
RTA-OSEK

ADI Blackfin with the ADI Compiler

Features at a Glance

� OSEK/VDX OS v2.2 Certified OS
� RTOS overhead: 30 bytes RAM, 160
bytes ROM

� Category 2 interrupt latency: 146
CPU cycles

� Applications include: Multimedia
and Convergence Applications

RTA-OSEK

RTA-OSEK provides an application design envi-
ronment that combines the smallest and fastest
OSEK RTOS with an unique timing analysis tool.

This datasheet discusses the ADI Blackfin port of
the RTA-OSEK kernel alone and should be read
in conjunction with the Technical Product Over-
view “Developing Embedded Real-Time Appli-
cations with RTA-OSEK” available from ETAS.

The kernel element of RTA-OSEK is a fixed prior-
ity, pre-emptive real-time operating system that
is compliant to the OSEK/VDX OS standard ver-
sion 2.3 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor com-
munication using OSEK COM Conformance
Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst
case bounds and little variability in execution
time. The kernel is particularly suited to systems
with very tight constraints on hardware costs
and where run-time performance must be guar-
anteed.

The kernel is configured using an offline tool
provided with RTA-OSEK. Determining in ad-

vance which features are used allows memory
requirements to be minimized and API calls to
be optimized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single
stack – even extended tasks. This allows dramat-
ic reductions in application stack space require-
ments.

The RTA-OSEK kernel is designed to be scalable.
When a task uses queued activation or waits on
events, the additional RTOS overhead required
to support these features is paid by the task
rather than by the system. This means that a ba-
sic single activation task uses the same resources
in a BCC1 system as it does in an ECC2 system.

Compiler/Assembler/Linker

The libraries containing the code for the RTA-
OSEK kernel have been built using the following
tools:

� ADI VisualDSP++ v5.0 Compiler v8.0.4.1

� ADI VisualDSP++ v5.0 Assembler v2.7.2.35

� ADI VisualDSP++ v5.0 Linker v3.10.0.2

Memory Model

RTA-OSEK supports a flat 32-bit memory model.

ORTI Debugger Support

ORTI is the OSEK Run-Time Interface. Currently there
are no ORTI compatible debuggers supported by RTA-
OSEK for the ADI Blackfin

Further information about ORTI for RTA-OSEK can be
found in the RTA-OSEK ORTI Guide.

Hardware Environment

RTA-OSEK supports all variants of the ADI Blackfin fam-
ily - ADSP-BF522, ADSP-BF525, ADSP-BF527, ADSP-BF531,
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536,
ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF541,
ADSP-BF542, ADSP-BF544, ADSP-BF548, ADSP-BF549 and
ADSP-BF561.

Interrupt Model

RTA-OSEK can configure the following 9 interrupts as
sources for either Category 1 or 2 Interrupt Service Rou-
tines (ISRs): General Purpose Interrupts 7 to 13 (IVG7 to
IVG13), Core timer (IVTMR) and Hardware Exception
(IVHW). Additionally the NMI and Exception interrupts
can be configured for use with Category 1 ISRs. The two
lowest priority General Purpose Interrupts (IVG14 and
IVG15) are reserved for use by RTA-OSEK. RTA-OSEK
does not make use of the Blackfin Core user mode.

Floating Point Support

RTA-OSEK for the ADI Blackfin is designed to work with
fully re-entrant software floating-point libraries sup-
plied by the ADI compiler. This allows floating-point to
be used in RTA-OSEK tasks and ISRs without the need to
save and restore any additional context.

Evaluation Board Support

RTA-OSEK for the ADI Blackfin can be used with any
evaluation board. An example application is provided to
run on the ADZS-BF537-EZLITE evaluation board. This
application can be adapted for other target boards by
adjusting the linker command file (to alter the RAM lo-
cations) and one source file (if alternative output pins
are required).

Functionality

The table below outlines the restrictions on the maxi-
mum number of operating system objects allowed by

RTA-OSEK.

Note that OSEK specifies that queued activations in an
ECC2 system are only possible for basic tasks. Where
tasks share a priority level, the maximum number of
queued activations per priority level is 255.

The number of alarms, tasksets, schedules and schedule
arrivalpoints is only limited by available hardware re-
sources.

Memory Usage

The memory overhead of RTA-OSEK is:

In addition to the RTOS overhead, each object used by
an application has the following memory requirements:

BCC1 BCC2 ECC1 ECC2

Max no of tasks 32 plus an idle task

Max tasks per priority 1 32 1 32

Max queued activations 1 255 1 255

Max events per task n/a n/a 32 32

Max nested resources 255

Max alarms Not limited by RTA-OSEK

Max standard resources 255

Max internal resources Not limited by RTA-OSEK

Max application modes 65535

Memory Type Overhead (bytes)

RAM 30

ROM/Flash 160

Object RAM Bytes ROM Bytes

BCC1 task 0 36

BCC2 task 10 56

ECC1 task 168 60

ECC2 task 170 68

Category 1 ISR 0 0

Category 2 ISR 0 76

Resource 0 20

Internal Resource 0 0

Event 0 4

Alarm 12 20

Counter 4 120

ScheduleTable 16 90

ScheduleTable Expiry 0 12

Taskset (RW) 4 4

In addition to these static memory requirements each
task priority and Category 2 interrupt has a stack over-
head (in addition to application stack usage). The single
stack model means that this overhead applies to each
priority level rather than to each task. Similarly, for Cat-
egory 2 interrupts this overhead applies for each unique
interrupt priority. The table below shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination
if the user can guarantee that tasks only terminate from
their entry function. Tasks that terminate from else-
where are not eligible for this optimization and duly re-
quire 180 more stack bytes per priority level than
indicated in the table above.

Performance

The following table gives the key kernel timings for op-
erating system behavior in CPU cycles.

All performance figures are for the non-optimized inter-
face to RTA-OSEK. Using the optimized interface will re-
sult in shorter execution times for some operations. All
tasks use lightweight termination and no pre or post
task hooks were specified.

The execution time for every kernel API call is available

on request from ETAS.

Taskset (RO) 0 4

Schedule 16 36

Arrivalpoint (RW) 12 12

Arrivalpoint (RO) 0 12

Object Stack Bytes

Task priority level 212

Category 2 interrupt 168

Task Type Basic Extended Ref

Category 1 ISR Latency 60 60 K

Category 2 ISR Entry Latency 146 146 A

Category 2 ISR Exit Latency 202 390 E

Normal Termination 104 288 D

ChainTask 236 566 J

Pre-emption 174 362 C

Triggered by alarm 244 434 F

Schedule 162 350 Q

ReleaseResource 176 364 M

SetEvent n/a 572 S

Object RAM Bytes ROM Bytes

Figure 1 - Category 1 interrupt with return to interrupted task

Figure 2 - Category 2 interrupt with return to interrupted task

Figure 3 - Category 2 interrupt activates a higher priority task

K L
Interrupt Asserted

 RTA-OSEK activity

 Category 1 ISR

 Task

A B

 RTA-OSEK activity

 Category 2 ISR

 Task
Interrupt Asserted

EA

 RTA-OSEK activity

 Category 2 ISR

 Task T2

 Task T1

TerminateTask()

Interrupt Asserted

Task T2 ready to run

ActivateTask(T2)

Benchmarks

The following sections shows benchmarks for RTA-OSEK
memory usage for BCC1, BCC2, ECC1 and ECC2 conform-
ant applications. The applications have the following
framework:

� 8 tasks plus the idle task

� All basic tasks are lightweight tasks

� 1 Category 2 ISR with a 10ms minimum inter-arrival
time

� 1 Counter

� 7 or 8 alarms, all attached to the same counter

� No resources or internal resources

� No hooks

� No schedules

� No tasksets

� Built using standard status

The following table shows the task priority configura-

Figure 4 - Task activates a higher priority task

Figure 5 - Alarm activates task

Figure 6 - Task chaining

Figure 7 - Schedule() call

C D

 RTA-OSEK activity

 Task T2

 Task T1

ActivateTask(T2)

TerminateTask()

F

 RTA-OSEK activity

 Task T2

 Task T1
A larm activates T2

TerminateTask()

J

 RTA-OSEK activity

 Task T1

ChainTask(T1)

 Task T2

Q

 RTA-OSEK activity

 Task T2

 Task T1

TerminateTask()

Schedule()

ActivateTask(T2)

Figure 8 - Activation by SetEvent(

Figure 9 - ReleaseResource()

S

 RTA-OSEK activity

 Task T2

 Task T1

WaitEvent(E1)

SetEvent(T2,E1)

M

 RTA-OSEK activity

 Task T2
ReleaseResource(R1)

 Task T1

tion for each benchmark application:

The overhead figures give the ROM and RAM required
for RTA-OSEK in addition to that required by the appli-
cation. The RAM figure is shown split into RAM data and
RAM stack.

BCC1

The BCC1 application uses 8 basic tasks with unique pri-
orities. This application has the following overheads:

BCC2

The BCC2 application uses 8 basic tasks with unique pri-
orities.

Tasks A-G are attached to 7 alarms. Task H is activated
multiple times from Task A and has maximum queued
activation count of 255.

This application has the following overheads:

ECC1

The ECC1 application uses 7 basic tasks and 1 extended
task with unique priorities. Task H is the extended task
and it waits on a single event that is set by basic tasks A-
G.

This application has the following overheads:

ECC2

The ECC2 application uses 6 basic tasks and 2 extended
tasks. Tasks G and H are the extended tasks and share a
priority. The extended tasks wait on a single event that
is set by tasks A-F.

This application has the following overheads:

Stack Optimization

Using stack optimization with the benchmark example
identifies that the following tasks can share internal re-
sources:

� Tasks A, B and C

� Tasks D, E and F

� Tasks G and H

The benefit of this optimization is shown in the follow-
ing table:

T
a
sk
/I
S
R

S
ta
ck
 (
b
y
te
s)

P
e
ri
o
d
 (
m
s)

B
C
C
1

B
C
C
2

E
C
C
1

E
C
C
2

ISR1 10 10 IPL1 IPL1 IPL1 IPL1

A 10 10 8 8 8 8

B 20 20 7 7 7 7

C 30 20 6 6 6 6

D 40 30 5 5 5 5

E 50 50 4 4 4 4

F 60 80 3 3 3 3

G 70 100 2 2 2 2

H 80 150 1 1 1 2

Idle 10 - idle idle idle idle

Memory Usage Bytes

OS ROM 2362

OS RAM 2054

comprising RAM data 146

comprising RAM stack 1908

Memory Usage Bytes

OS ROM 2696

OS RAM 2078

comprising RAM data 142

comprising RAM stack 1936

Memory Usage Bytes

OS ROM 3248

OS RAM 2506

comprising RAM data 314

comprising RAM stack 2192

Memory Usage Bytes

OS ROM 3924

OS RAM 3176

comprising RAM data 492

comprising RAM stack 2684

Total Stack Space (bytes) BCC1 BCC2 ECC1 ECC2

Non-optimized 2288 2316 2572 3064

OS Overhead 1908 1936 2192 2684

Application Overhead 380 380 380 380

Optimized 1028 1028 1312 1312

OS Overhead 848 848 1132 1132

Application Overhead 180 180 180 180

ETAS/COM_Fi/07.2008

Contact Addresses

ETAS GmbH

70469 Stuttgart, Germany

Phone +49 711 89661-0

Fax +49 711 89661-106

sales.de@etas.com

ETAS S.A.S.

94588 Rungis Cedex, France

Phone +33 1 567000-50

Fax +33 1 567000-51

sales.fr@etas.com

ETAS Ltd.

Burton-upon-Trent

Staffordshire DE14 2WQ

Great Britain

Phone +44 1283 546512

Fax +44 1283 548767

sales.uk@etas.com

ETAS Inc.

Ann Arbor, MI 48103, USA

Phone +1 888 ETAS INC

Fax +1 734 997-9449

sales.us@etas.com

ETAS K.K.

Yokohama 220-6217, Japan

Phone +81 45 222-0900

Fax +81 45 222-0956

sales.jp@etas.com

ETAS Korea Co., Ltd.

Seoul 137-889, Korea

Phone +82 2 5747-016

Fax +82 2 5747-120

sales.kr@etas.com

ETAS (Shanghai) Co., Ltd.

Shanghai 200120, P.R. China

Phone +86 21 5037 2220

Fax +86 21 5037 2221

sales.cn@etas.com

ETAS Automotive India Pvt. Ltd.

Bangalore 560 068, India

Phone +91 80 4191 2585

Fax +91 80 4191 2586

sales.in@etas.com

www.etas.com

Subject to change (11/2008)

Notes

