

RTA-OSEK

ORTI User Guide

 i

Contact Details

ETAS Group

www.etasgroup.com

Germany

ETAS GmbH
Borsigstraße 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

www.etas.de

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

www.etasinc.com

Japan

ETAS K.K.
Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

www.etas.co.jp

France

ETAS S.A.S.
1, place des États-Unis
SILIC 307
94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

www.etas.fr

Korea

ETAS Korea Co., Ltd.
4F, 705 Bldg. 70-5
Yangjae-dong, Seocho-gu
Seoul 137-899, Korea

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

www.etas.co.kr

Great Britain

ETAS UK Ltd.
Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

www.etas-uk.net

 ii

People’s Republic of China

2404 Bank of China Tower
200 Yincheng Road Central
Shanghai 200120

Tel.: +86 21 5037 2220
Fax: +86 21 5037 2221

www.etas.cn

LiveDevices

LiveDevices Ltd.
Atlas House
Link Business Park
Osbaldwick Link Road
Osbaldwick
York, YO10 3JB

Tel.: +44 (0) 19 04 56 25 80
Fax: +44 (0) 19 04 56 25 81

www.livedevices.com

RTA-OSEK v5.0.2 Copyright Notice iii

Copyright Notice

© 2001 - 2007 LiveDevices Ltd. All rights reserved.

Version: RTA-OSEK v5.0.2

No part of this document may be reproduced without the prior written
consent of LiveDevices. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms
of such a license.

Disclaimer

The information in this document is subject to change without notice and
does not represent a commitment on any part of LiveDevices. While the
information contained herein is assumed to be accurate, LiveDevices assumes
no responsibility for any errors or omissions.

In no event shall LiveDevices, its employees, its contractors or the authors of
this document be liable for special, direct, indirect, or consequential damage,
losses, costs, charges, claims, demands, claim for lost profits, fees or expenses
of any nature or kind.

Trademarks

RTA-OSEK and LiveDevices are trademarks of LiveDevices Ltd.

OSEK/VDX is a trademark of Siemens AG.

Windows and MS-DOS are trademarks of Microsoft Corp.

All other product names are trademarks or registered trademarks of their
respective owners.

C
o
n
te
n
ts

RTA-OSEK v5.0.2 Contents v

Contents

1 About this Guide ...1-1

1.1 Who Should Read this Guide?...1-1

1.2 Conventions ...1-1

2 Introduction... 2-1

2.1 Compatibility .. 2-1

3 Overview of ORTI and RTA-OSEK..3-1

3.1 Development Process ..3-1

3.2 Intrusiveness ... 3-2

3.3 Validity ...3-3

3.4 Interactions...3-3

4 ORTI Objects and Attributes ...4-1

4.1 Overview ..4-1

4.2 Objects and Attributes .. 4-2

4.2.1 OS... 4-2

4.2.2 Task ..4-3

4.2.3 Category 2 ISR...4-4

C
o
n
te
n
ts

 Contents RTA-OSEK v5.0.2 vi

4.2.4 Category 1 ISR...4-5

4.2.5 Counter ..4-5

4.2.6 Alarm..4-6

4.2.7 MessageContainer...4-6

4.2.8 COM...4-7

 1
.1

RTA-OSEK v5.0.2 About this Guide 1-1

1 About this Guide

This guide describes the interface between an ORTI-aware debugger and RTA-
OSEK Component.

1.1 Who Should Read this Guide?

It is assumed that you are a developer who has been writing programs in C
that use RTA-OSEK Component. You should be using an ORTI-aware
debugger to provide information on the program’s behavior. Familiarity with
the other RTA manuals is also assumed.

1.2 Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any processor running RTA-
OSEK Component.

In this guide you’ll see that program code, header file names, C type names, C
functions and RTA-OSEK Component. API call names all appear in the
courier typeface. When the name of an object is made available to the

programmer the name also appears in the courier typeface, so, for

example, a task named Task1 appears as a task handle called Task1.

 2
.1

RTA-OSEK v5.0.2 Introduction 2-1

2 Introduction

ORTI is an acronym that stands for ‘OSEK Run Time Interface’. ORTI has been
designed to facilitate an interface between the internal operation of an OSEK
operating system and a debugger. It achieves this by specifying a small
language that captures two things: how to find objects and variables within
the running operating system and how to interpret or display their values.

The design of the ORTI language is sufficiently general that it can support
operating systems other than OSEK.

ORTI support has been integrated into RTA-OSEK. This means that, during
execution of the application, you can observe values of key operating system
variables for applications based on RTA.

You will learn how to configure the generation of ORTI information for your
debugger. You will also see the information that RTA-OSEK provides about its
applications. For details of how to view ORTI information at runtime you
should consult your debugger documentation.

2.1 Compatibility

ORTI has undergone a number of revisions over time and so debuggers have
been released with differing levels of support. RTA currently supports a
number of different debuggers. LiveDevices will make every effort to provide
support for new and updated debuggers as they appear. Please contact
technical support if your ORTI-aware debugger is not currently supported.

 3
.1

RTA-OSEK v5.0.2 Overview of ORTI and RTA-OSEK 3-1

3 Overview of ORTI and RTA-OSEK

3.1 Development Process

The following steps describe how to use ORTI with your program.

1. Use the RTA-OSEK GUI to specify that debugger support is required
for your application. To do this, select the Target group from the

navigation bar and then select the Debugger subgroup. Figure 3:1
shows how this is done.

Figure 3:1 - Selecting the Debugger Type

2. Click the Debugger button on the workspace. The Select Debugger
dialog opens. Set the Debugger Type and ORTI Language Version
using the drop down lists and then click the OK button. An example is

shown in Figure 3:2.

Figure 3:2 - Selecting the Debugger

 3
.2

 Overview of ORTI and RTA-OSEK RTA-OSEK v5.0.0 3-2

3. Build the application. The ORTI code will be inserted into a file called
<projectname>.ort. The details appear on the workspace, as

shown in Figure 3:3.

Figure 3:3 - Building an Application using the RTA-OSEK GUI

4. Start the debugger, load the application and load the ORTI file. This
process is described in the debugger manual.

The debugger will then display the information shown by the ORTI file. The
format of this information depends upon the debugger.

3.2 Intrusiveness

ORTI relies upon reading values from the memory of the running application.
This means that the presence of ORTI can affect the operation of the
application. It is useful to know the extent to which this might happen. ORTI
can acquire data via four routes:

1. Constant values within the ORTI file. These are used for quantities that
will not change during the execution of an application. These have no
impact on the running application.

 3
.3

RTA-OSEK v5.0.2 Overview of ORTI and RTA-OSEK 3-3

2. Values generated as part of the normal operation of the application.
Data is read from variables that would be present even if ORTI were
not. These have no additional impact on the application.

3. Values generated specifically for ORTI support and only present in the
extended build. Such variables constitute a very small extra overhead
in the application.

4. Constants generated only for ORTI support and present in all build
modes. This data amounts to a small overhead in the application.
These constants are only generated for debuggers that cannot obtain
the information by other means. They are only present when you
specify that you are using a debugger, so you may wish to disable
debugger support in your final production release.

3.3 Validity

Many of the values reported by ORTI are simply those contained in the
application’s memory. Using ORTI to inspect the system before it has been
fully initialized will lead to misleading results. RTA-OSEK is fully initialized
when, as a result of calling StartOS(), the first task (including the idle task)
or Category 2 ISR is entered.

Care should be taken where a variable may be cached in a register for a
significant portion of its lifetime, especially in the case of register rich
processors. ORTI can only look at the data stored in the variable’s memory
location. This could be out of date if the register-based copy has been
updated recently.

3.4 Interactions

The ORTI output will be correct when the program is stopped at a breakpoint
that is:

• In code executed by a task or Category 2 ISR that is outside of any
OSEK API call.

The ORTI output may be misleading if the application is stopped at a
breakpoint that is:

• Within an OSEK API call.

• In code executed by a Category 1 interrupt handler.

The output may be misleading because the OSEK data used by ORTI could be
in a partially updated state. Normally it is possible to tell if the program is part
way through an OSEK call by the debugger reporting the name of the
function in which the processor stopped.

On a platform with more than two interrupt priority levels, however, a
Category 1 interrupt can occur part way through an OSEK call. If the program
is stopped at a breakpoint in a Category 1 interrupt handler, it is necessary to
use the debugger’s stack trace facility to determine the name of the function
that was interrupted. The ORTI output can be relied upon, provided that the
Category 1 interrupt did not occur within an OSEK API call.

 4
.1

RTA-OSEK v5.0.2 ORTI Objects and Attributes 4-1

4 ORTI Objects and Attributes

4.1 Overview

This chapter describes the ORTI objects and their attributes that are defined by
RTA-OSEK. An ORTI object is some higher level encapsulation of information
in RTA-OSEK such as OS, TASK or ALARM. An application may contain zero or
more instances of each of these objects, each with a unique name. Each
object has a number of attributes and each attribute has a value. For
example, the OS object has a RUNNINGTASK attribute that shows the task
that is currently running.

The following information is presented as a set of tables, each describing an
object and all of its attributes. The tables appear in a standard format and
each row contains standard information.

Object: Type Description of Object

Attributes Description STATUS

Attribute Name,
“Attribute ORTI file
description”

Description of attribute. All

S = Standard

T = Timing

E = Extended

Each object has a set of named attributes. Each row of the table names the
attribute being described and gives a brief explanation of it.

The Attributes column contains the ORTI file description in quotes. Some
debuggers display the attribute name and others display the description given
in the ORTI file. The attribute prefix vs_ is used to indicate attributes that
have been added for RTA-OSEK support and are not standard ORTI attributes.

The STATUS column describes which STATUS attribute is available in
(Standard, Timing, Extended or all three).

 4
.2

 ORTI Objects and Attributes RTA-OSEK v5.0.0 4-2

4.2 Objects and Attributes

4.2.1 OS

Object: OS There is only one OS object. It is always present
and is called “RTKOS”.

Attributes Description STATUS

RUNNINGTASK,

"Running task"

The name of the TASK that is currently
running. If an ISR interrupts a task this
attribute will continue to display the
name of the task that was interrupted
while the ISR is executing.

All

RUNNINGTASKPRIORITY,

"Running task

 priority"

The current priority of the running task,
using the same terms as in the OIL file.
RUNNINGTASKPRIORITY does not
show the effect of locking a resource
shared by tasks and ISRs.

All

RUNNINGISR2,

"Running cat 2 ISR"

The value of this attribute is the name
of the Category 2 ISR that is currently
running (if there is one). NO_ISR is
displayed if no Category 2 ISR is
currently running.

T,E

vs_INTERRUPTPRIORITY,

"Interrupt priority"

The current interrupt priority level (0
when running at ‘user’ level). This
attribute is not supported on all targets.

Target -
specific

SERVICETRACE,

"OS Services Watch"

Indicates the entry or exit of a service
routine (an RTA-OSEK Component API
call) and the name of this routine.
Some debuggers recognize this
attribute as a special totrace
attribute and can provide additional
diagnostic support. On other
debuggers, you will be shown which
API call was most recently entered or
completed.

E

LASTERROR,

"Last OSEK error"

Gives the name of the last error that
has occurred. Initially set to E_OK.

E

 4
.2

RTA-OSEK v5.0.2 ORTI Objects and Attributes 4-3

Object: OS There is only one OS object. It is always present
and is called “RTKOS”.

Attributes Description STATUS

CURRENTAPPMODE,

"Current AppMode"

Current application mode using the
names stated in the OIL file.

The value “unknown AppMode” is
reported if the application mode does
not conform to a value in the OIL file.

All

vs_SPEED,

"Processor speed"

Gives the speed of the processor as
defined in the OIL file.

All

vs_STOPWATCHSPEED,

"Stopwatch speed"

Gives the stopwatch speed as defined
in the OIL file.

All

4.2.2 Task

Object: TASK Generated in response to task declarations in the
configuration file.

Attributes Description STATUS

STATE, "State" The task state. One of SUSPENDED,

RUNNING, READY and WAITING.

All

vs_BASEPRIORITY,

"Base priority"

Gives the base priority of the task. The
base priority is the priority of the task as
defined in the OIL file.

All

vs_DISPATCHPRIORITY,

"Dispatch priority"

Gives the dispatch priority of the task.
The dispatch priority is the priority that
the task starts running at. This can be
higher than the base priority if internal
resources are used or if the task is non-
preemptable.

All

vs_ACTIVATIONS,

"Maximum activations"

Gives the maximum number of
activations allowed.

All

vs_TYPE,

"Conformance type"

Shows the conformance class of the
task. It can take the values: BCC1,

BCC2, ECC1 or ECC2.

All

vs_RESOURCES,

"Resources"

Lists the resources that the task uses. All

 4
.2

 ORTI Objects and Attributes RTA-OSEK v5.0.0 4-4

Object: TASK Generated in response to task declarations in the
configuration file.

Attributes Description STATUS

vs_EVENTS,

"Events"

Lists the events that the task can wait
for.

All

vs_TERMINATION,

"Termination"

This is the termination type of the task.
HEAVY or LIGHT.

All

vs_SCHEDULE,

"Preemptability"

Indicates whether the task is
preemptable or non-preemptable.

All

vs_USESFP,

"Floating point"

Indicates whether this task uses floating
point. It is TRUE if the task uses floating

point arithmetic and FALSE otherwise.

All

4.2.3 Category 2 ISR

Object: ISR2 Generated in response to Category 2 ISR
declarations in the configuration file.

Attributes Description STATUS

vs_PRIORITY,"Priority" Gives the priority of the ISR. All

vs_VECTOR,"Vector" Gives the vector to which the ISR is
bound.

All

vs_USESFP,

"Floating point"

Indicates whether this ISR uses floating
point. It is TRUE if the task uses floating
point arithmetic.

All

vs_RESOURCES,

"Resources"

Lists the resources that the ISR uses. All

vs_BUFFERING,

"Buffering"

Shows the ISR buffering type. This
matches the buffering shown in the
RTA-OSEK GUI.

All

 4
.2

RTA-OSEK v5.0.2 ORTI Objects and Attributes 4-5

4.2.4 Category 1 ISR

Object: ISR1 Only generated in response to Category 1 ISR
declarations in the configuration file.

Attributes Description STATUS

vs_PRIORITY,"Priority" Gives the priority of the ISR. All

vs_VECTOR,

"Vector"

Gives the vector to which the ISR is
bound.

All

vs_BUFFERING,

"Buffering"

Shows the ISR buffering type. This
matches the buffering shown in the
RTA-OSEK GUI.

All

4.2.5 Counter

Object: COUNTER Only generated in response to counter declarations
in the configuration file.

Attributes Description STATUS

vs_COUNT, "Count" Indicates the current count value. All

vs_TICKRATE,

"Tick rate"

Indicates the expected tick rate. All

vs_DRIVER,

"Driver"

Indicates the ISR or task that is
expected to drive the counter.

All

vs_MAXALLOWEDVALUE,

"MaxAllowedValue"

Indicates the counter maximum value. All

vs_MINCYCLE,

"MinCycle"

Indicates the counter minimum cycle
value.

All

vs_TICKSPERBASE,

"TicksPerBase"

Indicates the counter ticksperbase
value.

All

 4
.2

 ORTI Objects and Attributes RTA-OSEK v5.0.0 4-6

4.2.6 Alarm

Object: ALARM Only generated in response to alarm declarations in
the configuration file.

Attributes Description STATUS

ALARMTIME,

"Alarm Time"

Shows when the alarm expires next.
Refer to the Count value in the

COUNTER object to establish the
current count value.

All

CYCLETIME,

"Cycle Time"

Gives the period of the cycle for a cyclic
alarm. CYCLETIME will be zero for a
single-shot alarm.

All

ACTION,

"Action"

The action to perform when the alarm
expires. This can include the following:

• Activate a task.

• Set an event.

• Execute a callback function.

In RTA-OSEK Component all of the
actions can be performed and ORTI
presents them as a list.

All

STATE,

"Alarm state"

Indicates whether the alarm is running.
Takes the value RUNNING or STOPPED.

All

"COUNTER",

"Counter"

Gives the name of the counter to which
this alarm is attached.

All

4.2.7 MessageContainer

Object:
MESSAGECONTAINER

Only generated in response to message receive
accessor declarations in the configuration file.

Attributes Description STATUS

MSGNAME,"Message Name" The name of the message All

vs_CDATATYPE,"C type" Indicates the C data type for the
message.

All

MSGTYPE,"Message Type" Gives the message type. It can take the
value QUEUED or UNQUEUED.

All

 4
.2

RTA-OSEK v5.0.2 ORTI Objects and Attributes 4-7

Object:
MESSAGECONTAINER

Only generated in response to message receive
accessor declarations in the configuration file.

Attributes Description STATUS

"QUEUESIZE",

"Queue size"

Gives the size of the queue for queued
messages. It is zero for unqueued
messages.

All

ACTION,

"Action performed when

message is received"

Gives the action performed when
message is received. This can include up
to 1 each of the following:

• Activate a task.

• Set an event.

• Call a function.

• Set a flag.

All

SENDER, "Sender" Gives the name of the task that sends
the message.

All

vs_SENDCOPY,

"Send copy"

Reflects whether the send accessor uses
a copy of the message data. Set to
TRUE if WithCopy and FALSE if

WithoutCopy.

All

RECEIVER,

"Receiver"

Gives the name of the task(s) that
receive the message.

All

vs_RECEIVECOPY,

"Receive copy"

Reflects whether the receive accessor
uses a copy of the message data. Set
to TRUE if WithCopy and FALSE if

WithoutCopy.

All

4.2.8 COM

Object: COM There is only one COM object. It is always present
and has the name “RTACOM”.

Attributes Description STATUS

vs_RUNNING,

"Running"
Indicates whether COM is running or
not. It is TRUE if COM is running,

otherwise it is FALSE.

E

Support

For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

