RTA-OSEK

NEC V850E Series with the Green Hills Compiler

Closed-Loop Development

RTA-OSEK

Planner

Builder

]
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the NEC V850E se-
ries port of the RTA-OSEK kernel alone and
should be read in conjunction with the Techni-
cal Product Overview “Developing Embedded
Real-Time Applications with RTA-OSEK" avail-
able from LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

= OSEK/VDX OS v2.2 Certified OS

s RTOS overhead: 40 bytes RAM, 202
bytes ROM

s Category 2 interrupt latency: 40
CPU cycles

= Applications include: Signal gate-
ways, Car Multimedia, Powertrain
control

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sicsingle activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

m Green Hills Software, Inc. ccv850e v4.0.7a

m Green Hills Software, Inc. as850 v4.0.7a

ETAS




= Green Hills Software, Inc. elxr v4.0.7a
Memory Model

RTA-OSEK for the NEC V850E series with the GreenHills
compiler is built for the standard flat memory model. It
does not require use of the SDA, ZDA or TDA (Small, Zero
and Tiny Data Areas), but can be used with applications
that are built to use them.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

= iSystem winIDEA

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware

RTA-OSEK supports all variants of the NEC V850E family.
Specific support is included for the FE2, FF2, FG2, FJ2,
PH2, PH3, RS1, SG2, SG3, SJ2 and SJ3 variants.

Interrupt Model

The V850E/GreenHills supports 2 levels of interrupt:
maskable and non-maskable. Category 2 interrupts must
be maskable.

Floating Point Support

The Green Hills toolchain performs floating-point oper-
ations in software. This is mainly re-entrant and no spe-
cial support is needed when tasks and ISRs use floating
point code. Where non re-entrant code is used (for ex-
ample when accessing errno), then the supplied "float-
ing-point wrappers" must be modified to save and
restore the additional context.

Evaluation Board Support

This port of RTA-OSEK can be used with any NEC V850E
Series evaluation board. An example application is pro-
vided to run on the V850E/PH2 Phoenix-F Socketboard
evaluation board. This application can be adapted for
other target boards by adjusting the linker command
file (eg, to alter the allocation of program sections) and
one source file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by
RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max. no. of tasks 64 plus an idle task
Max. tasks per priority 1 64 1 64
Max. queued activations 1 255 1 255
Max. events per task n/a n/a 32 32
Max. nested resources 255
Max. alarms not limited by RTA-OSEK
Max. standard resources 255
Max. internal resources not limited by RTA-OSEK

Max. application modes 4294967295

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 40
ROM/Flash 202

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 44
BCC2 task 10 60
ECC1 task 84 68
ECC2 task 86 76
Category 1 ISR 0 0
Category 2 ISR 0 60
Resource 0 24
Internal Resource 0

Event 0 4
Alarm 8 40
Counter 2 60
Taskset (RW) 8

Taskset (RO) 0

Schedule 16 66
Arrivalpoint (RW) 16 16




Object RAM Bytes ROM Bytes
Arrivalpoint (RO) 0 16

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over- InterruptAsserted
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

I RTA-OSEK activity

- 4-.

ICa'tegory 1ISR

—b_
s L%

Frask
Object Stack Bytes
Task priority level 160 Figure 1 - Category 1 interrupt with return to interrupted task
Category 2 interrupt 112
RTA-OSEK provides an optimization for task termination L 4 [A B
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else- I RTA-OSEK activity

where are not eligible for this optimization and duly re-
quire 80 more stack bytes per priority level than
indicated in the table above.

|Category 2 ISR

therruptAssertea

Performance Iiiask | I I
The following table gives the key kernel timings for op-

erating system behavior in CPU cycles. Figure 2 - Category 2 interrupt with return to interrupted task
Task Type Basic Extended Ref

Category 1 ISR Latency 31 31 K A 'E

Category 2 ISR Latency 40 39 A | RTA-OSEK activity ActvateTask(T2 -
Normal Termination 37 98 D

| T i Task
ChainTask 113 236 J | Category 1 1R s ermnateTssk0
Pre-emption 94 167 C
Task T2 readyto rtﬂ
Triggered by alarm 131 201 F [Task T2 L l
e

Schedule 87 159 Q D ——— |Interrupt Asserted

ReleaseResource 91 156 M | Task T1

SetEvent n/a 275 S

- - Figure 3 - Category 2 interrupt activates a higher priority task
Category 2 exit switch latency 84 147 E
All performance figures are for the non-optimized inter- C D
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All I T 1
tasks use lightweight termination and no pre or post T RTA-OSEK activity e )
task hooks were specified.
. . . . |
The execution time for every kernel API call is available "Task T2
on request from LiveDevices. | Adiateraska) |
Frask 11 i

Figure 4 - Task activates a higher priority task



I<_4U:

I RTA-OSEK activity

H{M

T RTA-OSEK activity ]

| TerminateTask() —
| ReleaseR R
lTask - !Task - eleasel esource(I ) —|
[Alarmactivates T2
Trask T i Frask T
Figure 5 - Alarm activates task Figure 9 - ReleaseResource()
Benchmarks
J The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
I . p— ant applications. The applications have the following
RTA-OSEK activity ChanTask) framework:
Frask T2 = 8 tasks plus the idle task
= All basic tasks are lightweight tasks
Frask 71

Figure 6 - Task chai

| RTA-OSEK activity

ning

. . TerminateTask()

ITask T2

ActivateTask(T2)

[ schedule)] v

ITask T1 |

l_l [

Figure 7 - Schedule

() call

| RTA-OSEK activity

ITask 12

WaitEvent(E 1) l

v SetEvent(TZ,Eﬂ——

ITask 11

—':itl

Figure 8 - Activatio

n by SetEvent(

= 1 Category 2 ISR with a 10ms minimum inter-arrival
time

= 1 Counter

= 7 or 8 alarms, all attached to the same counter
= No resources or internal resources

= No hooks

= No schedules

= No tasksets

= Built using standard status

The following table shows the task priority configura-
tion for each benchmark application:

0 =

w
o > E
%) =
S ~ '8 - o~ - o~
= = = 9] (] ] (]
(] - [7] 194 1% () ()
= w a o o w w
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8
B 20 20 7 7 7 7
C 30 20 6 6 6 6
D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3




v =

w
= & &
= ~ °
i~ ®] 2 AT o T N
s " = v 9] 9] ()
© - [} U |9} ) )
= (%] a. ] ] w w
G 70 100 2 2 2 2
H 80 150 1 1 1 2
Idle 10 - idle idle idle idle

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities.

This application has the following overheads:

Memory Usage Bytes
OS ROM 2396
0S RAM 1172
comprising RAM data 88

comprising RAM stack 1084

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

This application has the following overheads:

Memory Usage Bytes
OS ROM 3336
0S RAM 1396
comprising RAM data 172

comprising RAM stack 1224

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Memory Usage Bytes
0S ROM 4208
0S RAM 1678
comprising RAM data 266

comprising RAM stack 1412

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

m "Tasks A, Band C
m "Tasks D, Eand F
s "Tasks GandH

The benefit of this optimization is shown in the follow-
ing table:

Memory Usage Bytes Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
0S ROM 2868 Non-optimized 1788 1804 2076 2364
OS RAM 1182 OS Overhead 1408 1424 1696 1984
comprising RAM data 90 Application Overhead 380 380 380 380
comprising RAM stack 1092 Optimized 788 788 1076 1076
OS Overhead 608 608 896 896
ECC1 Application Overhead 180 180 180 180

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.




Notes

ETAS/COM-EU_Fi/02.2006




