
RTA-OSEK

Freescale S12X with the CodeWarrior Compiler

Features at a Glance

� OSEK/VDX OS v2.2 Certified OS
� RTOS overhead: 14 bytes RAM, 78
bytes ROM

� Category 2 interrupt latency: 59
CPU cycles

� Applications include: HEVAC, En-
gine Management, Security, Inte-
grated Starter Alternators

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the Freescale S12X
port and CodeWarrior compiler port of the RTA-
OSEK kernel alone and should be read in con-
junction with the Technical Product Overview
“Developing Embedded Real-Time Applications
with RTA-OSEK” available from ETAS.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack – even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

� CodeWarrior CHC12 v5.0.33 Build 7324

� CodeWarrior AHC12 v5.0.29 Build 6345

� CodeWarrior linker v5.0.30 Build 7253

Memory Model

RTA-OSEK supports the banked memory model. Kernel
API calls use the far calling convention and the OS does
not restrict their placement at link time. For runtime ef-
ficiency, and because the interrupt vector table only al-
lows near function pointers, kernel interrupt wrappers
and other internal kernel calls are near and must be
placed in unbanked memory.

The functions are located in the linker section
os_text_unbanked, which should appear in the
PLACEMENT section of the linker file mapped to the fixed
flash areas 0x4000-0x7FFF or 0xC000 to 0xFF0F. All API
declarations and ISR calls are far and can be located in
paged or unpaged memory. The CPU and compiler
maintain the paging state implicitly.

In the banked memory model, it is not necessary to pre-
serve the PPAGE, EPAGE, GPAGE and DPAGE registers dur-
ing an ISR.

The kernel code expects to find its internal variables in
near space. These variables are put in the os_pir,
os_pur, os_pid, os_pird, os_data_unbanked and
os_constdata_unbanked sections, which the user
must locate in unbanked memory.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

� iSYSTEM winIDEA

� Lauterbach TRACE32

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Freescale S12X
family.

Interrupt Model

The port supports the multilevel interrupt model
through the 3-bit CCRH register and the legacy I bit in
CCR. There are 7 regular interrupt priority levels above
user level plus IPL 8, signified by the I bit being set. This
is the level at which the non-maskable interrupts run.

Floating Point Support

RTA-OSEK is designed to work with fully re-entrant soft-
ware floating-point libraries supplied by Freescale
CodeWarrior. This allows floating-point to be used in

RTA-OSEK tasks and ISRs without the need to save and
restore any additional context.

Evaluation Board Support

This port of RTA-OSEK can be used with any Freescale
S12X evaluation board. An example application is pro-
vided to run on the SofTec DEMO9S12XEP100 evalua-
tion board. This application can be adapted for other
target boards by adjusting the linker command file (eg,
to alter the allocation of program sections) and one
source file (if alternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by
RTA-OSEK.

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

BCC1 BCC2 ECC1 ECC2

Max no of tasks 16 plus an idle task

Max tasks per priority 1 16 1 16

Max queued activations 1 255 1 255

Max events per task n/a n/a 16 16

Max nested resources 255

Max alarms Not limited by RTA-OSEK

Max standard resources 255

Max internal resources Not limited by RTA-OSEK

Max application modes 255

Memory Type Overhead (bytes)

RAM 14

ROM/Flash 78

Object RAM Bytes ROM Bytes

BCC1 task 0 20

BCC2 task 5 29

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 8 more stack bytes per priority level than indicated
in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from ETAS.

ECC1 task 11 32

ECC2 task 13 36

Category 1 ISR 0 0

Category 2 ISR 0 28

Resource 0 10

Internal Resource 0 0

Event 0 2

Alarm 9 30

Counter 4 79

ScheduleTable 9 95

ScheduleTable Expiry 0 9

Taskset (RW) 2 2

Taskset (RO) 0 2

Schedule 11 20

Arrivalpoint (RW) 8 8

Arrivalpoint (RO) 0 8

Object Stack Bytes

Task priority level 21

Category 2 interrupt 14

Task Type Basic Extended Ref

Category 1 ISR Latency 75 75 K

Category 2 ISR Entry Latency 59 59 A

Category 2 ISR Exit Latency 255 447 E

Normal Termination 175 379 D

Object RAM Bytes ROM Bytes

ChainTask 399 941 J

Pre-emption 359 555 C

Triggered by alarm 695 889 F

Schedule 299 489 Q

ReleaseResource 319 505 M

SetEvent n/a 827 S

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

Task Type Basic Extended Ref

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt Asserted

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

� 8 tasks plus the idle task

� All basic tasks are lightweight tasks

� 1 Category 2 ISR with a 10ms minimum inter-arrival
time

� 1 Counter

� 7 or 8 alarms, all attached to the same counter

Figure 3 - Category 2 interrupt activates a higher priority task

Figure 4 - Task activates a higher priority task

Figure 5 - Alarm activates task

Figure 6 - Task chaining

EA

 RTA-OSEK activity

 Category 2 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt Asserted

Task T2 ready to run

ActivateTask(T2)

C D

 RTA-OSEK activity

 Task T2

 Task T1

ActivateTask(T2)

TerminateTask()

F

 RTA-OSEK activity

 Task T2

 Task T1
A larm activates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

Figure 7 - Schedule() call

Figure 8 - Activation by SetEvent(

Figure 9 - ReleaseResource()

Q

 RTA-OSEK activity

 Task T2

 Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent(E1)

SetEvent(T2,E1)

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

� No resources or internal resources

� No hooks

� No schedules

� No tasksets

� Built using standard status

The following table shows the task priority configura-
tion for each benchmark application:

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities.

This application has the following overheads:

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated

multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

This application has the following overheads:

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

� Tasks A, B and C

� Tasks D, E and F

� Tasks G and H

The benefit of this optimization is shown in the follow-

T
a
sk
/I
S
R

S
ta
ck
 (
b
y
te
s)

P
e
ri
o
d
 (
m
s)

B
C
C
1

B
C
C
2

E
C
C
1

E
C
C
2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory Usage Bytes

OS ROM 2007

OS RAM 358

comprising RAM data 88

comprising RAM stack 270

Memory Usage Bytes

OS ROM 2254

OS RAM 355

comprising RAM data 82

comprising RAM stack 273

Memory Usage Bytes

OS ROM 2544

OS RAM 387

comprising RAM data 99

comprising RAM stack 288

Memory Usage Bytes

OS ROM 3030

OS RAM 456

comprising RAM data 118

comprising RAM stack 338

ETAS/COM-EU_Fi/02.2006

Contact Addresses

ETAS GmbH

70469 Stuttgart, Germany

Phone +49 711 89661-0

Fax +49 711 89661-106

sales@etas.de

ETAS S.A.S.

94588 Rungis Cedex, France

Phone +33 1 56 70 00 50

Fax +33 1 56 70 00 51

sales@etas.fr

ETAS Ltd.

Burton-upon-Trent

Staffordshire DE14 2WQ

Great Britain

Phone +44 1283 54 65 12

Fax +44 1283 54 87 67

sales@etas-uk.net

ETAS Inc.

Ann Arbor, MI 48103, USA

Phone +1 888 ETAS INC

Fax +1 734 997-9449

sales@etas.us

ETAS K.K.

Yokohama 220-6217, Japan

Phone +81 45 222-0900

Fax +81 45 222-0956

sales@etas.co.jp

ETAS Korea Co., Ltd.

Seoul 137-889, Korea

Phone +82 2 57 47-016

Fax +82 2 57 47-120

sales@etas.co.kr

ETAS (Shanghai) Co., Ltd.

Shanghai 200120, P.R. China

Phone +86 21 5037 2220

Fax +86 21 5037 2221

sales.cn@etasgroup.com

ETAS Automotive India Pvt. Ltd.

Bangalore 560 068, India

Phone +91 80 4191 2588

Fax +91 80 4191 2586

sales.in@etasgroup.com

www.etasgroup.com

Subject to change (04/2008)

ing table:

Notes

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2

Non-optimized 650 653 668 718

OS Overhead 270 273 288 338

Application Overhead 380 380 380 380

Optimized 300 300 318 318

OS Overhead 120 120 138 138

Application Overhead 180 180 180 180

