
RTA-OSEK
Freescale HC(S)12 with the CodeWarrior Compiler

Features at a Glance

� OSEK/VDX OS v2.2 Certified OS
� RTOS overhead: 14 bytes RAM, 79

bytes ROM
� Category 2 interrupt latency: 31

CPU cycles
� Applications include: HEVAC, En-

gine Management, Security, Inte-
grated Starter Alternators

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This port data sheet discusses the Freescale
HC(S)12 and CodeWarrior compiler port of the
RTA-OSEK kernel alone and should be read in
conjunction with the Technical Product Over-
view “Developing Embedded Real-Time Appli-
cations with RTA-OSEK” available from
LiveDevices.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-

anteed.

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-
vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack – even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
Freescale CodeWarrior tools:

� HC12 C Compiler v5.0.30 Build 6037

� Assembler v5.0.29 Build

� SmartLinker v5.0.29 Build 6037

Memory Model

RTA-OSEK supports the banked memory model. Kernel
API calls use the far calling convention and the OS does
not restrict their placement at link time. For runtime ef-
ficiency a few internal kernel calls are near and must be
placed in unbanked memory. The kernel code expects to
find its internal variables in near space; they must be
placed in unbanked memory.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface that is supported by
RTA-OSEK for the following debuggers:

� Noral Flex v4.2

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the Freescale HC(S)12
family, i.e., HC12 and Star12.

Interrupt Model

A single level of interrupts is supported.

Floating Point Support

This port of RTA-OSEK is designed to work with fully re-
entrant software floating-point libraries supplied by
CodeWarrior. This allows floating-point to be used in
RTA-OSEK tasks and ISRs without the need to save and
restore any additional context.

Evaluation Board Support

RTA-OSEK for the Freescale HC(S)12 can be used with
any evaluation board. An example application is provid-
ed to run on the Freescale MC9S12DP256B evaluation
board. This application can be adapted for other target
boards by adjusting the linker command file (to alter the
RAM locations) and one source file (if alternative output
pins are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by
RTA-OSEK.

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

BCC1 BCC2 ECC1 ECC2

Max no of tasks 16 plus an idle task

Max tasks per priority 1 16 1 16

Max queued activations 1 255 1 255

Max events per task n/a n/a 16 16

Max nested resources 255

Max alarms Not limited by RTA-OSEK

Max standard resources 255

Max internal resources Not limited by RTA-OSEK

Max application modes 255

Memory Type Overhead (bytes)

RAM 14

ROM/Flash 79

Object RAM Bytes ROM Bytes

BCC1 task 0 20

BCC2 task 5 29

ECC1 task 11 32

ECC2 task 13 36

Category 1 ISR 0 0

Category 2 ISR 0 28

Resource 0 10

Internal Resource 0 0

Event 0 2

Alarm 9 30

Counter 4 89

ScheduleTable 9 100

ScheduleTable Expiry 0 9

Taskset (RW) 2 2

Taskset (RO) 0 2

Schedule 11 20

BCC1 BCC2 ECC1 ECC2

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 8 more stack bytes per priority level than indicated
in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available
on request from LiveDevices.

Arrivalpoint (RW) 8 8

Arrivalpoint (RO) 0 8

Object Stack Bytes

Task priority level 20

Category 2 interrupt 13

Task Type Basic Extended Ref

Category 1 ISR Latency 22 22 K

Category 2 ISR Latency 31 31 A

Category 2 exit switch latency 110 213 E

Normal Termination 75 167 D

ChainTask 177 459 J

Pre-emption 161 268 C

Triggered by alarm 320 426 F

Schedule 130 232 Q

ReleaseResource 143 243 M

SetEvent n/a 405 S

Object RAM Bytes ROM Bytes

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

Figure 3 - Category 2 interrupt activates a higher priority task

Figure 4 - Task activates a higher priority task

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt Asserted

EA
 RTA-OSEK activity

 Category 1 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt Asserted

Task T2 ready to run

Act ivateTask(T2)

C D

 RTA-OSEK activity

 Task T2

 Task T1
ActivateTask(T2)

TerminateTask()

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

� 8 tasks plus the idle task

� All basic tasks are lightweight tasks

� 1 Category 2 ISR with a 10ms minimum inter-arrival
time

� 1 Counter

� 7 or 8 alarms, all attached to the same counter

� No resources or internal resources

� No hooks

� No schedules

� No tasksets

� Built using standard status

The following table shows the task priority configura-
tion for each benchmark application:

Figure 5 - Alarm activates task

Figure 6 - Task chaining

Figure 7 - Schedule() call

Figure 8 - Activation by SetEvent(

F

 RTA-OSEK activity

 Task T2

 Task T1
Alarm act ivates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

Q

 RTA-OSEK activity

Task T2

Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent (E1)

SetEvent (T2,E1)

Figure 9 - ReleaseResource()

Ta
sk

/I
SR

St
ac

k
(b

yt
es

)

Pe
ri

o
d

 (
m

s)

B
C

C
1

B
C

C
2

EC
C

1

EC
C

2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities.

This application has the following overheads:

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

This application has the following overheads:

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

� Tasks A, B and C

� Tasks D, E and F

� Tasks G and H

The benefit of this optimization is shown in the follow-
ing table:

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory Usage Bytes

OS ROM 2415

OS RAM 292

comprising RAM data 103

comprising RAM stack 189

Memory Usage Bytes

OS ROM 2600

OS RAM 289

comprising RAM data 97

comprising RAM stack 192

Ta
sk

/I
SR

St
ac

k
(b

yt
es

)

Pe
ri

o
d

 (
m

s)

B
C

C
1

B
C

C
2

EC
C

1

EC
C

2

Memory Usage Bytes

OS ROM 2931

OS RAM 321

comprising RAM data 114

comprising RAM stack 207

Memory Usage Bytes

OS ROM 3390

OS RAM 390

comprising RAM data 133

comprising RAM stack 257

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2

Non-optimized 569 572 587 637

OS Overhead 189 192 207 257

Application Overhead 380 380 380 380

Optimized 269 269 287 287

OS Overhead 89 89 107 107

Application Overhead 180 180 180 180

ETAS/COM-EU_Fi/02.2006

Contact Addresses

LiveDevices Ltd.
Atlas House
Link Business Park
Osbaldwick Link Road
Osbaldwick
York YO10 3JB, Great Britain
Phone +44 1904 56 25 80
Fax +44 1904 56 25 81
info@livedevices.com

ETAS GmbH
Borsigstraße 14
70469 Stuttgart, Germany
Phone +49 711 89661-102
Fax +49 711 89661-106
sales@etas.de

ETAS S.A.S.
1, place des Etats-Unis
SILIC 307
94588 Rungis Cedex, France
Phone +33 1 56 70 00 50
Fax +33 1 56 70 00 51
sales@etas.fr

ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103, USA
Phone +1 888 ETAS INC
Fax +1 734 997-9449
sales@etas.us

ETAS K.K.
Queen’s Tower C-17F
2-3-5, Minatomirai
Nishi-ku
Yokohama 220-6217, Japan
Phone +81 45 222-0900
Fax +81 45 222-0956
sales@etas.co.jp

ETAS Korea Co., Ltd.
4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-889, Korea
Phone +82 2 57 47-016
Fax +82 2 57 47-120
sales@etas.co.kr

ETAS (Shanghai) Co., Ltd.
2404 Bank of China Tower
200 Yincheng Road Central
Shanghai 200120, P.R. China
Phone +86 21 5037 2220
Fax +86 21 5037 2221
sales.cn@etasgroup.com

www.etasgroup.com

Subject to change (11/2006)

Notes

