RTA-OSEK

ETAS

Freescale MPC55xx VLE with the WindRiver Compiler

Closed-Loop Development

RTA-OSEK

Planner

Builder

]
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the Freescale
MPC55xx VLE with WindRiver compiler port of
the RTA-OSEK kernel and should be read in con-
junction with the Technical Product Overview
“Developing Embedded Real-Time Applications
with RTA-OSEK" available from LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

= OSEK/VDX OS v2.2 Certified OS

= RTOS overhead: 28 bytes RAM, 146
bytes ROM

= Category 2 interrupt latency: 114
CPU cycles

= Applications include: Engine Man-
agement, Integrated Starter Alter-
nators, Chassis Control

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

= Wind River DCCv5.3.2.0
= Wind River DAS v5.3.2.0

= Wind River DLD v5.3.2.0
Memory Model

The RTA-OSEK MPC55xx VLE with WindRiver compiler
port has a flat 32-bit memory model. For improved per-
formance RTA-OSEK uses a small amount of RAM data
thatshould be located in the compiler's Small Data Area.
For all other objects 32-bit addressing is used externally
providing no further restrictions on placement of user
code and data.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

» Lauterbach Trace32

Further information about ORTI for RTA-OSEK can be
found in the ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Freescale PowerPC
€200z6 and e200z3 (MPC55xx +VLE) family MPC553x and
MPC556x CPUs (i.e., MPC5534, MPC5565 and MPC5567).

Interrupt Model

The RTA-OSEK MPC55xx VLE with WindRiver compiler
port supports 17 levels of interrupts. Category 1 and 2
interrupts handled by the peripheral interrupt controller
(INTC) can be configured with priorities in the range of
1to 15. CPU interrupts must be configured as Category
1 with a priority of 16. RTA-OSEK supports use of the
INTC in either hardware or software vector modes. RTA-
OSEK may also provide initialization values for the Prior-
ity Select Registers.

Floating Point Support

The Freescale PowerPC e200z6 and e200z3 (MPC55xx
VLE) can perform floating-point data manipulation in ei-
ther software or hardware. Software floating-point
handling in RTA-OSEK is designed to work with fully re-
entrant software floating-point libraries supplied by
Wind River Systems, Inc.. Floating-point data can then
be used in RTA-OSEK tasks and ISRs without the need to
save and restore any additional context. To support
hardware floating-point, "wrappers" are supplied to
save and restore the additional context. To enable the
functionality in this case, configure the relevant tasks
and Category 2 ISRs as floating-point using the RTA-
OSEK GUL.

Evaluation Board Support

This port of RTA-OSEK can be used with any Freescale

PowerPC e200z6 and e200z3 (MPC55xx +VLE) evaluation
board. An example application is provided to run on the
Freescale MPC5567 CPU fitted to an MPC5553DEMO
evaluation board. This application can be adapted for
other target boards by adjusting the linker command
file (eg, to alter the allocation of program sections) and
one source file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by

RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms Not limited by RTA-OSEK
Max standard resources 255
Max internal resources Not limited by RTA-OSEK

Max application modes 4294967295

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 28
ROM/Flash 146

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 36

BCC2 task 10 52

ECC1 task 116 60

ECC2 task 118 68
Category 1 ISR 0 0

Object RAM Bytes ROM Bytes Task Type Basic Extended Ref

Category 2 ISR 0 56 Category 2 exit switch latency 204 393 E

Resource 0 20

internal Resource 0 All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-

Event 0 4 sult in shorter execution times for some operations. All

Alarm 12 42 tasks use lightweight termination and no pre or post

Counter 2 ” task hooks were specified.

Taskset (RW) 4 The execution time for every kernel API call is available

Taskset (RO) o on request from LiveDevices.

Schedule 16 36

Arrivalpoint (RW) 12 12

Arrivalpoint (RO) 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 128
Category 2 interrupt 96

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 112 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

|J|K
|

!

I RTA-OSEK activity [] (.]
[
N i

I category 1 1SR {----{ :
—i -

Irask { i

Figure 1 - Category 1 interrupt with return to interrupted task

l—éf[A B

I RTA-OSEK activity

|Category 2 ISR

[nte rrupt Assertea
lTask | i i

Figure 2 - Category 2 interrupt with return to interrupted task

Task Type Basic Extended Ref A [E
Category 1 ISR Latency 74 74 K -
| RTA-OSEK activity ActivateTask(T2 []
Category 2 ISR Latency 114 110 A
H H | TerminateTask(
Normal Termination 126 328 D |Category 11SR .
ChainTask 270 619 J
; Task T2 readyto rtﬂ

Pre-emption 197 390 C [Task T2 L!f. l

- i
Trlggered by alarm 372 563 F |Interrupt Asserted
Schedule 191 384 Q [Task T1
ReleaseResource 203 396 M
SetEvent n/a 737 S Figure 3 - Category 2 interrupt activates a higher priority task

1 C /D S
F RTA-OSEK activity P I RTA-OSEK activity [|
WaitE tE) l
Frask 12 [ITask T2 < —— M
— SetEvent(TZ,Eﬂ——
| AcivaeTaskT2) | f
!Task T1 I Frask T u l
Figure 4 - Task activates a higher priority task Figure 8 - Activation by SetEvent(
| F M
I RTA-OSEK activity [] T RTA-OSEK activity H
| TerminateTask() ——
| ReleaseResource(R1)
ITask T2 Frask 12 -
[Alarmactivates T2
Irask 1 I Frask T1
Figure 5 - Alarm activates task Figure 9 - ReleaseResource()
Benchmarks
J The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
1 - it ant applications. The applications have the following
f RTA-OSEK activity ChanTask ™) framework:
Brask 2 = 8 tasks plus the idle task
= All basic tasks are lightweight tasks
Frask T1 | .
| I = 1 Category 2 ISR with a 10ms minimum inter-arrival
Figure 6 - Task chaining time
= 1 Counter
[Q m 7 or 8 alarms, all attached to the same counter
— ot = No resources or internal resources
| RTA-OSEK activity [| .
= No hooks
TP ActivateTask(T2) |
Task T2 L
Feredoied] 3 = No schedules
Task T1 | l_, [= No tasksets

Figure 7 - Schedule() call

= Built using standard status

The following table shows the task priority configura-

tion for each benchmark application:

v .

wv
. > E
(%) ~
< -
> v 2 Z N 5 N
“ & = 9] 9] v 9}
© - (] U U v Y
ol w -9 o0 o0 w w
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8
B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3
G 70 100 2 2 2 2
H 80 150 1 1 1 2
Idle 10 - idle idle idle idle

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

Memory Usage Bytes
0S ROM 1770
0S RAM 1392
comprising RAM data 128

comprising RAM stack 1264

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255. This application has the follow-
ing overheads:

Memory Usage Bytes
OS ROM 2036
0S RAM 1404
comprising RAM data 124

comprising RAM stack 1280

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G. This application has the following overheads:

Memory Usage Bytes
OS ROM 2480
0S RAM 1668
comprising RAM data 244

comprising RAM stack 1424

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F. This application has the following
overheads:

Memory Usage Bytes
OS ROM 3052
0S RAM 1954
comprising RAM data 370

comprising RAM stack 1584

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

m "Tasks A, Band C
m "Tasks D, Eand F
m "Tasks GandH

The benefit of this optimization is shown in the follow-
ing table:

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
Non-optimized 1644 1660 1804 1964
OS Overhead 1264 1280 1424 1584
Application Overhead 380 380 380 380
Optimized 724 724 884 884
OS Overhead 544 544 704 704
Application Overhead 180 180 180 180

Notes

ETAS/COM-EU_Fi/02.2006

