important: You must make sure that the Offset value that is passed to
StartScheduleTable () is sufficiently long, so that it has not already
expired before the call returns. For schedule tables that are driven by a ticked
counter the counter will default to zero at startup, so
StartScheduleTable (Table, N) will process the next expiry point after
N ticks of the underlying counter.

12.4 Stopping Schedules

A schedule table with period equal to zero (i.e. a single shot schedule table)
will stop automatically immediately after RTA-OSEK has processed the final
expiry point.

Periodic schedule tables will run until the table is switched (see Section 12.5)
or until you call StopScheduleTable (SchedulelD).

12.4.1 Restarting Schedule Tables

A schedule table which is stopped can be started by calling
StartScheduleTable (). A schedule table is always restarted at the first
expiry point.

12.5 Switching Schedule Tables

You can switch from one schedule table to another at runtime using the
NextScheduleTable () APl call. The switch between schedule tables
always occurs at the notional end of the table.

For a single shot schedule table the notional end of the table is immediately
after the final expiry point is processed.

For a periodic schedule table, the notional end of the table is defined by the
Period.

The following code shows how the API call is made:

/* Start New after Current has finished */
NextScheduleTable (Current, Next);
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The delay between the last expiry point on Current and the first expiry point
on Next is equal to

Delay = Delta(Current) + OffsetToFirstExpiryPoint(Next)
When the Current schedule table is single shot and the Next has an expiry
point at offset zero the first expiry point on Next will be processed on the
next tick of the underlying counter.
If you make multiple calls to NextScheduleTable () while Current is

running then the Next table that runs will be the one you specified in your
most recent call.

12.6 Schedule Table Status

12.7

You «can query the state of a schedule table wusing the
GetScheduleTableStatus () APl call. The call returns the status through
an out parameter.

ScheduleTableStatusType State;

GetScheduleTableStatus (Table, &State);

The status will be either:

e SCHEDULETABLE_NOT_STARTED if the table is not started and has is
not the most recent Next parameter to a NextScheduleTable ()
call

e SCHEDULE_TABLE_ASYNCHRONOUS if the schedule table is started.

Summary

12-6

Schedules tables provide a way of planning a series of actions statically at
configuration time

A schedule table is associated with exactly one OSEK counter, may specify a
period, and contains one or more expiry points

Expiry points in RTA-OSEK are created implicitly by specifying offsets for
stimuli implemented on a schedule table

Schedules tables started with the StartScheduleTable () always start
processing at the first expiry point.

You can switch between schedule tables, but only at the notional end of the
table.
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13 Schedules

You saw earlier that the OSEK standard provides alarms and counters. They
can be used to construct systems that require recurring task activations.
AUTOSAR OS provides schedule tables that allow sets of actions ot be
controlled as a composite object.

In addition to these schemes, RTA-OSEK also provides schedules. Schedules
provide more flexibility counter/alarms and AUTOSAR Schedule Tables.

Portability: Schedules are provided by RTA-OSEK for building and controlling
complex systems. Schedules are not part of the OSEK OS standard.

13.1 Using Schedules

If you use schedules, you can configure systems where multiple tasks can be
released at a single point in time (rather than having to specify multiple
alarms). You can also change the relative times between task activations,
whilst retaining synchronization across the whole schedule.

13.1.1 Types of Schedules

There are two types of schedule:

e Periodic.
A periodic schedule allows you to implement periodic stimuli.
e Planned.

A planned schedule allows you to implement aperiodic stimuli.

Planned schedules provide much more flexibility than periodic schedules. You
can switch in and switch out of sections of the schedule at run-time and
specify that the whole schedule is single-shot (to allow for the phased release
of a number of sequences of tasks, for example).

13.1.2 Arrivalpoints

Periodic and planned schedules consist of a series of arrivalpoints and a set
of state variables. When a schedule reaches an arrivalpoint it is said to have
arrived.

The arrivalpoints for a periodic schedule are implicit. They are automatically
generated by RTA-OSEK and used internally by RTA-OSEK Component. For
planned schedules, however, you must configure the arrivalpoints yourself.
Arrivalpoints are similar to alarms. They are used to implement stimuli in the
system; however, arrivalpoints differ from alarms in a number of ways:

e An arrivalpoint can implement multiple stimuli (i.e. dispatch multiple
tasks).

e When a stimulus generates multiple responses, RTA-OSEK Component
manages the activation of multiple tasks to generate the responses.
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This means that you don’'t need to implement the chained task
activation that is required when using the counter/alarm mechanism.

e Arrivalpoints cannot set events or make callbacks.
Arrivalpoints have the following properties:

e A set of stimuli to trigger on arrival.

e A delay until the next arrivalpoint occurs.

e Anext arrivalpoint.

e A set of analysis attributes.

For each stimulus associated with an arrivalpoint, the responses triggered by
the stimulus will be released on arrival. The responses to the stimulus must be
generated by tasks. At run-time, RTA-OSEK Component will simultaneously
release all the tasks associated with all the stimuli on an arrivalpoint.

When a stimulus is attached to an arrivalpoint, the arrivalpoint becomes the
implementation of the stimulus at run-time. The associated responses are the
tasks that are released simultaneously on arrival.

The schedule records four status variables in addition to the arrivalpoints:

® State.
Records whether the schedule is running or stopped.
® Next.

Records which arrivalpoint will be processed next.

e Now.
Holds the current value of the schedule tick.

® Match.
Holds the tick value at which the next arrivalpoint will be processed.

STATE: Running NEXT: AP2 NOW: 3780 MATCH: 4000

Arrivalpoint: AP Arrivalpoint: AP2 Arrivalpoint: APZ

Figure 13-1 — Anatomy of a Schedule
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13.1.3 Ticked and Advanced Schedules

Schedules can be either:

e Ticked.
Ticking a schedule is similar to ticking a counter. The schedule
maintains an internal count of the number of ticks that have elapsed.
It processes the arrivalpoint when the counter value reaches the
match value.

e Advanced.
An advanced schedule allows the counter-compare hardware to be
exploited on the target hardware. It generates an interrupt to tell the
schedule that it must process the next arrivalpoint immediately. This
minimizes the number of tick interrupts that will need to be handled.
When an advanced schedule is used, an interrupt will only occur when
an arrivalpoint needs to be processed.
When you use a ticked or an advanced schedule, you are responsible for
providing the driver. For a ticked schedule the driver will simply be a periodic
interrupt. For an advanced schedule a series of callback routines need to be
provided so that RTA-OSEK Component can manage the counter-compare
hardware. You can find out more about callback functions in Section 13.5.1.

13.2 Configuring Periodic Schedules

Periodic schedules are declared using the RTA-OSEK GUI. Each schedule must
have a unigue name and a specified tick rate (that can be different in every

application mode). You can see from Figure 13-2 how a periodic schedule is
declared.

Application Select periodic:  |{RE [T e} @ @ @

Vel Periodic "Periodicl”
Stirnuli
@ Frimary Frofile ‘ Mo primary profile.
@
Summary Activation Type ‘ Activation type is ticked (not autostarted).
@ Tick Rate ‘ 1tickis 1 processor cycles.
Stirmuli ]
Uitz ‘ < nounits >
Counters Constants ‘ < ho constants ».
@ ‘ M tick value BE535
Periodic Schedules Shimuli
@ ‘ The periodic schedule does not cantain any stimuli.
Planned Schedules

Figure 13-2 - Configuring a Periodic Schedule

A schedule is driven by a primary profile. In your application, this primary
profile will usually be an ISR. By default, all periodic schedules are configured
as ticked (remember that schedules can be either ticked or advanced). If you
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want to change the schedule to be advanced, have a look at Section 13.5 for
more information.

Important: The intended behavior of a schedule will only occur if the arrival
pattern of the primary profile can be achieved within the resolution of a
schedule tick. If you specify an arrival pattern outside the resolution of your
schedule, the arrival rate is rounded up to the next arrival pattern achievable
with the specified tick rate resolution.

13.2.1 Creating Arrivalpoints

Periodic schedules are built by attaching a periodic stimulus to a periodic
schedule. Figure 13-3 shows you how to do this.

Select Shmulus: |Stimulus‘| ﬂ @ @ @ Response: |resp0nse1 j @ @ @

Stimulus "Stimulus1®
Arival Modes | The arrival is handled in all AppModes.
Arival Type | The arrival type is periodic.
Arrival Pattem | It has no period defined.
Schedule/Counter | This stimulus is not attached to a counter or schedule.
F=rY Select counter or schedule
Counter Periodic schedule
Fesp Modes | The
Deadine | Ther Select Scheduls |(EERLE
Response Delay | Mini delay 0 processor cycles.
Implementation | M ath e

Figure 13-3 - Attaching a Periodic Stimulus to a Periodic Schedule

Attaching a stimulus to the schedule creates an implicit arrivalpoint that can
be used by RTA-OSEK at run-time. The arrivalpoint will release all tasks
required to generate the responses for the stimuli that it implements on
arrival.

The period of the arrivalpoint is taken from the period specified in the
stimulus arrival pattern, but is presented in terms of ticks of the schedule.

If, for example, a 20ms stimulus is defined and a tick rate of 1 tick in 5ms is
specified, the stimulus will have a schedule period of 4 schedule ticks. This is
shown in Figure 13-4.
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Select Stimulus: |Stimulus1 j @ @ @ Response: |responsel

Stimulus "Stimulus1®

Enter the period

Arival Modes | The arrival is handled in all Apptodes.
Agrival Type | The arrival type is periodic.
Arrival Pattern |

Schedule/Counter

|4 | Periadicl ﬂl ticks ﬂ
|
Deadine | There is no deadline.
Elacnmmea Malan | kdinimmnm reacsnnnze Aelaw N nrncassar merlas mavimom resnnnes dalaws

Figure 13-4 - Specifying a Periodic Arrival Pattern

Important: The intended behavior of a schedule will only occur if the arrival
pattern of the stimulus can be achieved within the resolution of a schedule
tick. If you specify an arrival pattern outside the resolution of your schedule,
the arrival rate is rounded up to the next arrival pattern achievable with the
specified tick rate resolution.

13.2.2 Visualizing Periodic Schedules

Schedules can be viewed graphically in RTA-OSEK. You can see this by
selecting the Graphic tab in the Periodic Schedule workspace. The graphical
view will only be available if execution times have been specified for your
tasks and ISRs implementing the responses for the stimuli involved.

The visualization will show the arrival of stimuli on the schedule and the
primary profile. However, it will not show execution times for stimuli
responses, unless you have specified execution profiles.

In Figure 13-5 there are three stimuli, Stimulus1, Stimulus2 and Stimulus3
with periods of 5ms, 10ms and 20ms respectively. These have been attached
to a periodic schedule that has a tick rate of 1 tick in 5ms.
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w Select periodic: ’m @ @ @

Target

Stimuli editor
Stimuli

— Erimary Profile Stirmulus1

@
Sumrary Activation Tupe Stimulus3 j
@ % Stimuls? S

Stirmuli

Units 00 03 04 06 D8 10 12 14 16 30 23 24 16 28 30 32 34 36 33
@ ticks (1 tick iz 5 real time ms)
Counters Copstants
O ‘ Zoom: 100% Resultant Spstem Penod: 4 ticks
@
Periodic Schedules System period [V Auto-update

T
1 Primary profile has not been set
i

@)
O Change Offsets
Flanned Schedules

Stimulus1
ISRs )
Stimulus3
Tasks
Stimulus2
Resources

00 02 D4 DG 03 10 12 1.4 16 18 32X 24 28 I8 3.0 32 34 36 33
Events
ComM Scheduls Period: 4 ticks  Zoom: 100%  Cursor: 0.000/4.000 ticks
[ anatee “Tewt | Graphic

W Blanner [§7 guider | ¥ RTA-TRACE |

Figure 13-5 - A Graphical Representation of a Periodic Schedule

13.2.3 Editing Periods

To change the period for a stimulus on a periodic schedule, you can modify
the stimulus arrival pattern in the Stimulus dialog. You can, however, also do
this using the Stimuli Editor on the Graphic tab in the Periodic Schedule
workspace. The period must be an integer multiple of the schedule tick rate.

Each Stimulus in the Stimuli Editor has a bounding box indicating its period —
the right-hand end of this box can be dragged left and right to shorten/extend
the stimulus period. Once the period has been changed, the System Period
area updates to show the new pattern of execution.

13.2.4 Editing Offsets

The behavior within a schedule is constrained. Following the construction of a
schedule, you know which tasks will execute at specific times, relative to the
schedule itself.

This fact can be exploited in periodic schedules by using offsets. Offsets allow
you to offset the release of a particular arrivalpoint. The amount of
interference and/or blocking suffered by tasks released from other
arrivalpoints is, therefore, minimized.

It is also possible to apply an offset to each stimulus (at least one stimulus
must have an offset of zero) to even out processor load — in the above
example, we see all three stimuli being triggered at time zero; by offsetting
stimulus3 by 1 tick, we can ensure that no more than two stimuli occur
simultaneously. This may help when confronted with an ‘unschedulable’
system.

Offsets must be less than the period of the associated stimulus and at least
one stimulus in the schedule must have an offset of zero.
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Let's look at Figure 13-6. Viewing the schedule graphically, using the
visualization that you learnt about in Sections 13.2.2 and 13.3.4, you can see
that Task3 is released at the same time as Task1l and Task?2.

Select periodic: |Periodic1 ﬂ

Stimuli editor

‘ Shimulus1 ! |
e |
Tick Rate ‘ Stimulus2 _ ‘

Erimary Profile

Activation Tupe

Urits 5 6 7 a

ticks (1 tick is 1 PlanSched1 ticks)

Constants

Zoom: 25% Resultant System Period: 8 ticks

System period [V Autoupdate

T
1 Primary profile has not beer set
1

Change Qffzets |

Shimulus1
Shimulus3

Stimulus2

Schedule Period: 8ticks  Zoorn: 100% Curzor: 0.000/8.000 ticks

Figure 13-6 - Using Periodic Offsets

The tasks that are released as a result of Stimulus3 do not get access to the
CPU until up to 3ms after release. Once running, they are preempted by a
subsequent arrival of stimulusl. So, Figure 13-6 shows that there is a
timeframe during which no tasks on this schedule are running. You can see
here that the timeframe is longer than the execution time of St imulus3.

By offsetting the release of Task3 by 5ms (by dragging the left-hand side of
the task along to the offset you require), you can remove preemption on the
schedule and shorten the response time for the task itself. The effect of
modifying the offset is shown in Figure 13-7.
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Select periodic: |Periodic1 j

Stimuli editor

Brimary Profile Stirnuluz1

Activation Type Stimuluz3

Urits

Constants

Tick Bate | Stimulis2
| Zoom: 25 Resultant Syztem Period: 8 ticks

System period v Auto-update

T
1 Primary profile has not been set
1

Change Offsets |

Stimulus1
Stimuluz3

Stimulus2

Schedule Period: 8 ticks  Zoom: 100%  Cursor: 0.0008.000 ticks

Figure 13-7 - Changing the Offset

Note that other task activations in your application might mean that this
offset, while better for this single schedule, actually results in a worse
performance overall. You can check whether this is the case using timing
analysis.

13.2.5 Schedule/Arrivalpoint Tradeoffs

When stimuli are added to a periodic schedule, RTA-OSEK creates implicit
arrivalpoints. These arrivalpoints are used by RTA-OSEK Component at run-
time to give the specified timing behavior.

Any number of periodic rates can be attached to a periodic schedule and the
rates do not need to be harmonic. RTA-OSEK will automatically create the
necessary arrival points to create the behavior you need. However, the
number of arrivalpoints can be quite large.

For example, assume you create a periodic schedule and attach stimuli with
periodic rates of 8ms, 13ms, 16ms, 32ms and 1024ms. The calculation of the
number of arrival points is then:

Least common multiple =13x1024
= 13312
Arrivalpoints per lowest non-harmonic rate = 13313/8 + 13312/13
= 2688
Coincident arrivalpoints for non-harmonic periods = 13312/(8x13)
=128
Total arrivalpoints = 2688-128
= 2560
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This means RTA-OSEK would need to create 2560 arrivalpoints. As each
arrivalpoint consumes memory, this particular configuration would be very
wasteful. As an alternative, you could declare two schedules, one for the
1024ms stimulus and one for the remaining stimuli. This solution would
require 80+1 = 81 arrivalpoints.

An even better way to do this is to declare a third schedule for the stimulus
with the 13ms period. This solution would require 4 + 1 + 1 = 6 arrivalpoints
in total.

Important: The exact number of arrivalpoints that are generated for a given
number of stimuli will also depend upon the offsets between the stimuli.

13.3 Configuring Planned Schedules

Systems where the stimuli occur aperiodically can be built using planned
schedules.

Each schedule must have a unique name and a specified tick rate. You can see
from Figure 13-8 how a planned schedule can be configured.

w Select plan ’W‘ ® @ @

TEER Planned *PlanSched1*
Stimuli

@ Prirnary Prafile Driven by primary profile timerl 5B,
@
summary Activation Type Activation fype is ticked (not autostarted).
@ Tick Rate Ttickis 1 realtime ms
Stimuli .
LUnits < hounits >,

Counters % < no constants >
@ e | |Mextickvalue B8535

Periodic Schedules

@

Flanned Schedules

Stimuli and Arrival Points

il | Arival point PlanSched] apl has delay to next arrival & PlanSched] ticks (5 real time ms).
= | Arrival point PlanSched] ap? has delay to next arrival 5 FlanSched? ticks (5 real ime ms).
Arrival point PlanSchedl apd has delay to next arrival 10 PlanSched] ficks (10 real time ms).

IERS

Figure 13-8 - Configuring a Planned Schedule

A schedule is driven by a primary profile. The primary profile is usually an ISR
in your application. By default, all planned schedules are configured as ticked.
You learnt earlier that schedules could be either ticked or advanced. If you
want to change the schedule to be advanced, you can find out how to do this

in Section 13.5.

13.3.1 Associating Stimuli with a Planned Schedule

When a periodic schedule is built, the stimulus period is used as a specification
of the occurrence of the stimuli. For example, a 20ms period implies that a
stimulus occurs at Oms, 20ms, 40ms ... and so on.

With a planned schedule, a full specification of the arrivals of planned stimuli
must be provided (this is why planned stimuli do not have arrival patterns
defined in the Stimulus workspace in the same way as periodic stimuli).
Timing information is only associated with planned stimuli.
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When building a planned schedule you must:

e Attach planned stimuli to the planned schedule.
This tells RTA-OSEK which stimuli are implemented by the schedule

e Specify which stimuli are attached to which arrivalpoints.

This tells RTA-OSEK when the stimuli occur.
Figure 13-9 shows how planned stimuli are attached to a planned schedule.

Application
Target
Stimuli

@
Summary
@
Stimuli
@

Counters

@
Feriadic Schedules

@

Planned Schedules

13.3.2

Select Stimulus: | Shmulus3 = @ @ @

Arival Modes
Ayrival Type

Resp. Modes
Deadine
Response Delay
Implementation

Responze: |responsel hd @ @ @

Stimulus "Stimulus3®
The arrival is handled in all AppModes

The arrival type is planned.

BEE: seiect schedule

Select schedule |PlanSched] - @ Add

Aeq Ha
Ther

Ther

Mini | 0l | | LCancel |

The response is implemented by task Taskd.

delay 0 processar oycles.

Figure 13-9 - Attaching Planned Stimuli to a Planned Schedule

Creating Arrivalpoints

Each planned schedule has a single plan that contains a set of arrivalpoints.
You should use the plan to specify when the stimuli occur. Each arrivalpoint
can contain multiple stimuli and the same stimulus can be attached to more
than one arrivalpoint.

Figure 13-10 shows how arrivalpoints are configured.
Select plan: ’W‘ @ @ @

Application
Target
Stimuli

@

Summary

@

Stimuli

@

Counters

@

Periodic S.chedules
@
Planned Schedules
ISRs
Tasks
Resources
Events

Ciom

Frimary Profile
Activation Tupe
Tick Bate
Units
Constants
L dae

Arrival Points

FlanSchedl_apl -

Select arnival point

Implementation details

[Plansched! - |[ticks |

Delay to next |5

Beadwite [

Analysiz overides

|PIanSched1 jl ticks j
Next crone>

Tasks

Delay to next |1

Auto-betivated Indirectly-tictivated

Stirnulus 1
Bl S timulus2

Stimulusz

Stirnulus3 Stirmulug3

Append ‘

Fename

Femove ms).
ms).
e ms).

Figure 13-10 - Configuring Arrivalpoints

Each arrivalpoint has:

e A unique name.
e A delay to the next arrivalpoint.
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e A set of stimuli that will be triggered on arrival.

For each arrivalpoint you can set the analysis overrides. This is used in timing
analysis only.

A plan is created by entering a sequence of arrivalpoints that must be
specified at run-time. Configuration of schedules in RTA-OSEK can be
compared with creating a linked-list. Arrivalpoints can be inserted into the
schedules or appended to the schedule.

RTA-OSEK processes arrivalpoints in the order that they are listed. This
ordering can be viewed in the workspace.

You can use the dialog in Figure 13-10 to insert arrivalpoints before the
selected point or to append them to the end of the list.

A schedule is single-shot if the repeat arrivalpoint is not selected. This means
that when the schedule is started it will run to completion then stop. You will
find this useful for creating phased sequences of internal stimuli that can be
released in response to some sporadic external stimulus (for example, a real-
world interrupt).

Planned schedules can be created with loops. . The next attribute of the final
arrivalpoint in the list can be set to ‘point’ to any earlier arrivalpoint. To do this
a repeat arrivalpoint must be specified.

The default minimum delay between arrivalpoints is 1 schedule tick. For most
applications this default will need to be modified. For a single-shot periodic
schedule, the delay for the final arrivalpoint in the list does not matter.

13.3.3 Attaching Stimuli to Arrivalpoints

Stimuli that must be triggered on arrival are said to be auto-activated. These
stimuli are selected from the set of available stimuli attached to your schedule.
Any number of stimuli can be attached to an arrivalpoint and the same
stimulus can be attached to more than one arrivalpoint in your schedule. All
stimuli that are attached to your schedule must be attached to at least one
arrivalpoint.

In the following example there are 2 stimuli, Stimulus1 and Stimulus2, with
the following required arrivals:

e Stimulusl mustrunatO, 5, 20, 25, 40, 45ms ... and so on.
e Stimulus2 must run every 10ms periodically.

This system can be implemented using a planned schedule with 3
arrivalpoints.

The arrivalpoints are:

e apl auto-activates Stimulus1 and Stimulus2 and has a 5ms delay to
ap?2.

e ap2 auto-activates Stimulus1 and has a 5ms delay to ap3.
® ap3 auto-activates Stimulus2 and has a 10ms delay to ap1.

Figure 13-11 shows how the Planned Schedule workspace will look once the
plan has been entered.
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Application Select plan: | PlanSchedl hd
eIt Planned "PlanSchedl”
Stimuli
@ Primary Profile Driven by primary profile tirmetl SR
@
Summary Activation Type Activation type is ticked (hot autostarted).
@ Tick Rate 1tick is 1 real time ms.
Stimuli
Units < No units >,
®
Counters Constants <no constants >,
@ Max tick walue 65535
Il e Stimuli and Arrival Points
@ Arrival point PlanSchedl apl has delay to next arrival b FlanSched ticks (5 real time ms)
Planned Schedules Arrival point PlanSched] ap2 has delay to next arrival & PlanSched? ticks (6 realtime ms).
15Rs Arrival point PlanSched] apd has delay to next arrival 10 PlanSched? ticks (10 realtime ms).

Figure 13-11 - Attaching Stimuli to Arrivalpoints

13.3.4 Visualizing Planned Schedules

When you have created a plan for a planned schedule you can then view it
graphically. This visualization shows stimuli and arrivalpoints. It also shows the
execution time information for tasks and ISRs, if this has been specified.

The visualization of the schedule can be seen on the Graphic tab in the

Planned Schedule workspace, shown in Figure 13-12. The graphical view
shows the arrival of stimuli on the schedule and the primary profile.

Schedule Period: 20ticks  Zoom: 100%  Cursor 0.562/20.000 ticks

F'IanSched1_ap2|

F'IanSched1_a|:u3|

Plars chedl_ap1]
T

timerl SR F'rlimary profile execution fme has not been set

Shirmulus1 -

Stirulus2 -

Stimulus3 _

. Auto-Activated

11

ick is 1 real time ms)

E Indirectly-dctivated

13-12

Text  Graphic

Figure 13-12 - A Graphical Representation of a Planned Schedule
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13.3.5 Editing Plans

The planned schedule plan can be edited graphically on the Graphic tab in the
Planned Schedule workspace. Moving the mouse over the arrivalpoint, a
tooltip appears showing the current delay for the arrivalpoint.

Delays can be changed by dragging the arrivalpoint’s time indicator (the
vertical bar) left or right. The repeat properties of a planned schedule can also
be changed by right-clicking on the arrivalpoint which is to be the start of the
repeated sequence, and selecting ‘Repeat Arrivalpoint’.

13.4 Ticking Schedules

When a schedule is used in an application you must drive the schedule by
providing a tick source. There is no restriction on how a schedule is ticked,
but Category 2 ISRs are generally used.

When RTA-OSEK is wused to build your application the APl call
TickSchedule_<ScheduleID> is created automatically for each ticked
schedule that has been defined. This API call must be made whenever it is
necessary to tick the schedule.

If, for example, Schedulel and Schedule2 are both defined in your
application as ticked schedules, then RTA-OSEK will generate the following
API calls:

TickSchedule_Schedulel ()
TickSchedule_Schedule2 ()

Code Example 13:1 - TickSchedule() API Calls Generated by RT-OSEK

The interrupt handler that you provide to tick the schedule must call this API.

Have a look at Code Example 13:2 to see how a ticked schedule driver is

written.

ISR(ISR1) {
ServicelInterrupt () ;
TickSchedule_Schedulel () ;

}

Code Example 13:2 - Writing a Ticked Schedule Driver
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Figure 13-13 - Ticked Activation Operationl

13.4.1 Autostarting Ticked Schedules

Ticked schedules can be configured to autostart a specified number of ticks
after start0s () returns.

To start the schedule immediately it should be set to autostart after 1 tick. In
this case, the first arrivalpoint will be processed on the next call to
TickSchedule_<ScheduleID>. A schedule will always start at the first
arrivalpoint.

Figure 13-14 shows how a schedule is set to autostart.
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Figure 13-14 - Autostarting a Schedule

13.5 Advancing Schedules

So far you have looked at ticked schedules, which are useful when arrivalpoint
delays have a coarse resolution. The internal counter that RTA-OSEK
Component uses to log the current count value has a resolution limited by the
size of @ TickType. You can see the size of a TickType in the Target
Details in the RTA-OSEK GUI.

If a tick is 1ms, the longest delay that can be specified with a 16-bit
TickType is 65.535 seconds. If a tick is 1us, then the longest delay is 65.535
milliseconds.

If you use a ticked schedule you might have to trade off resolution against
range. Advanced schedules provide a possible solution to this problem. They
allow you to use counter-compare hardware on your target to achieve long
ranges at fine resolution”.

Figure 13-15 shows how an advanced schedule operates.

" The scope for doing this depends on the configuration of your target hardware.
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Figure 13-15 - Advanced Activation Operation

In an advanced schedule, an interrupt is only generated when an arrivalpoint
needs to be processed. For example, if a schedule has arrivalpoints at 0, 3 and
7ms and the schedule tick rate is 1ms, then the system is suffering
interference from 8 interrupts if the schedule is ticked.

If the schedule is advanced, you will only receive an interrupt for each of the 3
arrivalpoints, reducing the interference from the interrupt by over 50%. This
allows you to reduce the amount of interference that your application will
suffer due to schedule driver interrupts.

Figure 13-16 and Figure 13-17 show the relative effect of this in visualizations

for the ticked and advanced version of this schedule. Figure 13-16 shows a
graphical view of the ticked schedule.

Schedule Period: 10ticks  Zoorm: 100%  Cursor: 0.000/10.000 ticks

FlanSchedl_ap3
1 [

PlanSchedl_apl

timerl 5F

Stimulug
Stimulus2

Stimulus3

9.4 100

Figure 13-16 - Ticked Schedule Graphical View

Figure 13-17 shows the advanced version of this schedule. You can see here
how the amount of interference has been reduced.
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Figure 13-17 - Advanced Schedule Graphical View

13.5.1 Advanced Schedule Driver Callbacks

For an advanced schedule, RTA-OSEK Component needs to access the
counter-compare hardware, so that the next expiry time can be processed.
You will need to provide functions that RTA-OSEK Component can use to
control this hardware.

Four callback functions must be provided for each advanced schedule.
These are:

® Set_<SchedulelID>
Sets up the counter compare hardware. The function prototype is:
OS_CALLBACK (void) Set_<SchedulelID> (TickType
Match) ;

® State_<SchedulelID>
Returns the status of the schedule and the time that the schedule next
expires.
The function prototype is:
OS_CALLBACK (void) State_<ScheduleID>
(ScheduleStatusRefType State);

® Now_ <ScheduleID>
Returns the current value of the counter. The function prototype is:
OS_CALLBACK (TickType) Now_<SchedulelID> (void) ;

® Cancel_<ScheduleID>.
Cancels any outstanding counter expiry. The function prototype is:
OS_CALLBACK (void) Cancel_<SchedulelID> (void) ;

The first three of these functions correspond to three of the schedule state
variables. The cancel function provides a handle for RTA-OSEK Component to
stop the counter. With an advanced schedule this information is maintained
by the counter-compare hardware rather than by RTA-OSEK Component.
Further information on the Advanced Schedule Driver Interface can be found
in the RTA-OSEK Reference Guide.
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13.6 Starting Schedules

Schedules are started using the StartSchedule(SchedulelD,
TickType) APl call. Schedules are normally started in 0S_MAIN, but they
can be started anywhere in the application.

The TickType parameter of the StartSchedule() call specifies the
absolute time at which the schedule will process the first arrivalpoint. In other
words, it sets the match value for the first arrivalpoint on the schedule. Code

Example 13:3 shows how two schedules can be started.

StartSchedule (PeriodicSchedulel, 20);
StartSchedule (PlannedSchedulel, 200);

Code Example 13:3 - Starting Schedules

In the first case the PeriodicSchedulel is started when its internal
counter reaches the value 20. In the second case the PlannedSchedulel is
started when its internal counter reaches the value 200.

Important: You must make sure that the match value that is passed to
StartSchedule () is sufficiently long, so that it has not already expired
before the call returns.

13.6.1 Restarting Single-Shot Schedules

You will need to take special care when you restart a single-shot schedule that
has terminated. When this happens, the next value of the schedule will be
pointing to the last arrivalpoint. To repeat the entire schedule, you will need
to use the APl call SsetScheduleNext (ScheduleID, ArrivalpointID)
to make sure that the next pointer is reset to the first arrivalpoint in the
schedule.

13.7 Stopping Schedules

The StopSchedule (ScheduleID) APl call can be used at any time to stop
a schedule.

This halts the schedule at the current count value. If a single-shot schedule is
being used, it will stop automatically after the final arrivalpoint has been
processed.
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13.8 Using Non-Time Based Schedule Units

Up to now you have seen schedules that use time as the tick. The RTA-OSEK
GUI provides a facility to declare schedule units. Units allow schedule ticks to
be specified in terms of the real-world unit.

You might, for example, have a schedule that counts teeth on a toothed
timing wheel and activates tasks at specific angular rotations. A possible
abstraction for this would be to declare a degree unit and specify that there
are 360 degrees in a revolution. This is shown in Figure 13-18.

Select periodic: |Peri0dic1 ﬂ @ @ @

Periodic "Periodicl”®

Primary Profile Mo primary profile.

Activation type is ticked (not autostarted).

Activation Type

Tick Rate | 1tickis b realtime ms.
Units |
Constants | < Amount |5 |degiees | Audd
| My Equals |1l |Periodic]  ||ticks ~] Remove
i Rename
Ok
[T

Figure 13-18 - Declaring an Angular Unit

If, for example, an angular schedule uses 1 tick per 5 degrees, you must make
sure that your interrupt source provides a tick for each 5 degrees of rotation.

13.9 Specifying Schedule Constants

Delay values can be specified when a schedule is modified at run-time. The
delay value is the time that must elapse before the next arrivalpoint is
processed. You can declare symbolic constants for commonly used delay
values.

If you use hard coded numbers in your application, you must ensure that they
are scaled appropriately in your application code. If you use constants,
however, you will be able to change values (such as the tick resolution) and
the value of the constants will remain correct for your application.

You should use schedule constants wherever possible to define any schedule
tick value that you pass into the schedule API calls. The constants are available
to your application code through the generated header files.

In Figure 13-19 the constant Revolution has been set as 360 degrees.
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Figure 13-19 - Declaring a Schedule Constant

13.10 Modifying Planned Schedules at Run-time

Planned schedules offer a degree of flexibility because the schedule and the
associated arrivalpoints can be modified at run-time.

You might be using schedules, for instance, in an engine control application
to provide a phased release of tasks where the phasing must change as
engine speed increases or decreases.

Alternatively, you might want to provide some run-time fault tolerance. You
can do this by allowing a task that reads a sensor value to be replaced with
one that synthesizes a value if a fault is detected with the sensor hardware.

RTA-OSEK Component provides APl calls to get the current state of the
schedule and associated arrivalpoints. APl calls are also provided to set the
properties to new values.

The status of the schedule is always located in RAM because RTA-OSEK
Component needs to update these values at run-time. Arrrivalpoints are
located in ROM by default.

Specifying that an arrivalpoint is read-write allows you to modify, at run-time,
the taskset that it releases in response to its associated stimuli (you will learn
about this in Section 13.10.3). It will also allow you to modify the delay or
next attribute at run-time (explained in Sections 13.10.1 and 13.10.2).
Read-write arrivalpoints will be located in RAM. You can set arrivalpoints to be
read-write using the RTA-OSEK GUI, as shown in Figure 13-20.
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Figure 13-20 - Specifying a Read-Write Arrivalpoint

Important: If you intend to perform timing analysis on your application then
you must provide additional details about the worst-case modifications to the
schedule that you make.

13.10.1 Modifying Delays

There are two API calls that can be used to modify delay values.

® GetArrivalpointDelay (ArrivalpointID, TickType)
Accesses the current delay value for an arrivalpoint.

® SetArrivalpointDelay (ArrivalpointID, TickType)
Sets the delay values for read-write arrivalpoints.

Important: A delay of zero for the GetArrivalpointDelay () and the
SetArrivalpointDelay () APl calls does not indicate a zero delay; it
indicates that the delay is the schedule modulus.

13.10.2 Modifying Next Values

Both the schedule and arrivalpoint next values can be changed. If you modify
the schedule next value you can change the next arrivalpoint that will be
processed.

You will normally edit the schedule next value when you want to make
temporary changes to the schedule.

If you want to make permanent changes to the schedule, you should edit the
arrivalpoint list so that the changes will continue to exist each time the
schedule is processed.
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Modifying the next values allows you to create a schedule with optional
arrivalpoints. These arrivalpoints can be switched in or out of the schedule at
run-time. Any arrivalpoint that you want to switch in, however, must be
declared during configuration. An arrivalpoint cannot be dynamically created
at run-time.

There are two API calls that can be used to modify next values.

® SetScheduleNext ()
Used to modify the schedule next value.

® SetArrivalpointNext ()
Used to modify arrivalpoint next attributes at run-time.

In  the following example a schedule has three arrivalpoints,
Arrivalpointl, Arrivalpoint2 and Arrivalpoint3. In the main
program the next arrivalpoint for Arrivalpointl is set to
Arrivalpoint3.

OSMAIN {

StartOS (OSDEFAULTAPPMODE) ;
SetArrivalpointNext (Arrivalpointl,Arrivalpoint3);

TASK (Taskl) {

/* Switch in the pre-declared Arrivalpoint2.
* Note that the next for Arrivalpoint2 is

* already set to Arrivalpoint3 during

* configuration. */

SetArrivalpointNext ( Arrivalpointl,
Arrivalpoint2 );

Code Example 13:4 - Modifying the Arrivalpoint Next Values

If you need to modify the repeat behavior of a schedule, you can set the next
arrivalpoint for the repeat to a different arrivalpoint in your application.

13.10.3 Modifying Auto-Activated Tasks
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Each arrivalpoint holds a taskset. This taskset represents the tasks that are
auto-activated on arrival to generate the responses for the associated stimuli.
The taskset is accessible at run-time using
GetArrivalpointTasksetRef (). If the arrivalpoint is read-write, this API
call returns a pointer to a read-write taskset.

The arrivalpoint taskset behaves in the same way as any other taskset in an
application, so you can modify the contents at run-time.
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Using this feature allows you to dynamically change which tasks are released
at run-time. An example is shown in Code Example 13:5.

GetArrivalpointTasksetRef ( Arrivalpointl,
&TmpTaskset );
MergeTaskset ( TmpTaskset, NewTasks );

Code Example 13:5 - Modifying Tasks Activated from an Arrivalpoint

13.11 Minimizing Schedule RAM Usage

For periodic schedules, state information is maintained in RAM and the
(implicit) arrivalpoints are held in ROM.

For a planned schedule you have the option to locate the arrivalpoints in
either ROM or RAM. If you need to write to a single arrivalpoint, the rest of
the schedule should be located in ROM.

13.12 Summary

e Schedules provide a more flexible alternative to the OSEK
counter/alarm mechanism for building complex event-based systems.

e Schedules are not part of the OSEK standard.
e Schedules consist of four state variables and a list of arrivalpoints.

e Arrivalpoints are used to release tasks (or, from an analysis point of
view, to implement stimuli) at run-time.

e Arrivalpoints on a schedule are guaranteed to be synchronized at all
times.

e On arrival at an arrivalpoint, RTA-OSEK Component will activate the
set of tasks required to generate responses to stimuli that the
arrivalpoint implements.

e Periodic schedules offer a shorthand way of specifying periodic
behavior. All arrivalpoints are implicit and are only used internally by
RTA-OSEK Component.

e Planned schedules require an explicit plan of the schedule timing
characteristics to be created.

e Planned schedules can be modified at run-time to cater for special
system behavior.
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14 Writing Advanced Drivers

You have seen that RTA-OSEK provides a simple, elegant and powerful
interface for driving counters and RTA-OSEK schedules. The advanced driver
mechanism provides great flexibility by placing the software/hardware
interaction in the domain of user-supplied code. This allows easy integration
of drivers for novel hardware and application requirements, and the ability to
“piggyback” driver operation on hardware that is also used for other
functions.

As owner of your hardware you best know how you want to use it in your
application and therefore you are responsible for providing the advanced
driver functions.

This chapter offers some guidelines to help you in the construction of
advanced drivers. Much of this has been gained while constructing drivers for
assorted peripheral timers, but it should be applicable to other peripherals
which increment in response to some external event (e.g. interrupts generated
by the rotation of a toothed wheel).

The example code is structured for ease of explanation and understanding.
Different control structures may result in small improvements in the quality of
generated code on some targets (e.g. replacing a while (1) loop using if

break exits with a do .. while loop with appropriately modified
conditions). If you choose to make this type of optimization then you should
take care to ensure that the required semantics and orderings of operations
are maintained (e.g. note that the && logical operator in C imposes both
ordering and lazy evaluation).

The Advanced Driver Model

The advanced driver concept assumes an underlying free-running peripheral
counter. The counter has an initial value established by the user, counts up
from zero and wraps back to zero as it reaches its modulus.

Important: These are the assumptions of the model. In the later sections of
this chapter you will see how to implement this model with hardware which
does not meet these assumptions.

An advanced counter driver tells RTA-OSEK to processes an alarms and/or
expiry points associated with a counter as soon as possible after it/they
become due using the osAdvanceCounter_<CounterID> APl call.
Similarly, an advanced schedule driver tells RTA-OSEK to process the next
arrivalpoint as soon as possible after it becomes due using the
AdvanceSchedule_<ScheduleID> APl call. If the counter/schedule is still
running, action must be taken in your handler to ensure that the next
alarm/expiry point/arrivalpoint will be processed at the appropriate time.
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Both of these API calls return a SchedulesStatusType which is a C struct of the
form:

struct {
SmallType status;
TickType expiry;
}

Status defines the current driver status which can be:

e (OS_STATUS_RUNNING - running but a point is not ready to be
processed

e OS_STATUS_PENDING - running and a point is ready to be processed

The Expiry, when defined, gives the number of ticks from now at which the
next point is due to be processed. Expiry is therefore a relative time to now.

Typically you will call RTA-OSEK's advanced driver interface from a user-
supplied Category 2 interrupt service routine.

Obviously, the two schemes are very similar in concept. For purposes of clear
explanation the following conventions are used:

e We use a “fake” API call called Advance () to indicate either of the
real RTA-OSEK API calls, osAdvanceCounter_ <CounterID> Or
AdvanceSchedule_<ScheduleID>. Where a specific distinction
between behaviors needs to be made this is noted in the text.

e We use the term “point” to mean alarm or expiry point or arrivalpoint.
Where a specific distinction between behaviors needs to be made this
is noted in the text.

e We use the name “Advanced” to indicate an advanced counter or an
advanced schedule in the callback functions.

14.1.1 Interrupt Service Routine (ISR)
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The interrupt service task (ISR) is triggered by each point becoming due to be
processed. For an advanced driver, the ISR will call Advance () to indicate
that the current point has expired and to obtain the delay until the next point
occurs. The ISR is also responsible for setting the hardware to generate an
interrupt after the delay has passed. In general, we can identify three classes
of behavior for IRSs. These are described here, along with their implications
for system behavior and schedulability analysis, in order that appropriate
choices can be made when implementing the interrupt handler component of
fine activator drivers.

A simple handler is able to deal with a single point. This class of handler must
complete before the next interrupt becomes due. When it can be guaranteed
that this is the case, simple handlers are an appropriate choice because they
typically have a smaller worst-case execution time than the other two classes.

A retriggering handler is able to deal with one or more points becoming due
before it completes handling of the interrupt which first triggers it. Such a
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handler processes one point per invocation, and exits with the invoking
interrupt still pending if another point is already due.

A looping handler is able to deal with one or more points becoming due
before it completes handling of the interrupt which first triggers it. Such a
handler is able to process multiple points in turn, and only exits when either
no point is due or when an interrupt is pending.

It is important to note that any interrupt handler which is capable of looping is
a looping handler. When a simple handler is not sufficient, a choice must be
made between retriggering and looping.

Three factors influence this choice:

1. Some hardware will not support retriggering behavior, so a looping
handler must be used.

2. When the interrupt that invokes the handler is at the same level as
another interrupt in the system, and that other interrupt has a higher
arbitration precedence (i.e. will be handled first if both are pending)
then a retriggering handler is preferred because it reduces latency for
the other interrupt. In practice, this is of particular concern for
architectures with a single interrupt priority level.

3. A retriggering handler typically has smaller execution time than a
looping handler when a single point is processed. Note that it is not
normally relevant that a looping handler may be "more efficient"
when several points are handled in one invocation. Worst case
behavior occurs when each point is handled by a separate invocation.

We recommend that a simple handler be used if the handler's worst case
response time is known to be smaller than the minimum interval between
interrupts. Otherwise, a retriggering handler should be used unless the
hardware characteristics prohibit it.

14.1.2 Callbacks

Four call back functions are also required as part of the activator driver. The
call back functions that must be supplied are:

1. Now_Advanced which must return the current value of the peripheral
counter

2. Cancel_Advanced which clears any pending interrupt for the counter
and ensures that the interrupt will not become pending until after a
Set_Advanced () call has been made. This behavior is required if
the alarms/schedule tables/schedules driven by the counter are ever
stopped directly by the application or by reaching the end of a
schedule table or schedule. Otherwise a stub call can be provided.

3. State_Advanced is «called only when the alarms/schedule
tables/schedules are running. It returns either the ticks remaining until
the next point becomes due or that the next point is already pending.
This behavior is required if the application interrogates the status.

4. Set_Advanced establishes a state in which an interrupt will become
due the next time the counter matches the supplied value. The
callback is passed the absolute match value at which the next point is
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to be processed. For schedules, the Set callback is used only to start
the schedule. For counters, the callback is used to start the schedule
but also to shorten the time to the next point. This secondary behavior
is needed because you can set alarms (or start schedule tables) that
need to begin at point closer to now then the currently programmed
match value.

It should be noted that all of these calls are made at OS level. This means that
they will not be preempted by Category 2 ISRs and do not, therefore, need to
be reentrant.

14.2 Using “"Output Compare” Hardware

This section considers the construction of drivers for output compare
(sometimes known as compare/match) counter hardware. Such hardware has
the property that an interrupt is raised when a counter value (advanced by
some outside process such as a clock frequency or events detected by some
sensor) matches a compare value set by software. It is assumed that both the
counter value and the current compare value can be read by software. In this
section, it is assumed that the registers of the counter hardware are mapped
to the variables OUTPUT_COMPARE and COUNTER. The section outlines
appropriate call back functions, followed by several interrupt handlers making
different assumptions about required behavior and hardware facilities.

Initially, a counter with the same modulus as TickType is considered.
TickType usually has a modulus of 2'® on 16-bit targets and 22 on 32-bit
targets.

With full modulus arithmetic, the number of ticks in a delay can be
determined by subtracting the start value from the end value. When the
current counter value (COUNTER) is subtracted from the next compare value
(OUTPUT_COMPARE), the result is the number of ticks before the compare
point is reached. If this value is read after the compare point is set, and found
to be greater than the currently required delay, then the counter has passed
the compare point and there will be an extra modulus wrap (i.e. TickType
ticks) before the compare occurs. This can happen if the delay before the next
point is very short (for instance, one tick), in which case there is a race
condition between the counter passing the intended compare point and the
setting of that compare point.

14.2.1 Callbacks

Set

The set_Advanced () call causes the interrupt to become pending when
the counter value next matches the supplied parameter value. This is achieved
by disabling compare matching, clearing any pending interrupt, setting the
compare value, and ensuring that the interrupt is enabled. If the hardware
does not provide the ability to disable compare matching, this can be
simulated by setting the compare value to one less than the current counter
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value (thus ensuring that a match will not occur before the next time that the
compare value is set).

Note that it may not be necessary to disable compare matching: if it can be
guaranteed that a match will not occur between system start up and the point
at which the activator is started, disabling compare matching is not necessary.
In the example below, this is achieved by setting the compare register to the
previous value of the counter, thus ensuring that a “match” interrupt will not
be generated until ticks equal to the modulus of the counter have occurred.
This will be long enough to perform the rest of the Set_Advanced()
function. (Note that this approach can only be used if the compare register is
not shared with anything else).

OS_CALLBACK (void) Set_Advanced(TickType Match)
{

/*prevent match interrupts for “modulus” ticks*/
OUTPUT_COMPARE = COUNTER - 1lu;
dismiss_interrupt();

OUTPUT_COMPARE = Match;

enable_interrupt () ;

}

Note that the above code, and in subsequent pieces of code, we use the
functions:

¢ dismiss_interrupt()
® ecnable_interrupt ()
¢ disable_interrupt ()

These functions refer to operations performed on the status/control registers
of the counter peripheral used to provide the fine activator functionality. You
are responsible for providing these factions (or equivalent code) in your
advanced drivers.

Important: The above code is carefully structured to avoid two potential race
conditions. These race conditions can arise from dismissing the interrupt in a
way that can result in unexpected interrupts being generated or expected
interrupts being lost. These race conditions are as follows:

1. Pre-existing values of the compare and counter values may lead to an
interrupt being raised before the compare register is set, which results in a
situation where the interrupt appears to have been caused by the action of
Set_Advanced () (rather than previous compare/counter values).

2. Using the dismiss_interrupt () call after the compare register is set
avoids the first race condition (without the need to disable the match
interrupt), but may result in the situation where a very short delay (for
instance, one tick after the value of the counter register when
Set_Advanced () is called) is ignored. In some cases, a full counter wrap
will occur before the compare causes an interrupt. Depending on the
hardware, this may result in no interrupt occurring (even after a counter
wrap).
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In any case, careful consideration should be given to the use of very short
delays, as the counter may reach the compare point even before the compare
point is set, particularly if the execution path between user code which reads
the current value of the clock and calculates the set point and setting the
point is long. If this occurs, a full counter wrap will need to occur before the
time expires.

In the above example, match interrupts are prevented by means of changing
the output compare register. In subsequent examples, the way in which this is
achieved is not specified: it is assumed that a function disable_compare ()
is provided to prevent the hardware from generating match interrupts.

Important: If the counter is used for some other purpose (in addition to this
fine activator), the disable_compare() function must not halt the
counter, as this will lead to drift in the timeline.

The re-enabling of compare matching needs to be done atomically with the
assignment of the compare register. If this is not done, another race condition
may exist if a short delay is set into the output compare register.

The callback shown above works for schedules and for alarms/schedule tables
that you do not adjust once they have been started. If you plan to make
Set [Abs|Rel]Alarm() calls or to NextScheduleTable () calls then
you need a different Set_Advanced () callback. The callback needs to be
able to reset a currently programmed match value for a point nearer to now.

In the following discussion we use the terms:
e now is the counter’s current (continuously increasing) value.
e old is the previously programmed compare value.
e match is the (absolute value of the) new, earlier compare value.

e “—"Is a binary subtraction modulo the counter’s modulus.

We also assume that delays due to higher priority interrupts are relatively small
compared with an entire wrap of the counter modulus.

A naive implementation would (atomically) reprogram the compare value with
match. This is wrong because a higher priority (e.g. Category 1) interrupt
could delay the write to the hardware register, so that by the time you write
match to the compare register, now is already greater than match. This
would cause all processing of the whole schedule to cease for 2'° (or 2% or
something) ticks. In fact, it is perfectly possible that, by the time we are ready
to write match to the compare register, now is already greater than both
match and old.

Your implementation of Set_<CounterID> () must distinguish between
the starting case (where interrupts are stopped) and the resetting case (where
the schedule is running and it is being used to shorten the delay to an existing
OLD compare value).

In this second case, your implementation of Set_<CounterID>() must
return with the compare register containing the new match value; and either

e now has not exceeded match; or
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e the compare interrupt flag is already pending. Note that if the
interrupt flag is pending, it does not matter if match or even old has
been passed by now as the advanced counter driver code you write
that deals with osAdvanceCounter_ <CounterID>  will
(eventually) catch up to the correct time.

First you must write match to the compare register.

If now is between match and old, i.e. old- match > now — match, then
now has already passed match. You must ensure that the interrupt flag is
pending before returning.

If now is not between match and old then either you can return with no flag
pending or both match and old have been passed and you must ensure the
pending flag is set before returning. You can test for both values having been
passed using the test now —old < old— now .

Set_Counterl (TickType Match)

{
TickType 0ld = (TickType)COMPARE;
TickType Now = (TickType)COUNT;

/* Update COMPARE with new Match */
COMPARE = Match;

if ( (0Old-Match > Now-Match)
|| (Now-0Old < Old-Now) )

SET_INTERRUPT_PENDING() ;

State

The state_Advanced () call is only made when the counter or schedule is
running, and must first check whether the next match has already occurred
(i.e. the interrupt is pending, this can occur because all of the callbacks are
executed at OS level, which will prevent the resulting ISR from preempting the
currently executing task). If this is not the case, the remaining time to expiry is
also required

OS_CALLBACK (void) State_Advanced (
ScheduleStatusRefType State)
{
State.expiry = OUTPUT_COMPARE - COUNTER;
if (interrupt_pending()) {
State.status
OS_STATUS_PENDING | OS_STATUS_RUNNING;
} else {
State.status = OS_STATUS_RUNNING;
}

" If the counter modulus is m then this test can be expressed as now-old < m/2.
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Important: The expiry value is calculated before checking whether the
interrupt is pending. This is necessary to avoid a race condition in which the
interrupt became pending after checking but before calculating expiry, which
would result in an invalid value.

Now

The Now_Advanced () call reads the free-running counter to provide the
current timebase counter value.

OS_CALLBACK (TickType)Now_Advanced (void)

{
return (TickType)COUNTER;

}

Important: Note that care may be required when reading the counter on 8-
bit devices to ensure that a consistent value is obtained: in some cases, the
high and low bytes must be read in a particular order in order to latch then
release the counter. Similar considerations may apply when writing compare
values.

Cancel

The cancel () call must ensure that no further interrupts will be taken. This
is a hardware dependent operation, but might typically be achieved by
disabling interrupt generation by the counter device.

OS_CALLBACK (void) Cancel_Advanced (void)

{
disable_interrupt();

}

14.2.2 Interrupt Handler

14-8

Simple

In the simplest case, it is only necessary to clear the interrupt, make the
required Advance () call, and - if the counter/schedule is still running —
advance the compare point to when the next point is due. This assumes that
the latency of the handler (to the point at which it has moved on the compare
value) is known to be less than the shortest expiry value for the
counter/schedule being driven, so the new compare point will be ahead of the
counter.
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#include “Advanced_Driver.h”
ISR (Advanced_Driver)
{
ScheduleTableStatusType State;
dismiss_interrupt();
Advance (&CurrentState) ;
if (State.status & OS_STATUS_RUNNING) {
OUTPUT_COMPARE += State.expiry;
}

}

It is essential that the output compare point is always advanced to be ahead
of the timer. If the expire time is shorter than the handler response time then
this will not be the case and an additional full wrap of the timer will be
introduced before the next point is processed. In order to verify that a simple
handler may be used safely, use the RTA-OSEK Planner to perform
schedulability analysis. Your application will only be schedulable if the simple
handler can complete before its next invocation.

Retriggering

When points may be too close together for the handler to advance the
compare value before the next point is due then the handler must account for
the situation in which the next point is already due.

This example considers the use of an output compare timer with hardware
interlocking to prevent the accidental clearing of an interrupt which is raised
during the clearing sequence. It is assumed that for this type of interlock
clearing the interrupt is achieved by reading the status register, then writing
the status register (with a bit pattern that clears the interrupt bit). In this
example, the interlock consists of two functions:

® prepare_interrupt_clear ()
¢ commit_interrupt_clear ()

While the driver is still running, the compare point is advanced (in the case of
a full “wrap”, advancing by 0 is correct) and the first part of the interrupt
clearing sequence is performed (reading the status register). Then the check is
made for the new compare point being ahead of the timer. If this check
shows that an interrupt will not be raised when the counter advances to the
compare value (i.e. the next point is not yet due) then the interrupt clearing
sequence is completed (by writing to the status register with the flag bit
clear). If the check fails (i.e. the new expire is already due) then the interrupt is
left pending and the handler will be re-triggered to deal with the next point.
Note that the two-stage interrupt clearing sequence is required to avoid a race
in which the counter reaches the match point between being tested and the
interrupt being cleared. This would otherwise result in the interrupt for the
next point being cleared. The required hardware behavior is that if the
interrupt is raised again after the first stage of the sequence then the second
stage will not clear the interrupt.

A similar approach can be taken with devices where the interrupt can be re-
asserted by software. In these case, the interrupt can be cleared on entry to
the handler, then re-asserted if the next point is due, in which case no race
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14-10

condition can occur (assuming there is no problem associated with software
asserting an interrupt which the hardware is already asserting).

ISR (Advanced_Driver)
{
ScheduleTableStatusType State;
TickType remaining_ticks;
osUintl6Type clear_tmp;
Advance (&State) ;
if (State.status & OS_STATUS_RUNNING) {
OUTPUT_COMPARE += State.expiry;
clear_tmp = prepare_interrupt_clear();
remaining_ticks = OUTPUT_COMPARE - COUNTER;
if ((State.expiry == 0u) ||
((remaining_ticks != 0u) &&
(remaining_ticks <= State.expiry))) {
commit_interrupt_clear (clear_tmp);

}

Important: Some output compare hardware requires that the compare
register be written to arm each interrupt. In such cases it is necessary to
structure the code (as is the case above) so that the compare register is
written to its previous value in the case of an expiry value of 0.

Looping

This section considers a generic looping ISR structure TickType modulus
counter with programmable output compare.

This interrupt handler first dismisses the invoking interrupt, then enters a loop
which processes a point and checks whether any further points need to be
processed by this invocation. This check has four exit conditions, which must
be evaluated in the order shown.

1. Exit 1 is taken if the counter/schedule has now stopped, so no further
action is necessary. If the counter/schedule has not stopped, then the
compare point is advanced by the required number of ticks (which will
be zero in the case of a full wrap). Checks must then be made to
determine whether an interrupt will be raised when the next point is
due.

2. Exit 2 is taken if the expiry value indicates that a full “wrap” of the
timer is required before the next point is due to be processed.
Therefore, no change to the compare/match value is necessary. An
expiry value of 0 ensures that the new compare point is ahead of the
timer (and consequently that the interrupt will be asserted when it is
reached). Exiting at this point ensures that the following checks will
not misidentify a match between counter and compare point as an
event being due now when a full wrap has been requested and the
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counter has not yet moved on (it is assumed that the interrupt will not
be re-asserted while the counter and compare point continue to
match, only when the match first occurs: if this is not the case, it must
be ensured that the handler never exits in that state, perhaps by
avoiding expiry values of 0).

3. Exit 3 is taken if the current timer value has not yet reached the new
compare point. This check is done by determining if the time until the
next interrupt (i.e. OUTPUT_COMPARE — COUNTER) is less than the
delay until the next point. Note that the cast to TickType is
necessary to ensure that the counter modulo behavior is accounted
for. The counter modulus must the same TickType for this to work
correctly: see “notes on counter modulus” for how to handle arbitrary
modulus values. If the counter has moved on by less than the expiry
value, then an interrupt will be raised at the correct time and the
handler can exit, otherwise, the new compare point may have been
missed.

4. Exit 4 accounts for a “race” between setting the new compare point
and checking that it is ahead of the counter, since the counter can
advance before the exit 3 check is made. If exit 3 is not taken, the next
point is now due. If the interrupt is pending, expiry has already been
recognized by the hardware, so the handler can exit and be re-invoked
by the pending interrupt (it would not be acceptable to exit with an
interrupt pending yet no point due). Note that this construction means
that it does not matter whether the interrupt is pending or not when
exit 3 is not taken because the counter has advanced by exactly the
expiry value: either the pending interrupt or looping results in the next
point being processed.

If no exit is taken then the next point is due (or overdue), and the loop makes
the required expire call then repeats the exit checks for the next point.

Note that the typical behavior of this handler is expected to be a single
Advance () call, because the next point will be in the future. Consequently,
the handler should be as fast as possible for that case (since the worst-case
behavior is that the processing of each point is triggered by a separate
interrupt).

#include *“Advanced_Driver.h”
ISR (Advanced_Driver)
{
ScheduleTableStatusType State;
TickType remaining_ticks;
dismiss_interrupt();
while (1) {
Advance (&State) ;
if (! (State.status & OS_STATUS RUNNING)) {
return; /* exit 1: activator stopped */
}
OUTPUT_COMPARE += State.expiry;
if (State.expiry == 0u) {
return; /* exit 2: full wrap */

}
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remaining_ticks = OUTPUT_COMPARE - COUNTER;
if ((remaining_ticks != 0Ou) &&
(remaining_ticks <= State.expiry)) {
return; /* exit 3: compare point
* is in the future */
}
if (interrupt_pending()) {
return; /* exit 4: interrupt pending */

}

Important: It is important that you understand the interrupt behavior of the
counter/compare hardware in use. When the compare value is set equal to
the counter, there are three possible behaviors: the interrupt becomes
pending as the value is set, the interrupt becomes pending as the counter
moves beyond the compare point, or the counter needs to completely wrap
around before the interrupt becomes pending again.

In the example above, the test for exit 3 assumes the counter/match hardware
exhibits the first or third behavior. With the second behavior, it is necessary to
exit if remaining_ticks is zero, as the interrupt will be asserted after the
counter and match value have been observed as equal.

14.2.3 Counter Hardware Narrower than TickType

The driver outlines presented above have assumed that the counters and
compare registers are the same width as TickType and arithmetic is
unsigned modulo TickType. Some hardware may not have this property.

In this case, we assume that the counter itself wraps to zero after some value
(m — 1) (i.e. has modulus m, where m is smaller than TickType). This
increases the complexity of the drivers, but might be imposed by hardware
behavior or necessary to support some other system requirement. For
example, a timer set up with a modulus of 50000 and tick of 1ms could
provide a 50ms interrupt via overflow used to drive a ticked counter or
schedule and output compare interrupts used to provide the advanced driver.

Such a modulus requires modification to calculations which derive new
compare values and which check the relationship between compare and
counter values. In this example we’ll assume that TickType has modulus
2"

If m is 2x (where x < 16) then it is simple to apply explicit modulus
adjustments to arithmetic results by ANDing with 2x-1. For 8 bit modulus, this
would allow a compare value to be advanced by:

‘new_cmp = (old_cmp + ret.expiry) & OxFF; ‘
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A similar operation can be applied to the result of calculating the ticks
remaining to a compare point.

The calculations become more complex if the modulus value is not a power of
two. Possible techniques are presented below.

When calculating a new compare value we must account for four possible
results when the sum of the old compare and the new expiry value is
calculated using the TickType modulus of 2'¢:

1. The expiry value is zero. A full modulus wrap leaves the compare value
unchanged.

2. The sum is greater than the old compare value, but less than m. The
result of the addition is the desired result.

3. The sum is greater than m. The result of the addition needs to be
wrapped at m. This can be achieved by subtracting m, avoiding the
(often costly) modulus operator.

4. The sum is less than the old compare value. The result of the addition
wrapped at 2'®, so the sum must have (2'°~ m) added to it to give the
result of wrapping at m.

Note that if m is less than or equal to half the arithmetic modulus (i.e. < half
of 2'%) then the fourth case can never occur.

When checking whether the new output compare value has been set ahead
of the counter, we consider three circumstances. No subtraction underflows
the 2'® arithmetic modulus.

1. The expiry value is zero, so the new compare point is known to be in
the future. The handler is required to complete in less than the
counter modulus.

2. The new compare value is greater than or equal to the counter so we
can subtract counter from compare to give the interval until next
match then check whether this is less than or equal to the required
expiry time (otherwise, the next point is already due).

3. The new compare value is less than the counter value. Subtracting
compare from counter gives the interval that remains when the
interval to next match is subtracted from the modulus. Thus, we can

calculate the interval to next match as m - (COUNTER -
OUTPUT_COMPARE), then check this result against the required expiry
time.

The same approach can be applied to the calculation of remaining time to
expiry in the State_Advanced () call back.

Adding the mechanisms described above to our generic “output compare”
driver gives the following:

#include “Advanced_Driver.h”

/* Next line should result in a constant being
Substituted. We assume that the expression will
be evaluated at compile time, avoiding modulus
overflow at run time */

#define CMP_ADJUST ((TickType)65536u — m)
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/* Where m is the timebase modulus */

ISR (Advanced_Driver) {
ScheduleTableStatusType State;
TickType counter_cache;
TickType remaining_ticks;
TickType new_cmp;
dismiss_interrupt();
while (1) {
AdvanceSchedule (&State) ;
if (! (State.status & OS_STATUS RUNNING)) {
return; /* exit 1: activator stopped */
}
if (State.expiry == 0u) {
/* OUTPUT_COMPARE = OUTPUT_COMPARE if
* needed to arm next interrupt */
return; /* exit 2: full wrap */
}
new_cmp = OUTPUT_COMPARE + State.expiry;
if (new_cmp > OUTPUT_COMPARE) {
if (new_cmp >= m) {
new_cmp —= m;
}
} else {
new_cmp += (CMP_ADJUST) ;
}
OUTPUT_COMPARE = new_cmp;
counter_cache = COUNTER;
if (new_cmp >= counter_cache) {

remaining_ticks = new_cmp - counter_cache;
} else {
remaining_ticks =
m — (counter_cache—-new_cmp);
}
if ((remaining_ticks != 0Ou) &&
(remaining_ticks <= State.expiry)) {

return; /* exit 3: compare in the future */
}
if (interrupt_pending()) {

return; /* exit 4: interrupt pending */

14.2.4 Counter Hardware wider then TickType

14-14

We consider now the alternative case where a hardware counter has a
modulus that exceeds TickType. With a little care, such counters can be
used to provide the behavior required for a TickType with a modulus of 2'°.
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We restrict our consideration to modulus values that are a power of two (e.g.
a 32 bit counter). In these cases the low 16 bits of the counter have the
desired behavior, but overflow effects must be taken into account.

When the compare value is advanced in the interrupt handler, overflow from
the bottom 16 bits must be propagated through the rest of the compare
register. In addition, an expiry value of 0 indicates that 2" must be added to
the compare value. Since the compare point can never be advanced by more
than this, checks for the timer having passed the compare point can be
carried out using the low 16 bits of the counter and compare registers.

When the set_Advanced () call back is used, the compare point must be
set so that it matches the counter when the low 16 bits of the counter next
have the same value as the parameter passed to Set_Advanced (). This can
be achieved as follows (assuming that counter and compare are 32 bit
unsigned values):

OS_CALLBACK (void) Set_Advanced(TickType Match)
{

0osUint32Tye to_compare;

disable_interrupt();

disable_compare () ;

dismiss_interrupt();

OUTPUT_COMPARE =

(COUNTER & OxFFFFO0000Oul) | Match;
to_compare = OUTPUT_COMPARE - COUNTER;
if ((to_compare == 0ul) ||

(to_compare >= 0x10000ul) {
if (! (interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;
to_compare = OUTPUT_COMPARE - COUNTER;
if ((to_compare == 0ul) ||
(to_compare >= 0x10000ul)) {
if (! (interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;
}

}
}

enable_interrupt();

The operations are carried out with interrupts from the hardware device
disabled, in order to make them atomic with respect to the handler. First any
pending interrupts are cleared: this must be done after disabling comparison
(for instance, setting the compare point to ensure that a pending interrupt
can only be due to a match with the new compare value). Then the compare
register is set to the counter value with its lower 16 bits replaced by the
supplied parameter.
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If the compare point lies in the future by less than 2'®ticks then it has been set
correctly. If there is a pending interrupt then the compare point must have
been reached so the interrupt should be handled. Otherwise, the compare
point is advanced by 2. The check must then be repeated to account for a
race in which the counter could overtake the new compare point before it has
been set. Checking twice is sufficient, assuming that the set_Advanced ()
call completes in less than 2'® timer ticks.

This code assumes that the interrupt may or may not be pending if the
compare value is set equal to the counter. If the interrupt is known to become
pending when (or after) the two match then the check for to_compare
being zero should be removed.

Note that this function can be much simplified based on knowledge of
application behavior. For example, if the counter is zeroed at startup and the
activator is started only once less than Match ticks after startup it is sufficient
to set the compare value to Match.

Important: Modulus 2'° behavior is not exhibited by the low 16 bits of a
counter which has a modulus that is not a power of two: the last interval
before the timer wraps consist of (counter modulus MOD 2'°) ticks.

14.3 Free Running Counter and Interval Timer

The counter compare/match handlers described above allow the
implementation of drift-free fine activator drivers. However, not all target
platforms provide such counter facilities.

Drift can be avoided when using a down counter if a separate free running
counter is also available. The free running counter is used to provide a drift-
free time reference, and the down counter is set up to interrupt when the
next point becomes due. Some jitter (delay) may be introduced to individual
expiry times due to delays in setting the down counter, but these do not
accumulate: such jitter can be accounted for in the same way as jitter
introduced in the handling of the interrupt. In this section, the down counter
is considered to provide registers COUNTER and DOWN_COUNTER that can
be used as variables. As in the previous example, both registers are taken to
be TickType wide registers, and the values they use are taken to be
unsigned TickType size integers.

14.3.1 Callbacks

The next match value is maintained in software, and used in calculation of the
down count value to the next interrupt.

‘TickType next_match; ‘

Set

‘OS_CALLBACK(void) Set_Advanced (TickType Match)
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/* Record value at which expire is due */

next_match = Match;

disable_compare() ;

dismiss_interrupt();

/* set up interrupt when counter reaches match
value */

DOWN_COUNTER = next_match - COUNTER;

enable_interrupt();

State

Note that the State Advanced() call, below, could return
DOWN_COUNTER as the Status.expiry value. If there is any jitter
introduced by setting the down counter, this will reflect in the time at which
the expiry will be signaled, rather than when it is due. However, particularly
with a non- TickType modulus where more calculation is avoided, the
following may be acceptable.

OS_CALLBACK (void) State_ Advanced (
ScheduleStatusRefType State)
{
State.expiry = next_match - COUNTER;
if (interrupt_pending()) {
State.status =
OS_STATUS_RUNNING | OS_STATUS_PENDING;
} else {
State.status = OS_STATUS_RUNNING;
}

return;

Now

The Now callback function is implemented as before.

OS_CALLBACK(TickType) Now_Advanced(void)

{
return (TickType)COUNTER;

Cancel

The Cancel callback function is implemented as before.

OS_CALLBACK (void) Cancel_ Advanced(void)
{

disable_interrupt();

}
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14.3.2 ISR

#include “Advanced_Driver.h”
ISR (Advanced_Driver)
{
ScheduleStatusType State;
TickType remaining_ticks;
dismiss_interrupt();
while (1) |

AdvanceSchedule (&State) ;

if (! (State.status & OS_STATUS_RUNNING)) {

return; /* exit 1: activator stopped */

}

next_match += State.expiry;

/* also subtract adjustment for */

/* delay before COUNTER is set? */

remaining_ticks = next_match - COUNTER;

if (State.expiry == 0u) {

DOWN_COUNTER = remaining_ticks;
return; /* exit 2: full wrap */
}
if ((remaining_ticks!= 0u) &&
(remaining_ticks <= State.expiry)) {
DOWN_COUNTER = remaining_ticks;
return; /* exit 3:
counter set for next expire */

}

/* assume we only get an interrupt due to
setting the counter and we only set the
counter when we are going to exit so no
need to test for pending interrupt */

This demonstrates a looping form of ISR: it loops until no due points remain,
rather than handling one point per invocation of the routine, as in a
retriggering form of ISR.

Note that exit 2 assumes that setting the counter to zero will result in an
interrupt after one full “wrap” of ticks.

14.4 Using “Match on Zero” Down Counters

14-18

Some hardware might not provide a free running counter (or you might not
want to use this for your advanced driver.

In this case you will have to use just the interval timer. This example assumes a
16-bit decrementing counter that raises an interrupt on reaching 0, and
continues to decrement. Because the counter continues to decrement, the
start point for the new countdown can be determined by adding the expiry
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time to the counter value (assuming modulo 2'® arithmetic). It is desirable to
minimize drift during the counter update. Preventing interrupts during the
update, and adding an adjustment for the known time taken for update (to
both the counter and next_match) may be able to reduce this to one “tick”
per counter adjust (assuming the counter is asynchronous to the update, there
will always be some uncertainty). counter_adjust is introduced to allow
calculation of a “now” value: subtracting the counter value from
next_match gives this. Note that the counter update and
counter_adjust update must be atomic with respect to any call to obtain
“now” for this to give the correct result.

When the driver is not running, the down counter is assumed to free-run.
From start-up it runs downwards from zero and the value of “now” is (0 —
counter). counter_adjust always holds the actual tick value that the “free
running” counter will have next time the down counter has the value O.

14.4.1 Callbacks

Set

TickType counter_adjust = 0;
OS_CALLBACK (void) Set_Advanced(TickType Match)
{
TickType AdjustedMatch;
AdjustedMatch =
Match - (counter_adjust - DOWN_COUNTER) ;
/* dismiss interrupt in a way that avoids race
conditions */
disable_compare () ;
dismiss_interrupt();
DOWN_COUNTER = AdjustedMatch;
counter_adjust += AdjustedMatch;
enable_interrupt();

The race conditions discussed earlier are still present. If the interrupt is
dismissed before the down counter is set, there is a risk that an interrupt may
occur between dismissing the interrupt and setting the down counter. If the
interrupt is set after the down counter is set, a small delay could result in the
expected interrupt being discarded. In the absence of specialized hardware
protection, this can be avoided by the disable_compare () function
setting the counter to modulus — 1, then dismissing the interrupt between
determining the AdjustedMatch value and setting the counter (as shown
in the above example).
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State

State_Advanced () is defined as before, except that the expiry time can
be read directly from the down counter.

OS_CALLBACK (void) State_ Advanced (
ScheduleStatusRefType State)
{
State.expiry = DOWN_COUNTER;
if (interrupt_pending()) {
State.status =
OS_STATUS_PENDING | OS_STATUS_RUNNING;
} else {
State.status = OS_STATUS_RUNNING;

Now

To determine the correct value of “now”, the below calculation is used.

OS_CALLBACK (TickType) Now_Advanced(void)
{
return (counter_adjust - DOWN_COUNTER) ;
/* counter_adjust is still correct adjustment
* as counter runs to and through 0 */

Cancel

Canceling the driver is achieved as before.

OS_CALLBACK (void) Cancel_ Advanced (void)
{

disable_interrupt();

14.4.2 Interrupt Handler

#include “Advanced_Driver.h”
ISR (Advanced_Driver)
{
ScheduleStatusType State;
TickType counter_cache;
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dismiss_interrupt();
while (1) {
Advance (&State) ;
if (! (State.status & OS_STATUS RUNNING)) {
return; /* exit 1: activator stopped */
}
if (State.expiry == 0u) {
return; /* exit 2: full wrap */
}
counter_cache = COUNTER + State.expiry;
COUNTER = counter_cache;
counter_adjust += State.expiry;
if ((counter_cache != 0u) &&
(counter_cache <= State.expiry)) {
return; /* exit 3:
* next time point has not yet
* been reached */
}
if (interrupt_pending()) {
return; /* exit 4: interrupt pending */

}

The condition on exit 3 assumes that the interrupt becomes pending when
(not after!) the counter reaches zero, but may not do so if it is set to zero (if
the counter is zero then the point is due and will be dealt with either by
looping or re-entering via the pending interrupt). The same counter value
must be used for both parts of the test otherwise races can occur if the
counter changes between the two comparisons (hence the use of
counter_cache).

If the behavior of the interrupt when the counter is set to zero is known, the
code can be simplified by removing exit 4 and the associated test (since the
interrupt status when counter_cache is zero will be known). If setting the
counter to zero never causes the interrupt to become pending then that is the
only change required. If setting the counter to zero always causes the
interrupt to become pending then exit 3 should only check for
counter_cache less than or equal to expiry: if the counter is zero, the
interrupt will be pending and will cause the next event to be handled.

In the case of a very fast running clock (where the clock speed is greater than
or equal to the processor speed), it will be necessary to add a correction to the
counter to offset the number of ticks that occur between reading the counter
and setting its new value. In any case, a drift of up to one tick cannot be
avoided whenever the down counter is set. On a multiple interrupt level
platform, it is desirable to disable all interrupts whilst reading/writing
COUNTER to avoid the possibility of interruption between these and a large
amount of drift.
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14.5 Software Counters Driven by an Interval Timer

Using a periodic interval timer (or any per-event interrupt source) it is possible
to synthesize counter and compare in software. Note that, because the
counter and compare values are only changed by the handler, no race
conditions need to be accounted for. However, a handler of this form is of
limited practical interest because there is one interrupt per tick, and therefore
ticked activation should be used.

14.6 Summary

® You need to provide an advanced driver for every advanced counter and
advanced schedule

e The driver interface comprises
o A Category 2 interrupt handler that tells RTA-OSEK to take action

o Four «callback functions used by RTA-OSEK to control the
counter/schedule

e If possible, you should use a free running counter with associated compare
hardware and a simple interrupt handler
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15

Startup and Shutdown

15.1

Some operating systems that you might have used before will take control of
the hardware. RTA-OSEK Component, however, is different.

Initially the operating system is not running, so you are free to use the
hardware as if no real-time operating system is being used. Until you explicitly
start the operating system with an API call, it is not running.

RTA-OSEK Component can be started in different application modes. A
mode is a set or subset of the complete application functionality that
corresponds with a specific function of the application. You will learn more
about application modes in Section 15.2.1.

From System Reset to StartOS ()

This section looks at what has to be done between an embedded processor
“coming into life” when power is applied and the start0s () API call being
made to start RTA-OSEK Component and your application. The details of
what goes on in this period are naturally dependent on the particular
embedded processor in use — the underlying principles are however the same.
You should read this section in conjunction with the reference manual for
your target processor and apply the concepts we describe to your own
platform.

15.1.1 Power-on or Reset tomain ()

When power is applied to an embedded processor, or the processor is reset,
the processor does one of two things (depending on the type of processor).

It may start executing code from a fixed location in memory, or it may read an
address from a fixed location in memory and then start executing from this
address. The fixed location in memory that contains the address of the first
instruction to execute is often called the “reset vector” and is sometimes an
entry in the interrupt vector table.

In a production environment the reset vector and/or the first instruction to be
executed is usually in non-volatile memory of some variety. In a development
environment it is often in RAM to permit easy re-programming of the
embedded processor. Some evaluation boards (EVBs) have switches or
jumpers that permit the reset vector and/or the first instruction to be in
EEPROM or RAM.

Going from power-on or reset to the first instruction being executed is often
referred to as “coming out of reset”. After a processor has come out of reset
it usually:

e has interrupts disabled,

e s in supervisor mode (if the processor supports it) - i.e. it can execute
all instructions and access all addresses without causing an exception
and has all forms of memory and I/O protection turned off.
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¢ isin single-chip mode (if the processor supports it) — i.e. the chip isin a
“self-contained mode” where external memory is not usable and
external buses are disabled.

It is possible to have any code you like executed when a processor comes out
of reset but it is normal if using a high-level language such as C for this
bootstrap code supplied with your compiler.

The compiler vendor supplies an object module or library that contains the
bootstrap code. The bootstrap code usually does two key things:

1. it carries out basic processor configuration, for example bus
configuration, enabling of access to internal RAM

2. it invokes the C language start-up code. Most of this is concerned
with initializing data structures, clearing memory, setting up the stack
pointer, etc.

Directives in the object module/library or in the linker configuration file are
used to ensure that the bootstrap code (and reset vector value if needed) are
placed in the correct location in memory.

C Language Start-up Code

The C language start-up code is either supplied by the compiler vendor or (on
some platforms, in a slightly modified version) by LiveDevices. The start-up
code is often supplied in an object module with a name like “crt0” or
“startup” and the code can usually be identified in a map file by looking
for a symbol with a name something like “_start” or “__main”. The
source to this module is usually available to the user.

On some platforms LiveDevices supplies a different version of the standard
startup code that should be used with RTA-OSEK applications. The RTA-OSEK
Binding Manual and the example supplied with RTA-OSEK will tell you how to
use this.

The start-up code initializes the C language environment. For example it sets
up the stack pointer, the heap used for malloc () and it initializes global
variables by copying their default values from ROM into RAM. Finally the start-
up code invokes the application start-up code.

17

15.1.2 The Application Start-up Code

The application start-up code is the function called “main ()" or in an RTA-
OSEK application the function declared with the macro “0S_MAIN()". The
application start-up function has three things to do in an RTA-OSEK
application:

e Initialize the target hardware into a state where RTA-OSEK and the
application can run

e C(all startos () to start RTA-OSEK Component running.
e Carry out idle-task processing.

For example the application start-up code for an RTA-OSEK application may
look like:
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OS_MATIN ()

/* note that we use this macro for portability
rather than main() as some compilers expect strange
declarations of main() */

{
init_target () ;
StartOS (OSDEFAULTAPPMODE) ;

/* Code that makes up the idle task */
/* functionality. */

/* The idle task must never terminate so if */
/* there is no idle task functionality then */

/* use something like: */

for (;;) { /* Do nothing. */ }

Figure 15:1 : A Typical Main and Idle Task

Start0s () starts RTA-OSEK Component running. Once the kernel is running
ISRs will be called in response to interrupts occurring and tasks will be
scheduled. When start0s () returns the application start-up code is running
as the idle task. The idle task must never terminate so if there is nothing for
the idle task to do an infinite loop must be used.

The init_target () function in the above example is supplied by the user
and is used to initialize the target hardware. The remainder of this section
describes the types of things that you may have to do to initialize target
hardware into a state where your application and RTA-OSEK Component can
run. This description is necessarily generic as every embedded processor is
slightly different. It is probably wise to read this section in conjunction with
the RTA-OSEK Binding Manual for your processor and the processor’s
reference guide.

A Note on the Startup Hook

If enabled — using “Application / OS Configuration” in the RTA-OSEK
configuration tool — the starto0s () function will call the startup hook after
it has initialized RTA-OSEK Component but before it lowers the interrupt
priority level to user level and schedules any tasks. This feature can be used to
carry out the final stages of target initialization — see the section on interrupts
below. The startup hook is an application provided function called
StartupHook ().

Setting up Memory

In general memory configuration is carried out by the bootstrap code that is
run before the application start-up code is executed. In more complex
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15-4

embedded processors, however, the memory configuration set-up by the
bootstrap code may not be what is required for the application. For example,
if the processor has internal RAM and an external memory bus it is most likely
that the bootstrap code will have configured the processor to use the internal
RAM. If your application needs to use RAM on the external memory bus then
you will need to configure the processor to use the external RAM. Configuring
access to RAM typically involves programming bank select and mask registers
— however the details depend on the embedded processor.

Setting up Peripherals

Most embedded applications make use of peripheral devices which may be
part of the embedded processor or attached through 1/O or memory buses.
Examples are CAN controllers, Ethernet controllers and UARTSs. It is generally a
good idea to set-up peripheral devices before RTA-OSEK Component is
started since at this point the application code cannot be pre-empted and has
complete control over interrupts.

Setting up Timers

Most embedded applications use hardware timers. Timers are usually
configured to “tick” and generate interrupts at a fixed frequency. The ISR
associated with the timer interrupts then either activates a task directly or ticks
an OSEK counter (i.e. calls Tick_ xxxx () where xxxx is the name of the
counter).

Setting up a hardware timer depends on the design of the timer but there are
two common forms. In the first, a count register is set to zero and a bound
register is set to the maximum value for the count register. The count register
is incremented by the processor at a given frequency and when it reaches the
value in the bound register it generates an interrupt and resets the count
register to 0. In the second form a count register is loaded with the number of
ticks to occur before an interrupt should be generated. The processor
decrements the count register at a given frequency. When the register reaches
zero an interrupt is generated. Usually the ISR that handles the interrupt is
responsible for reloading the count register.

The frequency at which timers must run will depend on your application. It is
vital that OSEK counters are ticked at the frequency specified in their
definition.

In extended and timing builds of RTA-OSEK applications a callback function
called GetStopwatch () must be supplied that returns the value of a free
running timer that is incremented at the frequency specified via the RTA-OSEK
configuration tool under “Target / Timing Data”. See the “Execution Time”
section of the RTA-OSEK Reference Guide for details.

You will also need to set-up timers to drive Advanced Schedules. See the
section on Advanced Schedules in the RTA-OSEK Reference Guide for details
of what must be done.
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Setting up Interrupts

Interrupt sources for category 1 and 2 interrupts should be configured before
Start0S () is called. Category 1 interrupts may also be enabled so that they
generate interrupts immediately as the handling of category 1 interrupts is
completely outside the scope of RTA-OSEK Component. Category 2 interrupt
sources must not actually generate interrupts until after startos () has
completed initialization.

Set-up the category 2 interrupt sources before calling start0s () and then
enable actual generation of interrupts in the StartupHook () function called
by Start0S (). StartOS () raises the interrupt priority level (IPL) to OS level
as soon as it is called and lowers it to user level just before it returns. Thus
enabling interrupt generation in StartupHook () will not actually result in
an interrupt occurring until Start0s () lowers the IPL just before it returns.

Ensure that the IPL is set to OS level and then both configure interrupt sources
and enable interrupts. Interrupts will not actually be generated until
Start0s () lowers the IPL just before it returns.

A

Reset Vector| Processor
Processor comes Startup Code

out of reset and
1 Processol
starts executing Initalization/t r

from a fixed
address in memory code executes

RTA-OSEK is now running
User tasks and ISR execute

under control of the O

InitialiseTarget ()
User code must set up any StartOs ()
processor peripherals that you wan! [i| Start RTA-OSEk
to use

Processor Priority

Time

Figure 15:2: System Startup

15.1.3 Memory Images and Linker Files

When you build your application, the various pieces of code, data, ROM and
RAM must be located at the right place in memory. This is typically done by
the linker which resolves references made by user-supplied code to the RTA-
OSEK Component library, binds together the relevant object modules and
allocates the resultant code and data to addresses in memory before
producing an image that can be loaded onto the target.

But how does the linker know what to put where in memory? How does it
know where to find ROM and RAM, for example, and what must be allocated
to each of them?

Sections
Code and data output by compilers and assemblers is typically organized into

“sections”, with each “section”. You might see a piece of assembler that says
something like
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.section CODE
.public MYPROC

mov rl, FRED
add rl, rl
ret

.end CODE

.section DATA

.public FRED

.word 100, 200, 300, 400
.end DATA

.section BSS

.public WORKSPACE

.space 200

.end BSS

Figure 15:3: Example Assembler Output Showing Sections

This means that the code for MYPROC should be assembled and the object
code should assume that it will be located in a section of memory called
“CODE" whose location we will later define in the linker. Similarly, the data
labeled “FRED"” will be placed in a section called “DATA", and a space of 200
bytes labeled “WORKSPACE" allocated in section “BSS”.

C compilers typically output your code into a section called “code” or “text”,
constants that must go into ROM in a section called something like “const”,
and variables into “data”. There will usually be more — consult the reference
manual for your toolchain for more details on what the sections are called and
familiarize yourself with where they need to go.

RTA-OSEK itself uses several sections that must be correctly located.

Section ROM/RAM Description

os_intvec ROM The interrupt vector table, if generated
by RTA-OSEK. Name may vary — consult
the RTA-OSEK Binding Manual

os_pur RAM RTA-OSEK uninitialized data
os_pid ROM RTA-OSEK read-only data
os_pir RAM RAM data used by RTA-OSEK that must

be initialized at runtime — the initializer
for this is in os_pird and it will be
initialized by the startos () API.

os_pird ROM The initializer for os_pir
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Section ROM/RAM Description

The following two sections may be used on some platforms that support
separate “near” and “far” address spaces (see below)

os_pnir RAM RAM data used by RTA-OSEK that must
be initialized at runtime — the initializer
for this is in os_pird and it will be
initialized by the start0s () AP

os_pnird ROM The initializer for os_pnir

So far we have yet to map these onto addresses in “real” memory. We must
therefore look at how these sections are mapped into a memory image.

“Near” and “Far” space

On some processors there exist regions of memory space that can be
addressed economically (typically with shorter, smaller instructions that have
simpler effective-address calculations), are located on-chip rather than off-
chip, or that are fabricated in a technology such that they are more cycle-
efficient to access. RTA-OSEK terms this memory “near” space and on these
processors places some key data in these areas. On such platforms you will be
supplied with information on where you must locate “near” space in ROM
and/or RAM, and told in the binding manual what data is placed in it. “Far”
space refers to the whole of memory.

Program and Data Space on Harvard Architectures

Most of the discussion about memory so far has assumed the conventional
“von Neumann” architecture, in which data and code occupy one address
space with ROM and RAM located at different offsets inside this. Some
processors (typically very small microcontrollers like PICs, or high-performance
Digital Signal Processors) adopt a “Harvard” architecture, in which there are
distinct address spaces for code and data (there are some performance
advantages to this that offset the programming disadvantages). On a Harvard-
architecture processor, RTA may use data space (typically RAM) to store data
that would normally be ROM constants on a von Neumann architecture
processor, and the startup code will typically contain code to fetch the a copy
of the constant data into data space. If you are using a Harvard architecture
processor, the RTA-OSEK binding manual will contain information on any use
of RAM to store copies of constants.

The Linker Control File

The linker control file governs the placement of code, data and reserved space
in the image that is downloaded to the target microcontroller. Linker files vary
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considerably between platforms and targets, but typically include at least the
following:

e declarations of where ROM and RAM are located on chip — these vary
across different variants in a CPU family.

e Lists of sections that can be placed into each memory space
e Initialization of the stack pointer, reset address, interrupt vectors etc.
Let us examine a hypothetical linker control file:

ONCHIPRAM start 0x0000 {
Section .stack size 0x200 align 16 # system stack
Section .sdata align 16 # small data
Section os_pnir align 16 # RTA near data

}

def = SP = start stack # initialize stack ptr

RAM start 0x4000 {
Section .data align 16 # compiler data
Section .bss align 16 # compiler BSS
Section os_pur align 16 # RTA zeroed RAM
Section os_pir align 16 # RTA initialized RAM

}

ROM start 0x8000 {
Section .text # compiler code
Section .const # compiler constants
Section os_pid align 16 # RTA data
Section os_pird align 16 # RTA initializer
Section os_pnird align 16 # RTA initializer

}

VECTBL start OxFFO0O {
Section os_vectbl # RTA vector table

}

def _ RESET = _ main # reset to __main

Figure 15:4 A Linker Control File

The file above defines four separate parts of memory — “ONCHIPRAM”,
“RAM"”, “"ROM”, and “VECTBL”. Into each section are placed the
appropriate data, as described by the comments.

The example application supplied with RTA-OSEK will contain a fully-
commented linker control file; consult this and the RTA-OSEK Binding Manual
for details of how to locate the sections correctly for your target platform.

15.1.4 Downloading to your Target

The output of the linker is typically a binary file in some well-known format
(e.g. a.out, coff, elf or IEEE695). These can typically be read by debuggers, in-
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circuit emulators or in-circuit programming equipment, although in some
cases it is necessary to convert the output from this binary format into a text-
based form (such as S-Records or Intel Hex) that can be transmitted to a
simple boot monitor on the target over a serial link. Tools to do this are
usually supplied with your development environment. Consult the
documentation on your target platform and development toolchain for details
of how to program applications into non-volatile memory.

15.1.5 ROMability

All ports of RTA-OSEK are ROMable and are tested running on a target CPU
without any debugger or development equipment connected.

15.2 Starting RTA-OSEK Component

RTA-OSEK Component is started only when a start0s () call is made. This
call is usually made from main()". It is up to you to perform any hardware
initialization that is necessary for the application. The initial state of RTA-
OSEK Component is described in the RTA-OSEK Reference Guide.

StartOS (Appmode) takes a single application mode parameter. This
parameter is either the default mode OSDEFAULTAPPMODE or another mode
that has been configured in the RTA-OSEK GUI.

Have a look at the example main function in Code Example 15:1, which starts
the operating system in the default application mode.

#include "osekmain.h"

OS_MAIN (main)
{

InitializeTarget ();
StartOS (OSDEFAULTAPPMODE) ;
for (;;) |

/* Idle task. */
}

Code Example 15:1 - Example Main Function

When the call startos () returns, RTA-OSEK Component is running and all
interrupts are enabled. Code that appears after start0s (), in the calling
function, is treated as the idle task.

Remember that the idle task is just like any other task except that it can never
terminate. If you do not want RTA-OSEK Component to terminate, you must
make sure that the idle task is an infinite loop.

Most RTA-OSEK Component APl calls can be made from the idle task.
However, you cannot use any calls that require the idle task to terminate. If

-RTA-OSEK applications tend to use OS_MAIN() rather than main(). This is so that applications are portable.
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you want to find out more about these API calls, have a look at the RTA-OSEK
Reference Guide.

Important: RTA-OSEK Component API calls cannot be made and Category 2
interrupts are not handled before a call to Start0S (Appmode) has
returned.

RTA-OSEK Component can be suspended by disabling all Category 2
interrupts and ensuring that they will not be raised on some future event,
such as an output compare match.

RTA-OSEK Component will be suspended when no Category 2 interrupts are
raised and the idle task is running. You can resume RTA-OSEK Component by
re-enabling Category 2 interrupts and then resume making RTA-OSEK
Component calls.

15.2.1 Application Modes

OSEK provides application modes. These allow you to control which tasks
and alarms are automatically started when the operating system starts (and
also allow you to specify different timing behaviors for the system in each
mode).

Applications can be started in different modes, which are part of the complete
functionality. These modes correspond with specific functions of the
application. You could have, for example, an end-of-line programming mode,
a transport mode and a normal mode.

OSDEFAULTAPPMODE is the default application mode. You can define as
many application modes as you want using the RTA-OSEK GUI. You can see,
from Figure 15:5, how they are added to an application.

Application Select Apphode:  |Production - @ @ @
@ Apphode "Production”
Summary

(\ Autostart Tasks There is one autostarted task: osek_idle_task.

@

05 Configuration Autostart Alarms Add AppMode X

@ Tick Rates Enter name for Appkode sor cycles.

Apphiodes |MyAppM0de| I

Timebases [0]4 | Cancel

Optimizations

®

®

Implementation

Figure 15:5 - Configuring Application Modes

Start0S (Appmode) will activate any tasks and set any alarms that you have
specified to be autostarted.
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15.2.2 Autostarting Tasks

The RTA-OSEK GUI is used to set tasks to autostart during a call
Start0s (). Figure 15:6 shows how the task autostart options are set.

Select Task | Taski - @ @ @ default_profile = @ @ @

Task "Task1" [BCCT]

Application
Target
Tasks

@

Summary

@

Task Data

@

Tasksets

I1ZRs

Alarms / Schedules

Eriarity

Scheduling 3

Activations
Floating point
Stack allocation
Termination
Budget

Execution limits

Eesaurce use

Interrupt locks
Primary / Activated

to

Select autostart modes

Apphode:
v| OSDEFAULTAPPMODE
Ll Froduction

1 e

1

LY

Tl The task is autostarted in ticked AppModes|

Execution profile “default_profile”

YWorst-case undefined execution time, undefined stack
Locks resource RES_SCHEDULER.

Mo interrupt locks.

This is an activated profile

Figure 15:6 - Declaring an Autostarted Task

You can specify that autostarting occurs in whichever application modes you
choose. All of the autostarted tasks will have run when Start0S () returns.
In this case Taskl has been autostarted in OSEKDEFAULTAPPMODE and
Production application modes.

15.2.3 Autostarting Alarms

Alarms can be autostarted in the RTA-OSEK GUI. When Start0S () returns,

all autostarted alarms will have been enabled. Figure 15:7 shows you how an
alarm is set to autostart.
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Application Select AppMode:  |MyAppMode hd @ @ @

@ AppMode "MyAppMode™
Summary
O Autostart Tasks There is one autostarted task: osek_idle_task.
@
03 Configuration Autostart Alarms Select autostarted alarms ! ? R‘
@ Tick EateskJ Alarme:
AppiModes

oK

Optimizations

®

®

®

Defaults

@

Implementation

Target
Tasks

I1SRs

Figure 15:7 - Autostarting an Alarm

Alarms are autostarted through the application modes pane, so you are in
effect selecting which alarms are autostarted on a per-application-mode basis.
The alarm in Figure 15:7 has been set to autostart in the MyAppMode
application modes.

If you want a number of alarms to be synchronized at run-time, then you

must make sure that the alarms are autostarted. This is the only way to
guarantee alarm synchronization.

15.3 Shutting Down RTA-OSEK Component

The operating system can be shutdown at any point by making the
ShutdownOS () API call. When this happens, RTA-OSEK Component will
immediately disable interrupts and then enter an infinite loop. If you have
configured the ShutdownHook () it is called before the infinite loop is
entered.

15.4 Restarting RTA-OSEK Component

RTA-OSEK provides the osReset0S () APl call to reset the kernel to its
initialized state. You can then call start0s () again to run your application
in a different application mode.

Portability: osReset0S () is unique to RTA-OSEK and is not part of the
OSEK or AUTOSAR standards.

To use osReset0S () in your application you must enable it as shown in
Figure 15:8.
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Application Optimizations mainly sffecting | APplication Optimizations
analysis
@ [~ Moupward activation Atask may activate any task. The application is not suitakle for fiming analysis
Burmmary
® [~ Unique task priarities Tasks may share priorities. The application will not be suitable for timing analysis if tasks do share priorities
@

085 Configuration

O]

Startup Modes

[~ Disallaw Schedulef)

Optimizatiohs mainly affecting

The application can call Schedule). The application is not suitable for timing analysis.

== Timing analysis can NOT be perfor

perfarmance
@ [ Optimize static interface Offline static analysis code optimizations are enabled
Timebases [~ Use fast task activation Standard Activate Task/ChainTask implementation is used.
@
C W Fast Activate Taskset/ChainTaskset implementation is used. (Mo runtime E_OS_LIMIT checks)

Optimizations

Iv Lightweight tegmination

The application may use lightweight task termination.

Defaults [~ Default lightweight Tasks defaultto heawweight termination

@ [~ Ignore FE declaration Floating-point tasks and ISRs are treated normally.
hacros

(:\ Optimizations mainly affecting size

@

Implernentation

[~ Omi 05 Restart
[~ OmitRES_SCHEDULER

[v Omit IncrementCounterl)

The 05 can be restarted after calling osResetOS0) in the idle task.
RES_SCHEDULER s used

IncrementCounter) can not be called from project code.

= SetRelAlarm(0) is legal and represents an interval equal fo the counter modulus

Figure 15:8 — Enabling osResetOS ()

When using osResetOS () in your application, there are two important
conditions that you must observe.

Firstly, osReset0S () must only ever be called from the application’s idle task
when all other kernel services, such as alarms, schedule tables and schedules,
are inactive, and no other application tasks are in the running, waiting or
ready states. Any interrupt sources that could cause task activations should
also be disabled.

Secondly, the structure of the idle task must reflect the fact that the kernel
can be restarted. Such an idle task is shown in Code Example 15:2.

OS_MATIN() {
AppModeType CurrentAppMode;

InitialiseTarget ();

/* Set up normal application mode */
CurrentAppMode = Default;

while (1) {

StartOS (CurrentAppMode) ;

/* Idle task */

while (1) {
/* Test for mode switch */
if ( ModeSwitchNecessary )

break;

}

/* Reset 0S */

osResetOS ()

Code Example 15:2 — Using osResetOS() in the idle task
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15.5 Summary

e RTA-OSEK will not work unless everything is located in the right place in
memory.

e There are several operations that must be carried out before RTA-OSEK
Component can run.

e RTA-OSEK Component doesn’t run until the start0s () call is made.

e RTA-OSEK Component can be stopped at any time wusing the
ShutdownoOs () call.

e RTA-OSEK Component can be reset using the osReset0S () call. It can
then be restarted in a different application mode.

e Application modes allow you to control the tasks and alarms that are
autostarted.

15-14 Startup and Shutdown RTA-OSEK v5.0.2



16 Error Handling and Execution Monitoring

During the early stages of development you will need to debug and monitor
the execution of your application. Execution monitoring can be as
straightforward as generating a trace of the tasks as they run. You might,
however, need to monitor the actual execution time or stack usage of tasks to
obtain worst-case values for timing and stack analysis.

RTA-OSEK provides OSEK hooks. A hook is a user provided C function with a
specified APl. The hooks are called by RTA-OSEK Component at particular
points during its operation.

Code that runs inside a hook function can make a restricted number of API
calls. The RTA-OSEK Reference Guide lists these restrictions.

OSEK defines the following hooks:
e Startup Hook.
e Shutdown Hook.
e Error Hook.
e PreTask Hook.
e PostTask Hook.

The OSEK hook routines are optional and can be used in any build of RTA-
OSEK Component. In addition to the OSEK hook routines, RTA-OSEK defines
two additional hooks:

e Stack Fault Hook.
e Qverrun Hook.

RTA-OSEK hook routines are mandatory. The Stack Fault Hook is only used in
if you have extended tasks configured. The Overrun Hook is only used in the
Timing and Extended builds.

You will find out more about each of these hooks later in this chapter.

16.1 Enabling Hook Routines

In the RTA-OSEK GUI you can select the hooks that you want to use in your
application. Have a look at Figure 16:1.

RTA-OSEK v5.0.2 Error Handling and Execution Monitoring 16-1



16-2

Application 0S5 Configuration Summanry
@ OIL Yersion | The OIL version is Autosar OZ v1.0 compatible.
Summary

Kemel Yersion | The kermel version is w5.00
@ 05 Status | The 05 status is extended.
The application uses no hooks.
Errar lagging | Errorlogging does not record the 1D of the service detecting the error.

05 Configuration

©

Startup Modas

@ . . .
T _— Min. Preemption Priority | The minimum priority for preemptive tasks is 0
@ Maritar Stack | The stack will not be monitored.

Cptimizations

Alarm Callbacks | Alarm Callbacks are allowed.

@ GetSRID{) | GetlSRIDY) can be called.
Defaults
@ futosar Compliance | Autasar 3C1 campliant.
@
Macros
@

Implementation [ Startup Hook
[~ Shutdown Hook
v B ik

[~ Pie Task Hook
[~ Post Task Hook

2lx|

Figure 16:1 - Configuring OSEK Hooks for an Application

Figure 16:1 shows how the Startup Hook and Error Hook have been enabled

(remember that OSEK hooks are optional).

Important: If you do not provide code for a hook that you have enabled,

your program will not link correctly.

RTA-OSEK defines a set of macros that are only defined if the corresponding

hook is enabled. These macros are called:

OSEK_STARTUPHOOK
OSEK_SHUTDOWNHOOK
OSEK_PRETASKHOOK
OSEK_POSTTASKHOOK
OSEK_ERRORHOOK

These macros allow you to conditionally compile the optional hooks routines

into your code:

#ifdef OSEK_STARTUPHOOK
OS_HOOK (void) StatupHook (void)
{

/* Your code */

}
#endif /* OSEK_STARTUPHOOK */

Error Handling and Execution Monitoring
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16.2 Startup Hook

The Startup Hook is called by RTA-OSEK Component during the
StartOS (OSDEFAULTAPPMODE) call after the kernel has been initialized,
but before the scheduler is running. Figure 16:2 shows the execution of the
Startup Hook relative to the initialization of RTA-OSEK Component.

User Startup First user task
Code running

Figure 16:2 - Execution of the Startup Hook

Code Example 16:1 shows how Startup Hook should appear in your code.
#ifdef OSEK_STARTUPHOOK

OS_HOOK (void) StartupHook (void) {
/* Startup hook code. */
}

#endif

Code Example 16:1 - Using the Startup Hook

The Startup Hook is often used for the initialization of OSEK COM or
initialization of target hardware (configuration and initialization of interrupts
sources, for example).

16.3 Shutdown Hook

The Shutdown Hook is called during the execution of the ShutdownOS ()

API call. Figure 16:3 shows the execution of the Shutdown Hook with respect
10 a ShutdownOS () API call.

Figure 16:3 - Execution of the Shutdown Hook

Code Example 16:2 shows how Shutdown Hook should appear in your code.
#ifdef OSEK_SHUTDOWNHOOK

OS_HOOK (void) ShutdownHook (StatusType s) {
/* Shutdown hook code. */
}

#endif

Code Example 16:2 - Using the Shutdown Hook
The Shutdown Hook is often used for shutting down COM.
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You should not normally return from the Shutdown Hook. If you do,
however, the behavior of RTA-OSEK Component is to enter an infinite loop
running at OS level.

16.4 Error Hook

All RTA-OSEK Component API calls return a status code. You can find out
more about the status codes in the RTA-OSEK Reference Guide.

The status code returned by an API call can be checked at run-time. This
means that you can build some degree of run-time fault tolerance into your
application.

This may be useful if you want to check for error conditions that can occur in
the Standard build (such as, ActivateTask () returning E_OS_LIMIT).

Code Example 16:3 shows you how this can be done.
if (ActivateTask (Taskl) != E_OK) {

/* Handle error during task activation. */

Code Example 16:3 - “On-the-Fly” Error Checking

It is also possible to configure a “catch all” error handler in OSEK. This is
called the Error Hook . If the Error Hook is enabled then it is called by RTA-
OSEK when any API call is about to return a status code that is not E_OK. The
status code is passed into the Error Hook routine to determine the type of
error.

Depending on the severity of the error you can decide whether to terminate
(by calling shutdown0S ()) or to resume (by handling or logging the error
and then returning from ErrorHook () ).

Code Example 16:4 shows you the usual structure of the Error Hook.
#ifdef OSEK_ERRORHOOK

OS_HOOK (void) ErrorHook (StatusType status) {
switch (status) {

case E_OS_ACCESS:
/* Handle error then return. */
break;

case E_OS_LIMIT:
/* Terminate. */
ShutdownOS (status) ;

default:
break;
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#endif

Code Example 16:4 - Suggested Structure of the Error Hook

The Error Hook is adequate for coarse debugging. Sometimes, however, you
will need to know more about the error. You may wish to know, for example,
which API call resulted in the error being generated and which parameters
were passed to that APl call. This information is available at run-time by
configuring advanced error logging using the RTA-OSEK GUI.

16.4.1 Configuring Advanced Error Logging

In RTA-OSEK, two levels of detail are available:
1. Do not record the service details (default)
2. Record the APl name only.
3. Record the APl name and the associated parameters.

Figure 16:4 shows how the level of detail is defined in the RTA-OSEK GUI.

0S Configuration Summary

DIL Wersion The OIL wersion is Autosar 05 1.0 compatible.

Kermel Yersion The kemel version isw5.00.

05 Status The 05 status is extended.
Hooks The application uses no hooks.

Min. Preemption Priority The minimum priorty for preemptive tasks is 0.

tomitar Stack The stack will not be maonitored.

Alamn Callbacks Alarm Callbacks are allowed.

GetSRID() GetlSRID( can be called.

Autosar SC1 compliant.

Errar logging I Error logoing does not record the |D of the service detecting the error.
Autozar Compliance |

" Don't record service details

" Record service [0 anly

f* Record service |D and parameters

Figure 16:4 - Configuring Advanced Error Logging

If you choose not to record the service details, your application does not need
to pay the additional overheads associated with collecting this information.
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16.4.2 Using Advanced Error Logging

When error logging is enabled, RTA-OSEK provides a set of macros for
accessing the name and the associated parameters of the API call that caused
the error.

You can find out which APl call caused the error using the
OSErrorGetServiceId() macro. This macro returns an
OSServiceIdType of the form 0SServiceId_<API name>. If, for
instance, an  ActivateTask () call results in an error,
OSErrorGetServiceId will return 0SServiceId_ActivateTask

The parameters to the API call are available using macros in the form shown in
Code Example 16:5. A macro is defined for each parameter of each API call.

‘OSError_<API Name>_<API Parameter Name> ‘

Code Example 16:5 - Advanced Error Logging

Using the ActivateTask () example again,
OSError_ActivateTask_TaskId will return the TaskId parameter
passed to ActivateTask (). This additional error logging information can
be usefully incorporated into the ErrorHook () code. This is shown in Code
Example 16:6.

#ifdef OSEK_ERRORHOOK

OS_HOOK (void) ErrorHook (StatusType status) {
OSServicelIdType callee;
switch (status) {

case E_OS_1ID:
/* API call called with invalid handle. */
callee = OSErrorGetServicelId();

switch (callee) {

case 0OSServiceId ActivateTask:
/* Handle error. */
break;

case 0OSServiceId_ ChainTask:
/* Handle error. */
break;

case 0OSServicelId_SetRelAlarm:
/* Handle error. */
break;

default:
break;
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break;
case E_OS_LIMIT:
/* Terminate. */

ShutdownOS () ;

default:
break;

}

#endif

Code Example 16:6 - Additional Error Logging Information

The macros for obtaining the APl name and the associated parameters should
only be used from within the Error Hook. The values they represent do not
persist outside the scope of the hook.

Important: When you use extended error logging the value returned by
OSErrorGetServiceId() may be misleading. This generally happens
when API calls have a side effect. For example if you send a message using
COM, a possible side effect is to activate a task. If that task activation results
in an error  then OSErrorGetServiceId() will return
OSServiceId_ActivateTask even though the API call that you made
was SendMessage () .

16.4.3 Working out which Task/ISR is Running

When debugging your RTA-OSEK applications you will probably want to know
which task or Category 2 ISR is responsible for raising the error. OSEK OS
provides the GetTaskID () API call to tell you which task is running.

Code Example 16:7 shows you how to do this.

TaskType CurrentTaskID;

/* Passes a TaskRefType for the return
* value of GetTaskID) */
GetTaskID (&CurrentTaskID);

if (CurrentTaskID == Taskl) {
/* Code for task 1 */

} else {
if (CurrentTaskID == Task2) {

/* Code for task 2 */
}

Code Example 16:7 - Using GetTaskID ()
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16-8

AUTOSAR OS extends the OSEK scheme to Category 2 ISRs with the
GetISRID () APl call

In RTA-OSEK the presence of GetISRID() is configuration option. This
means you can switch off the APl to maintain OSEK OS compatibility or
enable the API to ease your debugging as shown in Figure 16:5.

0S Configuration Summary

OIL Wersion The OIL version is Autosar 05 1.0 compatible.

Kernel Yersion The kernel version is+w5.00.

05 Status The O3 status is extended.
Hooks The application uses ErrorHoolk.
Errar lngging Error logoing records the ID of the service detecting the error and its parameters,

Manitor Stack, The stack will not be manitared.

Alam Callbacks Alarm Callbacks are allowed.

GetSRID GetlSRID() can notbe called.

Autosar SC1 compliant.

Min Preemption Pricrity | The minimum priority for preemptive tasks is 0.
Autozar Compliance |

 MNat allowed

| Ok I | LCancel I

Figure 16:5 - Enabling GetISRID()

Unlike GetTaskID(), GetISRID() returns the ID of the ISR through the
return value of the function rather than as an out parameter to the function
call. If you call GetISRID() and a task is executing then the function
returns INVALID_TISR.

The following code shows how to use GetISRID() together with
GetTaskID().

ISRType CurrentISRID
TaskType CurrentTaskID;

/* Is an ISR running? */
CurrentISRID = GetISRIS();
if ( CurrentISRID /= INVALID_ISR )
{
if (CurrentISRID == ISR1l) {
/* Work out which ISR */
}

} else {
GetTaskID (&CurrentTaskID) ;
if ( CurrentTaskID == Taskl ) {

/* Work out which task */
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16.5 Pre and Post Task Hooks

The PreTask Hook is called by RTA-OSEK Component whenever a task moves
into the running state. This means that the PreTask Hook will also be called
whenever a task is resumed after preemption.

The PostTask Hook is called by RTA-OSEK Component whenever a task
moves out of the running state. The PostTask Hook will be called when the
task terminates and each time a task is preempted.

Figure 16:6 shows where the PreTask and PostTask Hooks are called relative
to task preemption.

4 tire sequence runs a OS leve

Enti
Contexi All Category 2 ISRs are diabled
Switch

Task2

Increasing Priority

Task: activated
RTA-OSEK context switch starts

\4

Time
Figure 16:6 -The PreTaskHook() and PostTaskHook() Relative to Task Preemption

Code Example 16:8 shows how the hooks should appear in your code.
#ifdef OSEK_PRETASKHOOK

OS_HOOK (void) PreTaskHook (void) {
/* PreTask hook code. */
}

#endif

#ifdef OSEK_POSTTASKHOOK

OS_HOOK (void) PostTaskHook (void) {
/* PostTask hook code. */

}

#endif

Code Example 16:8 - The OSEK PreTaskHook and PostTaskHook

The PreTask and PostTask Hooks are called on entry and exit of tasks and for
each preemption/resumption. This means that it is possible to use these hooks
to log an execution trace of your application. Since the same PreTask and
PostTask Hooks must be used for all of the tasks in the application, it is
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necessary to use the GetTaskID () API call to work out which task has been
or will be running when the hook routine is entered.

16.6 Stack Fault Hook

16-10

The StackFaultHook () is called:

1. whenever RTA-OSEK Component detects a problem with stack
management when using extended tasks.
2. whenever RTA-OSEK detetcts a stack overflow when Stack Monitoring
is enabled and configured to call the StackFaultHook ().
The first of these cases is discussed in this section. The second case is
discussed in Section 16.8.2.

Important: If you use any extended tasks, you must provide a handling
function for stackFaultHook () in your application code

Portability: The Stack Fault Hook is only used in RTA-OSEK; it is not part of
the OSEK OS standard.

StackFaultHook () is called from RTA-OSEK Component with 3
parameters:

e StackID.
This will always be zero for targets with a single stack. Otherwise it will
be an integer indicating which stack the fault applies to. The RTA-OSEK
Binding Manual explains how stacks are numbered on your target.

° StackError.
This is an integer indicating the cause of the error.
OS_EXTENDED_TASK_STARTING:
The task could not have the starting stack pointer set because the
application stack pointer was already too high or too low.
OS_EXTENDED_TASK_RESUMING:
The task could not have the resuming stack pointer set because the
application stack pointer was already too high or too low.
OS_EXTENDED_TASK_WAITING:
The task could not be moved off the stack into the waiting state because
it has used more stack than declared for it during configuration with the
RTA-OSEK GUI.

e Overflow.
When the stackError is OS_EXTENDED_TASK_STARTING or
OS_EXTENDED_TASK_RESUMING the Overflow is the number of
bytes by which the current stack pointer exceeds the worst case
dispatched point calculated by RTA-OSEK from the Stack Allocation
figures you provided. You will need to determine in your application
which task of lower priority than the extended task has the wrong stack
allocation declared and then add Overflow bytes to the Stack Allocation
for that task.
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When the stackError is OS_EXTENDED_TASK_WAITING the
Overflow is the number of bytes by which the stack use of the task
currently executing WaitEvent () exceeds the configured
WaitEvent () stack size. To fix this error you need to add Overflow
bytes to the configured waitEvent () stack allocation for the task.

The Stack Fault Hook is shown in Code Example 16:9.

OS_HOOK (void) StackFaultHook (
SmallType StackID,
SmallType StackError,
UIntType Overflow) {

for (;i) |
/* Loop forever. */

}

Code Example 16:9 - The Stack Fault Hook

StackFaultHook () can only occur when the wrong stack usage
information is entered into the RTA-OSEK GUI. Check the stack declarations
for each task that has lower priority than the currently running task.

Important: You should not return from the StackFaultHook (). Entering
the hook usually means that your stack is corrupt. If you do return from the
hook then the behavior of your application is undefined.

16.7 Measuring and Monitoring Execution Time

Portabilty: All timing monitoring and measuring facilities provided by RTA-
OSEK are not part of the OSEK or AUTOSAR standards and are therefore not
portable.

RTA-OSEK Component provides facilities for measuring the execution times of
user code at the kernel level. Normally you will use the Timing build to
measure the execution time for your application. However, the timing
measurement facilities are available in both the Timing build and Extended
build of RTA-OSEK Component. If you use timing measurement facilities in
Extended build, the times that you obtain will include the additional overhead
required to perform more extensive error checking.

The kernel and application code are identical for Timing build and Standard
build, other than the code needed to support the timing measurement.

16.7.1 Enabling Timing Measurement

For timing measurement a ‘stopwatch’ source must be provided. This is
usually a free running counter on your target hardware. RTA-OSEK
Component accesses the stopwatch using the GetStopwatch () callback

function. This function is shown in Code Example 16:10.
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OS_NONREENTRANT (StopwatchTickType)
GetStopwatch (void) {
return CurrentValueOfFreeRunningCounter;

}

Code Example 16:10 - Accessing the Stopwatch

If the stopwatch runs slower than the processor clock, subtraction of two
values to provide an execution time has inherent uncertainty. As a result of
this you must also provide a function that allows RTA-OSEK Component to
compensate for this uncertainty. Code Example 16:11 shows how
GetStopwatchUncertainty () is used.

OS_NONREENTRANT (StopwatchTickType)

GetStopwatchUncertainty (void) {
return Uncertainty;

}

Code Example 16:11 - Compensating for Uncertainty

The returned uncertainty value is usually O if the stopwatch tick length is the
same as a CPU instruction cycle and 1 otherwise.

You may find that there are some systems where the uncertainty can be
greater than 1. This is rare, but you can declare that the stopwatch runs at
40MHz and the counter hardware only runs at T0OMHz. You can then multiply
the counter value by 4 in GetStopwatch () and report an uncertainty of 4.

Important: Implementations of GetStopwatchUncertainty() and
GetStopwatch () must be provided if you are using the Timing or Extended
builds. If you do not provide these functions, your program will not link
correctly.

16.7.2 Measuring Execution Times

When your application uses the Timing or Extended builds, RTA-OSEK
Component measures the execution times of each task and Category 2 ISR in
your application.

RTA-OSEK Component maintains a log of the longest observed execution time
over all executions for each task or Category 2 ISR. You can get the largest
observed execution time for each task and ISR using the
GetLargestExecutionTime () APl call.

16.7.3 Setting Timing Budgets

The execution time budgets for each task and Category 2 ISR can be set in
your application. These values are optional and do not have to be supplied.
An execution budget has been specified in Figure 16:7.
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Figure 16:7 - Specifying the Execution Time Budgets

When using the Timing or Extended build, RTA-OSEK Component will check
to see whether tasks or Category 2 ISRs consume more time than is specified
in the budget. If the budget is exceeded, RTA-OSEK Component will call the
OverrunHook () when the task terminates (or, in the case of an extended
task, when it calls WaitEvent ()). This allows you to log the budget overrun.

Important: OverrunHook () is mandatory if you use the Timing or Extended
builds of RTA-OSEK Component.

The prototype for OverrunHook () is shown in Code Example 16:12.

}

#endif

#ifdef OS_ET_MEASURE

OS_HOOK (void) OverrunHook (void) {
/* Log budget overruns. */

Code Example 16:12 - The OverrunHook Prototype

You should be aware that, for extended tasks, the execution time is reset to
zero at the start of the task and when resuming from WaitEvent ().
Normally the budget is used to check the execution time between consecutive
WaitEvent () calls.

You should also be aware that the execution time is only sampled by RTA-
OSEK Component when a task is preempted by another task or ISR.
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In some unusual circumstances, it is possible for a budget overrun to be
missed. This could happen when the interval between preemptions
approaches the maximum interval that can be measured by a
StopwatchTickType. The range of a StopwatchTickType is target
dependent, but is normally 2 or 2°2.

16.7.4 Obtaining Blocking Times

You can prevent timing analysis from being too pessimistic. To do this you will
need to provide accurate timings both for the time spent inside critical
sections protected by resources and for the amount of time that interrupts are
disabled.

The timing APl call GetStopwatch() or GetExecutionTime () can be
used to get the current stopwatch value immediately before and immediately
after these sections of code. Additional code must be provided to hold
intermediate values and to maintain the ‘high watermark’ times.

Any code that your application uses to obtain execution times should be
conditionally compiled. RTA-OSEK provides the macro OS_ET_MEASURE,
which allows you to do this. Code Example 16:13 shows an example of
conditional compilation when getting the time that a resource is held.

TASK (Taskl) {

#if defined(OS_ET_MEASURE)

/* Get time for GetExecutionTime() call */

/* itself. */

start = GetExecutionTime();

finish = GetExecutionTime() ;

correction = finish - start -
GetStopwatchUncertainty () ;

/* Measure resource lock time. */
start = GetExecutionTime;

#endif
GetResource (Resourcel) ;
/* Critical section. */

ReleaseResource (Resourcel) ;

#if defined(OS_ET_MEASURE)

finish = GetExecutionTime() ;
/* Calculate amount of time used. */
used = finish - start - correction +

GetStopwatchUncertainty () ;
#endif
}
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Code Example 16:13 - Use of Conditional Compilation

16.7.5 Imprecise Computation

Because the overheads imposed by the additional timing facilities are small,
the Timing build can be used for production code. You can exploit this fact to
perform imprecise computation.

Imprecise computation is useful in applications that iteratively converge on a
result. For example, you might use Newton-Raphson to converge on a value.

If a task has not traveled down the worst-case path, then it will not have run
in the worst-case execution time. If this is the case, any ‘spare’ CPU cycles
available to the task can be used to refine a result. This technique is illustrated
in Code Example 16:14.

TASK (Taskl) {

while ((Budget - GetExecutionTime()) > LoopTime)
{

/* Perform iterative refinement of output. */

}

Code Example 16:14 - Imprecise Computation

16.8 Measuring and Monitoring Stack Use

16.8.1 Measurement

Each task profile can include an optional stack space figure that is used by
RTA-OSEK to calculate the worst-case stack usage of your entire application.

The figures that you supply should represent the worst-case stack used by
each task and should be the sum of the space required by the task, plus the
space required for each function call made by the task on the worst-case path
in the function call hierarchy.

Normally you would obtain this information from your linker or from your
debugging/emulation environment. This is the preferred method, however, if
your toolchain does not provide this, you can use internal facilities provided by
RTA-OSEK Component to measure these figures.

The GetStackOffset () API call is used for stack measurement in RTA-
OSEK Component. On targets that have a single stack, GetStackOffset ()
returns a scalar value indicating the number of bytes of stack space
consumed. If your target has multiple stacks, however, GetStackOffset ()
returns a data structure containing the number of bytes used on each stack.
The RTA-OSEK Binding Manual for your target will tell you how to extract
stack space information from this data structure.
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Portability: Stack measurement is a feature of RTA-OSEK and is not portable
to other implementations of the OSEK or AUTOSAR OS standards.

The values returned are measured from the initial location of the stack
pointer. So, when you make the call in a task or ISR, the value returned will
include the stack consumed by C startup code, the main program (the idle
task) and all pre-empted tasks or ISRs (including the space consumed by OS
context idle task and main program). The figures returned by
GetStackOffset () do not include the stack space required for the call

itself. Figure 16:8 shows the size returned by GetStackOffset () when it
is called from task TaskHIGH.
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Figure 16:8 - Stack Diagram

To calculate the worst-case stack usage for each task or ISR, you will need to
make a GetStackOffset () call at each leaf of your function call hierarchy.
You will also have to calculate the maximum value returned by these calls.
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If you have leaves that are library functions then you will need to make a
GetStackOffset () call in the parent function and determine the worst-
case stack space of the library call. You can find the worst-case stack space
requirements for the RTA-OSEK Component APl in the RTA-OSEK Binding
Manual for your target.

If you make calls to other libraries at the leaves of your call hierarchy, you

must contact the vendor to obtain the worst-case stack requirements for the
library calls you make.

Code Example 16:15 shows a task that makes a number of function calls. It
shows the placement of GetStackOffset () calls required to measure stack
usage.

StackOffsetRefType Measurementl;
StackOffsetRefType Measurement?2;
StackOffsetRefType Measurement3;

void f1l(void) {

GetStackOffset (&Measurementl) ;
ActivateTask (TaskB) ;

}
void f2 (void) {

£3();
GetStackOffset (&Measurement?) ;
memcpy (x,y) ;

}
void f£3(void) {

GetStackOffset (&Measurement3) ;

}

TASK (Task3) {
£1();
£2();
TerminateTask () ;

}

Code Example 16:15 - Measuring Stack Usage

The worst-case stack usage for Code Example 16:15 is the maximum value of:

Measurementl

+ Stack space requirements for ActivateTask () call
— Stack offset for pre-empted task

— Stack space for OS context

Measurement?2

+ Stack space requirements for C library memcpy call
— Stack offset for pre-empted task

— Stack space for OS context
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Measurement3
— Stack offset for pre-empted task
— Stack space for OS context

The easiest way to measure the stack space required per task (without having
to worry about the size of the stack at the point of pre-emption) is to run
each task in isolation with interrupts disabled.

Normally you would make a GetStackOffset () call immediately after
StartOS () to baseline the stack pointer. You can then use this in your
calculation.

This method, however, will only work correctly if start0os () returns. If you
have autostarted tasks that never return, you will never return from
Start0s () and the baseline value will never be set.

If this happens, you must baseline your stack in some other way. You could
do this, for example by recording the value of the stack pointer prior to
making the start0s () call.

16.8.2 Monitoring

AUTOSAR OS allows you to monitor the stack for overruns. The feature is
available for all RTA-OSEK build levels.

To use stack monitoring you need to specify a stack allocation for every task in
your application. RTA-OSEK uses this information to calculate the worst case
stack usage at which each task in your system will start.

When stack monitoring is enabled, RTA-OSEK checks whether the current
stack pointer is higher than the pre-calculated worst case stack value.

Important: Enabling stack monitoring prevents you from performing
schedulability analysis (a system which contains stack overruns cannot be
correct in the time domain). You should ensure that your application runs
correctly, using stack monitoring as a debugging aid, before performing
schedulability analysis.

You can choose between two reactions when Stack Monitoring is enabled:

e Call sShutdownOs ()
This the behavior specified by AUTOSAR OS. When the stack fault occurs,
RTA-OSEK will automatically call shutdownos (). If you have configured
a ShutdownHook () then this will be called as normal.

e Call stackFaultHook ()
Calling stackFaultHook () is RTA-OSEK specific. This allows you to

work out from the parameters passed to the StackFaultHook () by
how much your declared task/ISR stack usage is in error

Details about the StackFaultHook () are given in Section 16.6.

Important: The only StackError code that can occur as a result of the
stack monitoring functionality detecting an error is when a task starts. In RTA-
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OSEK this condition is represented by OS_EXTENDED_TASK_STARTING. This
code will be returned for both basic and extended tasks when the current
stack pointer is higher than the worst case dispatch point calculated from the
Stack Allocation figures you provided to RTA-OSEK.

When using stack monitoring, the task that has consumed too much stack
space will be that immediately below the currently running task on the stack.
You can use the post-task hook and GetTaskID () to identify the task in
error and add Overflow bytes to the configured stack allocation to correct
your problem.

Stack monitoring impacts both the memory footprint and the run-time
performance of RTA-OSEK and is therefore disabled by default. Stack

monitoring is enabled in Application -> OS Configuration. Figure 16:9 shows
how to select your chosen option.

0OS Configuration Summary

OIL Yersian The QlLversion is Autasar 05 1.0 compatible.

Kemel Wersion The kernelwversion is «5.00.

05 Statug The 05 status is extended.
Hooks The application uses ErorHook.
Error logging Error logging records the ID of the service detecting the error and its parameters.

Monitor Stack The stack will not be monitored.

Alanm Callbacks are allowed.

Alarm Callbacks

GetlSRID()

Min. Preemption Priority | The minimurm priotity for preemptive tasks is 0.
Autozar Compliance |

£ Dri StackFaultH ook() on eror

Figure 16:9 - Enabling Stack Monitoring

When you configure Stack Monitoring you need to define a stack allocation
for each task and Category 2 ISR. You do not need to configure the stack
sizes for RTA-OSEK context — this is built into the tools already. The only
figures you need to provide are the worst case usages for the tasks and ISRs
themselves.
RTA-OSEK provides 3 ways to define the stack allocation:

1. Task/ISR defaults

2. Per task/ISR configuration

3. Execution profile information
These are the same schemes that you can use when configuring the stack
usage for extended tasks and the same precedence rules apply as shown in
Figure 16:10.
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Task/ISR Stack Allocatior

Specify stack allocation 21 x|
Stack bptes) [E Kl

overrides if sef

Task/ISR Execution Profile
[Enter worst case values 2l
Time [2000 [processor =] cyctes ~1s|

sack [2 ¢ |twes)

overrides if sef

overrides if sef

Default Values

Figure 16:10 - Stack Allocation Override Precedence

Setting Defaults

Default settings set the stack allocation for all tasks, all Category 2 ISRs and all

Category 1 ISRs. You can see how to do this in Figure 16:11. If no other stack
allocation is specified elsewhere then RTA-OSEK uses the default value.

Application | Application defaults

@ Diefault Task Stack | Default stack allocation for tasks is 30 bytes.
Summary

Diefault Categoml Stack | Default stack allocation for categony 1 15Rs is 10 bytes.

©

08 Configuration i Default Categom? Stack, I Diefault stack allocation for categorny 2 I3RS is 20 bytes.

®©

Startup Modes

©

Timehases

©

Optimizations

@

Defaults

Figure 16:11 - Setting default stack allocation
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Configuring Stack Allocation per Task/ISR

Each task and ISR can specify its own stack allocation as part of the task/ISR
configuration as shown in Figure 16:12 and Figure 16:13 respectively.
Whenever you specify a stack allocation value for a task/ISR the value
configured overrides any default value that you might have set.

Select Task: ITask‘I j@ @ @ Idefault_profile j @ @ @

Task "Task1" [BECC1]

Priarity | Pricrity 0.
Scheduling | Scheduling is preemptable.
Ackivations | Maxirmurm nurmkber of simultaneous task activations is 1.
Autastart | Mot autostarted.
Floating point | Floating-pointis not used.

. éiéiﬁi{"é'|'|5€5iiaﬁ""""""‘gl 42 bytes of stack are allocated for the task. (Execution profile information will be ignored.)

Termination | Termination type is taken from the default value (lightweight).

Budget | The execution budgetis undefined.

Figure 16:12 - Setting Stack Allocation for Tasks

Select Category 2 15R: IMiIIisecondTimer j@ @ @ Idefault_profile j ® @ @

ISR "MillisecondTimer"

Pricrity A W ectar Friority 1. Wector "INTC software interrupt 0",

Floating paitt Floating-pointis not used.

Mo buffer.

Buffering

The execution budget is undefined.

"""'"§'{§Ei{";-'.'|'|B'E§t'i55""""""‘;l 24 bytes of stack are allocated for the ISR, (Execution profile information will be ignored.)

Budget

Figure 16:13 - Setting Stack Allocation for Category 2 ISRs

If a stack allocation is specified with this method then it will override
automatic calculation from the execution profile.

Automatically calculate Stack Allocation from the Execution

The third option for specify stack allocation is to use the execution profile
information. Execution profile information overrides and default stack
allocation provided.

Users who build a timing model and use the schedulability analysis features of
the RTA-OSEK Planner can create a more sophisticated model of stack usage
for analysis.

The execution profile for each task contains information about the worst case
execution time and worst case stack usage. Your timing model can include
multiple profiles for tasks and ISRs to reflect differing execution times and/or
stack space requirements when the task/ISRs are invoked at different times.
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RTA-OSEK can use the execution profile information to calculate the required
stack allocation.

16.9 Catching Errors at Compile Time

So far you have learnt about error checking at run-time. It is better, however,
to try and remove errors at compile time. RTA-OSEK can help with this if you
use the static interface wherever possible.

When you use the static interface you can only use API calls and objects that
are valid for a specific task or ISR. Consequently you can only make API calls
that RTA-OSEK has already checked for validity during the build process.

Any attempt to use invalid parameters will be detected by the compiler, which
can potentially save you a significant amount of debugging time.

16.10 Summary

16-22

e  OSEK provides facilities for debugging through its hook mechanisms.

e The Startup, Shutdown, PreTask and PostTask Hooks allow you to profile
your application at run-time.

e The Error Hook provides a mechanism for trapping exceptional conditions
at run-time. It can provide a resumption model of exception handling.

e Further information on the source of an error is available through macros
accessible in the Error Hook.

e RTA-OSEK supports AUTOSAR OS Stack monitoring plus additional
special features for stack measurement.

e RTA-OSEK provides additional support for execution time measurement
and runtime monitoring. The Timing and Extended builds of RTA-OSEK
Component allow you to measure the execution times of user provided
code.

Error Handling and Execution Monitoring RTA-OSEK v5.0.2



17 Building Timing Models

You have seen how systems receive stimuli and generate responses. You have
also seen how stimulus/response models are used in RTA-OSEK to capture a
specification of system behavior and how you can use that specification in the
design process.

If you are building a real-time system, there is an extra dimension to this
model. A specification of the required real-time performance is needed.

The meaning of the term ‘real-time’ is often misunderstood. People tend to
think that real-time means ‘real-fast’. Real-time systems are systems where
every response must always be generated on time whenever the associated
stimulus arrives.

You might need to generate a response in minutes, hours or even years after
the stimulus arrives. So, no matter how long it takes, if the response must be
generated within a specific time frame, then the system is real-time.

The latest time by which a response must be generated is called its deadline.
Figure 17:1 illustrates the relationship between stimuli, responses, deadlines

and periods.
Stimulus S Stimulus S

t A
T, = Period of Stimulus S

— X

Response B
needed

A

Dg = Deadline for Response B

Response A
needed

D, = Deadline for Response A

v

Time

Figure 17:1 - A Stimulus/Response Model

RTA-OSEK v5.0.2 Building Timing Models 17-1



A deadline will be met if the response implementation generates the response
before the deadline. The time that it takes for the response to be made is
called the response time. If the response time is less than the deadline then
the deadline is met.

Figure 17:2 shows a task being used as a response implementation. Here the
task generates the response at the end of the execution.

—Z— —Z—

Stimulus R1 Response R*
required
Deadline
Response R*
made

Response Time

v

Time
Figure 17:2 - A Task used as a Response Implementation
The time taken to generate the response is called the response time. If the

response is generated before the deadline, then the deadline is met.

The response need not be generated at the end of the task and more than
one response can be generated from a response implementation. Figure 17:3
shows a task response being generated before the end of the task.

—Z— —Z—

Stimulus R1 Response R*
required
Deadline
Response R”

made

Response Time

v

Time
Figure 17:3 - Generating a Response before the Deadline Expires

In a real-time system, you need to show that every response occurs before its
associated deadline. The RTA-OSEK GUI uses RTA-OSEK Planner to calculate
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the worst-case response time for each response in your application. It then
checks that all the responses meet their deadlines.

For each task, the worst-case response time for a response implementation
consists of:

e  Worst-case execution time.
This is the longest time between the task starting and the task
terminating, assuming that there are no preemptions.

e Interference.
This is the maximum time that the task is preempted by other higher
priority tasks and ISRs in the system.

e  Blocking.
This is the maximum time that the task is prevented from running by
lower priority tasks.

RTA-OSEK Planner calculates the interference suffered by each task or ISR.
It calculates this using the worst-case execution time for the response
implementation and the times that resources are used and interrupts are
disabled (the blocking times).

So, RTA-OSEK Planner can calculate the worst-case response time with the
worst-case execution time and blocking times for the response.

To analyze a real-time system you must provide:

e A description of the software architecture in terms of the tasks,
interrupts, tasksets, resources, counters, alarms and schedules.

e A stimulus/response model defining the timing relationship between
executable objects. This defines the periods and deadlines for your
application.

e The execution times for each task and ISR.
e Target specific timing information.

You learnt about describing the software architecture in previous chapters.
You will now learn about defining the stimulus/response model, execution
times and target specific timing information.

When you provide data to model the system for analysis, there are two
important principles that need to be followed:

e Accuracy.
It is important to provide data that is as accurate as possible.

e  Pessimism.
If you cannot guarantee that your data is accurate, you must supply data
that is pessimistic. You can make your data pessimistic by supplying
execution times that are longer than the actual execution times, for
example. You could also declare delays between stimuli as shorter than
the actual delays.

Important: When you provide data for analysis, be careful not to
underestimate execution times and to overestimate minimum periods.
If you do this then RTA-OSEK could say that your system is schedulable when
it is, in fact, unschedulable.

RTA-OSEK v5.0.2 Building Timing Models
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Configuring Applications for Analysis

If you want to build an application for timing analysis you will need to follow

these rules:

Upward activation of tasks is not allowed. A task can only activate tasks

of lower priority.

place.

Tasks must be assigned unique priorities.
The schedule () API call cannot be used to force rescheduling to take

You cannot use AUTOSAR Schedule Tables.

The RTA-OSEK GUI allows you to enforce these rules, using the Application
Optimizations. Figure 17:4 shows where these settings can be found.

Optimizations mainly affecting
analysis
¥ Mo upward activation

I Unique task pricrities

¥ Dizallgw Schedule()

Oplimizations mainly affecting
performance

W Optimize static inteface
¥ Lse fast task activation
W Use fast taskset activation
¥ Lightweight tegmination

¥ Default ightweight
I™ Ignaore FE declaration
Optimizations mainly affecting size
¥ Omit 05 Restart
¥ Omit RES_SCHEDLULER

¥ Omit IncrementCounter(]

Application Optimizations

Tasks may not activate higher priority tasks
Tasks must have unique priorities.

The application does not call Schedule()

— Timing analysis can be performed on this application —

Cffline static analysis code optimizations are enabled.

Fast Activate Task/ChainTask implementation is used. (No runtime E_DS_LIMIT checks).

Fast Activate Taskset/ChainTasksetimplementation is used. (Mo rundtime E_OS_LIMIT checks).
The application may use lightweight task termination

Tasks defaultto lightweight termination.

Floating-pointtasks and ISRs are treated narmally.

The 05 can only be restarted via processor reset.
RES_SCHEDULER is never used
IncrementCounter) can not be called from project code.

SetRelAlarmi 1) is legal and represents an interval equal to the counter modulus.

Figure 17:4 - Configuring the Application Optimization Settings

When you try to analyze a system, the RTA-OSEK Planner will tell you if an
application is not suitable for analysis.

17.2 Defining Stimulus/Response Timing Relationships

You have already seen how you can create stimulus/response models to build
applications using the RTA-OSEK GUI. You'll now see some of this information
again, but this time you'll also see how you can add extra information for

timing analysis.

17.2.1 Stimulus Arrival Types and Patterns Revisited

Remember that each stimulus is associated with an arrival type. The arrival
type specifies the class of the stimulus.

Building Timing Models
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You saw that there are 3

e  Bursty.
e Periodic.
e Planned.

Bursty stimuli are used to model simple cases where a stimulus is captured by
an interrupt directly. Periodic and planned stimuli are used to model more
complex arrivals, where the stimulus is modeled by an alarm attached to a

arrival types:

counter or by arrivalpoints on a schedule.

Each type of arrival has a distinct arrival pattern. Let's look at each of these

arrival patterns in more detail.

17.2.2 Bursty Arrival Patterns

Bursty arrival patterns allow you to define a set of rules called bursting

clauses. These clauses describe the arrival pattern of the stimulus.

A simple bursty arrival pattern could specify the arrival of a periodic timer

interrupt. In Figure 17:5 you can see that a bursty arrival for a 10ms periodic
interrupt has been defined. In this case, a single bursting clause is used.

ielect Bursty Stimuus: | Bstim1 - @@@ Jesponse: |response! - @@@

Application

Target

Tasks
_— Arrival Modes
ISRs
Primary profile
Arrival Pattern

Alarms / Schedules
Resources

Events

COM Resp. Modes ‘

e Deadline

Stimuli

e L e Response Delay
@

Sumrmary Implementation

@

Bursty Stirmuli
@

Alarm Stimuli
@

Perindic Stimuli
@

Planned Stimuli

Stimulus "Bstim1"

Bstir1 is handled in all Apphiodes

Arrival Burst Pattern

Atmost._ in any.

M 10

real time ﬂ hd

Cancel

[ Add

[ B

Figure 17:5 - Single Bursting Clauses

Figure 17:6 shows a more complex example of a bursty arrival pattern using

multiple arrival rules.
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Arrival Burst Pattern jg'
At most. in any...
|1 |1 |real time ﬂ|ms ﬂ
|2 |5 |real time j|ms ﬂ i,
IE 20 frealtime v | ERE v

e Add

[ Femove

ik 0r

Figure 17:6 - Multiple Bursting Clauses
In Figure 17:6, the bursting clause of the transaction specifies the following
rules. The stimulus will occur:
Rule 1. No more than once in any one millisecond.
Rule 2. No more than twice in any five milliseconds.

Rule 3. No more than three times in any twenty milliseconds.
You can combine these rules to form a worst-case arrival pattern as follows:

e Oms, Tms, 2ms, 3ms ... (Rule 1 allows the minimum inter-arrival time of
1ms).

£ O A

5

1 A A

01112 1314 1516 1718 19 20 21 22 232425

Figure 17:7 - Rule 1 Arrival Pattern

e Oms, Tms, 5ms, ébms, 10ms, 11ms ... (Rule 2 prevents more than 2
arrivals in a period of 5ms, so bursts of 2 are separated by 5ms periods).

tt tt tt tt tt t.

5 6 10 11 15 16 20 21 25

Figure 17:8 - Rule 2 Arrival Pattern

e 0Oms, Tms, 5ms, 20ms, 21ms, 25ms ... (Rule 3 prevents more than 3
arrivals within a 20 millisecond interval).

tt t tt t .

5 20 21 25

Figure 17:9 - Rule 3 Arrival Pattern

If more than one arrival rule is given, another rule covers the values that are
allowed. If values are arranged in increasing order, each successive pair of
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values (arrivals, interval) must be greater than the previous pair. The rate of
arrivals (that is, arrivals/interval) must strictly decrease.

Following on from the previous example you can see that:
e 1 time < 2times < 3 times
e 1ms<5ms<20ms

e 1/ms (1 time in Tms) > 0.4/ms (2 times in 5ms) > 0.15/ms (3 times in
20ms)

Generally, pessimism in analysis will become lower the more bursting clauses
that are given. However, if the bursting interval is greater than the longest
busy period for the system, the arrival rule doesn’t give you any benefit. So, in
this example, if you know that the system will never run for longer than 20ms
before the idle task runs, then Rule 3 will not improve the accuracy of the
analysis.

The idle task is the lowest priority task in the system and will only run when all
other tasks and ISRs are in the suspended or waiting state.

The number of arrivals allowed during an operating cycle of a system can be
limited to a finite number. The operating cycle is the time between system
start and the point at which it is reset. In this case the ‘forever’ interval can be
used to limit the number of arrivals.

A bursting clause of ‘1 times in forever’ means that the arrival of the event
can only occur once during the operating cycle of the system. This could be
used to represent the triggering of a one-off safety device, such as an airbag
in a vehicle. Have a look at Figure 17:10 to see how the clause has been
specified.

Arrival Burst Pattern

At most inany...

|| |(f0rever) |real time ﬂ|5 ﬂ

Cancel

(= Add

[k ik

Figure 17:10 - Specifying a ‘One Time in Forever’ Bursting

17.2.3 Periodic Arrival Patterns

Periodic arrival patterns specify how often a stimulus arrives. This information
is required for generating run-time information, such as alarm or schedule
periods, and is also used to provide the implicit deadlines for analysis.

RTA-OSEK v5.0.2 Building Timing Models
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17.2.4 Planned Arrival Patterns

Planned arrival patterns are not specified at the stimulus/response modeling
stage. The arrivals are planned at design time during the construction of the
plan. RTA-OSEK Planner uses the timings on the plan. It then calculates the
relative periods of stimuli and implicit deadlines of associated responses.

17.2.5 Setting Deadlines for Responses

Responses can have implicit deadlines. A 20ms periodic stimulus, for instance,
may have to generate its response once in 20ms.

Responses can also have explicit deadlines. For example a 20ms stimulus
might have to generate its response no later then 10ms after arrival.

Figure 17:11 shows an example of an explicit response deadline.

—z —z

Stimulus R1 Stimulus R1

A —x A

Response R1
required
Implicit Deadline
Explicit Deadline
|-
»
Time

Figure 17:11 - Explicit Response Deadline

All responses have an implicit deadline, depending on whether the response is
generated by a task or by an ISR and the properties of that executable object.
Tasks must complete before their next activation or, in the case of tasks with
gueued activation, before the queue is filled. ISRs must also complete before
they are next triggered unless you have specified that the interrupts are
buffered.

Response deadlines can be specified to provide additional timing performance
constraints. The deadline is the elapsed time after the occurrence of the
stimulus by which the response must be generated. Figure 17:12 shows you
how explicit deadlines are defined using the RTA-OSEK GUI.
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Application Select Periodic Stimulus: | Stimulus2 - @ @ @ Response: |Response? - @ @ @

Lozt Stimulus "Stimulus2”

Tasks
T Arrival Modes Stimulus? is not handled in any Apphode.
Alarms f Schedules
Resources The response is not made in any AppModes.
Events o )
 ———— The response deadline is 2 real time ms.
COn

Build Response Delay. Minimurn response delay O processor cycles, maximurm response delay O processor cycles.

Stimuli Implementation | The response is implemented by task Task? executing for 7500 processor cycles.
@
S
ST Enter the response deadline
@
Bursty Stimul H [realtine < |[ms =]
@
Alarm Stimuli
@

Periodic Stimuli

Figure 17:12 - Specifying a Response Deadline

17.2.6 Specifying Response Generation Time

The implementation of a response is performed by a task or ISR. The RTA-
OSEK GUI assumes, by default, that the response will have been generated
when the task or ISR terminates.

This can result, however, in pessimistic schedulability analysis. Let’s look at an
example where a stimulus occurs every 10ms and the associated response
must be generated 1ms later.

If the response is generated by a task that executes for 2ms, then this system
will not be schedulable. It isn't possible for the task to complete before the
deadline. However, if you know that the response is generated after the task
has been running for 0.5ms, the response generation time can be set to
0.5ms after the task start. The deadline can now be met.

So, in this example, you can see that there is an implicit and an explicit
deadline on the task execution.

There is a Tms explicit deadline from the arrival of the stimulus and a 10ms
implicit deadline from the task period for the task to complete execution.

For each response implementation you can specify how much execution time
must elapse before the response is generated. Have a look at Figure 17:13.

RTA-OSEK v5.0.2 Building Timing Models
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Application Select Periodic Stimulus: [ Stimuus2 - @ @ @ Response: |Response? A @ @ @

Target Stimulus "Stimulus2”

Tasks
75'? Arrival Modes Stirulus? is not handled in any Apphode
s

Alarmns [ Schedules
Resources The respanse is not made in any Apphiodes.
Events
—_— Deadiine The response deadline is 2 real time ms
cOom
Build Response Delay Minimum response delay O processor cycles, maximum response delay O processor cycles.

Stimuli | Implementation | The response is implemented by task TaskZ executing for 7500 processor cycles.

@

Summary

@

Bursty Stirnuli

Implementation of response

Implementer

[ Add
Execution lime
@ [7500 [processor = |[cycles |

Alarm Stimuli

@ ‘ oK | | Cancel |
Periadic Stimuli

Figure 17:13 - Specifying Execution Time to Elapse before Response Generation

17.2.7 Modeling Jitter

17-10

When an embedded real-time system is being analyzed it is important that
timing figures relate to the stimuli and responses in the embedding system.
RTA-OSEK Planner allows you to model the differences in time between the
embedding system receiving stimuli and generating responses and the
embedded system processing the stimuli and generating responses.

Sometimes there is a delay between the actual occurrence of a stimulus in the
real-world and the notional release of the primary profile with the stimulus.
There are many possible causes for this delay. It can be caused by, for
example, slow hardware (such as some A/D converters) performing the
detection.

The recognition time for stimuli is bounded by a minimum time representing
the earliest release and maximum time representing the latest release. You

can see an illustration of this in Figure 17:14.
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Real World
Stimulus
Earliest Latest
Recognition Time Recognition Time
Jitter

Time
Figure 17:14 - Recognition Time

The difference between maximum and minimum recognition time is called the
input jitter. The input jitter can be specified for each primary profile in the
application.

For example, all real-world stimuli handled by a primary profile may be subject
to jitter of 50ns. This is the difference between the minimum response delay
of 170ns and the maximum response delay of 220ns (220ns - 170ns = 50ns).

In a similar way, output jitter can be specified for responses. It can be used,
for instance, to model situations that require an actuator to be driven when
you must take account of hysteresis in the physical device.

Each response can be associated with a minimum and a maximum response
delay that allows the latest time to be specified before a deadline that the
response must be generated.
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A response delay is illustrated in
Stimulus Response Minimum time for Maximum time
Generated by output to for output tc
Software propagate to rea propagate to rea
worlc warld
Hardware Propagation
[Response Delay]
I >
Time
Figure 17:15.

—Z—

—X— X

—Z—

Stimulus Response Minimum time for Maximum time
Generated by output to for output tc
Software propagate to rea propagate to rea
worlc world
Hardware Propagation
[Response Delay]

| .
»

Time

Figure 17:15 - Response Delay

In Figure 17:16, the response EnergizeCoil is specified with a deadline of
70ms, a minimum response delay of 20ms and a maximum response delay of

50ms.

Application
Target
Tasks

ISRs

Alarms f Schedules

Select Bursty Stimulus: | Stimuluz1 i @ @ @

Arrival Modes
Primary profile

Resources
Events
Resp. Modes
Com
Build Deadline
—— | i |
@ Implementation
Summary
@
Bursty Stimuli

Stimulus "Stimulus1™
Stirmulust is not handled in any AppMode.

Driven by primary profile Bursting.

The response is not made in any Apphdodes.
The response deadline is 70 real time ms.
Minirnurn response delay 20 real time ms, maximum response delay 50 real time ms.

The response is implermented by task Taskl

Figure 17:16 - Specifying a Deadline and a Response Delay

Important: A default value of 0 is assumed if response delays or minimum
and maximum recognition times are not defined.

17-12

Building Timing Models

RTA-OSEK v5.0.2

Responze: |Responzel b @ @ @



17.3 Capturing Execution Information

If you want to perform timing analysis on your application, the execution time
behavior of each task and ISR in the system must be known.

You can determine this statically by counting CPU cycles or by using static
timing analysis tools. Another way to do this is to use the Timing build of RTA-
OSEK Component to measure execution times. You will find out more about
the Timing build later in this guide.

If you supply the worst-case stack usage for each task and ISR, the RTA-OSEK
GUI can provide facilities for calculating the worst-case stack usage. The
worst-case stack usage information for each task and ISR is often available
from your compiler.

The execution characteristics of tasks and ISRs are declared in execution
profiles. For analysis you must define at least one execution profile for each
task and ISR. You can also use multiple profiles, which are explained in

Section 17.3.5.

The execution profile declares the worst-case execution time and worst-case
stack usage of the corresponding task and ISR. Worst-case execution times are
usually determined by the amount of code executed, so they are measured in
processor cycles. This means that if you change the CPU clock rate, the
execution time for your tasks and ISRs will scale automatically.

Tasks that perform imprecise computation are an exception to this rule. This
type of task executes until it observes a value in a particular time. You should,
therefore, express execution time using ‘real-world’ time units. Worst-case
stack usage figures are specified in bytes.

17.3.1 Primary and Activated Profiles

Each task and ISR in your application will be associated with at least one

profile. A profile is used to:

e Capture execution (timing and stack usage) information about the task
or ISR.

e Indicate whether the task or ISR is used in the capture of a stimulus or
the generation of a response. If it can be used to capture a stimulus
directly, to drive a counter or to drive a schedule, then it is a primary
profile otherwise it is an activated profile.

RTA-OSEK assumes, by default, that all ISRs are primary profiles and that all

tasks are activated profiles.

You will only need to change this setting in a few cases. When you need to

drive a counter or schedule using a task rather than an ISR, for instance, the

task will need to be a primary profile.

For tasks or ISRs with a single profile, the profile is accessed using the task or

ISR name. For multiple profiles (which you can find out more about in Section

17.3.5) they are accessed using dot notation. For example, if Taskl has

profiles Profilel and Profile2, these are accessed using the names

Taskl.Profilel and Taskl.Profile2 respectively.
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There are restrictions on how profiles can be used by your application:

e Single primary profile.
Can be associated with exactly one bursty stimulus, exactly one advanced
schedule or one or more counters and ticked schedules. For the first two
of these options you cannot expect that two bursts or advanced
activations will line up in time. For the last option, however, you know
that the profile is being ticked at a constant rate. This means that it is
feasible to tick more than one counter/schedule (even if the tick rates are
not identical).

e  Multiple primary profiles
Can be associated with different stimuli as long as they are buffered by
and execution profile.

e Single activated profile.
Can be associated with exactly one primary profile.

e  Multiple activated profile.
Can either be associated with exactly one counter/schedule or each
profile must be driven by a different primary profile.

17.3.2 Tasks and ISRs

The worst-case execution time for tasks and ISRs is measured from the start of
the first machine code instruction of the task entry function, through the
longest path in time and then to the end of the ‘return’ instruction. It excludes
the effects of preemption or interrupts.

The worst-case execution times for Category 1 ISRs must make sure that the
effects of any cache or instruction pipelines are at their most pessimistic.

The worst-case stack usage for tasks and Category 2 ISRs is taken from the
entry function. It must also include the worst-case nested function call
sequence, but the stack cost of entry to the task or Category 2 ISR does not
need to be accounted for. This is added automatically during analysis.

Worst-case stack usage for Category 1 interrupt handlers must include the
processor interrupt stack frame as well as the stack consumed by the handler.

Figure 17:17 shows how the worst-case execution time and stack usage are
entered into the RTA-OSEK GUI.

17-14 Building Timing Models RTA-OSEK v5.0.2



Application Select Task: | Task1 - ® @ @ default_profile - ® @ @

arcel Task "Task1® [BCC1]
Tasks

Priority Priarity 3.
@
Surnrnary Scheduling Scheduling is preemptable.
@ Activations Maximum number of simultaneous task activations is 1.
Task Data
Autostart Mot autostarted.
@ o
Tasksets Flosting poirt Floating-point is used.
Stack allocation
Termination

Time rocessor - | oyoles
Budoet - |D J e
Stack |15 [bytes)
Execution limits

Resource use | Locks

Interrupt locks Locks to level 1.
Primary | Activated This is an activated profile.

Detail

Enter worst case values

| 0K | ‘ LCancel

Task Taskl starts executing at task priority 3.

Taskl maximum stack usage is 15 bytes.

Taskl can lock resource Resourcel for up to 500 processor cycles.

Taskl can use an extra 14 bytes of stack when locking resource Resourcel.
Taskl can lock to interrupt level 1 for up to 500 processor cycles.

Figure 17:17 - Specifying the Worst-Case Values

In this example, the task uses 5000 processor cycles and consumes 15 bytes of
stack space in the worst-case.

17.3.3 Modeling the Idle Task

If the idle task makes any RTA-OSEK Component API calls other than the
initial call to Start0S (0OSDEFAULTAPPMODE), it can introduce blocking.
This must be considered in the analysis.

A profile for the idle task is specified in the same way as for any other task. If

the idle task has no deadlines to meet, however, the exact value of the
execution time specified is irrelevant.

You should be aware that the worst-case stack usage for the idle task is
measured from the initial stack pointer value, normally set in the C run-time
startup code.

17.3.4 Resource and Interrupt Locks

Tasks and ISRs that get resources or disable interrupts can block the execution
of higher priority tasks and ISRs. Let’s look at an example of a system that
contains two tasks. The tasks are called Task1 and Task2 and they share a
resource. Task2 has a higher priority than Task1.

If Task2 becomes ready when Task1 owns the resource, it is blocked until
Task1 releases the resource. Have a look at the illustration in Figure 17:18.
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Figure 17:18 - Task Blocking and Interference

To determine whether your application is schedulable, RTA-OSEK Planner
must know how long resources are held and how long interrupts are disabled
for.

During analysis, it is assumed that resources are held at a time that gives the
worst-case response time. This means that RTA-OSEK Planner does not need
to know the time when the resource is held relative to the start of the task or
ISR that gets the resource.

Locking times are specified in the RTA-OSEK GUI using the resource use and
interrupt lock sections of the execution profile. Locking times, like execution
times, are usually specified in processor cycles.

You can reduce the pessimism in the analysis by supplying accurate timing
values. If you do not specify resource and interrupts locking times, then RTA-
OSEK Planner assumes that the resource is held or that the interrupt is
disabled for the entire execution time of the task or ISR.

Figure 17:19 shows how resource use times are specified in the RTA-OSEK
GUI. Only the longest single execution time needs to be specified.
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Application
Target
Tasks

@

Summary

@

Task Data

@

Tasgksets

Select Task: | Task1 - @ @ @ default_profile - @ @ @

Task "Task1” [BCC1]
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Scheduling Scheduling is preemptable.
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Detail

Task Task1 starts executing at task priority 3.

Taskl maxirmum stack usage is 15 bytes

Taskl can lock resource Resourcel for up to 500 processor cycles.

Taskl can use an extra 14 bytes of stack when locking resource Resourcel.
Task! can lock to interrupt level 1 for up to 500 processor cycles

Figure 17:19 - Specifying Resource Use Times

Figure 17:20 shows how interrupt lock times are specified in the RTA-OSEK
GUI. Again, for interrupt locking times, only the longest single execution time
for the lock needs to be specified.
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Application Select Task: | Taski = @ @ @ detault_profil = @ @ @
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Task Taskl starts executing at task priority 3.

Task1 maxirmurm stack usage is 15 bytes.

Taski can lock resource Resourced for up to 500 processor cycles

Taskl can use an extra 14 bytes of stack when locking resource Resourcel.
Taskl can lock to interrupt level 1 for up to 500 processor cycles.

Figure 17:20 - Specifying Interrupt Lock Times

Code Example 17:1 shows that Resourcel is held on two separate
occasions, for 100 cycles and then 300 cycles. Only the longest time needs to
be specified, but you can specify both if you want to.

TASK (Taskl) {

GetResource (Resourcel) ;
/* Held for 100 processor cycles. */
ReleaseResource (Resourcel) ;

GetResource (Resourcel) ;

/* Held for 300 processor cycles. */
ReleaseResource (Resourcel) ;
TerminateTask () ;

Code Example 17:1 - Occupying Resources

It is better if each separate period is specified, even though you only need to
specify the longest single execution time. If you specify each period separately
it will improve the clarity and will help with the maintenance of the
configuration file. No single locking time can exceed the task’s execution time.

You do not need to distinguish whether or not resource requests are nested.
RTA-OSEK Planner takes account of this automatically during analysis.

For each resource or interrupt that is held, you can specify additional stack
usage information. It is better if you enter the stack usage figures for each
resource or interrupt. RTA-OSEK Planner cannot take into account any
possible stack overlays if you only specify a single stack usage figure.

If RTA-OSEK Planner knows about stack overlays it can reduce stack usage
when resources are held or interrupts are disabled.
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Figure 17:21 shows the stack space required for Task1 during its execution.

Task’

TASK (Taskl) { o
£1(); Task*
[Locals]

GetResource (Resourcea) ; Task”
[Locals]

; Task*

U [Locals] EZ +8 bytes
ReleaseResource (Resourcea) ; Task’
[Locals]
. Task’
SuspendOSInterrupts() ; lLocals]

; Task*

U [Locals] EZ +4 bytes
, Task’
ResumeOSInterrupts() ; lLocsls]

; Task’ , )
0 [Locals] F5()‘ EZ bytes
TerminateTask () ; Task’

[Locals]
: Stack Size

A 4

Ebytes E) bytes E) bytes 30 bytes

Execution profile "defaufi_profita*®

E zecution limits Worstcase 2000 processor cycles, stack 22 bytes.

Besource use Locks resource Besources,

Intermpt locks Locks to level O3 lewvel.

Primary / Activated This is an actvated profile.

Datail

Taskl executes for 2000 processor cycles, stack 22 bytes.

Taskl can lock resource Besources far up to 100 processor cycles.

Taskl can use an extra § bytes of stack when locking resource Besources,
Taskl can lock to interrupt lewvel O lewel for up to B0 processor cycles.

Taskl can use an extra 4 bytes of stack when locking to interrupt lewvel '05 lewvel'.
-_Cl _7| Task Taskl starts executing attask priarity 0.

Figure 17:21 - Stack Space Required for Task1

To get a more accurate figure you will need to make a number of
measurements. These measurements are required to determine the worst-case
stack usage. Knowledge of the application functions will be needed to
determine at which point in the task the most stack is consumed.

The measurements that you will need are:

e The worst-case stack usage from the first machine-code instruction in
the task or ISR entry to any point, excluding places where code
executes with resources held or where interrupts are disabled or
suspended.

This figure is the stack usage for the task or ISR.
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e The worst-case stack usage from where a resource is held (for each
held resource).
This figure is the stack usage for the resource.

e The worst-case stack usage from where interrupts are suspended or
disabled (for each interrupt level).
This figure gives the stack use for each interrupt lock.

17.3.5 Specifying Multiple Execution Profiles

Tasks or ISRs can occur in several different execution contexts. If this happens,
the pessimism in analysis can be reduced if multiple execution profiles are
declared.

Multiple profiles are useful when tasks or ISRs have very short execution times
when they are called in some contexts, but much longer execution times in
others.

Code Example 17:2 shows how multiple execution profiles are specified.

if (Condition) {
/* Short computation. */
} else {

/* Long computation. */

Code Example 17:2 - Specifying Multiple Execution Profiles

Multiple execution profiles should be used where:

e An ISR services several different sources of interrupt and its execution
behavior is different for each source.

e A task implements round-robin scheduling of its activities. For example,
the first time it is activated, it performs A; the second time it performs B
and so on.

e A task or ISR has different behavior depending on the current application
mode.

When constructing multiple profiles for tasks or ISRs that can get resources or
disable interrupts, you must consider whether or not each profile gets each
specific resource.

In Code Example 17:3, Task1l gets resource Resourcel in one profile and
disables interrupts in another profile.

TASK (Taskl) {
if (Condition) {

GetResource_Resourcel () ;

ReleaseResource_Resourcel () ;
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} else {
DisableAllInterrupts();

EnableAllInterrupts();
}

TerminateTask () ;

}

Code Example 17:3 - Using Multiple Profiles to Get Resources and Disable Interrupts

You only need to specify execution times and stack usage for the profiles
where a resource is used or where an interrupt is disabled. You can enter zero
execution times for the profiles that do not lock the resource or disable the
interrupt.

If any information is missing you may receive inaccurate results from the
analysis of your application.

Important: Make sure that where multiple profiles are defined, they are used
in the model or are auto-activated (either directly or by an autostarted alarm).
If a profile is omitted it will not be included in the analysis.

17.3.6 Looping and Retriggering Interrupt Behavior

So far we have assumed that the deadlines for the responses to stimuli are
less than or equal to the arrival period of the stimuli. In these systems, each
task and ISR must complete before it is next invoked. Sometimes, though, the
stimuli may arrive faster than they can be handled by the associated task or
ISR. You will see this if, for instance, you have to deal with the arrival of
bursting messages over a network. In these cases the deadline for responding
to the stimulus is longer than its period.

RTA-OSEK'’s Planner automatically handles the behavior of tasks that can be
gueued (BCC2 tasks). These tasks “re-trigger” i.e. the first instance terminates
before the next instance starts.

For ISRs you will need to provide some means of buffering the interrupts until
they can be processed. This can be provided by some external interrupt
control logic or, alternatively, your target microprocessor might support this.
CAN controllers, for example, usually provide some hardware buffering for
messages arriving over the network.

There are two ways that ISRs can deal with buffered interrupts:
e Looping.
The outermost level of the ISR consists of a loop that checks whether
unprocessed interrupts remain and, if so, repeats the processing.
e Retriggering.
The final instruction(s) of the ISR checks whether unprocessed events
remain and, if so, causes the interrupt to trigger the handler again.
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Portability: The interrupt mechanism on your target platform affects the way
that retriggering is achieved. Usually you must reassert the interrupt.

If you want RTA-OSEK Planner to take account of buffered behavior when
analysis is performed, you must specify:

e That buffering is used.

e Whether the buffer is processed by retriggering the ISR or looping
within it.

e The size of the buffer.

Figure 17:22 shows how the ISR buffering behavior is entered in the RTA-
OSEK GUI.

| Applieation ot 2 ISR m@@@ ’W‘@@@
Target ISR "Timer1”

Tasks

SR Priority § Wector Priority 1. Wector "Timer channel 0"
S
@ Flogting poirt Floating-point is not used
e Stack allocation The |
Simple
°
Buffering B
Categary 1 1SRs [~ Simple - no butfering
@ Buget The 2 ffered
Category 2 I1SRs Exe
@ Execution lmits Wor:
itiFELn [ Buffer by execution prafile
Resource use ko res
ISR Bufter size: [T
Interrupt locks Mo in|

" Retrigger after leaving ISR
@ Loo i

Figure 17:22 - Specifying Buffering Behavior

When buffered interrupts are handled by an ISR, you have seen that you can
choose between retriggering and looping behavior. Normally retriggering
behavior is recommended. There are some factors that will influence your
choice of behavior.

Firstly, some hardware will not support retriggering behavior for interrupts. If
this happens, a looping ISR must be used.

Secondly, a retriggering handler may be better if the interrupt that invokes the
handler is at the same level as another interrupt in the system and if that
other interrupt has a higher arbitration precedence. Higher arbitration
precedence means that it will be handled first if both are pending. This may
reduce the amount of blocking suffered by the other interrupt, which is
important if your target only supports a single interrupt level.

Thirdly, a retriggering ISR could have a smaller execution time than a looping
executable object when a single interrupt is processed. It doesn’t matter that
a looping handler may be ‘more efficient’ when several events are handled in
one invocation, because the analysis must assume worst-case behavior. This is
where interrupts occur in a pattern that results in each one being handled by
a separate invocation of the ISR.
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Code Example 17:4 shows another example of multiple profiles. This ISR
handles three interrupt sources detected by functions Sourcel (),
Source? () and Source3 ().

ISR(isrl) {

if (Sourcel()) {
/* Handle Sourcel. */
} else if (Source2()) {
/* Handle Source2. */
} else if (Source3()) {

/* Handle Source3. */

Code Example 17:4 - Using Multiple Profiles

Three separate execution profiles are defined for the ISR in Code Example
17:4. They can be characterized by the results of the tests:

° Sourcel () returns true.
The profile for this situation will include the worst-case execution time of
the successful check of sourcel handler code.

e Sourcel () returns FALSE and Source?2 () returns TRUE.
The execution time for this profile will include the worst-case execution
time required for the unsuccessful check of Sourcel, the successful
check of source?2 and the Source?2 handler code.

e Sourcel() and Source2 () return FALSE and Source3 () returns
TRUE.
The execution time of this profile is calculated in a similar way to the two
profiles above.

Each of these profiles represents a complete path through the ISR (from the
first instruction until the end of the final return instruction). Note that no
profile exists for the case where all checks fail. This is because there is no way
that the interrupt could be entered without one of the above conditions being
true.

In some situations you will need a single handler that can handle multiple
interrupt sources and each of these profiles must react to a different stimulus.
In these cases, you should specify that the profiles are buffered by execution

profile. This is shown in Figure 17:23.

RTA-OSEK v5.0.2 Building Timing Models 17-23



Specify ISR buffering behavior
Simple

[ Simple - no butfering

Buffered
{» Retrigger after lzaving SR
(" Loop within ISR

W%EBu[fer by execution profile

ISR B uffer size

LCancel

Figure 17:23 - Buffering by Execution Profile

Code Example 17:4 should be modified to look like Code Example 17:5.

ISR (LoopingHandler) {
do {

if (Sourcel()) {
/* Handle Sourcel. */

} else if (Source2()) {
/* Handle Source2. */

} else if (Source3()) {
/* Handle Source3. */

}

} while (interrupt_pending());

Code Example 17:5 - Buffering by Execution Profile

Tasks can also be buffered, but this is handled by allowing the task to have
queued activation. In this case you don’t need to provide any additional
modeling information. RTA-OSEK Planner already knows the size of the buffer
from configuration of RTA-OSEK Component. The task will be retriggered
until the queue is empty.

17.4 Target Specific Timing Information

The timing information that you have looked at, so far, has been for your
application. To provide an accurate analysis, however, RTA-OSEK Planner
needs to know information about the timing and operation of your target
hardware.

e System timings.
These are the execution times of aspects of RTA-OSEK Component,
such as task entry and exit times.
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e Interrupt recognition time.
This is the maximum delay caused by the hardware before the first
instruction of an interrupt can be acted upon.

e Arbitration ordering.
This is the order in which interrupts of the same priority are processed.

Interrupt recognition time and arbitration ordering are target specific. The
system timings depend on how your application makes use of certain target
specific features.

Normally you will require some knowledge of how the application will be
implemented on the target. This information is not always available during the
early stages of design. When this happens, reasonable assumptions will have
to be made and ‘real’ data will need to be substituted whenever it becomes
available.

17.4.1 System Timings

In order to provide accurate timing analysis, RTA-OSEK must be told about
how to account for operating system overheads. System timing data describes
how many processor cycles particular operating systems take.

Because of the wide variety of possible target platforms and implementations,
the best approach to measuring system timing information is to work in
conjunction with ETAS’ Engineering Services — consult us for details of how
you can determine this information on your intended hardware platform.

Important: System timing information is specific to a particular hardware
configuration. If you change your hardware or locate the application in a
different memory area (by moving from on-chip to off-chip ROM, for instance)
the system timings will need to be measured again. The values may also differ
if you change the characteristics of an application by, for example, adding an
extended task or an alarm.

System timing values must be generated to perform accurate analysis. If you
cannot generate these values you will need to supply a set of plausible system
timings. You could do this, for example to scope the timing behavior of a
proposed system early in the development lifecycle. If you do not provide any
set values, RTA-OSEK Planner will assume that they are zero.

17.4.2 Interrupt Recognition Time

The interrupt recognition represents the maximum time during which an
interrupt will not be recognized by your target hardware. This is a single value
and is entered in terms of CPU cycles.

Interrupt recognition time is usually at least equal to the execution time of the
longest instruction (unless lengthy instructions can be interrupted part way
through). Have a look at the RTA-OSEK Binding Manual and the
manufacturers’ data book for your target to find out how to obtain this
information.
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Figure 17:24 shows how the interrupt recognition time is specified.

Application Target Timings
JLETOE! Change Clocks The instruction cycle rate is 8MHz and the stopwatch rate is 8MHz.
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Vectors
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Figure 17:24 - Specifying the Interrupt Recognition Time

Interrupt recognition time is treated as blocking time by the analysis. This
means that, for the entire duration of the interrupt recognition time, the
processor will be executing instructions of a (soon to be interrupted) task, as if
no interrupt had occurred. You must make sure that you do not classify
interrupt handling overhead as interrupt recognition time.

17.4.3 Interrupt Arbitration

When ISRs share an interrupt priority level, you will have to enter an interrupt
arbitration order. The arbitration order is the sequence in which interrupts of
the same priority are serviced if several are pending at the same time. You
can usually find this information in the data book for your target processor.
The arbitration ordering allows RTA-OSEK Planner to determine interrupt
blocking correctly for the specified interrupts. In Figure 17:25, Bursting,
Timerl and Timer2 share interrupt priority level 1. If all three interrupts are
pending simultaneously, the RTA-OSEK Planner knows that Bursting will be
processed first, followed by Timer1 and finally Timer2.

AppILauUn HRE P AT au U
g There is one interrupt level shared by more than one ISR: 1.
Tasks
s Al ISRs have had interrupt arbitration information entered.
5
@ Level 1 ordering: Bursting, Timer1, Timer2.
sumrmary
Interrupt Arbitration Order
@
Category 1 1SRs Interrupt lexel |1 -
@ Intermupts %
Category 2 SRS Rz:g
@
Arbitration -

Figure 17:25 - Interrupt Arbitration Order

17.5 Modeling Alarms

When an application uses a counter and a series of alarms to implement a
sequence of task activations, RTA-OSEK Planner assumes that each alarm can
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be stopped and restarted independently. This ensures that the worst-case
timing behavior of the alarms on the counter is accounted for.

However, if the alarms are autostarted and they are not modified at run-time,
this model is unnecessarily pessimistic. You can reduce this pessimism by
specifying that the counter has synchronized alarms.

Figure 17:26 shows you how to select the alarm synchronization setting in the
RTA-OSEK GUI. You must make sure that synchronization is maintained.

Application Select Counter; |Cour|ter1 j @ @ @
Target Counter "Counter1”™
Tasks
v Primary Profile | Mo primary profile.
Alarms f Schedules Tick Rate | 1 tick
@ Unit= | < ho
Summary
Constants | < ho
@
Counters Mz alle | o
@ Min Cycle | hdin
Alarms .
Ticks Per Base | Ticks per base 1.
@ .
e C Synchronized Alarms | Alarms are not synchronized.
Periodic Schedules

Figure 17:26 - Selecting Alarm Synchronization Settings

17.6 Modeling Schedule Tables

It is not presently possible to use the RTA-OSEK Planner to analyze systems
that use AUTOSAR Schedule Tables.

17.7 Modeling Planned Schedules

You saw earlier how planned schedules could be used to implement complex
sequences of stimuli. If you are going to analyze your application for timing
correctness, extra timing information must be supplied.

To change the behavior of an application, it is possible to modify planned
schedules at run-time. You can modify delays, additional responses can be
added to arrivalpoints and next clauses can be changed to switch specific
responses in and out of the schedule.

To use this flexibility at run-time additional information about the worst-case
behavior of the schedule must be provided. Worst-case behavior is
represented by:

e The shortest delays between arrivalpoints.

e The maximum number of stimuli notionally triggered on each
arrivalpoint.

Changes to the structure of a planned schedule are specified as analysis
overrides. Additional information about the stimuli triggered from an
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arrivalpoint, including potential changes, is specified as indirectly activated
stimuli.

Important: You will need to provide worst-case information about the
schedule; otherwise RTA-OSEK Planner may indicate that the application is
schedulable, even though modifications you make at run-time cause it to be
unschedulable.

17.7.1 Specifying Analysis Overrides

You can use analysis overrides to tell RTA-OSEK Planner how the structure of
the schedule may change at run-time. For timing analysis, when both analysis
overrides and implementation details are present, the delay and next
analysis attributes override the application attributes.

If the delay is changed at run-time, so that it is shorter than the
implementation delay, then the shorter delay should be specified as an
analysis override. Have a look at Figure 17:27.

—Z —Z—

Stimulus1 Stimulus2 Stimulus3

Delay = 8 ticks Delay = 16 ticks

v

Best Case = Longest Delays

—Z - —Z—

Stimulus1 Stimulus2 Stimulus3

Delay = 6 ticks Delay = 8 ticks

\ 4

Worst Case = Shortest Delays

Figure 17:27 - Best Case and Worst Case

17.7.2 Indirectly Activated Stimuli

When you learnt about planned schedules you only specified the stimuli that
were auto-activated on arrival. For analysis, RTA-OSEK Planner needs to know
if any stimuli are indirectly activated.

An indirect activation is, for instance, when an auto-activated stimulus triggers
a response that subsequently activates another task. Indirect activations need
to be specified when you want to model things like a task activating another
task or additions to an arrivalpoint taskset at run-time.
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Multiple indirectly activated stimuli can be specified for each arrivalpoint. The
same stimulus can be both auto and indirectly activated. This, in fact, models
the situation where a task chains itself.

For analysis there is no difference between a stimulus being directly activated
and being indirectly activated. The observed behavior of the two situations is
identical because there can be no upward activation in an analyzable system.

For timing analysis, RTA-OSEK Planner assumes that all auto and indirectly
activated stimuli are triggered at once. For example, if an arrivalpoint auto-
activates stimulus1 and indirectly activates St imulus2, RTA-OSEK Planner
assumes that the arrivalpoint releases the tasks generating the responses
simultaneously. This represents the worst-case for the arrivalpoint.

17.8 Modeling Single-Shot Schedules

RTA-OSEK Planner assumes that a single-shot schedule only runs once in the
entire run-time of the application.

A single-shot schedule may, however, be processed repeatedly by the system.
If this happens, you will need to indicate that the implementation of the
schedule is single-shot, but that it repeats for analysis purposes only.

A repeat for analysis purposes only is specified as an analysis override for the
final arrivalpoint on the planned schedule. The next override must specify the
first arrivalpoint on the schedule and the delay to next must specify the
minimum time between successive activations of the schedule.

Have a look at Figure 17:28 to see how this is specified in the RTA-OSEK GUI.
Application Select Planned Schedule: ’m ® @ @
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Tasks
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Figure 17:28 - Modeling a Single-Shot Schedule

Important: The value selected for the delay between subsequent repetitions
of a single-shot schedule needs to be based upon knowledge of the
application. Selecting a delay that is larger than the minimum delay may result
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in optimistic analysis. It could falsely indicate that a system is schedulable. If
the value is too small, however, it may result in unnecessary pessimism.

17.9 Modeling with Extended Tasks

When you use extended tasks in your application you can only analyze the set
of basic tasks that are of higher priority than all extended tasks. This is
because extended tasks wait on events and RTA-OSEK Planner cannot analyze
this.

You must still specify resource and interrupt locking times because this will
affect the amount of blocking suffered by all higher priority basic tasks.

Important: If you want to use extended task behavior, but want to analyze
your entire application, you should consider simulating extended tasks using
the scheme that is outlined in the chapter on Tasks.

17.10 Summary

17-30

e If you need to do analysis of your application then you must specify
execution performance constraints for your stimulus/response model,
worst-case execution times for each task or ISR and target timings.

e Performance constraints are specified as part of your stimulus/response
model.

e  Bursty stimuli are used to model simple cases where a primary profile
captures a stimulus directly.

e Planned and periodic stimuli are used to model more complex cases
where a primary profile drives a counter or schedule to generate stimuli.

e Each task and ISR in your application must have at least one profile that
specifies execution information and whether the profile can be used in
the capture or generation of a stimulus.

e You can reduce pessimism in the system by specifying, where possible,
that alarms are synchronized.

e You can also reduce pessimism using multiple profiles for each task and
ISR.

e Interrupt buffering can be modeled.

e If your timing needs to be correct with respect to your embedding
system, you need to specify input and output jitter for each primary
profile and each response respectively.

e Planned schedules must include analysis information to capture stimuli
that trigger other stimuli and to capture changes to schedule behavior at
run-time.

Building Timing Models RTA-OSEK v5.0.2



18 Analyzing Timing Models

The RTA-OSEK GUI provides access to RTA-OSEK Planner for analyzing your
application. There are 5 analysis options:

e Stack Depth analysis.

e Schedulability analysis.

e Sensitivity analysis.

e Best Task Priorities analysis.
e (CPU Clock Rate analysis.

Stack depth, schedulability and sensitivity analysis are used to tell you about
the memory usage and timing behavior of your application. Best task
priorities and clock rate analysis suggest ways that your application can be
optimized for either space or time.

To make use of analysis, you must specify execution time and stack space
information. This is provided in an execution profile for each task and ISR in
your application. If any of this information is not present, the analysis
summary will tell you which parts are missing.

It is important to make sure that your RTA-OSEK Planner model accurately
reflects your application. If you create tasks and ISRs that are not attached to
a stimulus/response model, they will not be included in the analysis.

18.1 Stack Depth Analysis

If you have specified worst-case stack usage figures for each task and ISR in
your application, then RTA-OSEK Planner can determine the worst-case stack
usage for your application. Figure 18:1 shows how these values are gathered.
Application Select Task: | Taskl - @ @ @ clefault_profile - @ @ @
] Task "Task1" [BCCI]
Tasks )
@ Eriority Priarity 3.
Summary Scheduling Scheduling is preemptable.
@ Activations Maximum number of simultaneous task activations is 1.
Task Data
Autostart Mot autnstarted
@
Tasksets Flosting poirt Floating-point is not used.
Stack allocation The task's stack reguirements are autornatically calculated.
Termination Termination type is taken from the default value (heavyweight).
Bugdoet The execution budget is undefined.

Execution profile “default_profile”

Worst-case undefined execution time, undefined stack.
R Enter, worst case values [l
Interrugt locks Time |5DDU |pr0cessor jcycles

Primary § Activated Stack ’157 {bytes)
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Figure 18:1 - Worst-Case Stack Usage

When you run the stack depth analysis, the stack analysis report appears on
the workspace. There are two tabs that can be used to view the results of the

analysis. The results are available in text format, as shown in Figure 18:2.

Application

Target

Tasks

ISRs

Alarms I Schedules

Resources

Evants

COM

Build

Stimuli

Analyze

Summary

Stack Depth

@

Schedulability

Stack Analysis

Processor stack

2885 bytes are needed on Processor stack:

152 bytes for ISR Bursting (123 bytes OS5 overhead).
520 bytes for task Task? (464 bytes O3 overhead).

o944 bytes for task Task3 (464 bytes O3 overhead).

504 bytes for task Taskl (464 bytes OS5 overhead).

592 bytes for task TaskS (464 bytes O35 overhead).

o044 bytes for task Taskd (464 bytes O3 overhead).

32 bytes for task osek_idle_task [0 bytes OS5 overhead).

Floating-point stack

2 floating-point contexts are needed on the floating-point stack:
One context is used by task Task3.

Cne context is used by task TaskZ.

Figure 18:2 - Stack Analysis Results in Text Format

You can also view the results on the Graphic tab. The analysis shows the
maximum size of the stack in the workspace. An example is shown in Figure

18:3.
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Application Stack Analysis

Target

Tasks Froceszor stack Floating-point stack

ISRs 2832 byt 2 contet
i ISR "Bursting" S task "Task2"
Alarms f Schedules

Resources task "Tagk2"

Events
COM
Build

Stirnuli

Analyze

@

Summany

@

Stack Depth

@

Schedulahility

@

Sensitivity

@

Best Task Priorities

@

CPU Clack Rate

task "'Task3"

task "Taskl"

tazk "'Task3"

tagk "Taskb"

task "Taskd"

Bottom of stack task "osek_idle_task Buottom of stack

Trace

Figure 18:3 - Stack Analysis Results in Graphical Format

The analysis uses the following information when calculating the worst-case
stack usage:

Worst-case stack usage for each task and ISR profile.

RTA-OSEK Component overheads for each task and ISR.

Non-preemption information based on internal resources.
Non-preemption information based on resources being held.
Non-preemption information based on when interrupts are disabled.

The stack used in hook functions, callbacks or GetStopwatch () is not
included in the calculation of the stack requirement for the application.

Normally, the application’s total stack requirement is not changed by use of
these functions. However, if you need to calculate the exact worst-case stack
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usage of an application that uses hooks or callbacks and stack in
GetStopwatch (), you may need to contact LiveDevices.

You will see that GetStopwatch () normally returns just the contents of a
timer register. It does not place anything on the stack.

18.1.1 Floating-Point Context Saving

When tasks or ISRs use floating-point, RTA-OSEK Component saves a floating-
point context whenever necessary. RTA-OSEK uses the architecture of your
application to work out the maximum number of floating-point contexts that
must be saved at run-time.

If, for example, two tasks use floating-point and share an internal resource
they will never preempt each other. This means that they will never need to
save any floating-point context. The RTA-OSEK GUI shows the maximum
number of floating-point contexts required in your application.

18.1.2 Minimizing Stack Usage

You might find that the stack space required by your application is greater
than the space available on your target hardware. If this happens, there are a
number of things you can do to minimize application stack space.

e Share an internal resource between tasks. This means that the tasks will
never preempt each other, so they will never require space on the stack
at the same time. This effectively overlays the stack usage of all the tasks
that share the internal resource. This can be done automatically using

best task priorities analysis (see Section 18.4).

e If a task calls a function that uses a lot of stack space, you can get a
resource around the function call. You can then share that resource with
higher priority tasks (the higher priority tasks do not need to use the
resource). This prevents the higher priority tasks from preempting the
task calling the function while it uses a lot of stack space. This reduces
overall usage.

e Interrupts can be disabled or combined resources can be used in the
previous method. This allows you to prevent interrupts occurring while
the function is being called. In this case, however, you will pay a penalty
in interrupt latency.

18.2 Schedulability Analysis

Schedulability analysis is used to work out whether each response can be
generated before its deadline. The deadline can be either explicit or implicit.

An explicit deadline is when, for example, you specify that a task must
generate a response no more than 5ms after it is released. An example of an
implicit deadline is when a task must finish before it is next made ready to
run. For example, when a basic unqueued task is activated every 20ms, it
must complete before it is next released. This means that it has an implicit
deadline of 20ms.
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Schedulability

analysis calculates the worst-case response time for each

execution profile in your application and then determines if these response

times are less than the associated deadlines.

The RTA-OSEK GUI shows the

results of schedulability analysis. You can see an example in Figure 18:4.

Application
Target
Tasks

ISRs
Alarms i Schedules

Resources

Events
COM
Build

Stimuli

Analyze

@

Summary

@

Stack Depth

@
Schedulability

@
Sensitivity
@

Best Task Priarities

@

CPU Clock Rate

Schedulability Analysis

Checking

Creating files

Analysis

= Schedulability Analysis results =

task Taskd is schedulable.

Calculated response time on Taskd.default_profile is 85420 cycles (5.9275 ms), with blocking 1 cycle, caused by
interrupt recognition time

task Taskd is schedulable.

Calculated response time on Taska.default_profile is 34964 cycles (4.3708 ms), with blocking 1 cycle, caused by
interrupt recagnition time

task Taskl is schedulable.

Calculated response time on Task1.default_profile is 22659 cycles (2.832375 ms), with blocking 3000 cycles (3
kCycles on timebase cpu_clock), caused by task Taskd. default_profile locking resource Resourcel.

task Task3 is schedulable.

Calculated response time on Task3.default_profile for response Stimulus3. Response3_1 is 14456 cycles (1.807 ms).
Calculated response time on Task3.default_profile for response Stimulus3.Response3_2 is 15456 cycles (1.932 ms).
Calculated response time on Task3. default_profile is 17658 cycles (2.20725 ms), with blocking 3000 cycles (3
kCycles on timebase cpu_clock), caused by task Taskd. default_profile locking resource Resourcel.

task Task2 is schedulable.

Calculated response time on TaskZ. default_profile for response Stimulus2. Response2 is 10955 cycles (1.3689375 ms).
Calculated response time on Task2.default_profile is 13455 cycles (1.681675 ms), with blocking 3000 cycles (3
kCycles on timebase cpu_clock), caused by task Taskd. default_profile locking resource Resourcel.

interrupt Bursting is schedulable

Calculated response time on Bursting. default_profile is 2151 cycles (268.575 us), with blocking 2000 cycles (2
kCycles on timebase cpu_clock), caused by task TaskS. default_profile disabling interrupts to interrupt priority 1
interrupt Timer! is schedulable.

Calculated response time on Timerl. default_profile is 2252 cycles (281.5 us), with blocking 2000 cycles (2 kCycles
on timebase cpu_clock), caused by task Taskd. default_profile disabling interrupts to interrupt priority 1.

interrupt Timer2 is schedulable.

Calculated response time on TimerZ. default_profile is 2353 cycles (294.125 us), with blocking 2000 cycles (2 kCycles
on timebase cpu_clock), caused by task Taskd. default_profile disabling interrupts to interrupt priority 1.

The system is schedulable

Figure 18:4 - Results of Schedulability Analysis

The results of analysis can also be viewed graphically. An example is shown in

Figure 18:5.
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18-6

Application Schedulability Analysis  Zoom: 100%
Target
. . . |F
Teelim intermpt Bursting, default_prafile | 7] 268,875 us
1SRs interrupt Timer] . default_profile | 281.5us
Alarms i Schedules intermupt Timer2. default_prafile | 294.125 us
Resaurces task Taszk? default_profil 1.681875 ms
Events 2ms
com task Taska default_profile 220725 ms
4 mz
Build B
Stimuli task Task1. default_profile I 2 532375 ms
Analyze task Taskd default_profile | _ 4.3705 mz
@ task Taskd default_profile || I - 5275 s
Surmmary
@
Stack Depth
Schedulahility
@
Sensitivity
@
Best Tagk Priorities
@
CPU Clock Rate
DrelayAlitter Blocking Interference . Execution |:| Response delay

Figure 18:5 - Graphical Results of Schedulability Analysis

Each bar in the graphical analysis report shows the response time for the
execution profile. Each bar has up to 5 sections:

Analyzing Timing Models

Delay/Jitter.

This is the maximum amount of time that the primary profile, which
responds to a stimulus, takes to recognize the stimulus. This is specified
in the Primary or Activated Profile dialog for the appropriate primary
profile.

Blocking time.

This is the amount of time that the execution profile is prevented from
executing by a lower priority profile that holds a shared resource or has
disabled interrupts.

Interference.

This is the amount of time that the execution profile is prevented from
running by higher priority tasks or ISRs. This is the total amount of time
that the profile is preempted during execution.

Execution time.
This is the worst-case execution time that you specified for the execution
profile.

Response delay.

This is the time from the response being generated by the software to it
being observable in the external environment. This is usually only
specified when the response drives some external hardware.
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In the graphical display, a ‘tool-tip” will appear (shown in Figure 18:6) when
you hover the mouse pointer over the execution time component for each
task or ISR. This tells you the actual times for each of these components.

task Taskd default_profle || _ £.9275 ms

Total interference 5.052 ms.
Total execution time 1.875 ms.
Total responzse time 6,928 ms,

Figure 18:6 - Tool-tip Showing the Actual Times

If you have specified explicit deadlines for responses, these are represented on
the bar as small tags with the deadline specified. Implicit deadlines are not
shown.

In addition to this information, the textual output will tell you about queued
activation counts, buffered interrupts and the parts of the system that
contribute to the blocking time.

For any analyzable system, schedulability analysis reports that a system is
either schedulable or not schedulable. If a system is schedulable, this
means that all tasks or ISRs in the system will always meet all of their
deadlines.

If the system is reported to be not schedulable, this is because either:

e Some responses in the system cannot be generated before their
deadlines. The system is unschedulable.

e [tis not possible to determine whether or not the system is schedulable.
The system has indeterminate schedulability.

You'll see later what you should do if your application has indeterminate

schedulability or is unschedulable.

You can also use sensitivity analysis to direct you to the parts of the system

that would benefit from the most attention. You'll learn about this in Section

18.3.

Important: You should never change the configuration of your application
without first validating those changes against detailed system analysis. RTA-
OSEK Planner can only assess the timing correctness using the information
that you provide.

18.2.1 Unschedulable Systems

Systems can be unschedulable for a variety of reasons:
e Atask or ISR cannot complete before its next release.
e Atask or ISR does not generate a response before a specified deadline.

e An ISR with looping or retriggering behavior exceeds the buffer limit or a
basic task with queued activation exceeds the queue limit.

e  The system exceeds 100% CPU utilization.

You'll now see each of these situations in more detail. You will also find out
how you can modify your system so that it can be scheduled.
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Taskor ISRs Cannot Complete Before Next Release

If a task or ISR cannot complete before its next release, RTA-OSEK Planner will

generate the message in Figure 18:7. In this example, Task2 is not
schedulable.

Schedulability Analysis  Zoom: 100%

intermupt 1SR 1. default_prafile HS? uz
interrupt 1SR 2. default_profile I |12? us

task Taskl.default_prafile || - 4B7.375 us

|6 mz

tazk Tazk? | task Tazk2iz NOT schedulable because execution is not complete before nest release of Tazk2.

task Task3 detault_profils I - 453125 ms

Figure 18:7 - Task Execution not Complete before the Next Release of the Task

There are a number of approaches you can use to make this type of system
schedulable:

e Reduce the execution time of the task or any other higher priority tasks
or interrupts. By reducing execution times you can reduce the amount of
interference suffered by lower priority tasks and interrupts.

e If the task or any higher priority tasks or interrupts are periodic, their
periods can be increased. If the task being adjusted has multiple offsets,
these can be altered.

e Introduce queued activation for tasks or buffer interrupts to ensure that
activations made whilst the tasks or ISRs are executing are not lost.

e Other tasks within the system may be making a specific task
unschedulable. You could use best task priorities analysis (which you'll
find out more about in Section 18.4) to see if a different priority ordering
will make the system schedulable.

e If the unschedulable task or ISR shares a resource with lower priority task
or ISR then you could try reducing the amount of time for which the
resource is held by these tasks and ISRs. This reduces blocking times and
may make the task schedulable.

These measures can also be used where systems are found not to be
schedulable for other reasons.

A Task or ISR Cannot Meet its Deadline

If a task or ISR cannot meet a deadline, this results in an unschedulable
system. There are two scenarios for detection:

e Non-queued task activation and non-buffered ISRs.
A specific profile is found to be not schedulable because the deadline has
been exceeded. In this case, other profiles of the same task or ISR might
also be found to be schedulable (or unschedulable).
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e Queued task activations (BCC2 tasks) and buffered ISRs.
The task or ISR is not schedulable because the deadline of one of its
profiles has been exceeded. In this case, none of the other profiles of the
task or ISR will be found to be schedulable.

When a task or ISR is not schedulable because its deadline cannot be met, you

can try to:

e Increase the deadline.

e Move the response generation code earlier in the program.
This shortens the amount of time that the task or ISR must execute to
generate the response.

e Use the suggestions for unschedulable systems that are mentioned
above.

Queuing Task Activations and Buffered Interrupts Exceeded

Sometimes a system will not be schedulable because the queue for queued
task activations is not long enough to hold the maximum number of
activations that can occur whilst the task is running. Similarly, for interrupts
that are buffered, the number of interrupts that need to be buffered may
exceed the buffer size.

Figure 18:8 shows RTA-OSEK Planner output where the number of buffered
activations for an interrupt is too small.

Schedulability Analysis

Checking
YWarning: Interrupt recognition is not set.
Warning: Systern timings are not set.

Creating files
Analysis
= Schedulability Analysis results ™

task Task! is schedulable.

Calculated response time on Task1.default_profile for response Stimulus1. Stimulus1 is B0300 cycles 7.6 ms).
Calculated response time on Task1.default_profile is BOB00 cycles (7.6 ms), with blocking O cycles.

Mlaximurn buffer required is 4.

Maximum retriggers is 6.

interrupt ISR1 is schedulable.

Calculated response time on |SR1.default_prafile is 800 cycles (100 us), with blacking 0 cycles.

The system is schedulable.

Figure 18:8 - Results of Schedulability Analysis Showing Buffered Activation

There are two things that may be causing this problem:

e The tasks or interrupts are being activated more frequently than they can
be handled.

e The buffer sizes are too small.

RTA-OSEK v5.0.2 Analyzing Timing Models 18-9



Systems, which are unschedulable for these reasons, can be made
schedulable. You can try to:

e Change the priorities to ensure that the task can handle the inputs at a
required rate. If you do this, try using best task priorities analysis (see
Section 18.4).

e Decrease the period of the task or ISR.

e Increase the buffer size.

e  Decrease the execution time of the task.

If the analysis is repeated with a queue size or buffer size larger than needed,

RTA-OSEK Planner reports the buffer size required to make the system
schedulable.

Utilization Greater Than 100%

RTA-OSEK Planner may report that utilization is greater than 100%. This
means that your application requires more time to execute than the time
available on your target hardware. Figure 18:9 shows RTA-OSEK Planner
report for a system with greater than 100% utilization.

PATHIEEEL Schedulability Analysis

Target

Checking
Tasks

ISRs Creating files

Alarms [ Schedules Analysis

Resources . . . .
Schedulability analysis has B4 alignments to consider.

Events

oM The systemn is not schedulable because the processor utilisation is 143.11%.

Build

Stimuli

Anakyze

@

Summary

@

Stack Depth

@

Schedulahility

Figure 18:9 - Utilization of the Process is Greater than 100%

There are a number of strategies you can use to rectify this problem:

e Increase the CPU speed.
This may be possible by specifying a faster part in your hardware design.

e Reduce the execution times for tasks and ISRs.
e Increase the periods for system stimuli.
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18.2.2 Indeterminate Schedulability

Indeterminate schedulability occurs when:

e  The busy period is too long to analyze.

e There is indeterminate blocking from lower priority tasks.
e Tractable analysis cannot determine schedulability.

You can use the methods described in Section 18.2.1 to try to fix
indeterminate schedulability.

Busy Period too Long to Analyze

The busy period is the sum of the time that a task is in the ready or running
state and the maximum recognition time.

RTA-OSEK Planner considers that the busy period is too long to analyze when

it exceeds 2°? instruction cycles. In a valid real-world system, it is very unlikely
that you will reach this value.

Indeterminate Blocking from Lower Priority Tasks or ISRs

If there is indeterminate blocking from lower priority tasks then RTA-OSEK
Planner cannot calculate the response times of any tasks that share resources
with the lower priority task. Sample output from RTA-OSEK Planner is shown

in Figure 18:10.

Schedulability Analysis

Checking

Creating files

Analysis

=* Schedulability Analysis results ™™

task Taskd is NOT schedulable because execution is not complete before next release of Taskd,

First detected after 1 arrival point on transaction osek_periodicSchedule (alignment 1).

Blocking time is 4 cycles (4 stopwatch_ticks), caused by interrupt recognition time.

task Task3 is not analysed because its schedulability depends on task Taskd.default_profile, which is not schedulable and is in the same
transaction.

task Task2 is not analysed because its schedulability depends on task Task3.default_profile, which is not schedulable and is in the same
transaction.

task Task1 is not analysed because its schedulability depends on task Task2. default_profile, which is not schedulable and is in the same
transaction.

interrupt timer is schedulable.

Calculated response time on timer. default_profile is 460 cycles (57.5 us), with blocking 245 cycles (30,625 us), caused by IST CAN.default_profile
executing at interrupt priority 1.

interrupt CAN is schedulable.

Calculated response tirme on CAN. default_profile is 465 cycles (58,125 us), with blocking 5 cycles (5 stopwatch_ticks), caused by system OS5 level
blocking.

Maxirmum buffer required is 2.

Maximum retriggers 1s 2.

The systern is NOT schedulable.

Figure 18:10 - Results of Schedulability Analysis Showing Indeterminate Blocking

Fixing this situation requires an incremental approach. Make the lower
priority task schedulable first then iteratively apply schedulability analysis until
your system is schedulable.
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Tractable Analysis cannot Determine Schedulability

When driven by the RTA-OSEK GUI, RTA-OSEK Planner is set to use exact
analysis by default (Analysis Depth 9). If you have configured the analysis
depth for tractable analysis (Analysis Depth 1) then tractable analysis may not
be able to determine schedulability.

el .4
Application Settings | Augiliary Files I Global Settings I Licensing I
e r—Location of file
Show ISR wector descriptions [ . Files I
|Jze hexadecimal for timings [ b Filez I
Show Extended OIL in view I Assemfiils Fes I
Use hyperlink: [
5 bt |.n * ; ; o Object Files I—
Seek to object in OIL wview I~
Intermediate Filesl.
Application Files I
Build Analps
Keep intermediate build files I keep intermediate analysis files [~
Stop build on warnings [ Analyziz Depth A
Fricrity Pack Depth |'|
ok LCancel |

Figure 18:11 - Setting Analysis Depth to 1

Tractable analysis uses two approximations, a schedulability test and an
unschedulability test. These approximations divide systems into categories.

Those that are:
e Definitely schedulable.
e  Definitely unschedulable.

e Indeterminately schedulable.
In this case the analysis depth should be set to 9. The schedulability
analysis should then be re-run to find out if an indeterminately
schedulable system is schedulable or not.

18.3 Sensitivity Analysis

18-12

Sensitivity analysis is used to explore the boundaries for your system. It allows
you to answer questions like:

e What variation of clock speed is feasible?

What is the maximum execution time allowed for a task or ISR?

How long can | get a particular resource for?

How long can | disable interrupts for?

Can | vary the execution time for a response and still meet my deadline?
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Sensitivity analysis allows you to determine what changes may make an
unschedulable system schedulable. You might be able to optimize task and
ISR execution times and a small reduction may be enough to make the system
schedulable.

Alternatively, if you want to add additional functionality to an existing
application then you can use sensitivity analysis to investigate how much
headroom is available on which tasks or ISRs.

The sensitivity of the tasks and ISRs is considered against the following factors:
e  Sensitivity to processor clock speed.

e  Sensitivity to execution times.

e  Sensitivity to resource and interrupt holding times.

e  Sensitivity to response deadlines.

Figure 18:12 shows sensitivity analysis performed on a sample system.

Applicat]
AT Clock Speed
Target

- - | Current
Tasks
- | MHew

I5Rs

100%
E3.81%

Alarms § Schedules " "
Execution Times Zoom: 100%

Resources

Events Blursting. default_prafils _ 549,375 us
oM Timerl.default_profile - 314625 us
Build

Timer2.default_profile - 596.375 us
L T

Stirnuli

Analyze
5 Tesksetoutroc | [
@
summary || Teot et | - 15
® Tosk ottt | N : 7
SeckDepin || Tkt potic | Y -
@
Schedulability
@
Sensitivity
@
Best Task Priorities . Current execttion time . Available time . Overun

Figure 18:12 - Viewing Sensitivity Analysis Results in Graphical Format

The upper part of the sensitivity workspace shows the minimum clock speed
required for the system to be schedulable. The sensitivity for execution times,
lock times and response generation times is shown in the lower part of the
workspace.

The results are displayed in color. Blue indicates current times, green indicates
maximum available time and red indicates overrun.

The figures at the end of each bar give the maximum execution time, resource
holding time or interrupt disabling time. You can use these values and still
have a system that is schedulable.

The figures that are displayed are generally mutually exclusive, which means
that you can implement any one of them and the system will become ‘just’
schedulable.
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The sensitivity analysis report is also available in text format. You can see an
example of this in Figure 18:13.

Application Sensitivity Analysis
Target
Checking
Tasks
I15Rs Creating files

Alarms f Schedules Analysis

Resources =¥ Sensitivity Analysis results =
Events
- Deadline sensitivity
cam In task Task3.default_profile, the deadline for response Stimulus3.Response3_1 can be met for execution time up to
Build 4000 cycles (500 us).
— In task Task3.default_profile, the deadline for response Stimulus3.Response3_2 can be met for execution time up to
Stiruli 4000 cycles (500 us).
Analyze In task Task2.default_profile, the deadline for response Stimulus2.Response2 can be met for execution time up to
10000 cycles (1.25 ms).
@
Summary -- System sensitivity to execution and lock times
In task Taskd.default_profile, the system can be schedulable for execution time up to 39176 cycles (4.897 ms).
@ - resource Resourcel can be locked for up to 8045 cycles (1.005625 ms)

Stack Depth In task Task5. default_profile, the system can be schedulable for execution time up to 39176 cycles (4.897 ms)
- interrupt level 1 can be locked for up to 7748 cycles (968.5 us).

@ In task Task1.default_profile, the system can be schedulable for execution time up to 17088 cycles (2,136 ms).
SchedL;\abiIity - resource Resourcel can be locked for up to 8045 cycles (1.005625 ms)
- interrupt level 1 can be locked for up to 7748 cycles (968.5 us).
@ In task Task3.default_profile, the system can be schedulable for execution time up to 21038 cycles (2.62975 ms).
" In task Task2. default_profile, the system can be schedulable for execution time up to 19342 cycles (2.41775 ms).
Sensitivity - resource Resourcel can be locked for up to 19342 cyclas (2.41775 ms)

In interrupt Bursting.default_profile, the system can be schedulable for execution time up to 51595 cycles (B459.375 us).

@ I interrupt Timer! . default_profile, the system can be schedulable for execution time up to 2517 cycles (314.625 us).
P _p ¥ p ¥
Best Task Priorities In interrupt Timer2.default_profile, the system can be schedulable for execution time up to 4771 cycles (596.375 us).
@ -- Systemn sensitivity to clock speed
CPU Clock Rate The systern remains schedulable if processor clock speed is reduced to B9.81% of its current value.

Figure 18:13 - Viewing Sensitivity Analysis Results in Text Format

The sensitivity analysis results can be used to modify your application. The
following sections explain how you can interpret the results.

18.3.1 Sensitivity to Clock Speed

The current speed that is displayed will always be 100% of the CPU clock
frequency. The new speed will be a percentage of the clock speed required
so that the system is schedulable.

If the new figure is less than 100% then there is scope for reducing the clock
speed of your target hardware. This can be useful, for instance, in the case of
devices that must minimize power consumption.

If the new figure is greater than 100% then you will have to increase your
CPU clock speed to make the system schedulable. The analysis gives you the
smallest increase required for your application to become schedulable.
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18.3.2 Sensitivity to Execution Times

When the sensitivity analysis finishes, the workspace shows sensitivity to
execution times by default. Each bar shows the current execution time in blue
and the maximum execution time for that task or ISR in green.

If the system is not schedulable, then the bar will show a red overrun. This
indicates the amount by which the current task or ISR is exceeding its
maximum permitted execution time, such that the system is schedulable.

Overrun can be seen in Figure 18:14.

Clock Speed
Hew
Current

Execution Times Zoom: 100%

102.29%+

100

Bursting. default_prafile IU B
Timer] . default_profile ID B
Timer2. default_prafile ID B

Task3.default_profile  F ) execution time I 72 s
rezponze Responzed 2 [N SO0 U=
response Responses 1 [N F010 s

Tas ot e | N -

. Current execution time . Ayailable time . Overrun

Figure 18:14 - Sensitivity Analysis Showing Overrun

The reported limits of maximum execution are mutually exclusive. For any
single task or ISR you can change the execution time to the value shown by
sensitivity analysis and the system will remain (or become) schedulable.

If you change the execution time of more than one task or ISR you will have
to re-run sensitivity analysis to validate those changes.

In some cases the analysis will work out that changes to some of your tasks or
ISRs will have no effect (even if they execute in zero time). These will not be
shown graphically. The textual report will state, however, that it will have no
effect if you change the execution times for those task and ISRs.

This feature allows you to target your effort. It is extremely useful when you
are trying to reduce execution times to make an unschedulable system
schedulable.

When sensitivity analysis finishes, the workspace shows sensitivity to execution
times by default. You can view sensitivity to resource and interrupt lock times
by expanding the information for each task or ISR, shown in Figure 18:15.

RTA-OSEK v5.0.2 Analyzing Timing Models 18-15



Clock Speed

Current
MHew

B3.81%

Execution Times Zoom: 100%

Bursting. default_profile _849_3?5 e

Timerl . default_prafile - 4625 us

Timer2, default_prafile: _ 595,375 us

TazkZ default_profile | & execution time I 2 418 me
responze Responze? (NI 1 .25 s
resource Resowrce! NN - 418 ms

Taski et ot | = | - -

Tazk1.default_profile £ execution time I - 136 mis
resource Fesourcel I 1006 ms
intermipt level 1 I 5555 us

Figure 18:15 - Viewing Interrupt and Lock Times from Sensitivity Analysis

For each resource or interrupt that is locked or disabled by the task or ISR,
sensitivity analysis reports the current lock time and the maximum time for
which the resource can be locked or the interrupt disabled.

Resource and interrupt lock times for each task or ISR are mutually exclusive.
If there is additional overhead for resource and interrupt locking times, you
can only use the maximum execution time determined by sensitivity analysis
for a single resource or interrupt lock. You can, of course, use part of the
time for each lock and re-run sensitivity analysis to validate the changes.

18.3.3 Sensitivity to Deadlines

When the sensitivity analysis finishes, the workspace shows sensitivity to
execution times by default. You can view sensitivity to explicit response
deadlines by expanding the information for each task or ISR.

For each response with a specified deadline, sensitivity analysis reports the
current execution time of the response implementation (this is specified by
you when constructing the timing model) and the maximum amount of time
for which the response implementation can execute, while the system remains
schedulable. Any overruns are shown in red.

The results of sensitivity analysis to deadlines for each task or ISR are
complementary. You can set the execution time for each response to the
maximum value determined by analysis and the system will remain
schedulable.

18.4 Best Task Priorities Analysis

18-16

Best task priorities analysis is used to allocate task priorities to make the
system schedulable, if this is possible. It will also determine the tasks that
could share an internal resource to minimize the stack space required by your
application. If your application already includes internal resources, they are
included in the analysis.
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The RTA-OSEK GUI presents the results of the analysis graphically. An
example is shown in Figure 18:16.

Application

Target

Tasks

ISRs

Alarms [ Schedules

Resources

Events

COm

Build

Stimuli

Analyze

Priority allocation Apply these values |

Tasks in the same box must share an internal resource

@

Summary

@

Stack Depth

@

Schedulability

@

Sensitivity

@

Best Task Friarities

@

CPLU Clock Rate

Schedulability Analysi

Zoom: 100%

interrupt Bursting. default_profile
interupt Timer1. default_profile
interupt Timer2. default_profile

task Task2 default_profile

task Tazk3 default_profile

task Taskl.default_profile
task Task5.default_profile

tazk Taskd. default_profile

E 268,875 us

7| 281.5us

|294.125 us

1.681875 ms

2ms

o 2 20725 ms
B |4 mz

Coiiii i I 370375 s
I 05
I 0257

DelayAliter [7] Blacking

Interference [l Execution [ Response delay

Figure 18:16 - Viewing Best Task Priority Analysis Results in Graphical Format

The result of Best task priorities analysis is also available in textual form as
shown in Figure 18:17.
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HppiliEiem Task Priority Analysis

Target

Checking
Tasks
I1SRs Creating files

Alarms / Schedules Analysis

[REEates = Priority Allocation results =™
Events
e Task Taskd is schedulable at priority level 1.

Task Tasks is schedulable at priority level 2.

Build Task Task1 is schedulable at priority level 3.

Task Task3 is schedulable at priority level 4.

Task Task2 is schedulable at priority level 5.

Analze Tasks Taskd, Taskd, Task1 rmust not preempt each other.
Tasks Task3, Task2 must not preempt each other.

Stimuli

@
Summary = Schedulability Analysis results =
@ task Task4 is schedulable
Stack Depth Calcul_a_ted response tirme on Taskd.default_profile is 50419 cycles (5.302375 ms), with blocking 1 cycle, caused by interrupt
recognition tirme.
@ task Tasks is schedulable
Schedu]ahiliw Calcul_a_ted response tirme on TaskS.default_profile is 349654 cycles (4.3705 ms), with blocking 1 cycle, caused by interrupt
recognition tirme.
@ task Task1 is schedulable
a Calculated response time on Task1. default_profile is 34963 cycles (4.370375 ms), with blocking 15001 cycles (1.875125
Sensitivity ms), caused by task Taskd. default_profile executing at its dispatch priority.
= task Taskd is schedulable
@ Calculated response time on Task3. default_profile for response Stimulus3.Response3_1 is 14456 cycles (1.807 ms).
Best Task Priorities Calculated responsge time on Task3. default_profile for response Stimulus3.Response3_2 is 15456 cycles (1.932 ms).
Calculated response time on Task3. default_profile is 17658 cycles (2.20725 ms), with blocking 3000 cycles (3 kCycles on
@ timebase cpu_clock), caused by task Taskd.default_profile locking resource Resourcel.
CPU Clock Rate task Task2 is schedulahble

Calculated response time on Task2. default_profile for response Stimulus2. Response2 is 10955 cycles (1.388375 ms).
Calculated responsge time on Task2. default_profile is 13455 cycles (1.681575 ms), with blocking 3000 cycles (3 kCycles an
timebase cpu_clock), caused by task Taskd.default_profile locking resource Resourcel

interrupt Bursting is schedulable.

Calculated responsge time on Bursting. default_profile is 2151 cycles (268.875 us), with blocking 2000 cycles (2 kCycles on
timebase cpu_clock), caused by task Task5. default_profile disabling interrupts to interrupt priority 1

interrupt Timer! is schedulable.

Calculated responsge time on Timerl. defadlt_profile is 2252 cycles (281.5 usg), with blocking 2000 cycles (2 kCycles an
timebase cpu_clock), caused by task Task5. default_profile disabling interrupts to interrupt priarity 1.

interrupt Tirner2 is schedulable.

Calculated responsge time on Timer2. default_profile is 2353 cycles (294,125 us), with blocking 2000 cycles (2 kCycles on
timebase cpu_clock), caused by task Task5. default_profile disabling interrupts to interrupt priarity 1.

The system is schedulable.

Figure 18:17 - Viewing Best Task Priorities Analysis Results in Text Format

In priority allocation, each task is shown with its calculated best priority. Tasks
are also grouped according to whether they could share an internal resource
(and therefore minimize application stack space). The lower section of the
workspace shows the schedulability analysis assuming that you were to apply
these changes.

Maximizing the number of tasks that share an internal resource has two
important effects on the system:

e Total required stack  for the  system is minimized.
The worst-case stack usage for an arbitrary set of tasks is normally the
sum of the worst-case stack usages for each of the tasks. When these
tasks share an internal resource, the worst-case stack usage is the single
largest stack usage of any of the tasks sharing the resource.

e A system is expected to become less schedulable as tasks share an
internal resource (because slack time is traded with reduced stack usage).
However, if the additional overhead of switching from one task to
another is a significant proportion of the task execution time, then
sharing an internal resource between these tasks may improve
schedulability.
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18.4.1 Required Lower Priority Tasks

If you know that certain tasks must have a higher priority than others, you
should enter these constraints into the RTA-OSEK GUI.

You can do this, for example, to ensure a specific execution order. So, for
instance, if Task3 and Task4 may be activated together, but Task3
prepares some data that is used by Task4, then Task3 must execute first.
Task3 is, therefore, a required lower priority task for Task4.
You should specify the required lower priority tasks for the tasks that are of
interest. This information has been specified in Figure 18:18.

Select Task: | Taskl - @ @ @ default_profile - @ @ @

Task "Task1” [BCC1]

Application

Target
Tasks

Tasksets

Flosting poirt
Stack allocation

Summary % Scheduling is preemptable.
Task “Task1* priorit
@ Arctivations 114 P Y
Task Data
% Ny Task Priaiity - [3
@

Fequired lower priority tasks:

LCancel

Priarity must be > 5.

v Task2
v Task3

- i Tazkh
VT : O} Taskd
Buget Thi

Execution limits | WY

Figure 18:18 - Selecting the Required Lower Priority Tasks

When best task priorities analysis performs priority allocation, it uses the
required lower priority constraints and searches for the priority ordering that
best allows the system to meet its schedulability requirements.

In general, when using automatic priority allocation, the fewer priority
constraints that are placed on the system, the better the priority ordering that
can be defined. This means that only priority constraints that are absolutely
necessary should be given in the priority constraints declaration.

18.5 CPU Clock Rate Optimization

CPU clock rate optimization is similar in concept to best task priorities, but it
optimizes for time rather than space. It looks for the lowest possible clock rate
that gives a schedulable system.

CPU clock rate optimization will rearrange task priorities if this results in a
system that is schedulable at a lower clock frequency.
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Figure 18:19 shows the results of CPU clock rate optimization in text format.

Application

Target

Tasks

ISRs

Alarms f Schedules

Resources

Events

COmM

Build

Stimuli

Analyze

@

surnmary

@

Stack Depth

@

Schedulahility

@

Sengitivity

@

Best Task Priarities

@

CPU Clock Rate

Clock Rate Analysis

Checking

Creating files

Analysis

*** Clock Optimization results =

The systern is schedulable if processor clock speed is reduced to 70% of its current value based on the
following task priorities.

1 schedulable solution found. Current minimum 3 preemption levels.
Task Taskd is schedulable at priority level 1.

Task Task5 is schedulable at priority level 2.

Task Taskl is schedulable at priority level 3.

Task Task3 is schedulable at priority lewel 4,

Task Task?2 is schedulable at priority level 5.

Tasks Taskd, Task5 must not preempt each other.

Tasks Task1, Task3 must not preempt each other.

Figure 18:19 - Viewing CPU Clock Rate Optimization Analysis Results in Text Format

Figure 18:20 shows the results of CPU clock rate optimization in graphical

format.
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100%

0%

Alarms f Schedules

Priority allocation Apply theze values |

Resaurces

Events

COom

Build

Stimuli

Analyze

@

Summary

@

Stack Depth

@

Schedulability

@

Sengitivity

@
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@

CPU Clock Rate

Tazks in the zame box must share an internal rezource

Figure 18:20 - Viewing CPU Clock Rate Optimization Analysis Results in Graphical Format

Clock optimization can be thought of as a combination of sensitivity analysis
and priority allocation from best task priorities analysis.

e As with clock sensitivity (explained in Section 18.3), it is assumed that the
effect of changing the clock frequency only impacts on execution times
(including critical execution times, resource and interrupt lock times).
Deadlines and delays between alarms and arrivalpoints on schedules are
not scaled.

e As with priority allocation, task priorities may be rearranged. You should
specify required lower priority tasks where there are necessary constraints
on reprioritization.

If it is important that your system has critical requirements for power
consumption or heat dissipation, then you should consider using clock
optimization on your final application.

18.6 Summary

e RTA-OSEK provides facilities for analyzing the timing model of your
application using RTA-OSEK Planner.

e Stack analysis allows you to determine the worst-case stack usage for
your application, accounting for situations where stack space can be
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effectively overlaid due to the calculated run-time behavior of your
application.

e  Schedulability analysis tells you whether or not every response deadline in
your application will be met at run-time for all possible arrivals of stimuli.
If your application is found to be unschedulable, there are a number of
approaches your can use to make it schedulable.

e Sensitivity analysis lets you explore the boundaries of your application,
either to detect areas that are making your system unschedulable or to
look at the scope for possible future enhancements.

e  Best task priorities analysis determines the best priority allocation for your
tasks, such that the system is schedulable. Required lower priority tasks
can be specified for tasks whose execution ordering is important. Best
task priorities analysis also determines which tasks can share an internal
resource, so that stack space can be minimized.

e  CPU clock rate optimization is similar to best task priorities, but optimizes
for minimum CPU clock rate rather than for minimum stack space.
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19 Using RTA-OSEK from the Command Line

19.1 Overview of Operation

19.1.1 Functionality

The tool rtabuild is a command line program that invokes the various tools
of the RTA-OSEK development suite to provide the following functions:

Build Kernel and application support data.
This is used to create the RTA-OSEK header, C and assembler files that
you need in order to compile and link your application.

Schedulability analysis.

Determines whether all tasks and ISRs meet their deadlines and other
constraints in the worst-case.

Sensitivity analysis.

Calculates how far a range of timing parameters for each task and ISR
can be varied to achieve a system that is only just schedulable.

Best Task Priorities.
Allocates task priorities to give the minimum number of preemption
levels, commensurate with a schedulable system.

Clock Optimization.

Determines the lowest processor clock rate that can be achieved for a
schedulable system and the task priorities that are necessary to run at this
rate.

rtabuild reads input configuration file(s) written in OIL syntax.

19.1.2 Messages

During its operation, rtabui 1d reports various messages. They can be:

Information messages.
Reports useful information such as the amount of memory used or the
size of a data structure.

Warning messages.

Occur when the input file specifies an unusual condition, something that
is redundant or a value that cannot be represented precisely and is
therefore subject to rounding error.  When warnings have been
produced, the output files are created and the application can be built.

Error messages.

Generated where there are conflicts in the input file that make it
impossible to perform analysis correctly or produce correct output. The
tool attempts to report all the errors it can find and then exits. All errors
should be removed and the operation should be repeated before
attempting to use the results or output of rtabuild.

Fatal messages.
Caused where there are conditions in the input file, from which recovery
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is not possible. rtabuild stops processing immediately after detecting
and reporting a fatal error message.

19.1.3 Return Values

At the end of its execution rtabuild will return a code as indicated by the
table below:

Value Description

0 Success in the requested operation.

1 Termination as a result of an error or fatal message.

2 User cancelled processing (Esc) while running RTA-OSEK
Planner.

3 User abort (~C/*Break).

4 System is not schedulable. (0 is returned if —u command line
option is specified).

5 Priority allocation failed to generate a schedulable system.

19.1.4 Command Line Options

rtabuild is invoked from the command line using:

‘ rtabuild [[*options*]] [*input_file*] ‘

Command line options are identified by a preceding hyphen. Any valid
combination of command line options can be specified in any order.

One or more input files can be specified on the command line. All files must
be written using OIL syntax. Where more than one input file is specified, the
files are processed in the order that they appear. The text of each file is
appended to the previous file to create a temporary file that is processed.

A full list of command-line options is provided in the RTA-OSEK Reference
Guide.

19.1.5 Output Files

19-2

During processing, rtabuild may generate intermediate, temporary and
listing files. Temporary files are always removed on completion. Intermediate
files are normally deleted, but can be retained using the —k option. Listing
files are only generated if the —o option is selected.
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20 Using RTA-OSEK with RTA-TRACE

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably enhanced application, it provides the embedded application
developer with a unique set of services to assist in debugging and testing a
system. Foremost amongst these is the ability to see exactly what is happening
in a system at runtime with a production build of the application software.

Configuration of RTA-TRACE parameters for RTA-OSEK is carried out using
the RTA-OSEK GUI. The GUI is largely self-explanatory, so this section will
simply describe a set of tasks and how one might achieve them.

It is assumed that you have some knowledge of using the RTA-OSEK
configuration tool, so creation/configuration of the application is not
discussed here.

All of the configuration tasks relating to RTA-TRACE are accessed from the
RTA-TRACE tab at the bottom left-hand side of the GUI.

20.1 Configuration

The following options can be set from this pane:
Trace Type Disables or enables (either simple or advanced) tracing.

Advanced tracing provides more detailed tracing than simple
tracing, with a corresponding increase in trace-records.

" Disabled
* Simple
= Advanced

LCancel |

Compact IDs The compact trace format saves buffer space by only allowing 4
bits for task tracepoint ID values, and 8-bits for tracepoint and
interval ID values. Other identifiers (Tasks, Resources etc.) use 8
bits.

If compact identifiers are not selected, 12 bits are used for
tracepoint, task tracepoint, and interval ID values, with 16 bits
being used for other identifiers.

Compact Time Select compact (16-bit); or extended (32-bit) time format. This
option may not be available for every target.

Trace Stack Select whether or not to record stack usage or not.

Target Select whether or not runtime target triggering is available.

Triggering

RTA-OSEK v5.0.2 Using RTA-OSEK with RTA-TRACE 20-1



Buffer Size This controls the size of the buffer reserved on the target for the
tracing information. Note that the number is in records, not bytes,
so the actual buffer size in bytes depends upon sizes selected for
time and identifier.

specify number of trace records 7| x|
Recaords I'IUD
ok, LCancel
Autostart Select whether tracing is started automatically, and which trace

mode to start in.

For triggering operation, the trigger setup (TriggeroOn...) code is
entered here. Details of the triggering APl can be found in the
RTA-TRACE User Manual.

2]

—autogtart Setting

[~ Setkrace repeat
O

" Bursting

[~ Enable trace comms link

r- -l.-... ........... I”gger Setup I:I:lde
[Iggerin
195eng [TriggeOnE nor05 TRACE_TRIGGER,

ok LCancel
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Initial Categories  |f run-time categories have been defined (See Section 20.5 and
the RTA-TRACE User Manual for more details about categories),
this dialog allows you to choose which run-time, user-defined
categories are enabled when tracing starts. Below, we can see
three run-time, user-defined categories, one of which is initially

disabled.
Opti -
phicr Yalue (B3 o
Categond, Enabled
Categorvl Enabled Cancel
I|CategarC Dizabled j
Initial Classes Choose which record classes are enabled when tracing starts.

Below we can see that task and ISR, activation, and event tracing
are able to be enabled and disabled at run-time and that, initially,
event tracing is disabled.
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21|
Option Yalue = 0K
B Tazks_and ISRz Enabled =
Startup Dizabled Cancel
Activations Enabled
Alarmsz Dizabled
[

Stopwatch This dialog allows the user to specify what function is used to

implement Get Stopwatch (). In the dialog below, this is a user-

supplied function called now () . The header file supporting this
function is called now.h.

Stopwatch code generator 7] x|

Hinclude file for GetStopratchi]

Inu:-w.h _I

[Thiz file gets included before the stopwatch code

generation o allow you to uze target-specific code
it GetStapwatchi).]

Hinclude |_§et5tu:upwatch[] I GetStDpwatchanertaint_l,l[]I

Cancel |

20.2 Tracepoints

This pane allows tracepoints to be defined. New tracepoints are initially given
auto-generated identifiers, but this can be over-ridden using the ID button:

specify tracepoint ID 7| x|

ID [D=auto) |43

ok, LCancel
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If the tracepoint has associated data, it is possible to supply a format-string
(see section 20.8 for more information about format strings) to govern how
the data will be displayed:

Specify trace data format d |

Format IXH

Format assiztant

binary integer [defined zize) j

unzigned integer [defined size] -
hexadecimal integer

hexadecimal integer [defined size)

binary integer

thinary integer [defined size]
double

zet offzet into data =
hiex durnp -

20.3 Task Tracepoints

This pane allows task-tracepoints to be defined. New task-tracepoints are
initially given auto-generated identifiers, but this can be over-ridden using the
ID button as for tracepoints.

Format strings are entered in the same way as for tracepoints.

20.4 Intervals

This pane allows intervals to be defined. New intervals are initially given
autogenerated identifiers, but this can be over-ridden using the ID button as
for tracepoints.

Format strings are entered in the same way as for tracepoints.

20.5 Categories

This pane allows trace categories to be defined, along with their mask-value.
See the RTA-TRACE User Manual for more details about categories.
Categories can be always enabled, always disabled, or enabled/disabled at
run-time by using the filter pane (see section 20.7 below).

20.6 Enumerations

This pane allows enumerated identifiers to be specified, along with numeric
values. The example shown illustrates how the first few OSEK error codes
might be enumerated.
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Select Enumeration Yalues

il -3
M ame I‘\-falue I
e ;
E_0O5_ACCESS 1 LCancel |
E_O5_CALLEWEL 2
E_0O5_ID 3
E_O5_LIMIT 4

Add

J

Bemove

20.7 Filters

This pane configures the

filtering of event classes and categories and the

tracing of tasks and ISRS. By default, everything is traced. However, you may
find it useful to disable the tracing of classes of objects at runtime. Similarly,
you may want to disable the tracing of some of your tasks and/or ISRs.

Trace ‘
@ Categories
Summary
@
Configuration Clazses
@
Tracepoints
15Rs
@
Task Tracepoints
@ Tasks
Intervals
@
Categoties
@
Enumerations
@
Filters

Filters have three states:

Trace Filters

Alwanss: <none>
Runtirme: <none>
Mewer: <none>

Alweays: Tasks_and_ISRs, Starup, Activations, Alarms, Schedules, Resources, Interrupt_locks, Errars,
Runtime: <none>
MNewer: <nonex

Alwans: Achvanced_Driver, Catl
Runtirme: <nones
MNewer: <none>

Alweyes: Taskd, Taskd, Task2, Taskl, osek_idle_task
Runtime: <none»
Mewer: <none>

1. Always — tracing is always enabled (default)

2. Never — tracing is never enabled,;

3. Runtime —tracing can be enabled and disabled at runtime.
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Select Trace Task Filters 2

|Dptiu:un IVaIue I [ oK
Tazkd Always =
Task3 Runtime Cancel |
Tazk2 Mewver
Tazk1 Always
B ozek_idle_task Abways j
Mewver
untime

[

A runtime filter defaults to an initial state of disabled. You can change the
default state using the ‘Initial Classes’ button on the configuration pane (See

Section 20.1).

20.8 Format Strings

Format strings specify how a tracing item's data should be displayed. Simple
numeric data can be displayed using a single format specifier. More complex
data, e.g. a C struct, can be displayed by repeatedly moving a cursor
around the data block and emitting data according to more complex format
specifiers.

If a format string is not supplied, data is displayed in the following manner:

e |If the data size is no greater than the size of the target's int type,
data is decoded as if “$d"” had been specified.

e Otherwise the data is displayed in a hex dump, e.qg.
0000 00 01 02 03 04 05 06 07 08 09 Oa 0b Oc 0d Oe Of
0010 10 11 12 13 14 15 16 17 18 19 la 1b 1c 1d le 1f

e A maximum of 256 bytes is shown.

Note: when format specifiers are given, the target's endian-ness is taken into
account. When a hex dump is shown, the target's memory is dumped byte-
for-byte. In particular, you may not get the same output from a hex dump as
from the $x format specifier.
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20.8.1 Rules

Format strings are similar to the first parameter to the C function printf () :
e Format strings are surrounded by double-quote ( " ) symbols.

e A format string may contain two types of object: ordinary characters,
which are copied to the output stream, and format elements, each of
which causes conversion and printing of data supplied with the
event.

e A format element comprises a percent sign, zero or more digits and a
single non-digit character, with the exception of the $E element —
see below.

e The format element is decoded according to the rules in the table
below, and the resulting text is added to the output string.

e The special format element $% emits a %.

e In addition to ordinary characters and conversion specifications,
certain characters may be emitted by using a ‘backslash-escape-
sequence’. To emit a double-quote ( " ) character, \" is used, and to
emit a \ character, \\ is used.

e The optional size parameter to integer format specifiers defines the
field's width in bytes. Valid values are 1, 2, 4 or 8.

Note: An important difference from printf () is that the cursor does not
automatically move on from the current field when a field is emitted. This is to
facilitate multi-format output of a single field.

Format Element Meaning

$offsetQ Moves the cursor offset bytes into the data. This can
be used to extract values from multiple fields in a
structure.

$[sizeld Interpret the current item as a signed integer. Output

the value as signed decimal.

$[size]u Interpret the current item as an unsigned integer.
Output the value as unsigned decimal.

Slsizelx Interpret the current item as unsigned integer. Output
the value as unsigned hexadecimal.

$[sizelb Interpret the current item as an unsigned integer.
Output the value as unsigned binary.

$enum|:sizelE Interpret the current item as an index into the
enumeration class who's ID is enum. Emit the text in
that enumeration class that corresponds with the
item's value.

The enumeration class should be defined using ENUM
directives. An exception is implicitly defined enum class
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99, which is the set of ERCOSEK errors.

SF Treat the current item as an IEEE ‘double’. Output the
value as a double, in exponent format if necessary.
$? Emit in the form of a hex dump.

o°
o\

No conversion is carried out; emit a %.
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20.8.2 Examples

Description Format String Example Notes

A native integer | “%d 0x%x” 10 0xA The "0x" is not emitted

displayed in by the $x format specifier

decimal and but is specified in literal

hexadecimal characters in the string.
Absence of size specifier
means the target's int
size is assumed. This
example is a 16-bit
processor.

Asingle “%1u%s” 73% Use of size specifier

unsigned byte of 1 byte.

representing a Use of % to emit %.

percentage.

struct{ “(%d, %4@%d)"” | (20,-15) | Useof soffsetlto

int x; move to byte-offset
within the structure.
int vy;

bi

... on a 32-bit

processor.

A value of type “S1E" Yellow The number 1 refers

enum
e_Rainbow,
(defined as the
colours of the
rainbow!)

to the ID of the
enum class in the
ENUM directives, not
to the width of the
field.
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Support

Getting Help

There are a number of ways to contact LiveDevices for technical support. When you
contact our support team, please provide your customer number.

Email

The preferred method for dealing with support inquiries is via email.
Any issues should be sent to

Telephone

You can contact us by telephone during our normal office hours (0900-1730
GMT/BST). Our telephone number is +44 (0) 19 04 56 26 24

Fax

Our Fax number is +44 (0) 19 04 56 25 81



