
RTA-OSEK

NEC V850E/ES with the Green Hills Software Compiler

Features at a Glance

� OSEK/VDX OS v2.2 Certified OS
� RTOS overhead: 42 bytes RAM, 188

bytes ROM
� Category 2 interrupt latency: 87

CPU cycles
� Applications include: Powertrain

Control, Driver Assistance, Body
Electronics

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This data sheet discusses RTA-OSEK for the NEC
V850E/ES core and the Green Hills Software
compiler and should be read in conjunction with
the Technical Product Overview “Developing
Embedded Real-Time Applications with RTA-OS-
EK” available from LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack – even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

� Green Hills Software C-V850E v4.2.1 (MULTI
v4.2.3p1)

� Green Hills Software AS-V850 v4.0 (MULTI v4.2.3p1)

� Green Hills Software ELXR v4.0 (MULTI v4.2.3p1)

Memory Model

RTA-OSEK is built for the standard flat memory model. It
does not require use of the SDA, ZDA or TDA (Small, Zero
and Tiny Data Areas), but can be used with applications
that are built to use them.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

� iSYSTEM winIDEA

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the NEC V850E Series
family including DJ3, FE2, FF2, FF3, FG2, FG3, FJ2, FJ3,
FK3, PH2, PH3, RS1, SG2, SG3, SJ2 and SJ3.

Interrupt Model

RTA-OSEK supports 2 levels of interrupt: maskable and
non-maskable. Category 2 interrupts must be maskable.

Floating Point Support

The Green Hills tool chain performs floating-point oper-
ations in software. This is mainly re-entrant and no spe-
cial support is needed when tasks and ISRs use floating
point code. If non re-entrant code is used (for example
when accessing errno) then the supplied "floating-
point wrappers" must be modified to save and restore
the additional context.

The supplied wrappers save and restore the content of
the registers r17 - r22, since the kernel has been built
with the compiler option -registermode=26 and does
not save and restore these registers.

Evaluation Board Support

RTA-OSEK for the NEC V850E/ES can be used with any
evaluation board. An example application is provided to
run on the V850E/FJ2 (F3239) evaluation board. This ap-
plication can be adapted for other target boards by ad-
justing the linker command file (to alter the RAM
locations) and one source file (if alternative output pins
are required).

Functionality

The table below outlines the restrictions on the maxi-

mum number of operating system objects allowed by
RTA-OSEK.

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

BCC1 BCC2 ECC1 ECC2

Max no of tasks 64 plus an idle task

Max tasks per priority 1 64 1 64

Max queued activations 1 255 1 255

Max events per task n/a n/a 64 64

Max nested resources 255

Max alarms Not limited by RTA-OSEK

Max standard resources 255

Max internal resources Not limited by RTA-OSEK

Max application modes 65535

Memory Type Overhead (bytes)

RAM 42

ROM/Flash 188

Object RAM Bytes ROM Bytes

BCC1 task 0 44

BCC2 task 10 64

ECC1 task 84 68

ECC2 task 86 76

Category 1 ISR 0 0

Category 2 ISR 0 60

Resource 0 24

Internal Resource 0 0

Event 0 4

Alarm 12 40

Counter 4 134

ScheduleTable 16 96

ScheduleTable Expiry 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 80 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from LiveDevices.

Taskset (RW) 8 8

Taskset (RO) 0 8

Schedule 16 36

Arrivalpoint (RW) 16 16

Arrivalpoint (RO) 0 16

Object Stack Bytes

Task priority level 128

Category 2 interrupt 92

Task Type Basic Extended Ref

Category 1 ISR Latency 71 71 K

Category 2 ISR Entry Latency 87 87 A

Category 2 Exit Latency 28 43 E

Normal Termination 17 31 D

ChainTask 41 70 J

Pre-emption 35 51 C

Triggered by alarm 43 59 F

Schedule 29 45 Q

ReleaseResource 29 45 M

SetEvent n/a 76 S

Object RAM Bytes ROM Bytes

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

Figure 3 - Category 2 interrupt activates a higher priority task

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt Asserted

EA

 RTA-OSEK activity

 Category 2 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt Asserted

Task T2 ready to run

ActivateTask(T2)

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

� 8 tasks plus the idle task

� All basic tasks are lightweight tasks

� 1 Category 2 ISR with a 10ms minimum inter-arrival
time

� 1 Counter

� 7 or 8 alarms, all attached to the same counter

� No resources or internal resources

� No hooks

� No schedules

� No tasksets

� Built using standard status

The following table shows the task priority configura-

Figure 4 - Task activates a higher priority task

Figure 5 - Alarm activates task

Figure 6 - Task chaining

Figure 7 - Schedule() call

C D

 RTA-OSEK activity

 Task T2

 Task T1

ActivateTask(T2)

TerminateTask()

F

 RTA-OSEK activity

 Task T2

 Task T1
A larm activates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

Q

 RTA-OSEK activity

 Task T2

 Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

Figure 8 - Activation by SetEvent(

Figure 9 - ReleaseResource()

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent(E1)

SetEvent(T2,E1)

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

tion for each benchmark application:

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

This application has the following overheads:

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

� Tasks A, B and C

� Tasks D, E and F

� Tasks G and H

The benefit of this optimization is shown in the follow-
ing table:

T
a
sk
/I
S
R

S
ta
ck
 (
b
y
te
s)

P
e
ri
o
d
 (
m
s)

B
C
C
1

B
C
C
2

E
C
C
1

E
C
C
2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory Usage Bytes

OS ROM 2396

OS RAM 1172

comprising RAM data 88

comprising RAM stack 1084

Memory Usage Bytes

OS ROM 2868

OS RAM 1182

comprising RAM data 90

comprising RAM stack 1092

Memory Usage Bytes

OS ROM 3336

OS RAM 1396

comprising RAM data 172

comprising RAM stack 1224

Memory Usage Bytes

OS ROM 4208

OS RAM 1678

comprising RAM data 266

comprising RAM stack 1412

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2

Non-optimized 1788 1804 2076 2364

OS Overhead 1408 1424 1696 1984

Application Overhead 380 380 380 380

Optimized 788 788 1076 1076

OS Overhead 608 608 896 896

Application Overhead 180 180 180 180

ETAS/COM-EU_Fi/02.2006

Contact Addresses

LiveDevices Ltd.

Atlas House

Link Business Park

Osbaldwick Link Road

Osbaldwick

York YO10 3JB, Great Britain

Phone +44 1904 56 25 80

Fax +44 1904 56 25 81

info@livedevices.com

ETAS GmbH

Borsigstraße 14

70469 Stuttgart, Germany

Phone +49 711 89661-102

Fax +49 711 89661-106

sales@etas.de

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France

Phone +33 1 56 70 00 50

Fax +33 1 56 70 00 51

sales@etas.fr

ETAS Inc.

3021 Miller Road

Ann Arbor, MI 48103, USA

Phone +1 888 ETAS INC

Fax +1 734 997-9449

sales@etas.us

ETAS K.K.

Queen’s Tower C-17F

2-3-5, Minatomirai

Nishi-ku

Yokohama 220-6217, Japan

Phone +81 45 222-0900

Fax +81 45 222-0956

sales@etas.co.jp

ETAS Korea Co., Ltd.

4F, 705 Bldg. 70-5

Yangjae-dong, Seocho-gu

Seoul 137-889, Korea

Phone +82 2 57 47-016

Fax +82 2 57 47-120

sales@etas.co.kr

ETAS (Shanghai) Co., Ltd.

2404 Bank of China Tower

200 Yincheng Road Central

Shanghai 200120, P.R. China

Phone +86 21 5037 2220

Fax +86 21 5037 2221

sales.cn@etasgroup.com

www.etasgroup.com

Subject to change (03/2007)

Notes

