RTA-OSEK

Freescale MPC56x with the Wind River Compiler

Closed-Loop Development

RTA-OSEK

Planner

RTA-TRACE

RTA-OSEK
Builder

A
RTA-OSEK
Component

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This datasheet discusses RTA-OSEK for the Free-
scale MPC56x and Wind River compiler and
should be read in conjunction with the Techni-
cal Product Overview “Developing Embedded
Real-Time Applications with RTA-OSEK" avail-
able from ETAS.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

Features at a Glance

= OSEK/VDX OS v2.2 Certified OS

= RTOS overhead: 26 bytes RAM, 148
bytes ROM

= Category 2 interrupt latency: 114
CPU cycles

= Applications include: Engine Man-
agement, Integrated Starter Alter-
nators, Chassis Control

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack — even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

= Wind River DCCv5.5.1.0
= Wind River DAS v5.5.1.0

ETAS

= Wind River DLD v5.5.1.0
Memory Model

RTA-OSEK for the MPC56x has a flat 32-bit memory mod-
el. For improved performance RTA-OSEK uses a small
amount of RAM data that should be located in the com-
piler's Small Data Area. For all other objects 32-bit ad-
dressing is used externally providing no further
restrictions on placement of user code and data.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

m Lauterbach TRACE32

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Freescale MPC56x
family.

Interrupt Model

RTA-OSEK for the MPC56x supports 40 nested levels of
interrupts.

Floating Point Support

Support for the floating-point hardware of the Freescale
MPC56x is provided by RTA-OSEK. Only those Category 2
interrupts and tasks that are marked as using floating-
point will save the floating-point context. This means
that memory overheads are reduced because the float-
ing-point context is not saved for tasks and ISRs that do
not use floating-point. Both software and hardware
floating-point are supported through correct use of the
C runtime libraries.

Evaluation Board Support

RTA-OSEK for the Freescale MPC56x can be used with
any evaluation board. An example application is provid-
ed to run on the Axiom AXM-0250 with the MPC565
evaluation board. This application can be adapted for
other target boards by adjusting the linker command
file (to alter the RAM locations) and one source file (if al-
ternative output pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by

RTA-OSEK.

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 32 32
Max nested resources 255
Max alarms Not limited by RTA-OSEK
Max standard resources 255
Max internal resources Not limited by RTA-OSEK
Max application modes 65535

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory Type Overhead (bytes)
RAM 26
ROM/Flash 148

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

Object RAM Bytes ROM Bytes
BCC1 task 0 40
BCC2 task 10 60
ECC1 task 116 64
ECC2 task 118 72
Category 1 ISR 0 0
Category 2 ISR 0 40
Resource 0 20
Internal Resource 0 0
Event 0 4
Alarm 12 12
Counter 4 220
ScheduleTable 16 124
ScheduleTable Expiry 0 12
Taskset (RW) 4 4

Object RAM Bytes ROM Bytes
Taskset (RO) 0 4

Schedule 16 36
Arrivalpoint (RW) 12 12
Arrivalpoint (RO) 0 12

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

Object Stack Bytes
Task priority level 160
Category 2 interrupt 112

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 112 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

Task Type Basic Extended Ref
Category 1 ISR Latency 47 47 K
Category 2 ISR Entry Latency 114 116 A
Category 2 ISR Exit Latency 134 236 E
Normal Termination 100 202 D
ChainTask 206 444 J
Pre-emption 188 292 C
Triggered by alarm 302 406 F
Schedule 158 264 Q
ReleaseResource 190 296 M
SetEvent n/a 466 S

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available

on request from ETAS.

|J|K
(L

ﬁ L
T RTA-OSEK activity] -l
(] []
N |
ICa‘tegory1 ISR ! i 1
ITask i i

Figure 1 - Category 1 interrupt with return to interrupted task

l—éf[A B

I RTA-OSEK activity

|Category 2 ISR

therrupt Assertea
lTask | i i

Figure 2 - Category 2 interrupt with return to interrupted task

A I j[E
ActivateTask(T2) -

| RTA-OSEK activity

I—. TerminateTask()
| Category 2 ISR 0
‘Task T2 ready to rLﬂ
[Task T2 - 1
|Interrupt Asserted
| Task 1

Figure 3 - Category 2 interrupt activates a higher priority task

|C /D S
T RTA-OSEK activity m’ I RTA-OSEK activity []
WaitEvent(E 1) l
Frask 12 L fTask 12 $ "
— SetEvent(TZ,Eﬂ——
| AcivaeTaskT2) | f
!Task T1 I Irask 11 u l
Figure 4 - Task activates a higher priority task Figure 8 - Activation by SetEvent(
| F M
I RTA-OSEK activity [] T RTA-OSEK activity H
| TerminateTask() ——
| ReleaseResource(R1)
ITask T2 Frask 12 -
[Alarmactivates T2
Irask 11 T | T FTask T1

Figure 5 - Alarm activates task

P RTA-OSEK activity

IH/[D

ChainTask(T1)

Frask 12

Frask T

Figure 6 - Task chaining

|RTA-OSEK activity

R
' TerminateTask()

ITask T2

ActivateTask(T2)

[schedule)| v

ITask T1 I

-

—

Figure 7 - Schedule() call

Figure 9 - ReleaseResource()

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

= 8 tasks plus the idle task
= All basic tasks are lightweight tasks

= 1 Category 2 ISR with a 10ms minimum inter-arrival
time

= 1 Counter

m 7 or 8 alarms, all attached to the same counter
= No resources or internal resources

= No hooks

= No schedules

= No tasksets

= Built using standard status

The following table shows the task priority configura-

tion for each benchmark application:

ECC1

a _ The ECC1 application uses 7 basic tasks and 1 extended
5‘;" £ task with unique priorities. Task H is the extended task
& =) et and it waits on a single event that is set by basic tasks A-
= 3 e T S 5 o G
" & = v 9] v U :
g & & B B & B
This application has the following overheads:
ISR1 10 10 IPL1 IPL1 IPL1 IPL1
A 10 10 8 8 8 8 Memory Usage Bytes
B 20 20 7 7 7 7 0S ROM 4486
C 30 20 6 6 6 6 0S RAM 1808
D 40 30 5 5 5 5 comprising RAM data 256
E 50 50 4 4 4 4 comprising RAM stack 1552
F 60 80 3 3 3 3
G 70 100 2 2 2 2 ECC2
H 80 150 1 1 1 2 The ECC2 application uses 6 basic tasks and 2 extended
idle 10 - idle idle idle idle tasks. Tasks G and H are the extended tasks and share a

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

Memory Usage Bytes
0S ROM 3170
0S RAM 1548
comprising RAM data 140

comprising RAM stack 1408

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

Memory Usage Bytes
0S ROM 3722
0S RAM 1560
comprising RAM data 136

comprising RAM stack 1424

priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Memory Usage Bytes
OS ROM 4943
0S RAM 2078
comprising RAM data 382

comprising RAM stack 1696

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

m Tasks A, Band C
m Tasks D, Eand F
m Tasks Gand H

The benefit of this optimization is shown in the follow-
ing table:

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2
Non-optimized 1788 1804 1932 2076
OS Overhead 1408 1424 1552 1696
Application Overhead 380 380 380 380
Optimized 788 788 932 932
OS Overhead 608 608 752 752
Application Overhead 180 180 180 180

Notes

ETAS/COM-EU_Fi/02.2006

