RTA-OSEK

Reference Guide

Contact Details

ETAS Group

Germany

ETAS GmbH
BorsigstraBe 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

Japan

ETAS K.K.

Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

Korea

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-899, Korea

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

France

ETASS.AS.

1, place des Etats-Unis
SILIC 307

94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

Great Britain

ETAS UK Ltd.

Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

People’s Republic of China

2404 Bank of China Tower
200 Yincheng Road Central
Shanghai 200120

Tel.: +86 21 5037 2220
Fax: +86 21 5037 2221

LiveDevices

LiveDevices Ltd.

Atlas House

Link Business Park
Osbaldwick Link Road
Osbaldwick

York, YO10 3JB

Tel.: +44 (0) 19 04 56 25 80
Fax: +44 (0) 19 04 56 25 81

Copyright Notice

© 2001 - 2007 LiveDevices Ltd. All rights reserved.
Version: RTA-OSEK v5.0.2

No part of this document may be reproduced without the prior written
consent of LiveDevices Ltd. The software described in this document is
furnished under a license and may only be used or copied in accordance with
the terms of such a license.

Disclaimer

The information in this document is subject to change without notice and
does not represent a commitment on any part of LiveDevices. While the
information contained herein is assumed to be accurate, LiveDevices assumes
no responsibility for any errors or omissions.

In no event shall LiveDevices, its employees, its contractors or the authors of
this document be liable for special, direct, indirect, or consequential damage,
losses, costs, charges, claims, demands, claim for lost profits, fees or expenses
of any nature or kind.

Trademarks

RTA-OSEK and LiveDevices are trademarks of LiveDevices Ltd.
Windows and MS-DOS are trademarks of Microsoft Corp.
OSEK/VDX is a trademark of Siemens AG.

AUTOSAR is a trademark of AUTOSAR GdR.

All other product names are trademarks or registered trademarks of their
respective owners.

Certain aspects of the technology described in this guide are the subject of
the following patent applications:

UK - 0209479.5 and USA - 10/146,654,
UK - 0209800.2 and USA - 10/146,239,
UK - 0219936.2 and USA - 10/242,482.

RTA-OSEK v5.0.2 Copyright Notice

Contents

1 About this GUIAEoiiii 1-1
1.1 Who Should Read this Guide?............cooooiiiiiiiiiii 1-1
1.2 CONVENTIONS ...t 1-1
1.3 RETOIENCES ..o it 1-1

2 RTA-OSEK Type Definitionsooviiiiiiiiiiiiiieeceeeeeeeeeee 2-1
2.1 Type Definition NOteS.ccvviiiiiiiiiiieeiee e 2-3

3 RTA-OSEK API ReferenCe......cvviiiiiiiicc e 3-1
3.1 OSEK Conformancecc.oooiiiiiiiii e, 3-1
3.2 AUTOSAR and RTA-OSEK Featurescccovoiiiiiiiiiiieie, 3-1
3.3 Static and Dynamic Interfaceccoooioiiiiii 3-1
3.4 The APl Call Templateoooiiiiiiii e 3-2
3.5 ACHVATETASK) oo 3-4
3.6 ACHVATETASKSET() ..ooe e 3-6
3.7 AdvanceSchedule(). 3-8

RTA-OSEK v5.0.2 Contents iii

I
o
S
—
@
S
—
(%]

3.8 ASSIGNTASKSET() ..vvveiieiiice e 3-10

3.9 CancelAlarmO) e 3-12
3.10 ChainTask(). . ovee e 3-14
3,11 ChainTaskSet() ... eveeee e, 3-16
3.12 ClearEVeNT() .. e 3-18
3.13 ClOSECOMO) ... e 3-20
3.14 DisableAllINterrupts()......cccovvvvieeieeeeiecceeee e 3-22
3.15 EnableAllINterrupts().......cccovvvveeeeieeeieiceeeee e 3-24
3.16 GetActiveApplicationMode()ccoovvvviiiiiiiiiiiiiie 3-25
317 GETAIBIMO) oo 3-26
3.18 GetAIAIMBASE(). ..o 3-28
3.19 GetArrivalpointDelay()...........cocooioiiieie e 3-30
3.20 GetArrivalpointNEXt()vvvvveeeeeeeeeecceee e 3-32
3.21 GetArrivalpointTasksetRef()coovviiiiiiiiiiiii 3-34
3.22 GetCounterValue().......coooeee e 3-36
3.23 GOEVENT() wonieee e 3-38
3.24 GEISRID() ... 3-40
3.25 GetMessageReSOUICE() uvvvveeieieie, 3-41
3.26 GetMessageStatus()vwwvveeeeeeieee 3-43
3.27 GEtRESOUICE() ... 3-45
3.28 GetScheduleNext() ... 3-47
3.29 GetScheduleStatus().......cooveen e 3-49
3.30 GetScheduleTableStatus()........coovueieiie e 3-51
3.31 GetScheduleValue().......oooee e, 3-53
3.32 GetStackOffset() .. ooeeee e 3-55
3.33 GetTaSKID() .. .eeieiieee e 3-56
3.34 GetTaskSetRET().....ccov e 3-58
3.35 GetTaskState()cooeeeieeee e 3-60
3.36 INcrementCouNter()........cooeeee e 3-62
3.37 INIECOMO) .o 3-64
3.38 INItCOUNTEI() oo 3-66
3.39 MergeTaskSet()uuwwueeeeiiie 3-68

iv Contents RTA-OSEK v5.0.2

3.40
3.41

3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51

3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61

3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69

RTA-OSEK v5.0.2

NextScheduleTable(). ... 3-70
osAdvanceCounter_<CounterID>() ... oo 3-72
OSRESETOS() et 3-74
REAAFIAG() ..o 3-75
ReCeiVEMESSAGE()......cceieeeeiiiiii e 3-77
ReleaseMessageReSOUICE()oeeeeeeeeiiiiiiieeeee e 3-79
ReleaseReSOUICE()coue e 3-81
REMOVETASKSET() ... 3-83
ReSetFlag()......coooeeeieee e 3-85
ResumeAllINterrupts().......ccoooeeeeeeeeeiee e 3-87
ResumeOSINterrupts()oooeeeeeeeeeeeeeeeee e 3-89
SCREAUIRY) . 3-91
SENAMESSAGE() ..o 3-93
SetADSAIBIM(). ..o 3-95
SetArrivalpointDelay()........ccvvvvveiieeieiicee e 3-97
SetArrivalpointNext() ... 3-99
SOTEVENT() vt 3-101
SEtREIAIBIM) . 3-103
SetSCheduleNEXt()o 3-106
SAULAOWNOS) ... 3-108
STAMTCOMO) .. 3-109
STAMTOS() e 3-111
STArtSCNEAUIE() ... 3-112
StartScheduleTable()oove e, 3-114
STOPCOMO) ..t 3-116
StopSchedule()..........oooo 3-118
StopScheduleTable().........ccooviviiiiie e 3-120
SuspendAllINterrupts().......ccoovvvevieiiieee e 3-122
SuspendOSINterruPtS()ooeevveeiiieieee e 3-124
TermiNateTasK() ... e 3-126

Contents

I
o
S
—
@
S
—
wn

3.70 TestArrivalpointWritable()............ccooevvviiiiiii 3-128

3.71 TestEquivalentTaskset()ccoevveviiiiiiiiiiieeeeeeiiiiieeee 3-130
3.72 TeStSUDTASKSET() ovvneeee e 3-132
3.73 Tick_<CoUNTEIIDS(). e 3-134
3.74 TickSChedUIE) e 3-136
3.75 WaAITEVENT() .. oo 3-138
4 Constructional Elements............ooooiiiii 4-1
A1 Declar@ACCESSON(). ... e 4-1
4.2 Declar@AlarmM()o 4-2
4.3 Declar@COUNTEI()oeee e 4-3
A4 Declar@EVENT(). ..o 4-4
4.5 DeclareFlag().......cooueeueee 4-5
4.6 DeclarelSR() 4-6
4.7 DeclareMeSSage().......cceeeeeeieiiiiee e 4-7
4.8 DeclareReSOUICE()e e 4-8
4.9 Declare@Task()ooee e 4-9
5 Advanced Counter & Schedule Driver Interface............cccoceiiiiin. 5-1
5.1 Tick SOUrCe SEMANTICS ...covviiiieiiiiii e 5-1
5.2 INitializationooiiii 5-2
5.3 Cancel_<SchedulelD>() [User Provided]...........cooveiiioiieiiiieee. 5-3
5.4 Now_<SchedulelD>() [User Provided]........ccoooiviiiiiiiiiiiaa. 5-4
5.5 Set_<SchedulelD>() [User Provided]coouoiiiiiiiiiiiiiiiei. 5-5
5.6 State_<SchedulelD>() [User Provided]cooouoiiiiiiiiiiiiieei. 5-6
5.7 Cancel_<CounterlD> [User Provided]........cooouuoiiioiiiiiiieein, 5-7
5.8 Now_<CounterID>() [User Provided].......c.ocooiiiiiiiiiiiiiiniin, 5-8
5.9 Set_<CounterlD>() [User Provided]ccoveveoiiiiiiiiiiiiiiieiin, 5-9
5.10 State_<CounterlD>() [User Provided]c..cooviiiiiiiiiiiee. 5-10
6 Execution Time MONITONNGvvviiiiiiiiiiie e 6-1
6.1 GetEXecUtionTIME() e 6-1
6.2 GetlargestExecutionTime()cooovvuviiiiiiieeiiiieeee e, 6-3
6.3 GetStopwatch() [User Provided]..............covvvvviviiiiiiiiiiiiiiiiii, 6-5

Vi Contents RTA-OSEK v5.0.2

10

11

RTA-OSEK v5.0.2

6.4 GetStopwatchUncertainty() [User Provided]....................cc...... 6-6
6.5 ResetlargestExecutionTime()oovvvevveiiieiiiiiiiiiiiiiiii, 6-7
HOOK ROUTINGS ... 7-1
7.1 ErrorHook() [User Provided]c..ovvemiei e 7-1
7.2 OverrunHook() [User Provided]cooouiriiiiiiieiiie e 7-3
7.3 Messagelnit() [User Provided].........cocovvvviiiiiiiiiiiceeeee, 7-4
7.4 PostTaskHook() [User Provided].......coooueriiieiieiiieieeeee, 7-5
7.5 PreTaskHook() [User Provided]cooooiriiiiiieeiie e, 7-6
7.6 ShutdownHook() [User Provided].........coooviiiiiiiiiiiiii 7-7
7.7 StackFaultHook() [User Provided]couviiiiiiiiiiiiiiiiii 7-8
7.8 StartupHook() [User Provided]ccccovvvvvviiiiiiiiiiiiiiii, 7-10
CallDACKS .. 8-1
8.1 ALARMCALLBACKJ() [User Provided]covvuuoriiiiiiiiiiiee, 8-1
8.2 COMCALLBACK() [User Provided].......ccccoueuieeiiiiieieiiiieiee, 8-2
Predefined ObJECtS.......oiiiiiii e 9-1
9.1 OSEK Counter AttribUeS.cooiiiiiiiiiiiiii e 9-1
9.2 OSEK Task Statesviiiiiiiiiiiiiiiii e 9-1
9.3 OSEK RESOUICES ... 9-2
9.4 OSEK Application MOAES.vvveeiiiiiiii, 9-2
9.5 RTA-OSEK Build LeVelSoveiiiiiiiiii e 9-2
9.6 RTA-OSEK TasKSETSeeiiiiiiiiieeiiiii et 9-2
9.7 RTA-OSEK Application Characteristics..........ccoceeeeiiiieeiiiienn, 9-3
Macro DefinitioNnSoiiiiii e 10-1
Quick Reference GUITe.oovw e 11-1
11.1 Dynamic Interface RTA-OSEK API Calls.............ooooeiiiiiiiinn 11-1
11.2 Static Interface RTA-OSEK APl Callsooiiiiiiiiiiiic 11-4
11.3 Constructional Elements............coooiiiiiiiiiiii e 11-5
11.4 Advanced Schedule Driver Interface...........cccooooiiiiiiiiinn. 11-5
11.5 Advanced Counter Driver Interface...........ccccooooiiiiiiiiinnn. 11-6
Contents

Vii

I
o
S
—
@
S
—
wn

11.6 Execution Time Monitoring Interfaceccccccciiiiiiin. 11-7

T1.7 HOOKS. .. 11-7
11.8 Other Callbacksoooiiii 11-7
11.9 Predefined ObJeCtS.oooiiiiieeee e 11-8
11.10Macro Definitionsoooiiiiiii 11-9
TTATEMOr COUBS .ot 11-11
12 Application Build Reference...........coociiiiiiiiiii, 12-1
12.1 Command Line Optionsooiiiiiiiiii e 12-1
12.1.1 General OptioNS.......oooiiiiiiiieiiiee e 12-1
12.1.2 BUild OptioNS ..o 12-2
12.1.3 Analysis OptioNS.ovvuveiiiiiiiii, 12-3

12.2 Generated Files........oooiiiiii 12-4
12.2.1 Header Files ..ot 12-4
12.2.2 Header File Include Structurecccoccooiiiiinin. 12-5

12.3 RTA-OSEK LIbrariesccooviiiiiiiiiiiiieeeee e 12-5
12.4 RTA-OSEK BUIIEr ..o 12-6
12.4.1 Environment Variables............ccccccooiiiiiii 12-6
12.4.2 MACIOS .o 12-8

13 Target .inifiles ..o 13-1
13.1 Whatisatarget .inifile? ..o 13-1
13.2 Naming the target .ini fileccciiiiiiii 13-1
13.3 The format of a target .inifilecoooooo 13-2
13.4 The [globals] SECtioNcccooiiiiieeceeeeeee e 13-2
1341 CPUdata ..o 13-2
13.4.2 Custom build dataccooiiiiiii 13-3

13.5 The [VeCtors] SECHION ... ccovee e 13-4
13.6 The ORTI debugger sections..........cccooeeeieieeiiiiiiiecceccececeeee 13-5
13.6.1 Describing an ORTI debuggercccccvvvvvvveeennnn.. 13-5
13.6.2 Overriding an existing debugger description............. 13-9
13.6.3 Adding a new debugger description 13-9
13.6.4 Choosing new attribute values 13-10

viii Contents RTA-OSEK v5.0.2

(R
(@]
>
—+
()
>
—~+
7]

RTA-OSEK v5.0.2 Contents ix

Contents RTA-OSEK v5.0.2

1

About this Guide

1.1

This guide contains the complete technical details of RTA-OSEK Component. It
describes the parts of RTA-OSEK that are common to all target hardware.

For each supported target, there is also an RTA-OSEK Binding Manual that
provides target-specific information.

Who Should Read this Guide?

1.2

It is assumed that you are a developer who wants to know how to create
predictable real-time systems using RTA-OSEK Component. Familiarity with
the RTA-OSEK User Guide and the OSEK and OIL specifications is assumed.

Conventions

1.3

Important: Notes that appear like this contain important information that you
need to be aware of. Make sure that you read them carefully and that you
follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any processor running RTA-
OSEK Component.

In this guide you'll see that program code, header file names, C type names, C
functions and RTA-OSEK API call names all appear in the courier typeface.
When the name of an object is made available to the programmer the name
also appears in the courier typeface, so, for example, a task named Task1
appears as a task handle called Task1.

In the RTA-OSEK API Reference chapter, the ® symbol is used in the Calling
Environment tables. The symbol is used to indicate that support is provided in
RTA-OSEK Component, but it may not be portable to other OSEK
implementations.

References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards
refer to http://www.osek-vdx.org.

AUTOSAR (AUTomotive Open System ARchitecture) is an open and
standardized automotive software architecture, jointly developed by
automobile manufacturers, suppliers and tool developers. For details of the
AUTOSAR standards, please refer to http://www.autosar.org.

RTA-OSEK v5.0.2 About this Guide

1-1

2

RTA-OSEK Type Definitions

RTA-OSEK provides support for 3 classes of operating system features:

1. OSEK OS
2. AUTOSAR (SC1) OS

3. Unique RTA-OSEK features.

The following table describes the C types that are provided by the classes.
Portability of types is indicated in the “Portability” column. Types marked as
OSEK in this column are also portable to AUTOSAR (SC1) OS.

Symbol Description Portability
AccessNameRef Address of message data field. OSEK
AlarmBaseRefType Pointer to AlarmBaseType. OSEK
AlarmBaseType Structure for storage of counter | OSEK
characteristics (see Section 2.1).
AlarmType Alarm object. OSEK
AppModeType Application mode. OSEK
ArrivalpointConstType Read-only arrivalpoint object. RTA-OSEK
ArrivalpointRefType Pointer to RTA-OSEK
ArrivalpointType.
ArrivalpointType Arrivalpoint object. RTA-OSEK
BooleanRefType Pointer to BooleanType. RTA-OSEK
BooleanType O represents FALSE, non-zero RTA-OSEK
represents TRUE.
ByteType Unsigned byte. RTA-OSEK
CounterType Counter object. AUTOSAR
CycleType Execution time measured in RTA-OSEK
processor cycles. Unsigned
integer and at least 16 bits.
EventMaskRefType Pointer to EventMaskType. OSEK
EventMaskType Mask of zero or more events. OSEK
RTA-OSEK Type Definitions 2-1

RTA-OSEK v5.0.2

2-2

Symbol Description Portability
FlagType Pointer to Flagvalue. OSEK
FlagValue Flag object has the members OSEK
TRUE & FALSE.
ISRType ISR Object AUTOSAR
0SServiceIdType Represents identification of OSEK
system services.
ResourceType Resource object. OSEK
ScheduleStatusRefType Pointer to RTA-OSEK
ScheduleStatusType.
ScheduleStatusType Structure for storage of RTA- RTA-OSEK
OSEK schedule status
information and advanced OSEK
counter status information (see
Section 2.1).
ScheduleType RTA-OSEK Schedule object RTA-OSEK
ScheduleTableType AUTOSAR Schedule Table object | AUTOSAR
ScheduleTableStatusType Status for an AUTOSAR AUTOSAR
Schedule Table object
ScheduleTableStatusRefType | Pointer to AUTOSAR
ScheduleTableStatusType
SmallType Memory efficient type. Unsigned | RTA-OSEK
integer and at least 8 bits.
StackOffsetRefType Pointer to StackOffsetType. | RTA-OSEK
StackOffsetType Data type containing all stack RTA-OSEK
offset values (often just one).
StatusType Status information API calls OSEK
offer.
StopwatchTickRefType Pointer to RTA-OSEK
StopwatchTickType.

RTA-OSEK Type Definitions

RTA-OSEK v5.0.2

Symbol Description Portability

StopwatchTickType Execution time measured in RTA-OSEK
‘stopwatch’ counter ticks.
Unsigned integer and at least 16

bits.
SymbolicName Message object identifier. OSEK
TaskRefType Pointer to TaskType. OSEK
TasksetConstType RTA-OSEK read-only taskset. RTA-OSEK
TasksetRefType Pointer to TasksetType. RTA-OSEK
TasksetType RTA-OSEK taskset. RTA-OSEK
TaskStateRefType Pointer to TaskStateType. OSEK
TaskStateType State of a task. Includes OSEK

members READY, RUNNING,
SUSPENDED and WAITING.

TaskType Task object. OSEK
TickRefType Pointer to TickType. OSEK
TickType Count values in ticks. Unsigned | OSEK

integer. At least 16 bits.

UIntl6Type Unsigned integer. Exactly 16 RTA-OSEK
bits.

UInt32Type Unsigned integer. Exactly 32 bits | RTA-OSEK
(not provided on all RTA-OSEK
targets).

UIntType Unsigned integer. At least 16 RTA-OSEK
bits.

2.1 Type Definition Notes

AlarmBaseType is used with OSEK alarms. It is a structure with the form:

‘ struct { ‘

RTA-OSEK v5.0.2 RTA-OSEK Type Definitions 2-3

2-4

TickType maxallowedvalue;
TickType ticksperbase;
TickType mincycle;

}

Where maxallowedvalue is the maximum allowed count value in ticks,
ticksperbase is the number of ticks required to reach a counter-specific
(significant) unit (not used by RTA-OSEK) and mincycle is the smallest
allowed value for the «cycle parameter of SetRelAlarm() or
SetAbsAlarm() .

ScheduleStatusType is used with RTA-OSEK schedules and Advanced
OSEK Counters. It is a C structure with the form:

struct {
SmallType status;
TickType expiry;
}

Where status encodes two bit fields, as shown in Figure 2:1.

Running Pending

- - - - - - X X

BIT 7 6 S 4 3 2 1 0

Figure 2:1 - ScheduleStatusType() Bit Fields

The value of the bit fields determines whether the value of expiry is defined.
This is shown in the following table:

O
= 2
= =
= =
> LUl
o o B L
» »n ¢ | Description
= = G
< < o
= = W >
“ e | 2| £
(72 v ©
o o % 3
Not Set | Not Set | 0 | No | Stopped and not pending.

Not Set | Set 1 No | Pending, but stopped (not possible).
Set Not Set | 2 | Yes | Running, but not pending.
Set Set 3 | No | Running and pending.

RTA-OSEK Type Definitions RTA-OSEK v5.0.2

When expiry is defined it takes a value equal to the number of ticks before:

e the RTA-OSEK Schedule is due to process the next arrivalpoint for a
schedule table

e the next advanced OSEK Alarm or AUTOSAR ScheduleTable Expiry
Point due to expire on the associated counter

Important: The expiry is the number of ticks relative to the last expiry at
which the next expiry is due. A value of 0 means that the number of ticks
before the schedule is due is equal to the modulus of the RTA-OSEK Schedule
or maxallowedvalue of the advanced OSEK Counter.

RTA-OSEK v5.0.2 RTA-OSEK Type Definitions

2-5

3 RTA-OSEK API Reference

This chapter gives a detailed description of the RTA-OSEK API calls, listed in
alphabetical order.

3.1 OSEK Conformance

RTA-OSEK is certified to the requirements of OSEK OS conformance classes
BCC1, BCC2, ECCT and ECC2, and to CCCA and CCCB for OSEK COM.

3.2 AUTOSAR and RTA-OSEK Features

RTA-OSEK also provides features from in AUTOSAR OS Scalabilty Class 1
(Release 1.0) and unique RTA-OSEK features that are not part of the OSEK OS
standard. These are documented explicitly in the following chapters.

3.3 Static and Dynamic Interface

Portability: The static interface is exclusive to RTA-OSEK.

The static interface comprises of a set of RTA-OSEK calls that provide the same
operations as their dynamic counterparts, but at lower or no execution time
cost. The static versions of the API calls may be more efficient and provide
static error checking, as determined by RTA-OSEK. The static versions of the
API calls are derived from the dynamic calls in the following ways:

APIName (paraml) -> APIName_paraml ()
APIName (paraml, param2) -> APIName_paraml_param?2 ()
APIName (paraml, param2) -> APIName_paraml (param?2)

Some of the API calls listed in Chapter 3 have static versions. The static
versions are shown for each applicable call. You can find a summary of these
calls in Section 11.2 of this guide.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-1

3.4 The API Call Template

Each API call is described in this guide using the following standard
format:

The title gives the name of the API call.

A brief description of the API call is provided.

Function declaration:

Interface in C syntax.
Static interface: The static version of the APl call is listed (if

applicable).
Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.
Description:

Explanation of the functionality of the API call.

Error codes:

Build Code Description
Build level of RTA-OSEK | Return Description of return value.
values.

3-2 RTA-OSEK API Reference RTA-OSEK v5.0.2

Calling environment:

Environment Valid At Valid
(Hooks)

Idle task Startup

Task Shutdown

_Category 1 Pretask

interrupts

_Category 2 Posttask

interrupts
Error
Overrun

Symbols used are:

Portability:

v’ =Valid
x = |nvalid

® = Supported in RTA-OSEK, but may not be portable to other OSEK
implementations.

Specifies the portability between other implementation of the same
version of the relevant OS standard as follows:

Notes:

OSEK = API call is portable between OSEK OS implementations.

AUTOSAR = APl call is portable between AUTOSAR OS
implementations.

RTA-OSEK = API call is only portable between implementations of
RTA-OSEK.

Usage restrictions and notes for the API call.

See also:

List of related API calls.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-3

3.5 ActivateTask()

Activates a task.

Function declaration:
StatusType ActivateTask (TaskType TaskID)
Static version: ActivateTask_TaskID(TaskID)

Parameters:

Parameter | Input/Output | Description

TaskID Input Task to be activated.

Description:

If task TaskID is in the suspended state, it is transferred to the ready
state. If it is already in the ready or running state and the total number
of activations is less than the activation limit (for a BCC2 task), the
current activation is placed in the ready state on the activation queue.

Error codes:

Build Code Description
All E_OK No error.
All E_OS_LIMIT Too many task activations of the

multiply activated task TaskID. As a
consequence the task activation is
ignored.

Extended | E_OS_ID TaskID is not a valid task type.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | v/ Posttask x
Error x
Overrun x

Portability:
AUTOSAR

3-4 RTA-OSEK API Reference RTA-OSEK v5.0.2

OSEK

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-5

Notes:

See also:

3-6

For correct timing analysis, lower priority tasks must not activate higher
priority tasks.

Rescheduling after a call to ActivateTask () depends on the calling
environment:
* Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ().
e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.

e (ategory 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.

e Hooks: Rescheduling will not take place until the hook
terminates.

ChainTask ()
DeclareTask ()
GetTaskID()
GetTaskState ()
TerminateTask ()

RTA-OSEK API Reference RTA-OSEK v5.0.2

3.6 ActivateTaskset()

Activate a set of tasks.

Function declaration:

StatusType ActivateTaskset (TasksetType TasksetID)

Static version: ActivateTaskset TasksetID()

Parameters:

Parameter | Input/Output

Description

TasksetID | Input

Name of the taskset.

Description:

The tasks in taskset TasksetID are transferred from the suspended
state into the ready state. If any task in the taskset is already in the
ready or running state, and the task does not support queued
activations (i.e the task is not BCC2) or does support queued activations
but the queue is full, then current taskset activation is lost.

Error codes:

Build Code

Description

All E_OK

No error.

Extended | E_OS_ID

type.

TasksetID iS not a valid taskset

Extended | E_OS_LIMIT

from this call are ignored.

Too many activations of a task. As a
result, all task activations resulting

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

Portability:
RTA-OSEK

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-7

Notes:

See also:

3-8

For correct timing analysis, lower priority tasks must not activate
tasksets containing higher priority tasks.
Rescheduling after a call to ActivateTaskset () depends on the
calling environment:
* Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ().
e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.
e (ategory 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.

e Hooks: Rescheduling will not take place until the hook
terminates.

AssignTaskset ()

ChainTaskset (

GetTasksetRef
(

MergeTaskset

(
)
()
)

RemoveTaskset ()
TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK API Reference RTA-OSEK v5.0.2

3.7 AdvanceSchedule()

Process the next arrivalpoint on the advanced schedule.

Function declaration:
StatusType AdvanceSchedule (
ScheduleType SchedulelD,
ScheduleStatusRefType ScheduleStatus)

Static version::AdvanceSchedule SchedulelID(
ScheduleStatusRefType ScheduleStatus)

Parameters:
Parameter Input/Output | Description
ScheduleID Input Name of the schedule.
ScheduleStatus | Qutput Reference to schedule status.
Description:

This call indicates to advanced schedule SscheduleID that the next
arrivalpoint must be processed. The tasks for that arrivalpoint are then
activated.

If the final arrivalpoint is processed by this call, the advanced schedule is
stopped and a call is made to the advanced schedule callback
Cancel_<ScheduleID> () device driver function.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_ID ScheduleID is not valid.

Extended | E_OS_LIMIT Too many activations of a task. As a

result, all task activations resulting
from this call are ignored.

Extended | E_OS_STATE ScheduleID is not running.

Extended | E_OS_SYS_S_MISMATCH Schedule contains an advanced
counter (call only permitted for
ticked).

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment Valid SAnl el Valid
(Hooks)
Idle task ® Startup x

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-9

Environment Valid AL Valid
(Hooks)
Task ® Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
Rescheduling after a call to AdvanceSchedule() depends on the
calling environment:
e Category 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.
e Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ().
e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.
e Hooks: Rescheduling will not take place until the hook
terminates.
If the returned status is running, the call must become due again
‘expire’ ticks after this instance of the call became due. It is the
responsibility of the application programmer to ensure that this
happens.
For correct timing analysis, lower priority tasks must not advance
schedules that result in the activation of higher priority tasks.
Further information can be found in Section 2.1.1.
See also:

GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()

3-10 RTA-OSEK API Reference RTA-OSEK v5.0.2

TickSchedule ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-11

3.8 AssignTaskset()

Assign the members of a taskset to another taskset.

Function declaration:

StatusType AssignTaskset (TasksetType DestTaskset,
TasksetType SourceTaskset)

Parameters:
Parameter Input/Output | Description
DestTaskset Output Name of a writable taskset.
SourceTaskset | [nput Taskset containing tasks to be assigned.
Description:

The DestTaskset taskset is updated to contain exactly the tasks in the
SourceTaskset taskset.

If the sourceTaskset and DestTaskset are the same taskset, then
the membership of the taskset is unchanged as a result of the call.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_TS_INVALID Either taskset is invalid.
Extended | E_LOS_SYS_TS_READONLY | DestTaskset is not writable.

Calling environment:

Environment Valid ADYIER Valid
(Hooks)
Idle task ® Startup ®
Task ® Shutdown x
Category 1 interrupts | Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
None.

3-12 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

ActivateTaskset ()
ChainTaskset ()
GetTasksetRef ()
MergeTaskset ()
RemoveTaskset ()
TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-13

3.9 CancelAlarm()

Cancel an alarm.

Function declaration:

StatusType CancelAlarm(AlarmType AlarmID)

Parameters:

Parameter | Input/Output | Description

AlarmID Input Alarm name.

Description:

Cancels the alarm AlarmID.

Error codes:

Build Code Description

All E_OK No error.

All E_OS_NOFUNC Alarm AlarmID notin use.
Extended |E_OS_ID Alarm AlarmID is not valid.

Calling environment:

Environment Valid AOCLCALCILE Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | v/ Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK
Notes:
None.

3-14 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:
DeclareAlarm()
GetAlarm()
GetAlarmBase ()
SetAbsAlarm()
SetRelAlarm()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-15

3.10 ChainTask()

Terminate the calling task and activate a task.

Function declaration:
StatusType ChainTask (TaskType TaskID)
Static version: chainTask_TaskID()

Parameters:
Parameter | Input/Output | Description
TaskID Input Task to activate after terminating the current
task.
Description:

This call terminates the calling task. After termination, the specified
TaskID is activated. Using this call ensures that the succeeding task
starts to run at the earliest possible point after the calling task has been
terminated.

Internal resources are released automatically.
A task can chain itself without affecting the activation count.

Error codes:

Build Code Description

All E_OS_LIMIT Too many activations of task
TaskiD. As a consequence the task
activation is ignored.

Extended | E_OS_ID TaskID is not a valid task type.
Extended | E_OS_CALLEVEL Call at interrupt level.

Extended | E_OS_RESOURCE Calling task still occupies resource.
Extended | E_OS_SYS_IDLE Called from idle task.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

3-16 RTA-OSEK API Reference RTA-OSEK v5.0.2

Calling environment:

Environment Valid ST Valid
(Hooks)
Idle task x Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | % Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK
Notes:

See also:

ChainTask () must be called as the last statement in a task entry
function.

If called successfully, chainTask () does not return to the call level and
the status cannot be evaluated.

If called unsuccessfully from a heavyweight task in the Extended build
an error is returned. This can then be evaluated in the application.

In the Extended build a lightweight task will always be terminated, even
if there is an error. The error hook, if configured, will be called.

If the current task has a resource that has not been released, then the
call is unsuccessful.

Tasks declared as lightweight can only call chainTask() from the
function declared with the corresponding Task () macro. The call must
be a top-level statement, not embedded in any expression.

For correct timing analysis, lower priority tasks must not chain higher
priority tasks.

ActivateTask ()
DeclareTask ()
GetTaskState ()

k()

TerminateTas

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-17

3.11 ChainTaskset()

Terminate the calling task and activate a set of tasks.

Function declaration:

StatusType ChainTaskset (TasksetConstType TasksetID)

Static version: ChainTaskset TasksetID()

Parameters:
Parameter | Input/Output | Description
TasksetID | Input Name of the taskset containing the tasks to be
activated after terminating the current task.
Description:

This APl call causes the termination of the calling task. After
termination of the calling task, the succeeding tasks in TasksetID are
activated. Using this call ensures that the succeeding tasks start to run
at the earliest possible point after the calling task has been terminated.
Internal resources are released automatically.

A task can chain itself without affecting the activation count.

Error codes:

Build Code Description

Extended | E_OS_ID TasksetID not a valid taskset
type.

Extended | E_OS_LIMIT Too many activations of a task. As
a result, all task activations
resulting from this call are ignored.

Extended | E_OS_CALLEVEL Call at interrupt level.

Extended | E_OS_SYS_IDLE Called from idle task.

Extended | E_OS_RESOURCE Calling task still occupies
resources.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

3-18 RTA-OSEK API Reference

RTA-OSEK v5.0.2

Calling environment:

Environment Valid AOCLCALCILE Valid
(Hooks)
Idle task x Startup x
Task ® Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | % Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
ChainTaskset () must be called as the last statement in a task entry
function.
If called successfully, chainTaskset () does not return to the call level
and the status cannot be evaluated.
If called unsuccessfully from a heavyweight task in the Extended build,
an error is returned. This can then be evaluated in the application.
In the Extended build a lightweight task will always be terminated, even
if there is an error. The error hook, if configured, will be called.
If the current task has a resource that has not been released, then the
call is unsuccessful.
Tasks declared as lightweight can only call chainTaskset () from the
function declared with the corresponding Task () macro. The call must
be a top-level statement, not embedded in any expression.
For correct timing analysis, lower priority tasks must not chain tasksets
containing higher priority tasks.
See also:
ActivateTaskset ()
AssignTaskset ()
GetTasksetRef ()
MergeTaskset ()
RemoveTaskset ()

TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-19

3.12 ClearEvent()

Clear the calling task’s events.

Function declaration:

StatusType ClearEvent (EventMaskType Mask)

Parameters:

Parameter | Input/Output | Description

Mask Input Mask of the events to be cleared.

Description:

Clears the calling task’s events as specified by Mask.

Error codes:

Build Code Description

Standard | E_OK No error.

Extended | E_OS_ACCESS Call not from extended task.
Extended | E_OS_CALLEVEL Call at interrupt level.

Calling environment:

Environment Valid AT Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | % Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK

Notes:

Can only be called from an extended task.
Any events that are not set in the event mask remain unchanged.

3-20 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:
DeclareEvent ()
GetEvent ()
SetEvent ()
WaitEvent ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-21

3.13 CloseCOM()

Release low-level hardware resources needed for COM communication.

Function declaration:

StatusType CloseCOM(void)

Parameters:

None.

Description:

CloseCOM() is used to release low-level resources that are used for
COM communication.

Error codes:

Build | Code Description
All E_OK No error.
Calling environment:
Environment Valid ST Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown v
Category 1 interrupts | Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK

Notes:

To finish COM processing, use stopcCoM () and then use CloseCcoM().
For portability, interrupts must be masked when the call is made from
task level.

The RTA-OSEK libraries contain a default implementation of
ClosecoM() that simply returns E_oK. Application programmers are

free to supply their own implementation of c1osecom (), which will be
linked into the application in preference to this default.

3-22 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

CloseCOM()
DeclareMessage ()
InitCOM()
MessageInit ()
ReadFlag ()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM()
StopCOM()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-23

3.14 DisableAllinterrupts()

Disables all interrupts.

Function declaration:

void DisableAllInterrupts(void)

Parameters:

None.

Description:

This API call allows disables all interrupts that can be disabled in the
hardware.

The state before the «call is made is saved for the
EnableAllInterrupts()CaW

This call is intended to start a critical section of the code. This critical
section must be finished by calling EnableArllInterrupts (). No AP
calls are allowed within this critical section.

Error codes:

None.

Calling environment:

Environment Valid AT Valid
(Hooks)
Idle task ® Startup ®
Task 4 Shutdown ®
Category 1 interrupts | v/ Pretask ®
Category 2 interrupts | v/ Posttask ®
Error ®
Overrun ®
Portability:
AUTOSAR
OSEK

Notes:

This API call does not support nesting. If nesting is required for critical
sections SuspendAllInterrupts () and ResumeAllInterrupts ()
should be used.

3-24 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

DeclareISR()
EnableAllInterrupts()
ResumeAllInterrupts()
ResumeOSInterrupts ()
SuspendAllInterrupts ()
SuspendOSInterrupts ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-25

3.15 EnableAllinterrupts()

Ends a critical section started by DisableAllInterrupts ().

Function declaration:

void EnableAllInterrupts(void)

Parameters:

None.

Description:

This call restores the state saved by DisableAllInterrupts().

The critical section of code, started by a DisableAllInterrupts()
call, is finished by calling EnableallInterrupts (). No API calls are
allowed within this critical section.

Error codes:

None.

Calling environment:

Environment Valid ST Valid
(Hooks)
Idle task ® Startup ®
Task v Shutdown ®
Category 1 interrupts | v/ Pretask ®
Category 2 interrupts | v/ Posttask ®
Error ®
Overrun ®
Portability:
AUTOSAR
OSEK
Notes:
None.
See also:
DeclareISR()

DisableAllInterrupts ()
ResumeAllInterrupts()
ResumeOSInterrupts ()

SuspendAllInterrupts ()

3-26 RTA-OSEK API Reference RTA-OSEK v5.0.2

SuspendOSInterrupts()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-27

3.16 GetActiveApplicationMode()

Get the current application mode.

Function declaration:

AppModeType GetActiveApplicationMode (void)

Parameters:

None.

Description:

This call returns the current application mode.

Error codes:

None.

Calling environment:

RTA-OSEK API Reference

Environment Valid SAnl e Valid
(Hooks)
Idle task v Startup v
Task v Shutdown v
_Category x Pretask v
interrupts
_Category v Posttask
interrupts
Error v
Overrun v
Portability:
AUTOSAR
OSEK
None.
See also:
None.

RTA-OSEK v5.0.2

3.17 GetAlarm()

Returns the number of ticks before the alarm next expires.

Function declaration:

StatusType GetAlarm(AlarmType AlarmID,
TickRefType Tick)

Parameters:

Parameter | Input/Output | Description

AlarmID Input Name of an alarm.

Tick Output Relative value, in ticks, before alarm expires.
Description:

Returns the relative value in ticks before the alarm AlarmID expires.

Error codes:

Build Code Description

All E_OK No error.

All E_OS_NOFUNC Alarm AlarmID is not used.
Extended | E_OS_ID Alarm AlarmID is not valid.

Calling environment:

Environment Valid AOCLCALCILE Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask v
Category 2 interrupts | v/ Posttask v
Error v
Overrun ®
Portability:
AUTOSAR
OSEK
Notes:
None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-29

See also:

CancelAlarm()
DeclareAlarm()
GetAlarmBase ()
SetAbsAlarm()
SetRelAlarm()

3-30 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.18 GetAlarmBase()

Get the alarm base characteristics.

Function declaration:

StatusType GetAlarmBase (AlarmType AlarmID,

AlarmBaseRefType Info)

Parameters:
Parameter | Input/Output | Description
AlarmID Input Alarm name.
Info Output Reference to structure with constants of alarm
base.
Description:

GetAlarmBase () reads the alarm base characteristics. The return value
Info IS a structure in
AlarmBaseType IS stored.

Error codes:

which the information of data type

Build Code Description

All E_OK No error.

Extended E_OS_ID Alarm AlarmID is not valid.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup x

Task 4 Shutdown x

Category 1 interrupts | % Pretask 4

Category 2 interrupts | v/ Posttask v
Error v
Overrun ®

Portability:

AUTOSAR
OSEK

Notes:

For more information on AlarmBaseType see Chapter 2.1.1.

RTA-OSEK v5.0.2

RTA-OSEK API Reference 3-31

See also:

CancelAlarm()
DeclareAlarm()
GetAlarm()
SetAbsAlarm()
SetRelAlarm()

3-32 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.19 GetArrivalpointDelay()

Get the delay between one arrivalpoint and the successor.

Function declaration:

StatusType GetArrivalpointDelay (
ArrivalpointType ArrivalpointID,

TickRefType Delay)
Parameters:
Parameter Input/Output | Description
ArrivalpointID | Input Arrivalpoint name.
Delay Output Reference to tick value.
Description:

Updates pelay from the ‘delay’ property of the arrivalpoint.

If the ‘delay’ property is zero, the delay is equal to the modulus of the
associated schedule.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | |nvalid arrivalpoint.
Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Calling environment:

Environment Valid ST Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
None.
RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-33

See also:

3-34

AdvanceSchedule ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.20 GetArrivalpointNext()

Get the successor of an arrivalpoint.

Function declaration:

StatusType GetArrivalpointNext (
ArrivalpointType ArrivalpointID,
ArrivalpointRefType ArrivalpointNextID)

Parameters:
Parameter Input/Output | Description
ArrivalpointID Input Arrivalpoint name.
ArrivalpointNextID | Qutput Reference to arrivalpoint.
Description:

The return value ArrivalpointNextID returns a handle to the ‘next’
(arrivalpoint) property of the arrivalpoint supplied.

The arrivalpoint ArrivalpointNextID can be null, which s
represented by zero for this parameter.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | |nvalid arrivalpoint.
Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Calling environment:

Environment Valid BN A Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-35

None.

3-36 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-37

3.21 GetArrivalpointTasksetRef()

Get a reference to an arrivalpoint’s taskset.

Function declaration:

StatusType GetArrivalpointTasksetRef (
ArrivalpointType ArrivalpointID,
TasksetRefType TasksetID)

Parameters:
Parameter Input/Output | Description
ArrivalpointID Input Arrivalpoint name.
TasksetID Output Name of a taskset.
Description:

TasksetID is a pointer to a TasksetType. This call returns a pointer to
the taskset embedded in the arrivalpoint. It can then be used in the
taskset API calls and, if the arrivalpoint is writable, the arrivalpoint’s
taskset can be updated directly.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | |nvalid arrivalpoint.
Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Calling environment:

Environment Valid EMIonment Valid
(Hooks)

Idle task ® Startup x

Task ® Shutdown x

Category 1 interrupts | % Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

Portability:
RTA-OSEK

3-38 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

See also:

None.

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()

TestArrivalpointWritable ()

TickSchedule ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-39

3.22 GetCounterValue()

Get the counter value.

Function declaration:

StatusType GetCounterValue (CounterType CounterID,
TickRefType CountRef)

Parameters:
Parameter | Input/Output | Description
CounterID | Input Counter name.
CountRef Output Reference to tick value.
Description:

Returns the current value of the specified counter counterID in
CountRef.

For advanced counters, the user callback Get_<CounterlID> will be
called.

Error codes:

Build Code Description
All E_OK No error.
Extended E_OS_SYS_COUNTER_INVALID Invalid counter.

Calling environment:

Environment Valid AT Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:

The application should serialize the use of GetCountervalue() and
Tick_<CounterID> () /osAdvanceCounter_ <CounterID> tO ensure
that a meaningful value is obtained.

3-40 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

DeclareCounter ()
IncrementCounter ()

InitCounter ()
osAdvanceCounter_<CounterID> ()
Tick_<CounterID> ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-41

3.23 GetEvent()

Get the events for the specified task.

Function declaration:

StatusType GetEvent (TaskType TaskID,

EventMaskRefType Event)

Parameters:

rParamete Itnput/Outpu Description

TaskID Input Name of the task.

Event Output Reference to the memory of the return data.
Description:

This call returns the current state of all event bits of the task TaskID
(not the events that the task is waiting for).

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_ACCESS | Referenced task is not an extended task.

Extended | E_OS_ID Task TaskID is invalid.

Extended | E_OS_STATE Events cannot be set because the referenced
task is in the suspended state.

Calling environment:

Environment Valid Environment Valid
(Hooks)
Idle task ® Startup
Task v Shutdown
_Category 1 x Pretask v
interrupts
_Category 2 v Posttask
interrupts
Error
Overrun ®

RTA-OSEK API Reference

RTA-OSEK v5.0.2

Portability:
AUTOSAR
OSEK

Notes:
TaskID must identify an extended task.

See also:
ClearEvent ()
DeclareEvent ()
SetEvent ()
WaitEvent ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-43

3.24 GetISRID()

Returns the identity of the current ISR.

Function declaration:

ISRType GetISRID (void)

Parameters:

None.

Description:

This function returns the identity of the currently executing ISR.

Return Parameter:

Build Code Description
All INVALID_ISR Caller is not an active ISR.

Calling environment:

Environment Valid At Valid
(Hooks)
Idle task x Startup
Task x Shutdown
_Category ! x Pretask
interrupts
_Category 2 v Posttask
interrupts
Error
Overrun
Portability:
AUTOSAR
Notes:
None.
See also:

GetTaskID()

3-44 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.25 GetMessageResource()

Get the message resource.

Function declaration:

StatusType GetMessageResource (SymbolicName Message)

Parameters:

Parameter | Input/Output | Description
Message Input Symbolic name of the message.

Description:

For a system configured to have message resources, this call occupies
the resource for message object Message and then sets the status of
the message object to busy. It can be used, in conjunction with
ReleaseMessageResource (), to protect the message object against
concurrent access.

Tasks and/or Category 2 ISRs can share the message resource.

A critical section must always be exited using
ReleaseMessageResource ().

Error codes:

Build Code Description

All E_OK No error.

Extended | E_COM_ID Message parameter is invalid.
Extended |E_OS_ACCESS Either: An attempt to get a resource

that is already occupied by any task,
Category 2 ISR or statically assigned
priority of the calling task.

Or: The interrupt routine is higher
than the calculated ceiling priority.

Extended |E_OS_SYS_R PERMISSIO | Called by a task that has not

N declared that it uses the message
resource.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-45

Calling environment:

Environment Valid EMIonment Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
OSEK
Notes:
Obtaining resources must be strictly nested. Nested occupation of the
same resource is forbidden.
It is not permitted to terminate a task or leave an ISR while it holds
resources.
Message resources should only be used for messages whose mode is
WithoutCopy
See also:
GetMessageStatus ()

ReleaseMessageResource ()

3-46 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.26 GetMessageStatus()

Return the message status.

Function declaration:

StatusType GetMessageStatus (SymbolicName Message)

Parameters:

Parameter | Input/Output | Description

Message Input Symbolic name of the message object.
Description:

This API call returns the current status of the message object Message.

Error codes:

Build Code Description
All E_OK No error.
All E_COM_BUSY | Message identified by Message already set to
busy.
All E_COM_LIMIT | Overflow of FIFO of the queued message,
identified by Message, has occurred.
All E_COM_NOMSG | No message available (applies to a queued
message where the FIFO is empty).
Extended | E_COM_ID Message parameter is invalid.
Calling environment:
Environment Valid AOCLCALCILE Valid
(Hooks)
Idle task ® Startup
Task v Shutdown
Category 1 interrupts | % Pretask ®
Category 2 interrupts | v/ Posttask ®
Error ®
Overrun ®

Portability:
OSEK

Notes:

None.

RTA-OSEK v5.0.2

RTA-OSEK API Reference 3-47

See also:

GetMessageResource ()

ReleaseMessageResource ()

3-48 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.27 GetResource()

Get a resource.

Function declaration

StatusType GetResource (ResourceType ResID)
Static version: GetResource ResID ()

Parameters:

Parameter | Input/Output | Description

ResID Input The resource to be held.
Description:

Protects a critical section in the code against concurrent access by other
tasks or ISRs.

Tasks and/or Category 2 ISRs can share the resource.
A critical section must always be left using ReleaseResource ().

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_ACCESS Either: An attempt to get a resource
that is already occupied by any task,
Category 2 ISR or statically assigned
priority of the «calling task.
Or: The interrupt routine is higher
than the calculated ceiling priority.

Extended | E_OS_ID ResID is not a valid resource type.

Extended | E_OS_SYS_R_PERMISSION | Called by a task that has not
declared that it uses the message
resource.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment

Valid

Idle task

Task

Category 1

interrupts | %

Category 2

interrupts | v/

RTA-OSEK v5.0.2

Environment

(Hooks) Valid

Startup
Shutdown
Pretask

Posttask
Error
Overrun

X X | %X | X% | X%

RTA-OSEK API Reference 3-49

Portability:
AUTOSAR
OSEK

Notes:

Nested resource occupation is only allowed if the inner critical sections
are completely executed within the surrounding critical section (strictly
nested). Nested occupation of the same resource is also forbidden.

If nested occupation of the same resource is required, then the
appropriate linked resources should be configured in the RTA-OSEK
GUI.

Calls that put the running task into any other state, such as
ChainTask (), Schedule(), TerminateTask() O WaitEvent (),
must not be used in critical sections.

See also:

DeclareResource ()

ReleaseResource ()

3-50 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.28 GetScheduleNext()

Get the next arrivalpoint to be processed by a schedule.

Function declaration:

StatusType GetScheduleNext (
ScheduleType SchedulelD,
ArrivalpointRefType ArrivalpointID)

Parameters:
Parameter Input/Output | Description
ScheduleID Input Schedule name.
ArrivalpointID | Output Reference to next arrivalpoint.
Description:

Updates arrivalpointID from the ‘next’ property of the schedule.
Defined to be zero when ‘next’ is null.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_S_INVALID | |nvalid schedule handle.

Calling environment:

Environment Valid ST Valid
(Hooks)
Idle task ® Startup
Task ® Shutdown
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-51

See also:

3-52

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.29 GetScheduleStatus()

Get the current status of a schedule.

Function declaration:

StatusType GetScheduleStatus(
ScheduleType SchedulelD,
ScheduleStatusRefType ScheduleStatus)

Parameters:
Parameter Input/Output | Description
ScheduleID Input Schedule name.
ScheduleStatus | Qutput Reference to schedule status.
Description:

Updates schedulestatus with the current state of the schedule and
the number of ticks of the schedule’s counter between now and when
the schedule is due to process the ‘next’ arrivalpoint.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_S_INVALID | |nvalid schedule handle.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup x

Task ® Shutdown x

Category 1 interrupts | Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

Portability:
RTA-OSEK

Notes:

For more information on scheduleStatusType, see Section 2.1.1.

RTA-OSEK v5.0.2 RTA-OSEK API Reference

See also:

3-54

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.30 GetScheduleTableStatus()

Gets the current status of a schedule table.

Function declaration:

StatusType GetScheduleTableStatus
ScheduleTableType SchedulelD,
ScheduleTableStatusRefType ScheduleStatus)

Parameters:
Parameter Input/Output Description
ScheduleID Input Name of schedule for which
status is requested.
ScheduleStatus Output Reference to scheduleStatus.
Description:

Updates schedulestatus with the current state of the schedule table.

Error codes:

Build Code Description
All E_OK No error
All E_OS_ID Invalid schedule table handle.

Calling environment:

Environment Valid Sl Valid
(Hooks)
Idle task v Startup x
Task v Shutdown x
Fiategory 1 x Pretask v
Interrupts
Fiategory 2 v Posttask
Interrupts
Error
Overrun ®
Portability:
AUTOSAR
Notes:
None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-55

See also:

NextScheduleTable ()
StartScheduleTable ()
StopScheduleTable ()

3-56 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.31 GetScheduleValue()

Get the ‘now’ property of a schedule.

Function declaration:

StatusType GetScheduleValue (ScheduleType SchedulelD,

TickRefType Tick)

Parameters:
Parameter Input/Output | Description
ScheduleID | Input Schedule name.
Tick Output Reference to tick value.
Description:

Sets Tick to the ‘now’ property of the counter contained in the
schedule. This has a value between 0 and the schedule modulus-1.

When the schedule is an advanced schedule, the user supplied device
driver, Now_<ScheduleID> () function is called.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_SYS_S_INVALID Invalid schedule.

Calling environment:

Portability:
RTA-OSEK

Notes:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup

Task ® Shutdown

Category 1 interrupts | % Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

The application should serialize the use of Getschedulevalue () and

either TickSchedule () /AdvanceSchedule ()

meaningful value is obtained.

RTA-OSEK v5.0.2

to ensure that a

RTA-OSEK API Reference

3

See also:

58

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.32 GetStackOffset()

Gets the current stack pointer.

Function declaration:

GetStackOffset (StackOffsetRefType StackVal)

Parameters:

Parameter | Input/Output | Description

Stackval | Output Reference to the memory of the return data.
Description:

Returns an indication of the number of bytes on the stack. Depending
on the actual target, stackoffsetType is either a scalar or a structure
of scalars. Further information for a specific target can be found in the
appropriate RTA-OSEK Binding Manual.

This APl is used to assist in the measurement and verification of user
code stack usage.

Error codes:

Build | Code Description
All E_OK No error.
Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown ®

Category 1 interrupts | ® Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

Portability:
RTA-OSEK
Notes:
None.
See also:
None.

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-59

3.33 GetTaskID()

Get the status of the specified task.

Function declaration:

StatusType GetTaskID(TaskRefType TaskID)

Parameters:

Parameter | Input/Output | Description

TaskID Output Name of the task that is currently running.

Description:

Returns the TaskID of the task that is currently running.

If no task is running or if the idle task currently running, this call returns
INVALID_TASK.

Error codes:

Build Code Description
All E_OK No error.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | % Pretask v
Category 2 interrupts | v/ Posttask v
Error v
Overrun ®
Portability:
AUTOSAR
OSEK

Notes:

This API call is intended to be used by library functions and hook
routines.

3-60 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

ActivateTask ()
ChainTask ()
DeclareTask ()
GetISRID()
GetTaskState ()
TerminateTask ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-61

3.34 GetTasksetRef()

Create a singleton taskset from the specified task.

Function declaration:

StatusType GetTasksetRef (TaskType TaskID,
TasksetRefType TasksetRef)

Parameters:

Parameter | Input/Output | Description

TaskID Input Task name.

Reference to a writable TasksetType

TasksetRef Output handle

Description:

The TasksetType pointed to by TasksetRef is updated so that it
points to a taskset containing the single task represented by TaskID.

Error codes:

Build Code Description

All E_OK No error.

Extended E_OS_ID TaskID is not a valid task type.
Extended E_OS_SYS_IDLE | TaskID is the idle task.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup ®
Task ® Shutdown x
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
None.

3-62 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

ActivateTaskset ()
AssignTaskset ()
ChainTaskset ()
MergeTaskset ()
RemoveTaskset ()
TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-63

3.35 GetTaskState()

Get the task state.

Function declaration:

StatusType GetTaskState(TaskType TaskID,
TaskStateRefType State)

Parameters:

Parameter | Input/Output | Description

TaskID Input Task name.

State Output Reference to the state of the task Task1p.
Description:

Returns the state of a task at the time of calling GetTaskstate (). The
state is exactly one of:

e RUNNING
e READY
e SUSPENDED
o WAITING
Error codes:
Build Code Description
All E_OK No error.
Extended | E_OS_ID TaskID is not a valid task type.
Extended | E_OS_SYS_IDLE TaskID is the idle task.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup x

Task v Shutdown x

Category 1 interrupts | % Pretask 4

Category 2 interrupts | v/ Posttask 4
Error v
Overrun ®

3-64 RTA-OSEK API Reference RTA-OSEK v5.0.2

Portability:
AUTOSAR
OSEK

Notes:

Within a fully preemptive system, this call only provides a meaningful
result if the task runs in an interrupt disabling state at the time of
calling.

See also:

ActivateTask ()
ChainTask ()
DeclareTask ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-65

3.36 IncrementCounter()

Increments a counter by one tick.

Function declaration:

StatusType IncrementCounter (CounterType CounterID)

Static version: See Tick_ <CounterID> ()

Parameters:
Parameter Input/Output | Description
CounterID Input Counter name
Description:

This call indicates to counter counterID that one tick has elapsed.

For each attached alarm, if sufficient ticks have elapsed, the action(s)
for that alarm are executed.

For an expiry point on an attached and running Schedule Table, if
sufficient ticks have elapsed, the action(s) for that expiry point are

executed.

The match value for the next expiry of the alarm is set if the alarm was
started with a cycle time greater than zero.

The match value for the next expiry point on the attached and running
schedule table (if any) is set.

Error codes:

IncrementCounter () Can raise E_0S_ID as a direct error. Additional,
secondary, errors can result from the activation of tasks/setting of
events when alarms expire or expiry points are processed. In all cases
the ErrorHook () is invoked.

Build Code Description

All E_OK No error.

Extended | E_OS_ID CounterID invalid

Extended | E_OS_LIMIT Too many activations of a task. As
a result, all task activations resulting
from this call are ignored.

Extended | E_OS_STATE Events cannot be set as the
referenced task is in the suspended
state.

Extended | E_OS_ACCESS Referenced task is not an extended
task.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

3-66 RTA-OSEK API Reference

RTA-OSEK v5.0.2

Calling environment:

Environment Valid AL Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
AUTOSAR
Notes:
Rescheduling after a call to IncrementCounter () depends on the
calling environment.

e Category 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.

e Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ()

e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.

e Hooks: Rescheduling will not take place until the hook
terminates.

e For correct timing analysis, lower priority tasks must not tick
counters that result in the expiry of alarms, leading to the
activation of higher priority tasks

See also:
DeclareCounter ()
GetCounterValue ()
InitCounter ()

osAdvanceCounter_<CounterID> ()
Tick_<CounterID> ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-67

3.37 InitCOM()

Initializes the low-level resources necessary for COM.

Function declaration:

StatusType InitCOM(void)

Parameters:

None.

Description:

InitcoM() is used to initialize all the low-level resources used by COM.
It may be called before starting RTA-OSEK or in any task from within
any kernel startup hook routines.

Error codes:

Build | Code Description
All E_OK No error.
Calling environment:
Environment Valid AR Valid
(Hooks)
Idle task ® Startup v
Task v Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
OSEK
3-68 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

The recommended procedure is to use InitcoM() and then to call
StartCOM().

For portability, interrupts must be masked when the call is made from
task level.

The RTA-OSEK libraries contain a default implementation of Initcom()
that simply returns E_ok. Application programmers are free to supply
their own implementation of TnitcoM(), which will be linked into the
application in preference to this default.

In the current implementation of RTA-OSEK, TnitcoM() is unnecessary

because RTA-OSEK supports only intra-processor messaging. However,
it is advisable to make use of the call to ensure portability.

See also:

DeclareMessage ()
ClearEvent ()
CloseCOM ()
MessageInit ()
ReadFlag()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM ()
StopCOM()

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-69

3.38 InitCounter()

Initialize the counter to a given tick value.

Function declaration:

StatusType InitCounter (CounterType Counter,

TickType Start)
Parameters:
Parameter | Input/Output | Description
CounterID | Input Counter name.
Start Input Tick value.
Description:

Sets the specified counter to the absolute value specified by start.

For advanced counters, the user callback function set_<CounterID>
will be called.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_STATE Counter is already running.
Extended | E_OS_SYS_COUNTER_INVALI | |nvalid counter.
D
Extended | E_OS_VALUE Start exceeds
maxallowedvalue.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

Portability:
RTA-OSEK

3-70 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

RTA-OSEK initializes ticked counters to zero automatically at startup.

The application should serialize the use of InitCounter () and
Tick_<CounterID> () /osAdvanceCounter_<CounterID> ()

See also:
DeclareCounter ()
GetCounterValue ()
IncrementCounter ()
osAdvanceCounter_<CounterID> ()
Tick_<CounterID> ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-71

3.39 MergeTaskset()

Merge two tasksets.

Function declaration:

StatusType MergeTaskset (TasksetType DestTaskset,
TasksetType SourceTaskset)

Parameters:
Parameter Input/Output | Description
DestTaskset Output Name of a writable taskset.
SourceTaskset | |nput Name of taskset containing tasks to
merge.
Description:

The pestTaskset is merged with the sourceTaskset and the result is
returned in the pestTaskset. The operation is equivalent to set union.

Error codes:
Build Code Description
All E_OK No error.

Extended | E_OS_SYS_TS_INVALID Either taskset invalid.
Extended | E_OS_SYS_TS_READONLY | pestTaskset not writable.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup ®
Task ® Shutdown x
Category 1 interrupts | % Pretask ®
Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®
Portability:
RTA-OSEK
Notes:
None.

3-72 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

ActivateTaskset ()
AssignTaskset ()
ChainTaskset ()
GetTasksetRef ()
RemoveTaskset ()
TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-73

3.40 NextScheduleTable()

Stops one schedule table and starts another.

Function declaration:

StatusType NextScheduleTable (

Parameters:

ScheduleTableType ScheduleTableID_current,
ScheduleTableType ScheduleTableID_next)

Parameter

Input/Output | Description

ScheduleTableID_current Input

Current schedule table
handle.

ScheduleTableID_next

Input

Next schedule table handle

Description:

Schedule table scheduleTablelID_next will be started after the
current cycle of expiry points in ScheduleTableID_current has

finished processing.

If ScheduleTableID_current is a single-shot schedule table then
ScheduleTableID_next Will be set to start during the processing of
the final expiry point of scheduleTableID_current.

If ScheduleTableID_current is a periodic schedule table then
ScheduleTableID next Will be set to start at the end of the current

period.
Error codes:

Build Code Description

All E_OK No error.

All E_OS_ID Invalid schedule table handle.

All E_OS_NOFUNC ScheduleTableID_current
has not been started

All E_OS_STATE ScheduleTableID next iS
already in started or next state

3-74 RTA-OSEK API Reference

RTA-OSEK v5.0.2

Calling environment:

Environment .
(Hooks) Valid
Startup

Shutdown

Pretask x
Posttask x
Error x
Overrun x

ScheduleTableID next is started, then ScheduleTableID next will

Environment Valid
Idle task 4
Task v
Category <
interrupts
Category v
interrupts
Portability:
AUTOSAR
Notes:
If ScheduleTableID_current is stopped before
not be started.
See also:

GetScheduleTableStatus ()

StartScheduleTable ()
StopScheduleTable ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-75

3.41 osAdvanceCounter_<CounteriD>()

Process the next alarm and/or schedule table expiry point associated
with the advanced counter.
Function declaration:

StatusType osAdvanceCounter_<CounterID> (
ScheduleStatusRefType osStat)

Parameters:

Parameter Input/Output | Description

osStat Input Reference to schedule status.
Description:

This call indicates that an object using advanced counter CounterID
that the next alarm and/or expiry point must be processed. The alarm
action(s) and/or expiry point action(s) are then executed.

If there are no set alarms and/or expiry points to process then the
advanced counter is stopped and a call is made to the user device driver
callback Cancel <CounterID> ().

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_STATE CounterID is not running.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup x

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

Portability:
RTA-OSEK

3-76 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

Rescheduling after a call to osAdvanceCounter_ <CounterID> ()
depends on the calling environment:

e Category 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.

e Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ().

e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.

e Hooks: Rescheduling will not take place until the hook
terminates.

If the returned status is running, the call must become due again
‘expire’ ticks after this instance of the call became due. It is the
responsibility of the application programmer to ensure that this
happens.

Further information can be found in Section 2.1.1.

For correct timing analysis, lower priority tasks must not advance
counters that result in the activation of higher priority tasks.

See also:
DeclareCounter ()
GetCounterValue ()
IncrementCounter ()
InitCounter ()
Tick_<CounterID> ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-77

3.42 osResetOS()

Resets the operating system data structures.

Function declaration:

void osResetOS (void)

Parameters:
Parameter Input/Output Description
Parameter Name Input/Output Description.
Description:

Resets key OS data structures so that the OS can be restarted safely.

Error codes:

None.

Calling environment:

Environment Valid SAnl el Valid
(Hooks)
Idle task ® Startup x
Task x Shutdown x
Fiategory 1 x Pretask x
Interrupts
Fiategory 2 x Posttask x
Interrupts
Error
Overrun
Portability:
RTA-OSEK
Notes:
The application must be in the idle task with all other OS objects, such
as alarms, schedule tables and schedules, inactive when this API is
called.
See also:
StartOS ()
ShutdownOS ().

3-78 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.43 ReadFlag()

Read the status of the message flag associated with an OSEK COM

message.

Function declaration:

FlagValue ReadFlag(FlagType FlagName)

Parameters:
Parameter | Input/Output | Description
FlagValue | Result State of the flag F1agName.
FlagName Input Message flag name.
Description:

ReadFlag() returns the value of the specified notification flag
FlagName. The call returns TRUE if the message has arrived and FALSE

otherwise.

Error codes:

None.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup
Task v Shutdown
Category 1 interrupts | % Pretask ®
Category 2 interrupts | v/ Posttask ®
Error ®
Overrun ®
Portability:
OSEK
Notes:
None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-79

See also:

DeclareMessage ()
CloseCOM ()
InitCOM()
MessageInit ()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM ()
StopCOM()

3-80 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.44 ReceiveMessage()

Receive the specified OSEK COM message.

Function declaration

StatusType ReceiveMessage (SymbolicName Message,

AccessNameRef Data)

Parameters:
Parameter | Input/Output | Description
Message Input Symbolic name of the message.
Data Output Reference to the message data field to store the
received data.
Description:

ReceiveMessage () results in the specified message being delivered
according to the message copy configuration. For withCopy the
message object identified by Message is copied to the message data

field referenced by pata.

significant).

Error codes:

For withoutCopy the application accesses
the message object directly (this means that only the returned status is

Build Code Description

All E_OK No error.

All E_COM_LIMIT The FIFO for queued message Message
has become full and at least one message
has been lost as a result.

All E_COM_NOMSG The FIFO for queued message Message
is empty.

Extended | E_COM_ID Parameter Message is invalid.

Extended | E_COM_SYS_STOPPED | COM not started.

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-81

Calling environment:

Environment Valid AN A Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | v/ Posttask x
Error x
Overrun x
Portability:
OSEK.
Notes:
None.
See also:
DeclareMessage ()
CloseCOM ()
InitCOM()
MessageInit ()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM ()
StopCOM ()

3-82 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.45 ReleaseMessageResource()

Release a previously held message resource.

Function declaration:

StatusType ReleaseMessageResource (SymbolicName Message)

Parameters:

Parameter | Input/Output | Description
Message Input Symbolic name of the message.

Description:

This call sets the status of the Message object to not busy. It then
releases the message resource. This indicates the end of the critical
section protected by the specified message resource.

Error codes:

Build Code Description

All E_OK No error.

Extended |E_COM_ID Invalid Message parameter.

Extended |E_OS_ACCESS Attempt to release a resource whose
ceiling priority is lower than the
calling task.

Extended | E_OS_NOFUNC Either attempting to release a

resource that this task or Category 2
ISR does not currently hold or failing
to observe strict nesting of resource

locks.
Extended |E_OS_SYS_R PERMISSIO | Called by a task that has not
N declared that it uses the message
resource.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-83

Calling environment:

Environment Valid AL Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
OSEK
Notes:
API calls that change the status of the task while it holds resources,
such as Schedule (), TerminateTask () and WaitEvent () (and
possibly ActivateTask () in the case of upward activation) cannot be
made.
See also:

GetMessageResource ()
GetMessageStatus ()

3-84 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.46 ReleaseResource()

Release a

previously held resource.

Function declaration:

StatusType ReleaseResource (ResourceType ResID)

Static version: ReleaseResource ResID()

Parameters:
Parameter | Input/Output | Description
ResID Input Resource name.
Description:

Releases the specified resource, indicating the end of the protected
critical section.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_ID ResID is not a valid resource type.

Extended | E_OS_ACCESS Attempt to release a resource whose
ceiling priority is lower than the
calling task.

Extended | E_OS_NOFUNC Either attempting to release a
resource that this task or Category 2
ISR does not currently hold or failing
to observe strict nesting of resource
locks.

Extended | E_OS_SYS_R PERMISSION | Called by a task that has not
declared that it uses the message
resource.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

RTA-OSEK v5.0.2

RTA-OSEK API Reference 3-85

Calling environment:

Environment Valid AL Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | v/ Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK
Notes:
Obtaining resources must be strictly nested. Nested occupation of the
same resource is forbidden.
API calls that change the status of the task while it holds resources,
such as Schedule (), TerminateTask () and WaitEvent () (and
possibly ActivateTask () in the case of upward activation) cannot be
made.
See also:
DeclareResource ()

GetMessageResource ()

3-86 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.47 RemoveTaskset()

Remove tasks from a taskset.

Function declaration:

StatusType RemoveTaskset (TasksetType DestTaskset,
TasksetType SourceTaskset)

Parameters:
Parameter Input/Output | Description
DestTaskset Output Name of a writable taskset.
SourceTaskset | [nput Name of taskset containing tasks to
remove.
Description:

The taskset that is pointed to by DestTaskset has the tasks in
SourceTaskset removed from it.

If the source and destination are the same taskset, then the
membership of this taskset becomes empty as a result of this call.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_TS_INVALID Either taskset invalid.
Extended | E_OS_SYS_TS_READONLY | DestTaskset not writable.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

Portability:
RTA-OSEK

Notes:

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-87

None.

3-88 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

ActivateTaskset ()
AssignTaskset ()
ChainTaskset ()
GetTasksetRef ()
MergeTaskset ()
TestEquivalentTaskset ()
TestSubTaskset ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-89

3.48 ResetFlag()

Reset the flag associated with an OSEK COM message.

Function declaration:

StatusType ResetFlag(FlagType FlagName)

Parameters:

Parameter | Input/Output | Description

FlagName Input Message flag name.

Description:

ResetFlag () sets the specified notification flag F1agName to FALSE.

Error codes:

Build | Code Description
All E_OK No error.

Calling environment:

Environment Valid ST Valid
(Hooks)
Idle task ® Startup
Task v Shutdown
Category 1 interrupts | % Pretask ®
Category 2 interrupts | v/ Posttask ®
Error ®
Overrun ®
Portability:
OSEK
Notes:
None.

3-90 RTA-OSEK API Reference RTA-OSEK v5.0.2

See also:

DeclareMessage ()
CloseCOM ()
InitCOM()
MessageInit ()
ReadFlag()
ReceiveMessage ()
SendMessage ()
StartCOM ()
StopCOM()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-91

3.49 ResumeAllinterrupts()

Resumes processing of interrupts.

Function declaration:

void ResumeAllInterrupts (void)

Parameters:

None.

Description:

This API call marks the end of a section of code that is protected from
interrupts. The section must have been commenced using the
SuspendAllInterrupts()Ca”

Interrupt processing is restored to that in effect before the
SuspendAllInterrupts()Caﬂ

Error codes:

Build Code Description
Extended | E_OS_STATE | Interrupts were not previously suspended
Calling environment:
Environment Valid =t Valid
(Hooks)
Idle task ® Startup ®
Task v Shutdown ®
Category 1 interrupts | v/ Pretask v
Category 2 interrupts | v/ Posttask v
Error v
Overrun ®
Portability:
AUTOSAR
OSEK

3-92 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

See also:

This API call and its counterpart, suspendAllInterrupts (), work by
adjusting the interrupt processing level of the processor.

APl calls are not permitted in critical regions between
SuspendAllInterrupts () and ResumeAllInterrupts().
SuspendAllInterrupts () and ResumeAllInterrupts () calls can,
however, be nested.

In the Extended build of RTA-OSEK, the error hook can be called with
E_0S_STATE if there is no matching suspend call.

When API calls are made in the critical regions, combined resources
should be used to achieve mutual exclusion with ISRs.

DeclareISR()
DisableAllInterrupts ()
EnableAllInterrupts ()
ResumeOSInterrupts ()
SuspendAllInterrupts ()
SuspendOSInterrupts()

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-93

3.50 ResumeOSinterrupts()

Restore interrupt processing of Category 2 interrupts.

Function declaration:
void ResumeOSInterrupts (void)
Parameters:

None.

Description:

This call follows a call to suspendoSInterrupts () and re-enables any
Category 2 interrupts that were enabled prior to the
SuspendOSInterrupts () call.

Error codes:

Build Code Description
Extended | E_OS_STATE | Interrupts were not previously suspended

Calling environment:

Environment Valid =t Valid
(Hooks)
Idle task ® Startup x
Task 4 Shutdown x
Category 1 interrupts | v/ Pretask x
Category 2 interrupts | v/ Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK

3-94 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

See also:

This API call and its counterpart, SuspendoSInterrupts (), work by
adjusting the interrupt processing level of the processor.

APl calls are not permitted in critical regions between
SuspendOSInterrupts() and ResumeOSInterrupts ().
SuspendOSInterrupts () and ResumeOSInterrupts () calls can,
however, be nested.

In the Extended build of RTA-OSEK, the error hook can be called with
E_0S_STATE if there is no matching suspendosinterrupts () call.
When API calls are made in the critical regions, combined resources
should be used to achieve mutual exclusion with ISRs.

DeclareISR()
DisableAllInterrupts
EnableAllInterrupts(

)

SuspendAllInterrupts

(
)

ResumeAllInterrupts()
()
)

SuspendOSInterrupts (

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-95

3.51

Schedule()

Provides a rescheduling point for non-preemptive tasks.

Function declaration:

StatusType Schedule (void)

Parameters:

None.

Description:

This call is made by a task that is non-preemptive or uses an internal
resource whenever it is acceptable to allow a higher priority task to
preempt it. If any higher priority tasks are ready when this call is made,
the highest priority task will start executing. If no higher priority tasks
are ready, the calling task continues execution.

The internal resource is released if the schedule() call results in a
higher priority task executing. In this case, the internal resource is held
again when the schedule () call returns and the calling task resumes

execution.

Error codes:

Build Code

Description

Standard | E_COK

No error.

Extended | E_OS_CALLEVEL

Call made when task has disabled interrupts.

Extended | E_OS_RESOURCE

Call made while a resource is held.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task x Startup x

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | % Posttask x
Error x
Overrun x

Portability:
AUTOSAR
OSEK
3-96 RTA-OSEK API Reference

RTA-OSEK v5.0.2

Notes:

This call has no effect in fully preemptive tasks with no internal
resources.

This call should not be used if timing analysis or stack optimizations are
required.

See also:

None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-97

3.52 SendMessage()

3

Sends the specified data as an OSEK COM message.

Function declaration:

StatusType SendMessage (SymbolicName Message,

AccessNameRef Data)

Static version: sendMessage_Message_Data ()

Parameters:
Parameter | Input/Output | Description
Message Input Symbolic name of the message.
Reference to message data field to be
Data Input :
transmitted.
Description:

SendMessage () Updates the message object identified by Message,
depending on the message copy configuration. It also requests
transmission of the message object, depending on the transmission
mode specified. For withCopy, the message copy referenced by pata
is copied to the message object referenced by Message. For
WithoutCopy, the application accesses the message object directly.

Where a receiving task is specified, the task is transferred from the
suspended state into the ready state. The operating system ensures
that the task code is executed from the first statement. If requested, a
callback is made.

Error codes:

98

Build Code Description

All E_OK No error.

Extended | E_COM_ID Message is invalid.

Extended | E_COM_LIMIT

occurred.

Overflow of FIFO of the queued
message, identified by Message, has

Extended | E_COM_SYS_STOPPED COM not started.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

RTA-OSEK API Reference

RTA-OSEK v5.0.2

Calling environment:

Environment Valid
Idle task ®
Task v

Category 1 interrupts | %

Category 2 interrupts | v/

Portability:
OSEK

Notes:

Environment
(Hooks)

Valid

Startup

Shutdown

Pretask

Posttask

Error

Overrun

X | X[% | %X | %| %

For correct timing analysis, lower priority tasks must not send messages

that result in the activation of or setting of events for higher priority

tasks.

See also:

DeclareMessage ()
CloseCOM ()
InitCOM()
MessageInit ()
ReadFlag()
ReceiveMessage ()
ResetFlag()
StartCOM ()
StopCOM()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-99

3.53 SetAbsAlarm()

Set the value of the counter at which the alarm expires.

Function declaration:

StatusType SetAbsAlarm(AlarmType AlarmlID,
TickType start, TickType cycle)

Parameters:

Parameter | Input/Output | Description

AlarmID Input Alarm to be set.
start Input Value of counter that triggers alarm.
cycle Input Number of counter ticks before alarm s

triggered again.

Description:

This call starts an alarm running and sets the match value with the
associated counter that triggers the alarm. The alarm may be triggered
once only (if cycle is equal to zero) or repeatedly (cycle gives the
number of counter ticks before the alarm is triggered again).

When the alarm is triggered, the task associated with the alarm is
activated. The alarm can activate a task, set an event or call an alarm
callback (depending on configuration).

Error codes:

Build Code Description

All E_OK No error.

All E_OS_STATE | Alarm AlarmID is currently running.
Extended |E_OS_ID Alarm AlarmID is not valid.

Extended |E_OS_VALUE | Value of start or cycle is outside the range
permitted by the counter (start must be
between 0 and maxallowedvalue, cycle must
be 0 or between mincycle and
maxallowedvalue, inclusive of boundary values).

3-100 RTA-OSEK API Reference RTA-OSEK v5.0.2

Calling environment:

Environment

Valid

Idle task

Task

Category 1 interrupts

Category 2 interrupts

Portability:
AUTOSAR
OSEK

Notes:

Environment
(Hooks)

Valid

Startup

Shutdown

Pretask

Posttask

Error

Overrun

X| X | x| %%

To change values of the alarm, cancelalarm() must be used to stop
the alarm running before using setabsalarm().

Care must be taken when start is close to the current value of the
counter. setAbsAlarm() Will produce different results depending on
whether the counter has ticked passed the start value before the call
completes. It will either result in the alarm activating the task almost
immediately or when the value start is reached again (after the next
overrun of the counter).

See also:

CancelAlarm()
DeclareAlarm()
GetAlarm()
GetAlarmBase ()
SetRelAlarm()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-101

3.54 SetArrivalpointDelay()

Set the delay between one arrivalpoint and the successor.

Function declaration:

StatusType SetArrivalpointDelay (
ArrivalpointType ArrivalpointID,

TickType Delay)
Parameters:
Parameter Input/Output | Description
ArrivalpointID | Input Arrivalpoint to be modified.
Delay Input New delay to the next arrivalpoint.
Description:

Sets the ‘delay’ property of the arrivalpoint to the specified value.

If the ‘delay’ property is zero, the delay is equal to the modulus of the
associated schedule.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID Invalid arrivalpoint.

Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Extended | E_OS_SYS_AP_READONLY | Arrivalpoint is read-only.

Extended | E_OS_SYS_S_MODULO Delay IS greater than or equal to
the modulo for the associated
schedule.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

3-102 RTA-OSEK API Reference RTA-OSEK v5.0.2

Portability:
RTA-OSEK

Notes:

This call can only be used on writable arrivalpoints.

See also:

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference

3-103

3.55 SetArrivalpointNext()

Reconfigure a schedule by changing the successor of an arrivalpoint.

Function declaration:

StatusType SetArrivalpointNext (

ArrivalpointType ArrivalpointID,

ArrivalpointType ArrivalpointNextID)

Parameters:
Parameter Input/Output | Description
ArrivalpointID Input Arrivalpoint to be modified.
ArrivalpointNextID | Input New next arrivalpoint.

Description:

Sets the ‘next’ (arrivalpoint)
ArrivalpointID.

property of the arrivalpoint

The arrivalpoint ArrivalpointNextID can be null (represented by
zero). This allows a schedule to be terminated at the arrivalpoint

ArrivalpointID.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | Invalid arrivalpoint ArrivalpointID oOr
ArrivalpointNextID.

Extended | E_OS_SYS_AP_NULL

Null arrivalpoint ArrivalpointID.

Extended | E_OS_SYS_AP_READONL
Y

Arrivalpoint ArrivalpointID read-
only.

Extended | E_OS_SYS_S_MISMATCH

Arrivalpoints have mismatched
schedules (‘null” arrivalpoint matches all
schedules).

3-104 RTA-OSEK API Reference

RTA-OSEK v5.0.2

Calling environment:

Environment

Valid

Idle task

®

Task

®

Category 1 interrupts

Category 2 interrupts

®

Portability:
RTA-OSEK

Notes:

Environment
(Hooks)

Valid

Startup

Shutdown

Pretask

Posttask

Error

Overrun

X| X | x| %%

This call can only be used on writable arrivalpoints.

See also:

AdvanceSchedule ()
GetArrivalpointDelay ()

GetArrivalpointNext ()

GetArrivalpointTasksetRef ()
GetScheduleNext ()

GetScheduleStatus ()
GetScheduleValue ()

SetArrivalpointDelay ()
SetScheduleNext ()

StartSchedule ()
StopSchedule ()

TestArrivalpointWritable ()

TickSchedule ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference

3-105

3.56 SetEvent()

Set events for a specified task.

Function declaration:
StatusType SetEvent (TaskType TaskID,
EventMaskType Mask)
Static version: setEvent_TaskID_Mask ()

Parameters:
Parameter | Input/Output | Description
TaskID Input Name of the task for which events are to be set.
Mask Input Mask of the events to be set.

Description:

This API call sets events for task TaskID according to Mask. If the task
is waiting for that event, it is immediately set to either ready or running
if the waiting task is now the highest priority task in the system.
Multiple events can be set by logically bitwise ‘or'ing events.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_ACCESS Referenced task is not an extended
task.

Extended | E_OS_ID Task TaskID is invalid.

Extended | E_OS_STATE Events cannot be set as the
referenced task is in the suspended
state.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment Valid =t Valid
(Hooks)

Idle task ® Startup x

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | v/ Posttask x
Error x
Overrun x

3-106 RTA-OSEK API Reference RTA-OSEK v5.0.2

Portability:

AUTOSAR
OSEK
Notes:
Any unset events in the event mask remain unchanged.
Each static call sets a single event. The call name is constructed from
the task name and the event name.
For correct timing analysis, lower priority tasks must not set events for
higher priority tasks.
Setting an event for a suspended task in the Standard or Timing build
has no effect and the status returned is £_ok. This is implementation
specific behavior for RTA-OSEK.
See also:
ClearEvent ()
DeclareEvent ()
GetEvent ()
WaitEvent ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-107

3.57 SetRelAlarm()

Set how many counter ticks occur before the alarm expires.

Function declaration:
StatusType SetRelAlarm (AlarmType AlarmID,
TickType increment

TickType cycle)

Parameters:
Parameter JUBRE Description
tput
AlarmID Input Alarm to be set.
increment | Input Number of counter ticks before alarm is triggered.
cycle Input Number of counter ticks before alarm is triggered
again.
Description:

This call starts an alarm running and sets the number of counter ticks
that will occur before the alarm is triggered. The alarm may be
triggered once only (if cycle is equal to zero) or repeatedly (cycle
gives the number of counter ticks before the alarm is triggered again).

When the alarm is triggered, the task associated with the alarm is
activated. The alarm can activate a task, set an event or call an alarm
callback (depending on configuration).

The behavior when increment is zero is dependant on configuration
as follows:

e OSEK (default) the alarm occurs in maxallowedvalue+1 ticks of
the counter

e OSEK (SetRelAlarm(,0) disallowed) the alarm is not set and the
API call returns E_OS_VALUE

e AUTOSAR the alarm is not set and the API call returns
E_OS_VALUE

3-108 RTA-OSEK API Reference RTA-OSEK v5.0.2

Error codes:

Build Code Description

All E_OK No error.

All E_OS_STATE Alarm AlarmID is currently running.

Extended | E_OS_ID Alarm AlarmID is not valid.

Extended | E_OS_VALUE Value of increment or cycle is outside the

range permitted by the counter:
increment: >= 0 or > 0
<= maxallowedvalue
cycle: = 0
>= mincycle
<= maxallowedvalue

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task 4 Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | v/ Posttask x
Error x
Overrun x

Portability:

Notes:

AUTOSAR
OSEK

To change values of the alarm, the alarm must not be running before
using SetRelAlarm().

Care must be taken when the value of increment is small, the
outcome of setRelalarm() will produce different results, depending
on whether the counter has ticked passed the increment value before
the call completes. It will either result in the alarm expiring almost
immediately or when the value is reached again (after the next overrun

of the counter).

RTA-OSEK v5.0.2

RTA-OSEK API Reference 3-109

See also:

CancelAlarm()
DeclareAlarm()
GetAlarm()
GetAlarmBase ()
SetAbsAlarm()

3-110 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.58 SetScheduleNext()

Indicate the next arrivalpoint to the schedule.

Function declaration:

StatusType SetScheduleNext (
ScheduleType SchedulelD,
ArrivalpointType ArrivalpointID)

Parameters:
Parameter Input/Output | Description
SchedulelID Input Schedule name.
ArrivalpointID | |nput Next arrivalpoint to be handled by
schedule.
Description:

Indicates to the schedule that the next arrivalpoint will be the one given
by ArrivalpointID.

This function can be used regardless of the schedule state.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | |nvalid arrivalpoint.

Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Extended | E_OS_SYS_S_INVALID Invalid schedule handle.

Extended | E_OS_SYS_S_MISMATCH | Arrivalpoint ArrivalpointID does
not belong to schedule scheduleID.

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-111

Portability:

Notes:

See also:

3-112

RTA-OSEK

None.

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.59 ShutdownOS()

Perform operating system shutdown.

Function declaration:

void ShutdownOS (StatusType Error)

Parameters:
:’aramete Itnput/Outpu Description
Error Input Error message to be passed to the shutdown
hook.
Description:

Results in the operating system ceasing all activities (processing tasks,
interrupts and alarms) and calling the shutdown hook, if defined. If the
shutdown hook returns, shutdownos () enters an endless loop.

Error codes:

None.

Calling environment:

Environment Valid AU Valid
(Hooks)

Idle task ® Startup v

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | v/ Posttask x
Error v
Overrun ®

Portability:
AUTOSAR
OSEK
Notes:
None.
See also:
StartOS ()

RTA-OSEK v5.0.2

RTA-OSEK API Reference 3-113

3.60 StartCOM()

Start the COM service.

Function declaration:

StatusType StartCOM(void)

Parameters:

None.

Description:

This API call starts the COM by initializing internal data structures.
StartcoM() calls the MessageInit () callback function provided by
the application programmer (if it is used) to initialize the application
specific message objects.

StartcoM () must be called from within a task.

Error codes:

Build Code Description
Standard | E_OK No error.

Implementation or application specific error code as
returned by MessageInit ().

Calling environment:

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup ®

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

Portability:
OSEK

3-114 RTA-OSEK API Reference RTA-OSEK v5.0.2

Notes:

The statusType returned by MessageInit () is in turn returned by
StartcoM(). RTA-OSEK provides a default implementation of
MessageInit () that returns E_ok, unless this is replaced by a user
provided version.

See also:

CloseCOM()
DeclareMessage ()
InitCOM ()
MessageInit ()
ReadFlag()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StopCOM ()

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-115

3.61 StartOS()

Start the OS.

Function declaration:

void StartOS (AppModeType Mode)

Parameters:

Parameter | Input/Output | Description

Mode Input Application mode.

Description:

Startos () starts RTA-OSEK running in the specified Mode application
mode. All data structures are initialized and counters are set to zero on
startup.

Error codes:

None.

Calling environment:

Environment Valid =Nt Valid
(Hooks)
Idle task x Startup x
Task x Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | % Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK
Notes:

Code following the call to startos () becomes the idle task and must
not terminate.

See also:
ShutdownOS ()

3-116 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.62 StartSchedule()

Start a stopped schedule.

Function declaration:
StatusType StartSchedule (ScheduleType SchedulelD,

TickType When)
Parameters:
Parameter | Input/Output | Description
ScheduleID | Input Schedule to be started.
When Input Counter value at which first arrivalpoint is
processed.
Description:

This starts a schedule processing arrivalpoints and sets the schedule
state to running.

If the schedule state was previously stopped, a counter event is set up
for the absolute counter value when. (Valid values for when are in the
range O to schedule modulus-1, where modulus is the modulus of the
associated schedule).

If when is equal to 0, the schedule will start the next time the associated
counter wraps around. The application programmer must take care of
this if it is an advanced schedule.

If the state was previously running, this call has no effect.

For an advanced schedule, the device driver set_<ScheduleID> ()
function is called if the state was previously stopped.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Extended | E_OS_SYS_S_MODULO | when is greater than or equal to the
modulus value of the associated schedule.

Extended | E_OS_SYS_S_INVALID | Invalid schedule handle.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-117

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup ®
Task ® Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
None.
See also:

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StopSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

3-118 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.63 StartScheduleTable()

Starts a schedule table.

Function declaration:

StatusType StartScheduleTable (
ScheduleTableType ScheduleTablelD,

TickType Offset)
Parameters:
Parameter Input/Output Description
ScheduleTablelD Input Schedule table to be started.
Offest Input Relative tick value between now
and the first alarm expiry
Description:

Starts the schedule table scheduleTableID at its first expiry point
after a delay of offset counter ticks.

Error codes:

Build | Code Description

All E_OK No error.

All E_OS_ID Invalid schedule table handle.

All E_OS_VALUE Offset is greater than MAXALLOWEDVALUE in
case of a ticked counter.

All E_OS_STATE Schedule table was already started or the counter
to which the schedule table belongs runs another
schedule table.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-119

Calling environment:

Environment Valid At Valid
(Hooks)
Idle task v Startup v
Task v Shutdown x
_Category 1 x Pretask x
interrupts
_Category 2 v Posttask x
interrupts
Error x
Overrun x
Portability:
AUTOSAR
Notes:
None.
See also:

GetScheduleTableStatus ()
NextScheduleTable ()
StopScheduleTable ()

3-120 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.64 StopCOM()

Stops the COM service.

Function declaration:

StatusType StopCOM (UIntType ShutdownMode)

Parameters:
Parameter Input/Output | Description
ShutdownMode | Input The shutdown mode.
Description:

StopCOM () causes all COM activity to cease and all resources used by

COM to be released.

All operations will cease immediately. By

implication, data will be lost. stopcomM() will not return until all
pending COM operations have completed and their resources can be

released.

When stopcoM() has completed successfully, the system is left in a
state where startcoM () can be called to restart COM.

The shutdownMode that is available is COM_SHUTDOWN_IMMEDIATE.
The shutdown will occur immediately without waiting for pending
operations to complete.

Error codes:

Build | Code Description

All E_OK No error.

All E_COM_BUSY | COM could not shutdown because an application is
holding a message resource.

Calling environment:

RTA-OSEK v5.0.2

Environment Valid =Nt Valid
(Hooks)

Idle task ® Startup x

Task Shutdown ®

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

RTA-OSEK API Reference 3-121

Portability:
OSEK

Notes:

None.

See also:
InitCOM()
MessageInit ()
ReadFlag ()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM()

3-122 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.65 StopSchedule()

Stop a running schedule.

Function declaration:

StatusType StopSchedule (ScheduleType SchedulelD)

Parameters:
Parameter Input/Output | Description
ScheduleID Input Schedule to be stopped.
Description:

This call stops a schedule from processing arrivalpoints.
The schedule’s state is set to stopped.

If schedulelID is an advanced schedule, a call to the user provided
advanced schedule driver Cancel_<ScheduleID> () is made.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_SYS_S_INVALID Invalid schedule handle.

Calling environment:

Environment Valid
Idle task ®
Task ®

Category 1 interrupts | %

Category 2 interrupts | ®

Portability:

RTA-OSEK

Notes:

None.

RTA-OSEK v5.0.2

Environment
(Hooks)

Valid

Startup

Shutdown

Pretask

Posttask

Error

Overrun

X | X | X[X| %%

RTA-OSEK API Reference

3-123

See also:

3-124

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
TestArrivalpointWritable ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.66 StopScheduleTable()

Stops a schedule table.

Function declaration:

StatusType StopScheduleTable (
ScheduleTableType ScheduleTablelID)

Parameters:

Parameter Input/Output Description

ScheduleTablelD Input Schedule table to be stopped.
Description:

Stops the schedule table scheduleTableID from processing any
further expiry points.

Error codes:

Build Code Description

All E_OK No error.

All E_0S_ID Invalid schedule table handle.
All E_OS_NOFUNC Schedule table was not started.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task v Startup x

Task v Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | v/ Posttask x
Error x
Overrun x

Portability:
AUTOSAR

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-125

Notes:

See also:

3-126

None.

GetScheduleTableStatus ()
NextScheduleTable ()

StartScheduleTable ().

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.67 SuspendAllinterrupts()

Disables interrupt processing of all interrupts.

Function declaration:

void SuspendAllInterrupts(void)
Parameters:

None.
Description:

This call disables the interrupt processing of all interrupts. The current
interrupt state is saved, so it can be restored later.

Error codes:

None.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup ®
Task v Shutdown ®
Category 1 interrupts | v/ Pretask 4
Category 2 interrupts | v/ Posttask v
Error v
Overrun ®
Portability:
AUTOSAR
OSEK

Notes:

This API call and its counterpart, ResumeAllInterrupts (), work by
adjusting the interrupt processing level of the processor.

APl calls are not permitted in critical regions between
SuspendAllInterrupts () and ResumeAllInterrupts().
SuspendAllInterrupts () and ResumeAllInterrupts () calls can,
however, be nested.

When API calls are made in the critical regions, combined resources
should be used to achieve mutual exclusion with ISRs.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-127

See also:

3-128

DeclareISR()
DisableAllInterrupts ()
EnableAllInterrupts()
ResumeAllInterrupts()
ResumeOSInterrupts ()

(

SuspendOSInterrupts ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.68 SuspendOSinterrupts()

Disables interrupt processing of Category 2 interrupts.

Function declaration:
void SuspendOSInterrupts (void)
Parameters:

None.

Description:

This call disables interrupt processing of any Category 2 interrupts after
saving the current interrupt processing level. The saved interrupt
processing level is restored by a call to Resume0SInterrupts ().

Error codes:

None.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup x
Task v Shutdown x
Category 1 interrupts | v/ Pretask x
Category 2 interrupts | v/ Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK

Notes:

This API call and its counterpart, ResumeOSInterrupts (), work by
adjusting the interrupt processing level of the processor.

No APl «calls are permitted in the critical region between
SuspendOSInterrupts () and ResumeOSInterrupts ().
SuspendOSInterrupts() and ResumeOSInterrupts () calls can,
however, be nested. When API calls are made in the critical regions,
combined resources should be used to achieve mutual exclusion with
ISRs.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-129

See also:

3-130

DeclareISR()
DisableAllInterrupts ()
EnableAllInterrupts()
ResumeAllInterrupts()
ResumeOSInterrupts ()
SuspendAllInterrupts ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.69 TerminateTask()

Terminates the calling task.

Function declaration:

StatusType TerminateTask (void)

Parameters:

None.

Description:

TerminateTask () is used to cause the termination of the calling task.
This transfers the calling task from the running state to the suspended
state. A BCC2 task with further activations queued moves from the
running state to the ready state.

Internal resources are released automatically.

Error codes:

Build Code Description

Extended | E_OS_CALLEVEL Call at interrupt level.
Extended | E_OS_RESOURCE Task still occupies resources.
Extended | E_OS_SYS_IDLE Called from idle task.
Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task x Startup x
Task 4 Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | % Posttask x
Error x
Overrun x
Portability:
AUTOSAR
OSEK

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-131

Notes:
All resources (other than internal resources) must have been released
prior to the call to TerminateTask ().

All tasks must end with a call to TerminateTask (), ChainTask () Or
ChainTaskset ().

Tasks declared as lightweight can only call TerminateTask () from the
function declared with the Task () macro. The call must also be a top-
level statement and not embedded in any expression.

If called unsuccessfully from a heavyweight task in the Extended build,
an error is returned. This can then be evaluated in the application.

In the Extended build, a lightweight task will always be terminated,
even if there is an error. The error hook, if configured, will be called.

See also:

ActivateTask ()
ChainTask ()
DeclareTask ()
GetTaskState ()

3-132 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.70 TestArrivalpointWritable()

Test whether or not an arrivalpoint is writable.

Function declaration:

StatusType TestArrivalpointWritable
ArrivalpointType ArrivalpointID,
BooleanRefType WritableFlag)

Parameters:
Parameter Input/Output | Description
ArrivalpointID | Input Arrivalpoint to be tested.
WritableFlag Output Reference to the Boolean flag.
Description:

SetsWwritableFlag to TRUE if the arrivalpoint is writable.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_AP_INVALID | |nvalid arrivalpoint.
Extended | E_OS_SYS_AP_NULL Null arrivalpoint.

Calling environment:

Environment Valid AR Valid
(Hooks)
Idle task ® Startup ®
Task ® Shutdown x
Category 1 interrupts | % Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
None.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-133

See also:

3-134

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TickSchedule ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.71 TestEquivalentTaskset()

Test whether or not two tasksets contain the same task(s).

Function declaration:

StatusType TestEquivalentTaskset (
TasksetType Tasksetl,
TasksetType Taskset?2,
BooleanRefType EgFlagqg)

Parameters:

Parameter Input/Output | Description

Tasksetl Input The first taskset.

Taskset?2 Input The second taskset.

EgFlag Output Reference to a Boolean flag.
Description:

The Boolean pointed to by EqFlag is set to TRUE if the tasks in the
taskset Tasksetl are identical to those in the taskset Taskset2.
Otherwise it is set to FALSE.

Error codes:

Build Code Description

All E_OK No error.

Extended | E_OS_SYS_TS_INVALID | Either taskset invalid.

Calling environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup ®

Task ® Shutdown x

Category 1 interrupts | % Pretask ®

Category 2 interrupts | ® Posttask ®
Error ®
Overrun ®

Portability:
RTA-OSEK

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-135

Notes:

See also:

3-136

None.

ActivateTaskset ()
AssignTaskset ()
ChainTaskset ()
GetTasksetRef ()
MergeTaskset ()
RemoveTaskset ()
t

TestSubTaskset ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.72 TestSubTaskset()

Test whether or not tasks are present in a taskset.

Function declaration:

StatusType TestSubTaskset (

TasksetType
TasksetType

SubTaskset,
RefTaskset,

BooleanRefType SubsetFlagqg)

Parameters:
Parameter Input/Output | Description
SubTaskset Input The taskset being tested.
RefTaskset Input The reference taskset.
SubsetFlag Output Reference to a Boolean flag.
Description:

This API call can be used to test whether one taskset is a subset of

another.

The Boolean pointed to by subsetFlag is set to TRUE if the tasks in the
taskset subTaskset all exist in the taskset RefTaskset. Otherwise it

is set to FALSE.

Error codes:

Build Code

Description

All E_OK

No error.

Extended | E_OS_SYS_TS_INVALID | Either taskset invalid.

Calling environment:

Environment Valid
Idle task ®
Task ®

Category 1 interrupts | %

Category 2 interrupts | ®

Portability:
RTA-OSEK

RTA-OSEK v5.0.2

Environment .
(Hooks) Valid
Startup ®
Shutdown x
Pretask ®
Posttask ®
Error ®
Overrun ®

RTA-OSEK API Reference 3-137

Notes:

See also:

3-138

None.

ActivateTaskset ()
AssignTaskset ()
ChainTaskset ()
GetTasksetRef ()
MergeTaskset ()
RemoveTaskset ()
TestEquivalentTaskset ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

3.73 Tick _<CounterID>()

Increments a counter by one tick.

Function declaration:

void Tick_<CounterID> ()

Parameters:

None.

Description:

This call indicates to counter counter 1D that one tick has elapsed.
For each attached alarm, if sufficient ticks have elapsed, the action(s)
for that alarm are executed.

For an expiry point on an attached and running Schedule Table, if
sufficient ticks have elapsed, the action(s) for that expiry point are
executed.

The match value for the next expiry of the alarm is set if the alarm was
started with a cycle time greater than zero.

The match value for the next expiry point on the attached and running
schedule table (if any) is set.

Error codes:

Tick_<CounterID>() cannot directly raise any errors. However, the
following errors can result from the activation of tasks when alarms
expire. In this case, ErrorHook () is invoked.

Build Code Description
All E_OK No error.
Extended | E_OS_LIMIT Too many activations of a task. As

a result, all task activations resulting
from this call are ignored.

Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-139

Calling environment:

Environment Valid AL Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | * Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
Rescheduling after a call to Tick_<CounterID>() depends on the
calling environment.

e Category 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.

e Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ()

e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.

e Hooks: Rescheduling will not take place until the hook
terminates.

e For correct timing analysis, lower priority tasks must not tick
counters that result in the expiry of alarms, leading to the
activation of higher priority tasks

See also:
DeclareCounter ()
GetCounterValue ()
InitCounter ()

IncrementCounter ()

osAdvanceCounter_<CounterID> ()

3-140 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.74 TickSchedule()

Advance the ‘now’ value of a ticked schedule, possibly activating tasks.

Function declaration:
StatusType TickSchedule (ScheduleType SchedulelD)
Static version: TickSchedule SchedulelID()

Parameters:
Parameter Input/Output | Description
SchedulelID Input Schedule name.
Description:

This call indicates to ticked schedule scheduleID that one tick has
elapsed. If sufficient ticks have elapsed, the next arrivalpoint is
processed. This activates the tasks for that arrivalpoint.

If the final arrivalpoint is processed by this call, the ticked schedule is
stopped. Typically the application continues to call TickSchedule ()
periodically.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_LIMIT Too many activations of a task. As a

result, all task activations resulting
from this call are ignored.

Extended | E_OS_ID ScheduleType ScheduleID not
valid.

Extended | E_OS_SYS_S_MISMATCH ScheduleID is an advanced schedule.
Extended | E_OS_SYS_CONFIG_ERROR | Configuration error.

RTA-OSEK v5.0.2 RTA-OSEK API Reference 3-141

Calling environment:

Environment Valid AL Valid
(Hooks)
Idle task ® Startup x
Task ® Shutdown x
Category 1 interrupts | Pretask x
Category 2 interrupts | ® Posttask x
Error x
Overrun x
Portability:
RTA-OSEK
Notes:
Rescheduling after a call to TickSchedule () depends on the calling
environment:
e Category 2 ISR: Rescheduling will not take place until the
Category 2 ISR terminates.
e Non-Preemptive Task: Rescheduling will not take place until the
non-preemptive task terminates or calls schedule ().
e Preemptive Task: Rescheduling will take place immediately if the
activated task is higher priority.
e Hooks: Rescheduling will not take place until the hook
terminates.
e For correct timing analysis, lower priority tasks must not tick
schedules that result in the activation of higher priority tasks.
See also:

AdvanceSchedule ()
GetArrivalpointDelay ()
GetArrivalpointNext ()
GetArrivalpointTasksetRef ()
GetScheduleNext ()
GetScheduleStatus ()
GetScheduleValue ()
SetArrivalpointDelay ()
SetScheduleNext ()
StartSchedule ()
StopSchedule ()
TestArrivalpointWritable ()

3-142 RTA-OSEK API Reference RTA-OSEK v5.0.2

3.75

WaitEvent()

Wait for one or more events.

Function declaration:

StatusType WaitEvent (EventMaskType Mask)

Parameters:

Parameter | Input/Output | Description
Mask Input Mask of the events waited for.
Description:

This API call puts the calling task into the waiting state until one of the
specified events is set. If one or more is already set, the task remains in

the running state.

Error codes:

Calling

Build Code

Description

Standard | E_OK

No error.

Extended | E_OS_ACCESS

task.

Calling task is not an extended

Extended | E_OS_CALLEVEL

Call at interrupt level.

Extended | E_OS_RESOURCE

Calling task occupies resources.

Extended E_OS_SYS_CONFIG_ERROR

Configuration error.

Portability:

AUTOSAR
OSEK

RTA-OSEK v5.0.2

environment:

Environment Valid AR Valid
(Hooks)

Idle task ® Startup x

Task 4 Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts Posttask x
Error x
Overrun x

RTA-OSEK API Reference 3-143

Notes:

See also:

3-144

None.

ClearEvent ()
DeclareEvent ()
GetEvent ()
SetEvent ()

RTA-OSEK API Reference

RTA-OSEK v5.0.2

4 Constructional Elements

4.1 DeclareAccessor()

Declare an accessor.

Function declaration:

DeclareAccessor (AccessorID)

Parameters:
Parameter Input/Output | Description
AccessorID | Input Accessor to be declared.
Description:

DeclareAccessor () provides an external constant declaration of an
accessor.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
It is not necessary to manually insert DeclareAccessor () into any files.
RTA-OSEK will place it in the appropriate files.
Constructional elements cannot be called at run-time.
See also:

None.

RTA-OSEK v5.0.2 Constructional Elements 4-1

4.2 DeclareAlarm()

Declare an alarm.

Function declaration:
DeclareAlarm(AlarmID)

Parameters:

Parameter | Input/Output | Description

AlarmID Input Alarm to be declared.

Description:

DeclareAlarm() provides an external constant declaration of an alarm.

Error codes:

None.

Calling environment:

None.

Portability:

AUTOSAR
OSEK

Notes:
It is not necessary to manually insert DeclareAlarm() into any files. RTA-
OSEK will place it in the appropriate files.
Constructional elements cannot be called at run-time.

See also:

CancelAlarm()
GetAlarm()
GetAlarmBase ()
SetAbsAlarm()
SetRelAlarm()

4-2 Constructional Elements RTA-OSEK v5.0.2

4.3 DeclareCounter()

Declare a counter.

Function declaration:

DeclareCounter (CounterID)

Parameters:
Parameter Input/Output Description
CounterID Input Counter to be declared.
Description:

DeclareCounter () provides an external constant declaration of a counter.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
It is not necessary to manually insert DeclareCounter () into any files.
RTA-OSEK will place it in the appropriate files.
Constructional elements cannot be called at run-time.
See also:

GetCounterValue ()
IncrementCounter ()
InitCounter ()
osAdvanceCounter_<ConterID> ()
Tick_<CounterID> ()

RTA-OSEK v5.0.2 Constructional Elements 4-3

4.4 DeclareEvent()

Declare an event.

Function declaration:
DeclareEvent (EventID)

Parameters:
Parameter | Input/Output | Description
EventID Input Event to be declared.
Description:

DeclareEvent () provides an external constant declaration of an event.

Error codes:

None.

Calling environment:

None.

Portability:

AUTOSAR

OSEK

Notes:

It is not necessary to manually insert DeclareEvent () into any files. RTA-
OSEK will place it in the appropriate files.

Constructional elements cannot be called at run-time.

See also:

ClearEvent ()
GetEvent ()
SetEvent ()
WaitEvent ()

4-4 Constructional Elements

RTA-OSEK v5.0.2

4.5 DeclareFlag()

Declare a flag.

Function declaration:
DeclareFlag(FlagID)

Parameters:

Parameter | Input/Output | Description
FlagID Input Flag to be declared.

Description:

DeclareFlag () provides an external constant declaration of a flag.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
It is not necessary to manually insert DeclareFlag() into any files. RTA-
OSEK will place it in the appropriate files.
Constructional elements cannot be called at run-time.
See also:

ReadFlag()
ResetFlag()

RTA-OSEK v5.0.2 Constructional Elements 4-5

4.6 DeclarelSR()

Declare an ISR.

Function declaration:
DeclareISR(ISRID)

Parameters:

Parameter | Input/Output | Description

ISRID Input ISR to be declared.

Description:

DeclareISR () provides an external constant declaration of an ISR.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
It is not necessary to manually insert DeclareISR () into any files. RTA-OSEK
will place it in the appropriate files.
Constructional elements cannot be called at run-time.
See also:

DisableAllInterrupts ()
EnableAllInterrupts ()
ResumeAllInterrupts()
ResumeOSInterrupts ()

SuspendAllInterrupts ()
SuspendOSInterrupts()

4-6 Constructional Elements RTA-OSEK v5.0.2

4.7 DeclareMessage()

Declare a message.

Function declaration:

DeclareMessage (MessagelD)

Parameters:
Parameter Input/Output | Description
MessageID Input Message to be declared.
Description:

DeclareMessage () provides an external constant declaration of a
message.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
It is not necessary to manually insert DeclareMessage () into any files.
RTA-OSEK will place it in the appropriate files.
Constructional elements cannot be called at run-time.
See also:

InitCOM()
MessageInit ()
ReadFlag()
ReceiveMessage ()
ResetFlag()
SendMessage ()
StartCOM (),
StopCOM()

RTA-OSEK v5.0.2 Constructional Elements

4-7

4.8 DeclareResource()

Declare a resource.

Function declaration:

DeclareResource (ResourcelD)

Parameters:
Parameter Input/Output | Description
ResourceID | Input Resource to be declared.
Description:

DeclareResource ()

resource.

Error codes:

None.

Calling environment:

provides an external constant declaration of a

It is not necessary to manually insert DeclareResource () into any files.
RTA-OSEK will place it in the appropriate files.

Constructional elements cannot be called at run-time.

None.
Portability:
AUTOSAR
OSEK
Notes:
See also:

GetResource ()

ReleaseResource ()

4-8 Constructional Elements

RTA-OSEK v5.0.2

4.9 DeclareTask()

Declare a task.

Function declaration:

DeclareTask (TaskID)

Parameters:
Parameter Input/Output | Description
TaskID Input Task to be declared.
Description:

DeclareTask () provides an external constant declaration of a task.

Error codes:

None.

Calling environment:

It is not necessary to manually insert DeclareTask () into any files.
OSEK will place it in the appropriate files.

Constructional elements cannot be called at run-time.

None.
Portability:
AUTOSAR
OSEK
Notes:
See also:

ActivateTask ()
ChainTask ()
GetTaskID()
GetTaskState ()
TerminateTask ()

RTA-OSEK v5.0.2

Constructional Elements

RTA-

4-9

5 Advanced Counter & Schedule Driver Interface
The application programmer must supply device driver functions to interface
RTA-OSEK to the tick sources that drive each advanced schedule and each
advanced counter.

Important: You must use exactly one set of hardware tick source device
driver functions for each advanced schedule and for each advanced counter
defined in your OIL configuration file. It is not possible to share tick source
drivers between advanced schedules and advanced counters.
The driver functions for schedules take the following form:

® Set_<SchedulelID> ()

® State_<SchedulelID> ()

® Now_<ScheduleID> ()

® Cancel_<ScheduleID> ()
where <ScheduleID> is the name of the schedule.
Similarly, the driver functions for advanced alarms take the following form:

® Set_<CounterID>()

® State_<CounterID> ()

® Now_<CounterID> ()

® Cancel_<CounterID> ()
where <CounterID> is the name of the advanced counter.
Portability Note: The OSEK OS and the AUTOSAR OS specifications do not
provide a standardized API to access tick sources. The interface described here
is therefore RTA-OSEK specific.
RTA-OSEK does not place any reentrancy requirements on the driver
functions. They are always called in mutual exclusion (from OS level).
However, if the functions are also called directly by the application, then care
should be taken to ensure that they are still only called from OS level.
RTA-OSEK API calls must not be made from these driver functions.

5.1 Tick Source Semantics

Each advanced schedule and each advanced counter is assumed to have an

underlying hardware tick source with the following semantics:

e There is a now value which increments each tick, wraps at a given

modulus value and is free running.
e There is a match value.

e When now becomes equal to match, a tick source expiry is said to
have occurred. The tick source can be set up to interrupt on an expiry.

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface

5-1

e The tick source can also be set up not to interrupt. (Referred to as
canceling the expiry.)

Typically, a hardware implementation (hardware counter and timer output
compare channel) can be used to implement the underlying tick source for
each advanced schedule or advanced counter as required.

5.2 Initialization

It is assumed that each advanced schedule/counter has been initialized by the
application before any OS calls are made:

e The modulus of the schedule/counter driver tick source must
correspond to the Max Value configured for the schedule/counter (as
specified in the OIL configuration file).

e The tick source must be set up such that each tick of the tick source
corresponds to the duration of 1 tick for the associated
schedule’s/counter’s tick rate.

e The tick source is free running (incrementing).
e The tick source is configured to not interrupt.

5-2 Advanced Counter & Schedule Driver Interface RTA-OSEK v5.0.2

5.3 Cancel_<SchedulelD>() [User Provided]

Driver callback routine to cancel any outstanding tick source expiry.

Function declaration:

OS_CALLBACK (void) Cancel_<ScheduleID> (void)

Parameters:

None.

Description:

The function Cancel_<ScheduleID> () must cancel any outstanding tick
source expiry. It must set up the hardware to not interrupt and then clear any
pending interrupts.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
This function is not required to stop the associated hardware from
incrementing.
See also:

Now_<SchedulelID> ()
Set_<SchedulelID> ()
State_<SchedulelID> ()

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface 5-3

5.4 Now_<SchedulelD>() [User Provided]

Driver callback routine that returns the current tick source value.

Function declaration:

OS_CALLBACK (TickType) Now_<ScheduleID> (void)

Parameters:

This call returns a TickType value.

Description:

The function Now_<ScheduleID> () must return the now value of the
underlying tick source.

Error codes:

None.

Calling environment:

None.
Portability:

RTA-OSEK
Notes:

None.
See also:

Cancel_<SchedulelID> ()
Set_<SchedulelID> ()
State_<SchedulelID> ()

5-4 Advanced Counter & Schedule Driver Interface RTA-OSEK v5.0.2

5.5 Set_<SchedulelD>() [User Provided]

Driver callback routine to set the next match value for an advanced schedule.

Function declaration:

OS_CALLBACK (void) Set_<ScheduleID> (TickType Match)

Parameters:

Parameter | Input/Output | Description

Match Input Next absolute match value.

Description:

The function Set_<ScheduleID> () takes the Match value as a parameter.
It must clear any pending interrupt and set up the hardware to interrupt when
now reaches the new Match value. Match is, therefore, an absolute value at
which the schedule will process the next arrivalpoint.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK.
Notes:
Set_<ScheduleID> () is not required to initialize hardware. This should be
done by initialization code before RTA-OSEK is started.
See also:

Cancel_<ScheduleID> ()
Now_<ScheduleID> ()
State_<SchedulelID> ()

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface 5-5

5.6 State_<SchedulelD>() [User Provided]

Driver callback routine to get the state of the underlying tick source hardware.

Function declaration:

OS_CALLBACK (void)
State_<ScheduleID> (ScheduleStatusRefType State)

Parameters:

Parameter | Input/Output | Description

State Output Status of the underlying tick source.

Description:

This function must update a schedule status structure. It will only be called
when the schedule is running.

For more information on ScheduleStatusType see Section 2.1.1.

Error codes:

None.

Calling environment:

None.

Portability:
RTA-OSEK

Notes:
If match is equal to now, then the value of the expiry field is set to zero.
Zero indicates that it is the full schedule modulus number of ticks before the
next counter event.

See also:

Cancel_<SchedulelID> ()
Now_<ScheduleID> ()
Set_<SchedulelID> ()

5-6 Advanced Counter & Schedule Driver Interface RTA-OSEK v5.0.2

5.7 Cancel_<CounterlD> [User Provided]

Driver callback routine to cancel any outstanding tick source expiry.

Function declaration:

OS_CALLBACK (void) Cancel_ <CounterID> (void)

Parameters:

None.

Description:

The function Cancel_<CounterID>() must cancel any outstanding tick
source expiry. It must set up the hardware to not interrupt and then clear any
pending interrupts.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
This function is not required to stop the associated hardware from
incrementing.
See also:

Now_<CounterID> ()
Set_<CounterID> ()
State_<CounterID> ()

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface 5-7

5.8 Now_<CounteriD>() [User Provided]

Driver callback routine that returns the current tick source value.

Function declaration:

OS_CALLBACK (TickType) Now_<CounterID>(void)

Parameters:

This call returns a TickType value.

Description:

The schedule function Now_<CounterID> () must return the now value of
the tick source.

Error codes:

None.

Calling environment:

None.
Portability:

RTA-OSEK
Notes:

None.
See also:

Cancel_<CounterID> ()
Set_<CounterID> ()
State_<CounterID> ()

5-8 Advanced Counter & Schedule Driver Interface RTA-OSEK v5.0.2

5.9 Set_<CounteriD>() [User Provided]

Driver callback routine to set the next match value on an advanced counter.

Function declaration:
OS_CALLBACK (void) Set_<CounterID> (TickType Match)

Parameters:

Parameter | Input/Output | Description
Match Input Next absolute match value.

Description:

The function Set_<CounterID> () takes the Match value as a parameter.
It must set up the hardware to interrupt when now reaches the new Match
value. Match is, therefore, an absolute value at which the next alarm and/or
schedule table expiry point needs to be processed by RTA-OSEK.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK.
Notes:
Set_<CounterID> () is not required to initialize hardware. This should be
done by initialization code before RTA-OSEK s started.
See also:

Cancel_<CounterID> ()
Now_<CounterID> ()
State_<CounterID> ()

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface 5-9

5.10 State_<CounterlD>() [User Provided]

Driver callback routine to get the state of the underlying tick source hardware.

Function declaration:

OS_CALLBACK (void)
State_<CounterID> (ScheduleStatusRefType State)

Parameters:

Parameter | Input/Output | Description

State Output Status of the underlying counter.

Description:

This function must update a schedule status structure. It will only be called
when the schedule is running.

For more information on ScheduleStatusType see Section 2.1.1.

Error codes:

None.

Calling environment:

None.

Portability:
RTA-OSEK.

Notes:
If ‘match’ is equal to ‘'now’, then the value of the expiry field will be set to
zero, indicating that it is the full schedule modulus number of ticks before the
next counter event.

See also:

Cancel_<CounterID> ()
Now_<CounterID> ()
Set_<CounterID> ()

5-10 Advanced Counter & Schedule Driver Interface RTA-OSEK v5.0.2

RTA-OSEK v5.0.2 Advanced Counter & Schedule Driver Interface 5-11

6 Execution Time Monitoring

Portability Note: All of the execution time monitoring API calls are RTA-OSEK
specific.

6.1 GetExecutionTime()

Get the consumed execution time for the current invocation of the calling task
or Category 2 ISR.
Function declaration:

StopwatchTickType GetExecutionTime (void)

Parameters:

None.

Description:

Returns the execution time consumed, since the start of execution, by the
current invocation of the calling basic task or Category 2 ISR.

In the case of an extended task, it returns execution time consumed by the
current invocation of the calling task or since the start of execution or the
previous WaitEvent () call.

If the value overflows, then the returned value will be the wrapped value.

Error codes:

None.

Calling environment:

Environment Valid Environment (Hooks) | Valid

Idle task ® Startup

Task ® Shutdown x

Category 1 interrupts | % Pretask x

Category 2 interrupts | ® Posttask x
Error x
Overrun x

Portability:
RTA-OSEK

RTA-OSEK v5.0.2 Execution Time Monitoring 6-1

Notes:
This API call requires that the user provides access to a free running counter
through the GetStopwatch () callback routine.

This API call always returns zero when the OS Status is set to Standard in the
OIL configuration file.

See also:

GetLargestExecutionTime ()
GetStopwatch ()
GetStopwatchUncertainty ()
ResetLargestExecutionTime ()

6-2 Execution Time Monitoring RTA-OSEK v5.0.2

6.2 GetlLargestExecutionTime()

Get the largest observed execution time for the specified task.

Function declaration:

StatusType GetLargestExecutionTime (

TaskType

TaskID,

StopwatchTickRefType WCET)

Parameters:

Parameter | Input/Output | Description

TaskID Input Task name.

WCET Output Worst case execution time.
Description:

Returns the largest execution time at completion for the task or Category 2
ISR identified by Task ID. This maximum value is over all complete invocations
of the task or Category 2 ISR that have completed since the previous call to
ResetLargestExecutionTime () for that task or Category 2 ISR or to

StartoOSs

Error codes:

().

Build Code Description
All E_OK No error.
Extended | E_OS_SYS_T_INVALID | Invalid task or Category 2 ISR handle.

Calling environment:

Environment Valid Environment (Hooks) | Valid
Idle task D) Startup x
Task ® Shutdown x
Category 1 interrupts x Pretask x
Category 2 interrupts | ® Posttask x
Error ®
Overrun ®

Portability:

RTA-OSEK

RTA-OSEK v5.0.2

Execution Time Monitoring

6-3

Notes:

See also:

6-4

If no invocations of the specified task have been completed the API call
returns zero.

The call always returns zero when the OS Status is set to Standard in the OIL
configuration file.

GetExecutionTime ()
GetStopwatch ()
GetStopwatchUncertainty ()
ResetLargestExecutionTime ()

Execution Time Monitoring RTA-OSEK v5.0.2

6.3 GetStopwatch() [User Provided]

RTA-OSEK callback routine to return the current value of a free-running
counter.

Function declaration:

OS_NONREENTRANT (StopwatchTickType) GetStopwatch (void)

Parameters:

The return value is a StopwatchTickType.

Description

GetStopwatch () must return the current value of a free-running timer
(which increments and overflows at the end of its range). This timer provides
the timebase for execution time measurements. The execution time API calls
return values in units of this timebase.

Error codes:

None.

Calling environment:

None.
Portability:
RTA-OSEK
Notes:
The user must provide a definition for GetStopwatch () if the OS Status is
set to Timing or Extended in the OIL Configuration file.
See also:

GetExecutionTime ()
GetLargestExecutionTime ()
GetStopwatchUncertainty ()

ResetlLargestExecutionTime ()

RTA-OSEK v5.0.2 Execution Time Monitoring 6-5

6.4 GetStopwatchUncertainty() [User Provided]

RTA-OSEK callback routine to provide StopwatchUncertainty () for
execution time monitoring.

Function declaration:
OS_NONREENTRANT (StopwatchTickType)
GetStopwatchUncertainty (void)

Parameters:

Returns a StopwatchTickType indication of uncertainty.

Description:

On some targets, it is not possible to have a stopwatch that runs at the same
rate as CPU cycles. This introduces an uncertainty into timing measurements.

All timing measurements are based on the calculation of the elapsed time
between two points in the code. Where the GetStopwatch () clock is
slower than the CPU clock, simply subtracting two times can underestimate
the elapsed time by a given amount. This is the uncertainty in the elapsed time
measurement. GetStopwatchUncertainty () returns the measurement
uncertainty that applies to calls to Get Stopwatch ().

Error codes:

None.

Calling environment:

None.

Portability:
RTA-OSEK

Notes:
The user must provide a definition for GetStopwatch () if the OS Status is
set to Timing or Extended in the OIL Configuration file.

See also:

GetExecutionTime ()
GetLargestExecutionTime ()
GetStopwatch ()

ResetlLargestExecutionTime ()

6-6 Execution Time Monitoring RTA-OSEK v5.0.2

6.5 ResetLargestExecutionTime()

Resets the current largest execution time.

Function declaration:

StatusType ResetlLargestExecutionTime (TaskType TaskID)

Parameters:
Parameter | Input/Output | Description
TaskID Input Task name.
Description:

It sets the recorded maximum execution time of the task or Category 2 ISR
supplied to zero.

Error codes:

Build Code Description
All E_OK No error.
Extended | E_OS_SYS_T_INVALID | Invalid task or Category 2 ISR handle.

Calling environment:

Environment Valid Environment (Hooks) | Valid
Idle task D) Startup x
Task D) Shutdown x
Category 1 interrupts x Pretask x
Category 2 interrupts | ® Posttask x
Error ®
Overrun ®

Portability:
RTA-OSEK

Notes:

This API call has no effect when the OS Status is set to Standard in the OIL
configuration file.

See also:

GetExecutionTime ()

GetLargestExecutionTime ()
GetStopwatch ()
GetStopwatchUncertainty ()

RTA-OSEK v5.0.2

Execution Time Monitoring 6-7

7 Hook Routines
When the system is configured to use the hook routines you must provide the
callback routines that RTA-OSEK will call.

7.1 ErrorHook() [User Provided]

Hook routine used for trapping errors resulting from incorrect use of the RTA-
OSEK API.

Function declaration:

OS_HOOK (void) ErrorHook (StatusType Error)

Parameters:

Parameter Input/Output | Description

Error Input The error that occurred.
Description:

This is called by RTA-OSEK when an API call returns a StatusType not equal
to E_OK. It is called before returning to the user level. RTA-OSEK passes the
StatusType into the ErrorHook ().

This hook is not called if an API call, called from ErrorHook (), does not
return E_OK as status value.

Macros are provided for obtaining information within ErrorHook (). The
macros can be used to find out information about the API call that called
ErrorHook () and the parameters that were passed to it.

The macro OSErrorGetServicelID returns an OSServiceIDType Wwith
values 0SServiceId xxx wWhere xxx is the name of an API call. This is used
to determine which API call resulted in the error.

The OSError_APICallName_Parameter () macros are available for each
API call. These are used to determine which parameters were passed to the
API call.

These macros are only available in the ErrorHook () and RTA-OSEK must be
configured correctly in order to use them.

Error codes:

None.

Calling environment:

None.

Portability:

OSEK

RTA-OSEK v5.0.2 Hook Routines

7-1

Notes:

None.

See also:

OverrunHook ()

7-2 Hook Routines RTA-OSEK v5.0.2

7.2 OverrunHook() [User Provided]

Hook routine for trapping execution budget overruns.

Function declaration:

OS_HOOK (void) OverrunHook (void)

Parameters:

None.

Description:

This hook routine is called in the Timing and Extended builds when specified
task execution budgets have been exceeded.

Error codes:

None.

Calling environment:

None.

Portability:
RTA-OSEK

Notes:
The user must provide a definition for OverrunHook () if the OS Status is set
to Timing or Extended in the OIL configuration file, irrespective of whether
execution time monitoring is being performed.

See also:

GetExecutionTime ()
GetLargestExecutionTime ()
GetStopwatch ()
GetStopwatchUncertainty ()

RTA-OSEK v5.0.2 Hook Routines 7-3

7.3 Messagelnit() [User Provided]

Hook routine to initialize user message data structures.

Function declaration:

StatusType MessagelInit (void)

Parameters:

None.

Description:

This routine initializes all application specific message objects.

Error codes:

Build | Code | Description

All E_OK | No error.

Return an implementation or application specific error code if the
initialization did not complete successfully.

Calling environment:

None.

Portability:
OSEK

Notes:
MessageInit () function has to be provided by the application programmer
and can only be called by the StartCoM () routine.
The statusType returned by MessageInit () is in turn returned by
StartCoM(). RTA-OSEK provides a default implementation of
MessageInit () that returns E_OK, unless this is replaced by a user
provided version.

See also:
DeclareMessage ()
ClearEvent ()

7-4 Hook Routines RTA-OSEK v5.0.2

7.4 PostTaskHook() [User Provided]

Hook routine called when a task enters the ready or suspended state.

Function declaration:
OS_HOOK (void) PostTaskHook (void)

Parameters:

None.

Description:

This hook routine is called by the operating system after executing the current
task, but before leaving the task’s running state (to allow evaluation of the
TaskID).

Error codes:

None.

Calling environment:

None.

Portability:
OSEK.

Notes:

This routine is called for each preemption of a task.

See also:
PreTaskHook ()

RTA-OSEK v5.0.2 Hook Routines 7-5

7.5 PreTaskHook() [User Provided]

Hook routine called when a task enters the running state.

Function declaration:
OS_HOOK (void) PreTaskHook (void)

Parameters:

None.

Description:

This hook routine is called by the operating system before executing a new
task, but after the transition of the task to the running state (to allow
evaluation of the TaskID).

Error codes:

None.

Calling environment:

None.

Portability:
OSEK

Notes:

This routine is called for each preemption of a task.

See also:
PostTaskHook ()

7-6 Hook Routines RTA-OSEK v5.0.2

7.6 ShutdownHook() [User Provided]

Hook routine called during operating system shutdown.

Function declaration:

OS_HOOK (void) ShutdownHook (StatusType Error)

Parameters:

Parameter | Input/Output | Description

Error Input Error occurred.

Description:

If a ShutdownHook () is configured, this hook routine is called by the
operating system when the OS API call Shutdown0s () has been called. This
routine is called during the operating system shutdown.

Error codes:

None.

Calling environment:

None.

Portability:
OSEK

Notes:

The possible error parameter values arising from internal calls of
ShutdownOS () are:

® E_OS_SYS_STACK_FAULT: The application returned from
StackFaultHook.

® E_O0S_SYS_CALLEVEL: The application used illegal OS services above
OS level.

See also:
ShutdownOS ()

RTA-OSEK v5.0.2 Hook Routines 7-7

7.7 StackFaultHook()

[User Provided]

Called if the stack exceeds configured stack size for one or more tasks.

Function declaration:

OS_HOOK (void)
SmallType StackError,

StackFaultHook (SmallType StackID,
UIntType Overflow)

Parameters:
Parameter Input/Output | Description
StackID Input Shows the stack to which the data applies.
StackError Input (See Description below.)
Overflow Input Number of bytes on the stack beyond the limits
for which the system has been configured.
Description:

StackFaultHook () must be provided when extended tasks are present. It
is called if the stack exceeds stack size that has been configured for one or

more tasks.

StackFaultHook () is usually called because of a configuration error,
where the stack usage of one of more tasks has been incorrectly described. It
may, however, be triggered as a result of an application defect, such as run-

away stack.

StackError is one of:

® OS_EXTENDED_TASK_STARTING: Extended task is being
dispatched.

e OS_EXTENDED_TASK_RESUMING: Extended task is being resumed
after calling waitEvent ().

e OS_EXTENDED_TASK_WAITING: Extended task is calling
WaitEvent ().

Error codes:

None.

Calling environment:

None.

Portability:
RTA-OSEK

7-8 Hook Routines

RTA-OSEK v5.0.2

Notes:
StackID is always zero, unless otherwise defined in the target specific RTA-

OSEK Binding Manual.
GetTaskID() and GetActiveApplicationMode () are the only API calls

that should be made from this hook routine.

See also:
None.

RTA-OSEK v5.0.2 Hook Routines 7-9

7.8 StartupHook() [User Provided]

Hook routine called after OS initialization and before the scheduler is running.

Function declaration:
OS_HOOK (void) StartupHook (void)

Parameters:

None.

Description:

If a StartupHook () is configured, this hook routine is called by the
operating system at the end of the operating system initialization and before
the scheduler is running. At this time the application can start tasks, initialize
device drivers and so on.

Error codes:

None.

Calling environment:

None.

Portability:
OSEK

Notes:

None.

See also:
StartOS ()

7-10 Hook Routines RTA-OSEK v5.0.2

8 Callbacks

8.1 ALARMCALLBACK() [User Provided]

Called when an alarm expires and when it has a callback configured.

Function declaration:
void ALARMCALLBACK (AlarmcallbackRoutineName) (void)

Parameters:

None.

Description:

This is called by RTA-OSEK when an alarm expires and when that alarm has a
callback configured.

Error codes:

None.

Calling environment:

None.
Portability:
OSEK.
Notes:
The only RTA-OSEK APl calls that can be made are
ResumeAllInterrupts () and SuspendAllInterrupts ().
See also:

osAdvanceCounter <CounterID>
Tick_<CounterID> ()

RTA-OSEK v5.0.2 Callbacks 8-1

8.2 COMCALLBACK() [User Provided]

Called when a message is received and when it has a callback configured.

Function declaration:
COMCALLBACK (COMcallbackRoutineName) (void)

Parameters:

None.

Description:

This is called by RTA-OSEK when a message is received and when that
message has a callback configured.

Error codes:

None.

Calling environment:

None.
Portability:
OSEK.
Notes:
The only APl calls that can be made are SendMessage(),
ReceiveMessage (), GetMessageStatus().
See also:
None.
8-2 Callbacks RTA-OSEK 5.0.2

9 Predefined Objects

As well as objects explicitly declared in the configuration file, RTA-OSEK also
generates the symbols, objects and handles defined in the following sections
for use in your code.

9.1 OSEK Counter Attributes

Object Description OSEK

OS_CYCLES_PER_x Number of CPU cycles per tick of counter
X.

OS_CYCLES_PER_SWTICK | Number of CPU cycles per tick of the
system counter.

OSMAXALLOWEDVALUE Maximum possible allowed value of the v
system counter in ticks.

OSMAXALLOWEDVALUE_x | Maximum possible allowed value of v
counter x in ticks.

OSMINCYCLE Minimum allowed number of ticks for a v
cyclic alarm of the system counter.

OSMINCYCLE_x Minimum allowed number of ticks for a v
cyclic alarm of counter x.

OS_NS_PER_CYCLE Duration of a CPU cycle in nanoseconds.

OSTICKDURATION Duration of a tick of the system counter v
in nanoseconds.

OSTICKDURATION_x Duration of a tick of the counter x in
nanoseconds.

OSTICKSPERBASE Number of ticks required to reach a v
specific unit of the system counter.

OSTICKSPERBASE_ x Number of ticks required to reach a v
specific unit of counter x.

9.2 OSEK Task States

Object Description

READY Constant of data type TaskStateType for task state
ready.

RUNNING Constant of data type TaskStateType for task state
running.

SUSPENDED Constant of data type TaskStateType for task state
suspended.

WAITING Constant of data type TaskStateType for task state
waiting. Not used for BCC tasks.

RTA-OSEK v5.0.2 Predefined Objects 9-1

9.3 OSEK Resources

Object Description
RES_SCHEDULER Constant of data type ResourceType. Shared by all
tasks.

9.4 OSEK Application Modes

Object Description
OSDEFAULTAPPMODE Default application mode. Always a valid parameter to
Start0S ().

9.5 RTA-OSEK Build Levels

Object Description

OS_EXTENDED_BUILD Macro emitted by the RTA-OSEK configuration tool in
the Extended build.

OS_STANDARD_BUILD Macro emitted by the RTA-OSEK configuration tool in
Standard build.

OS_TIMING_BUILD Macro emitted by the RTA-OSEK configuration tool in
the Timing build.

OS_ET_MEASURE Macro emitted by the RTA-OSEK configuration tool in
both the Timing and Extended builds.

9.6 RTA-OSEK Tasksets

Object Description

os_all_tasks os_all_tasks is a read-only taskset containing all
defined tasks, including the idle task.

os_no_tasks os_no_tasks is a read-only taskset containing no
tasks (including the idle task).

os_ready_tasks os_ready_tasks is a read-only taskset, but its

contents are changed by RTA-OSEK so that it identifies
all the tasks in the ready state and the running task

osek_cc2_tasks osek_cc2_tasks is a taskset containing all the BCC2
and ECC2 tasks. It is defined only if there are BCC2 or
ECC2 tasks or in the Extended build.

osek_ecc_tasks osek_ecc_tasks identifies all the ECC1 and ECC2
tasks. It is defined only if there are ECC1 or ECC2 tasks
or in the Extended build.

9-2 Predefined Objects RTA-OSEK v5.0.2

9.7 RTA-OSEK Application Characteristics

Amongst other characteristics, osekcomn.h defines the following symbols
which characterize aspects of the application:

Symbol Characteristic

OSEK_BCC1 Contains only BCC1 tasks.

OSEK_BCC2 Contains BCC2 tasks.

OSEK_BCC2C Contains BCC2 tasks with unigue priorities.

OSEK_BCC2F Contains BCC2 tasks with shared priorities.

OSEK_ECC1 Contains ECC1 tasks.

OSEK_ECC2 Contains ECC2 tasks.

OSEK_ECC2C Contains BCC2 tasks with unique priorities and
ECC1 tasks.

OSEK_ECC2F Contains ECC2 tasks with shared and/or both BCC2 tasks
with shared priorities and ECC tasks.

OS_STC_COMPATIBLE | STC compliant (the system is constructed in such a way
that RTA-OSEK Planner can analyze the timing behavior.
See the RTA-OSEK User Guide for further details).

OS_NO_SCHEDULECALL | The application does not call Schedule ().

The "F" and “C"” Characteristics

If your application contains tasks with queued activations that share priorities
with other tasks typically stores activations in a FIFO queue. In this case
OSEK_BCC2F or OSEK_ECC2F is defined.

When your application does not use shared priorities, RTA-OSEK uses an
optimized implementation called ‘counted activation’. In this case, the
OSEK_BCC2C or OSEK_ECC2C is defined.

RTA-OSEK v5.0.2

Predefined Objects 9-3

10 Macro Definitions

Macro Description

ALARMCALLBACK () Format of the callback routine called when
the alarm expires.

ISR() Format that the Application Category 2 ISRs

must be written in.
ISR(IsrID)
{

}

OSError APICallName_ Parameter ()

Available for each APl call Used to
determine which parameters were passed
to the call.

OSErrorGetServicelD

Determines which API call resulted in the
error. Returns an 0SServiceIDType
with values 0SServiceId xxx where
xxx is the name of an API call.

OS_ATOMIC (expr)

Evaluate C expression expr with all
interrupts temporarily disabled.

OS_CALLBACK()

Marks user functions that are called directly
from RTA-OSEK. Function declaration:
OS_CALLBACK (void)
Cancel_<SchedulelID> (void) ;

OS_HOOK () Marks hook routines that are supported by
the OS.
0OS_HOOK (void)
ErrorHook (StatusType Error)
OS_MAIN() Marks main functions in a portable manner.

Function declaration: 0S_MAIN ()

OS_NONREENTRANT ()

Marks user functions that will not be
reentered.

Function declaration:

OS_NONREENTRANT (void)
GetStopwatch (void) ;

OS_STATUS_RUNNING

Indicates that the schedule is running.
#define OS_STATUS_RUNNING
(SmallType (2))

OS_STATUS_PENDING

Indicates that a schedule is pending (it is
due to process an arrivalpoint).

#define OS_STATUS_PENDING
(SmallType (1))

RTA-OSEK v5.0.2

Macro Definitions 10-1

10-2

Macro

Description

TASK ()

Format that application tasks must be
written in.

TASK (TaskID)
{

}

Macro Definitions

RTA-OSEK v5.0.2

RTA-OSEK v5.0.2 Macro Definitions 10-3

Quick Reference Guide

1.1

Dynamic Interface RTA-OSEK API Calls

Name

Description

ActivateTask ()

Activates a task.

ActivateTaskset () Activate a set of tasks.

AdvanceSchedule () Process the next arrivalpoint on the advanced
schedule.

AssignTaskset () Assign the members of a taskset to another
taskset.

CancelAlarm() Cancel an alarm.

ChainTask () Terminate the calling task and activate a task.

ChainTaskset ()

Terminate the calling task and activate a set of
tasks.

ClearEvent ()

Clear the calling task’s events.

CloseCOM()

Release low-level hardware resources needed
for COM communication.

DisableAllInterrupts ()

Disables all interrupts.

EnableAllInterrupts ()

Ends a critical section started by
DisableAllInterrupts().

GetActiveApplicationMode ()

Get the current application mode.

GetAlarm()

Returns the number of ticks before the alarm
next expires.

GetAlarmBase ()

Get the alarm base characteristics.

GetArrivalpointDelay ()

Get the delay between one arrivalpoint and the
suCcessor.

GetArrivalpointNext ()

Get the successor of an arrivalpoint.

GetArrivalpointTasksetRef ()

Get a reference to an arrivalpoint’s taskset.

GetCounterValue ()

Get the counter value.

RTA-OSEK v5.0.2

Quick Reference Guide 11-1

Name

Description

GetEvent ()

Get the events for the specified task.

GetISRID()

Get the handle of the current ISR.

GetMessageResource ()

Get the message resource.

GetMessageStatus ()

Return the message status.

GetResource () Get a resource.

GetScheduleNext () Get the next arrivalpoint to be processed by a
schedule.

GetScheduleStatus () Get the current status of a schedule.

GetScheduleTableStatus ()

Get the status of a schedule table.

GetScheduleValue ()

Get the "now’ property of a schedule.

GetStackOffset ()

Gets the current stack pointer.

GetTaskID()

Get the status of the specified task.

GetTasksetRef ()

Create a singleton taskset from the specified
task.

GetTaskState ()

Get the task state.

IncrementCounter ()

Initializes the low-level resources necessary for
COM.

InitCOM()

Increments a counter by one tick

InitCounter ()

Initialize the counter to a given tick value.

MergeTaskset ()

Merge two tasksets.

NextScheduleTable ()

Stop a schedule table and start another.

osAdvanceCounter_<CounterID> ()

Process the next alarm/schedule table expiry
point due on the counter.

osResetOS ()

Reset the OS variables before restarting.

ReadFlag()

Read the status of the message flag associated
with an OSEK COM message.

11-2

Quick Reference Guide

RTA-OSEK v5.0.2

Name Description

ReceiveMessage () Receive the specified OSEK COM message.

ReleaseMessageResource () Release a previously held message resource.

ReleaseResource () Release a previously held resource.

RemoveTaskset () Remove tasks from a taskset.

ResetFlag() Reset the flag associated with an OSEK COM
message.

ResumeAllInterrupts () Resumes processing of interrupts.

ResumeOSInterrupts () Restore interrupt processing of Category 2
interrupts.

Schedule () Provides a rescheduling point for non-

preemptive tasks.

SendMessage () Sends the specified data as an OSEK COM
message.

SetAbsAlarm() Set the value of the counter at which the alarm
expires.

SetArrivalpointDelay () Set the delay between one arrivalpoint and the
SUCCEesSOT.

SetArrivalpointNext () Reconfigure a schedule by changing the

successor of an arrivalpoint.

SetEvent () Set events for a specified task.

SetRelAlarm/() Set how many counter ticks occur before the
alarm expires.

SetScheduleNext () Indicate the next arrivalpoint to the schedule.
ShutdownOS () Perform operating system shutdown.
StartCoOM() Start the COM service.

StartoOs () Start the OS.

StartSchedule () Start a stopped schedule.
StartScheduleTable () Start a schedule table.

RTA-OSEK v5.0.2 Quick Reference Guide 11-3

Name

Description

StopCOM()

Stops the COM service.

StopSchedule ()

Stop a running schedule.

StopScheduleTable ()

Stop a schedule table.

SuspendAllInterrupts ()

Disables interrupt processing of all interrupts.

SuspendOSInterrupts () Disables interrupt processing of Category 2
interrupts.
TerminateTask () Terminates the calling task.

TestArrivalpointWritable ()

Test whether or not an arrivalpoint is writable.

TestEquivalentTaskset ()

Test whether or not tasksets contain the same
tasks.

TestSubTaskset ()

Test whether or not tasks are present in a
taskset.

Tick_<CounterID> ()

Increments a counter by one tick.

TickSchedule ()

Advance the 'now’ value of a ticked schedule,
possibly activating tasks.

1"

WaitEvent ()

Wait for one or more events.

.2 Static Interface RTA-OSEK API Calls

114

Name

Description

ActivateTask_<TaskID> ()

Activates a task.

ActivateTaskset_<TasksetID> ()

Activate a set of tasks.

AdvanceSchedule_<SchedulelID> ()

Process the next arrivalpoint on the advanced
schedule.

ChainTask_<TaskID> ()

Terminate the calling task and activate a task.

ChainTaskset_<TasksetID> ()

Terminate the calling task and activate a set
of tasks.

GetResource_<ResID> ()

Get a resource.

Quick Reference Guide

RTA-OSEK v5.0.2

Name Description

ReleaseResource_<ResID> () Release a previously held resource.

SendMessage_<Message>_<Data>() | Sends the specified data as an OSEK COM
message.

SetEvent_<TaskID>_<Mask> () Set events for a specified task.

TickSchedule_<SchedulelID> () Advance the ‘now’ value of a ticked schedule,
possibly activating tasks.

1"

.3 Constructional Elements

Name Description
DeclareAccessor () Declare an accessor.
DeclareAlarm() Declare an alarm.
DeclareCounter () Declare a counter.
DeclareEvent () Declare an event.
DeclareFlag() Declare a flag.
DeclareISR() Declare an ISR.

DeclareMessage ()

Declare a message.

1"

DeclareProcess|() Declare a process.
DeclareResource () Declare a resource.
DeclareTask () Declare a task.

.4 Advanced Schedule Driver Interface

Name

Description

Cancel_<ScheduleID> ()

Driver callback routine to cancel any outstanding counter
expiry.

Now_<SchedulelID> ()

Driver callback routine that returns the current counter
value.

RTA-OSEK v5.0.2

Quick Reference Guide 11-5

Name

Description

Set_<SchedulelID> ()

Driver callback routine to set the next match value for the
advanced schedule driver.

State_<SchedulelID> ()

Driver callback routine to get the state of the underlying
counter/compare hardware.

11.5 Advanced Counter Driver Interface

Name

Description

Cancel_<CounterID> ()

Driver callback routine to cancel any outstanding counter
expiry.

Now_<CounterID> ()

Driver callback routine that returns the current counter
value.

Set_<CounterID> ()

Driver callback routine to set the next match value for the
advanced counter driver.

State_<CounterID> ()

Driver callback routine to get the state of the underlying
counter/compare hardware.

11-6 Quick Reference Guide

RTA-OSEK v5.0.2

11.6 Execution Time Monitoring Interface

Name

Description

GetExecutionTime ()

Get the consumed execution time for the calling
task or Category 2 ISR.

GetLargestExecutionTime () Get the largest observed execution time for the

specified task.

GetStopwatch ()

RTA-OSEK callback routine to return the current
value of a free-running counter.

GetStopwatchUncertainty () Callback routine to provide
StopwatchUncertainty () for execution time
monitoring.

ResetLargestExecutionTime () | Resets the current largest execution time.

11.7 Hooks

Name Description

ErrorHook () Hook routine used for trapping errors resulting from incorrect

use of the RTA-OSEK API.

OverrunHook () Hook routine for trapping execution budget overruns.

MessageInit () Hook routine to initialize user message data structures.

PostTaskHook ()

Hook routine used when a task enters the ready or suspended
state.

PreTaskHook ()

Hook routine used when a task enters the running state.

ShutdownHook ()

Hook routine called during operating system shutdown.

StackFaultHook ()

Called if the stack exceeds configured stack size for one or more
tasks.

StartupHook ()

Hook routine called after OS initialization and before the
scheduler is running.

11.8 Other Callbacks

| Name

| Description

RTA-OSEK v5.0.2

Quick Reference Guide 11-7

Name

Description

ALARMCALLBACK (AlarmcallbackRoutineName)

Called when an alarm expires
and when it has a callback
configured.

COMCALLBACK (COMcallbackRoutineNam

Called when a message is
received and when it has a
callback configured.

11.9 Predefined Objects

As well as objects explicitly declared in the configuration file, RTA-OSEK also
generates the following symbols, objects and handles.

Object

Description

os_all_tasks

os_all_tasks is a read-only taskset containing all
defined tasks, including the idle task.

OS_EXTENDED_BUILD

Macro emitted by the RTA-OSEK configuration tool in
the Extended build.

os_no_tasks

os_no_tasks is a read-only taskset containing no
tasks (including the idle task).

os_ready_tasks

os_ready_tasks is a read-only taskset, but its
contents are changed by RTA-OSEK so that it identifies
all the tasks in the ready state and the running task

OS_STANDARD_BUILD

Macro emitted by the RTA-OSEK configuration tool in
Standard build.

OS_TIMING_BUILD

Macro emitted by the RTA-OSEK configuration tool in
the Timing build.

OSDEFAULTAPPMODE

Default application mode. Always a valid parameter to
StartOS ().

osek_cc2_tasks

osek_cc2_tasks is a taskset containing all the BCC2
and ECC2 tasks. It is defined only if there are BCC2 or
ECC2 tasks or in the Extended build.

osek_ecc_tasks

osek_ecc_tasks identifies all the ECC1 and ECC2
tasks. It is defined only if there are ECC1 or ECC2 tasks
or in the Extended build.

11-8

Quick Reference Guide

RTA-OSEK v5.0.2

Object Description

OSMAXALLOWEDVALUE Maximum possible allowed value of the system counter
in ticks.

OSMAXALLOWEDVALUE_x | Maximum possible allowed value of counter x in ticks.

OSMINCYCLE Minimum allowed number of ticks for a cyclic alarm of
the system counter.

OSMINCYCLE_x Minimum allowed number of ticks for a cyclic alarm of
counter x.

OSTICKDURATION Duration of a tick of the system counter in nanoseconds.

OSTICKSPERBASE Number of ticks required to reach a specific unit of the

system counter.

OSTICKSPERBASE_x Number of ticks required to reach a specific unit of
counter x.

READY Constant of data type TaskStateType for task state
readly.

RES_SCHEDULER Constant of data type ResourceType. Shared by all
tasks.

RUNNING Constant of data type TaskStateType for task state
running.

SUSPENDED Constant of data type TaskStateType for task state
suspended.

WAITING Constant of data type TaskStateType for task state

waiting. Not used for BCC tasks.

11.10 Macro Definitions

Macro Description

ALARMCALLBACK () Format of the callback routine called when the
alarm expires.

RTA-OSEK v5.0.2 Quick Reference Guide 119

Macro

Description

ISR()

Format that the Application Category 2 ISRs must
be written in.

ISR(IsrID)
{

}

OSError APICallName
Parameter ()

Available for each APl call. Used to determine
which parameters were passed to the call.

OSErrorGetServicelID

Determines which APl call resulted in the error.
Returns an 0SServiceIDType with values
0SServiceId_ xxx where xxx is the name of an
API call.

OS_ATOMIC (expr)

Evaluate C expression expr with all interrupts
temporarily disabled.

OS_CALLBACK()

Marks user functions that are called directly from
RTA-OSEK. FunctiOO6Fn declaration:

OS_CALLBACK (void)
Cancel_<SchedulelID> (void) ;

OS_HOOK () Marks hook routines that are supported by the OS.
OS_HOOK (void)
ErrorHook (StatusType Error)

OS_MAIN() Marks main functions in a portable manner.

Function declaration: 0S_MAIN ()

OS_NONREENTRANT ()

Marks user functions that will not be reentered.
Function declaration:

OS_NONREENTRANT (void)
GetStopwatch (void) ;

OS_STATUS_RUNNING

Indicates that the schedule is running.

#define OS_STATUS_RUNNING (SmallType
(2))

11-10

Quick Reference Guide

RTA-OSEK v5.0.2

Macro

Description

OS_STATUS_PENDING

Indicates that a schedule is pending (it is due to
process an arrivalpoint).

#define OS_STATUS_PENDING (SmallType
(1))

TASK () Format that application tasks must be written in.
TASK (TaskID)
{
}
11.11 Error Codes
Error Code Description

E_COM_BUSY

Message in use by application task/function.

E_COM_ID

Invalid message name passed as parameter.

E_COM_LIMIT

Overflow of FIFO associated with queued messages.

E_COM_LOCKED

Rejected service call, message object is held.

E_COM_NOMSG

No message available.

E_COM_SYS_STOPPED

COM not started.

E_OK

No error.

E_OS_ACCESS

Resource is already held, or assigned priority of
calling task or Category 2 ISR is higher than the
calculated ceiling priority.

E_OS_CALLEVEL

This API cannot be called by a Category 2 ISR.

E_OS_ID

The specified object identifier is invalid.

E_OS_LIMIT

The specified task activation limit has been exceeded.

E_OS_NOFUNC

Functionality of API could not be completed.

E_OS_RESOURCE

A resource is still held and must be released before
calling this service.

RTA-OSEK v5.0.2

Quick Reference Guide 11-11

Error Code

Description

E_OS_STATE

Attempt to carry out action on an object that is in
the wrong state.

E_OS_SYS_AP_INVALID

Invalid arrivalpoint.

E_OS_SYS_AP_NULL

Null arrivalpoint.

E_OS_SYS_AP_READONLY

Attempt to alter a read-only arrivalpoint.

E_OS_SYS_CALLEVEL

The application used illegal OS services above OS
level.

E_OS_SYS_CONFIG_ERROR

API call in inappropriate configuration.
This may occur for the following reasons:

e The API call has activated a higher priority
task, but the application is optimized for no
activation of higher priority tasks.

e A task or Category 2 ISR has attempted to
occupy a resource that it is not configured to
use.

e The application C file has included an RTA-
OSEK header file that is out-of-date for the
current configuration, resulting in an illegal
context for the API call.

e The application C file has included the wrong
RTA-OSEK header file for the application
code, resulting in an illegal context for the
API call.

E_OS_SYS_COUNTER_INVALID

Invalid counter.

E_OS_SYS_IDLE

Call from idle task not allowed.

E_OS_SYS_R_PERMISSION

Called by a task that has not declared that it uses the
message resource.

E_OS_SYS_S_INVALID

Invalid schedule handle.

E_OS_SYS_S_MISMATCH

Schedule contains a ticked/advanced counter (call
only permitted for advanced/ticked).

E_0OS_SYS_S_MODULO

Delay exceeds modulus of schedule.

11-12 Quick Reference Guide

RTA-OSEK v5.0.2

Error Code Description

E_OS_SYS_STACK_FAULT The application returned from
StackFaultHook ().

E_0S_SYS_T_INVALID Invalid task or Category 2 ISR handle.

E_0OS_SYS_TS_INVALID Invalid taskset handle.

E_0S_SYS_TS_READONLY Taskset is read-only.

E_OS_VALUE The specified alarm values are outside the specified
counter limits.

RTA-OSEK v5.0.2 Quick Reference Guide 11-13

12 Application Build Reference

12.1 Command Line Options

The following table shows the options that can be passed to rtabuild on
the command-line.

Note that if none of the options —-a, -p or —s are selected, rtabuild
automatically creates the kernel and application support files.

12.1.1 General Options

Options Description

-e Treat warnings as errors. If warnings have been
output, rtabuild exits preceded by error E0402.

—i<path> Add to the search path for include files.

-k Keep intermediate files. During execution, rtabuild

may create files that contain information that is
passed to other command-line tools. These files are
normally deleted after use.

—o[name] Generate listing file. If name is not specified it is
constructed from the root part of the first input file
with a .1st extension. The listing file contains all
output from the launched programs, including
commentary, such as the command lines invoked.

-v Turn on verbose information detailing progress.
-w[vvvv] Ignore all warnings (-w) or ignore a specific
numbered warning

(-wvvvv). If all warnings are ignored, no warnings
are shown on screen or in the listing file. If a specific
warning vvvv is to be ignored, the vvvv characters
are used to match the warning message code. If a
matching message occurs, the warning is removed
from screen and listing file output. Warnings are
ignored before the —e option can have an effect.

RTA-OSEK v5.0.2 Application Build 12-1

12.1.2 Build Options

Options Description

—d<status> | Qverride the build status specified in the input OIL
file.

<status> = s for STANDARD

<status> =t for TIMING

<status> = e for EXTENDED

<status> = ts for STANDARD + simple RTA-TRACE
<status> = tt for TIMING + simple RTA-TRACE
<status> = te for EXTENDED + simple RTA-TRACE
<status> = att for TIMING + advanced RTA-TRACE

<status> = ate for EXTENDED + advanced RTA-TRACE

-9 Suppress generation of vector table. This is target
specific. Only relevant when generating output files.

-1 Allow very long schedules. The limit of 64K bytes for
the size of target schedules is turned off. Only
relevant when generating output files.

—Xname Save the input data in a new output OIL file called
name. This has the same effect as saving a file in the
RTA-OSEK GUI. If the -d option is used, the file
generated will reflect the value specified.

—yname Extract the RTA-OSEK custom build script into a file
called name. Usually this is a batch file that can be
run from the command-line to achieve the same
effect as custom build in the RTA-OSEK GUI. Also
causes rtkbuild.bat to be generated.

12-2 Application Build RTA-OSEK v5.0.2

12.1.3 Analysis Options

Options

Description

—al[n]

Selects schedulability analysis and sets the
schedulability algorithm used. n determines the
depth of the analysis. It may take values 1 to 9 (1 is
tractable analysis and 9 is exact analysis and the other
values are reserved for future use). Note that -a is
equivalent to —a1. Specifying this option with —s or -
p, sets the schedulability algorithm used for sensitivity
analysis and priority allocation respectively.

Perform clock optimization to determine the lowest
clock rate at which a schedulable system can be
achieved. Task priorities may be adjusted. The priority
n determines the ‘packing aggressiveness’ for the
priority allocation. It defaults to 1 if not specified. This
option cannot be selected if either -p or -s is also
selected

—nname

Ignore named task/interrupt/profile during timing
analysis.

Select automatic task priority allocation. n determines
the ‘packing aggressiveness’. n defaults to 1 if not
specified.

This option cannot be selected if either -c or -s is
also selected.

—s [name]

Perform sensitivity analysis. If name is specified,
perform sensitivity analysis for the task or interrupt
with that name. Otherwise perform analysis for each
executable object in turn.

This option cannot be selected if either -c or —p is
also selected.

Do not treat non-schedulability as an error. Only
relevant for analysis.

RTA-OSEK v5.0.2

Application Build

12-3

12.2 Generated Files

RTA-OSEK generates three types of files from an OIL configuration file:

1. Multiple C header files that provide access to the standard and static
interfaces of RTA-OSEK

2. A C source code file, osekdefs.c, which contains C data structures
for RTA-OSEK and generated OSEK API calls.

3. An assembly code file, osgen.<asm>, which contains assembly data
structures for RTA-OSEK and (when configured) the interrupt vector

table.

12.2.1 Header Files

Each application program module that uses RTA-OSEK will include exactly one
generated RTA-OSEK header file. The generated headers files that may be
included by user code are shown in the following table:

File Name

Description

Taskname.h

ISRname.h

This is a task or ISR specific header file. The name is taken
from the name of the task/ISR defined in your OIL
configuration file.

These header files provide access to both the static and the
dynamic OS API calls for your tasks and ISRs.

The files are protected against multiple inclusion.

You should include each file only in application code that is
executed solely by the associated task or ISR.

osekmain.h

This is the header file for osek_idle_task and should be
included only by the main program (usually main.c).

osek.h A general purpose header file. This should be included by
modules containing code that is shared between tasks, such
as user provided hook routines and callbacks.

oseklib.h A header file for inclusion in code which uses RTA-OSEK API

calls that you want to supply to a 3™ party as an object
code library.

The file must not be included by tasks or ISRs.

The RTA-OSEK Component library is supplied along with a primary header file
oscore.h. This file is included in all the configuration tool generated header
files. You do not, therefore, have to include it explicitly.

12-4 Application Build RTA-OSEK v5.0.2

The RTA-OSEK builder generates 3 header files that contain definitions of
various symbols, indicating the build of RTA-OSEK Component being used:

File Name Description

osekcomn.h Definitions that select enabled optimizations from the RTA-
OSEK library, definitions of OSEK objects.

oscomn.h Defines the build level of the system, the mapping between
internal RTA-OSEK object names and internal data
structures.

osgen.h Defines the mapping between internal RTA-OSEK object

names and internal data structures for resources.

12.2.2 Header File Include Structure

The header file include hierarchy is shown in the following diagram:

Provided by RTA-OSEK [Sav‘f’,‘ffaﬁ?,fj;oim
Location: <installdir>\rta\<target>\inc context
May be modified by user
ostarget.h osRTAtgt.h
[Type definitions for [Target types for RTA-
target] TRACE
#include w
#include
Provided by RTA-OSEK #include
Location: <installdir>\rta\<target>\inc oscore.h oSRTAtr.b
Must not be modified by user “"'e"ﬁﬁﬁ,'r:r';?os“ [API for RTA-TRACE
< \/T_\
uuuuuuu
#include
Provided by user Generated by RTA-OSEK Builder #include
Must not be included by user code
#include #include
#include
#include
| #include
/ Hinctude \
Generated by RTA-OSEK Builder osekmain.f osek.h oseklib.t
May be included in user code T : : :
<ISRname>

RTA-OSEK v5.0.2 Application Build 12-5

12.3 RTA-OSEK Libraries

RTA-OSEK is provided as 3 pre-compiled library files, one for each of the three
supported build levels:

1. rtk_s.<lib>
The standard build library

2. rtk_t.<lib>
The timing build library

3. rtk _e.<lib>
The extended build library

For versions of RTA-OSEK which support RTA-TRACE, there are an additional
5 pre-compiled libraries which contain RTA-TRACE instrumentation:

4. rtk_ts.<lib>
The standard build library with simple tracing

5 rtk_tt.<lib>
The timing build library with simple tracing

6. rtk_te.<lib>
The extended build library with simple tracing

7. rtk_at.<lib>
The timing build library with advanced tracing

8. rtk_ate.<lib>
The extended build library with advanced tracing

Your application must link against the correct library. This is indicated in the
Application -> Implementation notes in the RTA-OSEK GUI.

12.4 RTA-OSEK Builder

You can build an RTA-OSEK application with the RTA-OSEK Builder. The
Builder provides a set of environment variables and macro definitions that can
be used with your RTA-OSEK Build script.

12.4.1 Environment Variables

When using RTA-OSEK's builder the following environment variables are
available.

You should check that the environment Vvariables defined in
<installdir>\rta\<target>\Toolinit.bat are correct for your
toolchain.

The environment variables defined in rtkbuild.bat are set by RTA-OSEK
when generating the rtkbuild.bat build script helper file. The values of
these variables are defined for each target in the appropriate RTA-OSEK
Binding Manual.

12-6 Application Build RTA-OSEK v5.0.2

The variables can be used in a Custom Build > Build Script using the DOS
convention of $Name$%.

Name Content Definition
$CBASES The base location of your compiler | Toolinit.bat
and tools.

E.g. C:\compiler

$CC% The fully qualified path to your | Toolinit.bat
compiler.
E.g. $CBASE%\bin\cc.exe

SASS The fully qualified path to your | Toolinit.bat
assembler.
E.g. $CBASE%\bin\as.exe

$LNK% The fully qualified path to your linker. | Toolinit.bat
E.g. $CBASE%\bin\lnk.exe

%AR% The fully qualified path to your | Toolinit.bat

librarian.

E.g. $CBASE%\bin\ar.exe

$CBASE_INC% | The fully qualified path to your | Toolinit.bat
compiler’s include files.

E.g. $CBASE%\inc

$COPTS% Default options for compiling C | rtkbuild.bat
source code file in rtkbuild.bat.
You can add options to this by
declaring an extra environment

variable APP_COPT in the
environment section of the custom
build setup.

e.J. APP_COPT=-debug

$AOPTS% Default options for assembling files in | rtkbuild.bat
rtkbuild.bat. You can add
options to this by declaring an extra
environment variable aPP_AOPT in
the environment section of the
custom build setup.

RTA-OSEK v5.0.2 Application Build 12-7

12.4.2 Macros

Name Content

$ (ASMEXT) The extension used for assembler files with this
compiler toolchain, for example asm.

$ (CONFORMANCE) This macro indicates certain aspects of the
build — essential for building libraries.

‘1" — no shared priorities in the system;

‘2¢’ — at least one task has multiple activations,
but no shared priorities;

‘2F" — at least two tasks have the same priority;

1

e’ — used as a qualifier to the above three
indicators, this shows whether events are used
(i.e. an ECC system).

In summary, there are six permutations:

"1','le','2C", '2Ce", '2F"', and '2Fe’

$ (DIR) The fully qualified path to the directory in
which the OIL file is stored. This is the default
location into which the build files are
generated.

$ (EDITOR) The name of the default editor used by the
RTA-OSEK GUI. By default, this is the Windows
Notepad application, but you can specify your
own editor via the RTA-OSEK GUI System
Options (accessed by selecting the Options
from the File menu).

$ (LIBEXT) The extension used for library files with this
compiler toolchain, for example 1ib.

$ (LIBTYPE) ‘s’ 'T" or ‘8" (corresponding to ‘Standard’,
‘Timing’ or "Extended’).

$ (NAME) The application name. This is the name of the
OIL file omitting the .oil extension. For
example, ‘UserApp’.

$ (OBJEXT) The extension used for object files with this
compiler toolchain, for example ‘obj’.

$ (OPENFILE) Causes an '‘Open File' dialog to be shown and
returns the name of the file selected.

12-8 Application Build RTA-OSEK v5.0.2

Name

Content

The 'Quick Edit" button in the RTA-OSEK GUI
has been created using the line $(EDITOR)
$ (OPENFILE).

$ (OS_STATUS)

‘Standard’, ‘Timing’ or ‘Extended’.

$ (RTABASE)

The fully qualified path to the directory of
RTAINIT.BAT. This is installation directory for
RTA tools and targets. E.g. C:\rta

$ (RTKOBJECTS)

A space delimited list of all the task and ISR
object files that are created within
rtkbuild.bat.

$ (RTKOBJECTS_C)

A comma delimited list of all the task and ISR
object files that are created within
rtkbuild.bat.

S (RTKLIB)

The name of the RTA-OSEK component library
to which the application must link. This differs,
for example, between Standard and Extended
builds.

$ (TARGET)

The target name, for example, "HC12/COSMIC
16 task’.

$ (TGTBASE)

Directory of TooLINIT.BAT. The installation
directory for the current target.

$ (VARIANT)

The target variant. For example, ‘Star12’. This
is commonly passed as a command-line
‘define’ when compiling target-specific code,
so that appropriate settings can be selected for
different chip variants.

RTA-OSEK v5.0.2

Application Build

12-9

13

Target .ini files

13.1

What is a target .ini file?

A target .ini file is part of the mechanism which tailors the behavior of RTA-
OSEK to your target hardware and debugger. To understand the role played
by the target .ini file, it is necessary first to consider the target DLL.

In the folder \instdir\bin of your RTA-OSEK installation there will be a DLL
which has a name of the form tgt<target>.d11. This is the target DLL and is
used by RTA-OSEK to do the following:

e Supply information about the target interrupt model. This includes the available

vectors and priorities and the rules that apply to their use.
e Supply information about target types and limits.
e Supply information about how to build applications.
e Supply information about ORTI debuggers.

The target DLL provides detailed information about the particular target
hardware which is being used with RTA-OSEK.

A target .ini file is associated with a target DLL, and will be stored in the same
folder with the name <target>. ini, or optionally <target>_<variant>.ini.
The target .ini file is used to override information in the target DLL. This allows
you to create a variant, in which the behavior of the target DLL, and hence of
RTA-OSEK, is adjusted for your individual target hardware.

Bear in mind that the RTA-OSEK component (i.e. the operating system kernel)
and low-level code generation are independent of any variations you
introduce via the target .ini file or target DLL. A target variant created with a
.ini file cannot be used to support new vectors, memory models or the like
that are not known by the core software.

13.2 Naming the target .ini file

You saw in the previous section that a target .ini file allows you to create a
variant of your RTA-OSEK installation. The target DLL can be regarded as
providing a default variant, and a variant created with a target .ini file can
override this default or can create a new variant altogether. The way in which
you name your target .ini file determines which of these possibilities occurs.

You have seen already that the target .ini file can be called <target>. ini or
<target>_<variant>.ini. If you use the first form, your target .ini file will
modify the default variant. If you use the second form, you will create a new
variant called <variant>.

RTA-OSEK v5.0.2 Target .ini files

13-1

When you use RTA-OSEK to create a new application, the “Select Target”
dialog will show all the variants which are available. You can choose which
one you want to use for your new application.

13.3 The format of a target .ini file

A target .ini file takes the same format as any other .ini file:

e The file is split into sections, each beginning with a section name in square
brackets.

e Each section contains lines of the form <attribute>=<value>. Attribute values
can contain spaces.

e Lines beginning with a semi-colon are treated as comments.

Here is an example:
; A comment at the start of the file

4

[globals]
def_cpuspeed = 100
osgen_name = osgen.s

Various other rules also apply to the contents of .ini files:

e There must be no duplication of section names.

e There must be no duplication of attribute names within a section.

e (ase isignored in attribute and section names.

e Whitespace surrounding the “=" character is ignored.

e The ordering of sections and of attributes within sections is unimportant.

Only predefined names can be used for attributes, and these are described in
the rest of this chapter. Examples of attribute values are usually printed in
double quotes throughout the rest of this chapter. If you want to use one of
the quoted values, remove the double quotes first.

13.4 The [globals] section

The attributes in this section of the target .ini file can be split into several sets,
each of which is described in one of the following subsections.

13.4.1 CPU data

This set of attributes is used to specify properties of the CPU on your target.

Attribute Description

def_cpuspeed The instruction cycle rate in MHz for the target
CPU. This is offered as the default when creating
a new application. Refer to the RTA-OSEK User
Guide for a definition of the instruction cycle
rate.

13-2 Target .ini files RTA-OSEK v5.0.2

Attribute

Description

def_swspeed

The stopwatch rate in MHz that is achieved if the
CPU runs at the rate above. This is offered as the
default when creating a new application.

13.4.2 Custom build data

These attributes affect the way in which RTA-OSEK performs custom builds of
your application, and in particular the way in which it generates the batch file

rtkbuild.bat.

rtkbuild.bat contains calls to your compiler, assembler, etc. to build parts
of your application. When rtkbuild.bat needs to pass a command-line
option to one of these tools, it usually uses an environment variable which it
assumes the tool will recognise:

® COPTS is used to pass command-line options to the C compiler.

® COPTS2 is used to pass command-line options to the C compiler when it is
compiling osekdefs.c.

e AOPTS is used to pass command-line options to the assembler.

However, if a

command-line option contains the character “=",

rtkbuild.bat will not use an environment variable; instead it will place the
command-line option directly on the tool's command line.

Note that the environment variables set by rtkbuild.bat will be picked up
by any calls to your compiler or assembler which you make after calling

rtkbuild.bat.

Attribute

Description

osgen_name

The name of the main assembler file generated
by RTA-OSEK, e.g. “osgen.s”.

c_include

The command-line option for your compiler
which is used to extend its include search path,
e.g. "-i".

c_include_sep

By default, the command-line option defined in
c_include is used for each directory to be
added to your compiler's include path, e.qg. -ia
-ib -ic. If c_include_sep is non-empty,
these are lumped into one option, separated
with the value of c_include_sep. e.g. a value

of “,” for c_include_sep would give the
command-line option -ia, b, c.

RTA-OSEK v5.0.2

Target .ini files

13-3

13-4

Attribute

Description

c_include_trail

Text which is suffixed to the command-line
option which extends your compiler’s include
path. For example, if you want the command-
line option to be -include (folder), set
c_include to “-include(” and
c_include_trail to ")".

c_define The command-line option for your compiler
which is used to define a preprocessor symbol,
e.g. "-d".

c_defopt Default command-line options which are

supplied to your compiler for all task and ISR C
files, e.g. “-nowiden”.

osekdefsc_defopt

If this is non-empty, it overrides c_defopt for
Compmngosekdefs.a

osekdefsc_ortiopt

If this is non-empty, it overrides c_defopt for
compiling osekdefs.c when ORTI data is being
generated, i.e. when you have specified a
debugger.

c_insertopt

This is similar to c_defopt, except that the
options are never placed in the environment
variable copTs: instead they are added directly
to the C compiler’'s command line, immediately
before the name of the file being compiled.

c_prefixopt

This is similar to c_insertopt, except that the
options are added to the command line
immediately after the name of the file being
compiled.

a_include
a_include_trail
a_define
a_defopt
a_insertopt
a_prefixopt

Each of these has a similar purpose to the
corresponding c_. .. attribute, but each applies
to the assembler rather than the C compiler.

osgen_defopt

If this is non-empty, it overrides a_defopt for
assembling osgen.<ext>, where <ext> is the
extension for assembler source files on your
target.

extobj The extension for object files on your target, e.qg.
“obj".

extasm The extension for assembler source files on your
target, e.g. “asm”.

extlib

The extension for library files on your target, e.qg.
”lib”.

Target .ini files

RTA-OSEK v5.0.2

13.5 The [vectors] section

The attributes in this section allow you to override the names used by RTA-
OSEK for the vectors in your target’s vector table. These names are visible
when you are using RTA-OSEK to select the vector to associate with an ISR.

Each attribute in the [Vectors] section takes the following form:

Ox<vector number> = <vector name>

<vector number> is the zero-based index of a vector in the list of vectors
which is visible when you are using RTA-OSEK to select the vector to associate
with an ISR. <vector number> must be expressed as a lowercase hexadecimal
number, and must be prefixed with 0x as shown. <vector name> is the new
name which you want to give to the vector.

Here is an example showing how to override some of the vector names in
your target’s vector table:

[vectors]

0x0 = Foo vector

Ox1 = Bar vector

Oxa = Flibble vector

13.6 The ORTI debugger sections

13.6.1 Describing an ORTI debugger

The ORTI Guide describes how RTA-OSEK can generate a file with the
extension .ort which tells your debugger about your application. No two ORTI
debuggers are the same, and there have been several versions of the ORTI
specification, so the way in which RTA-OSEK generates the .ort file differs
from one debugger to the next. One of the functions of the target DLL, as
described above, is to give RTA-OSEK details of the behavior of the particular
debugger which is supported by your installation of RTA-OSEK.

There are a number of attributes which are used to describe your ORTI
debugger. Four sets of numbered presets exist for these attributes. The
presets are:

e Preset 0. A description of a generic ORTI debugger.

e Preset 1. A description of Noral Flex 4.2.

e Preset 2. A description of CrossView OSEK/ORTI v2.0.
e Preset 3. A description of Cosmic Zap 3.5 and 3.6.

The attributes, and their values under each of these presets, are shown in the
following tables.

| Attribute | Description |

RTA-OSEK v5.0.2 Target .ini files 13-5

13-6

header comments

Indicates whether comments are allowed at the
start of a .ort file.

inline_ comments

Indicates whether comments, preceded by //, are
allowed at the end of a line in a .ort file.

enum_addresses

Indicates whether enums can be declared in the
form ENUM <address> [..] in a .ort file.

totrace_used

Indicates whether the debugger understands the
meaning of the least significant bit of the
SERVICETRACE ORTI attribute.

Target .ini files

RTA-OSEK v5.0.2

Attribute

Description

orti_task

If true, indicates that the contents of
osek_running_task cannot be decoded directly
by the debugger. The constant orti_task is
inserted into osekdefs.c to allow indirect access
to the contents of osek_running_task.

orti_active

If true, indicates that the contents of certain
internal variables which indicate the active task or
ISR cannot be decoded directly by the debugger.
Constants are inserted into osekdefs.c to allow
indirect access to the contents of these variables.

orti_lasterror

If true, indicates that the contents of
osek_last_error cannot be decoded directly by
the debugger. The constant orti_err is inserted
into osekdefs.c to allow indirect access to the
contents of osek_last_error.

orti_appmode

If true, indicates that the contents of
osek_cur_mode cannot be decoded directly by the
debugger. The constant orti_mode is inserted into
osekdefs.c to allow indirect access to the
contents of osek_cur_mode.

orti_trace

If true, indicates that the contents of
osek_orti_call cannot be decoded directly by
the debugger. The constant orti_trace s
inserted into osekdefs.c to allow indirect access
to the contents of osek_orti_call.

max_string size

If non-zero, string values in a .ort file will be limited
to the number of characters specified.

use_currentserv
ice_name

Indicates whether CURRENTSERVICE should be
used instead of SERVICETRACE in .ort files.

var_prefix

This is used to prefix named variables which are
referred to by a .ort file and which are not
otherwise covered by other prefixes in this table.
For example, the CrossView debugger requires the
variable Myvar to be accessed as _MyVvar.

ienum_address

When enum_addresses is set, enums in a .ort file
will be declared as ENUM <ienum_address> [..].
Debuggers conforming to ORTlI v2.0c have
<ienum_address> set to ADDRESS, but later ones
use a type such as UINT16.

itask_prefix

Specifies the prefix to be used for task and
Category 2 ISR names in the implementation
section of a .ort file.

RTA-OSEK v5.0.2

Target .ini files

13-7

dtask_prefix

Specifies the prefix to be used for task and
Category 2 ISR names in the information section of
a .ort file.

Attribute

Description

dpri_prefix

Specifies the prefix to be used when referring to
the variable orti_pri in the information section of
a .ort file.

dtrace_prefix

Specifies the prefix to be used when referring to
the variable orti_trace/ osek_orti_call in the
information section of a .ort file!.

derr_prefix

Specifies the prefix to be used when referring to
the variable orti_err / osek_last_error in the
information section of a .ort file!.

dmode_prefix

Specifies the prefix to be used when referring to
the variable orti_mode / osek_cur_mode in the
information section of a .ort file!.

drdy_prefix

Specifies the prefix to be used when referring to
the variable orti_rdy / 0S_L0001 in the
information section of a .ort file'.

dwait_prefix

Specifies the prefix to be used when referring to
the wvariable orti_wai / 0S_L0004 in the
information section of a .ort file'.

dtime_prefix

Specifies the prefix to be used when referring to
variables of type TickType in the information
section of a .ort file.

dboolptr_prefix

Specifies the prefix to be used when referring to
variables of type pointer-to-boolean in the
information section of a .ort file.

Some of the attributes described in the above table have boolean types, i.e.
they indicate whether something is true or false. When such an attribute is set
to “true”, its value is “1”; when it is set to “false”, its value is “0". This can
be seen in the following table of preset values.

Attribute Preset 0 Preset 1 Preset 2 Preset 3
header_comments 0 1 0 0
inline_comments 0 1 0 0
enum_addresses 0 1 1 0
totrace_used 0 0 0 0
orti_task 0 1 0 0
orti_active 0 1 0 0
orti_lasterror 0 0 0 0

! Recall that one of these variables is used when the other cannot be decoded directly by the debugger.

13-8 Target .ini files

RTA-OSEK v5.0.2

Attribute Preset 0 Preset 1 Preset 2 Preset 3
orti_appmode 0 0 0 0
orti_trace 0 0 0 0
max_string_size 0 0 55 0
use_currentserv | g 1 0 0
ice _name
var_prefix <em <em N <em
pty> pty> pty>
ienum_address ADD ADD UINT16 ADD
RES RES RES
S S S
itask_prefix <em <em x <em
pty> pty> pty>
dtask_prefix <em <em * <em
pty> pty> pty>
dpri_prefix <em <em *_ <em
pty> pty> pty>
dtrace_prefix <em <em * (unsi <em
pty> pty> gned pty>
char
*)_
derr_prefix <em <em * (unsi <em
pty> pty> gned pty>
char
*)_
dmode_prefix <em <em * (unsi <em
pty> pty> gned pty>
char
*)_
drdy_prefix <em <em *_ <em
pty> pty> pty>
dwait_prefix <em <em * <em
pty> pty> pty>
dtime_prefix <em <em * <em
pty> pty> pty>
dboolptr_prefix | .om <em (unsig <em
pty> pty> ned pty>
char
*)

A debugger is most easily described by choosing one of these presets and, if
necessary, further modifying some of the attribute values to create a new
debugger description with a new name. Your target DLL does this already in

RTA-OSEK v5.0.2 Target .ini files 13-9

order to describe the debugger which is supported by your installation of RTA-
OSEK.

If your debugger differs from the one supported by your installation of RTA-
OSEK you can use the target .ini file to override or add to the information in
the target DLL and tell RTA-OSEK about the behavior of your debugger. How
you do this depends on whether you want to override an existing debugger
description or add a new debugger description.

13.6.2 Overriding an existing debugger description

If you want to use the target .ini file to override an existing debugger
description in your installation of RTA-OSEK, you must first find the name of
the debugger description which you want to modify. To do this, you need to
select the “Debugger” subgroup of the “Target” group on the navigation bar
in the RTA-OSEK GUI. In the workspace you will see the name of the currently
selected debugger description. The first step towards overriding this debugger
description is to copy the description name (i.e. the text enclosed in double
guotes) to the clipboard.

Open your target .ini file and paste the debugger description into it as a new
section name, enclosed in square brackets. Now you can add attribute values,
taken from the above tables, into the new section to override the values
provided by the target DLL.

For example, suppose your installation of RTA-OSEK supports the Debug-o-
matic debugger. If you select the “Debugger” subgroup of the “Target”
group on the navigation bar in the RTA-OSEK GUI, the workspace will contain
the text:

‘Debug output type "Debug-o-matic", wversion 2.0. ‘

In order to override certain attributes for the Debug-o-matic debugger, you
should create a section in the target .ini file which looks like this:

[Debug—o-matic]
orti task =1 ; Override orti_task
orti trace =1 ; Override orti_trace

13.6.3 Adding a new debugger description

If you want to use the target .ini file to add a new debugger description to
your installation of RTA-OSEK, you must first count how many descriptions are
already supported by your installation. To do this, you need to select the
“Debugger” subgroup of the “Target” group on the navigation bar in the
RTA-OSEK GUI. Click on the “Debugger” button in the workspace and count
how many debugger descriptions are in the dropdown list on the “Select
debugger” dialog which is displayed, ignoring the description entitled
“<none>". We will refer to the number of debugger descriptions as n.

Edit your target.ini file and create a section entitled [ORTI] as follows:

[ORTI]
ndebuggers = <n+1>
debugger_name_<n> = <Name of new debugger>

13-10 Target .ini files RTA-OSEK v5.0.2

Then create another section in the target .ini file and give it the heading
[<Name of new debugger>]. At this point you must decide which of the
four presets (numbered 0-3 and described above) you want to use as a base
for your new debugger description. Once you have made your choice, add an
attribute named vendor to the new section, with a value equal to the preset
you have chosen. You can then adjust individual attributes from their preset
values. The finished result will look like this:

[ORTI]
ndebuggers = <n+1>
debugger_name_<n> = <Name of new debugger>

[<Name of new debugger>]

vendor = <number from 0-3>
<attribute> = <value>
<attribute> = <value>

An example will help to make this clear. Suppose your RTA-OSEK installation
already supports two debuggers and you want to add support for a third
debugger called Debug-o-matic. You would create the following lines in your
target .ini file:

[ORTI]

ndebuggers = 3

debugger_name_2 = Debug-o-matic

[Debug-o-matic]

vendor = 1 ; Base it on Noral Flex 4.2
orti_task = 0 ; Make a few further changes
orti trace =1 ;

Once you have done this, the description “Debug-o-matic” will appear in the
dropdown list of debugger descriptions in the “Select debugger” dialog
mentioned above. You can select this description from the “Select debugger”
dialog in order to use it when a .ort file is created by RTA-OSEK.

13.6.4 Choosing new attribute values

We have seen how you can override an existing debugger description or add a
new debugger description by adding attributes to the target .ini file. Choosing
which values to assign to these attributes can often be an iterative process:

e Change a value in the target .ini file.
e Use RTA-OSEK to generate a .ort file.

e Load the .ort file into your debugger and see whether it functions as you
expect.

e Repeat as necessary.

Sometimes it is easier to try entering a formula directly into the debugger,
make changes until the debugger is able to decode it correctly, and then
adjust the target .ini file to generate the correct formula.

RTA-OSEK v5.0.2 Target .ini files 13-11

14

Index

A
AccessNameRef ... 2-1
ActivateTask()oovvvvvveiiiiiiiiniin, 3-4
ActivateTaskset()..........ovvvvevevennnni.. 3-6

Advanced Counter Driver Interface 5-1

Advanced Schedule Driver Interface5-1

AdvanceSchedule()cccoevernen. 3-8
AlarmBaseRefType ..o 2-1
AlarmBaseTypecccvveeuen.n. 2-1, 2-3
ALARMCALLBACK ..., 8-1
ALARMCALLBACK()..ccveeverieenn, 10-1
AlRrMTYPE ..., 2-1
APl call template.......c.coceviiiinn, 3-2
APl calls ..o 3-1
AppModeType......oooveiiiiiiie, 2-1
ArrivalpointConstType 2-1
AvrrivalpointRefType ..o 2-1
ArrivalpointType ..o 2-1
AssignTaskset()ooovvereriierinnns, 3-10
AUTOSAR ... 3-1
B
BooleanRefType.......ccccoovvvviiiennin, 2-1
BooleanType......coceviiiiiiiiiiic, 2-1
ByteType. ., 2-1
C
Cancel_< CounterlD >()................. 5-7
Cancel_<SchedulelD>().................. 5-3
CancelAlarm().........ccccc . 3-12
ChainTask().......oovrveiiiiieieae, 3-14
ChainTaskset() ... 3-16
ClearEvent()......occovvviiiiiicaen, 3-18
CloseCOMO)....eiieiiiiiiciicee, 3-20

COMCALLBACKooiiiiiiiii 8-2

Command Line Options............... 12-1
Conformance.......cccoccevevviiiinannn. 3-1
Constructional Elements 4-1,11-5
Counted activationccccceenne.n. 9-3
CounterType..vveeiiieeesiieeee 2-1
CycleTYPE .o, 2-1
D
DeclareAccessor()........oocevverrennnnnn. 4-1
DeclareAlarm()cooevvoiiiciieannen. 4-2
DeclareCounter()cccevvevrennnnnn. 4-3
DeclareEvent().......cccceevoviiviicnnnnn. 4-4
DeclareFlag().........cocvevvviiiiiiiin, 4-5
DeclarelSRO).......cooveveiiiiiiiiiiii 4-6
DeclareMessage()........ccccoeveennnnn. 4-7
DeclareResource()cccocvevvennnenn. 4-8
DeclareTask()coovevveeivriiiiieannen, 4-9
DisableAllinterrupts()...........cc....... 3-22
Dynamic Interface...........ccccoceeneen. 3-1
Dynamic Interface Calls................ 11-1
E
EnableAllinterrupts()ccove... 3-24
Environment Variables 12-6
Error codescooeviiiiiiiiin 11-11
ErrorHOOK() ..o, 7-1
EventMaskRefType........c.cccoooiennen. 2-1
EventMaskType.....ccccoovvvvieieiennn, 2-1
Execution Time ...oceeviiiiiiiiee, 6-1
Execution Time Monitoring Interface
.. 11-7
EXPINY e 2-4
F
FlagType ...oooveeeiiiciiceece 2-2
FlagValue.........ccccoooiiiiiii 2-2

G
Generated files ..., 12-4
GetActiveApplicationMode()........ 3-25
GetAlrMO). ..o, 3-26
GetAlarmBase().......ccooeeeeeeeeeeeennnn 3-28
GetArrivalpointDelay() 3-30
GetArrivalpointNext()..........cc....... 3-32
GetArrivalpointTasksetRef().......... 3-34
GetCounterValue()cccovenen. 3-36
GetEvent() ..oooooeeeeeeeeeee 3-38
GetExecutionTime()ccoeoverveennn. 6-1
GetISRID() .vvveiviiiiiccee e, 3-40
GetlargestExecutionTime() 6-3
GetMessageResource() 3-41
GetMessageStatus().........ccc.ee...... 3-43
GetResource()oooevvvvvcnncannnnn. 3-45
GetScheduleNext().........cccocveeeen. 3-47
GetScheduleStatus()c......... 3-49
GetScheduleTableStatus() 3-51
GetScheduleValue()c......... 3-53
GetStackOffset()ooovvrvviiennnnnn. 3-55
GetStopwatch()cooevvviiiiiiiiinn, 6-5
GetStopwatchUncertainty()............ 6-6
GetTaskID().....ooovvveieiiiieeeiiice, 3-56
GetTasksetRef()......ccovvvvrvirirnnnnen. 3-58
GetTaskState() ...ooovvvvvviiciiiinn, 3-60

H
Header filesccoovvviiiiinn 12-4
Hook Routines.........cccoeveeiiennnen, 7-1

|
Include Hierarchy..........cccoccen. 12-5
IncrementCounter()cco...... 3-62
INIECOMQ) oo, 3-64
INitCounter()ccoovvveericniennnn, 3-66
Initializationccociiiiiiiil, 5-2
ISR e 10-1

L
Librariescccocvvveiieiieiies i, 12-5
M
Macro Definitionsccccceeneen. 10-1
MaCrOS ..o, 12-8
MergeTaskset()coovvvvveevinieennne, 3-68
Messagelnit()ovevvvevveieenieiee 7-4
N
NextScheduleTable() 3-70
Now_<CounterlD>()cccvvenen. 5-8
Now_<SchedulelD>() 5-4
o
0s_all_tasks......ccoooviiiiiiiiin, 9-2
OS_ATOMIC(EXPI) evvvveeeiiiieeee 10-1
OS_CALLBACK() «.vveevveeiieiicain 10-1
OS_EXTENDED_BUILD.........cuuee... 9-2
OS_HOOK ..ot 10-1
OS_MAIN.....ooiiiii 10-1
OS_NO_SCHEDULECALL................ 9-3
05_NO_tasKSueiveeiiiiiiiiciieee, 9-2
OS_NONREENTRANT()vvvennnne. 10-1
0s_ready_tasks............coooiiiiiiinn, 9-2
OS_STANDARD_BUILD................... 9-2
OS_STATUS_PENDINGcccveennen. 2-4
OS_STATUS_PENDING()onvve. 10-1
OS_STATUS_RUNNINGcccc...... 2-4
OS_STATUS_RUNNING() 10-1
OS_STC_COMPATIBLE 9-3
OS_TIMING_BUILD.........coviiirnen. 9-2

osAdvanceCounter_<CounterlD>() .. 3-
72

0SCOMN.N..eiiiiiiiii, 12-5
0SCOME.N...ieiiiiicieeee 12-4
OSDEFAULTAPPMODE 9-2
OSEK conformance..........ccccccoc..... 3-1

OSEK_BCCT i 9-3
OSEK_BCC2 v, 9-3
OSEK_BCC2C i, 9-3
OSEK_BCC2F ..o, 9-3
0sek_cc2_tasks......coovviiiiiiiiin 9-2
05ek_ecC_taskscovvreriiniinienn, 9-2
OSEK_ECCT .t 9-3
OSEK_ECC2..iiiiiiiiiiiiiie, 9-3
OSEK_ECC2C i 9-3
OSEK_ECC2F .o 9-3
osekcomn.n.....ooviiiiiii 12-5
oseklib.h....cooooi 12-4
osekmain.h.........occcoiii 12-4
OSError_APICallName_Param 10-1
OSErrorGetServicelDcc......... 10-1
OSMAXALLOWEDVALUE............... 9-1
OSMAXALLOWEDVALUE_x ..9-1, 11-9
OSMINCYCLEooeeiiiiiine 9-1, 11-9
OSMINCYCLE X..vvovveiieiene 9-1, 11-9
0SResetOS() ..ooooveeeeii 3-74
OSServiceldTypeccceevvvreeinn. 2-2
OSTICKDURATIONcovviiiiiicine 9-1
OSTICKSPERBASEcceoviiieiaine 9-1
OSTICKSPERBASE X.....coovviiiiene 9-1
OverrunHook().........coooeeeee 7-3

P
PostTaskHOOK()cevveiieiiiiiine, 7-5
Predefined Objectscccooeeei. 9-1
PreTaskHOoOK().......cccoovvieiiiiis, 7-6
Priority

Allocation........cccoevviiannnnn. 12-3

Q
Quick Refercence Guide 11-1

R
ReadFlag()..........ccoovevevevereeen, 3-75
READY ..o 9-1
ReceiveMessage()...........coveene.n. 3-77
References........cocevviviiiciiiciiec, 1-1
ReleaseMessageResource()........... 3-79
ReleaseResource()cccocvvvveannenn. 3-81
RemoveTaskset()..........ccoeeeeeeei . 3-83
RES_SCHEDULERccvvviiiin 9-2
ResetFlag()oovoveveveiiieeee, 3-85
ResetLargestExecutionTime().......... 6-7
ResoUrceTYPe. . .ovveeiiiiiiiiiieeeee, 2-2
ResumeAllinterrupts()................... 3-87
ResumeOSInterrupts() 3-89
rtabuild ..o 12-1
RTA-OSEK API Reference 3-1
RTA-OSEK featuresc..ccccoeene. 3-1
PR it 12-5
FEKS coeeeee e 12-5
FEK o 12-5
RUNNING.....cooiiiiiiiiieicee 9-1

S
Schedule()......vvvveveiiiiii 3-91
ScheduleStatusRefType 2-2
ScheduleStatusType 2-2,2-4
ScheduleTableStatusRefType.......... 2-2
ScheduleTableStatusType............... 2-2
ScheduleTableTypec.cccceeeieee. 2-2
ScheduleType.....cccooovviviiiiiiie, 2-2
SendMessage()ccceeevevveeiennnnn. 3-93
Set_<CounterID>().......cccoevvneannnnn. 5-9
Set_<SchedulelD>()..........ccccceeueeen. 5-5
SetAbsAlarm()......cccoooveiiiiin 3-95
SetArrivalpointDelay() 3-97
SetArrivalpointNext().................... 3-99

SetEvent() ... 3-101

SetRelAlarm()..............ccc . 3-103
SetScheduleNext()...........ccocene. 3-106
ShutdownHook() 7-7
ShutdownOS() ...l 3-108
SMallType ..o 2-2
StackFaultHook()............ccceevennn. 7-8
StackOffsetRefType ...ccoeevvennneennne, 2-2
StackOffsetType.......ccoveeeeennneenne, 2-2
StartCOMQ) .o 3-109
StartOSO) ..o 3-111
StartSchedule()ccoovvviiriinn 3-112
StartScheduleTable() 3-114
StartupHook()......oooevviie 7-10
State_<CounterlD>()......c...coecn..... 5-10
State_<SchedulelD>() 5-6
Static and Dynamic Interface 3-1
Static Interface.......cccooiiiii 3-1

Static Interface RTA-OSEK API Calls 11-
4

StatusTyPe ..o, 2-2
StOPCOMO) .o 3-116
StopSchedule()..........cccevevvnnenn, 3-118
StopScheduleTable() 3-120
Stopwatch device driver................. 6-5
StopwatchTickRefType.......c........... 2-2
StopwatchTickType....ccc.covevveennne, 2-3
Summary
Advanced Counter Driver
Interface.......cccooeivciiienins, 11-6
Advanced Schedule
Driver Interface................. 11-5

Constructional Elements.... 11-5

Dynamic Interface Calls...... 11-1
Error Codes...........covee.. 11-11
Execution Time

Monitoring Interface 11-7
HOOKS. ..o 11-7
Macro Definitions.............. 11-9
Other Callbacks................. 11-7

Predefined Objects............ 11-8

Static Interface Calls 11-4

SuspendAllinterrupts()................ 3-122
SUSPENDED ..o 9-1
SuspendOSinterrupts() 3-124
SymbolicNamecccoeeeeieenl. 2-3
T
TASK e, 10-1
Taskname.h ... 12-4
TaskRefType....ccoovviiiiiiiiie 2-3
TasKS ceeeeiieeeee e 12-3
TasksetConstTypeccvvvvvveeeeiennne. 2-3
TasksetRefTypeccoovvvvvieecen, 2-3
TasksetType ...cceeveeiiiieeieeeeeee 2-3
TaskStateRefType......cccceeeveenneennne, 2-3
TaskStateType....ooooeiviiiiiieee 2-3
TasKTYPE..cvveeeiieeieeee e 2-3
Template ..o 3-2
TerminateTask() 3-126
TestArrivalpointWritable() 3-128
TestEquivalentTaskset() 3-130
TestSubTaskset()cccvevvvrrrne. 3-132
Tick Source Semantics................... 5-1
Tick_<CounterID>()........cccccvene. 3-134
TickRefTYpe oo 2-3
TickSchedule()............................ 3-136
TICKTYPE i 2-3
Type Definitions.........ccccccooeiin 2-1
V)
UINt16TYPE ..o, 2-3
UINt32Type ..o, 2-3
UINTTYPE ..o, 2-3
User Provided
ALARMCALLBACK............... 8-1
Cancel_< CounterID >()....... 5-7
Cancel_<SchedulelD>()........ 5-3
COMCALLBACK ..o 8-2
ErrorHook()......................... 7-1

GetStopwatch()

GetStopwatchUncertaint

Messagelnit()...........cccoeeene..
Now_<CounterlD>()
Now_<SchedulelD>()
OverrunHook()
PostTaskHook()
PreTaskHook()

Set_<CounterlD>()

Set_<SchedulelD>() 5-5
ShutdownHook() 7-7
StackFaultHook() 7-8
StartupHook().................... 7-10
State_<CounterlD>() 5-10
State_<SchedulelD>() 5-6
w
WaitEvent().............cocc 3-138

WAITING e 9-1

