

RTA-OSEK
Binding Manual: V850E/IAR

Contact Details

ETAS Group

www.etasgroup.com

ETAS GmbH

70469 Stuttgart, Germany

Tel.:+49 711 89661-0

Fax:+49 711 89661-300

sales.de@etas.com

ETAS Inc.

Ann Arbor, MI 48103, USA

Tel.: +1 888 ETAS INC

Fax: +1 734 997 9449

sales.us@etas.com

ETAS S.A.S.

94588 Rungis Cedex, France

Tel.: +33 (1) 56 70 00 50

Fax: +33 (1) 56 70 00 51

sales.fr@etas.com

ETAS K.K.

Yokohama 220-6217, Japan

Tel.: +81 45 222-0900

Fax: +81 45 222-0956

sales.jp@etas.com

ETAS Ltd.

Derby DE21 4SU, UK

Tel.: +44 1332 253770

Fax: +44 1332 253779

sales.uk@etas.com

ETAS Korea Co. Ltd.

Seoul 137-889, Korea

Tel.: +82 2 5747-016

Fax: +82 2 5747-120

sales.kr@etas.com

ETAS (Shanghai) Co., Ltd.

Shanghai 200120, P.R. China

Tel.: +86 21 5037 2220

Fax: +86 21 5037 2221

sales.cn@etas.com

ETAS in Italy

10135 TORINO, Italy

Tel.: +39 011 3285 988

Fax: +39 (011) 3285 256

sales.it@etas.com

ETAS Automotive India Pvt. Ltd.

Bangalore 560 068, India

Tel.: +91 80 4191 2585

Fax: +91 80 4191 2586

sales.in@etas.com

ETAS in Brazil

CEP-05802-140 São Paulo, Brazil

Tel.: +55 11 2162-0252

sales.br@etas.com

ETAS in Russia

Moscow, 129515, Russia

Tel.: +7 495 937 0400 998

sales.ru@etas.com

Issue RM00099 Copyright Notice 1

Copyright Notice

© 2001 - 2010 ETAS GmbH. All rights reserved.

Version: RM00099

No part of this document may be reproduced without the prior

written consent of ETAS GmbH. The software described in this

document is furnished under a license and may only be used or

copied in accordance with the terms of such a license.

Disclaimer

The information in this document is subject to change without notice

and does not represent a commitment on any part of ETAS. While

the information contained herein is assumed to be accurate, ETAS

assumes no responsibility for any errors or omissions.

In no event shall ETAS, its employees, its contractors or the authors of

this document be liable for special, direct, indirect, or consequential

damage, losses, costs, charges, claims, demands, claim for lost

profits, fees or expenses of any nature or kind.

Trademarks

RTA-OSEK and RTA-TRACE are trademarks of ETAS GmbH.

Windows and MS-DOS are trademarks of Microsoft Corp.

OSEK/VDX is a trademark of Continental Automotive GmbH.

All other product names are trademarks or registered trademarks of

their respective owners.

C
o

n
te

n
t

s

Issue RM00099 Contents 3

Contents

1 About this Guide ..5

1.1 Who Should Read this Guide?...5

1.2 Conventions ..5

2 Toolchain Issues ..7

2.1 Compiler...7

2.2 Assembler...7

2.3 Linker/Locator ...8

2.4 Debugger...8

3 Target Hardware Issues ...9

3.1 Interrupts...9

3.1.1 Interrupt Levels ..9

3.1.2 Interrupt Vectors ...9

3.1.3 Category 1 Handlers... 10

3.1.4 Category 2 Handlers... 10

C
o

n
te

n
t

s

4 Contents Issue RM00099

3.1.5 Vector Table Issues.. 10

3.1.6 Interrupt-handling assembler files 11

3.1.7 Traps ... 14

3.1.8 Default Interrupt... 14

3.1.9 Flash Security ID ... 15

3.1.10 Helper Macros ... 16

3.2 Register Settings... 16

3.3 Stack Usage.. 17

3.3.1 Number of Stacks .. 17

3.3.2 Stack Usage within API Calls ... 17

4 Parameters of Implementation .. 19

1
.1

Issue RM00099 About this Guide 5

1 About this Guide

This guide provides target-specific information for the V850E/IAR port

of ETAS’ RTA-OSEK. It supplements the more general information in

the RTA-OSEK User Guide.

A port is defined as a specific target microcontroller/target toolchain

pairing. This guide tells you about integration issues with your target

toolchain and issues that you need to be aware of when using RTA-

OSEK on your target hardware. Port specific parameters of

implementation are also provided, giving the RAM and ROM

requirements for each object in the RTA-OSEK Component and

execution times for each API call to the RTA-OSEK Component.

1.1 Who Should Read this Guide?

The reader should have an understanding of real time embedded

programming in an OSEK context. You should read this guide if you

want to know low-level technical information to integrate the RTA-

OSEK Component into your application.

1.2 Conventions

Important: Notes that appear like this contain important information

that you need to be aware of. Make sure that you read them

carefully and that you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will

need to know if you want to write code that will work on any

processor running the RTA-OSEK Component.

Program code, file names, C types and symbols, and RTA-OSEK API

call names all appear in the courier typeface. When the name of

an object is made available to the programmer the name also

appears in the courier typeface, so, for example, a task named

Task1 appears as a task handle called Task1.

2
.1

Issue RM00099 Toolchain Issues 7

2 Toolchain Issues

This chapter contains important details about RTA-OSEK and your

toolchain. A port of the RTA-OSEK Component is specific to both the

target hardware and a specific version of the compiler toolchain.

You must make sure that you build your application with the

supported toolchain.

If you are interested in using a different version of the same

toolchain, please contact ETAS to confirm whether or not this is

possible.

2.1 Compiler

The RTA-OSEK Component was built using the following compiler:

Vendor IAR

Compiler IAR Embedded Workbench

Version v3.71.1.0

The compulsory compiler options for application code are shown in

the following table:

Option Description

V1 Specifies the V850E and V850ES cores

The C file that RTA-OSEK generates from your OIL configuration file is

called osekdefs.c. This file defines configuration parameters for the

RTA-OSEK Component when running your application.

2.2 Assembler

The RTA-OSEK Component was built using the following assembler:

Vendor IAR

Assembler IAR Universal Library Builder

Version V4.61R

The compulsory assembler options for application code are shown in

the following table:

Option Description

V1 Specifies the V850E and V850ES cores

2
.3

8 Toolchain Issues Issue RM00099

The assembly file that RTA-OSEK generates from your OIL

configuration file is called osgen.s85. This file defines configuration

parameters for the RTA-OSEK Component when running your

application.

2.3 Linker/Locator

In addition to the sections used by application code, the following

RTA-OSEK sections must be located:

Sections Rom/Ram Description

os_pid ROM RTA-OSEK read-only data

os_pird ROM RTA-OSEK initialization data

os_intvec ROM Vector table if generated by RTA-OSEK GUI

os_pir RAM RTA-OSEK initialized data

os_pur RAM RTA-OSEK uninitialized data

os_wrappers ROM RTA-OSEK interrupt wrappers.

os_text ROM RTA-OSEK code section.
os_jumptable ROM Jump table for indirect vector table
os_pirf RAM RTA-OSEK initialized data. Must be initialized during C-startup.
os_trace_ram RAM RTA-TRACE uninitialized data. Must be zeroed during C-startup.

In order to avoid the cost of the C-startup unnecessarily clearing

os_pir, this section should be given the NOCLEAR attribute in the

linker directive (*.ld) file. The supplied example application’s linker

directive file shows how this can be performed.

2.4 Debugger

Information about ORTI for RTA-OSEK can be found in the RTA-OSEK

ORTI Guide

At the time of writing, we were not aware of any debuggers for the

NEC V850E Series with support for ORTI.

If you are using an ORTI version 2.0 aware debugger on this platform

you can use the “Unknown ORTI debugger” option in the RTA-OSEK

GUI to generate an ORTI output file. The ORTI generated will not

have been tested on the debugger and, therefore, is not

guaranteed to work.

Please contact LiveDevices if you have any questions about ORTI

support in RTA-OSEK.

3
.1

Issue RM00099 Target Hardware Issues 9

3 Target Hardware Issues

3.1 Interrupts

This section explains the implementation of RTA-OSEK’s interrupt

model for V850E/IAR. You can find out more about configuring

interrupts for RTA-OSEK in the RTA-OSEK User Guide.

3.1.1 Interrupt Levels

In RTA-OSEK interrupts are allocated an Interrupt Priority Level (IPL).

This is a processor independent abstraction of the interrupt priorities

that are available on the target hardware. You can find out more

about IPLs in the RTA-OSEK User Guide. The hardware interrupt

controller is explained in the appropriate NEC manuals.

The following table shows how RTA-OSEK IPLs relate to interrupt

priorities on the target hardware:

IPL Value Hardware Priority ISPR Values Description

0 N/A 00000000 User level

1 7 1E+07 Category 1 and 2 interrupts

2 6 x1000000 Category 1 and 2 interrupts

3 5 xx100000 Category 1 and 2 interrupts

4 4 xxx10000 Category 1 and 2 interrupts

5 3 xxxx1000 Category 1 and 2 interrupts

6 2 xxxxx100 Category 1 and 2 interrupts

7 1 xxxxxx10 Category 1 and 2 interrupts

8 0 xxxxxxx1 Category 1 and 2 interrupts

3.1.2 Interrupt Vectors

For the allocation of Category 1 and Category 2 interrupt handlers to

interrupt vectors on your target hardware, the following restrictions

apply:

Vector Legality

0x0010 to 0x0050 and 0x00700 Category 1

0x0080 to maximum vector for CPU variant Category 1 or 2

The valid base addresses for the vector table are:

3
.1

10 Target Hardware Issues Issue RM00099

Base Address Notes
0x0010 The vector table must start just above the reset vector.

3.1.3 Category 1 Handlers

Category 1 interrupt service routines (ISRs) must correctly handle the

interrupt context themselves, without support from the operating

system. The IAR C compiler can generate appropriate interrupt

handling code for a C function decorated with the __interrupt

function qualifier. You can find out more in your compiler

documentation.

3.1.4 Category 2 Handlers

Category 2 ISRs are provided with a C function context by the RTA-

OSEK Component, since the RTA-OSEK Component handles the

interrupt context itself. The handlers are written using the OSEK OS

standard ISR() macro, shown in Code Example 3:1.

#include “MyISR.h”

ISR(MyISR) {

 /* Handler routine */

}

Code Example 3:1 - Category 2 ISR Interrupt Handler

You must not insert a return from interrupt instruction in such a

function. The return is handled automatically by the RTA-OSEK

Component.

3.1.5 Vector Table Issues

The number of vectors available depends upon the specific V850

chip variant selected in RTA-OSEK. The variants directly supported

are CAG4-M, DJ3, FE2, FE3, FF2, FF3, FG2, FG3, FJ2, FJ3, FK3, PH2, PH3,

PHO3, RS1, SG2, SG3, SJ2 and SJ3. These are in addition to the

‘Generic V850ES’ variant. Further variants can be supported by

contacting ETAS.

When RTA-OSEK generates an interrupt vector table for the V850, it

only emits data for addresses 0x10 up to the highest declared

interrupt. This allows RTA-OSEK to cope efficiently with chip variants

with differently sized vector tables.

3
.1

Issue RM00099 Target Hardware Issues 11

Reserved vectors

The RTA-OSEK component requires eight interrupt vectors to be

reserved for its use. By default these will be generated in the vector

table in the first eight unbound vectors starting from vector 0x80. This

can be overridden by creating a dummy ISR in the RTA-OSEK GUI

with the name ‘reserved_os_vector’. The first reserved vector will

then be generated in its place and the remaining reserved vectors

will be generated in the next seven unbound vectors.

The RTA-OSEK component also needs to know the addresses of the

eight interrupt control registers (PICn) corresponding with the

reserved vectors. These should be mapped at link-time to the

_os_reserved_icrn labels, where n ranges from 1 to 8. The linker

directive file provided with the example application shows how this

can be achieved.

3.1.6 Interrupt-handling assembler files

RTA-OSEK generates three different interrupt-handling assembler

source files, each with a different approach to supporting ISRs. They

are mutually exclusive: only one of the three should be compiled

and linked into an application. osvec1.s85 is the only one to

include a vector table; osvec2.s85 and osvec3.s85 both require a

vector table to be supplied by the user. As such, it is recommended

that osvec1.s85 is used unless the added flexibility of osvec2.s85 or

osvec3.s85 is required. An explanation of the contents of each of

the files follows below.

Note that when you configure your application with the RTA-OSEK

GUI you can choose whether or not a vector table is generated. This

option dictates whether or not the file osvec1.s85 is generated;

osvec2.s85 and osvec3.s85 are always generated, regardless of

this option.

In the following discussion, an ‘outer wrapper’ is a small function,

specific to an ISR, which sets up sufficient context for that ISR’s entry

function pointer to be passed along to the ‘mid-wrapper.’ The mid-

wrapper is common to all Category 2 ISRs and saves and restores the

register context around the call to the ISR’s entry function.

osvec1. s85

The file osvec1.s85 contains the interrupt vector table (containing

the outer wrappers) and the mid-wrapper. The vector table is placed

in the os_intvec section, which should be linked starting at address

0x10, and the mid-wrapper is placed in the os_wrappers section.

3
.1

12 Target Hardware Issues Issue RM00099

osvec2. s85

The file osvec2.s85 does not contain a traditional vector table, but

does contain a ‘jump table’ with the label _os_vec2_table, which is

placed in the os_jumptable section. The table contains four-byte

entries, one for each vector from 0x10 up to the highest bound

vector. The content of each table entry depends on its

corresponding vector as follows:

1. If a Category 2 ISR is bound to the vector, the entry is a jump (jr) to

the outer interrupt wrapper for that ISR.

2. If a Category 1 ISR is bound to the vector, the entry is a jump to the

ISR’s entry function.

3. If the vector is unbound, greater than or equal to vector 0x80 (or the

vector for the dummy ISR reserved_os_vector, if it exists) and

fewer than eight entries have been reserved for the OS, then the

entry is a jump to os_reserved_vector (see ‘Reserved vectors’

above for an explanation).

4. If the vector is unbound and there exists a default interrupt, the entry

is a jump to the default interrupt’s entry function.

5. If the vector is unbound and there is no default interrupt, the entry is

a nop instruction.

The file also contains each outer wrapper referenced in the jump

table, the mid-wrapper and the code for os_reserved_vector.

These are all placed in the os_wrappers section.

The file can be assembled with only the wrappers (i.e. without the

jump table) by defining the symbol OS_NO_JUMP_TABLE on the

command line.

osvec3. s85

The file osvec3.s85 contains a jump table similar to that in

osvec2.s85, with the difference that the entries contain addresses

rather than jump instructions. The content of each four-byte table

entry depends on its corresponding vector as follows:

6. If a Category 2 ISR is bound to the vector, the entry is the address of

the outer interrupt wrapper for that ISR.

7. If a Category 1 ISR is bound to the vector, the entry is the address of

the ISR’s entry function.

8. If the vector is unbound and there exists a default interrupt, the entry

is the address of the default interrupt’s entry function.

9. If the vector is unbound and there is no default interrupt, the entry is

zero.

3
.1

Issue RM00099 Target Hardware Issues 13

The file also contains the outer wrappers referenced in the jump

table, which differ from the wrappers in osvec2.s85 by omitting the

code to preserve r6 on the stack.

osvec3.s85 also contains a special form of mid-wrapper. Unlike the

‘regular’ mid-wrapper used in osvec1.s85 and osvec2.s85, this

mid-wrapper does not restore r6 from the stack after the ISR has run,

and does not return from interrupt (reti). The final instruction of the

mid-wrapper is a jump to os_end_wrapper. A default

implementation of os_end_wrapper, which restores r6 from the

stack and returns from interrupt, is provided. The default

implementation can be removed by the preprocessor by defining

the symbol OS_NO_END_WRAPPER on the command line.

Important: When using osvec3.s85, it is the responsibility of the user

to preserve r6 in interrupt-handling code before execution reaches

the outer wrapper. The default implementation of os_end_wrapper

can be used if only r6 is preserved on the stack. If any other registers

are used before execution reaches the outer wrappers, then they

must be preserved on the stack, and os_end_wrapper overridden to

restore them (and r6) from the stack. Any such additional stack

usage must be accounted for in the idle task’s stack usage.

Important: When using osvec3.s85, the eight reserved vectors, each

consisting of the following code, must be manually placed on the

vector table. They may be placed anywhere, with the condition that

the locations must match the _os_reserved_icrn addresses

provided at link-time.

-- OS reserved vector

 stsr EIPC, r2

 jmp [r2]

 .align 16

The following table shows the syntax for labels attached to RTA-OSEK

Category 2 interrupt handlers (VVVV represents the 4 hex digit,

upper-case, zero-padded value of the vector location).

Vector Location Label

0xVVVV os_wrapper_vvvv

eg :0x03A0 os_wrapper_03a0

3
.1

14 Target Hardware Issues Issue RM00099

3.1.7 Traps

If a trap instruction is used, a Category 1 interrupt handler can be set

up to service the exception. However, RTA-OSEK does not preserve

the EP (exception in progress) bit in the PSW if an API call is made

that manipulates the IPL. If such calls are used, the EP bit must be set

back to 1 prior to leaving the interrupt handler as shown in the

sample code below.

asm void set_PSW(ByteType m) {

%reg m ;

 ldsr m, PSW ;

%error

 Macro has not expanded

}

asm ByteType get_PSW(void) {

 stsr PSW,r10;

}

__interrupt void sync_isr(void)

{

 register ByteType psw_val = get_PSW();

 DisableAllInterrupts();

 ...

 EnableAllInterrupts();

 set_PSW(psw_val);

}

Note that in reality an exception handler never needs to make such

calls, because it is already executing at the highest IPL and it is illegal

for it to lower the interrupt priority. In this case, no special processing

will be needed.

3.1.8 Default Interrupt

The ‘default interrupt’ is intended to be used to catch all

unexpected interrupts. All unused interrupts have their interrupt

vectors directed to the named routine that you specify. This routine

must correctly handle the interrupt context, in the same way as a

Category 1 ISR. The Green Hills C compiler can generate

appropriate interrupt handling code using the __interrupt function

qualifier.

Because RTA-OSEK only emits interrupt vectors for addresses 0x0010

up to the highest declared interrupt, it will only fill unused vectors with

3
.1

Issue RM00099 Target Hardware Issues 15

the default interrupt up to the highest declared interrupt. To fill the

entire vector table for your chip variant, create a dummy Category

1 interrupt and place it on the highest vector used by the chip. The

default interrupt will then be used to fill all unused vectors below this.

3.1.9 Flash Security ID

To protect the contents of internal ROM some V850 variants such as

the FE2 and FF2 support a 10 byte security number located at

memory address 0x70. This address falls within the interrupt vector

table range. If the user wishes to enter a 10 byte security number at

this address there are three available methods:

1. The OS_SECURITY_ID macro in osvec1.s85 can be defined on the

command line. For example, assembling osvec1.s85 with the

command line option -DOS_SECURITY_ID=0x11, 0x22, 0x33,

0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA will insert the

security number 0x112233445566778899AA at address 0x70.

2. OS_SECURITY_ID can alternatively be defined in a header file, and

osvec1.s85 can be made to include that file by defining

OS_SECURITY_ID_HEADER to be the file’s name. For example,

assembling osvec1.s85 with the option -DOS_SECURITY_ID_HEADER

=\"security_id.h\" will have the effect of including

security_id.h at the start of osvec1.s85.

3. The security ID can also be specified in an assembler source file, and

osvec1.s85 can be made to include that file at vector 0x70. This is

achieved using the preprocessor symbol OS_SECURITY_ID_ASM. For

example, creating the file security_id.s85 containing “.byte
0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99,

0xAA” and assembling osvec1.s85 with the option

-DOS_SECURITY_ID_ASM=\"security_id.s85 \" will insert the

security ID 0x112233445566778899AA at address 0x70.

Some V850 variants may contain other registers in flash after the

security ID. For example, the CAG4-M variant contains the FMOP0

and FMOP1 registers at addresses 0x7A and 0x7B, respectively. These

can be set simply by adding two (or more) additional bytes to the

OS_SECURITY_ID macro. The provided example application

demonstrates this by building osvec1.s85 to write 0xDF to FMOP0,

0xFF to FMOP1, and to fill the remaining bytes from 0x7C to 0x7F with

0xFF.

3
.2

16 Target Hardware Issues Issue RM00099

3.1.10 Helper Macros

Category 1 ISR Macros

The macros CAT1ISR_BEGIN() and CAT1ISR_END() should be

placed at the start and end of Category 1 ISR functions, to allow

nested execution of interrupts by enabling/disabling interrupts and to

perform some housekeeping required for the RTA-OSEK component

to function correctly. A Category 1 ISR function should therefore look

like the following code:

__interrupt void some_isr(void)

{

 CAT1ISR_BEGIN()

 /* user code goes here */

 CAT1ISR_END()

}

Enabling and Disabling Interrupt Sources

The macros OS_ENABLE_INTERRUPT(PICn) and

OS_DISABLE_INTERRUPT(PICn) will enable/disable a specific

interrupt source by writing to the provided interrupt control register.

The arguments provided to these macros should be the register

macros defined in the device header files provided by NEC. For

example, the macro PIC10 is defined in the file ‘df3461.h’ provided

with the example application. The following code would disable,

and then enable, the INTP10 interrupt.

/* disable INTP10 */

OS_DISABLE_INTERRUPT(PIC10);

/* enable INTP10 */

OS_ENABLE_INTERRUPT(PIC10);

3.2 Register Settings

The RTA-OSEK Component does not require the initialization of

registers before calling StartOS().

The RTA-OSEK Component does not reserve the use of any hardware

registers.

3
.3

Issue RM00099 Target Hardware Issues 17

3.3 Stack Usage

3.3.1 Number of Stacks

A single stack is used. The first argument to StackFaultHook is

always 0.

osStackOffsetType is a scalar, representing the number of bytes on

the stack, with C type unsigned long.

3.3.2 Stack Usage within API Calls

The maximum stack usage within RTA-OSEK API calls, excluding calls

to hooks and callbacks, is as follows:

Standard

API max usage (bytes): 64

Timing

API max usage (bytes): 64

Extended

API max usage (bytes): 88

To determine the correct stack usage for tasks that use other library

code, you may need to contact the library vendor to find out more

about call stack usage.

4

Issue RM00099 Parameters of Implementation 19

4 Parameters of Implementation

This chapter provides detailed information on the functionality,

performance and memory demands of the RTA-OSEK Component.

NB: This is a placeholder for the tables of sizes and times collected by

the Binding Manual Performance Measurement application. At the

time of generation of this manual, this application is not yet available

for the V850E/IAR port of RTA-OSEK.

S
u

p
p

o
rt

Issue RM00099 Support 21

Support

For product support, please contact your local ETAS representative.

Office locations and contact details can be found at the front of this

manual and on the ETAS Group website www.etasgroup.com.

