
RTA-OS3.1
User Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2010 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10483-UG-1.0.0

2 Copyright

Contents

1 Welcome to RTA-OS3.1! 12
1.1 Related Documents . 12
1.2 About You . 12
1.3 Document Conventions . 13
1.4 References . 13

2 Introduction 15
2.1 Features of the RTA-OS3.x Kernel 17

2.1.1 OSEK . 17
2.1.2 AUTOSAR . 20
2.1.3 Unique RTA-OS3.x Features 22

2.2 Summary . 23

3 Development Process 24
3.1 Configuration . 24

3.1.1 OS Configuration . 25
3.1.2 RTA-TRACE Configuration 28
3.1.3 Build . 29
3.1.4 Project Files . 29
3.1.5 Error Checking . 31
3.1.6 Generating Reports . 34

3.2 Assistants . 36
3.3 Library Generation . 36

3.3.1 Preparing the Tool Chain 36
3.3.2 Understanding AUTOSAR Dependencies 38
3.3.3 Running rtaosgen . 41
3.3.4 Building the library . 41
3.3.5 Generated Files . 42

3.4 Integration . 43
3.4.1 Accessing the OS in your Source Code 43
3.4.2 Implementing Tasks and ISRs 44
3.4.3 Starting the OS . 44
3.4.4 Interacting with the RTA-OS3.x 45
3.4.5 Compiling and Linking 45

3.5 Memory Images and Linker Files 45
3.5.1 Sections . 45
3.5.2 The Linker Control File 47

3.6 Summary . 48

Contents 3

4 Tasks 49
4.1 Scheduling . 49
4.2 Basic and Extended Tasks . 51

4.2.1 Task States . 52
4.2.2 Task Priorities . 54
4.2.3 Queued Task Activation 55

4.3 Conformance Classes . 56
4.4 Maximizing Performance and Minimizing Memory 57
4.5 Task Configuration . 57

4.5.1 Scheduling Policy . 59
4.5.2 Queued Activation . 59
4.5.3 Auto-starting Tasks . 60

4.6 Stack Management . 61
4.6.1 Working with Extended Tasks 62
4.6.2 Mandatory Stack Information 64
4.6.3 Specifying Task Stack Allocation 66
4.6.4 Optimizing the Extended Task context save . . . 67
4.6.5 Handling Stack Overrun 70

4.7 Implementing Tasks . 72
4.8 Activating Tasks . 73

4.8.1 Direct Activation . 74
4.8.2 Indirect Activation . 74

4.9 Controlling Task Execution Ordering 75
4.9.1 Direct Activation Chains 75
4.9.2 Using Priority Levels 76

4.10 Co-operative Scheduling in RTA-OS3.x 77
4.10.1 Optimizing out the Schedule() API 78

4.11 Terminating Tasks . 78
4.11.1 Optimizing Termination in RTA-OS3.x 79

4.12 The Idle Mechanism . 80
4.13 Pre and Post Task Hooks . 81
4.14 Saving Hardware Registers across Preemption 83
4.15 Summary . 87

4 Contents

5 Interrupts 88
5.1 Single-Level and Multi-Level Platforms 88
5.2 Interrupt Service Routines . 88
5.3 Category 1 and Category 2 Interrupts 89

5.3.1 Category 1 Interrupts 89
5.3.2 Category 2 Interrupts 89

5.4 Interrupt Priorities . 89
5.4.1 User Level . 92
5.4.2 OS Level . 92

5.5 Interrupt Configuration . 93
5.5.1 Vector Table Generation 94

5.6 Implementing Interrupt Handlers 95
5.6.1 Category 1 Interrupt Handlers 95
5.6.2 Category 2 Interrupt Handlers 96
5.6.3 Dismissing Interrupts 96
5.6.4 Writing Efficient Interrupt Handlers 97

5.7 Enabling and Disabling Interrupts 98
5.8 Saving Register Sets . 99
5.9 The Default Interrupt . 99
5.10 Summary . 101

6 Resources 103
6.1 Resource Configuration . 105
6.2 Resources on Interrupt Level . 105
6.3 Using Resources . 106

6.3.1 Nesting Resource Calls 108
6.4 Linked Resources . 108
6.5 Internal Resources . 110
6.6 Using Resources to Minimize Stack Usage 112

6.6.1 Internal Resources . 113
6.6.2 Standard Resources . 114

6.7 The Scheduler as a Resource . 114
6.8 Choosing a Preemption Control Mechanism 116
6.9 Avoiding Race Conditions . 117
6.10 Summary . 118

Contents 5

7 Events 119
7.1 Configuring Events . 119

7.1.1 Defining Waiting Tasks 120
7.2 Waiting on Events . 120

7.2.1 Single Events . 122
7.2.2 Multiple Events . 122
7.2.3 Deadlock with Extended Tasks 123

7.3 Setting Events . 124
7.3.1 Setting Events with an Alarm 125
7.3.2 Setting Events with a Schedule Table Expiry Point125

7.4 Clearing Events . 125
7.5 Simulating Extended Tasks with Basic Tasks 126
7.6 Summary . 127

8 Counters 128
8.1 Configuring Counters . 128
8.2 Counter Drivers . 129

8.2.1 Software Counter Drivers 130
8.2.2 Hardware Counter Drivers 134

8.3 Accessing Counter Attributes at Runtime 137
8.3.1 Special Counter Names 138

8.4 Reading Counter Values . 138
8.5 Tick to Time Conversions . 139
8.6 Summary . 141

9 Alarms 142
9.1 Configuring Alarms . 142

9.1.1 Activating a Task . 143
9.1.2 Setting an Event . 144
9.1.3 Alarm Callbacks . 144
9.1.4 Incrementing a Counter 145

9.2 Setting Alarms . 147
9.2.1 Absolute Alarms . 147
9.2.2 Relative Alarms . 150

9.3 Auto-starting Alarms . 151
9.4 Canceling Alarms . 152
9.5 Working out when an Alarm will occur 153
9.6 Non-cyclic (aperiodic) Alarms . 154
9.7 Summary . 154

6 Contents

10 Schedule Tables 156
10.1 Configuring a Schedule Table . 158

10.1.1 Synchronization . 160
10.2 Configuring Expiry Points . 160
10.3 The Schedule Table Assistant . 162
10.4 Starting Schedule Tables . 163

10.4.1 Absolute Start . 163
10.4.2 Relative Start . 165
10.4.3 Synchronized Start . 166

10.5 Expiry Point Processing . 167
10.6 Stopping Schedule Tables . 167

10.6.1 Restarting a stopped schedule table 167
10.7 Switching Schedule Tables . 169
10.8 Choosing an Synchronization Strategy 170
10.9 Implicit Synchronization . 171
10.10 Explicit Synchronization . 173

10.10.1 Counter Constraints . 173
10.10.2 Specifying Synchronization Bounds 174
10.10.3 Startup . 177
10.10.4 Synchronizing the Schedule Table 179
10.10.5 Synchronization . 180
10.10.6 Disabling Synchronization 183

10.11 Schedule Table Status . 184
10.12 Summary . 184

11 Writing Hardware Counter Drivers 186
11.1 The Hardware Counter Driver Model 186

11.1.1 Interrupt Service Routine 187
11.1.2 Callbacks . 188

11.2 Using Output Compare Hardware 189
11.2.1 Callbacks . 190
11.2.2 Interrupt Handlers . 194
11.2.3 Handling a Hardware modulus not equal to

TickType . 198
11.3 Free Running Counter and Interval Timer 203

11.3.1 Callbacks . 204
11.3.2 ISR . 205

11.4 Using Match on Zero Down Counters 206
11.4.1 Callbacks . 207
11.4.2 Interrupt Handler . 208

11.5 Software Counters Driven by an Interval Timer 209
11.6 Summary . 209

Contents 7

12 Startup and Shutdown 211
12.1 From System Reset to StartOS() 211

12.1.1 Power-on or Reset . 211
12.1.2 C Language Start-up Code 212
12.1.3 Running main() . 213

12.2 Starting RTA-OS3.x . 216
12.2.1 Startup Hook . 217
12.2.2 Application Modes . 217

12.3 Shutting Down RTA-OS3.x . 222
12.3.1 Shutdown Hook . 222

12.4 Restarting RTA-OS3.x . 223
12.5 Summary . 224

13 Error Handling 225
13.1 Centralized Error Handling - the ErrorHook() 226

13.1.1 Configuring Advanced Error Logging 227
13.1.2 Working out which Task is Running 229
13.1.3 Working out which ISR is Running 230
13.1.4 Generating a Skeleton ErrorHook() 230

13.2 In-line Error Handling . 231
13.3 Conditional Inclusion of Error Checking Code 231
13.4 Summary . 232

14 Measuring and Monitoring Stack Usage 233
14.1 Stack Monitoring . 233

14.1.1 Setting Defaults . 234
14.1.2 Configuring Stack Allocation per Task/ISR 234

14.2 Using the Os_Cbk_StackOverrunHook() 236
14.3 Measuring Stack Usage . 238

14.3.1 Marking the Worst Case for Function Calls 239
14.4 Summary . 241

15 Measuring and Monitoring Execution Time 242
15.1 Enabling Time Monitoring . 242

15.1.1 Providing a Stopwatch 243
15.1.2 Scaling the Stopwatch 244

15.2 Automatic Measurement of Task and ISR Execution Times 244
15.3 Manual Time Measurement . 246
15.4 Imprecise Computation . 247
15.5 Monitoring Execution Times against Budgets 248
15.6 Summary . 250

8 Contents

16 Using an ORTI-Compatible Debugger 251
16.1 Development Process . 251
16.2 Intrusiveness . 252
16.3 Validity . 253
16.4 Interactions . 253
16.5 Summary . 254

17 RTA-TRACE2.1 Integration 255
17.1 Basic Configuration . 256
17.2 Controlling RTA-TRACE2.1 . 257

17.2.1 Controlling with Objects are Traced 258
17.3 User-Defined Trace Objects . 260

17.3.1 Tracepoints . 261
17.3.2 Task Tracepoints . 262
17.3.3 Intervals . 262
17.3.4 Controlling which User-Defined Objects are

Traced . 264
17.3.5 Format Strings . 266

17.4 ECU Links . 269
17.4.1 Debugger Links . 270
17.4.2 Serial Links . 271

17.5 Summary . 276

18 Protected Systems 277
18.1 Customized Protection Schemes 278
18.2 Handling Protection Errors . 279

18.2.1 Fallbacks . 282
18.3 Forced Termination . 282

18.3.1 Tasks and ISRs . 282
18.3.2 OS-Applications . 283
18.3.3 Disabling Interrupt Sources 283

18.4 Generating a Skeleton ProtectionHook() 284
18.5 Summary . 284

Contents 9

19 Timing Protection 285
19.1 What is a timing fault? . 285
19.2 Meeting Deadlines at Runtime 286

19.2.1 Why deadline monitoring is not sufficient 286
19.2.2 Meeting Deadlines and Identifying Violators . . 287

19.3 Execution Budgets and Time Frames 289
19.3.1 Execution Budgets . 289
19.3.2 Execution Budget Detection Modes 292
19.3.3 Time Frames . 292

19.4 Configuring Timing Protection . 294
19.5 Lock Budgets . 295
19.6 Providing a Time Reference . 296

19.6.1 Passive Detection . 296
19.6.2 Active Detection . 297
19.6.3 Rounding Errors . 297

19.7 Function-Level Timing Protection 298
19.8 Summary . 298

20 Service Protection 299
20.1 OS-Applications . 300
20.2 Configuring OS-Applications . 301

20.2.1 Ownership of OS objects 301
20.2.2 Access to OS objects 302

20.3 Accessing Applications . 303
20.3.1 Hidden Accesses . 305
20.3.2 Safety Risks . 307

20.4 Identifying the Running OS-Application 307
20.5 Access and Ownership . 308
20.6 Terminating OS-Applications . 309

20.6.1 The Restart Task . 310
20.6.2 Interaction with Accessing Applications 311

20.7 OS-Application Hooks . 311
20.7.1 Startup Hook . 312
20.7.2 Shutdown Hook . 313
20.7.3 Error Hook . 313

20.8 Trusted Functions . 314
20.8.1 Calling Trusted Functions 314
20.8.2 Implementing Trusted Functions 315

20.9 Summary . 316

10 Contents

21 Memory Protection 317
21.1 Hardware Limitations . 318
21.2 AUTOSAR Limitations . 319
21.3 Defining and Using Memory Regions 320

21.3.1 Placing Task and OS-Application Data into the
same section . 320

21.3.2 Placing Task and OS-Application Data into
unique sections . 322

21.4 Locating . 324
21.5 Interacting with an MPU or MMU 325

21.5.1 Default Implementations 326
21.6 Interaction with Stack Monitoring 326
21.7 Checking Memory Access . 326

21.7.1 Setting Access Permissions 327
21.7.2 Checking Access Permissions 329

21.8 Summary . 329

22 Contacting ETAS 331
22.1 Technical Support . 331
22.2 General Enquiries . 331

22.2.1 ETAS Global Headquarters 331
22.2.2 ETAS Local Sales & Support Offices 331

Contents 11

1 Welcome to RTA-OS3.1!

This user guide tells you how to use RTA-OS3.x to build AUTOSAR OS-based
applications and is structured as follows:

Chapter 2 introduces you to RTA-OS3.x, covering what tools are provided,
which standards are supported by the kernel and gives a brief overview
of kernel features.

Chapter 3 takes you through the stages of development with RTA-OS3.x,
including how to use the tools supplied to configure and build a kernel
library and how to integrate it with your application.

Chapters 4-12 explain in detail how to configure the OS for each major class
of OS object and how to use the kernel APIs that manipulate those ob-
jects at runtime.

Chapters 13-17 explain what to do when things go wrong. They cover how
to detect erroneous use of the kernel API during development, how to
check for stack overruns and timing faults and how to integrate with
external debugging and profiling tools to get additional insight into how
the OS is behaving at runtime.

Chapters 18-21 describe how to build partitioned systems where multiple
applications are integrated with a common OS. They describe how OS
objects are mapped to partitions and how to protect those partitions
against erroneous access, timing and memory faults at runtime.

1.1 Related Documents

A complete technical reference to RTA-OS3.x can be found in the Reference
Guide in the same directory as this user guide. Specific technical details
about the implementation of RTA-OS3.x for your choice of compiler and target
hardware (what we call a port) is contained in the Target/Compiler Port Guide.
There is one Target/Compiler Port Guide for each installed RTA-OS3.x port that
can be found in the root of the port’s installation directory.

1.2 About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

12 Welcome to RTA-OS3.1!

You should also be familiar with common use of the Microsoft Windows 2000,
Windows XP or Windows Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and folders.

1.3 Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters

Press <Enter>. Key commands are enclosed in an-
gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Task1) Program code, header file names,
C type names, C functions and
API call names all appear in a
monospaced typeface.

See Section 1.3. Hyperlinks through the document
are shown in blue letters.

Functionality that is provided in
RTA-OS but may not be portable to
another AUTOSAR OS implementa-
tion is marked with the ETAS logo.

Caution! Notes like this contain im-
portant instructions that you must
follow carefully in order for things
to work correctly.

1.4 References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

Welcome to RTA-OS3.1! 13

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

14 Welcome to RTA-OS3.1!

http://www.osek-vdx.org
http://www.autosar.org

2 Introduction

RTA-OS3.x is a statically configurable, preemptive, real-time operating sys-
tem (RTOS) for use in high-performance, resource-constrained applications.
RTA-OS3.x is a full implementation of the open-standard AUTOSAR OS R3.x
(Scalability Class 4) and includes functionality that is fully compliant to Ver-
sion 2.2.3 of the OSEK/VDX OS Standard.

The RTA-OS3.x kernel has been designed to be:

high performance - the kernel is very small and very fast. The memory
footprint of the kernel and its run-time performance are class leading,
making RTA-OS3.x particularly suitable for systems manufactured in
large quantities, where it is necessary to meet very tight constraints
on hardware costs and where any final product must function correctly.

RTA-OS3.x provides a number of unique optimizations that contribute to
reductions in unit cost of systems. The kernel uses a single-stack archi-
tecture for all types of task. This provides significant RAM savings over
a traditional stack-per-task model. Furthermore, careful application de-
sign can exploit the single-stack architecture to offer significant stack
RAM savings.

The offline tools analyze your OS configuration and use this information
to build the smallest and fastest kernel possible. Code that you are not
going to use is excluded from the kernel to avoid wasting execution time
and memory space.

real-time - conventional RTOS designs normally have unpredictable over-
heads, usually dependent upon the number of tasks and the state of
the system at each point in time. This makes it difficult to guarantee
real-time predictability - no matter how ‘fast’ the kernel is. In RTA-OS3.x
the kernel is fast and all runtime overheads - such as switching to and
from tasks, handling interrupts and waking up tasks - have low worst-
case bounds and little or no variability of execution times. In many
cases, context switching happens in constant execution time, meaning
that RTA-OS3.x can be used for the development of hard real-time sys-
tems where responses must be made within specific timing deadlines.
Meeting hard deadlines involves calculating the worst-case response
time of each task and Interrupt Service Routine (ISR) and ensuring that
everything runs on time, every time. RTA-OS3.x is a real RTOS because
it meets the assumptions of fixed priority schedulability analysis.

portable - RTA-OS3.x is available for a wide variety of microcontroller/com-
piler combinations (or port). All ports share the same common RTA-
OS3.x code, which comprises about 97% of the total kernel functional-

Introduction 15

Figure 2.1: RTA-OS3.x Product Architecture

ity. The kernel is written in ANSI C that is MISRA-C 2004 compliant. A
MISRA report for RTA-OS3.x can be generated by the offline tools.

As far as is possible, RTA-OS3.x does not impose on hardware - gen-
erally, there is no need to hand over control of hardware, such as the
cache, watchdog timers and I/O ports. As a result of this, hardware can
be used freely by your code, allowing legacy software to be integrated
into the system.

The RTA-OS3.x product architecture is shown in Figure 2.1 and consists of:

• rtaoscfg a graphical configuration tool that reads and writes configura-
tions in the AUTOSAR XML configuration language.

• rtaosgen a command-line tool for generating a RTA-OS3.x kernel library
from your input configuration.

• Port plug-ins, one for each target/compiler combination for which you use
RTA-OS3.x. You can install multiple ports at the same time and switch
between them as desired. You can also install multiple versions of the

16 Introduction

same port concurrently, allowing your to easily manage projects that use
legacy compilers and/or microcontrollers.

• VRTA is a special port plug-in which provides the functionality of RTA-
OS3.x on a standard Windows PC. This allows you to design and test ap-
plication behavior without needing real target hardware1. VRTA comes
with a development kit that allows you to build Virtual ECUs that can sim-
ulate interrupts, I/O etc.

2.1 Features of the RTA-OS3.x Kernel

RTA-OS3.x builds on the proven technology of earlier ETAS operating systems
which, to date, have been used in over 350 million ECUs worldwide. The
kernel provides an implementation of the AUTOSAR OS R3.x open standard,
a standard which subsumes features from the earlier OSEK OS standard2. The
kernel also provides a number of additional features which are unique to RTA-
OS3.x. The following sections provide a short introduction to the standards
and their features.

2.1.1 OSEK

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. The full name of the project is OS-
EK/VDX. OSEK is an acronym formed from a phrase in German, which trans-
lates as Open Systems and Corresponding Interfaces for Automotive Elec-
tronics. VDX is based on a French standard (Vehicle Distributed eXecutive),
which has now been merged with OSEK. OSEK/VDX is referred to as OSEK in
this guide.

The goals of OSEK are to support portability and reusability of software com-
ponents across a number of projects. This allows vendors to specialize in
Automotive Intellectual Property, whereby a vendor can develop a purely
software solution and run software in any OSEK-compliant ECU.

To reach this goal, however, detailed specifications of the interfaces to each
non application-specific component are required. OSEK standards therefore
include an Application Programming Interface (API) that abstracts away from
the specific details of the underlying hardware and the configuration of the
in-vehicle networks.

For further information see http://www.osek-vdx.org.

1Note that VRTA is not a realtime environment, since it operates within the Windows oper-
ating system.

2For the sake of brevity, the term AUTOSAR OS is used throughout this document to refer
to the combined AUTOSAR and OSEK OS standards.

Introduction 17

http://www.osek-vdx.org

OSEK OS

OSEK OS is the most mature and most widely used of the OSEK standards.
OSEK OS has been adopted in all types of automotive ECUs, from powertrain,
chassis and body to multi-media devices.

The most recent version of OSEK OS is 2.2.3, the third minor revision of the
2.2 standard originally introduced in September 2001. This version of OSEK
OS is also part of the ISO17356 standard.

OSEK OS is entirely statically defined using an offline configuration language
called OIL (OSEK Implementation Language). Since all objects are known at
system generation time, implementations can be extremely small and effi-
cient.

OSEK OS provides the following OS features:

Tasks are the main building block of OSEK OS systems. Unlike some other
OS’s, tasks in OSEK are not required to be self-scheduling (i.e. it is not
necessary to place the body of the task inside an infinite loop3). There
are four types of task in OSEK OS:

1. Basic tasks with unique priority and non-queued activation. These
are the simplest form of task and ideally suited for hard real-time
systems. Once a task is activated it must run and terminate be-
fore it can be activated again. This type of task cannot suspend
itself mid-way through execution to wait for an event. In RTA-
OS3.x these are called BCC1 tasks because they correspond to
OSEK OS’s BCC1 conformance class (see Section 4.3 for more de-
tails about OSEK’s Conformance Classes).

2. Basic tasks with shared priority and queued activation. These tasks
can share priorities with other tasks in the system and do not need
to terminate before being activated again. The OS queues pend-
ing task activations and runs the next activation when the current
one has terminated. Like BCC1 tasks, this type of task cannot sus-
pend itself mid-way through execution to wait for an event. In RTA-
OS3.x these are called BCC2 tasks because they correspond to
OSEK OS’s BCC2 conformance class.

3. Extended tasks with unique priority. An extended task is allowed
to wait for events during execution (i.e. the task can self suspend).
However, activations cannot be queued and the tasks must have
unique priorities. In RTA-OS3.x these are called ECC1 tasks be-
cause they correspond to OSEK OS’s ECC1 conformance class.

3Though you can do this for the class of tasks called “extended tasks”.

18 Introduction

4. Extended tasks with shared priority. These are like ECC1 tasks but
can share priorities with other tasks in the system. In this regard
they are similar to BCC2 tasks. However, unlike BCC2 tasks, ex-
tended tasks cannot have queued activations. In RTA-OS3.x these
tasks are called ECC2 tasks.

A system can contain any combination of the above task types.

Scheduling Tasks can be scheduled either preemptively or non-
preemptively and co-operative schedulers can be constructed easily.

Interrupts allow for the interaction of the OS with asynchronous external
triggers. There are two types of interrupt in OSEK OS:

1. Category 1 interrupts are not handled by the OS;

2. Category 2 interrupts are handled by, and can interact with, the
OS.

Resources are simple binary semaphores that allow you to provide mutual
exclusion over critical sections shared between tasks and interrupts.
Resources are managed by the OS using the priority ceiling protocol
which guarantees freedom from deadlock and minimizes priority inver-
sion at runtime4.

Counters and alarms are used to provide periodic (and aperiodic) schedul-
ing of tasks. Counters, as the name suggests, count the occurrence of
(domain specific) events and register values as ‘ticks’. Alarms can be
set to expire at run-time configurable count values, either at absolute
count value or relative to the ‘tick’ value of the counter when the alarm
is set.

Debugging Support is provided natively in the OS through the use of build
levels. The OS provides two build levels:

1. Standard is ‘lean and mean’ and provides minimum error han-
dling.

2. Extended is the ‘debugging’ build that provides extensive error
detection facilities to check if you are using the OS correctly.

Debugging is also provided through the OSEK ORTI (OSEK Run-Time In-
terface) standard. This provides a common way for OS implementa-
tions, like RTA-OS3,0, to export symbol details to third-party debuggers

4Priority inversion is the situation where a low priority task is running in preference to a
higher priority task. With priority ceiling protocol this situation can occur at most once each
time a higher priority task is activated (and it is always at the start of execution) and is called
the blocking time for the higher priority task. The blocking time is bounded by the longest time
any single task shares data with the higher priority object - there is no cumulative blocking
due to the interaction of lower priority tasks.

Introduction 19

so that the debugger can display information about the internal state of
the OS at runtime (e.g. which task is running, which tasks are ready to
run etc.).

2.1.2 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers worldwide.

AUTOSAR provides specifications for Basic Software Modules (BSW) such as
operating systems, communication drivers, memory drivers and other micro-
controller abstractions. The AUTOSAR standard also defines a component-
based architectures model. This model defines a Virtual Function Bus (VFB)
that defines an abstraction for communication between application SoftWare
Components (SW-Cs). The VFB allows SW-Cs to be independent of the under-
lying hardware, making them portable between different ECUs and reusable
across multiple automotive projects. The VFB abstraction is encapsulated by
the AUTOSAR Run-Time Environment (RTE). The RTE provides the ‘glue’ be-
tween SW-Cs and the BSW.

For further information see http://www.autosar.org.

AUTOSAR OS

AUTOSAR OS is an extension to the OSEK OS specification. An AUTOSAR OS
includes all the features of OSEK OS and adds some new functionality which
is divided into four Scalability Classes as follows:

Scalability Class 1 includes OSEK OS plus:

Schedule Tables - Schedule tables provide an easier alternative to
OSEK Alarms when programming repeating activities. Each sched-
ule table can be managed as a single unit and you can switch be-
tween tables at runtime, allowing you to build ‘modal’ systems eas-
ily.

Software Counter Interface - The interaction between the OS and
counters has been standardized (in OSEK this was vendor specific).

Stack Monitoring - Additional debugging support has been added to
assist with stack-faults.

Scalability Class 2 includes Scalability Class 1 plus:

Schedule Table Synchronization - Schedule tables can be synchro-
nized with a global time source (although this is trivially possible
within Scalability Class 1).

20 Introduction

http://www.autosar.org

Timing Protection - Protection is added to guard against tasks and in-
terrupts executing for too long or too often. The protection scheme
allows you to constrain at runtime those aspects of system timing
that control whether your system meets its deadlines or not.

Scalability Class 3 includes Scalability Class 1 plus:

Memory Protection - Memory protection allows a system to be parti-
tioned into OS-Applications. OS-Applications can be configured
to be trusted, i.e. they run in what is typically called ’supervisor
mode’, or non-trusted, i.e. they run in what is typically called ’user
mode’. Memory access constraints can be programmed for non-
trusted OS-Applications and the OS manages the target microcon-
troller’s memory management features at runtime to provide pro-
tection.

Service Protection - Access to the OS API can be allowed or denied
for configured tasks/ISRs. For example you can forbid a task in one
OS-Application from activating tasks in another OS-Application. API
call protection also provides a mechanism for extending the API by
adding trusted functions and granting or denying access to these
functions as you would for the OS API.

Scalability Class 4 is a superset of Scalability Classes 2 and 3.

RTA-OS3.x 1.0.0 supports all AUTOSAR OS R3.x features from Scalability
Classes 1-4.

As AUTOSAR OS is based on OSEK OS, it is backwards compatible to exist-
ing OSEK OS-based applications - i.e. applications written for OSEK OS will
largely run on AUTOSAR OS without modification. However, the AUTOSAR OS
standard also clarifies some of the ambiguities in the OSEK OS specification
that arise when the behavior of OSEK OS is undefined or vendor specific be-
cause these represent a barrier to portability. Users who are migrating from
an OSEK OS and rely upon a particular implementation of an OSEK OS feature
should be aware that AUTOSAR OS defines the required OSEK OS behavior in
the following cases:

OSEK OS AUTOSAR OS

Behavior of relative alarms started
at an offset of zero is undefined

Relative alarms cannot be started at
a relative time of zero

The StartOS() API call may or may
not return depending on the vendor
implementation

StartOS() must not return

The behavior of ShutdownOS() is
not defined if the ShutdownHook()
returns.

ShutdownOS() disables all inter-
rupts and enters an infinite loop.

Introduction 21

The Reference Guide provides an API call compatibility listing between OSEK
OS and AUTOSAR OS R3.x.

AUTOSAR OS replaces OSEK’s OIL configuration format with an XML-based
configuration language. AUTOSAR XML adopts the same configuration ob-
jects and concepts found in OIL, but uses a different syntax.

2.1.3 Unique RTA-OS3.x Features

RTA-OS3.x is much more than an AUTOSAR OS. The kernel is designed to
support software engineers building and integrating real-time systems.

RTA-OS3.x-specific features are not guaranteed to be portable to other
implementations of OSEK OS or AUTOSAR OS.

The additional features include:

Time Monitoring to measure the execution time of tasks and Category 2
ISRs at runtime and optionally check times against pre-configured bud-
gets.

Enhanced Stack Monitoring providing additional possibilities to help you
debug stack problems

RTA-TRACE Integration providing automatic instrumentation of the OS ker-
nel to support the ETAS RTA-TRACE real-time OS profiling and visualiza-
tion tool so you can view exactly what the OS is doing in real-time.

User control of hardware so that there is no need to hand over control of
hardware, such as peripheral timers, the cache and I/O ports etc. to the
OS. All hardware interaction occurs through RTA-OS3.x’s well-defined
hardware interface.

Predictable run-time overheads such as switching to and from tasks,
handling interrupts and waking up tasks, have low worst-case bounds
and little variability within execution times.

Graphical offline configuration editor supporting AUTOSAR XML config-
uration of the OS.

Easy integration into your build process as RTA-OS3.x code generation
requires just one command-line tool that can be driven from any build
environment.

Highly scalable kernel architecture using offline tools that automatically
optimize the kernel for your application.

22 Introduction

2.2 Summary

• RTA-OS3.x is a preemptive RTOS for embedded systems

• The kernel provides the features specified in the AUTOSAR OS R3.x stan-
dard for all Scalability Classes, including support for the legacy OSEK OS.

• RTA-OS3.x provides additional features that make it easier to integrate
AUTOSAR OS into your build process.

Introduction 23

3 Development Process

This chapter provides a short overview of how to use RTA-OS3.x in your ap-
plications. The process involves the following steps:

1. Configure the features of the OS you want to use;

2. Generate a customized RTA-OS3.x kernel library;

3. Write application code that uses the OS;

4. Compile your application code and linking with the RTA-OS3.x library;

5. Run your application on your target.

The following sections cover each of these steps.

3.1 Configuration

RTA-OS3.x is statically configured, which means that every task and interrupt
you need must be declared at configuration time, together with any critical
sections, synchronization points, counters etc.

All configuration is held in XML files conforming to the AUTOSAR standard.
The XML is not particularly easy to read, so the use of a tool is recommended
- RTA-OS3.x includes rtaoscfg, a graphical configuration editor for configur-
ing your RTA-OS3.x application. rtaoscfg accepts any AUTOSAR XML file as
input and allows you to edit the OS-specific parts of a configuration. If the
input file contains both OS and non-OS specific configuration then only the
OS configuration will be modified.

The nature of XML parsers means that the ordering of configuration ob-
jects in the files may not be preserved when edited with different tools.

rtaoscfg has five main areas panes as shown in Figure 3.1.

1. Menu/Toolbar.

2. Project Navigator.

See an overview of the top-level objects in your configuration, switch
between configuration workspaces and manage the files in the project.

3. Configuration Workspace.

This is where you do most of your configuration. RTA-OS3.x provides
the following workspaces:

(a) OS Configuration;

(b) RTA-TRACE Configuration;

(c) Builder;

24 Development Process

Figure 3.1: The rtaoscfg configuration tool

(d) Project Files.

4. Error Viewer.

This displays a list of errors in the currently loaded configuration.

5. Status Bar.

3.1.1 OS Configuration

The OS configuration navigator displays the logical structure of your OS con-
figuration in the left hand window, grouped by OS object. You can expand
each object to see the instances you have created. Clicking on an instance
of an object displays the configuration panel in the right hand window. Indi-
vidual items are configured in the workspace on the right hand side of the
navigator.

To create a new configuration, select File Ô New Project from the menu or
use the keyboard shortcut <Ctrl+N>. Each new configuration requires you
to specify the administrative parts of an AUTOSAR XML configuration. This is
required because parts of the OS configuration need to reference other parts
(for example, tasks need to reference which resources they use) and these

Development Process 25

(a) Default Settings (b) Customized Values

Figure 3.2: Defining project-wide settings

references are formed as an absolute path to an item in the AUTOSAR XML
configuration. The items required are:

AR-PACKAGE Name defines the name of the AUTOSAR package. All AU-
TOSAR configuration items live in an AR-PACKAGE and a system may
contain multiple packages. The OS configuration for a single ECU must
live in a single package - it is not possible to split an OS configuration
over multiple packages.

ECU Configuration Name defines the name of the ECU-CONFIGURATION of
which this OS configuration will be a part. An ECU-CONFIGURATION con-
tains all the configuration elements for all of the basic software for one
ECU.

OS Configuration Name defines the name of the OS configuration
MODULE-CONFIGURATION. This is the name that will be used to refer to
the OS from the ECU-CONFIGURATION.

Schema defines which variant of AUTOSAR OS R3.x should be used. Since
there are some minor differences between 3.0 and 3.1, this may need
to be set to conform with other configuration files.

Figure 3.2 shows the default settings for a new project and example of how
these might be customized for a particular project, in this case the ECU ‘En-
gineManagementECU’ for the vehicle platform ‘PlatformX’.

Apart from the Schema, the project settings can be modified later by
selecting Project Ô Properties.

Clicking on a ‘root’ object like “Tasks”, “ISRs”, “Resources” etc. in the project
navigator takes you to the configuration workspace for that type of object.
Clicking on individual objects takes you to the configuration workspace for
the selected object. Figure 3.3 shows an OS configuration where TaskB has
been selected.

26 Development Process

Figure 3.3: OS configuration in rtaoscfg

OS configuration is split into three main parts:

1. System-wide configuration for target-neutral general settings such as
the level of debugging information you want to record, whether you
monitor the stack at runtime, which hooks (callbacks) you are going to
use etc.

2. Target-specific settings including:

• the target device you are using. You can use rtaoscfg to configure
any target device for which you have installed a licensed RTA-OS3.x
port;

• the variant of the target device if the port supports multiple variants
of the target;

• the version of the target to use if you have more than one version
of a specific RTA-OS3.x port installed;

• “Target Specific” aspects of configuration.

3. Object configuration for each of the OS objects you want to use. This in-
cludes tasks, interrupts, resources, events, alarms, counters and sched-
ule tables.

Development Process 27

Figure 3.4: RTA-TRACE configuration in rtaoscfg

Specific aspects of configuration are covered in the later chapters of this user
guide.

3.1.2 RTA-TRACE Configuration

The RTA-TRACE configuration view, shown in Figure 3.4, allows you to con-
figure RTA-OS3.x to support ETAS’ RTA-TRACE runtime profile and monitoring
tool1. Like the OS configuration view, an overview of the RTA-TRACE config-
uration is displayed in the project navigator and configuration windows are
shown in the workspace. You can expand each object to see the instances
you have created. Clicking on an instance of an object displays the configu-
ration panel in the right hand window.

Configuring RTA-TRACE parameters tells RTA-OS3.x to include all the neces-
sary OS instrumentation that allows RTA-TRACE to gather runtime data for
your application. There is no harm configuring RTA-TRACE instrumentation if
you do not have RTA-TRACE to view the trace data, but this will make your
RTA-OS3.x configuration larger and slower that it would be without instru-
mentation.

1RTA-TRACE is not supplied with RTA-OS3.x. For further information about RTA-TRACE con-
tact your ETAS sales office.

28 Development Process

Figure 3.5: Running rtaosgen from rtaoscfg

3.1.3 Build

The RTA-OS3.x library is built using the command-line rtaosgen tool. If you
prefer to configure and build within the same tool then you can do so from
the build workspace shown Figure 3.5. The builder allows you to configure
the build process and run rtaosgen from inside rtaoscfg. Further details on
rtaosgen are in Section 3.3.

3.1.4 Project Files

By convention, rtaoscfg calls the working configuration a project. A project
is simply one or more XML files that define your OS configuration. A default
project contains a single AUTOSAR XML file.

The AUTOSAR XML language allows you to partition your OS configuration
across multiple files according to the demands of your build and/or version
control process. This is essential if you are working with other tools that gen-
erate fragments of OS configuration that need to be integrated into your main
configuration. This is also useful if you want to maintain a ‘core’ configura-
tion and then have multiple customizations of that core for different target
hardware.

Development Process 29

Figure 3.6: Relationship between Project File and AUTOSAR XML Files

The project viewer allows you to manage these complex projects. You can
add/remove XML files to/from the project with ease. When you are working
with a multi-file XML project, rtaoscfg internally merges all configuration
data, allowing you to work with multiple configuration files simultaneously
as if they are a single OS configuration. That way you can see the entire
model and check for consistency even though configuration data is physically
separated.

When the project is saved, rtaosgen remembers which parts of the config-
uration came from which XML file so that when you save your configuration
each element of configuration data is written back to the correct file.

RTA-OS3.x also writes out a project file (with a .rtaos extension). A project
file is a special RTA-OS3.x file that lists all the AUTOSAR XML files in your
project. Figure 3.6 shows the basic concept.

Each XML file can be saved individually (i.e. without saving a project) from
the context menu of the Project Files workspace.

Project files are specific to RTA-OS3.x

The Working File

When you create a new OS object (e.g. a task) or an attribute (e.g. a task’s
priority) in your configuration, rtaoscfg writes it to the working file. The
project viewer shows you the current working file and allows you to switch
the working file to be any one in your project.

30 Development Process

If you create an object or attribute and realize that you added it to the wrong
file, then you can simply move it to another file in you project by deleting
it from the current working file, changing to a new working file and then re-
creating the object or attribute.

If you work with many XML file fragments as part of your OS configuration
then it would be tiresome to open each in turn when you want to make modi-
fications. rtaosgen allows you to open the project file itself. This loads every
XML file referenced by the project file automatically.

The current working XML file can be saved quickly (without saving the project)
from the main menu (File Ô Save Working File).

3.1.5 Error Checking

When you add or remove configuration items rtaoscfg reports configuration
errors in the Error Viewer.

Three types of errors are reported:

Information contain summary information about the configuration, such as
how many objects of a type you have configured.

Warnings tell you that your configuration might not behave as expected
because you might be missing something in your configuration.

Errors tell you that parts of your configuration are incorrect.

You can check your configuration for consistency by clicking on the Check
Now button. Any errors that are found are reported in the error window.
Figure 3.7 shows how errors are reported.

Unresolved References

An unresolved reference is an error reported by rtaoscfg when an object in
the project references another object that is not declared in the same project.
Examples of unresolved references are:

• a task or ISR referencing an undeclared resource;

• a task referencing an undeclared event;

• an alarm or schedule table referencing an undeclared task or event;

• an alarm or schedule table referencing an undeclared counter.

Development Process 31

Figure 3.7: Viewing configuration errors

Figure 3.8: Unresolved References

Typically references may be unresolved because you are editing a single XML
file that is part of a larger configuration or because you are importing XML
from a 3rd party source.

Unresolved references are reported as errors in the error window as normal,
as shown in Figure 3.8.

However, when you try and edit the object that is makes the unresolved ref-
erence, rtaosgen will create the missing object automatically in an XML file
called MissingReferences.xml and add that file to the project. Figure 3.9
shows the creation of the missing StandardResource referenced from TaskA.

You can see which missing references have been created by viewing the
contents of MissingReferences.xml in the “Project Files” workspace. Fig-
ure 3.10 shows that StandardResource has been created.

32 Development Process

Figure 3.9: Creating an entry in MissingReferences.xml

Figure 3.10: Viewing the content MissingReferences.xml

Development Process 33

If the missing references are declared elsewhere and the referenced
objects will be present at the point you build the kernel, you should
remove MissingReferences.xml from the project immediately before
saving the project.

3.1.6 Generating Reports

You can generate reports about your configuration from the menu/toolbar.
Reports present summary information about your configuration that can be
used for Quality Assurance audits, internal communication between depart-
ments, etc. The reports provided include:

Configuration Summary - an overview of the OS configuration.

OS API Reference - a customized reference guide for the configured OS.
This may include documentation for target-specific features such as ad-
ditional API calls and types that are not part of the standard Reference
Guide.

Stack Usage - worst-case stack usage for the configured OS. This requires
that stack allocations have been provided for each tasks and ISR.

MISRA Deviations - provides the MISRA-C 20042 deviations for the config-
ured OS. This includes which deviations apply, why the deviation has
been made and how many times it occurs.

All reports are generated in HTML and will be displayed in your default web-
browser.

Generation of reports is actually done by rtaosgen so can be produced at
the same time as the build process runs. As an example, you may wish to
generate the MISRA Deviation report to provide evidence for your QA process.
Build-time generation of reports also allows the format for the report to be
selected. Reports are provided as plain text, XML and HTML.

Figure 3.11 shows an extract from the “Configuration Summary” report that
that lists every OS object and its associated configuration.

A full list of the reports available for your target can be obtained using the
following command line:

rtaosgen --target:YourTarget --report:?

2Motor Industry Standards and Reliability Association

34 Development Process

Figure 3.11: Automatically generated configuration summary report

Development Process 35

3.2 Assistants

rtaoscfg supports assistant plug-ins to perform frequently-used activities.
If any assistant plugins are detected at the start of rtaoscfg, an additional
Assistants menu option will be visible in the main menu bar. Starting with
V2.0.0, rtaoscfg ships with a single Schedule Table Assistant allowing peri-
odic Schedule Tables to be easily configured. Further details of the Schedule
Table Assistant can be found in Section 10.3.

3.3 Library Generation

Before you can use RTA-OS3.x in your application, you need to generate an
RTA-OS3.x kernel library and associated header files. rtaosgen generates a
customized RTA-OS3.x kernel library that is optimized for your OS configura-
tion by:

• Analyzing your XML configuration and automatically optimizing the RTA-
OS3.x kernel so that it contains only those features that you will use. This
makes RTA-OS3.x as small and efficient as possible.

• Customizing the optimized kernel to your chosen target using information
provided by the target plug-in.

• Building a kernel library using the same 3rd party tool chain that you
are using for your application. This guarantees tool chain compatibility
between RTA-OS3.x and your own code.

The tool integrates the core OS kernel, enables optional kernel features you
have selected and customizes this with the information about the target sup-
plied by the port plug-in. Figure 3.12 illustrates the basic process by showing
how a kernel would be generated for the EDSAC target.

3.3.1 Preparing the Tool Chain

To generate a kernel library, rtaosgen needs access to the compiler tool
chain for your target. rtaosgen knows how to run the compiler, assembler
and librarian for your target and what options to use. You need only be con-
cerned with two things:

1. Your compiler tool chain must be accessible on your PATH.

2. Your compiler tool chain must be compatible with RTA-OS3.x.

You can find out if your compiler is on your PATH by opening a Windows Com-
mand Prompt using Start Ô Run and running cmd.

36 Development Process

Figure 3.12: Building an RTA-OS3.x Kernel Library

Development Process 37

Typing C:\>set at the command prompt will list every Windows environment
variable. You should see your compiler’s executable directory on the path. If
you do not, then you can add your compiler to the path by typing:

C:\> set PATH=PATH;<Path to your compiler executable>

To check whether you are using a compatible version of the compiler tool
chain you should consult the Target/Compiler Port Guide for your port which
will tell you which version (or versions) are compatible.

3.3.2 Understanding AUTOSAR Dependencies

RTA-OS3.x is an AUTOSAR basic software module3 and as such it must con-
form to the AUTOSAR basic software module build concept. If you know how
this works already then skip ahead to Section 3.3.4.

In AUTOSAR, all basic software modules provide a single include file called
<BSW Short name>.h. For the OS this is Os.h. Each of these header files
has dependencies on other AUTOSAR include files. The AUTOSAR include
hierarchy is shown in Figure 3.13

Std_Types.h provides all the portable (i.e. target hardware invariant) type
definitions for AUTOSAR. Std_Types.h includes a further two AUTOSAR
header files:

Platform_Types.h defines the AUTOSAR standard types (uint8,
uint16, boolean, float32 etc.) for the target hardware.

Compiler.h defines a set of macros that are used internally by basic
software modules to mark functions, data and pointers according
to the mode by which they can be addressed.

The memory and pointer classes used by Compiler.h are defined
by each basic software module in a file a called Compiler_Cfg.h. A
minimum set of names are defined by the AUTOSAR standard and
each name is prefix with the name of the basic software module.
For the OS, all section name macros start with OS_.

The system integrator must merge the Compiler_Cfg.h files for
all basic software modules to create a ‘master’ Compiler_Cfg.h
before the system is compiled. In RTA-OS3.x, the OS module’s
Compiler_Cfg.h is called Os_Compiler_Cfg.h and it contains the
complete list of the names used by RTA-OS3.x. The file can be
easily #included into the system-wide Compiler_Cfg.h.

You should take particular note of the RTA-OS3.x section called
OS_APPL_CODE. This should be used to place all application code

3One of many - there are other modules for communication stacks (CAN, LIN, FlexRay etc.),
non-volatile memory handling, peripherals drivers, etc. that are available from third-parties.

38 Development Process

Figure 3.13: AUTOSAR Header File Hierarchy

Development Process 39

that is required by the kernel, i.e. all your hooks and callback
routines. Code can be placed in this section using the directive
FUNC(<typename>, OS_APPL_CODE). For example the following
code shows how to place the ErrorHook() into OS_APPL_CODE:

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){
/* Handle error */

}

The RTA-OS3.x documents use this form when defining callbacks
and hook routines.

MemMap.h defines how data and code is mapped to memory sections and
uses the compiler’s primitives for placing code and data into different
types of memory section according to the following process:

1. each basic software module defines a series of section names us-
ing macros in Compiler_Cfg.h

2. the vendor of the basic software module uses these macros to
place code in the virtual sections during implementation, for ex-
ample:

#define OS_START_SEC_CODE
#include "MemMap.h"
/* Some OS code here */
#define OS_STOP_SEC_CODE
#include "MemMap.h"

3. the system integrator develops a MemMap.h file that maps the basic
software’s virtual section names onto system-wide section names
and from there onto primitives of the compiler for section place-
ment, for example:

/* Map OS code into the section containing all BSW
code */

#ifdef OS_START_SEC_CODE
#undef OS_START_SEC_CODE
#define START_SECTION_BSW_CODE

#endif
...
/* Name the system section with a compiler primitive

*/
#ifdef START_SECTION_BSW_CODE

#pragma section code "bsw_code_section"
#endif

As with Compiler_Cfg.h, each basic software module must also pro-
vide a module-specific version of MemMap.h. In RTA-OS3.x, the module-
specific version of MemMap.h is called Os_MemMap.h. The Os_MemMap.h

40 Development Process

file can be either merged or #included into a ‘master’ MemMap.h before
the system is compiled

To build an RTA-OS3.x library it follows that all the standard AUTOSAR header
files are required as inputs to the build process and these are outside the
scope of the OS. However, RTA-OS3.x can generate sample versions of the
AUTOSAR standard header files if required.

You must enhance or replace the sample AUTOSAR standard header
files generated by rtaosgen for use in production software.

3.3.3 Running rtaosgen

rtaosgen is a command line tool. You can invoke it from the Windows com-
mand prompt, from a make script, Ant script, in fact from anywhere where
you can call a Windows application. The rtaosgen tool can be run from the
rtaoscfg Builder if you prefer to use a graphical environment.

rtaosgen takes one or more configuration files as input. Configuration files
can be:

• AUTOSAR XML

• RTA-OS3.x project files

• A mixture of both

Like rtaoscfg, rtaosgen will merge the contents of all files passed on the
command line into an in-memory OS configuration before generating the ker-
nel.

3.3.4 Building the library

To build an RTA-OS3.x library it follows that all the standard AUTOSAR header
files are required as inputs to the build process. You must include the path to
the location of the AUTOSAR standard headers files when invoking rtaosgen.
For example, to build a library for the Hello World example application for an
RTA-OS3.x target you can type:

C:\>rtaosgen --include:PathToAutosarHeaderFiles HelloWorld.rtaos

If you do not have access to AUTOSAR include files (for example, if you are
using RTA-OS3.x outside of a full AUTOSAR system), then rtaosgen can gen-
erate them automatically for you.

C:\>rtaosgen --samples:[Includes] --include:Samples\Includes
HelloWorld.rtaos

Development Process 41

Note that rtaosgen does not force you to use a specific extension - you can
use any extension you like.

rtaosgen generates four classes of messages during execution:

Information. These messages tell you useful things about the configura-
tion, for example how many tasks you have configured. rtaosgen will
generate output files.

Warning. These messages warn you that your configuration will result in an
OS that might not behave as you expect. Rtaosgen will generate output
files.

Error. These messages tell you that there is something wrong with your con-
figuration. rtaosgen will stop processing your configuration at a con-
venient point and no output files will be generated.

Fatal. You will get at most one fatal message. It tells you that there is some-
thing fundamentally wrong with either your configuration or rtaosgen.
rtaosgen stops immediately.

You can do other things from the command line like change the output direc-
tory for generated files, suppress messages, etc. For more details, see the
Reference Guide.

Building from rtaoscfg

It is also possible to build RTA-OS3.x from within rtaoscfg in the “Builder”
workspace. This allows you to run rtaosgen with command line you specify
rtaoscfg. If you specify a command line, then it will be saved in the RTA-
OS3.x project file.

The same tool, rtaosgen is used to build the kernel irrespective of whether
it is called directly from the command line or internally from rtaoscfg.

Note that if you build from within rtaoscfg then you still need to ensure that
your compiler tool chain is on your Windows path.

Any settings that you configure in the “Builder” are stored in your RTA-OS3.x
project file.

3.3.5 Generated Files

When rtaosgen runs and terminates without reporting any errors or fatal
messages then it will have generated the following files:

42 Development Process

Filename Contents

Os.h The main include file for the OS.
Os_Cfg.h Declarations of the objects you have configured. This

is included by Os.h.
Os_MemMap.h AUTOSAR memory mapping configuration used by

RTA-OS to merge with the system-wide MemMap.h file.
RTAOS.<lib> The RTA-OS library for your application. The extension

<lib> depends on your target.
RTAOS.<lib>.sig A signature file for the library for your application.

This is used by rtaosgen to work out which parts of
the kernel library need to be rebuilt if the configura-
tion has changed. The extension <lib> depends on
your target.

Generating sample code

The rtaosgen code generator can generate sample code that can be used
as a basis for your application. You have already seen one case of this in
Section 3.3.4 when --samples[Includes] was use to generate sample AU-
TOSAR standard header files.

The set of samples provided is port-dependent, but you can get a list of pro-
vided samples using the following command line:

C:\>rtaosgen --target:YourTarget --samples:?

Most ports will provide samples that show how to write AUTOSAR OS hook
functions like the ErrorHook(), StartupHook() etc. For example, to gener-
ate a default ErrorHook() you could use the following command line:

C:\>rtaosgen --samples:[ErrorHook]
--include:PathToAutosarHeaderFiles HelloWorld.rtaos

3.4 Integration

3.4.1 Accessing the OS in your Source Code

To access RTA-OS3.x in your source code you simply include
#include <Os.h> in every C compilation unit (i.e. every C source code
file) where you need to access RTA-OS3.x. The header file is protected
against multiple-inclusion. RTA-OS3.x does not place any restrictions on how
you organize your source code - you can put all of your code into a single
source file or place put each task and interrupt implementation into its own
source file as you (or your configuration control process) requires.

Development Process 43

3.4.2 Implementing Tasks and ISRs

Tasks

For each task that you declare at configuration time you must provide an
implementation of the task. Each task needs to be marked using the TASK(x)
macro. Tasks typically have the following structure:

#include <Os.h>
TASK(MyTask){
/* Do something */
TerminateTask();

}

Category 2 ISRs

Each Category 2 ISR that you declare needs to be implemented. This is also
marked, this time by ISR(x):

#include <Os.h>
ISR(MyISR){
/* Do something */

}

A Category 2 ISR handler does not need a return from interrupt call -
RTA-OS3.x does this automatically. Depending on the behavior of inter-
rupt sources on your target hardware, you may need to clear the inter-
rupt pending flag. Please consult the hardware documentation provided
by your silicon vendor for further details.

Category 1 ISRs

Each Category 1 ISR that you declared also needs to be implemented. Your
compiler will use a special convention for marking a C function as an interrupt.
RTA-OS3.x provides a macro that expands to the correct directive for your
compiler. Your Category 1 handler will therefore look something this:

#include <Os.h>
CAT1_ISR(MyCat1ISR) {
/* Do something */

}

3.4.3 Starting the OS

RTA-OS3.x does not take control of your hardware so you need to start the OS
manually using the StartOS() API call, usually in your main() program. RTA-
OS3.x provides a macro called OS_MAIN() which expands to the correct type
of main() definition for your compiler toolchain4.

4On many compilers this will be void main(void), but there are compilers that insist upon
the main() program returning an integer or other (non void) type.

44 Development Process

#include <Os.h>
OS_MAIN() {
/* Initialize target hardware */
/* Do any mode management, pre-OS functions etc. */
StartOS();
/* Call does not return so you never reach here */

}

3.4.4 Interacting with the RTA-OS3.x

You interact with RTA-OS3.x by making kernel API calls. You can find a com-
plete list of calls in the Reference Guide.

3.4.5 Compiling and Linking

When you compile your code you must make sure that Os.h and Os_Cfg.h
are reachable on your compiler include path. When you link your application
you must link against RTAOS.<lib>, and the library must be on your linker’s
library path.

3.5 Memory Images and Linker Files

When you build your application, the various pieces of code, data, ROM and
RAM that were placed into the sections defined in MemMap.h need to be lo-
cated at the right place in memory. This is typically done by your linker5

which resolves references made by user-supplied code to the RTA-OS3.x li-
brary, binds together the relevant object modules and allocates the resultant
code and data to addresses in memory before producing an image that can
be loaded onto the target.

The linker needs to know what parts of the program to place in which types of
memory, where the ROM and RAM are on the microcontroller, and how map
the parts of the program to the correct sort of memory.

3.5.1 Sections

Code and data output by compilers and assemblers is typically organized
into sections. Some sections will contain just code, some code and data and
some will contain data only. You might see a piece of assembler that says
something like that shown in Code Example 3.1.

5An historical note: Technically this job is that of the locator which locates sections into
memory by mapping virtual to physical addresses and these tools used to be called linker/lo-
cators. In modern times the locator part has dropped out of common usage and the tools are
commonly referred to as ‘linkers’.

Development Process 45

.section CODE

.public MYPROC
mov r1, FRED
add r1, r1
ret
.end CODE
.section DATA
.public FRED
.word 100, 200, 300, 400
.end DATA
.section BSS
.public WORKSPACE
.space 200
.end BSS

Code Example 3.1: Example Assembler Output Showing Sections

This means that the code for MYPROC should be assembled and the object
code should assume that it will be located in a section of memory called CODE
whose location we will specify later in the linker control file. Similarly, the
data labeled FRED will be placed in a section called DATA, and a space of 200
bytes labeled WORKSPACE will be allocated in section BSS.

C compilers typically output your code into a section called code or text,
constants that must go into ROM in a section called something like const,
and variables into data. There will usually be more - consult the reference
manual for your toolchain for more details on what the sections are called
and familiarize yourself with where they need to go.

Under AUTOSAR, your MemMap.h will define the actual names of the sections
that need to be located. for example So far we have yet to map these onto
addresses in ‘real’ memory. We must therefore look at how these sections
are mapped into a memory image.

‘Near’ and ‘Far’ Address Spaces

On some processors there exist regions of memory space that can be ad-
dressed economically (typically with shorter, smaller instructions that have
simpler effective-address calculations), are located on-chip rather than off-
chip, or that are fabricated in a technology such that they are more cycle-
efficient to access. RTA-OS3.x terms this memory near space and on these
processors places some key data in these areas. On such platforms you will
be supplied with information on where you must locate near space in ROM
and/or RAM, and told in the Target/Compiler Port Guide what data is placed in
it. Far space refers to the whole of memory.

46 Development Process

Program and Data Space on Harvard Architectures

Most of the discussion about memory so far has assumed the conventional
von Neumann architecture, in which data and code occupy one address space
with ROM and RAM located at different offsets inside this. Some proces-
sors (typically very small microcontrollers like PICs, or high-performance Dig-
ital Signal Processors) adopt a Harvard architecture, in which there are dis-
tinct address spaces for code and data (there are some performance advan-
tages to this that offset the programming disadvantages). On a Harvard-
architecture processor, RTA-OS3.x may use data space (typically RAM) to
store data that would normally be ROM constants on a von Neumann archi-
tecture processor, and the startup code will typically contain code to fetch a
copy of the constant data into data space. If you are using a Harvard archi-
tecture processor, the Target/Compiler Port Guide will contain information on
any use of RAM used to store copies of constants.

3.5.2 The Linker Control File

The linker control file governs the placement of code, data and reserved
space in the image that is downloaded to the target microcontroller. Linker
files vary considerably between platforms and targets, but typically include
at least the following:

• declarations of where ROM and RAM are located on chip - these may vary
across different variants in a CPU family.

• Lists of sections that can be placed into each memory space

• Initialization of the stack pointer, reset address, interrupt vectors etc.

Code Example 3.2 shows a hypothetical linker control file:

ONCHIPRAM start 0x0000 {
Section .stack size 0x200 align 16 # system stack
Section .sdata align 16 # small data
Section bsw_near align 16 # near data

}

def __SP = start stack # initialize stack ptr

RAM start 0x4000 {
Section .data align 16 # compiler data
Section .bss align 16 # compiler BSS
Section bsw_zero_init align 16 # Basic Software zeroed RAM
Section bsw_startup_init align 16 # Basic Software initialized

RAM
Section swc_startup_init align 16 # Application initialized RAM

}

Development Process 47

ROM start 0x8000 {
Section .text # compiler code
Section .const # compiler constants
Section swc_data align 16 # Application static data
Section swc_init align 16 # Application initial data
Section bsw_init align 16 # Basic Software initial data

}

VECTBL start 0xFF00 {
Section OsVectorTable # RTA-OS’s vector table

}

def __RESET = __main # reset to __main

Code Example 3.2: A Linker Control File

The file above defines four separate parts of memory - ONCHIPRAM, RAM, ROM,
and VECTBL. Into each section are placed the appropriate data, as described
by the comments.

The example applications supplied with RTA-OS3.x embedded ports will con-
tain a fully-commented linker control file; consult this and the Target/Compiler
Port Guide for details of how to locate the sections correctly for your target
platform.

3.6 Summary

• There are 5 steps to integrate RTA-OS3.x with your application:

1. Configure the features of the OS you want to use

2. Generate a customized RTA-OS3.x kernel library

3. Write application code that uses the OS

4. Compile your application code and linking with the RTA-OS3.x library

5. Run your application on your target

• There are two offline tools: rtaoscfg to configure RTA-OS3.x and rtaos-
gen to generate and build the kernel library

• RTA-OS3.x is an AUTOSAR Basic Software module and has dependencies
to AUTOSAR header files. These can be generated by rtaosgen if re-
quired.

• Linking and locating of RTA-OS3.x depends on the content of the
MemMap.h file with which rtaosgen builds the kernel library.

48 Development Process

4 Tasks

A system that has to perform a number of different activities at the same
time is known as concurrent. These activities may have some software part,
so the programs that provide them must execute concurrently. The programs
will have to cooperate whenever necessary, for example, when they need to
share data.

Each concurrent activity in a real-time system is represented by a task. The
majority of the application code exists within tasks. If you have a number
of tasks that must be executed at the same time, you will need to provide a
means to allow concurrency. One way for you to do this is to have a separate
processor for each task. You could use a parallel computer, but this solution
is too expensive for many applications.

A much more cost effective way for you to achieve concurrent behavior is to
run one task at a time on a single processor. You can then switch between
tasks, so that they appear to be executing at the same time.

4.1 Scheduling

RTA-OS3.x provides a scheduler that switches between tasks according to
a fixed priority which is assigned at configuration time. A priority is just a
reflection of the relative urgency of tasks. There are many schemes that you
can use to assign priorities to tasks, but common ones you may have heard
of are:

Deadline Monotonic Assignment higher priorities are allocated to tasks
with shorter deadlines.

Rate Monotonic Assignment higher priorities are allocated to tasks that
need to run the most frequently.

However you choose to assign priorities, the sequence in which your tasks ex-
ecute is determined by a scheduling policy. The scheduling policy determines
when tasks actually run.

AUTOSAR OS supports two scheduling policies:

1. Preemptive Scheduling.

The fixed-priority preemptive scheduling algorithm is simple: run the
highest priority task that is ready to run. If a task is running and a
higher priority task becomes ready to run, then the higher priority task
preempts the running task. This is called a task switch. When the higher
priority task has finished then the preempted task resumes.

Tasks 49

Figure 4.1: Preemptive scheduling of tasks

For a system where all tasks need to meet their deadlines at runtime,
preemptive scheduling is the most efficient scheduling policy and will
guarantee the shortest time between a task being activated (made
ready to run) and terminating. This time is called the response time for
the task. Preemptively scheduled systems need to consider the effect
of preemption on shared data and may need to introduce mechanisms
for concurrency control (see Chapter 6).

2. Non-Preemptive scheduling.

The OS runs the highest priority task that is ready to run, as with pre-
emptive scheduling. However, unlike preemptive scheduling, if a higher
priority task becomes ready, then it remains ready to run until the run-
ning task terminates - it does not preempt. What this means is that a
non-preemptive task that starts running will always run to completion
and then terminate.

Non-preemptive scheduling results in a less responsive system than preemp-
tive scheduling (i.e. tasks will usually have longer response times), but the
system does not need to worry about concurrency problems that arise for ac-
cessing shared data because the scheduling model doesn’t allow concurrent
access to shared data.

Actually, AUTOSAR OS provides support for a third type of scheduling called
cooperative scheduling because it allows a non-preemptive task to tell the
OS when it could be preempted. The reason we said AUTOSAR OS supports 2
policies is that there is only configuration for two - the third you have to build
yourself.

50 Tasks

Figure 4.2: Non-preemptive scheduling of tasks

3. Cooperative scheduling.
The OS runs the highest priority task that is ready to run. If a higher
priority task becomes ready, then it remains ready to run until either:
the running task terminates (just like non-preemptive scheduling); or
the running tasks makes a Schedule() API call to tell the OS it can be
preempted. When the Schedule() call is made then the higher priority
task preempts the running task and a task switch is said to have oc-
curred (just like preemptive scheduling). When the higher priority task
has finished then the preempted task resumes.
With careful design, the co-operative model provide can provide sys-
tems that, while not as responsive as fully preemptive systems, do not
suffer the lack of responsiveness found with non-preemptive schedul-
ing.

With all these types of scheduling it is important to realize that any task,
whether preemptive or not, can be interrupted (preempted) by an interrupt
service routine. Chapter 5 provides more information about how RTA-OS3.x
deals with interrupts.

4.2 Basic and Extended Tasks

RTA-OS3.x OS supports two types of task:

1. Basic tasks.

Basic tasks start, execute and terminate (this is often called a single-
shot tasking model). A basic task only releases the processor if it ter-
minates, or if it is preempted by a higher priority task. This behavior

Tasks 51

Figure 4.3: Co-operative scheduling of tasks

makes them highly suitable for embedded control functionality. Basic
tasks are fast and efficient.

2. Extended tasks.

Extended tasks start, execute, wait for events and (optionally) termi-
nate. The ability for an extended task to voluntarily suspend itself
during execution provides a way for the task to have synchronization
points. This feature makes extended tasks more suitable for function-
ality requiring mid-execution synchronization (for example, waiting for
user interaction) than basic tasks.

4.2.1 Task States

Basic tasks operate on a 3-state model. A basic task can exist in the following
states:

1. Suspended.

2. Ready.

3. Running.

Extended tasks can have an extra state which they enter when waiting for
events:

4. Waiting.

Figure 4.4 shows the 3 and 4 state task models.

52 Tasks

Figure 4.4: Task State Model

Tasks 53

The default state for all tasks is suspended. A task is moved into the ready
state by the process of activation. It is important to understand that activa-
tion does not cause the task to run - it makes it ready to run. Activation can
happen a number of ways, for example by calling the ActivateTask() API in
your code or as a result of some trigger, such as the expiry of an alarm (see
Chapter 9) or a schedule table expiry point (see Chapter 10).

When a task becomes the highest priority task in the system, RTA-OS3.x
moves the task into the running state and starts task execution at the first
statement in the task. This is often referred to as dispatching the task. A
task may be preempted during execution by other higher priority tasks that
become ready.

If a higher priority task becomes ready to run, the currently executing task
is preempted and is moved from the running state into the ready state. This
means that only one task can be in the running state at any one time.

A task returns to the suspended state by terminating. A task can be made
ready again later and the whole process can repeat.

Basic and extended tasks behave identically with respect to the ready, run-
ning and suspended states. Extended tasks, however, can also enter the
waiting state. An extended task moves from the running to the waiting state
when it voluntarily suspends itself by waiting on an event.

An event is simply an OS object that is used to provide an indicator for a
system event. Examples of events include data becoming ready for use or
sensor values being read. You can find out more about events in Chapter 7.

When an extended task enters the waiting state, then the OS will dispatch
the highest priority task that is ready to run. When an event is set, the task is
moved from the waiting to the ready state. Note that extended tasks return
to the ready state and not the running state. This is because, during the time
that the extended task was in the waiting state, some other higher priority
task may have been activate and then dispatched.

4.2.2 Task Priorities

AUTOSAR OS allows tasks to share priorities. When tasks have the same
priority, each task at the shared priority will run in mutual exclusion from
each other. This means that if one task is running, then its execution will be
serialized with all other tasks that share the same priority.

When tasks share priorities they are released from the ready state in first-in,
first-out (FIFO) order.

54 Tasks

When shared priorities and queued task activation are used together,
RTA-OS3.x maintains an internal queue at the priority level. You should
avoid this type of configuration if you want a fast and efficient OS.

If you need to serialize the execution of a set of tasks, then this is best
achieved using unique priorities and AUTOSAR OS’s internal resources (see
Section 6.5) rather than sharing task priorities. Using internal resources guar-
antees serialization, just like sharing priorities, and the uniqueness of task
priorities means that when multiple tasks become ready at the same time
the OS has a statically defined dispatch ordering

Sharing priorities between tasks is bad real-time programming practice
because it prevents you from performing schedulability analysis on your
system. This is because, in the general case, sharing priorities makes
the release point for a task (i.e. the point from where a response time is
measured) computationally impossible to calculate. If it is impossible to
work out when the release occurs then it is impossible to decide if the
task will meet its deadline!

4.2.3 Queued Task Activation

Under most circumstances you will only activate a task when it is in the sus-
pended state. In fact AUTOSAR OS treats the activation of a task while it is in
the ready, running or waiting states as an error case.

However, there are some situations where you may need to implement a sys-
tem where the same task must be activated a number of times but the short-
est time between successive activations can be less than the time needed to
run the task. For example, you might be unpacking CAN bus frames in a task
and need to handle transient bursting of frames on the network.

This means you need to queue task activations at run time. AUTOSAR OS
allows you to queue the activation of basic tasks to help you build this kind
of application. Like other things in AUTOSAR OS the size of the task queue is
statically configured. You must specify the maximum number of activations
that can be pending for the task.

If the queue is already full when you try and activate the task then this will
be handled as an error and the activation will be ignored.

Of course, you might have tasks that share priorities and use queued activa-
tion. In this case, tasks are queued in FIFO order in a queue with a length
equal to the sum of the queue lengths for each task that shares the same
priority. However, each task can only use up to its own number of entries.

Tasks 55

4.3 Conformance Classes

You now know that tasks can:

• Be basic or extended

• Can share priorities

• Can queue activations.

However, AUTOSAR OS places some restrictions on what kind of features be
used together. These are called Conformance Classes and are used to group
task features for ease of understanding, enable partial implementations of
the standard and provided scalability for different classes of application.

AUTOSAR OS has four conformance classes:

BCC1 - Basic tasks, unique priority and no queued activation.

BCC2 - Basic tasks, shared priorities and/or queued activation.

ECC1 - Extended tasks, unique priority and no queued activation. An ECC1
task is like a BCC1 task, but it can wait on events.

ECC2 - Extended tasks, shared priorities and no queued activation. Note
that, unlike BCC2 tasks, ECC2 tasks cannot queue activations.

The following table gives a quick summary of the types tasks that can be
used in different classes of AUTOSAR OS system:

System Class Basic
Tasks

Extended
Tasks

Shared
Task Prior-
ities

Queued
Task Acti-
vation

BCC1 3 7 7 7

BCC2 3 7 3 3

ECC1 3 3 7 7

ECC2 3 3 3 31

Each conformance class requires more resources - a system that is BCC1 will
be much faster and smaller than a system which is ECC2. You do not need to
be concerned about which conformance class to use - RTA-OS3.x supports all
conformance classes and will calculate the conformance class from your OS
configuration.

1But only for basic tasks within the ECC2 system. Activations of extended tasks cannot be
queued.

56 Tasks

4.4 Maximizing Performance and Minimizing Memory

RTA-OS3.x is designed to be very aggressive at minimizing code and data us-
age on the target application. It will analyze the characteristics of the appli-
cation and generate a system containing only the features that are required.

Your choice of task characteristics has a major influence on the final applica-
tion size and speed. There is “no such thing as a free lunch”, so as you add
tasks to your application that use more advanced types of tasks, the system
will inevitably become slightly larger and slower.

A system with one or more BCC2 tasks has a greater overhead than one
with only BCC1 tasks. A system without shared priorities, even if multiple
activations are allowed, will be more efficient than one with shared priorities.

A system with ECC1 tasks has an even greater overhead still and a system
with one or more ECC2 tasks has the largest overhead of all.

To make RTA-OS3.x as efficient as possible you should use basic tasks only
and not share priorities.

4.5 Task Configuration

Unlike other real-time operating systems that you might have seen, the tasks
in AUTOSAR OS (and, therefore, RTA-OS3.x) are defined statically. This tech-
nique is used because it saves RAM and execution time.

Tasks cannot be created or destroyed dynamically. Most of the information
about a task can be calculated offline, allowing it to be stored in ROM.

The maximum number of tasks supported by RTA-OS3.x depends upon your
port and you should consult the Target/Compiler Port Guide for further details.
For all ports, RTA-OS3.x can provide a highly optimized system if you limit
your number of tasks to the native word size of your microcontroller.

Device Type Maximum Optimal

8-bit 256 16 or fewer
16-bit 256 16 or fewer
32-bit 1024 32 or fewer

When you configure your task properties, you will most likely use the
rtaoscfg configuration tool. Figure 4.5 shows the task configuration entry.

An AUTOSAR task has 5 attributes:

Name. The name is used to refer to, or provide a handle to, C code that you
will write to implement the task functionality.

Tasks 57

Figure 4.5: Task Configuration

Priority. The priority is used by the scheduler to determine when the task
runs. Priorities cannot be changed dynamically. Zero is the lowest pos-
sible task priority in RTA-OS3.x. Higher task priorities are represented
by larger integers. Tasks can share priorities, but if you are building
a real-time system, then you should not do this because it cannot be
analyzed.

Scheduling. A task can run fully preemptively or non-preemptively. In
general, fully preemptive scheduling should be selected over non-
preemptive scheduling for best application performance.

Activations. The maximum number of task activations that can be queued
in the ready state. For a BCC1, ECC1 and ECC2 tasks the number of
activations is always one. This means that these types of task can only
be activated if they are in the suspended state. Any attempt to acti-
vate a such a task when it is not suspended will result in an error. A
value greater than one indicates that the OS will queue activations (for
example to smooth out transient peak loads in your application).

Autostart. This controls whether the task is started automatically when you
start the OS.

The number of tasks that can be defined is fixed for each target (it is
usually 256 or 1024, depending on the target processor). The Target/-
Compiler Port Guide for your target will contain further information.

58 Tasks

4.5.1 Scheduling Policy

A fully preemptable task can be preempted by a task of higher priority. That
means that when a higher priority task is made ready to run, it will run in
preference.

You can prevent a task from being preempted by declaring it to be
non-preemptable at configuration time. Tasks that are declared as non-
preemptive cannot be preempted by other tasks. When a non-preemptive
task moves to the running state it will run to completion and then terminate
(unless it makes a Schedule() call, as explained in Section 4.10). Making
tasks non-preemptive therefore means that if a lower priority task is started
before a higher priority task, then the higher priority task will be prevented
from executing for the time that the lower priority task runs. This is called
blocking. Systems that use non-preemptive tasks will, in general, be less
responsive than systems that run preemptively.

Even if a task is non-preemptive, it can still be interrupted by ISRs.

You will often find that it is unnecessary to use non-preemptable tasks be-
cause there are other, more suitable methods, which you can use to achieve
the same effect. If you use these other techniques, it will usually result in a
more responsive system. You will find out more about these techniques later,
but they include:

• Using standard resources to serialize access to data or devices.

• Using internal resources to specify exactly which other tasks cannot
cause preemption.

4.5.2 Queued Activation

Under most circumstances you will only activate a task when it is in the sus-
pended state. However, you may need to implement a system where the
same task must be activated a number of times and where the shortest time
between successive activations is less than the time needed to run the task.

If this happens you will be activating the task while it is in the ready state or
the running state. This means that activations will be lost.

To prevent loss of activations, you must specify the maximum number of
multiple activations required for the task.

In accordance with the AUTOSAR OS standard, this feature is only avail-
able for basic tasks. You cannot specify multiple activations for ex-
tended tasks.

Tasks 59

Figure 4.6: Specifying the number of queued activations

You will use rtaoscfg to specify the maximum number of simultaneous task
activations. Figure 4.6 shows that, for the task in this example, the maximum
number of activations has been set to twenty.

When multiple activations are specified, RTA-OS3.x automatically identifies
that the task is BCC2. When you build your application, RTA-OS3.x will cal-
culate the maximum size of the multiple activation queue needed for each
BCC2 task.

When BCC2 tasks share priorities, RTA-OS3.x uses a FIFO queue to hold pend-
ing activations. If a BCC2 task has a unique priority in your AUTOSAR OS
application then RTA-OS3.x automatically optimizes the queuing strategy to
counted activation. Counted activation is significantly more efficient than
FIFO activation and should be used wherever possible.

4.5.3 Auto-starting Tasks

Tasks can be auto-started, which means that when the operating system
starts, they are activated automatically during StartOS().

For basic tasks, which start, run and then terminate, auto-starting a task will
make it run exactly once before it will return to the suspended state (from
where it can be activated again). Auto-starting is mainly useful for starting
extended tasks that wait on events because it removes the need to write
code to activate the tasks.

60 Tasks

Figure 4.7: Configuring auto-started tasks

rtaoscfg can be used to specify that a task is only auto-activated in specific
application modes, choose the application mode in question and select the
tasks that you want to auto activate.

In Figure 4.7, TaskD is auto-started in the OSDEFAULTAPPMODE and
ServiceMode application modes and is not autostarted in LimpHomeMode and
NormalOperatingMode

4.6 Stack Management

RTA-OS3.x uses a single-stack model which means that all tasks and ISRs run
on a single stack. The single stack is simply the C stack for the application.

As a task runs, its stack usage grows and shrinks as normal. When a task
is preempted, the higher priority task’s stack usage continues on the same
stack (just like a standard function call). When a task terminates, the stack
space it was using is reclaimed and then re-used for the next highest priority
task to run (again, just as it would be for a standard function call). Figure 4.8
shows how the single stack behaves as tasks are stated, preempted and ter-
minate.

In the single stack model, the stack size is proportional to the number of
priority levels in the system, not the number of tasks/ISRs. This means that
tasks which share priorities, either directly, or by sharing internal resources,
or through being configured as non-preemptive, can never be on the stack at

Tasks 61

Figure 4.8: Single-stack behavior

the same time. The same is true of ISRs that share priorities in hardware. This
means that you can trade system responsiveness, i.e. how long it takes for a
task or ISR to complete, for stack space by simple changes to configuration.

Figure 4.9 shows the execution of the same task set, with the same arrival
pattern as Figure 4.8 but this time the tasks are scheduled non-preemptively.
You can see that the response times for the higher priority tasks are much
longer than when they were preemptively scheduled but the overall stack
consumption is much lower.

The single stack model also significantly simplifies the allocation of stack
space at link time as you need only allocate a single memory section for
the entire system stack, in exactly the same way as if you were not using an
OS at all.

4.6.1 Working with Extended Tasks

RTA-OS3.x uniquely extends the single stack model to provide support for
extended tasks without any impact on the performance of basic tasks.

In RTA-OS3.x, the lifecycle of an extended task is as follows:

Suspended Ô Ready The task is added to the ready queue.

62 Tasks

Figure 4.9: Single-stack behavior with non-preemptive tasks

Ready Ô Running The task is dispatched but, unlike a basic task where the
context is placed in the top of the stack, the context is placed in the
stack space at the pre-calculated worst case preemption depth of all
lower priority tasks.

Running Ô Ready The extended task is preempted. If the preempting task
is a basic task, then it is dispatched on the top of the stack as normal.
If the preempting task is an extended task, then it is dispatched at the
pre-calculated worst case preemption depth of all lower priority tasks.

Running Ô Waiting The task’s Wait Event Stack context, comprising the
OS context, local data, stack frames for function calls, etc, is saved to
an internal OS buffer

Waiting Ô Ready The task is added to the ready queue.

Running Ô Suspended The task’s “Wait Event Stack” context is copied
from the internal OS buffer back onto the stack at the pre-calculated
worst case preemption depth of all lower priority tasks.

This process allows the additional cost of managing extended tasks to apply
only to extended task themselves. Basic tasks in system including extended
tasks have the same performance as they would have in a basic task only
system.

Tasks 63

Figure 4.10: Single-stack management with Extended Tasks

The key parts of this lifecycle are the dispatch/resume at the worst case pre-
emption depth and the copy on and off the stack. The dispatch at the worst
case preemption point guarantees that whenever an extended task resumes
after waiting, it can resume with its local variables at exactly the same lo-
cation in memory. It is guaranteed that every possible preemption pattern
of lower priority tasks will never exceed the dispatch point of the extended
task. The dispatch-wait-resume cycle for an extended task D is illustrated in
Figure 4.10.

The copy off and on allows the extended tasks stack context to be restored.
This is necessary because higher priority tasks and/or ISRs may occur while
the extended task is waiting. These may consume stack space greater than
the worst case preemption point (remember that the worst case point is
for lower priority objects only), thereby overwriting the context of the ex-
tended task. However, fixed priority preemptive scheduling guarantees that
no higher priority task can be ready to run at the point the extended task is
resumed (it could not be resumed if this was the case).

Extended task management requires RTA-OS3.x to be told how much stack is
used by tasks and ISRs. The following sections describe the various configu-
ration parameters.

4.6.2 Mandatory Stack Information

The calculated worst case dispatch points define the number of bytes, rela-
tive to the address of the stack pointer when StartOS() is called, at which

64 Tasks

an extended task needs to start. These offsets are stored as ROM data in the
extended task control blocks and are added to the base address of the stack
at runtime.

This means that RTA-OS3.x needs to be told various parameters about use of
the stack. The values that are captured are port-specific and you should be
read the Target/Compiler Port Guide for your port for additional guidance.

RTA-OS3.x provides runtime features for measuring the worst-case stack val-
ues for tasks and ISRs. See Section 14.3 for further information.

Typically, all ports will allow you to specify the following values, all figures are
in bytes:

Stack used for C-startup (SpPreStartOS)

The amount of stack space in use at the point StartOS() is called.

This value is not required for the calculation of worst case dispatch
points and can safely be set to zero. However, the value is used in
the calculation of worst-case stack usage if a ‘Stack Usage’ report is
requested.

Stack used when idle (SpStartOS)

The maximum amount of stack space used by Os_Cbk_Idle() if it is
declared. If you do not declare an Os_Cbk_Idle() then this value can
be set to zero.

Stack overheads for ISR activation (SpPreemption)

The number of additional bytes of stack used when returning from an
ISR into a different task than the one preempted.

This is the stack size difference between resuming the task which was
preempted and starting a new (higher priority) task.

Stack overheads for ECC tasks (SpECC)

The number of additional bytes of stack required to activate an ex-
tended task compared to a basic task.

This value can be obtained by measuring the stack value :

1. before an (upwards) activation of a basic task and immediately in
the entry function of the activated task.

2. before an (upwards) activation of an extended task and immedi-
ately in the entry function of the activated task.

and then subtracting the second value from the first value.

Tasks 65

Figure 4.11: Essential Stack Values

Stack overheads for ISR (SpIDisp)

The number of bytes that are placed on the stack between a task or ISR
being preempted and entering the Category 2 handler.

This value can be obtained by measuring the stack value before an in-
terrupt occurs and immediately in the Category 2 ISR’s entry function
during your testing.

All of the mandatory stack values except Stack overheads for ISR
(SpIDisp) are added to stack values during checking. This means that
specifying larger values than actually occur is safe. However, Stack
overheads for ISR (SpIDisp) is subtracted from the current value of the
of stack pointer on entry to the ISR to check whether the preempted
task or ISR has exceeded its stack usage. Therefore, specifying a large
value here may result in an error being reported where it has not oc-
curred (i.e. RTA-OS3.x stack management will report a “false positive”.

Figure 4.11 shows the configuration of the essential stack values.

4.6.3 Specifying Task Stack Allocation

In systems that contain only basic tasks it is not necessary to tell RTA-OS3.x
any stack allocation unless you are doing stack monitoring (see Section 14.1).
You simply need to allocate a stack section large enough for your application
in your linker/locator. This is one of the benefits of the single stack architec-
ture.

66 Tasks

For applications that use extended tasks, you allocate your linker section as
before, but you must also tell RTA-OS3.x the stack allocation for every task
in your configuration that is lower priority than the highest priority extended
task, even if they are basic tasks. RTA-OS3.x uses the stack allocation infor-
mation to calculate the worst case preemption point for each extended task
off-line.

The stack allocation you specify is the entire stack used for the task and
includes:

• the OS context

• space for local variables in the task body

• the space required for any functions called from the task body (and their
locals)

You can use RTA-OS3.x’s stack measurement feature to obtain accurate val-
ues for the stack allocation. See Section 14.1 for further details.

RTA-OS3.x only uses the stack information you provide to calculate the
worst case preemption point. RTA-OS3.x does not reserve any stack
space. You must still specify the stack application stack space in the
same way you would do for a normal application.

Figure 4.12 shows how stack allocation is configured.

While RTA-OS3.x uses a single-stack model, on some ports this does not nec-
essarily mean that just one physical stack is used. It may be the case that
either the compiler or the hardware forces data onto different stacks auto-
matically. For example, some devices place interrupts on to a dedicated in-
terrupt stack.

Even with multiple physical stacks, RTA-OS3.x still provides the benefits of the
single-stack architecture - the stack space required on every physical stack
can be overlaid when tasks and/or ISRs share a priority level. However, for the
stack allocation to work correctly you will need to specify the space needed
on each stack. RTA-OS3.x will automatically ask you for multiple stack values
if you configure a target for which this information is required. Figure 4.13
shows a dialogue box from such a configuration where there are two stacks:
‘Supervisor’ and ‘Context’.

4.6.4 Optimizing the Extended Task context save

Recall from Section 4.6.1 that each time an extended task enters the waiting
state, RTA-OS3.x saves the task’s “Wait Event Stack” context and that the
context is restored when the task re-enters the running state.

Tasks 67

Figure 4.12: Stack Allocation Configuration

Figure 4.13: Stack Allocation Configuration for multiple stacks

68 Tasks

Figure 4.14: Specifying a WaitEvent() Stack allocation
.

RTA-OS3.x saves the “Wait Event Stack” context in an internal buffer. By
default, RTA-OS3.x allocates a buffer equal to the worst case stack allocation
you specify for the task. Assuming that your stack allocation is correct, this
should always be enough to hold the worst case stack usage when you call
WaitEvent().

This sounds expensive because it appears that RTA-OS3.x needs to allocate
twice the RAM you would expect for each extended task: once on the stack
and once for the task’s save/restore buffer! However, RTA-OS3.x needs to
save the context only when WaitEvent() is called. This means that you can
significantly optimize the RAM size required by RTA-OS3.x when using ex-
tended tasks by allocating only enough buffer space to save the worst case
“Wait Event Stack” context, rather than the absolute worst case space re-
quired by the task.

Typically, most applications that use extended tasks only call WaitEvent()
from the task’s entry function where only a small amount of local data is on
the stack so this optimization can be applied in most extended task systems.

You can control exactly how many bytes of stack are saved by RTA-OS3.x by
specifying the worst case stack depth at the point you call WaitEvent() as
shown in Figure 4.14.

Tasks 69

If you leave the WaitEvent() Stack allocation as ‘undefined’ then RTA-
OS3.x will default to use the number of bytes you specified for the stack
allocation.

Using Default Values

While you should set a stack value for each task for memory efficiency, RTA-
OS3.x allows you to set a global default value that is used by all tasks. This
can be found in General Ô Default Stack Values.

If a Stack Allocation is not configured for a task, then RTA-OS3.x will use the
default value for:

• Calculating the worst case stack offset

• Configuring the WaitEvent() save/restore area

• Stack Monitoring (when configured)

The specification of a task/ISR-specific stack allocation overrides the default
value.

4.6.5 Handling Stack Overrun

If the stack allocation figures you provided to RTA-OS3.x are wrong (i.e. they
are too small) then this is a potential source of errors at runtime. There are
three things that can go wrong:

1. the extended task cannot start because the current value of the stack
pointer is higher than the calculated worst case dispatch point when
RTA-OS3.x tries to dispatch an extended task. This means one (or more)
of the lower priority tasks that are on the stack has consumed too much
space (Stack monitoring, described in Section 14.1, can be used to iden-
tify which task is at fault).

2. the extended task cannot resume from the waiting state because the
stack pointer is higher it should be. This may occur when SetEvent()
has been called for an event on which the extended task was waiting
and the extended task is now the highest priority task in the system.

3. the extended task cannot enter the waiting state because the cur-
rent amount of stack the task is using is greater than the size of the
‘WaitEvent() stack’ that was configured.

70 Tasks

Figure 4.15: Enabling the Os_Cbk_StackOverrunHook()
.

When RTA-OS3.x detects a problem with extended task stack management it
will call ShutdownOS() with the error code E_OS_STACKFAULT.

If you want to debug the problem then you can enable the stack fault hook as
shown in Figure 4.15.

When configured, RTA-OS3.x will call the user-provided callback
Os_Cbk_StackOverrunHook() instead of ShutdownOS() when a stack
fault occurs. The callback is passed two parameters:

1. Overrun tells you the number of bytes of the overrun

2. Reason tells you what caused the overrun

For an extended task system without stack monitoring enabled, the overrun
can be either:

• OS_ECC_START - the extended task could not start (or resume from wait-
ing) because the current stack pointer exceeds the worst case dispatch
point calculated at build time. The cause of this fault is that one (or
maybe more) of the lower priority tasks has exceeded the configured

Tasks 71

stack allocation. To fix this problem you need to identify which task is in
error. Chapter 14 explains how to do this using RTA-OS3.x’s stack moni-
toring feature.

• OS_ECC_WAIT - the extended task could not enter the waiting state be-
cause the amount of stack space it has consumed exceeds the config-
ured WaitEvent() stack size. To fix this problem, you should increase
the WaitEvent() stack size by at least the number of bytes indicated by
the Overrun parameter.

Code Example 4.1 shows a simple example.

#ifdef OS_STACKOVERRUNHOOK
FUNC(void, OS_APPL_CODE) Os_Cbk_StackOverrunHook(Os_StackSizeType

Overrun, Os_StackOverrunType Reason) {
{

/* Identify problem */
for(;;) {

/* Do not return! */
}

}
#endif /* OS_STACKOVERRUNHOOK */

Code Example 4.1: Minimum recommended Os_Cbk_StackOverrunHook()

4.7 Implementing Tasks

Tasks are similar to C functions that implement some form of system func-
tionality when they are called by RTA-OS3.x.

You do not need to provide any C function prototypes for task entry
functions. These are provided though the Os.h header file generated
by RTA-OS3.x.

When a task starts running, execution begins at the task entry function. The
task entry function is written using the C syntax in Code Example 4.2.

TASK(task_identifier)
{
/* Your code */

}

Code Example 4.2: A Task Entry Function

Remember that basic tasks are single-shot. This means that they execute
from their fixed task entry point and terminate when completed.

Code Example 4.3 shows the code for a basic task called BCC_Task.

72 Tasks

#include <Os.h>
TASK(BCC_Task) {
do_something();
/* Task must finish with TerminateTask() or equivalent. */
TerminateTask();

}

Code Example 4.3: A Basic Task

Now, compare the example in Code Example 4.3 with Code Example 4.4.
Code Example 4.4 shows that extended tasks need not necessarily terminate
and can remain in a loop waiting for events.

#include <Os.h>
TASK(ECC_Task) {
InitializeTheTask();
while (WaitEvent(SomeEvent)==E_OK) {
do_something();
ClearEvent(SomeEvent);

}
/* Task never terminates. */

}

Code Example 4.4: Extended Task Waiting for Events

4.8 Activating Tasks

A task can only run after it has been activated. Activation either moves a
task from the suspended state into the ready state or it adds another entry
to the queue of ready tasks (if the task supports multiple activation). The
task will run once for each of the activations. It is an error to exceed the
activation count and your application will generate E_OS_LIMIT errors when
this happens (even in the Standard build status).

Tasks can be activated from both tasks and (Category 2) ISRs.

Activating a task does not cause the task to begin executing immediately,
it just makes it ready to run. However, RTA-OS3.x needs to check whether
the activated task has a higher priority than the currently running task and,
if it does, cause a context switch to occur so the new task can preempt the
currently running task.

When you activate a task RTA-OS3.x from another task, the exact behavior
depends upon the relative task priorities. If the activated task has higher
priority than the currently running task, then the newly activated task will
preempt the current task. Otherwise, the task will remain on the ready queue
until it becomes the highest priority ready task.

Tasks 73

In a well-designed real-time system, it is unusual for a task to activate a
higher priority task. Normally ISRs capture system triggers and then acti-
vate the tasks to do any associated processing. In turn, these tasks may
activate lower priority tasks to implement trigger responses that have longer
deadlines.

Observing this fact leads to one of the major optimizations in RTA-OS3.x. If
you specify that your tasks never activate higher priority tasks, RTA-OS3.x
can eliminate the internal code that tests whether a context switch is needed
following each activation. This is configured by selecting the “Disallow Up-
wards Activation” optimization.

This is similar to the behavior when activating a task from an ISR. All ISRs
have a priority that is strictly higher priority than the highest task priority.
When a task is activated from an ISR it can never enter the running state
immediately so it is never necessary to check for a context switch. Such a
check is only necessary when leaving the ISR.

4.8.1 Direct Activation

Tasks can be activated in a number of different ways. The basic mecha-
nism for task activation is the ActivateTask() API call, which directly ac-
tivates a task. The ActivateTask(TaskID) call places the named task into
the ready state. The ChainTask(TaskID) call terminates the calling task (see
Section 4.11) and places the named task into the ready state.

API Call Description
ActivateTask() A task or ISR can make this call to activate the task

directly.

ChainTask() A task can make this call to terminate the currently run-
ning task and to activate the task indicated.

4.8.2 Indirect Activation

Besides directly activating tasks, it is possible to use other AUTOSAR OS
mechanisms to indirectly activate a task. These methods are described in
more detail in later chapters of this user guide.

Activation by an Alarm. For each alarm in the system, you can specify a
task that is activated each time the alarm expires.

Activation by a Schedule Table. For each schedule table in the system,
you can specify a task that is activated on one or more expiry points on
the table.

74 Tasks

4.9 Controlling Task Execution Ordering

In many cases, you will need to constrain the execution order of specific tasks.
This is particularly true in data flow based designs where one task needs to
perform some calculation before another task uses the calculated value. If
the execution order is not constrained, a race condition may occur and the
application behavior will be unpredictable. Task execution ordering can be
controlled in the following ways:

• Direct activation chains (see Section 4.9.1).

• Priority levels (see Section 4.9.2).

• Non-preemptable tasks (see Section 2).

4.9.1 Direct Activation Chains

When you use direct activation chains to control the execution order, tasks
make ActivateTask() calls on the task(s) that must execute following the
task making the call.

Consider the following; there are three tasks Task1, Task2 and Task3 that
must execute in the order Task1, then Task2, then Task3. Code Example 4.5
shows example task bodies.

#include <Os.h>
TASK(Task1) {
/* Task1 functionality. */
ActivateTask(Task2);
TerminateTask();

}

TASK(Task2) {
/* Task2 functionality. */
ActivateTask(Task3);
TerminateTask();

}

TASK(Task3) {
/* Task3 functionality. */
TerminateTask();

}

Code Example 4.5: Using Direct Activation Chains

Figure 4.16 shows how these tasks would execute assuming that Task1 has
the highest priority and Task 3 has the lowest priority.

Tasks 75

Figure 4.16: Direction activation to control task execution order

4.9.2 Using Priority Levels

The priority level approach to constraining task execution ordering can be
used to exploit the nature of the preemptive scheduling policy to control ac-
tivation order.

Recall from Section 4.1 that, under fixed priority preemptive scheduling, the
scheduler always runs the highest priority task. If a number of tasks are
released onto the ready queue, they will execute in priority order. This means
that you can use task priorities to control execution order.

Following on from our previous example, in Code Example 4.5, let’s assume
that Task1 has the highest priority and Task3 has the lowest priority. This
means that the task bodies can be rewritten to exploit priority level controlled
activation. This can be seen in Code Example 4.6.

#include <Os.h>
TASK(Task1) {
/* Task1 functionality. */
ActivateTask(Task2); /* Runs when Task1 terminates. */
/* More Task1 functionality. */
ActivateTask(Task3); /* Runs when Task2 terminates. */
TerminateTask();

}

TASK(Task2) {
/* Task2 functionality. */

76 Tasks

Figure 4.17: Using priority to control task execution order

TerminateTask();
}

TASK(Task3) {
/* Task3 functionality. */
TerminateTask();

}

Code Example 4.6: Using Priority Level Controlled Activation

/* Task1 functionality. */

Figure 4.17 shows how these tasks would execute.

4.10 Co-operative Scheduling in RTA-OS3.x

When a task is running non-preemptively, it prevents any task (including
those of higher priority) from executing. Sometimes, however, it is useful
for non-preemptive tasks to offer explicit places where rescheduling can take
place. This is more efficient than simply running non-preemptively because
higher priority tasks can have shorter response times to system stimuli. A
system where tasks run non-preemptively and offer points for rescheduling
is known as a co-operatively scheduled system.

The Schedule() API call can be used to momentarily remove the preemption
constraints imposed by both the non-preemptive tasks and the tasks using
internal resources.

When Schedule() is called, any ready tasks that have a higher priority than
the calling task are allowed to run. Schedule() does not return until all higher
priority tasks have terminated.

Tasks 77

Figure 4.18: Co-operative tasks

In the following code example, the non-preemptive task Cooperative in-
cludes a series of function calls. Once started, each function runs to com-
pletion without preemption, but the task itself can be preempted between
each function call.

#include <Os.h>
TASK(Cooperative){
Function1();
Schedule();/* Allow preemption */

Function2();
Schedule();/* Allow preemption */

Function3();
Schedule();/* Allow preemption */

Function4();
TerminateTask();

}

Figure 4.18 shows how two tasks, Task1 and Task2, which are co-operative
would interact. The white sections represent non-preemptable sections of
code.

4.10.1 Optimizing out the Schedule() API

Schedule() is of no use in a fully preemptive system. If you do not in-
tend to use it, you can disallow calls to Schedule() in rtaoscfg using
the “Optimizations, RTA-OS, Disallow Schedule()”. If you disallow calls to
Schedule() then you will see that the worst-case stack requirement for the
system is reduced.

4.11 Terminating Tasks

Tasks that terminate in AUTOSAR OS must make an API call to tell the OS that
this is happening. The AUTOSAR OS standard defines two API calls for task
termination. One of these must be used to terminate any task. These API
calls are:

78 Tasks

• TerminateTask()

• ChainTask(TaskID)

When a task has finished, it must make one of these API calls. This ensures
that RTA-OS3.x can correctly schedule the next task that is ready to run.

TerminateTask() forces the calling task into the suspended state. RTA-OS3.x
will then run the next highest priority task in the ready state.

ChainTask(TaskID) terminates the calling task and activates the task
TaskID. The API is therefore like executing a TerminateTask() followed im-
mediately by ActivateTask(TaskID). Chaining a task places the named task
into the ready state.

4.11.1 Optimizing Termination in RTA-OS3.x

The AUTOSAR OS standard allows task termination API calls to be called by a
task at any point, including within a deeply nested set of function calls. This
is bad programming practice - equivalent to the use of goto. At runtime, RTA-
OS3.x must store information that allows it to clear the stack when the task
terminates somewhere other than the entry function. This is normally done
using a setjmp/longjmp pair.

Code Example 4.7 shows a task that makes nested calls to other func-
tions. When Task1 runs, it calls Function1(). Function1() then calls
Function2(). Function2() contains codes that can terminate the calling
task (in this example, this is Task1).

/* Include Header file generated by \RTAOS */
#include <Os.h>

void Function1(void) {
...
Function2();
...

}

void Function2(void) {
if (SomeCondition) {
TerminateTask();

}
}

TASK(Task1) {
/* Make a nested function call. */
Function1();
/* Terminate the task in the entry function*/

Tasks 79

TerminateTask();
}

Code Example 4.7: Terminating a Task

However, one of the key benefits of the a single-stack architecture is
that a task which terminates in its entry function can simply return -
TerminateTask() does not need to do anything. If all your tasks either do
not terminate or only terminate in their entry function, then the context that
RTA-OS3.x saves to allow a return from anywhere does not need to be stored.

RTA-OS3.x allows you to exploit good application design using the fast ter-
mination optimization (Optimizations Ô Fast Terminate). You can en-
able this optimization when all tasks that execute the TerminateTask() or
ChainTask() APIs only do so in their entry function. The optimization tells
RTA-OS3.x not to generate code to save unnecessary context and, as a re-
sult, save stack space.

4.12 The Idle Mechanism

Any preemptive operating system must have something to do when there are
no tasks or ISRs to run. In AUTOSAR OS this is achieved by an idle mechanism.
In RTA-OS3.x the OS will sit in a busy wait loop doing nothing when there are
no tasks or ISRs to run.

However, you can override the default behavior by providing your own imple-
mentation of the idle mechanism by declaring a callback called Os_Cbk_Idle.

The Os_Cbk_Idle behaves in the same way as a task except that:

• it cannot be activated

• it cannot be terminated

• it cannot wait for events

• it cannot be chained

• it cannot use internal resources

The Os_Cbk_Idle has the lowest priority of any task in the system, so it runs
only when there are no tasks (or ISRs) that are ready to run. The idle mech-
anism therefore gives you an “extra task” that is almost entirely free from
system overheads.

Code Example 4.8 shows an implementation of Os_Cbk_Idle that is used to
control RTA-TRACE (see Chapter 17).

80 Tasks

#include <Os.h>
FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle() {

#ifdef OS_TRACE
CheckTraceOutput();
UploadTraceData();

#endif /* OS_TRACE */
return TRUE;

}

OS_MAIN()
{
/* System hardware initialization. */
StartOS(OSDEFAULTAPPMODE);
/* The call never returns */

}

Code Example 4.8: An Idle Mechanism

Os_Cbk_Idle returns a boolean on exit that tells RTA-OS3.x whether or not
to call Os_Cbk_Idle again. When TRUE is returned then RTA-OS3.x immedi-
ately calls Os_Cbk_Idle again. When FALSE is returned then RTA-OS3.x stops
calling Os_Cbk_Idle and enters the default behavior of sitting in a busy wait
loop.

4.13 Pre and Post Task Hooks

Suppose that you need to execute some code before each task starts and/or
after each task ends, for example to profile a trace of execution. You can do
this using the PreTask and PostTask hooks provided by AUTOSAR OS.

The PreTask Hook is called by RTA-OS3.x whenever a task moves into the
running state. This means that the PreTask Hook will also be called whenever
a task is resumed after preemption.

The PostTask Hook is called by RTA-OS3.x whenever a task moves out of the
running state. The PostTask Hook will be called when the task terminates and
each time a task is preempted.

Figure 4.19 shows where the PreTask and PostTask Hooks are called relative
to task preemption.

Both of these hooks are only called when configured. Figure 4.20 shows how
to enable the hooks.

Code Example 4.9 shows how the hooks should appear in your code.

FUNC(void, OS_APPL_CODE) PreTaskHook(void) {
/* PreTask hook code. */

}

Tasks 81

Figure 4.19: The PreTaskHook() and PostTaskHook() Relative to Task Pre-
emption

Figure 4.20: Enabling the PreTaskHook() and PostTaskHook()

82 Tasks

FUNC(void, OS_APPL_CODE) PostTaskHook(void) {
/* PostTask hook code. */

}

Code Example 4.9: The PreTaskHook and PostTaskHook

The PreTask and PostTask Hooks are called on entry and exit of tasks and
for each preemption/resumption. This means that it is possible to use these
hooks to log an execution trace of your application. Since the same PreTask
and PostTask Hooks must be used for all of the tasks in the application, it is
necessary to use the GetTaskID() API call to work out which task has been
or will be running when the hook routine is entered.

RTA-OS3.x defines a set of macros that are only defined if the corresponding
hook is enabled. These macros are called:

• OS_PRETASKHOOK

• OS_POSTTASKHOOK

This allows you write code where the hooks can be conditionally compiled as
shown in Code Example 4.10.

#ifdef OS_PRETASKHOOK
FUNC(void, OS_APPL_CODE) PreTaskHook (void)
{
/* Your code */

}
#endif /* OS_PRETASKHOOK */

Code Example 4.10: Conditional Compilation of PreTaskHook

4.14 Saving Hardware Registers across Preemption

RTA-OS3.x saves as little context as necessary on a context switch - only the
context for the correct operation of the OS is saved. However, you may find
that you need to save and restore additional application-dependent context
at runtime. For example, you may have tasks that use floating-point registers
and therefore will require the floating-point context for your microcontroller
to be saved across context switches.

You could choose to implement this by hand using the PreTask and PostTask
hooks and an application-managed stack. However, it becomes difficult to
optimize this type of implementation without making it fragile to changes in
OS configuration. You can either:

Tasks 83

• always save the context on every switch into a task and then restore on
every switch out.

This model means you might be making unnecessary saves and restores
(for example, saving a register set when switching into a task that doesn’t
use it); or

• calculate the saves required offline and then write a more complex pair
of hooks that use GetTaskID()/GetISRID() to work out of a save/restore
is needed.

This model is fragile because changes to the configuration, for example
adding new tasks/ISRs or modifying priorities, will mean that re-work is
necessary.

To avoid these issues, RTA-OS3.x provides a simple general-purpose mecha-
nism for saving user-specific context together with the OS context. RTA-OS3.x
is able to exploit its knowledge of the priority space to calculate exactly which
tasks need to save register sets at runtime so that unnecessary saves are op-
timized away automatically, saving both the time and stack required for the
context switch. For example:

• if you only have one task or ISR that saves a given register set then no
save or restore is needed.

• if multiple tasks use the same register set but cannot execute at the same
time (because they are non-preemptable, share an internal resource or
share priority) then RTA-OS3.x does not need to save the register set.

• a context switch into the lowest priority task that uses a register set does
not need to do a save because it can be guaranteed that no other task can
be using the set (because the lowest priority task could not be running if
a higher priority task was using the register set).

• similarly, a context switch from the highest priority task that uses a reg-
ister set does not need to do a save because no higher priority task uses
the register set and therefore cannot corrupt the context.

Figure 4.21 shows a register set that is shared by tasks 1, 3 and 5. You can
see that when a save is not needed (when switching into a task that does not
use the register set) then no context save is made.

Each register set you need to save needs to be declared to RTA-OS3.x at con-
figuration time. rtaosgen uses the declaration to define two callback func-
tions that you must provide to save and restore the register set. Figure 4.22
shows the definition of three register sets.

84 Tasks

Figure 4.21: Register saving in action

Figure 4.22: Register Set Definition

Tasks 85

Figure 4.23: Using a register set in a task

Each task that uses a register set needs to declare this at runtime so that
rtaosgen can calculate the maximum number of sets that need to be saved.
Figure 4.23 shows one how this is done for a task.

RTA-OS3.x does not know how or where to save and restore the register sets
you declare - it just knows how many saves are necessary and when to save
and restore them. For each register set you define, RTA-OS3.x generates a
macro called OS_REGSET_<RegisterSetName>_SIZE that defines the worst-
case number of resister set saves required. You should use this in your appli-
cation code to define an array of size OS_REGSET_<RegisterSetName>_SIZE
where each element of the array holds the saved register set.

You will also need to provide callback functions for the save and restore oper-
ations:

• Os_Cbk_RegSetSave_<Name>(Os_RegSetDepthType Depth) is called by
RTA-OS3.x whenever it is necessary to save a register set.

• Os_Cbk_RegSetRestore_<NAME>(Os_RegSetDepthType Depth) is called
by RTA-OS3.x whenever it is necessary to restore a register set.

Both of the callbacks are passed a Depth value that indicates the register set
to save or restore. Code Example 4.11 shows how the callbacks might should
appear in your code.

86 Tasks

typedef volatile uint32 RegType;

#define VOLATILEREGISTER (*(RegType*)(0xFECAFECA))

uint32 VolatileRegisterSaveArea[OS_REGSET_VolatileRegister_SIZE];

FUNC(void, OS_APPL_CODE)
Os_Cbk_RegSetSave_VolatileRegister(Os_RegSetDepthType Depth) {

VolatileRegisterSaveArea[Depth] = VOLATILEREGISTER;
}

FUNC(void, OS_APPL_CODE)
Os_Cbk_RegSetRestore_VolatileRegister(Os_RegSetDepthType
Depth) {

VOLATILEREGISTER = VolatileRegisterSaveArea[Depth];
}

Code Example 4.11: Register Set Save And Restore

4.15 Summary

• A task is a concurrent activity.

• There are two classes of tasks: basic and extended.

• Tasks can share priorities, though it is recommended that you do not do
this.

• Tasks are scheduled according to priority. When a higher priority task
is made ready to run it will preempt lower priority tasks but it will not
preempt any task that has been configured as non-preemptive.

• Tasks exist in states: ready, running, suspended or waiting (however,
only extended tasks can enter the waiting state).

• If a task terminates, it must call TerminateTask() or ChainTask(TaskID)
to do so.

• Systems where all tasks that terminate do so in their entry functions can
use the “fast termination” optimization to minimize stack usage and con-
text switching time.

• Tasks can only be activated when they are in the suspended state unless
you specify multiple activations.

• The PreTask and PostTask Hooks allow you to execute code before your
task starts and after it ends. This can be used to profile your application
at run-time.

Tasks 87

5 Interrupts

Interrupts provide the interface between your application and the things that
happen in the real-world. You could, for example, use an interrupt to capture
a button being pressed, to mark the passing of time or to capture some other
stimulus.

When an interrupt occurs, the processor usually looks at a predefined loca-
tion in memory called a vector. A vector usually contains the address of the
associated interrupt handler. Your processor documentation and the Target/-
Compiler Port Guide for your target will give you further information on this.
The block of memory that contains all the vectors in your application is known
as the vector table.

5.1 Single-Level and Multi-Level Platforms

Target processors are categorized according to the number of interrupt prior-
ity levels that are supported . You should make sure that you fully understand
the interrupt mechanism on your target hardware.

There are two different types of target:

Single-level. On single-level platforms there is a single interrupt priority. If
an interrupt is being handled, all other pending interrupts must wait
until current processing has finished.

Multi-level. On multi-level platforms there are multiple interrupt levels. If
an interrupt is being handled, it can be preempted by any interrupt of
higher priority. This is sometimes called a nested interrupt model.

5.2 Interrupt Service Routines

AUTOSAR operating systems capture interrupts using Interrupt Service Rou-
tines (ISRs). ISRs are similar to tasks; however, ISRs differ because:

• They cannot be activated by RTA-OS3.x API calls.

• They cannot make TerminateTask() and ChainTask() API calls.

• They start executing from their entry point at the associated interrupt
priority level.

• Only a subset of the RTA-OS3.x API calls can be made.

The Reference Guide tells you the permitted calling context for every API call.
You can refer to this to see whether or not you can use an API call in an ISR.

88 Interrupts

5.3 Category 1 and Category 2 Interrupts

AUTOSAR operating systems classify interrupts into two categories called
Category 1 and Category 2. The category indicates whether or not the OS
is involved with handling the interrupt.

5.3.1 Category 1 Interrupts

Category 1 interrupts do not interact with RTA-OS3.x. They should always be
the highest priority interrupts in your application. It is up to you to configure
the hardware correctly, to write the handler and to return from the interrupt.

You can find out more about Category 1 interrupt handlers in Section 5.6.1.

The handler executes at or above the priority level of RTA-OS3.x. However,
you can make RTA-OS3.x API calls for enabling/disabling and resuming/sus-
pending interrupts.

5.3.2 Category 2 Interrupts

With Category 2 interrupts, the interrupt vector points to internal RTA-OS3.x
code. When the interrupt is raised, RTA-OS3.x executes the internal code and
then calls the handler that you have supplied.

The handler is provided as an ISR bound to the interrupt (which you can think
of as a very high priority task). Execution starts at the specified entry point
of the ISR and continues until the entry function returns. When the entry
function returns, RTA-OS3.x executes another small section of internal code
and then returns from the interrupt.

Figure 5.1 shows the state diagram for a Category 2 interrupt handler.

Figure 5.2 shows how the internal RTA-OS3.x code wrappers can be visual-
ized.

5.4 Interrupt Priorities

Interrupts execute at an Interrupt Priority Level (IPL). RTA-OS3.x standardizes
IPLs across all target microcontrollers, with IPL 0 indicating user level, where
all tasks execute, and an IPL of 1 or more indicating interrupt level. It is
important that you do not confuse IPLs with task priorities. An IPL of 1 is
higher than the highest task priority used in your application.

The IPL is a processor-independent description of the interrupt priority on your
target hardware. The Target/Compiler Port Guide for your port will tell you
more about how IPLs are mapped onto target hardware interrupt priorities.

On a single-level platform there are two IPLs, 0 and 1. IPL 0 means that the
target is not interrupted and tasks run in priority order. IPL 1 means that

Interrupts 89

Figure 5.1: Category 2 Interrupt Handling State Diagram

90 Interrupts

Figure 5.2: Visualizing RTA-OS3.x Category 2 Wrappers

the target is servicing an interrupt. As there is only one non-zero IPL, all
interrupts, both Category1 and Category 2, run at the same priority. This
means that all interrupts are serialized.

On multi-level platforms, higher priority interrupts can preempt lower priority
interrupts and, therefore, the ISR handlers can be nested. So, for example, a
higher priority ISR can interrupt the execution of a low priority ISR. However,
an ISR can never be preempted by a task.

A Category 1 ISR must never be interrupted by a Category 2 ISR. This is be-
cause it is possible for a Category 2 ISR to activate a task and the OS therefore
needs to check for a context switch when leaving the ISR - this is what the
OS is doing in the second part of the ‘wrapper’ function shown in Figure 5.2.
As ISRs can nest on a multi-level platform, this check must happen as each
interrupt exit. Now, if a Category 1 ISR could be preempted by a Category 2
ISR, on exit from the Category 1 ISR no checking for a context switch would
occur and the originally preempted task would resume instead of the acti-
vated higher priority task. This is priority inversion and can cause unknown
side-effects in your system.

Interrupts 91

(a) Single-level (b) Multi-level

Figure 5.3: Interrupt Priority Hierarchies

This issue means that all Category 2 ISRs must have an IPL that is no higher
than the lowest priority Category 1 ISR. RTA-OS3.x automatically checks this
at build time and will generate an error if this is the case.

The interrupt priority hierarchies for single and multi-level platforms are
shown in Figure 5.3.

5.4.1 User Level

User level is the lowest interrupt priority level that allows all interrupts to be
handled. All tasks start executing at user level from their entry point.

A task will sometimes need to run above user level, for example it may need
to access data shared with an ISR. While the data is being accessed it must
prevent the interrupt being serviced. The simplest way to do this is for the
task to disable interrupts while the data is being accessed. This is discussed
in Section 5.7. An alternative mechanism is to use AUTOSAR OS’s resource
mechanism. This is discussed in Chapter 6.

An ISR may preempt a task even when the task is running with interrupt
priority level above user level. It can only do this, however, if the ISR has a
higher interrupt priority level than the current level.

5.4.2 OS Level

The priority of the highest priority Category 2 ISR defines OS level. If exe-
cution occurs at OS level, or higher, then no other Category 2 interrupts can
occur.

92 Interrupts

Figure 5.4: Configuring an Interrupt using in rtaoscfg

RTA-OS3.x uses OS level to guard against concurrent access to internal OS
data structures. Any RTA-OS3.x API that manipulates the internal state of the
OS will perform some (if not all) of its execution time at OS level. OS hooks
(for example the Error Hook, PreTask and PostTaskHook and OS callbacks also
run at OS level. If a task executes at OS level, then no RTA-OS3.x operations
will take place (except for calls made by the task).

5.5 Interrupt Configuration

In RTA-OS3.x, interrupts are configured statically using rtaoscfg. Figure 5.4
shows how an interrupt has been constructed.

At the simplest level, an interrupt has the following attributes:

An interrupt name. The name is used to refer to C code that you will write
to implement the handler functionality (you will learn how to do this in
Section 5.6).

An interrupt category. This is either Category 1 if the handler does not
need to execute RTA-OS3.x API calls and Category 2 otherwise.

An interrupt priority. The priority is used by the scheduler to determine
when the interrupt runs (in a similar way to a task priority being used
for tasks). Priority is a microcontroller specific parameter so an RTA-
OS3.x target must be selected before you can set a priority. Note that
some targets only support a single interrupt priority.

Interrupts 93

An interrupt vector. RTA-OS3.x uses the specified vector to generate the
vector table entry for the interrupt. Like the interrupt priority, inter-
rupt vector configuration is microcontroller specific so a target must be
selected before the interrupt vector can be configured.

On microcontrollers where the IPL is user-programmable then it is your
responsibility to ensure that the programmed priority level of an inter-
rupting device matches the level you have configured for RTA-OS3.x.
Since this configuration mus occur before the OS is started, RTA-OS3.x
is not able to do this for you since there may be Category 1 ISRs that
need to execute. RTA-OS3.x may be able generate appropriate configu-
ration data for you to use. You should consult your Target/Compiler Port
Guide for specific instructions.

The RTA-OS3.x GUI allows different targets to be selected (e.g. to al-
low you to quickly migrate one OS configuration to a new microcon-
troller). When the target is changed, all target-specific configuration is
removed, including the interrupt priority and interrupt vector settings.
You will therefore need to provide new target settings as appropriate.

5.5.1 Vector Table Generation

In most cases, RTA-OS3.x can generate the vector table automatically1.
rtaosgen will create a vector table with the correct vectors pointing to the
internal wrapper code and place this in the generated library.

If you want to write your own vector table then you must make sure that RTA-
OS3.x does not generate a vector table. You can prevent a vector table being
generated by disabling vector table generation (Target Ô Disable Vector
Table Generation) as shown in Figure 5.5.

When you write your own vector table you will need to make sure that all
interrupt vectors that are associated with Category 2 ISRs branch to the RTA-
OS3.x interrupt wrapper that sets up the context in which the ISR executes.

You must not branch directly to your interrupt handler implementation.
Doing so will bypass RTA-OS3.x and any interaction you try to make with
the kernel in the context of the handler is likely to result in unrecover-
able corruption of the kernel state.

Typically your own vector table will need to branch to labels of the form
Os_Wrapper_VECTOR where VECTOR is the hexadecimal address of the vector.
However, the exact details are port-specific. You should consult the Target/-
Compiler Port Guide for your port to obtain specific details of how to provide
your own vector table.

1It may be the case that the compiler for your port generates the vector table. You should
consult the Target/Compiler Port Guide for your port to obtain specific details.

94 Interrupts

Figure 5.5: Preventing RTA-OS3.x from Automatically Generating a Vector Ta-
ble

5.6 Implementing Interrupt Handlers

You will now learn about interrupt handlers for Category 1 and Category 2
interrupts.

5.6.1 Category 1 Interrupt Handlers

The format for writing a Category 1 ISR is non-portable. The compiler for
the microcontroller typically defines a compiler-specific extension to ANSI C
that allows a function to be marked as an interrupt. Some compilers, how-
ever, cannot do this. When this happens you will need to write an assembly
language handler.

You must make sure that the name of a Category 1 ISR entry function is the
same as the name that you specified for the ISR during configuration.

For Category 1 ISRs, there is usually a compiler-specific keyword (sometimes
called a pragma or a directive) that has to be used when defining entry func-
tions. RTA-OS3.x provides a macro called CAT1_ISR that expands to the cor-
rect directive for your compiler toolchain which you should use to mark your
function as a Category 1 ISR.

An entry function for a Category 1 ISR is shown in Code Example 5.1.

CAT1_ISR(Interrupt1) {
/* Handler body. */

Interrupts 95

/* Return from interrupt. */
}

Code Example 5.1: Entry Function for a Category 1 ISR

5.6.2 Category 2 Interrupt Handlers

You saw earlier that Category 2 interrupts are handled under the control of
RTA-OS3.x. A Category 2 ISR is similar to a task. It has an entry function that
is called by RTA-OS3.x when the interrupt handler needs to run. A Category 2
interrupt handler is written using the C syntax in Code Example 5.2.

#include <Os.h>
ISR(isr_identifier){
/* Handler body. */

}

Code Example 5.2: Entry Function for a Category 2 ISR

You do not need to provide any C function prototypes for Category 2 ISR entry
functions. These are provided in the Os.h header file that is generated by
rtaosgen.

You must not place a ‘return from interrupt’ command in your Category
2 ISR. Returning from the interrupt is handled by RTA-OS3.x.

5.6.3 Dismissing Interrupts

When the hardware detects an interrupt, it will typically set a pending bit
which tells the interrupt controller that an interrupt has occurred. The inter-
rupt controller will then branch to the handler through the interrupt vector
table.

The handling of the pending bit is target dependent but there are two basic
models:

1. the pending bit is cleared automatically after the interrupt is handled
(i.e. when the branch to the interrupt handler occurs). When the han-
dler exits it will be automatically re-triggered if an interrupt has become
pending while the current interrupt was being handled;

2. the pending bit must be cleared manually by user code in the interrupt
handler. The body of the interrupt handler, whether Category 1 or Cate-
gory 2, will need to include the code to clear the pending bit and signal
to the hardware that the interrupt has been handled.

96 Interrupts

If you need to clear the pending bit, it is good practice to do this immediately
on entry to the handler because this minimizes the time between the pending
bit being set by a second instance of the interrupt occurring and then subse-
quently cleared. This helps to prevent issues where the interrupt becomes
pending multiple times but this cannot be recognized by the hardware. Code
example 5.3 shows how the recommended structure of a Category 2 ISR han-
dler.

#include <Os.h>
ISR(Interrupt1) {

/* Dismiss the interrupt where required */
/* Rest of the handler */

}

Code Example 5.3: Dismissing the interrupt

You will need to consult your hardware reference manual to find out what you
need to do on your target hardware.

5.6.4 Writing Efficient Interrupt Handlers

Each interrupt handler you write will block all interrupts of equal or lower
priority for the time that it takes your code to execute. When you write an
interrupt handler it is good practice to make the handler as short as possible.
A long running handler will add additional latency to the servicing of lower
priority interrupts.

By minimizing the execution time of your interrupt handlers you can maxi-
mize overall system responsiveness.

If you need to execute a long-running piece of code in response to the inter-
rupt occurring, then you can put that code into a task and then activate the
task from a Category 2 ISR. Code Example 5.4 and Code Example 5.5 show
how these techniques differ.

With Category 2 handlers you can move the required functionality to a task,
a simply use the interrupt handler to activate the task and then terminate.

#include <Os.h>
ISR(InefficientHandler) {
/* Long handler code. */

}

Code Example 5.4: Inefficient interrupt handler

#include <Os.h>
ISR(EfficientHandler) {
ActivateTask(Task1);

}

Interrupts 97

TASK(Task1) {
/* Long handler code. */
TerminateTask();

}

Code Example 5.5: More efficient interrupt handler

5.7 Enabling and Disabling Interrupts

Interrupts will only occur if they are enabled. By default, RTA-OS3.x ensures
that all interrupts are enabled when StartOS() returns.

AUTOSAR OS uses the term Disable to mean masking interrupts and En-
able to mean un-masking interrupts. The enable and disable API calls
do not therefore enable or disable the interrupt source; they simply pre-
vent the processor from recognizing the interrupt (usually by modifying
the processor’s interrupt mask).

You will often need to disable interrupts for a short amount of time to prevent
interrupts occurring in a critical section of code in either tasks or ISRs. A
critical section is a sequence of statements that accesses shared data.

You can enable and disable interrupts using a number of different API calls:

• DisableAllInterrupts() and EnableAllInterrupts()

Disable and enable all interrupts that can be disabled on the hardware
(usually all those interrupts that can be masked).

These calls cannot be nested.

• SuspendAllInterrupts() and ResumeAllInterrupts()

Suspend and resume all interrupts that can be disabled on the hardware
(usually all those interrupts that can be masked).

These calls can be nested.

• SuspendOSInterrupts() and ResumeOSInterrupts()

Suspend and resume all Category 2 interrupts on the hardware.

These calls can be nested.

You must make sure that there are never more ‘Resume’ calls than ‘Sus-
pend’ calls. If there are, it can cause serious errors and the behavior is
undefined. Subsequent ‘Suspend’ calls may not work. This will result in
unprotected critical sections.

Code Example 5.6 shows you how the interrupt control API calls are used and
nested correctly.

98 Interrupts

#include <Os.h>
TASK(Task1) {

DisableAllInterrupts();
/* First critical section */
/* Nesting not allowed */

EnableAllInterrupts();
SuspendOSInterrupts();

/* Second critical section */
/* Nesting allowed. */
SuspendAllInterrupts();

/* Third critical section */
/* Nested inside second */

ResumeAllInterrupts();
ResumeOSInterrupts();
TerminateTask();

}

Code Example 5.6: Nesting Interrupt Control API Calls

In the case of Category 1 ISRs, you must make sure that no RTA-OS3.x API
calls are made (except for other Suspend/Resume calls) for the entire time
that the interrupts are disabled.

If a Category 2 ISR raises the interrupt level above OS level be calling
DisableAllInterrupts() then it may not make any other RTA-OS3.x API
calls, except for the EnableAllInterrupts() call to restore the interrupt
priority. When executing an ISR, you are not allowed to lower the interrupt
priority level below the initial level.

5.8 Saving Register Sets

Recall from Section 4.14 that RTA-OS3.x provides a mechanism for saving
register sets across context switches and that rtaosgen can optimize the
amount of saving that is required to improve runtime performance.

The same mechanism can also be used by Category 2 ISRs by simply select-
ing which ISRs use the configured register set as shown in Figure 5.6.

5.9 The Default Interrupt

If you are using RTA-OS3.x to generate a vector table, then you may want to
fill unused vector locations with a default interrupt.

Figure 5.7 shows how the default interrupt is defined.

The default interrupt is not supported by all ports.

Interrupts 99

Figure 5.6: Using a register set in a Category 2 ISR

Figure 5.7: Placing a Default Interrupt in the Vector Table

100 Interrupts

The name allocated to the default interrupt at configuration time is the name
that must be used in your application code when you write the handler. Code
Example 5.7 shows a default handler that would work with the configuration
shown in Figure 5.7.

The default interrupt is slightly different to other interrupts. It is used to fill
every location in the vector table for which you have not defined an inter-
rupt. This feature has been provided as a debugging aid and as a means
of providing a ‘fail-stop’ in the event of erroneous generation of interrupts
in production systems. If you actually want to attach interrupt handlers to
vectors to do useful work, you should explicitly create them as ISRs.

There are limitations on the use of the default interrupt handler. It cannot
make any OS calls, and system behavior is undefined if it ever returns.

Do not make any RTA-OS3.x API calls from the default interrupt and you
must not return from the handler.

The default interrupt is implemented like an OSEK Category 1 interrupt and
must therefore be marked as an interrupt with the CAT1_ISR macro. The last
statement in your default interrupt handler should be an infinite loop. Code
Example 5.7 shows how this can be done.

CAT1_ISR(DefaultInterruptHandler) {
/* invoke target-specific code to lock interrupts */
asm(‘di’); /* or whatever on your platform */
for (;;) {

/* Loop forever */
}
/* Do NOT return from default handler. */

}

Code Example 5.7: The Default Interrupt Handler

5.10 Summary

• RTA-OS3.x supports two categories of interrupts: Category 1 and Cate-
gory 2.

• Category 1 ISRs are normal embedded system interrupts that bypass
RTA-OS3.x. As a result they cannot interact with the OS and are forbid-
den from making (most) RTA-OS3.x API calls. They should be marked
using the CAT1_ISR macro.

• Category 2 ISRs are OS managed interrupts that run in a wrapper pro-
vided by RTA-OS3.x. These interrupts can make RTA-OS3.x API calls. They
must be marked using the ISR macro.

Interrupts 101

• All interrupts run at an Interrupt Priority Level (IPL) which is always strictly
higher then the highest task priority.

• IPLs standardize the interrupt priority model across all hardware devices
- higher IPLs mean higher priority.

• RTA-OS3,0 can generate an interrupt vector table or you can choose to
write your own. When generating a vector table, RTA-OS3.x can plug
unused locations with a user-configured default interrupt.

102 Interrupts

6 Resources

Access to hardware or data that needs to be shared between tasks and ISRs
can be unreliable and unsafe. This is because task or ISR preemption can oc-
cur while a lower priority task or ISR is part way through updating the shared
data. This situation is known as a race condition and is extremely difficult to
test for.

A sequence of statements that accesses shared data is known as a critical
section. To provide safe access to code and data referenced in the critical
section you need to enforce mutual exclusion. In other words, you must make
sure that no other task or Category 2 ISR in the system is able to preempt the
executing task during the critical section.

In Chapter 4 you saw that you can declare tasks to be non-preemptive and
that this prevents problems with mutual exclusion. However, this method
is ‘brute-force’ because it prevents preemption problems by preventing pre-
emption - rather like preventing car accidents by getting rid of cars!

The OS provide alternative mutual exclusion mechanisms based on re-
sources. A resource is just a binary semaphore. When a task or Category
2 ISR gets a resource, no other task or ISR can get the resource. This pre-
vents any other task or ISR entering the same critical section at the same
time. When the critical section is finished, the task or ISR releases the re-
source and the critical section can be entered by another task/ISR.

When a high priority task is being prevented from executing by a lower prior-
ity task this is called priority inversion because the higher priority task takes
longer to complete its execution than the lower priority task. The lower pri-
ority task appears to be running in precedence to the higher priority task,
contrary to what would be expected from their actual priority assignment.
The high priority task is said to be blocked by the low priority task.

Binary semaphores in traditional operating systems often get a bad name be-
cause priority inversion can introduce unbounded blocking in the system. For
example, if the low priority task is preventing the high priority task from ex-
ecuting but is itself preempted by a medium priority task that does not need
access to the shared resource then the high priority task will be blocked by
execution of the medium priority task as well. As the low priority task might
be preempted multiple times while it holds the shared resource, the block-
ing suffered by the high priority task can be unbounded, posing a significant
problem if you need to determine the longest time it takes a task to respond1.
In extreme cases, tasks can reach a state called ‘deadlock’ where each task
is waiting to enter a critical section that is being used by some other task.

1Because the response time of the task depends on a factor that you cannot calculate.

Resources 103

Figure 6.1: Raising to ceiling priority

In AUTOSAR OS, the problems typically associated with priority inversion and
deadlock are avoided because resources are locked according to a locking
protocol. This locking protocol is called priority ceiling protocol, in particular a
version called immediate inheritance priority ceiling protocol (or alternatively
stack resource protocol).

Priority ceiling protocol uses the concept of a ceiling priority. Each resource
in the system is allocated a ceiling priority that is equal to the highest priority
of any task or ISR that needs access to the resource. When a task or ISR
gets a resource, the running priority of the task/ISR is increased to the ceiling
priority of the resource (if and only if this is higher than the task/ISR’s current
running priority). When the resource is released, the priority of the task or
reverts to the priority immediately prior to the task or ISR making the call.
This is shown in Figure 6.1.

Immediate inheritance priority ceiling protocol provides two major benefits:

1. Priority inversion is minimized.

Each time a high priority task or ISR becomes ready, its execution can
only be delayed at most once by a single lower priority task or ISR that
already holds the a resource. This means there is no cumulative block-
ing so it is possible to place an upper bound on the blocking that a task
suffers - the maximum blocking time is the longest time that a lower
priority task/ISR holds the shared resource. Furthermore, this blocking
always occurs at the start of execution. A consequence of this is that a

104 Resources

resource is always free at the point it needs to be locked. There is no
need in AUTOSAR OS to wait for a resource to be released.

2. It is guaranteed to be deadlock free.

A task or ISR must be executing in order to make the lock. This can
be proved by contradiction. Assume that a task (or ISR) tries to get a
resource. If another task or ISR already had the resource then, because
that task or ISR must be running at the ceiling priority, the task making
the request not be executing (it would not be the highest priority task
or ISR in the system) and, therefore, could not be attempting to lock the
resource.

6.1 Resource Configuration

At the most basic level, resources only need to be named and assigned a
type. There are three types of resource in AUTOSAR OS:

1. Standard resources are normal OS semaphores. Configuring a standard
resource creates a resource with the specified name.

2. Linked resources allow you to alias a standard (or another linked) re-
source so that nested locking of the same resource is possible. These
are discussed in more detail in Section 6.4.

3. Internal resources are resources that are locked automatically on entry
to a task and released automatically on termination. These are dis-
cussed in more detail in Section 6.5.

Figure 6.2 shows how a standard resource is configured in the rtaoscfg.

RTA-OS3.x needs to know which tasks and ISRs use which resources. It can
then calculate the ceiling priorities used by the priority ceiling protocol.

Additional resource usage information for each task or ISR can be configured
during task or ISR configuration.

Figure 6.2 shows that a resource called Resource1 has been declared. When
you refer to this resource in your program you must use the same name.

6.2 Resources on Interrupt Level

Resources that are shared between tasks and interrupts are optional in OSEK.
This optional feature is supported by RTA-OS3.x.

RTA-OS3.x will automatically identify the resources that are combined re-
sources, so you don’t need to do any special configuration.

Resources 105

Figure 6.2: Configuring Resources using the rtaoscfg

When a task gets a resource shared with an ISR, RTA-OS3.x will mask all inter-
rupts with interrupt priority less than or equal to the highest priority interrupt
that shares the resource.

This is simply an extension of priority ceiling protocol.

Sharing resources between tasks and ISRs means provides greater control
over interrupt masking than the Enable/Disable and Suspend/Resume API
calls because they make it possible to mask a subset of interrupts up to a
particular priority level. Resources on interrupt level are therefore especially
useful when using an RTA-OS3.x port that supports nested interrupts.

6.3 Using Resources

You can get a resource using the GetResource() API call. You can then re-
lease a resource using the ReleaseResource() call. A task or ISR must not
terminate until it has released all resources that it locked.

A task or ISR can only use the resources that you specify during RTA-OS3.x
configuration. Code Example 6.1 shows you how resources are used in Task1.

#include <Os.h>
TASK(Task1) {
...
GetResource(Resource1);
/* Critical section. */

ReleaseResource(Resource1);

106 Resources

Figure 6.3: Execution of tasks with resource locks

...
TerminateTask();

}

Code Example 6.1: Using Resources

Calls to GetResource() and ReleaseResource() must be matched. You can-
not get a resource that is already locked. You cannot release a resource you
have not already locked.

When a GetResource() is made, it boosts the priority of the calling task or
ISR to the ceiling priority of the resource. The resource’s ceiling priority is
the highest priority of any task or ISR that shares the resource and is auto-
matically calculated by RTA-OS3.x. If any task with a priority less than the
ceiling priority is made ready to run, then it is prevented from executing (it is
blocked) until the priority of the running task returns to normal.

Figure 6.3 shows this effect with the following configuration:

Task Priority Locks Resource R1 Locks ResourceR2

3 High 3 7

2 Medium 7 3

1 Low 3 3

The first activation of Task 2 is blocked because Task 1 has locked R1. The
second activation of Task 2 is also blocked, but this time because Task 1 has
locked R1. The first activation of Task 3 is similarly blocked because of Task 1
holding R1. When Task 1 releases R1, the OS runs the highest priority ready
task which is Task 3. On termination of Task 3, Task 2 executes and finally,
when Task 2 terminates and Task 1 resumes.

Resources 107

6.3.1 Nesting Resource Calls

You can get more than one resource concurrently, but the API calls must be
strictly nested. Let’s look at two examples; one showing incorrectly nested
calls and the other showing the API calls nested correctly. Code Example 6.2
shows Resource1 and Resource2 being released in the wrong order.

GetResource(Resource1);
GetResource(Resource2);

ReleaseResource(Resource1); /* Illegal! */
/* You must release Resource2 before Resource1 */
ReleaseResource(Resource2);

Code Example 6.2: Illegal Nesting of Resource Calls

A correctly nested example is shown in Code Example 6.3. All of the resources
are held and then released in the correct order.

GetResource(Resource1);
GetResource(Resource2);
GetResource(Resource3);
ReleaseResource(Resource3);

ReleaseResource(Resource2);
ReleaseResource(Resource1);

Code Example 6.3: Correctly Nested Resource Calls

6.4 Linked Resources

In AUTOSAR OS, GetResource() API calls for the same resource cannot be
nested. However sometimes, there are cases where you may need make
nested resource locks.

Your application may, for instance, use a function shared amongst a number
of tasks. What happens if the shared function needs to get a resource used
by one of the tasks, but not by the others? Have a look at Code Example 6.4.

#include <Os.h>
void SomeFunction(void) {
GetResource(Resource1); /* !!! Not allowed if caller is

Task1 !!! */
...
ReleaseResource(Resource1); /* !!! Not allowed if caller is

Task1 !!! */
}

TASK(Task1) {
GetResource(Resource1);

/* Critical section. */
SomeFunction();

ReleaseResource(Resource1);

108 Resources

Figure 6.4: Configuring a Linked Resource

}

TASK(Task2) {
SomeFunction();

}

Code Example 6.4: Illegal locking of previously locked resource

In these cases, the nesting of a (potentially) held resource must use linked
resources. A linked resource is an alias for an existing resource and protects
the same, shared, object.

Figure 6.4 shows how linked resources are declared using rtaoscfg.

With the linked resource, Code Example 6.4 would be re-written as shown in
Code Example 6.5.

#include <Os.h>
void SomeFunction(void) {
GetResource(LinkedToResource1); /* Okay */
...
ReleaseResource(LinkedToResource1); /* Okay */

}

TASK(Task1) {
GetResource(Resource1);

/* Critical section. */

Resources 109

SomeFunction();
ReleaseResource(Resource1);

}

TASK(Task2) {
SomeFunction();

}

Code Example 6.5: Using Linked Resources

Linked resources are held and released using the same API calls for standard
resources (these are explained in Section 6.3). You can also create linked
resources to existing linked resources.

6.5 Internal Resources

If a set of tasks share data very closely, then it may be too expensive, in terms
of runtime cost, to use standard resources to guard each access to each item
of data. You may not even be able to identify all the places where resources
need to be held.

You can prevent concurrent access to shared data by using internal resources.
Internal resources are resources that are allocated for the lifecycle of a task.

Internal resources are configured offline using rtaoscfg. Unlike normal re-
sources, however, you cannot get and release them. Conceptually, RTA-
OS3.x locks the internal resource immediately before starting the task and
releases the resource immediately after the task terminates.

In AUTOSAR OS R3.x internal resources are only available to tasks. How-
ever, there is no reason why internal resources cannot be shared by
Category 1 and 2 ISRs as well. RTA-OS3.x provides an extension to AU-
TOSAR OS R3.x that allows ISRs to use internal resources. When the a
task locks an internal resource that is shared with an ISR, then the task
executes at the IPL of the interrupt and all interrupts of equal or lower
priority will be blocked for the duration of the task.

The implementation of internal resources in RTA-OS3.x does not incur a run-
time cost when the task enters the running state because rtaosgen calcu-
lates the priority at which the task will run offline and simple dispatches the
task at this priority. The set of tasks that share an internal resource is stati-
cally defined at configuration time using rtaoscfg.

Figure 6.5 shows the declaration of an internal resource (called
IntResource1) which is shared between tasks t1 and t3.

If a task uses an internal resource, RTA-OS3.x will automatically get the inter-
nal resource before calling the task’s entry function. The resource will then

110 Resources

Figure 6.5: Declaring an Internal Resource using rtaoscfg

be automatically released after the task terminates, makes a Schedule() or
a WaitEvent() call.

During task execution, all other tasks sharing the internal resource will be
prevented from running until the internal resource is released. Figure 6.6
shows the execution of three tasks that share the same internal resource.

It is important to note that the OS makes a scheduling decision based on
the normal (base) priority of the ready tasks when a task that holds an in-
ternal resource terminates. If a task is running and multiple tasks that share
the same internal resource have become active then, on termination of the
running task, the highest priority ready tasks is selected to run and then is
dispatched at the ceiling priority of the internal resource.

Any tasks with a priority lower than the ceiling priority of the internal re-
source, including those that do not share the internal resource, will be
blocked if a task sharing the internal resource is executing. You can see an
illustration of this in Figure 6.6 where Task1 with Priority 1 shares an internal
resource with a Task that has Priority 3. If Task1 starts running before Task2
or Task3 start, then both of these tasks will be delayed (blocked) until Task1
completes.

However, preemption is still possible by all higher priority tasks that do not
share the internal resource. Figure 6.7 shows that initially Task 1 is running at
priority 3 because it shares an internal resource with a task of priority 3. While

Resources 111

Figure 6.6: Execution with internal resources

Task 1 is running, Task 2 becomes ready to run. Task 2 is lower priority than
the active priority of Task1 so it cannot preempt. When Task4 is activated, it
can preempt Task1 because its priority is 4 i.e. it is higher priority than the
active priority of Task 1. Task 2 can only run when Task 1 terminates.

From this behavior it should be clear that a task which locks an internal re-
source will prevent any task with a higher priority than itself but lower priority
than the ceiling priority of the internal resource from running for the entire
duration of the task. When a lower priority task prevents a higher priority
task from executing this is called blocking.

Tasks that share an internal resource run non-preemptively with respect to
each other. Once a task in the set sharing the internal resource gets access
to the CPU, it will run without being preempted by any other task in the set.
The consequence of this is that it may take longer for higher priority tasks to
get access to the CPU than would be the case in a fully preemptive system.

6.6 Using Resources to Minimize Stack Usage

The primary role of resources in an application is to provide mutual exclu-
sion over critical sections. However, the single-stack model of RTA-OS3.x
means that resources have a useful secondary role - minimizing stack usage.
Recall that tasks which share resources do not preempt each other. In the
single-stack model used by RTA-OS3.x this means that their stack usage is
effectively overlaid.

It is possible to exploit this feature to trade off time in the system against
stack usage. The following sections describe how simple modifications to an

112 Resources

Figure 6.7: Internal resources blocking tasks that do not share the resource

application can reduce stack usage. All of these modifications will introduce
additional blocking factors into the system.

The impact of these blocking factors depends on the system. Recall that the
priority ceiling protocol ensures that a task or ISR is blocked at most once
during execution. The worst-case blocking time is the maximum time that
any lower priority task or ISR can hold the same resource.

This means that if the additional blocking factors are less than or equal to
the current worst-case blocking suffered by a task/ISR, then there will be no
impact on response times and the reduced stack usage will be free. If the
additional blocking factors are longer than current worst-case blocking then
response times will be longer. Providing that response times remain inside
the required deadlines for tasks/ISRs, the system will still behave correctly.

6.6.1 Internal Resources

Given a set of tasks that share an internal resource, the worst case stack used
by RTA-OS3.x is equal to the maximum stack space required by the task that
uses the most stack. In conventional operating systems, the maximum stack
space would be equal to the sum of the task’s stacks, not their maximum.

If you need to minimize stack space then you can exploit this benefit of RTA-
OS3.x’s single-stack architecture by sharing internal resources between tasks
which consume lots of stack. The first stack in Figure 6.8 shows the worst-
case stack consumption for 5 preemptive tasks, A, B, C, D and E. By sharing

Resources 113

Figure 6.8: Saving Stack Space Using Internal Resources

an internal resource between tasks B and C, and between tasks D and E a
significant saving of stack space can be made. The other four stacks in Fig-
ure 6.8 show the cases that can now occur - the worst case is A preempted by
the worst of B or C preempted by the worst of D and E. You can see from the
figure that A preempted by C preempted by D gives the worst case and that
this is significantly less stack than when internal resources were not used.

6.6.2 Standard Resources

If a task calls a function that uses a lot of stack then you could consider
locking a resource around the function call and sharing the resource with the
tasks of higher priority. The tasks do not need to lock the resource in code
or call the function - the sharing is simply to force the execution of the task
to run at a higher priority. This will prevent higher priority tasks preempting
the task while it is using lots of stack and will therefore reduce the total stack
requirement.

Disabling interrupts around the function call has a similar effect - effectively
overlaying the function call’s stack usage with the ISRs that are temporarily
masked.

6.7 The Scheduler as a Resource

A task can hold the scheduler if it has a critical section that must be exe-
cuted without preemption from any other task in the system (recall that the
scheduler is used to perform task switching). A predefined resource called

114 Resources

Figure 6.9: Linking to RES_SCHEDULER

RES_SCHEDULER is available to all tasks for this purpose. RES_SCHEDULER is
a convenient way for tasks to share data without you needing to declare a
resource that is shared between all tasks manually.

When a task gets RES_SCHEDULER, all other tasks will be prevented from pre-
empting until the task has released RES_SCHEDULER. This effectively means
that the task becomes non-preemptive for the time that RES_SCHEDULER is
held. This is better than making the entire task non-preemptive, particularly
when a task only needs to prevent preemption for a short part of its total
execution time.

You must specify whether your application uses RES_SCHEDULER or not. This
is configured in General Ô Optimizations. If you configure RES_SCHEDULER
then RTA-OS3.x will automatically generate a standard resource called
RES_SCHEDULER and share it between every task in your configuration. As
RES_SCHEDULER behaves like a standard resource, you can create linked re-
sources that link to RES_SCHEDULER as shown in Figure 6.9.

Using RES_SCHEDULER can improve response times of low priority tasks that
might otherwise suffer multiple preemptions by other tasks in the application,
but at the cost of longer response times for higher priority tasks.

If you have no need to use RES_SCHEDULER in your application then you can
save ROM and RAM space by disabling its generation as shown in Figure 6.10.

Resources 115

Figure 6.10: Disabling RES_SCHEDULER

6.8 Choosing a Preemption Control Mechanism

If code that does not require locks appears between a pair of GetResource()
and ReleaseResource() calls, the system responsiveness can potentially be
reduced.

With this in mind, when you use resources in your application, you should
place GetResource() calls as closely as possible around the section of code
you are protecting with the resource.

However, there is an exception to this rule. This exception occurs when
you have a short running task or ISR that makes many GetResource() and
ReleaseResource() calls to the same resource. The cost of the API calls
may then make up a significant part of the overall task execution time and,
therefore, potentially the response time.

You may find that placing the entire task or ISR body between GetResource()
and ReleaseResource() calls actually shortens the worst-case response
time.

You should avoid using non-preemptive tasks and getting RES_SCHEDULER
wherever possible. System responsiveness and schedulability is improved
when resources are held for the minimum amount of time and when this af-
fects the smallest number of tasks.

116 Resources

6.9 Avoiding Race Conditions

The AUTOSAR OS standard specifies that resources must be released before
a TerminateTask() call is made. In some circumstances, this can introduce
a race condition into your application. This can cause task activations to be
missed (you learned about race conditions at the beginning of this chapter).

Code Example 6.6 shows the type of system where race conditions can be-
come a problem. Assume that two BCC1 tasks exchange data over a bounded
buffer.

#include <Os.h>
TASK(Write)
/* Highest priority .*/
WriteBuffer();
GetResource(Guard);
BufferNotEmpty = True;
ReleaseResource(Guard);
ChainTask(Read);

}

TASK(Read)
/* Lowest priority. */
ReadBuffer();
GetResource(Guard);
if(BufferNotEmpty) {
ReleaseResource(Guard);
/* !!! Race condition occurs here !!! */
ChainTask(Read);

} else {
ReleaseResource(Guard);
/* !!! Race condition occurs here !!! */
TerminateTask();

}
}

Code Example 6.6: A System where a Race Condition can Occur

In Code Example 6.6, between the resource being released and the task ter-
minating, Read can be preempted by Write. When task Write chains task
Read, the activation will be lost. This is because Read is still running. In other
words a task is being activated, but it is not in the suspended state.

To solve this problem, you can allow queued activations of the Read task.
This means that you should make the task BCC2. See Section 4.5.2 for more
details.

Resources 117

6.10 Summary

• Resources are used to provide mutual exclusion over access to shared
data or hardware resources.

• Tasks and ISRs can share any number of resources.

• All GetResource() and ReleaseResource() calls must be properly
nested.

• All resources must be released before the task or ISR terminates.

• The scheduler can be used as a resource, but internal resources should
be used in preference, if possible.

• Internal resources provide a cost free mechanism for controlling preemp-
tion between a group of tasks and ISRs

118 Resources

7 Events

In an AUTOSAR OS system, events are used to send signal information to
tasks. This chapter explains what events are, how to configure them and how
to use them at runtime.

Events can be used to provide multiple synchronization points for extended
tasks. A visualization of synchronization is shown in Figure 7.1.

An extended task can wait on an event, causing the task to move into the
waiting state. When an event is set by a task or ISR in the system, the waiting
task is transferred into the ready state. When it becomes the highest priority
ready task it will be selected to run by RTA-OS3.x.

Events are owned by the extended task with which they are associated. Usu-
ally, an extended task will be an infinite loop that contains a series of guarded
wait calls for the events it owns. The event mechanism therefore allows you
to build event driven state machines using OSEK.

If timing behavior is important in your system, all of your extended tasks (in
other words, any task that waits for an event) must be lower priority than the
basic tasks.

7.1 Configuring Events

Events are configured using rtaoscfg. The maximum number of events that
can exist in your application is determined by your target hardware. You
should consult the Target/Compiler Port Guide for your port to find out how
many events you can have per task.

When an event is declared it must have:

• A name.

Names are used only to indicate the purpose of an event at configuration
time.

• At least one task that uses it.

• An event mask.

The event name that is specified in rtaoscfg is used as a symbolic name for
the event mask at run-time. A mask is an N-bit vector with a single bit set,
where N is the maximum number of events on which a task can wait. The set
bit identifies a particular event.

The event name is used at run-time as a symbolic name for the mask. The
mask is configured by selecting the bit which indicates the event. Figure 7.2

Events 119

Figure 7.1: Visualizing Synchronization

shows that an event called Event1 has been declared which will be using bit
nine in the event mask.

If an event is used by more than one task, each task has its own individual
copy. When an event is set, a task must be specified at the same time. So,
for example, if you set an event called Event2 for a task called t3, this has no
effect on Event2 for the task t4.

7.1.1 Defining Waiting Tasks

Waiting tasks are selected using rtaoscfg. If you declare a task that waits on
an event, it automatically means that it will be treated as an extended task.

Figure 7.3 shows that an event Event1 has been declared and that the tasks
t1 and t2 have been configured to wait on the event.

An extended task that waits on an event will usually be auto-started and the
task will never terminate. When the task starts executing, all the events it
owns are cleared by RTA-OS3.x.

7.2 Waiting on Events

A task waits for an event using the WaitEvent(EventMask) API call. The
EventMask must correspond to the one that is declared in rtaoscfg.

The WaitEvent() takes an event as its sole parameter. When the call exe-
cutes there are two possibilities:

1. The event has not occurred

In this case the task will enter the waiting state and RTA-OS3.x will run
the highest priority task in the ready state.

120 Events

Figure 7.2: Configuring an Event mask in rtaoscfg

Figure 7.3: Selecting the Task to Wait on an Event

Events 121

2. The event has occurred

In this case the task remains in the running state and will continue to
execute at the statement immediately following the WaitEvent() call.

7.2.1 Single Events

To wait on a single event you simple pass in the event mask name to the API
call. Code Example 7.1 shows how a task can wait for events.

#include <Os.h>
TASK(ExtendedTask) {
...
WaitEvent(Event1); /* Task enters waiting state in API call if

Event1 has not happened */
/* When Event1 is set, ExtendedTask resumes here */
...

}

Code Example 7.1: Waiting on an Event

In AUTOSAR OS it is illegal to set events for a task that is in the suspended
state. In practice this means that the structure of a task that waits on events
is typically an infinite loop that waits on events as shown in Code Example 7.2.

#include <Os.h>
TASK(ExtendedTask){
/* Entry state */
while(true){
WaitEvent(Event1);
/* State 1 */
WaitEvent(Event2);
/* State 2 */
WaitEvent(Event3);
/* State 3 */

}
/* Task never terminates */

}

Code Example 7.2: Simple 3-state State Machine with Events

7.2.2 Multiple Events

Because an AUTOSAR OS event is just a bit mask, you can wait on multiple
events at the same time by bit-wise ORing a set of bit masks.

When your task waits on multiple events it will be resumed when any one
of the events upon which you are waiting occurs. When you resume from
waiting on multiple events, then you will need to work out which event (or
events) has occurred.

122 Events

OSEK provides the GetEvent() API call so that allows you to get the current
set of events that are set for the task.

Code Example 7.3 shows how a task can wait on multiple events simultane-
ously and then identify which of the events has been set when it resumes.

#include <Os.h>
TASK(ExtendedTask){
EventMaskType WhatHappened;
while(true){
WaitEvent(Event1|Event2|Event3);
GetEvent(Task1, &WhatHappened);
if(WhatHappened & Event1) {
/* Take action on Event1 */
...

} else if(WhatHappened & Event2) {
/* Take action on Event2 */
...

} else if(WhatHappened & Event3) {
/* Take action on Event3 */
...

}
}

}

Code Example 7.3: Waiting on Multiple Events

7.2.3 Deadlock with Extended Tasks

While AUTOSAR OS provides freedom from deadlock in mutual exclusion over
a critical section (see Chapter 6) you are not protected from building systems
with events that can deadlock. If you have extended tasks that mutually set
and wait on events sets, then it is possible that two (or more) tasks will be
waiting on events that are only set by other tasks that are waiting. It is, of
course, impossible for basic tasks in the system to deadlock, even if there are
deadlocking extended tasks present.

Code Example 7.4 shows two tasks that will deadlock if there no other task
set either Ev1 or Ev2.

#include <Os.h>
TASK(Task1) {
while (1) {
WaitEvent(Ev1);
/* Never reach here - DEADLOCKED with Task2! */
SetEvent(Task2,Ev2)

}
}
TASK(Task2) {
while (1) {

Events 123

WaitEvent(Ev2);
/* Never reach here - DEADLOCKED with Task1! */
SetEvent(Task1,Ev1)

}
}

Code Example 7.4: Deadlock with Extended Tasks

OS configuration does not capture which tasks/ISRs set events, only which
tasks can wait on events. It is therefore impossible for RTA-OS3.x to statically
determine whether your extended tasks will deadlock or not. However, the
following design approaches may help:

• use basic tasks only;

• analyze your code to show that there is no circular waiting of events on
the transitive closure of all SetEvent()/WaitEvent() pairs.

7.3 Setting Events

Events are set using the SetEvent() API call.

The SetEvent() call has two parameters, a task and an event mask. For the
specified task, the SetEvent() call sets the events that are specified in the
event mask. The call does not set the events for any other tasks that share
the events.

You can bit-wise OR multiple event masks in a call to SetEvent() to set mul-
tiple events for a task at the same time

Events cannot be set for tasks that are in the suspended state. So, before
setting the event, you must be sure that the task is not suspended. You can
do this using the GetTaskState() API call, but note that there is a potential
race-condition when this is called for tasks of higher priority than the caller.
The caller may be preempted between the call to the API and the evaluation
of the result and the state of the task that was requested may have changed
in the intervening time.

An extended task is moved from the waiting state into the ready state when
any one of the events that it is waiting on is set.

Code Example 7.5 shows you how a task can set events.

#include <Os.h>
TASK(Task1) {
TaskStateType TaskState;

/* Set a single event */

124 Events

SetEvent(Task2, Event1);

/* Set multiple events */
SetEvent(Task3, Event1 | Event2 | Event3);
...
/* Checking for the suspended state */
GetTaskState(Task2,&TaskState);
if (TaskState != SUSPENDED) {

SetEvent(Task2, Event1);
}
...
TerminateTask();

}

Code Example 7.5: Setting Events

A number of tasks can wait on a single event. However, you can see from
Code Example 7.5 that there is no broadcast mechanism for events. In other
words, you cannot signal the occurrence of an event to all tasks waiting on
the event with a single API call.

Events can also be set by alarms and schedule tables.

7.3.1 Setting Events with an Alarm

Alarms can be used to periodically activate extended tasks that don’t termi-
nate. Each time the alarm expires, the event is set. The task waiting on the
event is then made ready to run.

7.3.2 Setting Events with a Schedule Table Expiry Point

Expiry points on schedule tables can be used to program (a)periodic activa-
tions of extended tasks that do not terminate. Each time the expiry point is
processed, the event is set. The task waiting on the event is then made ready
to run.

7.4 Clearing Events

An event can be set by any task or ISR, but it can only be cleared by the
owner of the event.

When a task waits on an event, and the event occurs, then a subsequent
call to WaitEvent() for the same event will return immediately because the
event is still set.

Before waiting for the event occurring again the last event occurrence of the
event must be cleared.

Events 125

Events are cleared using the ClearEvent(EventMask) API call. The Event-
Mask must correspond to the one that is declared.

Code Example 7.6 shows how a task typically uses ClearEvent().

#include <Os.h>
TASK(ExtendedTask){
EventMaskType WhatHappened;
...
while(WaitEvent(Event1|Event2|Event3)==E_OK) {
GetEvent(Task1, & WhatHappened);
if(WhatHappened & Event1) {
ClearEvent(Event1);
/* Take action on Event1 */
...

} else if(WhatHappened & (Event2 | Event3) {
ClearEvent(Event2 | Event3);
/* Take action on Event2 or Event3*/
...

}
}

}

Code Example 7.6: Clearing Events

When a task terminates all the events that it owns are cleared automatically.

7.5 Simulating Extended Tasks with Basic Tasks

Basic tasks can only synchronize at the start or end of task execution.

If other synchronization points are required then the event mechanism pro-
vides one way to do this. However, extended tasks typically have greater
overheads than basic tasks. On resource-constrained systems, synchroniza-
tion can be built using basic tasks only.

For example, if a task is built as a state machine (using a C switch statement,
for instance) then you can set a state variable, issue a TerminateTask() call
and wait for re-activation. Code Example 7.7 shows how this can be achieved.

#include <Os.h>
/* Create a "State" variable that remains in scope between task

activations */
uint8 State;
TASK(Task1) {
switch (State) {
case 0:
/* Synchronization point 0. */
State = 1;
break;

126 Events

case 1:
/* Synchronization point 1. */
State = 2;
break;

case 2:
/* Synchronization point 2. */
State = 0;
break;

}
TerminateTask();

}

Code Example 7.7: Multiple Synchronization Points in a Basic Task

7.6 Summary

• Events are synchronization objects that can be waited on by extended
tasks.

• An event can be used by multiple tasks.

• Setting an event is not a broadcast mechanism to signal all tasks that are
waiting.

• Tasks, ISRs, alarms and schedule tables can set events.

Events 127

8 Counters

Counters register how many “things” have happened in the OS in terms of
ticks. A tick is an abstract unit. It is up to you to decide what you want a tick
to mean and, therefore, what are the “things” the counter is counting.

You might define a tick to be:

• Time, for example a millisecond, microsecond, minute etc and the
counter then tells you how much time has elapsed.

• Rotation, for example in degrees or minutes, in which case the counter
would tell you by how much something has rotated.

• Button Presses, in which case the counter would tell you how many times
the button has been pressed.

• Errors, in which case the counter is counting how often an error has oc-
curred.

An ISR (or sometimes a task) is used to drive a counter. The driver is respon-
sible for making the correct RTA-OS3.x API call to “tick” the counter or to tell
RTA-OS3.x that the counter has “ticked” to a required value.

8.1 Configuring Counters

Each counter has 4 mandatory attributes:

Name is the name of the counter. RTA-OS3.x creates a handle for each
counter using an identifier of the same name as the counter.

Type defines the counter model. AUTOSAR provides two models

Software counters are those where the count value is maintained in-
ternally by the OS. You will need to provide a counter driver that
tells the RTA-OS3.x to increment the counter by one tick. Further
details are provided in Section 8.2.1.

Hardware counters are those where a peripheral maintains the count
value. You will need to provide a counter driver that tells the OS
when a requested number of ticks have elapsed. The OS will also
require your driver to provide implementations of callback routines
that RTA-OS3.x uses to manage the peripheral at runtime. Further
details are provided in Section 8.2.2.

128 Counters

A software counter is sufficient when you need a relatively low reso-
lution, for example one millisecond or greater. You should use a hard-
ware counter when you need very high resolution for example in the mi-
crosecond range, or where you need to accurately synchronize schedul-
ing of tasks in RTA-OS3.x to an external source, for example a TPU or a
global (network) time source.

Maximum Value defines the maximum count value for the counter. All
counters wrap around to zero on the tick after the maximum allowed
value has been reached1. In many cases, you will simply use a full
modulus wrap for the counter, so this will be 65535 (216 − 1) for a 16-
bit counter and 4294967295 (232 − 1) for a 32-bit counter. The max-
imum counter value for your port can be found in your Target/Com-
piler Port Guide. This corresponds to the AUTOSAR OS counter attribute
MAXALLOWEDVALUE.

For hardware counter you must ensure that MAXALLOWEDVALUE+1
is equal to the modulus of the peripheral.

Minimum Cycle defines the shortest number of ticks allowed when setting
a cycle value for an alarm or a schedule table offset. In most cases, you
will want this to be 1 tick. However, if you want to build systems where
you enforce a minimum separation between alarms on the counter,
then you may choose a larger value. This corresponds to the AUTOSAR
OS counter attribute MINCYCLE.

Ticks per base is a legacy attribute from AUTOSAR OS that defined the
number of underlying counter driver ticks required for each tick on
the counter. You can assign any value to this attribute because it is
not used by RTA-OS3.x. This corresponds to the AUTOSAR OS attribute
TICKSPERBASE.

There is an additional optional attribute:

Seconds Per Tick defines the duration of a tick of the counter in seconds.
This should be defined if you want to use the tick/time conversion fea-
tures provided by AUTOSAR OS. Further details are given in Section 8.5.

Figure 8.1 shows how a counter called MillisecondCounter is declared.

8.2 Counter Drivers

RTA-OS3.x does not take control of any of your hardware to provide counter
drivers. This makes RTA-OS3.x very easy to integrate with any tick source

1This means that the maximum allowed value is equal to the modulus-1 of the counter.

Counters 129

Figure 8.1: Declaring a Counter

for example timer ticks, error counts, button presses, TPU peripherals, etc.
This means that you need to provide a driver for every counter you declare
in RTA-OS3.x and interface this to the OS.

The interface between the driver and the counter depends on the type of the
counter:

Software Counters are incremented by an API call.

Hardware Counters The count value is held in an external hardware pe-
ripheral. Your application must provide a more complex driver which
tells RTA-OS3.x when a requested number of ticks have elapsed. RTA-
OS3.x uses special callbacks to set a requested number of ticks, cancel
a request, get the current count value and get the status of the counter.

8.2.1 Software Counter Drivers

For each of your software counters, you need to provide the driver that pro-
vides the tick. All software counters are initialized to zero by RTA-OS3.x during
StartOS() and count upwards.

The software counter driver model is standardized in AUTOSAR OS and is
shown in Figure 8.2.

130 Counters

Figure 8.2: Ticked Counter Driver Model

Counters 131

Incrementing Software Counters

You use the API call IncrementCounter(CounterID) to increment the counter
value held in RTA-OS3.x. The software counter wraps around to zero when
one is added to MAXALLOWEDVALUE.

You can make the call to IncrementCounter(CounterID) from most places
in your application code. One of the most common uses of a counter is to
provide a time-base to RTA-OS3.x for activating tasks based on alarms (see
Chapter 9) or Schedule Tables (see Chapter 10). In this case, you will need to
provide a periodic timer interrupt that calls IncrementCounter(CounterID)
on each expiry.

Code Example 8.1 shows how a millisecond interrupt would driver a counter
called TimeCounter.

#include <Os.h>
ISR(HandleTimerInterrupt) {
DismissTimerInterrupt();
IncrementCounter(TimeCounter);

}

Code Example 8.1: Using a periodic interrupt to tick a software counter

Another common use of software counters is as part of a fault-tolerant system
where some action needs to be taken when an error threshold is exceeded.
A software counter can be used to register the number of errors and you can
then use an alarm to trigger a recovery action (for example, activate an error
recovery Task).

Code Example 8.2 shows how a task called Critical might log errors on a
counter called ErrorCounter.

#include <Os.h>
TASK(Critical){

...
if (Error) {

IncrementCounter(ErrorCounter);
}
...
TerminateTask();

}

Code Example 8.2: Using a periodic Task to tick a software counter

Static Counter Interface

As the AUTOSAR API call takes the name of a counter as a parameter, this
means that RTA-OS3.x must internally de-reference the parameter before up-

132 Counters

dating the OS data structures. It also means that the compiler needs to push
a parameter on the stack on entry.

Typically however, you know at build time which counter you will be ticking
from where. You will also probably be driving the counter from an interrupt
handler - the last place where you need to waste time unnecessarily.

RTA-OS3.x recognizes this and generates a dedicated API call called
Os_IncrementCounter_<CounterID>() for each counter that has been de-
clared in the configuration file (where CounterID is the name of the counter).

The API call Os_IncrementCounter_<CounterID>() is not necessarily
portable to other AUTOSAR OS implementations.

As an example, consider an application containing two Counters: one called
TimeCounter and one called AngularCounter. rtaosgen will generate the
two API calls shown in Code Example 8.3.

Os_IncrementCounter_TimeCounter();
Os_IncrementCounter_AngularCounter();

Code Example 8.3: Static Software Counter Interface

The interrupt handlers that you supply to service the timer and angular inter-
rupts must call these API calls.

Code Example 8.4 shows how these interrupt handlers might look.

#include <Os.h>
ISR(HandleTimerInterrupt) {
ServiceTimerInterrupt();
Os_IncrementCounter_TimeCounter();

}
ISR(HandleAngularInterrupt) {
ServiceAngularInterrupt();
Os_IncrementCounter_AngularCounter();

}

Code Example 8.4: Interrupt Handlers for Code Example 8.3

If you have multiple software counters that you need to tick at the same
rate, then you can make multiple Os_IncrementCounter_<CounterID>()
calls within your handler as shown in Code Example 8.5

#include <Os.h>
ISR(MillisecondInterrupt) {
ServiceTimerInterrupt();
Os_IncrementCounter_Counter1();
Os_IncrementCounter_Counter2();
...

Counters 133

Os_IncrementCounter_CounterN();
}

Code Example 8.5: Making multiple calls to the static software counter
interface

There is an Os_IncrementCounter_<CounterID>() API call available for
each counter you declare. These static API calls are faster and use less
RAM than the AUTOSAR IncrementCounter(<CounterID>) API call be-
cause the calls do not require a parameter and do not need to work
out which counter is being ticked. You should decide which version is
appropriate for your application and choose accordingly.

8.2.2 Hardware Counter Drivers

For each of your hardware counters, you need to provide the hardware
counter driver that calls RTA-OS3.x and a set of callbacks that are used by
RTA-OS3.x. As with software counters, RTA-OS3.x provides a well-defined in-
terface for connecting the advanced counter driver to the OS.

The AUTOSAR OS standard does not specify a standard API call for deal-
ing with hardware counters. If you are porting your application from
another OS to RTA-OS3.x, then you may need to change the hardware
counter driver API calls.

For each hardware counter, RTA-OS3.x knows what the next action driven by
the counter is, whether that is to expire an alarm or process an expiry point
on a schedule table or both. RTA-OS3.x also knows how many ticks need to
elapse before this happens. This is called the match value.

When you use a software counter, the driver tells RTA-OS3.x each time a tick
has elapsed. RTA-OS3.x counts ticks internally and, when the match value is
reached, the action is taken. RTA-OS3.x then calculates the next match value
and the process repeats.

By contrast, when you use an hardware counter, RTA-OS3.x tells the driver,
through a callback function, when the next action is needed. Your periph-
eral counts the requested number of ticks and generates an interrupt when
the correct number have elapsed. In the interrupt handler you make the
Os_AdvanceCounter_CounterID() API call to tell RTA-OS3.x to process the
next action due on CounterID. RTA-OS3.x does this and the process repeats.

The driver model is shown in Figure 8.3.

Normally, you will use an interrupt to drive both software and hardware coun-
ters. With a software counter, an interrupt occurs for each counter tick,
whether of not there is anything for RTA-OS3.x to do. With a hardware
counter, an interrupt occurs only when RTA-OS3.x needs to do something.

134 Counters

Figure 8.3: Advanced Counter Driver Model

Counters 135

This means that hardware counters reduce interrupt interference to the ab-
solute minimum required.

Advancing Hardware Counters

You use the API call Os_AdvanceCounter_<CounterID>() to tell RTA-OS3.x
that the match value has been reached.

You are responsible for writing the driver that calls
Os_AdvanceCounter_<CounterID>() and ensuring that the next
action is taken at the correct time.

The Os_AdvanceCounter_<CounterID>() API call cause the next alarm
and/or expiry point to be processed and will set up the next match value by
calling a callback you provide or, if there are no actions left to do (i.e. there
are no active alarms or schedule tables on the counter), cancel interrupts
from the driver. More detailed information about writing hardware counter
drivers can be found in Chapter 11.

Callback Functions

For a software counter communication is one way - the driver tells RTA-OS3.x
when a single tick has happened. For hardware counters the driver has to
tell RTA-OS3.x when multiple ticks have happened. However, RTA-OS3.x also
needs to tell the driver to driver do things. This is done using a set of call-
back functions that provide an abstraction between RTA-OS3.x and any type
of peripheral you want to use as the driver. The exact functionality of the
callbacks depends on the peripheral you are using as your hardware counter
driver. Further information on writing callbacks can be found in Chapter 11.

However, by way of a short overview, four callbacks are required:

Os_Cbk_Set_<CounterID>()

This callback sets up the state for an interrupt to occur when the next action
is due. The callback is passed the absolute value of the counter at which an
action should take place. For counters, this callback is used in two distinct
cases:

1. Starting

Setting the initial interrupt source when a schedule table or an alarm is
started on the counter.

2. Resetting

Shortening the time to the next counter expiry.

136 Counters

The second case is needed because you can, for example, make a
SetRelAlarm(WakeUp, 100) call when the next interrupt is due in more than
100 ticks.

Os_Cbk_State_<CounterID>()

This callback returns whether the next action on the counter is pending or
not and, if the action is not pending, the number of ticks remaining until the
match value is reached.

Os_Cbk_Now_<CounterID>()

This callback needs to return the current value of the external counter. This
is used for the GetCounterValue() API call. See Section 8.4.

Os_Cbk_Cancel_<CounterID>()

This callback must clear any pending interrupt for your counter
and ensure that the interrupt cannot become pending until a
Os_Cbk_Set_<CounterID>() call is made. If you do not cancel all the
alarms on the counter and/or stop schedule tables driven by the counter,
then this call is not needed.

8.3 Accessing Counter Attributes at Runtime

The RTA-OS3.x API call GetAlarmBase() always returns the configured
counter values. The structure of GetAlarmBase() is shown in Code Exam-
ple 8.6.

AlarmBaseType Info;
GetAlarmBase(Alarm2, &Info);
MaxValue = Info.maxallowedvalue;
BaseTicks = Info.ticksperbase;
MinCycle = Info.mincycle;

Code Example 8.6: Using GetAlarmBase() to read static counter attributes

The configured values are can also be accessed as symbolic constants in the
form shown below.

• OSMAXALLOWEDVALUE_<CounterID>

• OSTICKSPERBASE_<CounterID>

• OSMINCYCLE_<CounterID>

So Code Example 8.6 above could also have been written as shown in Code
Example 8.7:

Counters 137

MaxValue = OSMAXALLOWEDVALUE_Alarm2;
BaseTicks = OSTICKSPERBASE_Alarm2;
MinCycle = OSMINCYCLE_Alarm2;

Code Example 8.7: Using macros to read static counter attributes

8.3.1 Special Counter Names

If a counter with the name SystemCounter is created, then it is possible in
AUTOSAR OS R3.x to access the associated counter attributes with a short
form of the macros by omitting the trailing _CounterID:

OSMAXALLOWEDVALUE_SystemCounter Ô OSMAXALLOWEDVALUE
OSTICKSPERBASE_SystemCounter Ô OSTICKSPERBASE
OSMINCYCLE_SystemCounter Ô OSMINCYCLE

RTA-OS3.x generates both forms of the macros for SystemCounter and you
can use either version.

The SystemCounter also provides an additional macro to get the duration of
a tick of the counter in nanoseconds called OSTICKDURATION.

The generation of a meaningful OSTICKDURATION macro requires the
counter attribute “Seconds Per Tick” to be configured.

8.4 Reading Counter Values

You may find that your application has the need to be able to read the current
value of a counter at runtime. For example, you might want to know how
many errors an error counter has logged, how many times a button has been
pressed or how much time has elapsed.

The current value of a counter can be read at runtime by calling the
GetCounterValue() API as show in Code Example 8.8.

TickType HowMany;
GetCounterValue(ButtonPresses,&HowMany);

Code Example 8.8: Using GetCounterValue()

When you use GetCounterValue() you should be aware that:

• counters wrap around from MAXALLOWEDVALUE to zero, so the calcula-
tion needs to compensate for the wrap

• preemption can occur at the point the call returns meaning that when
you resume the value of ‘Now’ will be old.

138 Counters

• when using a hardware counter, the counter driver will still be increment-
ing when the call returns. Even when preemption does not occur, the
calculation performed immediately will be based on old data.

If you need to perform a simple calculation to work out how many ticks of the
counter have elapsed since a previously read value, then you can avoid this
potential race-condition by using the GetElapsedCounterValue() API call.
The call takes a previously read counter value as input and calculates the
ticks that have elapsed, including compensation for the counter wrapping.
The calculation occurs at OS level (i.e. with interrupts disabled) so does not
suffer from preemption effects.

Code Example 8.9 shows how you might use this feature to measure the end-
to-end (response) time of a task.

#include <Os.h>
TickType Start;
ISR(CaptureTrigger){
/* Dismiss interrupt */
GetCounterValue(TimeCounter,&Start);
...
ActivateTask(GenerateResponse);

}
TASK(GenerateResponse){
TickType Finish;
CalculateValue();
WriteToDevice();
GetElapsedCounterValue(TimeCounter,&Start,&Finish);
...
TerminateTask();

}

Code Example 8.9: Using GetElapsedCounterValue()

If your counter is counting time ticks (as in Code Example 8.9), then this
is referred to in AUTOSAR OS as a “free running timer”. There is nothing
special about this type of counter - it is identical to any other type of counter
- the only distinction is that the counter is one which is driven by a timer tick
source.

The intended use of the free running timer functionality is to measure short,
high accuracy, durations at runtime. If you need to do this, then you will prob-
ably need to use a hardware counter to get the required counter resolution.

8.5 Tick to Time Conversions

It is common for counters to be used as a time-base reference for the OS.
For most of the applications that you write, the relative timing of events will

Counters 139

be the real-time values determined by your system requirements. You will
most likely think about system configuration in terms of real-time values,
nanoseconds, milliseconds etc, rather than in the more abstract notion of
ticks.

If a counter configuration parameter ‘Seconds Per Tick’ has been configured,
then RTA-OS3.x generates macros for you to use to convert between ticks
and real-time units.

AUTOSAR OS states that tick to time conversion is for hardware coun-
ters only. However, the feature is generally useful for both software
and hardware counters and the AUTOSAR XML configuration language
supports configuration for both types of counter. In RTA-OS3.x this
anomaly is resolved by providing tick to time conversion for both soft-
ware and hardware counters. However, you should note that the provi-
sion of these macros for software counters is not necessarily supported
by other AUTOSAR OS implementations.

The following macros are provided:

• OS_TICKS2NS_CounterID(ticks) converts ticks to nanoseconds

• OS_TICKS2US_CounterID(ticks) converts ticks to microseconds

• OS_TICKS2MS_CounterID(ticks) converts ticks to milliseconds

• OS_TICKS2SEC_CounterID(ticks) converts ticks to seconds

The values returned by these macros are of PhysicalTimeType rather than
TickType that are used by the API calls that you might use the macros with,
so you will need to cast them to an appropriate type.

Code Example 8.10 shows how these macros might be used in your applica-
tion code to program a timeout using a statically defined “timeout” value.

#define TIMEOUT_MS 100 /* Set a timeout to be 100ms */
TickType TimeoutInTicks;
TimeoutInTicks =

(TickType)((PhysicalTimeType)TIMEOUT_MS/OS_TICKS2MS_TimeCounter(1));
SetRelAlarm(TimeoutAlarm, TimeoutInTicks, 0);

Code Example 8.10: Programming an alarm with time rather than ticks (1)

In addition to these macros RTA-OS3.x, generates a macro called
OSTICKDURATION_<CounterID> that returns the duration of a counter tick
in nanoseconds so this makes it extremely useful if you want to program
alarms of a fixed time, even if you change the underlying counter tick rate.
Code Example 8.11 shows how Code Example 8.10 can be reworked using the

140 Counters

OSTICKDURATION_<CounterID> macro. This version offers slightly better per-
formance because the duration of a single tick does not need to be calculated
at runtime.

#define TIMEOUT_NS 100000000 /* Set a timeout to be 100ms */
TickType TimeoutInTicks;
TimeoutInTicks =

(TickType)(TIMEOUT_NS/OSTICKDURATION_TimeCounter);
SetRelAlarm(TimeoutAlarm, TimeoutInTicks, 0);

Code Example 8.11: Programming an alarm with time rather than ticks (2)

The OSTICKDURATION_<CounterID> macros are provided by RTA-OS3.x
and are not part of the AUTOSAR OS standard. Use of the macros is not
portable to other implementations.

8.6 Summary

• Counters are used to register a count of some tick source.

• Counters are either software or hardware counters. You need to provide
the appropriate driver for the type of the counter you configure.

Counters 141

9 Alarms

It is possible to construct systems that activate tasks at different rates us-
ing ISRs. However, for complex systems, this can become inefficient and
impractical. Alarms provide a more convenient, and more portable, way of
scheduling systems.

The alarm mechanism consists of two parts:

1. A counter.

These were covered in Chapter 8.

2. One or more alarms attached to the counter.

The alarm part specifies an action to perform when a particular counter value
is reached. Each counter in your system can have any number of alarms
attached.

An alarm is said to have expired when the value of a counter equals the value
of an alarm attached to the counter. On expiry, RTA-OS3.x will perform the
action associated with the alarm. The action could be to activate a task, to
execute an alarm callback routine, set an event or tick a software counter.

The alarm expiry value can be defined relative to the actual counter value or
as an absolute value. If the alarm expiry is defined as relative to the actual
counter, it is known as a relative alarm. If it is defined as an absolute value,
it is known as an absolute alarm.

Alarms can be configured to expire once. An alarm that expires once is called
a single-shot alarm.

An alarm can also be specified to expire on a periodic basis. This type of
alarm is called a cyclic alarm. You can find out more about cyclic alarms in
Section 9.2.

9.1 Configuring Alarms

There are three parts to alarm configuration:

1. Naming - Each alarm in your system needs to be allocated a unique
name. As for other OS objects, this is the name that you will use in your
code to refer to the alarm at runtime.

2. Association of a counter - An alarm is statically bound to a counter at
configuration time. Any setting of the alarm is done in terms of ticks of
the associated counter.

142 Alarms

Figure 9.1: Activating a Task with an Alarm

3. Specification of the alarm’s action.

Each alarm that you create is associated with up to 4 actions:

1. Activate a task.

2. Raise an event.

3. Execute a callback function.

4. Increment a (software) counter.

If you need to activate multiple tasks, set multiple events, make multiple call-
backs or increment multiple counters on expiry, you will need multiple alarms
with the same expiry value. (Schedule Tables provide an alternative mech-
anism that allows you to activate multiple tasks and/or set multiple events
simultaneously. You can read about Schedule Tables in Chapter 10).

9.1.1 Activating a Task

The most common action for an alarm is to activate a task. This is the basis
for building systems with periodically activated tasks - you create an alarm
for each task and then program the alarm to occur at the required period.
Figure 9.1 shows how to configure an alarm to activate a task.

Alarms 143

Figure 9.2: Setting an Event for a Task with an Alarm

In AUTOSAR OS, you may only activate a single task for each alarm. If you
need multiple tasks to run when an alarm expires, then you can do this ei-
ther by creating multiple alarms or by using task activation chains (see Sec-
tion 4.9.1).

9.1.2 Setting an Event

An alarm can set an event for a specified task. When an event is set with
an alarm, it has the same properties as it would if it were set using the
SetEvent() API call. This means you need to specify both the event and
the task for which the event is to be set. Figure 9.2 shows you how to set an
event action for an alarm.

9.1.3 Alarm Callbacks

Each alarm can have an associated callback function. The callback is simply
a C function that is called when the alarm expires.

Alarm callbacks are only permitted in Scalability Class 1 according to
the AUTOSAR OS R3.x standard. This is because these callbacks run
at OS level and can therefore interfere with timing protection and also
present a hole in the memory protection scheme.

RTA-OS3.x allows you to relax this restriction by allowing you to allow
alarm callbacks in all Scalability Classes using a configuration option in
General Ô Optimizations Ô RTA-OS.

144 Alarms

Figure 9.3: Configuring a Callback Routine for an Alarm

Figure 9.3 shows how to configure a callback routine for an alarm.

Each callback routine must be written using the ALARMCALLBACK() macro,
shown in Code Example 9.1.

ALARMCALLBACK(UserProvidedAlarmCallback) {

/* Callback code. */

}

Code Example 9.1: An Alarm Callback

Callback routines run at OS level, which means Category 2 interrupts
are disabled. You should therefore aim to keep your callback routines
as short as possible to minimize the amount of blocking that your tasks
and ISRs suffer at runtime.

The only RTA-OS3.x API calls that you can make inside the callback are the
SuspendAllInterrupts() and ResumeAllInterrupts() calls.

9.1.4 Incrementing a Counter

Incrementing a software counter from an alarm allows you to cascade mul-
tiple counters from a single ISR. A counter ticked from an alarm inherits the
period of the alarm. So, if you have an alarm that occurs every 5 millisec-
onds, you can use the alarm to drive a second ticked counter that ticks every
5 milliseconds. Figure 9.4 shows you how this is configured in RTA-OS3.x.

Alarms 145

Figure 9.4: Cascading counter increments from an alarm

Code Example 9.2 shows how you would drive Counter1ms from an interrupt.
Every fifth interrupt registered on Counter1ms would cause the alarm to ex-
pire and increment the cascaded Counter5s :

#include <Os.h>
ISR(MillisecondInterrupt){
CLEAR_PENDING_INTERRUPT();
Os_IncrementCounter(Counter1ms);
/* Every 5th call internally performs

Os_IncrementCounter(Counter5ms) */
}

Code Example 9.2: Cascading Counters

Cascaded counters must have a tick rate that is an integer multiple of the
counter driving the alarm. You can configure systems with multiple levels of
cascading. However, RTA-OS3.x will generate an error if you try and configure
a system with a cycle in the cascade or you try and increment a hardware
counter.

The timing properties of a cascaded counter are defined relative to tim-
ing properties of the first counter in the cascade. The earliest counter
in the cascade therefore determines the base tick rate from which all
other counters are defined. If you change the tick rate of the earliest
counter, then the entire timing behavior of the application will be scaled
accordingly.

146 Alarms

9.2 Setting Alarms

Two API calls are provided for setting alarms:

• SetAbsAlarm(AlarmID, start, cycle);

Sets the alarm to expire when the counter value next reaches the value
start. You should be aware that if the underlying counter already has
value start when the call is made, then the alarm will not occur until the
counter has ‘wrapped around’.

• SetRelAlarm(AlarmID, increment, cycle);

Sets the alarm to expire increment ticks from the current count value
when you make the call. This means that increment is a tick offset from
the current counter tick value.

In these two API calls, a cycle value of zero ticks indicates that the alarm is
a single-shot alarm, which means that it will expire only once before being
canceled. A cycle value greater than zero defines a cyclic alarm. This means
that it will continue expiring every cycle ticks after the first expiry has oc-
curred. Setting a non-zero cycle value gives you an easy way to configure
periodic alarms that occur with a periodicity of cycle ticks.

Selecting Parameters

If the activated task is BCC1 or ECC1/2 there will be no queued activation.
This means that if the start or increment value is very short, or the start
value is very close to the current counter value, then this may cause un-
desired side effects. The alarm will try to activate the task while a previ-
ously activated instance is still executing. The activation would be lost and
an E_OS_LIMIT error would be raised (see Chapter 13 for more information
about error codes and how to debug use of RTA-OS3.x at runtime). You must
make sure that enough time is allowed for the task to complete before the
next alarm which results in a re-trigger of the task occurs.

9.2.1 Absolute Alarms

Single Shot

An absolute alarm specifies the absolute value of the underlying counter at
which the alarm expires. Single shot absolute alarms are useful for monitor-
ing things against a pre-defined threshold value - the alarm can be configured
to expire when the threshold is exceeded. You might want to count the num-
ber of errors that occur in data samples taken at runtime and then trigger a
recovery action when the number of errors reaches a dangerous level. This
is shown in Code Example 9.3.

Alarms 147

Figure 9.5: Illustration of an Absolute Single Shot Alarm

/* Expire when counter value reaches 42. */
SetAbsAlarm(DangerLevelReached, 42, 0);

Code Example 9.3: Absolute single shot alarm

Code Example 9.3 is illustrated in Figure 9.5.

A single shot alarm is useful when you need to program a timeout that waits
for a fixed amount of time and then takes an action if the timeout occurs.

Cyclic

If an absolute alarm specifies a non-zero cycle value then it will first expire at
the specified start tick and then every cycle ticks thereafter. This is shown
in Code Example 9.4.

/* Expire when counter value reaches 10 and then every 20 ticks
thereafter */

SetAbsAlarm(Alarm1, 10, 20);

Code Example 9.4: Absolute cyclic alarm

The behavior of the code example is illustrated in Figure 9.6.

For absolute alarms, an absolute start value of zero ticks is treated in the
same way as any other value - it means expire the alarm when the counter
reaches the value zero.

148 Alarms

Figure 9.6: Illustration of the Absolute Cyclic Alarm

Figure 9.7: Setting an alarm in the past

For example, if the current counter value was zero then you would not see
your alarm expire until the MAXALLOWEDVALUE+1 number of counter value
ticks had happened. On the other hand, if the counter value was already
at MAXALLOWEDVALUE, then you would see the alarm expire on the next tick of
the counter.

Setting Alarms in the past

With an absolute alarm it is possible to set the start time to be a value that is
already in the past. This does not mean that the alarm will not happen. Recall
that counters wrap around when they reach MAXALLOWEDVALUE. So, when you
set an alarm in the past you might have to wait up to MAXALLOWEDVALUE+1
(i.e. the counter modulus) ticks until the alarm occurs.

If you set an alarm to start at tick T and the value of the counter is
already T then the alarm will not expire immediately. This is because T

is already in the past when the alarm is set.

A common error is to set an absolute alarm to occur at zero when the OS
starts and then wonder why it does not occur when expected. This is because
zero is already in the past! The effect is shown in Figure 9.7.

Alarms 149

Synchronizing Absolute Cyclic Alarms to a Counter Wrap

Setting an alarm to occur periodically at a known synchronization point is ex-
tremely important for real-time systems. However, in AUTOSAR OS, it is not
possible to set an absolute alarm to occur periodically each time the underly-
ing counter wraps around.

For example, assume you have a counter that counts in degrees with a reso-
lution of one degree and you want to activate a task at “top dead center’, i.e.
on each revolution of the crankshaft.

For example, assume that the counter has a modulus of 360 ticks. What
you need to say is SetAbsAlarm(Alarm1, 0, 360). This is forbidden by the
AUTOSAR OS standard because the cycle parameter cannot be greater than
MAXALLOWEDVALUE, which is always the modulus-1 (in this case 359).

If you need this type of functionality, you must provide code that resets an
absolute single-shot alarm each time the alarm expires.

For example, if Task1 is attached to Alarm1, then the body of Task1 will need
to reset the alarm when the task is activated as shown in Code Example 9.5.

TASK(Task1) {
/* Single-shot alarm reset at top dead center = 0 = 360

degrees. */
SetAbsAlarm(Alarm1, 0, 0);
/* User code. */
TerminateTask();

}

Code Example 9.5: Resetting an Alarm when a Task is Activated

9.2.2 Relative Alarms

Single-Shot

A relative alarm specifies the absolute value of the underlying counter at
which the alarm expires. Single shot relative alarms are useful when you
want to timeout some activity at runtime. For example, you might want to
wait for an external event and then activate a task if the event does not
occur.

Code Example 9.6 shows how an absolute single shot alarm can be set.

/* Timeout 42 ticks from now */
SetRelAlarm(Timeout, 42, 0);

Code Example 9.6: Relative single shot alarm

150 Alarms

Figure 9.8: Illustration of a Relative Single Shot Alarm

Code Example 9.6 is illustrated in Figure 9.8

A single shot alarm us useful when you need to program a timeout that waits
for a fixed amount of time and then takes an action if the timeout occurs.

In AUTOSAR OS, the use of zero for increment in SetRelAlarm() is forbidden.
If you use zero for increment, then an E_OS_VALUE error will be returned.

Cyclic

Code Example 9.7 shows a relative alarm that expires after 10 ticks and then
every 20 ticks thereafter.

/* Expire after 10 ticks, then every 20 ticks. */
SetRelAlarm(Alarm1, 10, 20);

Code Example 9.7: Relative cyclic alarm

In Figure 9.9, you can see how this alarm can be visualized.

9.3 Auto-starting Alarms

It is possible to start alarms by calling SetRelAlarm() or SetAbsAlarm() in
the main program. However, the easiest way to set cyclic alarms is to make
them auto-started. Auto-started alarms are started during StartOS().

Auto-started alarms can be set on a per application mode basis so you can
choose in which application modes the alarm is auto-started. Each auto-
started alarm must also specify whether it is started at an absolute or a rela-

Alarms 151

Figure 9.9: Illustration of a Relative Cyclic Alarm

tive counter value and the associated increment/start and cycle parameters
must be configured.

Even though alarms may be started in different application modes it is
not possible to assign different auto-start parameters for each mode.

Figure 9.10 shows how alarms can be set to auto-start from the Startup Modes
pane.

RTA-OS3.x ensures that software counters are initialized to zero during
StartOS() (hardware counters will be set to the value configured by your
own application initialization code). As a result of this, you must take care
if you use the a start time of zero ticks for an absolute alarm because the
zeroth tick will have already happened when the alarm is started. Althought
the alarm will be started, it will not expire until the associated counter has
wrapped around to zero. On a 16-bit counter ticked every millisecond you
would need to wait just over 65 seconds for this to happen, and on a 32-
bit counter just under 48 days. Specifying that the alarm starts on the first
(or later) tick means that the initial expiry will occur on the next tick of the
counter.

Auto-started absolute alarms are useful if you require alarms to be synchro-
nized with each other (i.e. the relative expiries between alarms have to occur
a pre-configured number of ticks apart).

9.4 Canceling Alarms

You can cancel an alarm using the CancelAlarm() API call.

152 Alarms

Figure 9.10: Auto-starting Alarms

An alarm may, for example, need to be canceled to stop a particular task
being executed. An alarm can be restarted using the SetAbsAlarm() or the
SetRelAlarm() API call.

9.5 Working out when an Alarm will occur

If you need to work out when an alarm will occur, for example, to avoid setting
an absolute alarm when the absolute value has already been reached, then
you can use the GetAlarm() API call.

The call returns the number of ticks remaining before the specified alarm ex-
pires. If the alarm is not set, then the API call returns the value E_OS_NOFUNC
and the number of ticks to expiry is undefined. It is recommended that the
return value of the call is checked before using the result. Code Example 9.8
shows the use of the API call.

TickType TimeToExpiry;
TickType SafetyMargin = 100;
StatusType IsValid;
IsValid = GetAlarm(Alarm1, &TimeToExpiry);
if (IsValid != E_OS_NOFUNC) {
if (TimeToExpiry <= SafetyMargin) {
Log(InsideSafetyMargin);

}
}

Code Example 9.8: Getting the time to expiry

Alarms 153

You should exercise caution when making runtime decisions based on the
number of ticks returned by the call, especially if the underlying counter has
a high resolution. As with reading counter values with GetCounterValue(),
preemption can occur between getting the value and using it for calculation.
This means that you may read a (long) time to expiry but then be preempted
to resume shortly before the alarm expires (or even after it has expired).

9.6 Non-cyclic (aperiodic) Alarms

Cyclic alarms are only useful for programming cyclic behavior. In many sys-
tems, for example those that need to execute tasks periodically to poll data
sources, this is ideal. However, you may need to program systems where the
time between successive expiries of an alarm needs to change at runtime.
For example, you might be calculating an engine shaft speed and using this
to program the duration of spark or injection timing.

Aperiodic behavior with alarms need to be programmed using single-shot
alarms that are set to the next expiry value by the activated task.

In Code Example 9.9, a task runs every millisecond and polls a counter that
registers degrees of rotation of a crankshaft. The task calculates the posi-
tion and speed of the crank. The speed is used to determine the duration
of the spark timing. The spark is started and an alarm is set to expire after
SparkTiming ticks.

TASK(MillisecondTask) {
...
GetElapsedCounterValue(ShaftEncoder,&Position,&DegreesRotation);
RevsPerMinute = (DegreesRotation/360) * 1000 * 60;
SparkTiming = Lookup(RevsPerMinute);
if (Position = 90) {
StartSpark();
SetRelAlarm(TimeCounter, SparkTiming, 0); /* Activates

SparkOff on expiry */ }
}
...
TerminateTask()

}
TASK(SparkOff){
StopSpark();
TerminateTask();

}

Code Example 9.9: Aperiodic Alarm Example

9.7 Summary

• Alarms are set on an underlying counter.

154 Alarms

• You can set multiple alarms on each counter.

• Each alarm specifies an action, either:

• activation of a task,

• setting an event,

• execution of a callback, or

• ticking a ticked counter.

• Alarms can be set to expire at an absolute or relative (to now) counter
value.

• Alarms can be auto-started.

Alarms 155

10 Schedule Tables

In Chapter 9 you saw that you can build systems requiring periodic and ape-
riodic behavior relatively easily. However, one of the limitations of alarms is
that you can only perform one action per alarm. If you need to build a system
where you have a phased sequence of task activations and guarantee some
separation in time (temporal separation) then you need to be quite careful
how you start and stop the alarms.

While it is possible to build such a system with alarms, there is nothing, other
than code review, that prevents the timing properties of the application being
accidentally modified at runtime. Furthermore, you saw that if you wanted to
define multiple task activations at a single point in time, you were forced to
create multiple alarms when what you really want to do is to activate multiple
tasks from a single alarm.

AUTOSAR OS addresses the limitations of alarms by providing an OS object
called a schedule table.

A schedule table comprises a set of expiry points that occur on statically con-
figured offsets from a notional zero. The offsets are specified in ticks of a
statically bound counter - just like the expiry of alarms. The key difference
between schedule tables and alarms is that the expiry points on a sched-
ule table maintain their relative separation (to each other). In most cases,
this separation is fixed at build time. However, for explicitly synchronized
schedule tables this separation can vary within a pre-configured range of val-
ues. The schedule table can be started and stopped as a composite unit and,
whenever it is restarted, the expiry points always have the same relative ex-
ecution behavior: any given point A will always be followed by the next point
B.

Schedule tables adopt the following terminology:

Initial Offset is the offset to the first expiry point on the schedule table. It
is therefore the smallest offset configured.

Duration is the number of ticks from zero before the schedule table stops.

Final Delay is the difference between the offset to the final expiry point and
the duration. It is therefore equal to the value of duration minus the
longest offset.

Delay is the number of ticks between adjacent expiry points and is equal to
the longer offset minus the shorter offset. If the schedule table repeats,
then the delay between the last and the first expiry point is equal to the
Final Delay plus the Initial Offset.

156 Schedule Tables

Figure 10.1: Visualizing a Schedule Table

Repeating defines whether the schedule table runs once each time it is
started and then stops automatically, or whether it repeats until it is
stopped using an OS API call.

An expiry point is similar to an alarm in that it indicates a number of ticks at
which RTA-OS3.x needs to take some action. However, expiry points differ
from alarms in what actions can be taken. The following table shows the
differences:

Action Alarm Expiry Point

ActivateTask() 3- one task 3- multiple tasks
SetEvent() 3- one event 3- multiple events
Callback 3 7

IncrementCounter() 3 7

Figure 10.1 shows the anatomy of a schedule tables with 5 expiry points and
a duration of 50 counter ticks. When the schedule table was started1, each
expiry point would occur every 50 ticks with offset ticks from the notional
zero point.

We use the term “notional zero” to mean the point from which offsets
are measured. The notional zero is unrelated to values on the underly-
ing counter.

When a schedule table is started (see Section 10.4) the notional zero will be
mapped onto the appropriate “now” value of the underlying counter.

Configuration of a schedule table has two parts:

1. configuration of the attributes of the table itself (Section 10.1);

2. configuration of the expiry points on the table (Section 10.2).

1And assuming it was configured as repeating

Schedule Tables 157

In addition (since configuration of a Schedule Table can be complex),
rtaoscfg also provides a Schedule Table Assistant which is described in Sec-
tion 10.3.

10.1 Configuring a Schedule Table

Each schedule table needs to be assigned a unique name so that it can be
referred to in API calls.

A schedule table, like an alarm, is driven by an OS counter. The counter
provides the schedule table with a tick source that provides the reference for
the expiry point offsets. All offsets are specified in terms of ticks of the OS
counter.

The counter used to drive the schedule table can be shared with other sched-
ule tables and also with alarms. However, while multiple alarms can be
running on the same counter concurrently, it is only possible to have one
schedule table running per counter at any point in time. The following table
shows the constraints between the schedule tables and alarms attached to
the counter.

Object Configuration Active Objects at Runtime

Alarm 0..n 0..n
Schedule Table 0..n 0..1

Each schedule table has a statically configure length called the duration. The
duration is specified in ticks of the counter and must be in the range MINCYCLE
≤ Duration ≤ MAXALLOWEDVALUE+1.

A schedule table has two modes of operation:

Single shot: the schedule table runs once and stops automatically at the
end. Each expiry point is processed once. Single-shot schedule tables
are useful when you want to start a phased sequence of actions in re-
sponse to some triggering event.

Repeating: the schedule table runs multiple times. When the end of the
table is reached, it wraps around to zero starts again. Expiry points are
therefore processed periodically with period equal to the duration.

Figure 10.2 shows the configuration of a schedule table called MasterPlan,
driven by Millisecond counter, which repeats with a duration of 50 ticks.

Figure 10.3 shows how the schedule table in Figure 10.1 with the configura-
tion from Figure 10.2 would run when started at a counter value of 0 ticks and
again at a counter value of 42 ticks.

158 Schedule Tables

Figure 10.2: Schedule Table Configuration

Figure 10.3: Visualizing a Schedule Table

Schedule Tables 159

10.1.1 Synchronization

In Figure 10.3, expiry points occur at the same relative offsets from the no-
tional zero each time the table repeats. However, the counter tick value at
which expiry points occur depends on when the schedule table was started.

It may be the case that your application requires expiry points to occur at a
specific counter value. For example, the counter may be counting degrees
of rotation on a crankshaft and it is essential that expiry points occur at
0°, 90°etc. Alternatively, you may want expiry points to be processed syn-
chronously with a global time signal.

Schedule tables support these use-cases using synchronization. Three syn-
chronization strategies are supported:

None no strategy is used. RTA-OS3.x does not do anything to ensure syn-
chronization. This is the default behavior if no strategy is configured.

Implicit assumes that the counter used to drive the schedule table is the
counter with which synchronization is required.. Section 10.9 provides
additional information about implicit synchronization.

Explicit assumes that there are two counters:

• a drive counter which is the OS counter used to process expiry
points on the schedule table.

• a synchronization counter which is external to the OS (i.e. it is not
an OS counter object as described in Chapter 8) with which synchro-
nization is required.

RTA-OS3.x is told the value of the synchronization counter and uses this
to synchronize the schedule table.

Section 10.10 describes explicit synchronization in more detail.

10.2 Configuring Expiry Points

Each schedule table contains one or more expiry points. An expiry point
marks the offset on the table where an action is required. Each expiry point
has the following attributes:

• The offset from the start (the notional zero) of the schedule table.

• Zero or more tasks to activate

• Zero or more events to set for a specified task

160 Schedule Tables

Figure 10.4: Specifying Expiry Points

Each expiry point must activate at least one task or set at least one event. It
is not possible to have an expiry point with no action.

Recall that offsets are defined in ticks of the OS counter which drives the
schedule table. This means that the properties of the counter place limita-
tions on configuration.

The offset can be zero or in the range MINCYCLE to the duration of the sched-
ule table and there must be at least MINCYCLE ticks difference between any
pair of offsets2.

The limitation to MINCYCLE occurs because delays of less than MINCYCLE can-
not be programmed on the counter.

For example, if the counter has a MINCYCLE of 10 then:

• offsets between 1 and 9 inclusive are invalid

• offsets of 10 and 20 are valid

• offsets of 10 and 19 are invalid

Figure 10.4 shows how to specify expiry points.

2More formally, ∀x, y ∈ Offsets • abs(x− y) >= MINCYCLE

Schedule Tables 161

Figure 10.5: The Schedule Table Assistant

The upper part of the workspace shows the expiry points and their associated
offsets. The lower part of the workspace shows the actions for the selected
expiry point and the control for adding and removing expiry points.

10.3 The Schedule Table Assistant

Many applications are based around a number of periodic tasks. Since setting
up a single Schedule Table with multiple (en)harmonic periods can be time
consuming and error prone, rtaoscfg provides an assistant plug-in which
can automatically generate the framework for such a system.

While the Schedule Table Assistant creates the necessary Schedule Table,
Counter, Task and Event containers as required, it is still necessary for the
end-user to complete their definitions (with Counter frequency, Task priority
etc.).

The configuration of a periodic system can also be saved to disk in case future
editing is required.

Figure 10.5 shows the initial view of the Schedule Table Assistant.

The data-entry grid requires that the period and offset are entered in terms of
“ticks” (as specified by AUTOSAR) - the mapping of ticks to real time units is
a function of the Counter driving the Schedule Table and is therefore carried
out within the counter’s configuration page.

If, in addition to a period and offset, a grid entry specifies a Task name only,
then the action is configured as Activate Task. If an Event name is specified
as well, then the action becomes Set Event.

162 Schedule Tables

Figure 10.6: Starting a schedule table at an absolute count value

While the configuration is being entered, the message below the data-entry
grid displays the length and size of the Schedule Table which to be generated.

The Assistant can overwrite a Schedule Table if one with the same name al-
ready exists, allowing a Schedule Table to be updated with new periodic in-
formation. After saving the file File Ô Save the periodic configuration can
be reloaded and regenerated in the future.

The Schedule Table and supporting containers are generated when the Gen-
erate button is pressed - if a project is not already open, the “New Project”
dialog will be presented as described in Section 3.1.1.

10.4 Starting Schedule Tables

10.4.1 Absolute Start

The StartScheduleTableAbs(ScheduleTableID, Start) API call is used to
start a schedule table at the absolute counter value Start as shown in Code
Example 10.2:

/* Start Schedule Table Tbl when the counter reaches tick 6 */
StartScheduleTableAbs(Tbl, 6);

Code Example 10.1: Using StartScheduleTableAbs()

The schedule table is in the SCHEDULETABLE_RUNNING state when the call re-
turns, unless it is an implicitly synchronized schedule table, in which case it
has state SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS.

The first expiry point will be processed when Start + Initial Offset ticks
have elapsed. Figure 10.6 shows the schedule table from Figure 10.1 when
started according to Code Example 10.4.

Absolute start is extremely useful for building schedule tables that are syn-
chronized to specific values of an external (hardware) counter. In fact, if a
schedule table is configured with implicit synchronization then this is the only
way to start a schedule table.

Schedule Tables 163

(a) Counter value behind absolute start value

(b) Counter value ahead of absolute start value

Figure 10.7: Synchronizing a schedule table with an absolute count value

Assume we have the same schedule table layout as before, but driven by a
counter that has a modulus equal to the duration of the schedule table. We
want the expiry point offsets to represent the actual count value at which
the schedule table is processed. This can be achieved trivially by making an
absolute start at zero as shown by Code Example 10.2:

/* Start ImplicitlySynchronizedTable when the counter wraps to
zero */

StartScheduleTableAbs(ImplicitlySynchronizedTable, 0);

Code Example 10.2: Starting an implicitly synchronized schedule table

Figure 10.7(a) shows that the schedule table would wait until the counter
reaches zero before starting and that each expiry point occurs at a counter
value equal to its offset.

When starting a schedule table at an absolute count value note that the
counter may have already passed the value. The schedule table will not
start until the counter reaches the value again (i.e. after it has wrapped
around).

This issue is most often encountered when a schedule table is started using
StartScheduleTableAbs(MyTable, 0) immediately that RTA-OS3.x starts
(or even auto-starting the schedule table at zero) because the counter value

164 Schedule Tables

Figure 10.8: Starting a schedule table at a relative count value

of zero is already in the past. A full modulus wrap of the counter (plus the
initial offset) must elapse before the first expiry point is processed3

Figure 10.7(b) shows what would happen if the schedule table shown in Fig-
ure 10.7(a) was started just after the counter reached zero.

10.4.2 Relative Start

The StartScheduleTableRel(ScheduleTableID, Offset) API call is used
to start a schedule table at a relative number of ticks from now. This is the
same concept as relative start of an alarm using SetRelAlarm() (see Sec-
tion 9.2.2).

/* Start Schedule Table Tbl 6 ticks from now */
StartScheduleTableRel(Tbl, 6);

Code Example 10.3: Using StartScheduleTableRel()

The Offset parameter of the StartScheduleTableRel() call specifies the
relative number of ticks from now at which RTA-OS3.x will start the schedule
table.

The schedule table is in the SCHEDULETABLE_RUNNING state when
the call returns. The first expiry point will be processed when
Offset + Initial Offset ticks have elapsed on the counter. Figure 10.8
shows the schedule table from Figure 10.1 when started according to Code
Example 10.4.

If the underlying counter is a hardware counter you must ensure that
the Offset passed to StartScheduleTableRel() has not already ex-
pired before the call returns.

For schedule tables that are driven by a software counter, the counter cannot
be incremented while the StartScheduleTableRel() is executing because
both API calls execute at OS level and are thus are serialized.

3On a 32-bit counter running at 1ms you would need to wait approximately 50 days for this
to happen.

Schedule Tables 165

Figure 10.9: Starting a schedule table synchronously

Relative start is prohibited for schedule tables that use implicit synchroniza-
tion, so the following code will generate an error:

StartScheduleTableRel(ImplicitlySynchronizedTable, 6); /* returns
E_OS_ID */

Code Example 10.4: Forbidden use of StartScheduleTableRel()

10.4.3 Synchronized Start

The StartScheduleTableSynchron(ScheduleTableID) API call is used to
start a schedule table synchronously after RTA-OS3.x has been told the value
of the synchronization counter. It is only possible to use this API for schedule
tables with explicit synchronization.

/* Start Schedule Table when the synchronization count is
provided */

StartScheduleTableSynchron(ExplicitlySynchronizedTable);
/* Table now waits */
...
SyncScheduleTable(ExplicitlySynchronizedTable,42);
/* Table processes first expiry point Duration-42+InitialOffset

ticks from now */

Code Example 10.5: Using StartScheduleTableSynchron()

Figure 10.9 shows what happens when a schedule table is started according
to Code Example 10.4.

The schedule table is in the SCHEDULETABLE_WAITING state when the call re-
turns.

StartScheduleTableSynchron() assumes that the notional zero of the
schedule table needs to be synchronized with the absolute value zero on the
synchronization counter.

166 Schedule Tables

When a schedule table is started by calling StartScheduleTableSynchron()
it will not run until SyncScheduleTable(ScheduleTableID, Value) is sub-
sequently called. The first expiry point will then be processed when
Duration - Value + Initial Offset ticks have elapsed on the drive
counter.

If a SyncScheduleTable() is never executed then the table will not
leave the SCHEDULETABLE_WAITING state unless it is stopped using
StopScheduleTable().

10.5 Expiry Point Processing

Expiry points are processed in response to an IncrementCounter() or
Os_AdvanceCounter() API call being made on the counter driving the sched-
ule table.

When the counter reaches the value at which the next expiry point is due,
RTA-OS3.x will:

• activate all configured tasks, in descending priority order; then

• set all events for tasks, again in descending priority order; then

• set up the match value on the underlying counter at which the next expiry
point is due.

10.6 Stopping Schedule Tables

A schedule table can be stopped at any point by calling the
StopScheduleTable(ScheduleID) API. Schedule table processing stops
immediately.

A repeating schedule table will run until it is stopped by call-
ing StopScheduleTable() or the table is switched by calling
NextScheduleTable() (see Section 10.7).

A schedule table that is configured as single shot (the repeating attribute
is false) will stop automatically when Final Delay ticks have elapsed after
RTA-OS3.x has processed the final expiry point as shown in Figure 10.10.

10.6.1 Restarting a stopped schedule table

You can re-start a schedule table that has been stopped by calling
StartScheduleTable[Abs|Rel|Synchron](). The schedule table will re-
start at its notional zero as shown in Figure 10.11. There is no mechanism
for starting a schedule table part-way through.

Schedule Tables 167

Figure 10.10: Non-repeating schedule tables stop automatically

Figure 10.11: Schedule tables always start at their notional zero

168 Schedule Tables

Figure 10.12: Switching between schedule tables

10.7 Switching Schedule Tables

You can switch from one schedule table to another at runtime using the
NextScheduleTable() API call. The switch between schedule tables always
occurs at the end of the table - i.e. final delay ticks after the final expiry point
is processed. Code Example 10.6 shows how the API call is made.

/* Start To after From has finished */
NextScheduleTable(From, To);

Code Example 10.6: Switching a schedule table

It is only valid to switch between schedule tables that are driven by the same
counter. The schedule table in the switch do not need to have the same
number of expiry points, the same duration, the same initial offset, etc.

When a call to NextScheduleTable() is made, the delay between the final
expiry point on From and the first expiry point on To is given by:

Delay = From.FinalDelay + To.InitialOffset

If the Current schedule table has a final delay of zero ticks and the Next
schedule table has an initial offset zero, then the delay between expiry
points will be zero ticks.

Figure 10.12 shows the process of switching from one schedule table From
with duration 50 ticks to schedule table To with duration 30 ticks.

If you make multiple calls to NextScheduleTable() while From is running
then the next table that runs will be the one you specified in your most recent
call.

If you stop the From schedule table then the To schedule table will re-
main in the state SCHEDULETABLE_NEXT indefinitely.

Schedule Tables 169

Figure 10.13: Leaving a schedule table in the SCHEDULETABLE_NEXT state

Figure 10.13 shows the effect, where schedule table From is stopped
before the transition to schedule table To occurs, leaving To in the
SCHEDULETABLE_NEXT state.

A side-effect of this problem is that the application will not be able to run
schedule table To because it is not possible to start a schedule table that
is not in SCHEDULETABLE_STOPPED. The problem can be fixed at runtime by
checking if the table is waiting and then calling StopScheduleTable(To) to
reset its state to SCHEDULETABLE_STOPPED. Code Example 10.7 shows how
this might be achieved.

ScheduleTableStatusType FromState,ToState;
GetScheduleTableStatus(From, &FromState);
GetScheduleTableStatus(To, &ToState);
if ((ToState == SCHEDULETABLE_NEXT) &&

(FromState == SCHEDULETABLE_STOPPED) {
/* Reset state of To */
StopScheduleTable(To);

}
StartScheduleTableAbs(To,99);

Code Example 10.7: Resetting the state of a schedule table

Note that to avoid race conditions between reading and evaluating the state
conditions, it is essential that any code like this executes at the same priority
as the highest priority OS object that manipulates either of the two schedule
tables.

10.8 Choosing an Synchronization Strategy

If you need to synchronize a schedule table then you are strongly ad-
vised to use implicit synchronization as this model correctly decouples
the OS from the counter driver.

This is especially true when synchronizing with a global time provided by a
time-triggered networking technology like FlexRay or TTP. The technologies
use hardware to perform clock synchronization across a distributed network

170 Schedule Tables

and provide the current view of global time to the CPU. Even if the hardware
loses synchronization on the network, it will still provide the CPU with a best-
effort global time reference from which a schedule table can be driven and
re-synchronization will be attempted automatically. These hardware solutions
fix the clock synchronization problem in a far more efficient and accurate
way that you can hope to achieve in software. You should therefore not re-
introduce these problems in your application by using AUTOSAR OS’s explicit
synchronization model.

The only legitimate use-case for explicit synchronization is when you need to
synchronize processing in the OS with a sporadically generated and inaccu-
rate (i.e. subject to large amounts of drift) clock source, for example a global
time signal broadcast over a CAN network.

10.9 Implicit Synchronization

Implicit synchronization requires that:

1. The schedule table and the OS counter must wrap at the same value.
This guarantees that an offset of X ticks from zero on the table can be
aligned exactly with tick X of the counter.

This is configured by setting the duration equal to MAXALLOWEDVALUE+1
of the counter.

2. The schedule table is only started at a known counter value. This means
that the table can only be started using StartScheduleTableAbs().

RTA-OS3.x does not do anything to maintain synchronization as this is the
responsibility of the counter driver.

The following table shows the differences between the ‘implicit’ and ‘none’
synchronization strategies:

None Implicit

Minimum Duration Mincycle MaxAllowedValue+1
Maximum Duration MaxAllowedValue+1 MaxAllowedValue+1
Start...Abs() 3 3

Start...Rel() 3 7

Start...Synchron() 7 7

Note that a schedule table that uses the ‘none’ synchronization strategy,
has a duration equal to MAXALLOWEDVALUE+1 and is always started using
StartScheduleTableAbs() will behave identically at runtime to a schedule
table using the ‘implicit’ synchronization strategy.

Schedule Tables 171

(a) None

(b) Implicit

Figure 10.14: State transitions for none and implicitly synchronized schedule
tables

The ‘implicit’ synchronization strategy differs from the ’none’ synchronization
strategy only in that ’implicit’ forces RTA-OS3.x to check that the constraints
are not violated using additional configuration-time and run-time checks.

Figure 10.14 shows how similar the state models are, with the
exceptions that StartScheduleTableRel() cannot be used and the
SCHEDULETABLE_RUNNING state used for the ‘none’ synchronization strategy is
simply renamed SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS in the ’implicit’
synchronization strategy.

Implicit synchronization is very efficient when integrated with a hardware
counter. When each expiry point is processed, RTA-OS3.x uses the hardware
counter callback Os_Cbk_Set_<CounterID> to program the counter to inter-
rupt when the delay to the next expiry point elapses. Any re-synchronization

172 Schedule Tables

occurs in the scope of the driver itself and the schedule table always remains
synchronized with the counter.

Additional information about writing hardware counter drivers is provided in
Chapter 11.

10.10 Explicit Synchronization

Recall from Section 10.1.1 that explicit synchronization requires two coun-
ters:

• a drive counter that is used to process expiry points on the schedule
table.

• a synchronization counter that is external to the OS (i.e. it is not an OS
counter object) with which synchronization is required.

With none and explicit synchronization, the delays between expiry points are
static.

With explicit synchronization RTA-OS3.x adjusts the delay between adjacent
expiry points dynamically (within configurable bounds) in order to keep the
schedule table synchronized with the synchronization counter. The delay is
extended if the schedule table is ahead of the synchronization counter and
the delay is reduced if the schedule table is ahead of the synchronization
counter.

10.10.1 Counter Constraints

Explicit synchronization in AUTOSAR OS assumes that the following con-
straints between the schedule table, the drive counter and the synchroniza-
tion counter:

1. the schedule table duration is no greater than the modulus of the drive
counter.

2. the schedule table duration is equal to the modulus of the synchroniza-
tion counter.

3. the drive counter and the synchronization counter have the same res-
olution - one tick of the drive counter must take the same time as one
tick of the synchronization counter.

The first constraint can be checked by RTA-OS3.x because the drive counter
is an OS object. The remaining constraints cannot be checked by RTA-OS3.x
because the synchronization counter is not visible as a configurable object.

Schedule Tables 173

Figure 10.15: Specifying Max Advance and Max Retard for Expiry Points

It is your responsibility to check that your synchronization counter satis-
fies the started constraints. Explicit synchronization will not work if the
constraints are not satisfied.

10.10.2 Specifying Synchronization Bounds

Adjustment Range

The amount by which RTA-OS3.x can adjust the delay between expiry points
is statically configured using two parameters:

Max Retard defines the maximum number of ticks that can be subtracted
from the expiry point’s offset.

This is equivalent to shortening the delay from the previous expiry point
by the specified number of ticks.

Max Advance defines the maximum number of ticks that can be added to
the expiry point’s offset.

This is equivalent to lengthening the delay from the previous expiry
point by the specified number of ticks.

Figure 10.15 shows how the synchronization bounds are specified for an ex-
piry point.

174 Schedule Tables

Figure 10.16: Impact of Max Retard and Max Advance on delays

Figure 10.16 shows the impact of these parameters on the offsets to an expiry
point and the delays from the previous expiry point.

Each expiry point can specify its own adjustment values. If the adjustment
values for an expiry point are not specified, then no adjustment will be made
at runtime.

In common with other schedule table configuration parameters, the permit-
ted values are limited by the attributes of the drive counter. The minimum
delay between expiry points must be greater than MINCYCLE. This is guar-
anteed when the following condition is true for every pair of expiry points
(i,j):

Offseti − (Offsetj −MaxRetardj) >= MINCYCLE

Note that all adjustment calculations are evaluated modulo the duration of
the schedule table. The initial expiry point can therefore specify a Max Retard
value greater its offset, providing that the result of the modulus subtraction
is greater than the value of final expiry point’s offset plus MINCYCLE.

Figure 10.17 shows how the delay between two adjacent expiry points can be
reduced from 3 ticks to 1 tick using Max Retard of 2 ticks.

The maximum delay between two adjacent expiry points must be less than
the schedule table’s duration:

Offseti + MaxAdvancei <= DURATION

Schedule Tables 175

Figure 10.17: Minimizing the delay between expiry points using max retard

Figure 10.18: Maximizing the delay between expiry points using max advance

Figure 10.18 shows how the delay between two adjacent expiry points can be
increased from 3 ticks to 9 ticks using max advance equal to 6 ticks.

Deviation

The schedule table is driven by a different counter to the one with which
synchronization is required so it is possible for the schedule table to drift with
respect to the synchronization counter. In AUTOSAR OS the drift is called the
deviation.

However, explicitly synchronized schedule tables are constrained so that the
synchronization counter and the schedule table have the same modulus. RTA-
OS3.x can therefore use the value of the synchronization counter to calculate
the deviation between the current point on the schedule table and the syn-
chronization counter.

The deviation is the smallest number of ticks that must be added to (or sub-
tracted from) the current value ‘now’ value of the schedule table to equal the
value of the synchronization counter, modulo the duration of the schedule
table.

176 Schedule Tables

Deviation is defined to be:

positive if ticks must be added to the ‘now’ value of the schedule table.
This means that synchronization counter is running ahead the schedule
table and delays will need to be reduced. Shortened delays make expiry
points happen earlier - in effect “speeding up” the schedule table.

negative if ticks must be subtracted from the ‘now’ value of the schedule ta-
ble. This means synchronization counter is running behind the schedule
table and the delays will need to be extended. Extending delays make
expiry points happen later - in effect “slowing down” the schedule table.

Figure 10.19 shows the deviations that are possible for each synchronization
counter value with a counter modulus of 8 where the schedule table has a
‘now’ value of 7 ticks.

The red triangle shows the number of ticks that must be subtracted from
‘now’ to equal the value of the synchronization counter. The green triangle
shows the number of ticks that must be added to ‘now’ to equal the syn-
chronization counter. The deviation is given by the smallest triangle. Note
that if adding and subtracting give the same deviation, then it doesn’t matter
whether we choose to add or subtract.

RTA-OS3.x assumes the deviation is positive if the value is less than or equal
to half the duration of the schedule table.

The following table shows how the deviation values for any schedule table
value and synchronization counter value for a modulus (duration) of 8 ticks.

Schedule Table Now

0 1 2 3 4 5 6 7

S
y
n

c
.

C
o
u

n
t

0 0 -1 -2 -3 +4 +3 +2 +1
1 +1 0 -1 -2 -3 +4 +3 +2
2 +2 +1 0 -1 -2 +3 +4 +3
3 +3 +2 +1 0 -1 -2 -3 +4
4 -4 +3 +2 +1 0 -1 -2 -3
5 -3 -4 +3 +2 +1 0 -1 -2
6 -2 -3 -4 +3 +2 +1 0 -1
7 -1 -2 -3 -4 +3 +2 +1 0

10.10.3 Startup

It is common to start an explicitly synchronized schedule table with the
StartScheduleTableSynchron() API call described in Section 10.4.3. The
schedule table will wait for the synchronization counter to be provided (using

Schedule Tables 177

(a) No deviation (b) Deviation = + 1 tick (synchroniza-
tion counter is 1 tick ahead)

(c) Deviation = + 2 ticks (synchro-
nization counter is 2 ticks ahead)

(d) Deviation = + 3 ticks (synchro-
nization counter is 3 ticks ahead)

(e) Deviation = + 4 ticks (synchro-
nization counter is 4 ticks ahead)

(f) Deviation = - 3 ticks (synchroniza-
tion counter is 3 ticks behind)

(g) Deviation = - 2 ticks (synchroniza-
tion counter is 2 ticks behind)

(h) Deviation = -1 tick (synchroniza-
tion counter is 1 tick behind)

Figure 10.19: Schedule table deviations

178 Schedule Tables

the SyncScheduleTable() call described in Section 10.10.4). This provides
what is known as hard startup. This model means that the schedule table
only starts once a synchronization is established.

However, it may be the case that a schedule table needs to run and process
expiry points before a synchronization count is provided i.e. it needs to run
asynchronously. When a synchronization count is provided, then RTA-OS3.x
can synchronize the schedule table.

Asynchronous start is trivially done using a StartScheduleTableAbs() or
StartScheduleTableRel() API call.

The schedule table runs asynchronously with the (as yet unknown) syn-
chronization count for an indefinite amount of time. During this time,
there is no difference between the ‘explicit’ and ‘none’ synchronization
strategies. If your system can run safely for an indefinite time without
synchronization, then it follows that it must be able to run safely all the
time without synchronization. Using explicit synchronization in this case
is unnecessary as a synchronization strategy of ‘none’ would suffice and
would have a lower memory footprint and higher performance.

10.10.4 Synchronizing the Schedule Table

Whenever an expiry point is processed, RTA-OS3.x calculates the delay to the
next expiry point at runtime.

The SyncScheduleTable(Tbl,Value) API call is used to tell RTA-OS3.x the
current value of the synchronization counter and additionally that synchro-
nization should start (if not already being performed).

There are two parts to synchronization:

1. The application calls SyncScheduleTable(Tbl,Value) and RTA-OS3.x
calculates the current deviation between the schedule table and the
synchronization counter.

2. Every time an expiry point is processed, RTA-OS3.x uses the calculated
deviation and the adjustment limits (Max Retard and Max Advance) to
calculate the delay to the next expiry point required to maintain (or
gain) synchronization.

If SyncScheduleTable(Tbl,Value) is called multiple times before the next
expiry point is processed then only the most recently calculated values will
be used.

Schedule Tables 179

Expiry Point Adjustment

If a synchronization count has not yet been provided, expiry points are pro-
cessed as described in Section 10.5.

When a synchronization count is provided, each time an expiry point is pro-
cessed, RTA-OS3.x uses the currently stored deviation to adjust the delay to
the next expiry point within the limits specified by max retard of the next
expiry point and max advance of the current expiry point.

The adjustment made depends on the sign of the deviation:

Negative deviations occur when the schedule table is running behind the
synchronization counter and needs to ‘catch up’.

Catching up is done by reducing the time to next expiry point. The
maximum value of the reduction is the minimum of the deviation and
the max retard of the next expiry point, i.e. the reduction is limited by
the max retard value.

Positive deviations occur when the schedule table is running ahead of the
synchronization counter and needs to ‘slow down’.

Slowing down is done by increasing the time to next expiry point. The
maximum value of the increase is the minimum of the deviation and the
max advance of the current expiry point, i.e. the increase is limited by
the max retard value.

The amount of adjustment made is subtracted from the deviation and the
delay to the expiry point is processed.

If the deviation is non-zero when the next expiry point is processed then a
further adjustment is made.

Figure 10.20(a) shows a schedule table and the associated max retard and
max advance parameters for each expiry point. The effect of synchronization
requests triggered by calls to SyncScheduleTable() on the delays between
expiry points is shown in Figure 10.20(b)

10.10.5 Synchronization

An explicitly synchronized schedule table is said to be synchronous (with the
synchronization counter) if the deviation is not more than a specified preci-
sion. If you configure a schedule table to use the ‘explicit’ synchronization
strategy then it is mandatory to specify a precision. The precision can be set
to any value in the range 0 to the duration.

180 Schedule Tables

(a) An explicitly synchronized schedule table

(b) Modification to delays

Figure 10.20: Synchronizing a Schedule Table

Schedule Tables 181

Figure 10.21: Specifying the precision

Figure 10.21 shows the configuration of an explicitly synchronized schedule
table with a precision of 2 ticks on the underlying counter (in this case two
milliseconds).

The following table shows the deviation values you saw in Section 10.10.2.
Assuming a precision of 2, the shaded cells show under which deviations the
schedule table be considered synchronous.

Schedule Table Now

0 1 2 3 4 5 6 7

S
y
n

c
.

C
o
u

n
t

0 0 +1 +2 +3 +4 -3 -2 -1
1 +1 0 +1 +2 +3 +4 -3 -2
2 +2 +1 0 +1 +2 +3 +4 -3
3 +3 +2 +1 0 +1 +2 +3 +4
4 +4 +3 +2 +1 0 +1 +2 +3
5 -3 +4 +3 +2 +1 0 +1 +2
6 -2 -3 +4 +3 +2 +1 0 +1
7 -1 -2 -3 +4 +3 +2 +1 0

A precision of zero means that the deviation must be zero for the schedule
table to be synchronous. A precision of duration/2 or greater will mean that
the table is always synchronous. This is because the deviation is calculated
modulo the duration, so the schedule table and the synchronization counter
can never be more than half the duration out of phase.

182 Schedule Tables

Figure 10.22: Explicit Synchronization States

The state of a running explicitly synchronized schedule table is either:

SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS if the schedule table
is running and deviation ≤ precision

SCHEDULETABLE_RUNNING if the schedule table is running and deviation
> precision

An explicitly synchronized schedule table will alternate between these two
states at runtime.

Figure 10.22 shows the state transition model for an explicitly synchronized
schedule table.

10.10.6 Disabling Synchronization

Synchronization of an explicitly synchronized schedule table can be disabled
using SetScheduleTableAsync(). When the call is made, the schedule table
continues to run and expiry points are processed, but RTA-OS3.x stops any
expiry point adjustment.

Synchronization can be re-started by calling SyncScheduleTable().

Code Example 10.8 shows examples of these calls.

SetScheduleTableAsync(Explicit);
...

Schedule Tables 183

SyncScheduleTable(Explicit,0);

Code Example 10.8: Stopping and restarting synchronization

10.11 Schedule Table Status

You can query the state of a schedule table using the
GetScheduleTableStatus() API call. The call returns the status through an
out parameter. Code example 10.9 shows how to get the status.

ScheduleTableStatusType State;
GetScheduleTableStatus(Table, &State);

Code Example 10.9: Getting the status of a schedule table

The status will be either:

SCHEDULETABLE_STOPPED if the table is not started.

SCHEDULETABLE_RUNNING if the schedule table is started.

SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS if the schedule table
is started and synchronized.

SCHEDULETABLE_NEXT if the schedule table has been started by a call to
ScheduleTableNext() but is not yet running (because another sched-
ule table on the same counter has not yet finished).

SCHEDULETABLE_WAITING if the schedule table has been started
by a call to StartScheduleTableSynchron() but a call to
SyncScheduleTable() has not been made.

10.12 Summary

• Schedule tables provide a way of planning a series of actions statically at
configuration time.

• A schedule table is associated with exactly one OSEK counter, may spec-
ify a duration, and contains one or more expiry points.

• Expiry points in RTA-OS3.x are created implicitly by specifying offsets for
stimuli implemented on a schedule table.

• You can switch between schedule tables, but only at the notional end of
the table.

• Schedule tables can be synchronized with a global tick source using ei-
ther:

184 Schedule Tables

• implicit synchronization, where counter driving the schedule table is
the global time source

• explicit synchronization, where counter driving the schedule table is
ticked by a local counter and the table is synchronized manually by
telling the OS the current value of the global tick source.

.

Schedule Tables 185

11 Writing Hardware Counter Drivers

You have seen that RTA-OS3.x provides a simple, elegant and powerful inter-
face for driving counters. The hardware counter driver mechanism provides
great flexibility by placing the software/hardware interaction in the domain of
user-supplied code. This allows easy integration of drivers for novel hardware
and application requirements, and the ability to “piggyback” driver operation
on hardware that is also used for other functions.

As the owner of your hardware you know how you want to use it in your appli-
cation and therefore you are responsible for providing the hardware counter
driver functions.

This chapter offers some guidelines to help you in the construction of hard-
ware counter drivers. Much of this knowledge has been gained while con-
structing drivers for assorted peripheral timers, but it should be applicable to
other peripherals which increment in response to some external event (e.g.
interrupts generated by the rotation of a toothed wheel).

The example code is structured for ease of explanation and understanding.
Different control structures may result in small improvements in the quality
of generated code on some targets (e.g. replacing a while(1) loop using
if . break exits with a do . while loop with appropriately modified condi-
tions). If you choose to make this type of optimization, then you should take
care to ensure that the required semantics and orderings of operations are
maintained (e.g. note that the “&&” logical and operator in C imposes both
ordering and lazy evaluation).

11.1 The Hardware Counter Driver Model

The hardware driver concept assumes an underlying free-running peripheral
counter. The counter has an initial value established by the user, counts up
from zero and wraps back to zero as it reaches its modulus.

These are the assumptions of the model. In later sections of this chapter
you will see how to implement this model with hardware which does not
require these constraints.

A hardware counter driver uses the Os_AdvanceCounter_<CounterID>() API
call to tells RTA-OS3.x to expire an alarms and/or the schedule table expiry
points associated with a counter as soon as possible after it/they become due
and to program the next alarm or expiry point.

In this chapter we use the terms:

now is the counter’s current (continuously increasing) value.

old is the previously programmed compare value.

186 Writing Hardware Counter Drivers

match is the (absolute value of the) count at which the next alarm or sched-
ule table expiry point is due.

- is a binary subtraction modulo the counter’s modulus.

The code examples in this chapter make use of the functions:

clear_pending_interrupt()
set_pending_interrupt()
enable_interrupt_source()
disable_interrupt_source()

These functions refer to operations performed on the status/control registers
of the counter peripheral used to provide the hardware counter functionality.
You are responsible for providing these functions (or equivalent code) in your
hardware drivers.

11.1.1 Interrupt Service Routine

Typically you will call the hardware driver interface of RTA-OS3.x from a user-
supplied Category 2 ISR.

The ISR is triggered by each match and will call
Os_AdvanceCounter_<CounterID>() to tell RTA-OS3.x that a match has
occurred. RTA-OS3.x will then setup the delay until the next match. In
general, there are three classes of behavior the ISR. These are described
here, along with their implications for system behavior and schedulability
analysis, in order that appropriate choices can be made when implementing
the ISR component of hardware counter drivers.

Simple handlers can deal with a single match value being processed per
ISR. This class of handler must complete before the next interrupt be-
comes due.

Re-triggering handlers can deal with one or more matches becoming due
before it completes handling of the interrupt by which it was first trig-
gered. Such a handler processes one match per invocation, and exits
with the invoking interrupt still pending if another match is already due.

Looping handlers can deal with one or more matches becoming due before
it completes handling of the interrupt which first triggers it. Such a
handler is able to process multiple expiries in turn, and only exits when
either no match is due or when an interrupt is pending. Any interrupt
handler which is capable of looping is a looping handler.

Writing Hardware Counter Drivers 187

When it can be guaranteed the handler can complete before the next match
becomes due then a simple handler is the best choice because they typi-
cally have a smaller worst-case execution time than re-triggering or looping
handlers. The choice between re-triggering and looping is influenced by the
following factors:

1. Some hardware will not support re-triggering behavior, so a looping
handler must be used.

2. When the interrupt that invokes the handler is at the same level as an-
other interrupt in the system, and that other interrupt has a higher ar-
bitration precedence (i.e. will be handled first if both are pending) then
a re-triggering handler is preferred because it reduces latency for the
other interrupt. In practice, this is of particular concern for architectures
with a single interrupt priority level.

3. A re-triggering handler typically has smaller execution time than a loop-
ing handler when a single match is processed. Note that it is not nor-
mally relevant that a looping handler may be “more efficient” when sev-
eral expiries are handled in one invocation. Worst case behavior occurs
when each match is handled by a separate invocation.

A simple handler is recommended if the handler’s worst case response time
(i.e. the time between the interrupt becoming ready and the handler termi-
nating) is known to be smaller than the minimum interval between interrupts.
If this cannot be guaranteed, then a re-triggering handler should be used un-
less the hardware characteristics prohibit it.

11.1.2 Callbacks

Recall from 8.2.2 that four callbacks are also required as part of the hardware
counter driver:

1. Os_Cbk_Now_<CounterID>() which must return the now value of the
peripheral counter.

2. Os_Cbk_Cancel_<CounterID>() which clears any pending interrupt for
the counter and ensures that the interrupt will not become pending until
after a Os_Cbk_Set_<CounterID>() call has been made. This behavior
is required if any of the following conditions apply to your application:

(a) the alarms driven by the counter are never stopped directly by the
application calling CancelAlarm();

(b) the schedule tables driven by the counter are stopped directly by
the application calling StopScheduleTable();

188 Writing Hardware Counter Drivers

(c) you have a schedule table that does not repeat (in this case RTA-
OS3.x may need to cancel the interrupt when the schedule table
stops).

If none of these conditions apply, then you can simply provide a ‘stub’
call to implement Os_Cbk_Cancel_<CounterID>.

3. Os_Cbk_State_<CounterID>() is called by RTA-OS3.x when
GetAlarm() or GetScheduleTableStatus() is called by your ap-
plication code and the relevant alarm or schedule table is running. The
call returns an Os_CounterStatusType which is a C structure of the
form:

struct {
TickType Delay;
boolean Pending;
boolean Running;

}

The Delay field, when defined, gives the number of ticks from the pre-
vious match at which the next match is due, i.e. Delay is the rela-
tive time between matches. The Pending field is set to true if the next
match is already pending. When the Pending field is false, then the
Delay holds the relative number of ticks from now that remain until the
next match becomes due. This behavior is required if the application
interrogates the status.

4. Os_Cbk_Set_<CounterID>() establishes a state in which an interrupt
will become due the next time the counter matches the supplied value.
The callback is passed the absolute match value at which the next
match is due. The callback is used to start the counter and also to
shorten the time to the next match. This secondary behavior is needed
because you can set alarms (or start schedule tables) that need to be-
gin at an match closer to now then the currently programmed match
value.

All of the hardware driver callbacks run at OS level. This means that they
will not be preempted by Category 2 ISRs and do not, therefore, need to be
reentrant.

11.2 Using Output Compare Hardware

This section considers the construction of drivers for output compare (some-
times known as compare/match) counter hardware. Such hardware has the
property that an interrupt is raised when a counter value (advanced by some
outside process such as a clock frequency or events detected by some sen-
sor) matches a compare value set by software. It is assumed that both the

Writing Hardware Counter Drivers 189

counter value and the current compare value can be read by software. In this
section, it is assumed that the registers of the counter hardware are mapped
to the variables OUTPUT_COMPARE and COUNTER.

The section outlines appropriate call back functions, followed by several in-
terrupt handlers making different assumptions about required behavior and
hardware facilities.

Initially, a counter with the same modulus as TickType is considered. TickType
usually has a modulus of 216 on 16-bit targets and 232 on 32-bit targets.

With full modulus arithmetic, the number of ticks in a delay can be deter-
mined by subtracting the start value from the end value. When the cur-
rent counter value (COUNTER) is subtracted from the next compare value
(OUTPUT_COMPARE), the result is the number of ticks before the match is
reached. If this value is read after the next match is set, and found to be
greater than the currently required delay, then the counter has passed the
next match and there will be an extra modulus wrap (i.e. TickType ticks)
before the compare occurs. This can happen if the delay before the next
match is very short (for instance, one tick), in which case there is a race
condition between the counter passing the intended match and the setting
of the match.

11.2.1 Callbacks

Cancel

The Os_Cbk_Cancel_<CounterID>() call must ensure that no further inter-
rupts will be taken. This is a hardware dependent operation that would typi-
cally be achieved by disabling interrupt generation by the counter device.

FUNC(void, OS_APPL_CODE) Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The Os_Cbk_Now_<CounterID>() call reads the free-running counter to pro-
vide the current now value.

FUNC(TickType, OS_APPL_CODE) Os_Cbk_Now_<CounterID>(void){
return (TickType)COUNTER;

}

190 Writing Hardware Counter Drivers

Special care may be required when reading the counter on 8-bit de-
vices to ensure that a consistent value is obtained: in some cases, the
high and low bytes must be read in a particular order in order to latch
then release the counter. Similar considerations may apply when writ-
ing compare values.

Set

The Os_Cbk_Set_<CounterID>() call causes the interrupt to become pend-
ing when the counter value next matches the supplied parameter value. This
is achieved by disabling compare matching, clearing any pending interrupt,
setting the compare value, and ensuring that the interrupt is enabled. If
the hardware does not provide the ability to disable compare matching, this
can be simulated by setting the compare value to one less than the current
counter value (thus ensuring that a match will not occur before the next time
that the compare value is set).

Note that it may not be necessary to disable compare matching. If it can
be guaranteed that a match will not occur between system start up and
the match at which the hardware counter is started, then disabling compare
matching is not necessary. In the example below, this is achieved by setting
the compare register to the previous value of the counter, thus ensuring that
a “match” interrupt will not be generated until ticks equal to the modulus of
the counter have occurred. This will be long enough to perform the rest of
the Os_Cbk_Set_<CounterID>() function. (Note that this approach can only
be used if the compare register is not shared with anything else).

FUNC(void, OS_APPL_CODE) Os_Cbk_Set_<CounterID>(TickType Match){
/* prevent match interrupts for modulus ticks*/
OUTPUT_COMPARE = COUNTER - 1;
clear_pending_interrupt();
OUTPUT_COMPARE = Match;
enable_interrupt_source();

}

The code is carefully structured to avoid two potential race conditions that
can arise from dismissing the interrupt in a way that can result in unexpected
interrupts being generated or expected interrupts being lost. These race con-
ditions are as follows:

1. Pre-existing values of the compare and counter values may lead to an
interrupt being raised before the compare register is set, which results
in a situation where the interrupt appears to have been caused by the
action of Os_Cbk_Set_<CounterID>() (rather than previous compare/-
counter values).

Writing Hardware Counter Drivers 191

2. Using the clear_pending_interrupt() call after the compare register
is set avoids the first race condition (without the need to disable the
match interrupt), but may result in the situation where a very short de-
lay (for instance, one tick after the value of the counter register when
Os_Cbk_Set_<CounterID>() is called) is ignored. In some cases, a full
counter wrap will occur before the compare causes an interrupt. De-
pending on the hardware, this may result in no interrupt occurring (even
after a counter wrap).

In all situations, careful consideration should be given to the use of very short
delays, as the counter may reach the next match even before it has been set,
particularly if the execution path between user code which reads the current
value of now, calculates the next match and sets the match is long. If this
occurs, a full counter wrap will need to occur before the match occurs.

In the above example, match interrupts are prevented by means of chang-
ing the output compare register. In subsequent examples, the way in which
this is achieved is not specified. Rather, it is assumed that a function
disable_compare() is provided to prevent the hardware from generating
match interrupts.

If the counter is used for some other purpose (in addition to its function
as the driver for the hardware counter), the disable_compare() func-
tion must not halt the counter as this will lead to counter drift for other
users. The re-enabling of compare matching needs to be done atomi-
cally with the assignment of the compare register. If this is not done,
another race condition may exist if a short delay is set into the output
compare register.

The callback shown above only works for alarms/schedule tables that
you do not adjust once they have been started. If you plan to make
Set[Abs|Rel]Alarm() calls or to NextScheduleTable() calls, then you need
a different Os_Cbk_Set_<CounterID>() callback. The callback needs to be
able to reset a currently programmed match value for a new match that is
due to occur means it is fewer ticks from now than the old match value.

We also assume that delays due to higher priority interrupts are relatively
small compared with an entire wrap of the counter modulus.

A naïve implementation would (atomically) reprogram the compare value
with match. This is wrong because a higher priority interrupt (e.g. Category
1) could delay the write to the hardware register, so that by the time you
write match to the compare register, now is already greater than match.
This would cause all processing of the whole schedule to cease for 216 (or 232

or modulus) ticks. In fact, it is perfectly possible that, by the time we are

192 Writing Hardware Counter Drivers

ready to write match to the compare register, now is already greater than
both match and old.

Your implementation of Os_Cbk_Set_<CounterID>() must distinguish be-
tween the starting case (where interrupts are stopped) and the resetting case
(where the schedule is running and it is being used to shorten the delay to an
existing OLD compare value).

In this second case, your implementation of Os_Cbk_Set_<CounterID>()
must return with the compare register containing the new match value and
either;

• now has not exceeded match; or

• the compare interrupt flag is already pending. Note that if the inter-
rupt flag is pending, it does not matter if match or even old has been
passed by now as the hardware counter driver code you write that deals
with Os_AdvanceCounter_<CounterID>() will (eventually) catch up to
the correct time.

First you must write the new match to the compare register:

• If now is between match and old, i.e. old - match >now - match, then
now has already passed match. You must ensure that the interrupt flag
is pending before returning.

• If now is not between match and old then either you can return with
no flag pending or both match and old have been passed and you must
ensure the pending flag is set before returning. You can test for both
values having been passed using now - old <old - now .

FUNC(void, OS_APPL_CODE)Os_Cbk_Set_<CounterID>(TickType Match){
TickType Old = (TickType)COMPARE;
TickType Now = (TickType)COUNT;
/* Update COMPARE with new Match */
COMPARE = Match;
if ((Old-Match > Now-Match) || (Now-Old < Old-Now)){
set_pending_interrupt();

}
}

Writing Hardware Counter Drivers 193

State

The Os_Cbk_State_<CounterID>() call is only made when the alarm or
schedule table is running and must first check whether the next match has
already occurred (i.e. the interrupt is pending, this can occur because all of
the callbacks are executed at OS level, which will prevent the resulting ISR
from preempting the currently executing task). If this is not the case, then
the remaining time to the next match is also required.

FUNC(void, OS_APPL_CODE)
Os_Cbk_State_<CounterID>(Os_CounterStatusRefType State){

State.Delay = OUTPUT_COMPARE - COUNTER;
State.Running = True
if (interrupt_pending()) {
State.Pending = True;

} else {
State.Pending = False;

}
}

The Delay value is calculated before checking whether the interrupt
is pending. This is necessary to avoid a race condition in which the
interrupt becomes pending after checking but before calculating Delay,
which would result in an invalid value.

11.2.2 Interrupt Handlers

Simple

In the simplest case, it is only necessary to clear the interrupt and make the
required Os_AdvanceCounter() call. Os_AdvanceCounter() calls the call-
back Os_Cbk_Set_<CounterID>() to program the next match. This assumes
that the latency of the handler to the statement at which it has set the next
match value - i.e. after the call to Os_AdvanceCounter() on the compare
value) is known to be less than the shortest time between two matches driven
by the counter, so the match will be ahead of now.

#include <Os.h>
ISR(Advanced_Driver)
{
clear_pending_interrupt();
Os_AdvanceCounter_<CounterID>();

}

It is essential that the match is always advanced to be ahead of now. If the
match-now is shorter than the handler response time, then this will not be
the case and an additional full wrap of the peripheral counter will be intro-
duced before the next match occurs. In order to verify that a simple handler

194 Writing Hardware Counter Drivers

may be used safely, you should use schedulability analysis to verify that the
simple handler can complete before its next invocation.

Re-Triggering

When matches may be too close together for the handler to advance the
compare value before the next match is due, the handler must account for
the situation in which the next match is already due.

This example considers the use of an output compare timer with hardware
interlocking to prevent the accidental clearing of an interrupt which is raised
during the clearing sequence. It is assumed that for this type of interlock,
clearing the interrupt is achieved by reading the status register, then writing
the status register (with a bit pattern that clears the interrupt bit). In this
example, the interlock consists of two functions:

1. prepare_interrupt_clear()

2. commit_interrupt_clear()

While the driver is still running, the match is advanced (in the case of a full
wrap, advancing by 0 is correct) and the first part of the interrupt clearing
sequence is performed (reading the status register). Then a check is made
that the new match is ahead of now. If this check shows that an interrupt will
not be raised when the counter advances to the compare value (i.e. the next
match is not yet due), then the interrupt clearing sequence is completed (by
writing to the status register with the flag bit clear). If the check fails (i.e. the
new expire is already due) then the interrupt is left pending and the handler
will be re-triggered to deal with the match.

The two-stage interrupt clearing sequence is required to avoid a race
condition in which the counter reaches the next match between being
tested and the interrupt being cleared. This would otherwise result in
the interrupt for the next match being cleared. The required hardware
behavior is that if the interrupt is raised again after the first stage of the
sequence, then the second stage will not clear the interrupt.

A similar approach can be taken with devices where the interrupt can be re-
asserted by software. In these case, the interrupt can be cleared on entry to
the handler, then re-asserted if the next match is due. In this case no race
condition can occur (assuming there is no problem associated with software
asserting an interrupt which the hardware is already asserting).

ISR(OutputCompareInterrupt){
Os_CounterStatusType State;
TickType remaining_ticks;
Uint16 clear_tmp;

Writing Hardware Counter Drivers 195

Os_AdvanceCounter_<CounterID>();

Os_Cbk_State_<CounterID>(&State);

if (State.Running == True) {
OUTPUT_COMPARE += State.Delay;
clear_tmp = prepare_interrupt_clear();
remaining_ticks = OUTPUT_COMPARE - COUNTER;
if ((State.Delay == 0)

|| ((remaining_ticks != 0)
&& (remaining_ticks <= State.Delay))) {

commit_interrupt_clear(clear_tmp);
}

}
}

Some output compare hardware requires that the compare register be
written to arm each interrupt. In such cases it is necessary to structure
the code (as is the case above) so that the compare register is written
to its previous value in the case of a Delay value of zero.

Looping

This section considers a generic looping ISR structure TickType modulus
counter with programmable output compare.

#include <Os.h>
ISR(Advanced_Driver){
Os_CounterStatusType State;
TickType remaining_ticks;

clear_pending_interrupt();

while(1) {
Os_AdvanceCounter_<CounterID>();
Os_Cbk_State<CounterID>(&State)

if (State.Running == False) {
/* Exit 1: all alarms/schedule tables stopped */
return;

}

OUTPUT_COMPARE += State.Delay;

if (State.Delay == 0u) {
/* Exit 2: full wrap */
return;

}

196 Writing Hardware Counter Drivers

remaining_ticks = OUTPUT_COMPARE - COUNTER;

if ((remaining_ticks != 0u) &&
(remaining_ticks <= State.Delay)) {

/* Exit 3: match is in the future */
return;

}

if (interrupt_pending()) {
/* Exit 4: interrupt pending */
return;

}
}

}

This interrupt handler first dismisses the invoking interrupt, then enters a
loop which processes the match and checks whether any further matches
need to be processed by this invocation. This check has four exit conditions,
which must be evaluated in the order shown.

Exit 1 is taken if the counter/schedule has stopped, so no further action is
necessary. If the counter has not stopped, then the next match is set
to the required number of ticks (which will be zero in the case of a full
wrap). Checks must then be made to determine whether an interrupt
will be raised when the next match is due.

Exit 2 is taken if the Delay value indicates that a full wrap of the timer is
required before the next match is due. Therefore, no change to the
match value is necessary. A Delay value of 0 ensures that the new
match is ahead of now (and consequently that the interrupt will be
asserted when it is reached). Exiting here ensures that the following
checks will not immediately identify a match between now and the
match when a full wrap has been requested and the counter has not
yet moved on1.

Exit 3 is taken if the current timer value has not yet reached the next match.
This check is done by determining if the time until the next interrupt
(i.e. OUTPUT_COMPARE - COUNTER) is less than the Delay until the next
match. Note that the cast to TickType is necessary to ensure that the
counter modulo behavior is accounted for. The counter modulus must
be the same TickType for this to work correctly (Section 11.2.3 explains
how to cope with a hardware modulus not equal to TickType). If the
counter has moved on by less than Delay ticks, then an interrupt will be

1It is assumed that the interrupt will not be re-asserted while the counter and match con-
tinue to match, only when the match first occurs. If this is not the case, it must be ensured
that the handler never exits in that state, perhaps by avoiding Delay values of zero.

Writing Hardware Counter Drivers 197

raised at the correct time and the handler can exit, otherwise, the new
match may be missed.

Exit 4 accounts for a race-condition between setting the next match and
checking that it is ahead of the counter, since the counter can advance
before the Exit 3 check is made. If Exit 3 is not taken, the next match
is due now. If the interrupt is pending, Delay has already been recog-
nized by the hardware, so the handler can exit and be re-invoked by the
pending interrupt (it would not be acceptable to exit with an interrupt
pending with no match due). Note that this construction means that
it does not matter whether the interrupt is pending or not when Exit 3
is not taken because the counter has advanced by exactly the Delay
value: either the pending interrupt or looping results in the next match
being processed.

If no exit is taken, then the next match is due (or overdue) and another call
to Os_AdvanceCounter() is made. The next match is processed and the exit
checking is repeated.

Note that the typical behavior of this handler is expected to be a single
Os_AdvanceCounter() call, because the next match will be in the future (i.e.
is behaves just like a simple handler). Consequently, the handler should be
as fast as possible for that case (since the worst-case behavior occurs when
each match is triggered by a separate interrupt).

It is important that you understand the interrupt behavior of the coun-
ter/compare hardware in use. When the match is set equal to the
counter, there are three possible behaviors: the interrupt becomes
pending as the match is set, the interrupt becomes pending as the
counter moves beyond the match, or the counter needs to completely
wrap around before the interrupt becomes pending again.

In the example above, the test for Exit 3 assumes the counter hardware ex-
hibits the first or third behavior. With the second behavior, it is necessary
to exit if remaining_ticks is zero, as the interrupt will be asserted after the
counter and match value have been observed as equal.

11.2.3 Handling a Hardware modulus not equal to TickType

The driver outlines presented in Section 11.2 so far have assumed that the
counters and compare registers are the same width as TickType and arith-
metic is unsigned modulo TickType. Some hardware may not have this prop-
erty.

There are two cases:

198 Writing Hardware Counter Drivers

1. the modulus of the hardware is less than the TickType

2. the modulus of the hardware is greater than the TickType

Both cases can be handled by changing aspects of the driver. The following
sections discuss the changes in more detail.

Modulus less than TickType

In this case, we assume that the counter itself wraps to zero after some value
(m - 1) (i.e. the counter has modulus m, where m is smaller than TickType).
This increases the complexity of the drivers, but might be imposed by hard-
ware behavior or may be necessary to support some other system require-
ment. For example, a timer set up with a modulus of 50000 and tick of 1ms
could provide a 50ms interrupt via overflow used to drive a software counter
and output compare interrupts used to provide drive a hardware counter.

Such a modulus requires modification to calculations which derive new com-
pare values and which check the relationship between compare and counter
values. The following example assumes that TickType has modulus 216.

If m is 2x. (where x <16), then it is simple to apply explicit modulus adjust-
ments to arithmetic results by ANDing with 2x-1. For 8 bit modulus, this would
allow a compare value to be advanced by:

new_match = (old_match + Status.Delay) & 0xFF;

A similar operation can be applied to the result of calculating the ticks re-
maining to the match.

The calculations become more complex if the modulus value is not a power
of two. Possible techniques are presented below.

Calculating of the new compare value must account for four possible results
when the new Delay value is added to the old compare value is calculated
using the TickType modulus of 216:

1. The Delay is zero. A full modulus wrap leaves the compare value un-
changed.

2. The result is greater than the old compare value, but less than m. The
result is the desired result.

3. The result is greater than m. The result of the addition needs to be
wrapped at m. This can be achieved by subtracting m, avoiding the
(often costly) modulus operator.

Writing Hardware Counter Drivers 199

4. The result is less than the old compare value. The result of the addition
wrapped at 216, so the result must have (216-m) added to it to give the
result of wrapping at m.

Note that if m is less than or equal to half the arithmetic modulus (i.e. less
than or equal to half of 216), then the fourth case can never occur.

When checking whether the new output compare value has been set ahead
of the counter, we consider three circumstances. No subtraction underflows
the 216 arithmetic modulus.

1. The Delay is zero, so the next match is known to be in the future. The
handler is required to complete in less than the counter modulus.

2. The next match is greater than or equal to the counter so we can sub-
tract counter from compare to give the interval until the next match
then check whether this is less than or equal to the required Delay (oth-
erwise, the next match has already occurred).

3. The next match is less than the counter value. Subtracting the match
from counter gives the interval that remains when the interval to next
match is subtracted from the modulus. Thus, we can calculate the
interval to next match as m-(COUNTER - OUTPUT_COMPARE) and then
check this result against the required Delay.

The same approach can be applied to the calculation of remaining time to
match in the Os_Cbk_State_<CounterID>() call back.

Adding the mechanisms described above to conditions to the
ISR(OutputCompareInterrupt) driver gives the following:

#include <Os.h>
/* The next line should result in a constant being substituted.

We assume that the expression will be evaluated at compile
time, avoiding modulus overflow at run time. m is the timebase
modulus */

#define CMP_ADJUST ((TickType)65536u - m)

ISR(OutputCompare_SmallModulus){
Os_CounterStatusType State;
TickType counter_cache, remaining_ticks, new_match;
clear_pending_interrupt();

while(1) {

Os_AdvanceCounter_<CounterID>();

200 Writing Hardware Counter Drivers

Os_Cbk_State_<CounterID>(&State);

if (State.Running == False) {
/* Exit 1: alarms/schedule tables stopped */
return;

}

if (State.Delay == 0u) {
/* OUTPUT_COMPARE = OUTPUT_COMPARE if

* needed to arm next interrupt */
/* Exit 2: full wrap */
return;

}

new_match = OUTPUT_COMPARE + State.Delay;

if (new_match > OUTPUT_COMPARE) {
if (new_match >= m) {
new_match -= m;

}
} else {
new_match += (CMP_ADJUST);

}

OUTPUT_COMPARE = new_match;
counter_cache = COUNTER;

if (new_match >= counter_cache) {
remaining_ticks = new_match - counter_cache;

} else {
remaining_ticks =
m - (counter_cache - new_match);

}

if ((remaining_ticks != 0u)
&& (remaining_ticks <= State.Delay)) {

/* Exit 3: match in the future */
return;

}

if (interrupt_pending()) {
/* Exit 4: interrupt pending */
return;

}
}

}

Writing Hardware Counter Drivers 201

Modulus greater than TickType

The alternative case is where a hardware counter has a modulus that ex-
ceeds TickType. With a little care, such counters can be used to provide the
behavior required for a TickType with a modulus of 216. We restrict our con-
sideration to modulus values that are a power of two (e.g. a 32 bit counter).
In these cases, the low 16 bits of the counter have the desired behavior, but
overflow effects must be taken into account.

When the compare value is advanced in the interrupt handler, overflow from
the bottom 16 bits must be propagated through the rest of the compare regis-
ter. In addition, a Delay of 0 indicates that 216 must be added to the compare
value. Since the match can never be advanced by more than this, checks for
the timer having passed the match can be carried out using the low 16 bits
of the counter and compare registers.

When the Os_Cbk_Set_<CounterID>() call back is used, the match
must be set so that it matches the counter when the low 16 bits of
the counter next have the same value as the parameter passed to
Os_Cbk_Set_<CounterID>(). This can be achieved as follows (assuming that
counter and compare are 32 bit unsigned values):

FUNC(void, OS_APPL_CODE) Os_Cbk_Set_<CounterID>(TickType Match){
uint32 to_compare;

disable_interrupt_source();
disable_compare();
clear_pending_interrupt();

OUTPUT_COMPARE = (COUNTER & 0xFFFF0000ul) | Match;
to_compare = OUTPUT_COMPARE - COUNTER;

if ((to_compare == 0ul) || (to_compare >= 0x10000ul) {
if(!(interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;
to_compare = OUTPUT_COMPARE - COUNTER;
if ((to_compare == 0ul) || (to_compare >= 0x10000ul)){
if(!(interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;

}
}

}
}
enable_interrupt_source();

}

The operations are carried out with interrupts from the hardware device dis-
abled, in order to make them atomic with respect to the handler. First any

202 Writing Hardware Counter Drivers

pending interrupts are cleared. This must be done after disabling comparison
(for instance, setting the match to ensure that a pending interrupt can only
be due to a match with the new match). Then, the compare register is set
to the counter value with its lower 16 bits replaced by the Match parameter.

If the match lies in the future by less than 216 ticks, then it has been set cor-
rectly. If there is a pending interrupt then the match must have been reached
so the interrupt should be handled. Otherwise, the match is advanced by 216.
The check must then be repeated to account for a race in which the counter
could overtake the next match before it has been set. Checking twice is suf-
ficient, assuming that the Os_Cbk_Set_<CounterID>() call completes in less
than 216 timer ticks.

This code assumes that the interrupt may or may not be pending if the match
is set equal to the counter. If the interrupt is known to become pending when
(or after) the two match, then the check for to_compare being zero should be
removed.

Note that this function can be much simplified based on knowledge of ap-
plication behavior. For example, if the counter is zeroed at startup and is
started only once less than Match ticks after startup, then it is sufficient to
set the compare value to Match.

Modulus 216 behavior is not exhibited by the low 16 bits of a counter
which has a modulus that is not a power of two: the last interval before
the timer wraps consist of (counter modulus MOD 216) ticks.

11.3 Free Running Counter and Interval Timer

The counter compare handlers described in Section 11.2 allow the implemen-
tation of drift-free hardware counter drivers. However, not all target plat-
forms provide such counter facilities.

Drift can be avoided when using a down counter if a separate free running
counter is also available. The free running counter is used to provide a drift-
free time reference, and the down counter is set up to interrupt when the next
match becomes due. Some jitter (delay) may be introduced to individual
matches due to delays in setting the interval for the down counter, but these
do not accumulate (such jitter can be accounted for in the same way as jitter
introduced in the handling of the interrupt). In this section, the down counter
is considered to provide registers COUNTER and DOWN_COUNTER that can be
used as variables. As in the previous example, both registers are taken to be
TickType wide registers, and the values they use are taken to be unsigned
TickType size integers.

Writing Hardware Counter Drivers 203

11.3.1 Callbacks

All of the callbacks in this section assumed that the next match value is
maintained in software and used in calculation of the down count value to
the next interrupt. This can be declared as follows:

TickType next_match;

Cancel

The Os_Cbk_Cancel_<CounterID>() callback function only needs to disable
the interrupt so the implementation is the same as before.

FUNC(void, OS_APPL_CODE) Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The Os_Cbk_Now_<CounterID>() callback function needs to return the value
of the free-running counter.

FUNC(TickType, OS_APPL_CODE) Os_Cbk_Now_<CounterID>(void){
return (TickType)COUNTER;

}

Set

Things start to change with the Os_Cbk_Set_<CounterID>(). The callback
needs to set the DOWN_COUNTER so that it reaches zero (and interrupts) at a
relative number of ticks from now. This is done by subtracting the COUNTER
value from the Match value.

This relies on all three counters having the same modulus.

The callback must also log the next match value from the absolute Match
parameter value passed into the call by RTA-OS3.x (this will be used by the
Os_Cbk_State_<CounterID>() callback later).

FUNC(void, OS_APPL_CODE) Os_Cbk_Set_<CounterID>(TickType Match){
/* Record value at which expire is due */
next_match = Match;
disable_compare();
clear_pending_interrupt();

/* set up interrupt when counter reaches match value */
DOWN_COUNTER = next_match - COUNTER;
enable_interrupt_source();

}

204 Writing Hardware Counter Drivers

State

Note that the Os_Cbk_State_<CounterID>() call, below, could return
DOWN_COUNTER as the Status.Delay value. If there is any jitter introduced by
setting the down counter, this will reflect in the time at which the next match
will be signaled, rather than when it is due. However, particularly with a non-
TickType modulus where more calculation is avoided, the following may be
acceptable.

FUNC(void, OS_APPL_CODE)
Os_Cbk_State_<CounterID>(Os_CounterStatusRefType State){

State.Delay = next_match - COUNTER;
State.Running = True;

if (interrupt_pending()) {
State.Pending = True;

} else
State.Pending = False;

}
return;

}

11.3.2 ISR

This demonstrates a looping form of ISR: it loops until no due matches remain,
rather than handling one match per invocation of the routine, as in a re-
triggering form of ISR.

#include <Os.h>
ISR(IntervalTimerInterrupt){
Os_CounterStatusType State;
TickType remaining_ticks;

clear_pending_interrupt();

while(1) {
Os_AdvanceCounter_<CounterID>();
Os_Cbk_State_<CounterID>(&State)

if (State.Running == True) {
/* Exit 1: all alarms/schedule tables stopped */
return;

}

next_match += State.Delay;
/* Subtract adjustment for delay before COUNTER is set */
remaining_ticks = next_match - COUNTER;

if (State.Delay == 0u) {
DOWN_COUNTER = remaining_ticks;

Writing Hardware Counter Drivers 205

/* Exit 2: full wrap */
return;

}

if ((remaining_ticks!= 0u) &&
(remaining_ticks <= State.Delay)) {

DOWN_COUNTER = remaining_ticks;
/* Exit 3: counter set for next expire */
return;

}

/* assume we only get an interrupt due to setting the counter
and we only set the counter when we are going to exit so
no need to test for pending interrupt */

}
}

Note that exit 2 assumes that setting the counter to zero will result in an
interrupt after one full wrap of ticks.

11.4 Using Match on Zero Down Counters

Some hardware might not provide a free running counter (or you might not
want to use this for your hardware driver).

In this case you will have to use just the interval timer. This example assumes
a 16-bit decrementing counter that raises an interrupt on reaching 0, and
continues to decrement. Because the counter continues to decrement, the
start point for the new countdown can be determined by adding the Delay
to the counter value (assuming modulo 216 arithmetic). It is desirable to
minimize drift during the counter update. Preventing interrupts during the
update, and adding an adjustment for the known time taken for update (to
both the counter and next_match), may be able to reduce this to one tick per
counter adjust (assuming the counter is asynchronous to the update, there
will always be some uncertainty). counter_adjust is introduced to allow
calculation of a now value: subtracting the counter value from next_match
gives this. Note that the counter update and counter_adjust update must
be atomic with respect to any call to obtain now for this to give the correct
result.

When the driver is not running, the down counter is assumed to free-run.
From start-up it runs downwards from zero and the value of now is (0 -
counter). counter_adjust is used to hold the actual tick value that a free
running counter would have reached the next time the DOWN_COUNTER has
the value 0. this means that counter_adjust can be used to synthesize a
virtual free-running counter for the purposes of the hardware counter driver.

206 Writing Hardware Counter Drivers

11.4.1 Callbacks

Cancel

Canceling the driver is achieved as before.

FUNC(void, OS_APPL_CODE) Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The Os_Cbk_Now_<CounterID> callback cannot just return the vale of the
DOWN_COUNTER because the counter is not free running or monotonically
increasing. Instead, the now value is calculated by subtracting the
DOWN_COUNTER value from the counter_adjust to give the virtual free-
running value.

FUNC(void, OS_APPL_CODE) Os_Cbk_Now_<CounterID>(void){
return (counter_adjust - DOWN_COUNTER);
/* counter_adjust is still correct adjustment

* as counter runs to and through 0 */
}

Set

The race conditions discussed in Section 11.2.1 are still present in this model.
If the interrupt is dismissed before the DOWN_COUNTER is set, there is a risk that
an interrupt may occur between dismissing the interrupt and setting the down
counter. If the interrupt is set after the down counter is set, a small delay
could result in the expected interrupt being discarded. In the absence of spe-
cialized hardware protection, this can be avoided by the disable_compare()
function setting the counter to modulus - 1, then dismissing the interrupt
between determining the AdjustedMatch value and setting the counter (as
shown in the above example).

TickType counter_adjust = 0;
FUNC(void, OS_APPL_CODE) Os_Cbk_Set_<CounterID>(TickType Match){
TickType AdjustedMatch;
AdjustedMatch = Match - (counter_adjust - DOWN_COUNTER);

/* dismiss interrupt in a way that avoids race conditions */
disable_compare();
clear_pending_interrupt();

DOWN_COUNTER = AdjustedMatch;
counter_adjust += AdjustedMatch;
enable_interrupt_source();

}

Writing Hardware Counter Drivers 207

State

Os_Cbk_State_<CounterID>() needs to set the Delay and can simply read
the value of the DOWN_COUNTER to get this. The rest of the callback is identical
to the others you have seen in this chapter.

FUNC(void, OS_APPL_CODE)
Os_Cbk_State_<CounterID>(Os_CounterStatusRefType State){

State.Delay = DOWN_COUNTER;
State.Running = True;
if (interrupt_pending()) {
State.Pending = True

} else {
State.Pending = False;

}
}

11.4.2 Interrupt Handler

The following example shows an appropriate interrupt handler.

#include <Os.h>
ISR(MatchOnZeroInterrupt){
Os_CounterStatusType State;
TickType counter_cache;

clear_pending_interrupt();

while(1) {
Os_AdvanceCounter_<CounterID>();
Os_Cbk_State_<CounterID>(&State);

if (State.Running == True) {
/* Exit 1: all alarms/schedule tables stopped */
return;

}

if (State.Delay == 0) {
/* Exit 2: full wrap */
return;

}

counter_cache = COUNTER + State.Delay;
COUNTER = counter_cache;
counter_adjust += State.Delay;

if ((counter_cache != 0u) &&
(counter_cache <= State.Delay)) {

/* Exit 3: next match not yet been reached */
return;

}

208 Writing Hardware Counter Drivers

if (interrupt_pending()) {
/* Exit 4: interrupt pending */
return;

}
}

}

The condition on Exit 3 assumes that the interrupt becomes pending when
(not after!) the counter reaches zero, but may not do so if it is set to zero (if
the counter is zero then the match is due and will be dealt with either by loop-
ing or re-entering via the pending interrupt). The same counter value must
be used for both parts of the test otherwise races can occur if the counter
changes between the two comparisons (hence the use of counter_cache).

If the behavior of the interrupt when the counter is set to zero is known, then
the code can be simplified by removing Exit 4 and the associated test (since
the interrupt status when counter_cache is zero will be known). If setting the
counter to zero never causes the interrupt to become pending then that is the
only change required. If setting the counter to zero always causes the inter-
rupt to become pending, then Exit 3 should only check for counter_cache
less than or equal to Delay. If the counter is zero, the interrupt will be pend-
ing and will cause the next event to be handled.

In the case of a very fast running clock (where the clock speed is greater
than or equal to the processor speed), it will be necessary to add a correction
to the counter to offset the number of ticks that occur between reading the
counter and setting its new value. In any case, a drift of up to one tick cannot
be avoided whenever the down counter is set. On a multiple interrupt level
platform, it is desirable to disable all interrupts while reading/writing COUNTER
to avoid the possibility of interruption between these operations, resulting in
a large amount of drift.

11.5 Software Counters Driven by an Interval Timer

Using a periodic interval timer (or any per-event interrupt source) with an in-
terrupt on zero can be used to synthesize a free-running counter in software.
However, a handler of this form is of limited practical interest because there
is one interrupt per tick. This means it is identical to incrementing a software
counter. It is recommended that you use the software counter driver model
instead.

11.6 Summary

• You need to provide an hardware driver for every hardware counter and
advanced schedule.

Writing Hardware Counter Drivers 209

• The driver interface comprises:

• A Category 2 interrupt handler that tells RTA-OS3.x to take action;
and

• Four callback functions used by RTA-OS3.x to control the coun-
ter/schedule.

• If possible, you should use a free running counter with associated com-
pare hardware and a simple interrupt handler.

• More advanced models can be supported though the interface if required.

• It is essential that you understand how your hardware generated the
counter tick source and what happens when an interrupt from the device
occurs.

210 Writing Hardware Counter Drivers

12 Startup and Shutdown

Some operating systems that you might have used before will take control of
the hardware. RTA-OS3.x, however, is different.

Initially the operating system is not running, so you are free to use the hard-
ware as if no real-time operating system is being used. Until you explicitly
start the operating system with an API call, it is not running.

RTA-OS3.x can be started in different application modes. A mode is a set
or subset of the complete application functionality that corresponds with a
specific function of the application. You will learn more about application
modes in Section 12.2.2.

12.1 From System Reset to StartOS()

This section looks at what has to be done between an embedded processor
“coming into life” when power is applied and the StartOS() API call being
made to start RTA-OS3.x and your application. The details of what goes on in
this period are naturally dependent on the particular embedded processor in
use - the underlying principles are however the same. You should read this
section in conjunction with the reference manual for your target processor
and apply the concepts we describe to your own platform.

12.1.1 Power-on or Reset

When power is applied to an embedded processor, or the processor is reset,
the processor does one of two things (depending on the type of processor).

It may start executing code from a fixed location in memory, or it may read
an address from a fixed location in memory and then start executing from
this address. The fixed location in memory that contains the address of the
first instruction to execute is often called the “reset vector” and is sometimes
an entry in the interrupt vector table.

In a production environment, the reset vector and/or the first instruction to be
executed is usually in non-volatile memory of some variety. In a development
environment it is often in RAM to permit easy re-programming of the embed-
ded processor. Some evaluation boards (EVBs) have switches or jumpers that
permit the reset vector and/or the first instruction to be in EEPROM or RAM.

Going from power-on or reset to the first instruction being executed is often
referred to as “coming out of reset”. After a processor has come out of reset
it usually:

• has interrupts disabled,

Startup and Shutdown 211

Figure 12.1: System Startup

• is in supervisor mode (if the processor supports it) - i.e. it can execute all
instructions and access all addresses without causing an exception and
has all forms of memory and I/O protection turned off.

• is in single-chip mode (if the processor supports it) - i.e. the chip is in a
“self-contained mode” where external memory is not usable and external
buses are disabled.

12.1.2 C Language Start-up Code

It is possible to have any code you would like executed when a processor
comes out of reset but it is normal if using a high-level language such as C
for this bootstrap code to be supplied with your compiler.

The compiler vendor supplies an object module or library that contains the
bootstrap code. The bootstrap code usually does two key things:

1. it carries out basic processor configuration, for example bus configura-
tion, enabling of access to internal RAM, etc.

2. it invokes the C language start-up code. Most of this is concerned
with initializing data structures, clearing memory, setting up the stack
pointer, etc.

Directives in the object module/library or in the linker configuration file are
used to ensure that the bootstrap code (and reset vector value if needed) are
placed in the correct location in memory.

The C language start-up code is usually supplied by the compiler vendor in
an object module with a name like crt0 or startup and the code can usually

212 Startup and Shutdown

be identified in a map file by looking for a symbol with a name something like
_start or __main. The source to this module is usually available to you.

For some target hardware, ETAS supplies a different version of the standard
startup code that should be used with RTA-OS3.x applications. The Target/-
Compiler Port Guide and the example supplied with RTA-OS3.x will tell you
how to use this.

The start-up code initializes the C language environment. For example, it sets
up the stack pointer, the heap used for malloc() and it initializes global vari-
ables by copying their default values from ROM into RAM. Finally, the start-up
code invokes the application start-up code.

12.1.3 Running main()

The application start-up code is typically in a function called from main(). The
application start-up function has two things to do to work with RTA-OS3.x:

1. Initialize the target hardware into a state where RTA-OS3.x and the ap-
plication can run

2. Call StartOS() to start RTA-OS3.x running.

For example the application start-up code for an RTA-OS3.x application may
look like:

OS_MAIN(){
InitializeTarget();
StartOS(OSDEFAULTAPPMODE);
/* Never reach here */

}

The macro OS_MAIN() is provided for your convenience by RTA-OS3.x to
mark the main function of your application - you do not have to use this
to work with RTA-OS3.x. The macro is used to handle the cases where using
void main(void) is forbidden by the compilers.

The InitializeTarget() function in the above example need to be written
by you to initialize the target hardware. The remainder of this section de-
scribes the types of things that you may have to do to initialize target hard-
ware into a state where your application and RTA-OS3.x can run. This descrip-
tion is necessarily generic as every embedded processor is slightly different.
It is probably wise to read this section in conjunction with the Target/Compiler
Port Guide for your processor and the processor’s reference guide.

Startup and Shutdown 213

Setting up Memory

In general, memory configuration is carried out by the bootstrap code that
is run before the application start-up code is executed. In more complex
embedded processors. However, the memory configuration set-up by the
bootstrap code may not be what is required for the application. For example,
if the processor has internal RAM and an external memory bus then it is most
likely that the bootstrap code will have configured the processor to use the
internal RAM. If your application needs to use RAM on the external memory
bus, then you will need to configure the processor to use the external RAM.
Configuring access to RAM typically involves programming bank select and
mask registers - however the details depend on the embedded processor.

Setting up Peripherals

Most embedded applications make use of peripheral devices which may be
part of the embedded processor or attached through I/O or memory buses.
Examples are CAN controllers, Ethernet controllers and UARTs. It is generally
a good idea to set-up peripheral devices before RTA-OS3.x is started since
at this point the application code cannot be preempted and has complete
control over interrupts.

Setting up Interrupts

Interrupt sources for Category 1 and 2 interrupts should be configured before
StartOS() is called. Typically, you should ensure that the IPL is set to OS level
and then both configure interrupt sources. You can also enable Category 1
interrupt sources here.

Do not enable Category 2 interrupts before calling StartOS() as
this can result in a race condition where the interrupt needs to be
handled before RTA-OS3.x has been initialized. You should use the
StartupHook() to enable Category 2 interrupt sources. This model
means that Category 2 interrupts will not be generated until StartOS()
lowers the IPL just before it enters the idle mechanism.

On some microcontrollers it will be necessary to program priority registers
in the hardware that configure interrupt priorities. The values you program
must match the priority values that you told RTA-OS3.x at configuration time,
otherwise your application will not work properly. On targets where this is the
case, RTA-OS3.x will usually provide helper code so that you can do this job
correctly. You should check the Target/Compiler Port Guide for any special
instructions relating to target initialization.

214 Startup and Shutdown

Enabling Interrupts

Category 1 interrupts may also be enabled so that they generate interrupts
immediately as the handling of Category 1 interrupts is completely outside
the scope of RTA-OS3.x.

Category 2 interrupt sources must not actually generate interrupts until af-
ter StartOS() has completed initialization. You must not enable Category
2 interrupt sources before calling StartOS(). If you do this, then you can
get a race condition where the interrupt occurs before RTA-OS3.x is correctly
initialized.

Enabling Category 2 interrupt sources before StartOS() will result in
undefined behavior.

RTA-OS3.x provides a safe way to enable Category 2 interrupt sources using
the StartupHook() which is described in Section 12.2.1.

Setting up Timers

Most embedded applications use hardware timers. Timers are usually config-
ured to “tick” and generate interrupts at a fixed frequency. The ISR associ-
ated with the timer interrupts then either activates a task directly or ticks an
OSEK counter (i.e. calls IncrementCounter(CounterID)).

Setting up a hardware timer depends on the design of the timer but there are
two common forms:

1. a count register is set to zero and a match register is set to the maxi-
mum value for the count register. The count register is incremented by
the processor at a given frequency and, when it reaches the value in the
match register, it generates an interrupt and resets the count register
to 0.

2. a count register is loaded with the number of ticks to occur before an in-
terrupt should be generated. The processor decrements the count reg-
ister at a given frequency. When the register reaches zero, an interrupt
is generated. Usually the ISR that handles the interrupt is responsible
for reloading the count register.

The frequency at which timers must run will depend on your application. It
is vital that all counters run at the frequency specified in their definition. If
you have told RTA-OS3.x that a counter driven by a timer has a particular tick
rate, i.e. you have specified the “Seconds Per Tick” attribute, then you must
make sure that your timer hardware is configured to give a tick at the same
rate.

Startup and Shutdown 215

12.2 Starting RTA-OS3.x

Once your hardware is initialized, you can start RTA-OS3.x

RTA-OS3.x is started only once a StartOS() call is made. This call is usually
made from the main program. It is up to you to perform any hardware initial-
ization that is necessary for the application. The initial state of RTA-OS3.x is
described in the Reference Guide.

StartOS() takes a single application mode parameter. This parameter is
either the default mode OSDEFAULTAPPMODE or another mode that has been
configured in rtaoscfg.

Have a look at the example main function in Code Example 12.1, which starts
the operating system in the default application mode.

#include <Os.h>
OS_MAIN(){
InitializeTarget();
StartOS(OSDEFAULTAPPMODE);
/* Never reach here */

}

Code Example 12.1: Example Main Function

The call to StartOS() does not return. Once the RTA-OS3.x is initialized, all
interrupts are enabled and the Os_Cbk_Idle() runs until a higher priority
task or ISR occurs.

Most RTA-OS3.x API calls can be made from the idle mechanism. However,
you cannot use any calls that would require the idle mechanism to terminate
(for example, it is not possible to call TerminateTask() from the idle mecha-
nism).

You should not make RTA-OS3.x API calls that manipulate OS objects or
enable Category 2 interrupts before calling StartOS().

RTA-OS3.x can be suspended by disabling all Category 2 interrupts and en-
suring that they will not be raised on some future event, such as an output
compare match.

RTA-OS3.x will be suspended when no Category 2 interrupts are raised and
the idle mechanism is running. You can resume RTA-OS3.x by re-enabling
Category 2 interrupts and then resume making RTA-OS3.x calls.

216 Startup and Shutdown

Figure 12.2: Execution of the Startup Hook

12.2.1 Startup Hook

The Startup Hook is called by RTA-OS3.x during the StartOS() call after the
kernel has been initialized, but before the scheduler is running.

StartOS() raises the interrupt priority level (IPL) to OS level as soon as it is
called and lowers it to user level just before it returns. This means that the
startup hook runs with Category 2 ISRs masked. That means you can safely
enable interrupt generation in StartupHook() knowing that it will not actually
result in an interrupt occurring until StartOS() has completed initialization
and RTA-OS3.x is ready to run. At this point StartOS() un-masks Category 2
interrupts and the OS is running.

Figure 12.2 shows the execution of the Startup Hook relative to the initializa-
tion of RTA-OS3.x.

Code Example 12.2 shows how Startup Hook should appear in your code.

FUNC(void, OS_APPL_CODE) StartupHook(void) {
/* Startup hook code. */
EnableIOInterrupts();
EnableTimerInterrupts();
...

}

Code Example 12.2: Using the Startup Hook

The Startup Hook is often used for the initialization of target hardware (for
example the enabling of interrupts sources that have been configured in by
the code you executed before the call to StartOS()).

12.2.2 Application Modes

Applications can be started in different modes, which might represents part
of the complete functionality. These modes could correspond with specific
functions of the application. You could have, for example, an end-of-line pro-
gramming mode, a transport mode and a normal mode.

You can define as many application modes as you want. Figure 12.3 shows
how to declare different application modes in rtaoscfg.

You must declare an application mode called OSDEFAULTAPPMODE.

Startup and Shutdown 217

Figure 12.3: Configuring Application Modes

You can use the GetApplicationMode() API call to work out which more
you are in. This means that you can write application code that is mode-
dependent. Code Example 12.3 shows how a task can be written so that it
has different behavior in different modes.

TASK(Moded){
AppModeType CurrentMode;
GetApplicationMode(&CurrentMode);
switch (CurrentMode) {

case DiagnosticMode:
DoExtendedFunctionality();
break;

case LimpHome
DoBasicFunctionality();
break;

default:
DoNormalFunctionality();
break;

}
...

}

Code Example 12.3: Adding modes to a task

Application modes can also be associated with a set of tasks, alarms and
schedule tables that are started automatically when the operating system

218 Startup and Shutdown

Figure 12.4: Declaring an auto-started tasks

starts. This means you can customize what happens during StartOS() for
each of your declared modes.

Auto-starting Tasks

Any task can be auto-started in any application mode. When you auto-
start a task the OS activates the task during the call to StartOS() i.e. an
ActivateTask() API call is made internally. If you auto-start a basic task
then it will have run and terminated before you reach the Os_Cbk_Idle. If
you auto-start an extended task then it will run and either reach its first
WaitEvent() API call for an event that has not yet been set or it will have
terminated before you reach the Os_Cbk_Idle.

You do not need to auto-start tasks that you don’t need to run immedi-
ately on startup. Tasks that are not auto-started can still be activated
and run at a later stage through normal activation operations, expiry of
alarms, processing of schedule table expiry points, etc.

Figure 12.4 shows that TaskA, TaskD and TaskE are auto-started in the
NormalOperatingMode application mode.

Recall from Section 4.5.3 that the auto-start properties of a task can be con-
figured for the task itself, so you have the option of specifying the tasks which
are started in a chosen application mode or, if you prefer, the application
modes in which a chosen task is auto-started. rtaoscfg will automatically
keep these two views consistent if you make a change in the other view.

Startup and Shutdown 219

Auto-starting tasks is typically useful for two cases:

1. Running an initialization task before other tasks in the system start to
execute.

If you need to do this, then you must ensure that the auto-started task
has a higher priority than any of the tasks that need to run after the
initialization task.

2. Starting extended tasks.

You will recall from Section 7.2 that you cannot set events for extended
tasks in the suspended state and that the structure of the task is typi-
cally an infinite loop and a series of WaitEvent() calls. By auto-starting
extended tasks you can avoid any potential errors that may occur by
setting events on auto-starting extended tasks.

Auto-started tasks execute in priority order, from the highest to
the lowest priority. If a higher priority tasks set events for a lower
priority task, then the events will be processed by the lower prior-
ity task when it executes.

Auto-starting Alarms

Alarms can also be auto-started in any application mode. When StartOS()
returns, all auto-started alarms will have been set.

Figure 12.5 shows you how an alarm are configured for auto-starting.

Recall from Section 9.3 that you can also specify auto-starting from the alarm
itself. As with auto-started task, rtaoscfg will automatically keep these two
views consistent if you make a change in the other view.

Note however, that the configuration of an auto-started alarm’s absolute or
relative start tick value is configured for the alarm itself.

This means that the same auto-start characteristics apply across all ap-
plication modes in which the alarm is auto-started.

The absolute and relative auto-start value have the same behavior as
SetAbsAlarm() and SetRelAlarm() respectively and configuration uses the
same types of parameters. If an alarm is auto-started, then you must spec-
ify an alarm time and a cycle time. The same restrictions apply for these
parameters as for the offset,start and cycle parameters to the alarm API
calls:

220 Startup and Shutdown

Figure 12.5: Auto-starting an Alarm

Alarm Time Cycle Time
Min Max Min Max

Relative 1 MAXALLOWEDVALUE MINCYCLE MAXALLOWEDVALUE

Absolute 0 MAXALLOWEDVALUE MINCYCLE MAXALLOWEDVALUE

If you auto-start an alarm in absolute mode with alarm time zero,
then the alarm will not expire until a full modulus wrap of the under-
lying counter has occurred (i.e. after MAXALLOWEDVALUE+1 ticks have
elapsed) because 0 is already in the past. For example, if you have an
alarm on a millisecond counter then it will not occur until 65536ms (65.5
seconds) have elapsed.

Auto-started alarms are useful when you want to start a set of cyclic (peri-
odic) tasks when the OS starts. If you are using alarms to start multiple tasks
and you need the tasks to run at specific cyclic rates relative to each other,
then you must make sure that the alarms are auto-started. This is the only
way to guarantee alarm synchronization.

Auto-starting Schedule Tables

Schedule tables can be auto-started in any application mode. When
StartOS() returns, all auto-started schedule tables will be running.

Like alarms, schedule tables can be started at either an absolute or relative
tick value. This has the same behavior as StartScheduleTableAbs() and
StartScheduleTableRel() respectively and configuration uses the same

Startup and Shutdown 221

Figure 12.6: Execution of the Shutdown Hook

types of parameters. If a schedule table is auto-started, then you must spec-
ify an absolute start value or a relative offset depending on the mode in which
you start the schedule table. The same restrictions apply for these param-
eters as for the offset, start and cycle parameters to the schedule table
start API calls:

Relative Offset Absolute Value
Min Max Min Max

Relative 1 MAXALLOWEDVALUE - -

Absolute - - 0 MAX

Schedule tables that are started with an absolute value zero will not
expire until a full modulus wrap of the underlying counter has occurred
(i.e. after MAXALLOWEDVALUE+1 ticks have elapsed) because the tick
value of zero is already in the past when the schedule table is started.

12.3 Shutting Down RTA-OS3.x

The operating system can be shutdown at any point by making the
ShutdownOS() API call. When this happens, RTA-OS3.x will immediately dis-
able interrupts and then enter an infinite loop. If you have configured the
ShutdownHook() it is called before the infinite loop is entered.

The ShutdownHook() is always passed a parameter that can be used to de-
termine the reason for shutdown and then take any necessary action.

12.3.1 Shutdown Hook

The Shutdown Hook is called during the execution of the ShutdownOS() API
call. Figure 12.6 shows the execution of the Shutdown Hook with respect to a
ShutdownOS() API call.

Code Example 12.4 shows how Shutdown Hook might appear in your code.

FUNC(void, OS_APPL_CODE) ShutdownHook(StatusType Error) {
/* Shutdown hook code. */
switch (Error) {
case E_OK:

/* Normal shutdown */
break;

default:
/* Abnormal shutdown */
LogError();

222 Startup and Shutdown

break;
}
for(;;); /* Wait for reset */

}

Code Example 12.4: Using the Shutdown Hook

You should not normally return from the ShutdownHook(). If you do then RTA-
OS3.x will disable all interrupts and enter an infinite loop running at OS level.

12.4 Restarting RTA-OS3.x

AUTOSAR OS does not provide any mechanism for restarting the OS at run-
time other than though a watchdog reset. This is an unfortunate side-effect
of StartOS() not returning when a ShutdownOS() call is made. This is a sig-
nificant shortcoming in the AUTOSAR standard because it is an extremely
common requirement to be able to restart the OS in different modes during
runtime. For example, an ECU may have a power-saving mode or a “limp-
home” mode.

RTA-OS3.x removes this limitation by providing two API calls that are used in
combination to restart the OS.

Restarting of the OS is unique to RTA-OS3.x and is not part of the OSEK
or AUTOSAR standards. Use of the features described in this section are
therefore not portable to other implementations.

The API call Os_SetRestartPoint() places a marker in your code
to which the API call Os_Restart() jumps when the call is made.
Os_SetRestartPoint() cannot be made once StartOS() has been called
and therefore must occur before the StartOS() call for restart to be possi-
ble.

It is only possible to restart RTA-OS3.x once it has been shutdown. You
can only call Os_Restart() from the ShutdownHook().

Using this feature allows you to jump back to any arbitrary point in your pre-
StartOS() initialization, so you can place code to initialize other parts of the
system outside the OS.

Code Example 12.5 shows how you might use structure of the main program
when using Os_SetRestartPoint() to place a marker.

AppModeType StartupAppMode;
OS_MAIN(){
InitializeTarget();
/* Set up normal application mode */
StartupAppMode = NormalOperation;
Os_SetRestartPoint(); /* We will return here on restart */

Startup and Shutdown 223

switch (StartupAppMode) {
case NormalOperation:
/* Do mode-specific initialization */
break;

case LimpHome:
/* Do mode-specific initialization */
break;

...
}
StartOS(StartupAppMode);

}

FUNC(void,OS_APPL_CODE)ShutdownHook(StatusType Error){
...
if (FailureDetected == True) {
StartupAppMode = LimpHomeMode;
Os_Restart();
/* Never reach here */

}
...

}

Code Example 12.5: Using Os_SetRestartPoint() and Os_Restart()

12.5 Summary

• RTA-OS3.x will not work unless everything is located in the right place in
memory.

• The target hardware must be initialized before RTA-OS3.x can run.

• RTA-OS3.x does not run until the StartOS() call is made.

• RTA-OS3.x can be stopped at any time using the ShutdownOS() call.

• RTA-OS3.x can be restarted by using the Os_SetRestartPoint() call to
place a restart marker before StartOS(), using the Os_Restart() call to
jump back to the marker and calling StartOS() to restart RTA-OS3.x.

• Tasks, alarms and schedule tables can be auto-started in different appli-
cation modes.

224 Startup and Shutdown

13 Error Handling

Many of the RTA-OS3.x API calls return an error code at runtime which tells
you whether the OS detected an error during the execution of the API call or
not. The set of error codes that are returned depend on two things:

1. the build status of the OS

2. the API call itself

The OS provides two types of build status:

Standard status does a minimum amount of runtime error checking and is
intended for production builds of your application (i.e. the build that
you will send into series production after you have gained sufficient
confidence that your application is free from errors). Four classes of
error are detected:

1. E_OK - no error was detected. It is possible that this is because no
error checking was done. In this case the call will not have modified
the state of the OS (it will have silently failed).

2. E_OS_LIMIT - an internal limit of the OS was reached, for exam-
ple you tried to activate a task more often than your configuration
allows.

3. E_OS_NOFUNC - the call cannot be made

4. E_OS_STATE - the call cannot be made because the object is not in
a valid state

Extended status performs the checks as standard build, but adds a signif-
icant amount of extended error checking to check for all reasonable
violations of OS API usage. There are too many errors to list here, but
they fall into 3 classes:

1. E_OK - no error was detected. It is possible that this is because no
error checking was done. In this case the call will not have modified
the state of the OS (it will have silently failed).

2. E_OS_<standard_code> - an error case defined by the AUTOSAR
(or OSEK) OS standard occurred.

3. E_OS_SYS_<vendor_code> - an error case defined by
ETAS occurred, in addition to the cases identified by the
E_OS_<standard_code> codes occurred.

Error Handling 225

You are strongly encouraged to use extended status during in the early
stages of development so that you can debug any problems arising from
incorrect use of the RTA-OS3.x API. When you are sure that you are using
the OS correctly, you can use standard status to check non-functional
properties of your application like production memory sizes and perfor-
mance.

Each API call that returns an error code will return a different set of values
depending on what type of errors can occur when the call is made.

Common (extended build) errors are:

Error Code Meaning

E_OS_ID You made an API call on the wrong type of object

E_OS_VALUE A parameter is outside a permitted range

E_OS_CALLEVEL You made an API call from the wrong place

You can find out which API calls return which error codes, and what each code
means for the specific API (and therefore what you might have to do to fix the
error) by referring to the Reference Guide.

13.1 Centralized Error Handling - the ErrorHook()

The common way of checking errors from either standard or extended status
builds is to use the error hook which provides a “catch all” error handler. If
the ErrorHook is enabled, then it is called by RTA-OS3.x when any API call
is about to return an error code that is not E_OK. The error code is passed
into the ErrorHook routine and you can use it to work out which error has
occurred.

Figure 20.11 shows how the ErrorHook is enabled.

If you enable the error hook then you must provide an implementation.
If you do not provide an implementation then your program will not link
correctly.

Depending on the severity of the error, you can decide whether to terminate
(by calling ShutdownOS()) or to resume (by handling or logging the error and
then returning from ErrorHook()). Code Example 13.1 shows you the usual
structure of the Error Hook.

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType status) {
switch (status) {
case E_OS_ACCESS:
/* Handle error then return. */
break;

case E_OS_LIMIT:
/* Terminate. */
ShutdownOS(status);

226 Error Handling

Figure 13.1: Configuring the Error Hook

default:
break;

}
}

Code Example 13.1: Suggested Structure of the Error Hook

The Error Hook is adequate for coarse debugging - it tells you that something
has gone wrong. For example, if you get E_OS_CALLEVEL, then you know that
you have made an API call from the wrong context somewhere in your code
but you have no indication where it might be. You really need to know more
about the error so that you can remove the bug. In this case, you need to
know which API call resulted in the error being generated. You might find in
some cases that knowing which parameters were passed to an API call when
it failed helps you to debug a problem. This information is available at run-
time by configuring advanced error logging.

13.1.1 Configuring Advanced Error Logging

Three levels of detail are available:

1. Do not record the service details (default)

2. Record the API name only.

3. Record the API name and the associated parameters.

Error Handling 227

Figure 13.2: Configuring Advanced Error Logging

Figure 13.2 shows how the level of detail is defined in rtaoscfg.

If you choose not to record the service details, your application does not need
to pay the additional overheads associated with collecting this information.

Using Advanced Error Logging

When error logging is enabled, RTA-OS3.x provides a set of macros for ac-
cessing the name and the associated parameters of the API call that caused
the error.

You can find out which API call caused the error using the
OSErrorGetServiceId() macro. This macro returns an OSServiceIdType
of the form OSServiceId_<API name>. If, for instance, an
ActivateTask() call results in an error, OSErrorGetServiceId will re-
turn OSServiceId_ActivateTask.

The parameters to the API call are available using macros in the form shown
in Code Example 13.2. A macro is defined for each parameter of each API
call.

OSError_<API Name>_<API Parameter Name>

Code Example 13.2: Advanced Error Logging

Using the ActivateTask() example again, OSError_ActivateTask_TaskId
will return the TaskId parameter passed to ActivateTask(). This additional

228 Error Handling

error logging information can be usefully incorporated into the ErrorHook()
code. This is shown in Code Example 13.3.

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType status) {
OSServiceIdType callee;
switch (status) {
case E_OS_ID:
/* API call called with invalid handle. */
callee = OSErrorGetServiceId();
switch (callee) {
case OSServiceId_ActivateTask:
/* Handle error. */
break;

case OSServiceId_ChainTask:
/* Handle error. */
break;

case OSServiceId_SetRelAlarm:
/* Handle error. */
break;

default:
break;

}
break;

case E_OS_LIMIT:
/* Terminate. */
ShutdownOS();

default:
break;

}
}

Code Example 13.3: Additional Error Logging Information

The macros for obtaining the API name and the associated parameters should
only be used from within the Error Hook. The values they represent do not
persist outside the scope of the hook.

When you use extended error logging, the value returned by
OSErrorGetServiceId() may be misleading. This generally happens
when API calls have a side effect. For example if you activate a task from
a schedule table expiry point and that task activation results in an error,
then OSErrorGetServiceId() will return OSServiceId_ActivateTask
even though the API call that you made was Os_AdvanceCounter().

13.1.2 Working out which Task is Running

When debugging your RTA-OS3.x applications, you will probably want to know
which task or Category 2 ISR is responsible for raising the error. OSEK OS
provides the GetTaskID() API call to tell you which task is running.

Error Handling 229

Code Example 13.4 shows you how to do this.

TaskType CurrentTaskID;
/* Pass a TaskRefType for the return value of GetTaskID) */
GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Task1) {

/* Code for task 1 */
} else {

if (CurrentTaskID == Task2) {
/* Code for task 2 */

}
...

}

Code Example 13.4: Using GetTaskID()

13.1.3 Working out which ISR is Running

AUTOSAR OS extends the OSEK scheme to Category 2 ISRs with the
GetISRID() API call.

Unlike GetTaskID(), GetISRID() returns the ID of the ISR through the re-
turn value of the function rather than as an out parameter to the function
call. If you call GetISRID() and a task is executing, then the function returns
INVALID_ISR.

The following code shows how to use GetISRID() together with GetTaskID().

ISRType CurrentISRID
TaskType CurrentTaskID;
/* Is an ISR running? */
CurrentISRID = GetISRID();
if (CurrentISRID != INVALID_ISR) {

if (CurrentISRID == ISR1) {
/* Work out which ISR */

}
} else {

GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Task1) {
/* Work out which task */

}
}

}

13.1.4 Generating a Skeleton ErrorHook()

Writing error hooks that trap the types of errors that your configure may gen-
erate can be time consuming and error-prone. RTA-OS3.x can help this activ-
ity by generating the framework for the ErrorHook() that includes checking
for all types of error, for all API calls.

230 Error Handling

The framework ErrorHook() is generated using the following rtaosgen com-
mand line:

C:\>rtaosgen --samples:[ErrorHook] MyConfig.xml

This generates an error hook in Samples\Hooks\ErrorHook.c that you can
use in your application. If the file is already present, then rtaosgen will
generate a warning. If you want to overwrite an existing file, then you can
use:

C:\>rtaosgen --samples:[ErrorHook]overwrite MyConfig.xml

13.2 In-line Error Handling

An alternative to the ErrorHook() is to check the API return codes in-line
with calling. This means that you can build some degree of run-time fault
tolerance into your application.

This may be useful if you want to check for error conditions that can occur in
the Standard status (such as ActivateTask() returning E_OS_LIMIT). Code
Example 13.5 shows you how this can be done.

TASK(FaultTolerant){
/* Do some work */
if (ActivateTask(HelperTask) != E_OK) {

/* Handle error during task activation. */
}
TerminateTask();

}

Code Example 13.5: In-line Error Checking

13.3 Conditional Inclusion of Error Checking Code

If you are adding code to check for runtime errors that only occur in extended
status, then you do not want to go through your application by hand to re-
move this code at when you change to standard status.

RTA-OS3.x provides two macros that allow you conditionally include/exclude
code during development:

OS_STANDARD_STATUS is defined when standard status is configured
OS_EXTENDED_STATUS is defined when extended status is configured

The macros OS_STANDARD_STATUS and OS_EXTENDED_STATUS are pro-
vided by RTA-OS3.x only and are not necessarily portable to other im-
plementations.

Error Handling 231

13.4 Summary

• AUTOSAR OS provides facilities for debugging through the Error Hook
which provides a mechanism for trapping exceptional conditions at run-
time. It can provide a resumption model of exception handling.

• Further information on the source of an error is available through macros
accessible in the ErrorHook().

232 Error Handling

14 Measuring and Monitoring Stack Usage

RTA-OS3.x provides stack monitoring features that can be used during devel-
opment to check whether you get any unexpected stack overruns.

When stack monitoring is configured, RTA-OS3.x also provides features for
measuring the stack usage of each task and ISRs at runtime. This can be
used to identify which tasks consume what stack space and can help provide
information that might be useful for optimizations (for example, identifying
which tasks could share an internal resource to reduce the amount of stack
required).

You may also want to collect accurate stack usage information for each task
so that the stack allocations you specify are not pessimistic - i.e. you don’t
tell RTA-OS3.x that tasks use more stack space than is really necessary.

14.1 Stack Monitoring

A common problem when building embedded systems is that of stack over-
run, i.e. tasks and or ISRs consuming too much stack space at runtime.

AUTOSAR OS allows you to monitor the stack for overruns. When stack moni-
toring is enabled, RTA-OS3.x checks on each context switch whether the stack
has exceeded its pre-configured stack allocation value (see Section 4.6.3).

Category 1 ISRs in your system bypass RTA-OS3.x completely and there-
fore consume stack without OS knowledge. If your Category 1 ISRs re-
sult in stack problems then these will not be detected by RTA-OS3.x.

.

RTA-OS3.x calls ShutdownOS(E_OS_STACKFAULT) when a stack fault is iden-
tified. This is the behavior required for AUTOSAR but this is not very useful
because it does not allow you to try and identify what has failed and by how
much the stack has been overrun1 In RTA-OS3.x you can you can override this
behavior and trap problems with the Os_Cbk_StackOverrunHook() instead.
Section 14.2 provides more details.

Stack monitoring impacts both the memory footprint and the run-time perfor-
mance of RTA-OS3.x and is therefore disabled by default. Stack monitoring is
enabled in General Ô Stack Monitoring Enabled. Figure 14.1 shows how
to select your chosen option.

When you configure Stack Monitoring you need to define a stack allocation
budget for each task and Category 2 ISR. This figure must include the stack

1In extreme cases, it may not be possible for you do anything, but one advantage of the
single stack model used by RTA-OS3.x is that you can add a system-wide stack safety-margin
at link time and then use this ‘spare’ stack space for debugging if a stack fault occurs.

Measuring and Monitoring Stack Usage 233

Figure 14.1: Enabling Stack Monitoring

required by your application and the stack required for the RTA-OS3.x con-
text. Section 14.3 explains how to use RTA-OS3.x’s stack measurement fea-
tures to get this data.

RTA-OS3.x provides 2 ways to define the stack allocation:

1. Task/ISR defaults

2. Per task/ISR configuration

If a per task/ISR value is configured for a task/ISR, then this overrides the
default value.

14.1.1 Setting Defaults

Default settings set the stack allocation for all tasks, all Category 2 ISRs and
all Category 1 ISRs. You can see how to do this in Figure 14.2. If no other stack
allocation is specified elsewhere, then RTA-OS3.x uses the default value.

14.1.2 Configuring Stack Allocation per Task/ISR

Each task and ISR can specify its own stack allocation as part of the task/ISR
configuration. Figure 14.3 shows how this is configured for tasks, ISRs have a
similar configuration element. Whenever you specify a stack allocation value
for a task/ISR the value configured overrides any default value that you might
have set.

234 Measuring and Monitoring Stack Usage

Figure 14.2: Setting default stack allocation

Figure 14.3: Setting Stack Allocation for Tasks

Measuring and Monitoring Stack Usage 235

Figure 14.4: Configuring the stack overrun hook

14.2 Using the Os_Cbk_StackOverrunHook()

Recall from Section 4.6.5 that RTA-OS3.x can be configured to call the
Os_Cbk_StackOverrunHook() when problems with extended task manage-
ment are detected at runtime. The same hook is used by RTA-OS3.x for re-
porting stack overruns detected by stack monitoring.

If you configure RTA-OS3.x to use the Os_Cbk_StackOverrunHook() as shown
in Figure 14.4 then RTA-OS3.x will call the hook when a problem is detected
by stack monitoring.

Calling Os_Cbk_StackOverrunHook() when a problem is detected by
stack monitoring is an RTA-OS3.x extension to AUTOSAR OS and is not
portable to other implementations.

The hook is passed a parameter indicating the number of bytes by which
the stack has overrun and a reason for the problem. Stack monitoring adds
another reason - OS_BUDGET - to those presented in Section 4.6.5. OS_BUDGET
indicates that a task has exceeded its stack allocation.

OS_BUDGET is similar to OS_ECC_START - it identifies a situation where
the stack has overrun. The difference between the two cases is that
OS_ECC_START only occurs when an extended task is started (basic tasks that
exceed their configured stack allocation do not result in this error) whereas

236 Measuring and Monitoring Stack Usage

OS_BUDGET problems are detected on every context switch for every type of
task and ISR.

As with the ErrorHook() you can make calls to GetTaskID() and GetISRID()
to identify what was executing at the point the problem occurred. Code Ex-
ample 14.1 shows an example Os_Cbk_StackOverrunHook().

FUNC(void, OS_APPL_CODE) Os_Cbk_StackOverrunHook(Os_StackSizeType
Overrun, Os_StackOverrunType Reason) {
ISRType CurrentISRID
TaskType CurrentTaskID;

/* Work out what has failed */
CurrentISRID = GetISRID();
if (CurrentISRID != INVALID_ISR) {

/* An ISR has overrun */
if (CurrentISRID == ISR1) {
/* Work out which ISR */

}
} else {

/* It must be a task that has overrun */
GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Task1) {
/* Work out which task */

}
}

/* Work out why */
switch (Reason) {

case OS_BUDGET:
/* Problem: The task/ISR exceeded its stack

allocation */
/* Solution: Add Overrun to the stack allocation */
break;

case OS_ECC_START:
/* Problem: Some lower priority task on the stack

has used too much stack space */
/* Solution: Enable stack monitoring to find out

which task */
break;

case OS_ECC_WAIT:
/* Problem: The extended task had consumed too much

stack space then executing WaitEvent() */
/* Solution: Add Overrun to the WaitEvent() stack

allocation */
break;

}
}

Code Example 14.1: The Stack Overrun Hook

Measuring and Monitoring Stack Usage 237

When Os_Cbk_StackOverrunHook() is entered this indicates that your
system is not behaving as expected. You should not return from the
Os_Cbk_StackOverrunHook(). Entering the hook usually means that
your stack is corrupt. If you do return from the hook then the behavior
of your application is undefined.

14.3 Measuring Stack Usage

The figures that you supply for stack monitoring represent the worst-case
stack used by each task and should be the sum of the space required by
the task. This includes the context for RTA-OS3.x and the space required for
worst-case function call tree made by the task (where worst-case means the
tree that results in the most stack space being used by the task).

Stack measurement is a feature of RTA-OS3.x and is not portable to
other implementations of the OSEK or AUTOSAR OS standards.

When stack monitoring is enabled, RTA-OS3.x automatically logs the worst
case stack usage seen at runtime for each task and Category 2 ISR. The
API calls Os_GetTaskMaxStackUsage() and Os_GetISRMaxStackUsage() are
provided to allow you to find out what has been logged. The maximum val-
ues are logged on a context switch. If the stack usage is greater than the
currently recorded value then the maximum is updated.

If your task or Category 2 ISR has not been preempted, terminated or
entered the waiting state at least once then RTA-OS3.x will not yet have
logged a value and the Os_Get[Task|ISR]MaxStackUsage() calls will
return zero.

If a context switch does not happen at the worst-case stack depth
then the values reported by Os_GetTaskMaxStackUsage() and
Os_GetISRMaxStackUsage() will be wrong. To avoid this problem, RTA-
OS3.x provides the Os_GetStackUsage() API call that can be used to
instrument your application to ensure that the worst cases are logged.
Os_GetStackUsage() returns the current stack usage for the caller but it
also updates the maximum observed value each time it is called if and only
if it is higher then the currently recorded value. Section 14.3.1 provides
additional information on how to use Os_GetStackUsage() to instrument
your application to worst-case stack usage measurement.

It is highly recommended that you use the
Os_GetTaskMaxStackUsage(), Os_GetISRMaxStackUsage() and
Os_GetStackUsage() to measure the stack values you need to use in
extended task management.

On targets that have a single stack, the stack measurement API calls return a
scalar value indicating the number of bytes of stack space consumed by the
calling Task/Category 2 ISR. On targets with multiple stacks the calls return

238 Measuring and Monitoring Stack Usage

Figure 14.5: Stack Diagram

a data structure containing the number of bytes used on each stack. The
Target/Compiler Port Guide for your port will tell you how to extract stack
space information from this data structure.

The values returned are measured from the initial value of the stack pointer
at the point RTA-OS3.x starts the task/ISR. This means that measurements
include the stack context required by RTA-OS3.x. However, the stack values
returned do not include the stack space required for the calls themselves.
Figure 14.5 shows the size returned by Os_GetStackUsage() when it is called
from task TaskHIGH.

14.3.1 Marking the Worst Case for Function Calls

To measure the worst-case stack usage for each task or ISR, you need to place
a call Os_GetStackUsage() call at each leaf of your function call hierarchy.

Measuring and Monitoring Stack Usage 239

If you have leaves that are library functions then you will need to make a
Os_GetStackUsage() call in the parent function and determine the worst-
case stack space of the library call. The worst-case stack space requirement
for the RTA-OS3.x API is provided in the Target/Compiler Port Guide for your
port. If you make calls to other libraries at the leaves of your call hierarchy,
you must contact the vendor to obtain the worst-case stack requirements for
the library calls you make.

Code Example 14.2 shows a task that makes a number of function calls.
It shows the placement of Os_GetStackUsage() calls required to measure
stack usage.

#include <Os.h>

Os_StackSizeType Measurement1;
Os_StackSizeType Measurement2;
Os_StackSizeType Measurement3;

void Function1(void) {
...
Measurement1 = Os_GetStackUsage();
ActivateTask(Higher);
...

}

void Function2(void) {
...
Function3();
Measurement2 = Os_GetStackUsage();
...

}

void Function3(void) {
...
Measurement3 = Os_GetStackUsage();
...

}

TASK(Low) {
Function1();
...
Function2();
TerminateTask();

}

Code Example 14.2: Measuring Stack Usage

The worst-case stack usage (WCSU) for Code Example 14.2 will be the maxi-
mum value of Measurement1, Measurement2 and Measurement3. Figure 14.6

240 Measuring and Monitoring Stack Usage

Figure 14.6: Measuring the worst-case stack for the program call tree

show Code Example 14.2 executing. In this case, the WCSU is when task Low
calls Function1().

14.4 Summary

• RTA-OS3.x provides in-kernel features that allow you to measure and
monitor stack usage at runtime.

• Each task and ISR must specify a stack allocation in bytes for each stack
used.

• Arbitrary measurements of the current stack pointer value can be made
using the GetStackOffset() API call.

• Stack faults can be handled by calling ShutdownOS() (as specified by the
AUTOSAR OS standard) or can alternatively be re-directed to RTA-OS3.x’s
Os_Cbk_StackOverrunHook() for diagnosis.

Measuring and Monitoring Stack Usage 241

15 Measuring and Monitoring Execution Time

All timing monitoring and measuring facilities provided by RTA-OS3.x
are not part of the OSEK or AUTOSAR OS standards and are therefore
not portable to other implementations.

RTA-OS3.x provides facilities for measuring the execution times of user code
at the kernel level.

15.1 Enabling Time Monitoring

Time monitoring can be used in both standard and extended builds and is en-
abled by setting Time Monitoring Enabled to true in the General/Timing
tabbed control. The feature needs access to a free running hardware timer,
ideally one that runs at the same speed as your CPU clock because this will
allow RTA-OS3.x to carry out cycle-accurate measurements.

Before you can use time monitoring you need to tell RTA-OS3.x some details
about the timing of the target hardware. There are two values to provide:

1. the instruction cycle rate

This is the rate at which instructions are executed on your target hard-
ware (sometimes called the clock speed).

2. the stopwatch speed

This is the rate at which the stopwatch timer runs. Ideally, this will
be the same speed as the instruction cycle rate. However, it might be
slower than the CPU instruction rate because your timer module might
use some kind of pre-scaler.

RTA-OS3.x generates a set of macros that encapsulate this information to
allow you to scale timing measurements:

Macro Description

OSCYCLEDURATION The duration of a CPU instruction in nanoseconds.
OSCYCLESPERSECOND The number of CPU instructions in a second.
OSSWTICKDURATION The duration of a stopwatch tick in nanoseconds.
OSSWTICKSPERSECOND The number of stopwatch instructions in a second.

242 Measuring and Monitoring Execution Time

15.1.1 Providing a Stopwatch

The free running timer you provide is called the “stopwatch” and is used by
RTA-OS3.x to measure execution times. RTA-OS3.x gets access to the stop-
watch using a callback function called Os_Cbk_GetStopwatch().

An implementation of Os_Cbk_GetStopwatch() must be provided if you
are using RTA-OS3.x’s time monitoring functionality. Your program will
not link correctly if you do not provide this function.

Any code that your application uses to obtain execution times should be
conditionally compiled. RTA-OS3.x provides the macro OS_TIME_MONITORING,
which allows you to do this. Code Example 15.3 shows an example of condi-
tional compilation when getting the time that a resource is held.

Code Example 15.1 shows a typical example.

#ifdef OS_TIME_MONITORING
FUNC(Os_StopwatchTickType, OS_APPL_CODE)

Os_Cbk_GetStopwatch(void) {
return (Os_StopwatchTickType)TIMER_CHANNEL_0;

}
#endif /* OS_TIME_MONITORING */

Code Example 15.1: Providing a stopwatch

The stopwatch returns ticks and any values reported by RTA-OS3.x are in
terms of ticks on the stopwatch time base. You can use the macros provided
by RTA-OS3.x to convert stopwatch measurements into ‘clock time’ units like
milliseconds, microseconds etc.

Uncertainty in Stopwatch Measurements

If the stopwatch runs slower than the CPU clock, then when RTA-OS3.x reads
the stopwatch, there is a possibility that the time is less than the real amount
of time that has elapsed. This occurs because of the difference in resolution
of the CPU clock and the stopwatch. Figure 15.1 shows the basic issue - you
might read the lower resolution stopwatch just before it will be incremented
by the CPU clock.

This difference is called the uncertainty and you will need to compensate for
this in any calculations you do that use time measurement.

This does not occur for stopwatches that run at the same rate as the CPU
clock because you are already using the maximum possible resolution of
time. The stopwatch uncertainty is equal to zero if the instruction cycle rate
and the stopwatch speed are equal. In most other cases the uncertainty is
one (but see Section 15.1.2).

Measuring and Monitoring Execution Time 243

Figure 15.1: Uncertainty in stopwatch measurements

15.1.2 Scaling the Stopwatch

In most cases your, Os_Cbk_GetStopwatch() will return a value read directly
from a hardware timer and you will convert timing measurements into ‘real’
time after measurement.

However, you may prefer to scale the stopwatch directly in the
Os_Cbk_GetStopwatch() callback so that all times reported by RTA-OS3.x
are already in the units you require. For example, Code Example 15.2 shows
how to scale the stopwatch from Code Example 15.1 so that the stopwatch
returns a value in nanoseconds.

FUNC(Os_StopwatchTickType, OS_APPL_CODE)
Os_Cbk_GetStopwatch(void) {
return (Os_StopwatchTickType)(TIMER_CHANNEL_0 *

OSSWTICKDURATION);
}

Code Example 15.2: Providing a stopwatch

Scaling the stopwatch also has an impact on the stopwatch uncertainty as
shown in Figure 15.2.

An appropriate modification to the stopwatch uncertainty calculations you
make is to multiply the uncertainty by the scaling factor.

15.2 Automatic Measurement of Task and ISR Execution Times

When your application uses time monitoring, RTA-OS3.x measures the execu-
tion times of each task and Category 2 ISR in your application.

RTA-OS3.x maintains a log of the longest observed execution time over all
executions for each task and Category 2 ISR. The execution time for tasks is
measured as follows:

244 Measuring and Monitoring Execution Time

Figure 15.2: Uncertainty in scaled stopwatch measurements

Basic Tasks are measured from their first instruction to the completion of
the TerminateTask() API call.

Extended Tasks are measured from their first instruction to the first
WaitEvent(), between adjacent WaitEvent() calls and from
WaitEvent() to the TerminateTask() API call.

Pre- and post-task hooks, if configured, are not included in the execution time
measurement.

Execution times are measured using the stopwatch provided by
Os_Cbk_GetStopwatch(). RTA-OS3.x automatically compensates for
preemption during measurement. When a task is preempted then the
measurement for the preempted task stops and measurement for the
preempting task starts as shown in Figure 15.3.

Measurements are taken on a context switch (or, in the case of extended
tasks, the possibility for a context switch). This means that a switch
must occur for a time to be recorded. Therefore, a basic task must
terminate at least once for a timing measurement to be made and an
extended task must either terminate of make a WaitEvent() call.

The largest observed execution time for each task/ISR can be read using
Os_GetLargest[Task|ISR]ExecutionTime() API call. The call returns zero if
the task/ISR has not yet completed an execution.

The best place to record task and ISR execution times is in Os_Cbk_Idle()
since, if the code here executes, you can be guaranteed that there are not
tasks or ISRs that are ready to run. Code Example 15.3 shows a typical ex-
ample.

Measuring and Monitoring Execution Time 245

Figure 15.3: Compensating for preemption in timing measurements

FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle() {
#if defined(OS_TIME_MONITORING)
Os_StopwatchTickType TaskTime;
Os_StopwatchTickType ISRTime;
TaskTime = GetTaskMaxExecutionTime(MyTask);
ISRTime = GetISRMaxExecutionTime(MyISR);
#endif
return TRUE;

}

Code Example 15.3: Reading the longest observed execution times

You can reset a largest time using the Os_ResetLargest[Task|ISR]ExecutionTime()
API call.

15.3 Manual Time Measurement

RTA-OS3.x’s time monitoring provides a API called Os_GetExecutionTime()
that can be used to get the current stopwatch value. By placing this call
before and after any section of code, you can measure the execution time of
any fragment of your program. For example:

• you might want to profile the execution of some 3rd party library code

• you may want to debug exactly where time is being consumed by your
own applications

246 Measuring and Monitoring Execution Time

• you might want to measure the blocking due to resource locking or the
disabling of interrupts

Code Example 15.4 shows how you can measure blocking times. The same
principle applies to any code section that you need to measure.

TASK(Task1) {
Os_StopwatchTickType start,finish,correction;
...

#if defined(OS_TIME_MONITORING)
/* Get time for Os_GetExecutionTime() call itself. */
start = Os_GetExecutionTime();
finish = Os_GetExecutionTime();
correction = finish - start -

Os_Cbk_GetStopwatchUncertainty();
/* Measure resource lock time. */
start = Os_GetExecutionTime();

#endif
/* The section of code to measure */
GetResource(Resource1);
/* Critical section. */
ReleaseResource(Resource1);

#if defined(OS_TIME_MONITORING)
finish = Os_GetExecutionTime();
/* Calculate amount of time used. */
used = finish - start - correction +

Os_Cbk_GetStopwatchUncertainty();
#endif

}

Code Example 15.4: Measuring Blocking Times

15.4 Imprecise Computation

Because the overheads imposed by time monitoring are small, it can be used
for production code. You can exploit this fact to perform imprecise computa-
tion.

Imprecise computation is useful in applications that interactively converge
on a result. For example, you might use Newton-Raphson to converge on a
value.

If a task has not traveled down the worst-case path, then it will not have
run in the worst-case execution time. If this is the case, any ‘spare’ CPU
cycles available to the task can be used to refine a result. This technique is
illustrated in Code Example 15.5.

TASK(NewtonRaphson) {
TickType Budget = CONFIGURED_EXECUTION_BUDGET;

Measuring and Monitoring Execution Time 247

Figure 15.4: Specifying the Execution Time Budgets

TickType LoopTime = TIME_FOR_ONE_ITERATION;
...
Result = ...;
while ((Budget - Os_GetExecutionTime()) > LoopTime) {

/* Perform iterative refinement of output. */
Result = Result - (Function(Result)/Derivative(Function,

Result));
}
...

}

Code Example 15.5: Imprecise Computation

15.5 Monitoring Execution Times against Budgets

Time monitoring also allows you to set budgets for execution times and let
RTA-OS3.x check for violations at runtime. The execution time budgets for
each task and Category 2 ISR can be set in your application. These values
are optional and do not have to be supplied. Configuration of an execution
budget is shown in Figure 15.4.

The type of the budget value can be set as ‘clock time’ or in terms of stop-
watch ticks or CPU cycles. RTA-OS3.x uses the target timing characteristics
to perform any necessary conversions. Figure 15.5 shows how these values
are set.

248 Measuring and Monitoring Execution Time

Figure 15.5: Specifying the Instruction Rate and Stopwatch Speed

When time monitoring is enabled, RTA-OS3.x will check to see whether tasks
or Category 2 ISRs consume more time than is specified in the budget. If the
budget is exceeded, then RTA-OS3.x will call the Os_Cbk_TimeOverrunHook()
when the task terminates (or, in the case of an extended task, when it calls
WaitEvent()). This allows you to log the budget overrun. As budgets are
checked on a context switch there is the potential for a task or Category 2
ISR to overrun by a large margin before this is actually detected. Figure 15.6
shows what happens when a task overruns.

The Os_Cbk_TimeOverrunHook() is mandatory if time monitoring is
configured in RTA-OS3.x. Your program will not link correctly if you do
not provide this function.

The prototype for Os_Cbk_TimeOverrunHook() is shown in Code Exam-
ple 15.6.

#ifdef OS_TIME_MONITORING
FUNC(void, OS_APPL_CODE)

Os_Cbk_TimeOverrunHook(Os_StopwatchTickType Overrun)) {
/* Log budget overruns. */

}
#endif

Code Example 15.6: The Os_Cbk_TimeOverrunHook Prototype

You should be aware that, for extended tasks, the execution time is reset
to zero at the start of the task and when resuming from WaitEvent(). Nor-

Measuring and Monitoring Execution Time 249

Figure 15.6: Call of the Os_Cbk_TimeOverrunHook()

mally the budget is used to check the execution time between consecutive
WaitEvent() calls.

You should also be aware that the execution time is only sampled by RTA-
OS3.x when a task is preempted by another task or ISR or when the task/ISR
terminates.

In some unusual circumstances, it is possible for a budget overrun to
be missed. This could happen when the interval between preemp-
tions approaches the maximum interval that can be measured by a
Os_StopwatchTickType. The range of a Os_StopwatchTickType is tar-
get dependent, but is normally 216 or 232.

15.6 Summary

• RTA-OS3.x provide in-kernel features that allow you to measure the exe-
cution time of tasks and ISRs at runtime.

• You need to provide access to a free-running timer for RTA-OS3.x to use
as a stopwatch.

• The worst-case execution time of tasks and ISRs is logged automatically.

• Arbitrary measurements can be made using the
Os_GetExecutionTime() API.

• If an execution budget is specified for a task or ISR, then RTA-OS3.x will
automatically monitor the task or ISR and generate an error at context
switch time if the budget is exceeded.

250 Measuring and Monitoring Execution Time

16 Using an ORTI-Compatible Debugger

ORTI is an acronym that stands for ‘OSEK Run Time Interface’. ORTI was de-
signed to provide a standardized and extensible way for an OSEK operating
system to provide internal details of its behavior to a debugger. The design
of the ORTI is sufficiently general that it can support operating systems other
than OSEK and in RTA-OS3.x ORTI support is provided for OSEK OS and AU-
TOSAR OS features.

ORTI provides a small language that captures two things:

1. how to find objects and variables within the running operating system;
and

2. how to interpret or display their values.

An OS can generate an ORTI file that contains a description of this information
that the debugger can use. This means that ORTI is like a symbol table -
telling the debugger which things in memory mean which objects in the OS.

ORTI is not supported by all debuggers. A list of compatible ORTI de-
buggers is provided in the Target/Compiler Port Guide for your port. If
no ORTI-compatible debugger is listed, then ORTI generation is not sup-
port for your debugger. RTA-OS3.x can, in most cases, be customized
to support ORTI for unsupported debuggers. Please contact ETAS for
further details.

.

In the cases where RTA-OS3.x can generate an ORTI file for your debugger,
this chapter shows you how to configure the generation of ORTI information
for your debugger so that, during execution of the application, you can ob-
serve values of key operating system variables for applications based on RTA-
OS3.x.

For details of how to view ORTI information at runtime you should consult
your debugger documentation.

16.1 Development Process

The following steps describe how to use ORTI with your program.

Step 1 Use rtaoscfg to enable ORTI debugger support. As ORTI is target-
specific, the configuration is done in the “Target Specific” settings. Fig-
ure 16.1 shows how this is done.

Step 2 Build the RTA-OS3.x library. The kernel is instrumented with ORTI
support when generated. The ORTI file that you need for your debugger
is generated as a file called <projectname>.orti.

Using an ORTI-Compatible Debugger 251

Figure 16.1: Enabling ORTI Support

Step 3 Build the application.

Step 4 Start the debugger, load the application and then load the ORTI file.
For details of how to do this, please consult the documentation for your
debugger.

The debugger will then display the information shown by the ORTI file. The
format of this information depends upon the debugger.

16.2 Intrusiveness

ORTI relies upon reading values from the memory of the running application.
This means that the presence of ORTI can affect the operation of the appli-
cation. It is useful to know the extent to which this might happen. ORTI can
acquire data via four routes:

1. Constant values within the ORTI file. These are used for quantities that
will not change during the execution of an application. These have no
impact on the running application.

2. Values generated as part of the normal operation of the application.
Data is read from variables that would be present even if ORTI were
not. These have no additional impact on the application.

3. Values generated specifically for ORTI support. Such variables consti-
tute a very small extra overhead in the application.

252 Using an ORTI-Compatible Debugger

4. Constants generated only for ORTI support. This data amounts to a
small overhead in the application. These constants are only generated
for debuggers that cannot obtain the information by other means. They
are only present when you specify that you are using a debugger, so you
may wish to disable debugger support in your final production release.

16.3 Validity

Many of the values reported by ORTI are simply those contained in the appli-
cation’s memory. Using ORTI to inspect the system before it has been fully
initialized will lead to misleading results. RTA-OS3.x is fully initialized when,
as a result of calling StartOS(), Os_Cbk_Idle() the first task or Category 2
ISR is entered.

Care should be taken where a variable may be cached in a register for a signif-
icant portion of its lifetime, especially in the case of register-rich processors.
ORTI can only look at the data stored in the variable’s memory location. This
could be out of date if the register-based copy has been updated recently.

16.4 Interactions

The ORTI output will be correct when the program is stopped at a breakpoint
that is:

• In code executed by a task or Category 2 ISR that is outside of any AU-
TOSAR OS API call.

The ORTI output may be misleading if the application is stopped at a break-
point that is:

• Within an AUTOSAR OS API call.

• In code executed by a Category 1 interrupt handler.

The output may be misleading because the OSEK data used by ORTI could be
in a partially updated state. Normally it is possible to tell if the program is
part way through an AUTOSAR OS call by the debugger reporting the name
of the function in which the processor stopped.

On a platform with more than two interrupt priority levels, however, a Cate-
gory 1 interrupt can occur part way through an OSEK call. If the program is
stopped at a breakpoint in a Category 1 interrupt handler, it is necessary to
use the debugger’s stack trace facility to determine the name of the function
that was interrupted. The ORTI output can be relied upon, provided that the
Category 1 interrupt did not occur within an AUTOSAR OS API call.

Using an ORTI-Compatible Debugger 253

16.5 Summary

• RTA-OS3.x can optionally generate ORTI information for use with a third-
party ORTI compatible debugger.

• ORTI support is port-specific functionality. Additional details on the exact
nature of ORTI support for your port can be found in the relevant Target/-
Compiler Port Guide.

254 Using an ORTI-Compatible Debugger

17 RTA-TRACE2.1 Integration

RTA-TRACE2.1 is a software logic analyzer for embedded systems which pro-
vides a set of services to assist in debugging and testing a system. RTA-
TRACE2.1 also has the ability to see exactly what is happening in a system at
runtime with a production build of the application software.

RTA-TRACE2.1 is a separate product to RTA-OS3.x and is not supplied
with your RTA-OS3.x installation. For further details about how to ob-
tain RTA-TRACE2.1 please contact your local ETAS Sales Office (see Sec-
tion 22.2).

RTA-TRACE2.1 logs trace records to an on-target trace buffer. Each trace
record contains information about what happened, when it happened and
which object(s) were involved. RTA-TRACE2.1 relies on an instrumented OS to
gather tracing data. While hand-instrumentation is possible, rtaosgen can
automatically add RTA-TRACE2.1 instrumentation to the generated OS kernel.
This chapter explains how to use the RTA-TRACE2.1 configuration editor pro-
vided with the rtaoscfg tool. Section 17.1 describes the basic configuration.
RTA-TRACE2.1 also provides extensive control on which data is traced and
allows you to configure user-defined trace information.

Further details about RTA-TRACE2.1 are provided in the RTA-TRACE2.1 user
documentation. However, you should note the following:

• the information presented in Sections 17.1 and 17.3 augments the infor-
mation provided in your RTA-TRACE2.1 Configuration Guide for configu-
ration with RTA-OS3.x’s rtaoscfg tool.

• RTA-OS3.x makes some changes to how the RTA-TRACE2.1 ECU link works.
The information presented in Section 17.4 augments the information pro-
vided in your RTA-TRACE Configuration Guide.

• for RTA-OS3.x, all RTA-TRACE2.1 API calls, callbacks, macros and types
adopt the AUTOSAR naming convention. The changes are as follows:

API Feature RTA-TRACE2.1 RTA-TRACE2.1 with RTA-OS3.x

Call <name> Os_<name>
Callback osTrace<name> Os_Cbk_Trace<name>
Type osTrace<name> Os_Trace<name>
Macro OSTRACE_ENABLED OS_TRACE

A complete reference for the modified RTA-TRACE2.1 API is provided in
the Reference Guide.

RTA-TRACE2.1 Integration 255

Figure 17.1: Configuring RTA-TRACE2.1

17.1 Basic Configuration

The basic configuration parameters RTA-TRACE2.1 are shown in Figure 17.1.

Enable Tracing selects whether RTA-TRACE2.1 instrumented is added to
RTA-OS3.x or not. If this is not set, then no instrumentation is added
to RTA-OS3.x.

Use Compact IDs selects compact trace format which reduces the size of a
trace record stored in the trace buffer:

Identifier Regular IDs Compact IDs

Task Tracepoint 12-bit (max 4096 IDs) 4-bit (max 16 IDs)
Tracepoint 12-bit (max 4096 IDs) 8-bit (max 256 IDs)
Interval 12-bit (max 4096 IDs) 8-bit (max 256 IDs)
OS Objects 16-bit (max 65536 IDs) 8-bit (max 256 IDs)

For most common applications it is safe to use compact identifiers.

Use Compact Time selects compact (16-bit) or extended (32-bit) time for-
mat. This option may not be available for every RTA-OS3.x port.

Enable Stack Recording selects whether or not to record stack usage or
not. When enabled, this logs two trace records for each trace event:
one for the event itself and another for the stack size. Enabling this
option therefore doubles the amount of trace data that is recorded.

256 RTA-TRACE2.1 Integration

Run-Time Target Triggering selects whether or not runtime target trigger-
ing is available.

Auto-Initialize Comms selects whether the RTA-TRACE2.1 communications
link is initialized automatically during StartOS(). Setting this con-
figuration item to TRUE means that RTA-OS3.x will automatically call
Os_TraceCommInit() to initialize the communications link. If set to
FALSE then Os_TraceCommInit() must be called elsewhere in your ap-
plication. This field should be set to FALSE when a debugger link is used
to upload trace data from the target to the host PC.

Buffer Size sets the size of the trace buffer reserved on the target for the
tracing information. The size is specified in trace records not bytes. A
trace buffer of 2000 records is recommended as a default setting.

Auto-start Type selects whether tracing is started automatically during
StartOS() and which tracing mode is used (Bursting, Free-Running or
Triggering). See Section 17.2.

17.2 Controlling RTA-TRACE2.1

RTA-TRACE2.1 can be used in three different modes:

Bursting mode treats the buffer as a linear buffer and logs trace data until
the buffer is full. When the buffer is full, tracing stops and the buffer is
made available for uploading to the RTA-TRACE2.1 host PC. This is useful
for capturing a ‘one-shot’ log of data. RTA-TRACE2.1 is started in this
mode using Os_StartBurstingTrace(). Tracing can be automatically
re-started after the upload if the call Os_SetTraceRepeat(TRUE) has
been made.

Free-running mode treats the buffer as a circular buffer and makes data
available for uploading to the RTA-TRACE2.1 host PC as soon as it has
been logged. If data can be uploaded sufficiently often that the buffer
is never full, then free-running tracing provides a continuous stream of
trace data. If the buffer becomes full, tracing is suspended until space
becomes available again. RTA-TRACE2.1 is started in this mode using
Os_StartFreerunningTrace().

Triggering mode treats the buffer as a circular buffer and logs continuously.
If the buffer overflows then old data is overwritten by new data. Data is
not made available for upload until one or more user-specified triggers
occur. When a trigger occurs, a number of pre-trigger trace records
is locked in the buffer (the number of pre-trigger records to be stored
is user-specified) and tracing continues until a number of post-trigger
trace records has been logged (the number of post-trigger records is

RTA-TRACE2.1 Integration 257

also user-specified). When the post-trigger number of records has been
logged, tracing stops and the buffer is made available for uploading to
the RTA-TRACE2.1 host PC. RTA-TRACE2.1 is started in this mode using
Os_StartTriggeringTrace(). The pre and post-trigger windows are
set using Os_SetTriggerWindow(pre,post). Tracing can be automat-
ically re-started after the upload if the call Os_SetTraceRepeat(TRUE)
has been made.

If you have configured RTA-TRACE2.1 to auto-start then RTA-OS3.x will
make the correct RTA-TRACE2.1 Os_Start...() API automatically dur-
ing StartOS(). If RTA-TRACE2.1 is already running when the call to
Os_Start...() is made then the trace buffer is cleared and RTA-TRACE2.1
re-starts in the chosen mode.

The Os_StopTrace() API call is used to stop RTA-TRACE2.1.

RTA-OS3.x defines the macro OS_TRACE when RTA-TRACE2.1 is enabled. You
can use this macro to conditionally compile RTA-TRACE2.1 code into your ap-
plication as shown in Code Example 17.1.

FUNC(void, OS_APPL_CODE) StartupHook(void)
...

#ifdef OS_TRACE
SetTraceRepeat(TRUE);
StartBurstingTrace();

#endif
...

}

Code Example 17.1: Using the OS_TRACE macro

17.2.1 Controlling with Objects are Traced

By default, RTA-TRACE2.1 traces every type of OS object. Sometimes this is
not appropriate - you may be interested in only a subset of tasks or you may
need to reduce the amount of data being logged because your data-link has
low bandwidth.

RTA-TRACE2.1 allows you control over data collection using classes and filters.

Classes

RTA-TRACE2.1 groups trace objects into classes. By default, all classes are
traced at runtime. However, to minimize the amount of trace data that is
gathered (and therefore minimize the amount of time spent uploading data)
you might choose to switch off some classes of tracing.

Each class can be configured as:

258 RTA-TRACE2.1 Integration

Figure 17.2: Configuring RTA-TRACE2.1 classes

Always the class is always traced.

Never the class is never traced.

Runtime the tracing of the class can be enabled/disabled at
runtime using the API calls Os_EnableTraceClasses() and
Os_DisableTraceClasses().

Figure 17.2 shows how trace classes can be configured.

Any trace class configured as runtime is disabled when RTA-TRACE2.1 starts.
However, it is possible to set the runtime classes to be auto-started when
RTA-TRACE2.1 starts by setting the Autostart value to TRUE.

Filters

Filters allow individual Tasks and ISRs to be excluded from tracing. As with
trace classes, all Tasks and ISRs are traced by default, but can be configured
as:

Always the task/ISR is always traced.

Never the task/ISR is never traced.

Runtime the tracing of the task/ISR is controlled by the runtime state of the
OS_TRACE_TASKS_AND_ISRS_CLASS.

RTA-TRACE2.1 Integration 259

Figure 17.3: Configuring RTA-TRACE2.1 filters

Figure 17.3 shows how trace filters can be configured.

The setting of the OS_TRACE_TASKS_AND_ISRS_CLASS is applied before a filter
is applied. This means that filter settings for a task/ISR interact with trace
classes in the following way:

Class Setting Filter Task/ISR Traced?

Never Never 7

Never Runtime 7

Never Always 7

Runtime [Disabled] Never 7

Runtime [Disabled] Runtime 7

Runtime [Disabled] Always 7

Runtime [Enabled] Never 7

Runtime [Enabled] Runtime 3

Runtime [Enabled] Always 3

Always Never 7

Always Runtime 3

Always Always 3

17.3 User-Defined Trace Objects

RTA-TRACE2.1 provides 3 different types of objects that you can configure to
help with debugging your application:

260 RTA-TRACE2.1 Integration

Tracepoints are used to log arbitrary data values (for example the value of
a variable or content of a data structure) to the trace buffer. Each tra-
cepoint is logged with a timestamp so you can see on the RTA-TRACE2.1
visualization the value of a data item at a moment in time. A tracepoint
can be logged from anywhere in the application.

Task Tracepoints are similar to tracepoints but are displayed on the RTA-
TRACE2.1 visualization next to the task which logs them

Intervals are used to measure durations of time. An interval has a start and
an end marker that can be logged from anywhere in your application. In-
tervals are particularly useful for measuring end-to-end response times
over multiple tasks during program execution.

The following sections describe how to configure these user-defined objects
and how to control whether or not they are logged at runtime.

17.3.1 Tracepoints

Each tracepoint requires a unique integer identifier. The maximum number of
tracepoints that can be configured depends on the setting of “Use Compact
IDs” (see Section 17.1). RTA-OS3.x automatically allocates a unique ID for the
tracepoint if its ID is set to zero.

Each tracepoint can also be associated with a discrete data value or a block
of data. RTA-TRACE2.1 needs to know how to format the data value supplied
and this is configured by specifying a format-string (see Section 17.3.5 for
more information about format strings). The format-string controls how RTA-
TRACE2.1 will display the data value in the RTA-TRACE2.1 GUI. Figure 17.4
shows the configuration of three tracepoints that log data as a signed integer,
a hexadecimal value and an unsigned integer respectively.

Any task in the application can log a tracepoint using the following API calls:

• Os_LogTracepoint() - log the tracepoint without any associated data;

• Os_LogTracepointValue() - log the tracepoint with an associated value;

• Os_LogTracepointData() - log the tracepoint with an associated block
of data (specified using a base/bound scheme).

For further details, see the Reference Guide.

RTA-TRACE2.1 Integration 261

Figure 17.4: Configuring RTA-TRACE2.1 tracepoints

17.3.2 Task Tracepoints

Task-tracepoints are configured just like normal tracepoints. See Sec-
tion 17.3.1 for further details.

Logging a task tracepoint uses a different set of API calls to normal trace
points:

• Os_LogTaskTracepoint() - log the tracepoint against the calling tasks
without any associated data;

• Os_LogTaskTracepointValue() - log the tracepoint against the calling
tasks with an associated value;

• Os_LogTaskTracepointData() - log the tracepoint against the calling
tasks with an associated block of data (specified using a base/bound
scheme).

For further details, see the Reference Guide.

17.3.3 Intervals

Intervals are used to measure arbitrary times in the application, for example
an end-to-end response time. Each interval must be named and allocated an
unique identifier. As with tracepoints, an interval identifier is an integer which

262 RTA-TRACE2.1 Integration

Figure 17.5: Configuring RTA-TRACE2.1 intervals

is specified at configuration time. If a value of zero is configured, RTA-OS3.x
automatically allocates a unique identifier to each interval.

Figure 17.5 shows how an interval is configured.

Each interval can also be associated with a discrete data value or a block of
data. RTA-TRACE2.1 needs to know how to format the data value supplied and
this is configured by specifying a format-string (see Section 17.3.5 for more
information about format-strings).

Logging an interval requires you to mark the start and the end of the interval
using the following API calls:

• Os_LogIntervalStart() - log the start of the interval without any asso-
ciated data;

• Os_LogIntervalStartValue() - log the start of the interval with an as-
sociated value;

• Os_LogIntervalStartData() - log the start of the interval with an asso-
ciated block of data (specified using a base/bound scheme);

• Os_LogIntervalEnd() - log the end of the interval without any associ-
ated data;

RTA-TRACE2.1 Integration 263

• Os_LogIntervalEndValue() - log the end of the interval with an associ-
ated value;

• Os_LogIntervalEndData() - log the end of the interval with an associ-
ated block of data (specified using a base/bound scheme).

Calls with and without data or values can be mixed, as shown in Code Exam-
ple 17.2.

#include <Os.h>
#include "ThirdPartyLibrary.h"
TASK(A) {

...
Os_LogIntervalStart(LibraryCallMeasurement,OS_TRACE_CATEGORY_ALWAYS);
x = CallToLibraryFunction(y,z);
Os_LogIntervalEndValue(LibraryCallMeasurement,x,OS_TRACE_CATEGORY_ALWAYS);
...

}

Code Example 17.2: Mixing Os_LogInterval...()calls

For further details, see the Reference Guide.

17.3.4 Controlling which User-Defined Objects are Traced

User-defined objects are logged in the RTA-TRACE2.1 trace buffer at runtime.
Each API to log a user-specified object takes a parameter defining the trace
category for which is logged:

Os_Log[[Task]Tracepoint|Interval[Start|End]][Data|Value](...,Os_TraceCategoriesType
CategoryMask)

Trace categories are user-defined names that allow you control whether a
user-defined trace object is traced or not at runtime.

Each category has a category bit-mask. The mask is an integer that repre-
sents a unique identifier for the category in the trace buffer. The mask can be
set to a specific integer value, but it is recommended that you set the mask
to zero and let RTA-OS3.x generate the category mask automatically.

If you choose to set your own mask values then you must ensure that
the integer representing the mask is a power of two i.e. 1,2,4,8,16 etc.

As with classes, each trace category can be filtered:

Always the category is always traced.

Never the category is never traced.

264 RTA-TRACE2.1 Integration

Figure 17.6: Configuring RTA-TRACE2.1 categories

Runtime the tracing of the category can be enabled/disabled at runtime.

By default, runtime trace categories are disabled when RTA-TRACE2.1 starts.
The initial categories configuration allows you to control which of the run-time
are enabled when tracing starts.

Figure 17.6 shows how trace categories can be configured.

RTA-TRACE2.1 also defines two constant category masks:

1. OS_TRACE_CATEGORY_ALWAYS is always be traced.

2. OS_TRACE_CATEGORY_NEVER is never be traced.

Runtime control for categories is provided though the RTA-TRACE2.1 API
calls Os_EnableTraceCategories() and Os_DisableTraceCategories().
Each call takes a category mask (or a bit-wise OR of category
masks) as input. All user tracing can be disabled by calling
Os_DisableTraceCategories(OS_TRACE_CATEGORY_ALWAYS) and re-
enabled by calling Os_EnableTraceCategories(OS_TRACE_CATEGORY_ALWAYS).

RTA-TRACE2.1 Integration 265

17.3.5 Format Strings

Format strings are used to tell RTA-TRACE2.1 how to display a user-defined
trace item’s data. Simple numeric data can be displayed using a single for-
mat specifier. More complex data, e.g. a C struct, can be displayed by re-
peatedly moving a cursor around the data block and emitting data according
to more complex format specifiers.

If a format string is not supplied, data is displayed in the following manner:

• If the data size is no greater than the size of the target’s integer type,
data is decoded as if "\%d" had been specified.

• Otherwise the data is displayed in a hex dump, e.g.

0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

The hex dump has a maximum size of 256 bytes.

When format specifiers are given, the target’s endian-ness is taken into
account. When a hex dump is shown, the target’s memory is dumped
byte-for-byte. In particular, you may not get the same output from a
hex dump as from the %x format specifier.

Rules

Format strings are similar to the first parameter to the C function printf():

• Format strings are surrounded by double-quote (") symbols.

• A format string may contain two types of object: ordinary characters,
which are copied to the output stream, and format elements, each of
which causes conversion and printing of data supplied with the event.

• A format element comprises a percent sign, zero or more digits and a
single non-digit character, with the exception of the %E element.

• The format element is decoded according to the rules in the table below,
and the resulting text is added to the output string.

• The special format element %% emits a %.

• In addition to ordinary characters and conversion specifications, certain
characters may be emitted by using a ‘backslash-escape sequence’. To
emit a double-quote " character, \" is used, and to emit a \ character,
\\ is used.

266 RTA-TRACE2.1 Integration

• The optional size parameter to integer format specifiers defines the field’s
width in bytes. Valid values are 1, 2, 4 or 8.

An important difference from printf() is that the cursor does not au-
tomatically move on from the current field when a field is emitted. This
is to facilitate multi-format output of a single field.

Format Element Meaning

%offset@ Moves the cursor offset bytes into the data. This can be
used to extract values from multiple fields in a structure.

%[size]d Interpret the current item as a signed integer. Output the
value as signed decimal.

%[size]u Interpret the current item as an unsigned integer. Output
the value as unsigned decimal.

%[size]x Interpret the current item as unsigned integer. Output
the value as unsigned hexadecimal.

%[size]b Interpret the current item as an unsigned integer. Output
the value as unsigned binary.

%enum[:size]E Interpret the current item as an index into the enumera-
tion class who’s ID is enum. Emit the text in that enumer-
ation class that corresponds with the item’s value. The
enumeration class should be defined using ENUM direc-
tives.

%F Treat the current item as an IEEE ‘double’. Output the
value as a double, in exponent format if necessary.

%? Emit in the form of a hex dump.
%% No conversion is carried out; emit a %.

Enumerations

Sometime you may want RTA-TRACE2.1 to display symbolic data for a a given
trace value. This is possible in a number of ways with format strings, but one
possibility is to use a value to reference an enumeration of symbolic values.
Each enumeration you need must be configured before it can be referenced
from a format string.

An enumeration is given a name and contains a set of name/value pairs that
define the mapping between the value and the associated symbolic name.
Figure 17.7 shows how an enumeration of ‘Gear’ has been configured with
a simple mapping between an integer value and the symbolic names of the
gears.

RTA-TRACE2.1 Integration 267

Figure 17.7: Configuring RTA-TRACE2.1 enumerations

268 RTA-TRACE2.1 Integration

Example Format Strings

Description Format Example Notes

A native integer dis-
played in decimal
and hexadecimal

“%d 0x%x” 10 0xA The “0x” is not
emitted by the %x
format specifier but
is specified in literal
characters in the
string. Absence of
size specifier means
the target’s integer
size is assumed.
This example is a
16-bit processor.

A single unsigned
byte representing a
percentage.

“%1u%%” 73% Use of size specifier
of 1 byte. Use of %%
to emit %.

struct{
int x;
int y;
}; on a 32-bit pro-
cessor.

“(%d,%4@%d)” (20,-15) Use of %offset@ to
move to byte-offset
within the structure.

A value of type
enum e_Rainbow,
(defined as the col-
ors of the rainbow!)

“%1E” Yellow The number 1 refers
to the ID of the enum
class in the ENUM di-
rectives, not to the
width of the field.

17.4 ECU Links

RTA-TRACE2.1 provides two standard ways to get data from the ECU to the
host PC:

• Debugger Link - This is a passive data link - it does not require any sup-
porting code in your application. However, you will need to use your
debugger1 to “pull” the contents of the trace buffer from the target to
the PC running the RTA-TRACE2.1 Server.

• Serial Link - This is an active link - you need to provide code in your ap-
plication to “push” the contents of the trace buffer to from the target to
the PC running the RTA-TRACE2.1 Server. Both polled and interrupt-driven
serial communication is possible.

1A debugger is not supplied with RTA-OS3.x or RTA-TRACE2.1. A list of compatible debuggers
can be found in the Target/Compiler Port Guide for your port.

RTA-TRACE2.1 Integration 269

Figure 17.8: Impact of the debugger link with target execution

Other data links may be available - please contact ETAS for details.

The following sections describe how to use the standard data-links in your
application.

17.4.1 Debugger Links

The debugger link only transfers data to the RTA-TRACE2.1 server once there
is a full buffer (or a full trigger window in the case of triggering mode) avail-
able for transmission.

When the buffer is full, RTA-TRACE2.1 calls the function
Os_TraceBreakLabel(). You should use your debugger to place a breakpoint
on this function so that each time the trace buffer is full, the target is paused
and you can then upload the contents of the variable Os_TraceBuffer[]
to the debugger. Many debuggers can be scripted to perform these steps
automatically.

The RTA-TRACE2.1 server accepts data in two formats:

1. Lauterbach format

2. CrossView format

These formats are described in the RTA-TRACE ECU Link Guide.

Using the debugger link may impact interaction with the target. Each time
the trace buffer is full then the target is paused by the debugger and only
resumed once the trace buffer has been uploaded as shown in Figure 17.8.

The debugger link is therefore best used when you need to capture a snap-
shot trace, such as those obtained using bursting or triggering mode.

270 RTA-TRACE2.1 Integration

17.4.2 Serial Links

The serial link needs your application code to actively transmit data to the
RTA-TRACE2.1 server over a serial connection. RTA-TRACE2.1 manages the
emptying of the trace buffer and the state of the serial connection and uses
a set of callbacks to control the serial hardware itself.

Initializing the Serial Device

Serial communication is initialized by called Os_TraceCommInit. The call
must be made before RTA-TRACE2.1 is started. If “Auto-Initialize Comms”
has been configured then RTA-OS3.x will automatically call this API during
StartOS().

Os_TraceCommInit requires you to provide the
Os_Cbk_TraceCommInitTarget callback that should initialize the serial
hardware for your target. The callback should return OS_TRACE_STATUS_OK if
the initialization was successful and OS_TRACE_STATUS_COMM_INIT_FAILURE
otherwise. Code Example 17.3 shows how the callback might look in your
code.

FUNC(Os_TraceStatusType, OS_APPL_CODE)
Os_TraceCommInitTarget(void)

{
/* Set baud rate */
SERIAL_BAUD_REGISTER = 9600; /* baud */

/* Set transmit enable bit in control register 2 */
SERIAL_CTRL_REGISTER |= TE_BIT;

return OS_TRACE_STATUS_OK;
}

Code Example 17.3: Initializing the serial hardware

Data Transmission

Data transmission is a two stage process:

1. Check if there is any data to transmit.

2. If data is available then transmit it.

RTA-TRACE2.1 will automatically detect when the buffer is full and use this
information to make the trace buffer available for transmission. This mecha-
nism is sufficient when using bursting or triggering mode.

If you are free-running mode then this behavior may result in you losing trace
records when the buffer becomes full because RTA-TRACE2.1 will suspend

RTA-TRACE2.1 Integration 271

tracing until the buffer is emptied. However, you can tell RTA-TRACE2.1 to
check for available data and make it ready for transmission before the trace
buffer becomes full by calling Os_CheckTraceOutput().

To ensure that the trace buffer is uploaded as quickly as possible you should
call Os_CheckTraceOutput() as often as you can. A good place to make the
call2 is in the Os_Cbk_Idle() callback as shown in Code Example 17.3 shows
how the callback might look in your code.

FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle(void)
{
#ifdef OS_TRACE
Os_CheckTraceOutput();

#endif
return TRUE;

}

Code Example 17.4: Checking if data is available for transmission

Os_CheckTraceOutput() has a short execution time so there is no signifi-
cant overhead on the application if it gets called more frequently than strictly
necessary.

When data is available for transmission RTA-TRACE2.1 signals this through
the callback Os_Cbk_TraceCommDataReady(). An implementation of this
callback is provided in the RTA-OS3.x library. However, when using a se-
rial link it is recommended that you provide your own implementation of
Os_Cbk_TraceCommDataReady() to start the communication process.

RTA-TRACE2.1 provides two mechanisms to transmit data from the target:

1. Asynchronous Dump - transmit the available buffer in single operation.

2. Byte-wise - transmit the available buffer a byte at a time.

Asynchronous Dump

A trace buffer dump is made using the RTA-TRACE2.1 API
Os_TraceDumpAsync(). The call takes a function name as a parameter.
The function must be able to transmit a byte of data over the serial line.

You should only call Os_TraceDumpAsync() when there is data
available which means the call should be made from the
Os_Cbk_TraceCommDataReady() callback. This means you need to pro-
vide an implementation of Os_Cbk_TraceCommDataReady() to override
the one provided in the RTA-OS3.x library. Code Example 17.5 shows the
implementation of a trace buffer dump.

2Assuming that there is enough slack time available in your system that the callback runs.

272 RTA-TRACE2.1 Integration

void TransmitByte(uint8 val) {
while(!tx_ready) {/* Wait for space in serial device */}
transmit(val) ;

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {
Os_TraceDumpAsync(TransmitByte);

}

Code Example 17.5: Implementing a Trace Buffer Dump

Byte-Wise Transmission

Byte-wise transmission feeds one byte of the trace buffer at a time to the
serial device. The RTA-TRACE2.1 API call Os_UploadTraceData() is made to
transfer a byte of the trace buffer to the serial device. You need to make the
call often enough to ensure that data is transmitted. The call can be made
from anywhere in you application code, but you need to be aware that if it
is made from a higher priority task then it will affect the responsiveness of
lower priority tasks.

If there is data waiting then Os_UploadTraceData() attempts to queue the
byte for sending as follows:

1. The callback Os_Cbk_TraceCommTxReady() is made to check if there is
space in the serial device’s buffer.

2. If space is available, then the callback Os_Cbk_TraceCommTxStart() is
made to signal that transmission is about to start. If there is no space
then the call returns immediately.

3. The callback Os_Cbk_TraceCommTxByte() is made to actually transmit
the byte

4. The callback Os_Cbk_TraceCommTxEnd() is made to signal that trans-
mission has completed

The RTA-TRACE2.1 serial ECU link can operate in either interrupt or polling
mode. Interrupt mode prioritizes communication at the expense of the ap-
plication’s timing characteristics. Polling mode prioritizes the application’s
timing behavior at the possible risk of some loss of trace data. In general it is
recommended to use polling mode and if necessary set target-side triggers
and filters to generate a smaller volume of data (see Section 17.2.1).

Whichever transmission mode you choose, you always need to provide im-
plementations of the four callback functions:

RTA-TRACE2.1 Integration 273

1. Os_Cbk_TraceCommTxReady()

2. Os_Cbk_TraceCommTxStart()

3. Os_Cbk_TraceCommTxByte()

4. Os_Cbk_TraceCommTxEnd()

The following sections explain what these callbacks need to do and how to
construct the polled or interrupt mode driver.

Polling Mode

Polled mode requires that you make regular calls to Os_CheckTraceOutput()
and Os_UploadTraceData() to ensure data in the trace buffer is made avail-
able to upload and then uploaded before the trace buffer becomes full. Typ-
ically, it is sufficient in most system to do this from RTA-OS3.x’s idle mecha-
nism, Os_Cbk_Idle(), so that when you application has nothing else to do it
can be uploading the trace buffer as a ‘background’ activity.

If you are using RTA-TRACE2.1 in free-running mode then you must
call Os_CheckTraceOutput() regularly. If this is not called in a timely
fashion then Os_UploadTraceData() will not have any data to trans-
mit. Failing to call Os_CheckTraceOutput() regularly will result in the
trace buffer becoming full. If this occurs then RTA-TRACE2.1 will sus-
pend tracing until the buffer has been emptied or partially emptied and
Os_CheckTraceOutput() has been called.

You need to provide implementations of the callbacks
Os_Cbk_TraceCommTxReady() and Os_Cbk_TraceCommTxByte(). It is
not necessary to do anything for Os_Cbk_TraceCommTxStart() and
Os_Cbk_TraceCommTxEnd() callbacks, but ‘dummy’ implementations need
to be provided.

Code Example 17.6 shows a typical polled driver implementation.

FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle(void)
{
#ifdef OS_TRACE
Os_CheckTraceOutput();
Os_UploardTraceData();

#endif
return TRUE;

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxStart(void){
/* Do nothing */

}

274 RTA-TRACE2.1 Integration

FUNC(boolean, OS_APPL_CODE) Os_Cbk_TraceCommTxReady(void){
return (serial_device_has_space());

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 byte){
serial_device_transmit_byte(byte);

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxEnd(void){
/* Do nothing */

}

Code Example 17.6: Polled Transmission

Interrupt Mode

Trace data throughput can be optimized by using the serial module’s ‘Trans-
mit Complete’ interrupt and a user-supplied interrupt handler that calls
Os_UploadTraceData(). This means that data transmission takes prece-
dence over task execution. Interrupt mode is therefore best suited to bursting
and triggered modes where data transmission takes place after trace record-
ing has stopped.

It is not recommended to use interrupt transmission in free-running
mode because handing the transmit complete interrupt will affect the
timing behavior of the system.

When RTA-TRACE2.1 detects that the trace data buffer is ready for transmis-
sion in the callback Os_Cbk_TraceCommDataReady() is called. You must call
Os_UploadTraceData() to start the transmission of the trace data.

You will need to configure an RTA-OS3.x interrupt (either Category 1 or Cate-
gory 2) using rtaoscfg and provide an implementation of the handler.

As with polled mode, implementations of the callbacks
Os_Cbk_TraceCommTxReady() and Os_Cbk_TraceCommTxByte() are re-
quired. The functionality of these callbacks will be identical to the ones you
would write for a polled mode driver.

Interrupt mode uses the callbacks Os_Cbk_TraceCommTxStart() and
Os_Cbk_TraceCommTxEnd() to enable and disable the transmit interrupt.

Code Example 17.7 shows a typical polled driver implementation.

ISR(SerialTxInterrupt){
Os_UploadTraceData();
dismiss_serial_tx_interrupt();

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {

RTA-TRACE2.1 Integration 275

Os_UploadTraceData();
}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxStart(void){
enable_serial_tx_interrupt();

}

FUNC(boolean, OS_APPL_CODE) Os_Cbk_TraceCommTxReady(void){
return (serial_device_has_space());

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 byte){
serial_device_transmit_byte(byte);

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxEnd(void){
disable_serial_tx_interrupt();

}

Code Example 17.7: Interrupt Transmission

Mode Summary

The following table gives a summary of what needs to be implemented for
polling and interrupt-driven modes of operation.

Callback Polled-Mode Interrupt Mode

Os_Cbk_TraceCommTxStart empty Enable Tx interrupt

Os_Cbk_TraceCommTxReady Check for space in
serial device

Check for space in
serial device

Os_Cbk_TraceCommTxByte Transmit a byte Transmit a byte

Os_Cbk_TraceCommTxEnd empty Disable Tx interrupt

Os_Cbk_TraceCommDataReady empty Call
Os_UploadTraceData();

17.5 Summary

• RTA-OS3.x can automatically instrument the kernel library to generate
RTA-TRACE2.1 profiling information.

• The instrumented kernel logs trace data to an on-target memory buffer.

• The buffer can be emptied by ‘pulling’ the data out using a third-party
debugger or by ‘pushing’ the data out over a serial communication link.

• Further information about RTA-TRACE2.1 ships with your RTA-TRACE2.1
product.

276 RTA-TRACE2.1 Integration

18 Protected Systems

The AUTOSAR architecture has been designed to support the integration of
software from multiple suppliers onto the same ECU. This has many advan-
tages in vehicle systems design, principally that fewer more powerful ECUs
can be used in a vehicle, reducing cost and increasing electrical system reli-
ability.

However, such benefits also bring new challenges. When an ECU contains
multiple, logically distinct applications that share the same processor then it
is possible that one application may fail due to a fault in another application.

A badly behaved application may (accidentally or deliberately):

• overwrite memory belonging to another application

• access objects used by another application (for example activate a task,
cancel an important alarm

• overwrite memory used by the OS, resulting in system-wide instability or
other problems

• use more time than was assumed when the applications were integrated,
either by running for too long or by running too often

• use peripherals that it should not access

• try and use OS API calls that have system-wide impact (for example
ShutdownOS())

For safety-critical systems, such fault propagation should be minimized (and
preferably eliminated entirely). The development of a safety-case is much
easier if individual application safety cases can be integrated into an overall
safety case. This is only feasible if it can be demonstrated that a fault in one
application cannot propagate beyond its own boundary and cause a fault in
another, unrelated, application.

Even if a safety-critical system is not being built, application suppliers can
only be expected to take responsibility (and liability) for their applications
failing if they can be assured that their applications cannot be incorrectly
blamed for failures.

To prevent unexpected behavior it is necessary to provide mechanisms to
protect applications in the system. AUTOSAR OS R3.x provides three types of
protection:

Protected Systems 277

Timing Protection can be used to enforce temporal separation between
tasks and ISRs by enforcing pre-defined timing constraints on their run-
time behavior. This is described in Chapter 19

Service Protection can be used to prevent applications from using API calls
to manipulate the objects owned by other applications. This is described
in Section 20

Memory Protection can be used to enforce spatial separation between
tasks and ISRs. This prevents one task or ISR from corrupting data used
by other tasks and ISRs. This is described in Chapter 21

Service and memory protection need to define the protection boundary (i.e.
the scope of the protection scheme). In AUTOSAR OS R3.x the protection
boundary is defined by using an OS-Application. OS-Applications are de-
scribed in Chapter 20.1.

Protection is only possible for objects that are managed by the OS. This
means that it is not possible to provide any protection against faults in Cate-
gory 1 ISRs.

It is highly recommended that Category 1 ISRs are not used in protected
systems.

18.1 Customized Protection Schemes

Recall from Section 2.1.2 that all OS features are assigned to Scalability
Classes in AUTOSAR OS R3.x. The following table summarizes the permit-
ted combinations of protection features as follows:

Feature SC1 SC2 SC3 SC4

Core OS 3 3 3 3

Memory Protection 7 7 3 3

Service Protection 7 7 3 3

Timing Protection 7 3 7 3

In addition to the AUTOSAR OS R3.x Scalability Classes, RTA-OS3.x allows the
selection of a higher class and then the de-selection of certain features in the
class. This gives four additional protection subclasses:

278 Protected Systems

Figure 18.1: Optimizing Scalability Class Features

Feature SC1 SC2 SC3’ SC3” SC3 SC4’ SC4” SC4

Core OS 3 3 3 3 3 3 3 3

Timing Protec-
tion

7 3 7 7 7 3 3 3

Service Protec-
tion

7 7 7 3 3 7 3 3

Memory Pro-
tection

7 7 3 7 3 3 7 3

RTA-OS3.x provides this flexibility so that applications can optimize their use
of protection features. For example, if you need a system to run tasks in
different processor modes because this provides adequate protection against
non-privileged tasks accessing critical parts of your hardware, but you do not
need memory protection, then this can be achieved by configuring Scalability
Class 3 and then choosing to omit memory protection.

Figure 18.1 shows how the Scalability Class optimizations are selected in RTA-
OS3.x.

This also means that when you are building critical systems, but your safety
case does not require the use of certain OS features, these features can be
removed from the OS, avoiding any problems with justifying the use of un-
used code in the kernel build.

18.2 Handling Protection Errors

When RTA-OS3.x detects that an application has attempted to violate a de-
fined protection boundary, the default reaction is to call ShutdownOS(), pass-
ing in the type of protection error that has occurred. AUTOSAR OS R3.x de-
fines five protection errors:

Protected Systems 279

Figure 18.2: Configuring the Protection Hook

Error Code Description

E_OS_PROTECTION_MEMORY A memory protection violation has oc-
curred.

E_OS_PROTECTION_TIME A timing execution time error has oc-
curred. A task or ISR has executed for too
long.

E_OS_PROTECTION_ARRIVAL A timing arrival rate error has occurred. A
task or ISR has been activated or arrived
more frequently than allowed.

E_OS_PROTECTION_LOCKED A timing locking error has occurred. A re-
source may have been locked for too long,
or interrupts may have been disabled for
too long.

E_OS_PROTECTION_EXCEPTION A software exception has occurred.

However, it is not always appropriate to shutdown the entire OS. If you have
multiple applications executing then you may want to simply shut down the
faulty application and leave the correctly functioning applications running.
You might even just want to log the error (for example when debugging) but
have the OS ignore the problem.

These cases can be handled by configuring and implementing a Protec-
tion Hook (ProtectionHook()) which is called instead of directly calling
ShutdownOS(). When called, the protection hook is passed the type of er-
ror which has occurred so that appropriate corrective action can be taken.
Figure 18.2 shows how the protection hook is enabled.

If you enable the protection hook then you must provide an implemen-
tation. If you do not provide an implementation then your program will
not link correctly. The protection hook runs in the context of the OS and
must therefore be trusted code.

The protection hook needs to identify which error has occurred and then tell
RTA-OS3.x what action to take in response. AUTOSAR OS R3.x defines a set

280 Protected Systems

of actions, however certain actions are only possible in response to certain
errors:

Action Description

PRO_IGNORE Ignore the error. This is only possible for
E_OS_PROTECTION_ARRIVAL.

PRO_TERMINATETASKISR Forcibly terminate the task or ISR that
caused the error.

PRO_TERMINATEAPPL Forcibly terminate the application which
owns the task or ISR that caused the prob-
lem, but do not activate the application’s
restart task.

PRO_TERMINATEAPPL_RESTART Forcibly terminate the application that
owns the task or ISR that caused the prob-
lem. Activate the application’s restart
task.

PRO_SHUTDOWN Shutdown the OS by calling
ShutdownOS().

The action required is passed back to the OS using the return value of the
ProtectionHook(). RTA-OS3.x will do the requested action. The protection
hook can also use OS API calls to work out which task or ISR caused the error
and to which OS-Application it belongs .

Placing the choice of fault reaction in the user domain provides a high de-
gree of flexibility in how the errors are handled because the action can be
determined based on:

• which error has occurred

• the task or ISR that cause the error

• the OS-Application to which the task or ISR belongs

Code Example 18.1 shows you the usual structure of the ProtectionHook().

FUNC(ProtectionReturnType, OS_APPL_CODE)
ProtectionHook(StatusType FatalError) {
ProtectionReturnType Action = PRO_SHUTDOWN;

if (GetISRID() != INVALID_ISR) {
/* Always shutdown if a faulty interrupt */
Action = PRO_SHUTDOWN;

} else {
switch (FatalError) {

case E_OS_PROTECTION_MEMORY:
Action = PRO_TERMINATETASKISR;

Protected Systems 281

Figure 18.3: Protection Hook fallback actions

break;
case E_OS_PROTECTION_TIME:

Action = PRO_TERMINATEAPPL;
break;

case E_OS_PROTECTION_ARRIVAL:
Action = PRO_IGNORE;
break;

case E_OS_PROTECTION_LOCKED:
Action = PRO_TERMINATEAPPL;
break;

case E_OS_PROTECTION_EXCEPTION:
Action = PRO_SHUTDOWN;
break;

}
}
return Action;

}

Code Example 18.1: Suggested Structure of the Protection Hook

18.2.1 Fallbacks

When an object cannot be associated with an error, or when the wrong action
is returned in response to an error, AUTOSAR OS R3.x will fall back to an
alternative action. Figure 18.3 shows the possible fallback cases.

18.3 Forced Termination

18.3.1 Tasks and ISRs

When a Task or ISR is forcibly terminated, RTA-OS3.x will automatically re-
lease all locked resources and remove all interrupt locks held by that Task or
ISR.

282 Protected Systems

In addition, when a currently-running ISR is forcibly terminated RTA-OS3.x
calls Os_Cbk_Terminated_<ISRName> which must then clear the pending flag
for the terminated ISR. Failing to clear the interrupt-pending flag will cause
the interrupt to be re-entered when the processor priority is lowered.

An implementation of Os_Cbk_Terminated_<ISRName> must be provided for
each ISR in the following circumstances:

• Timing protection is configured;

• Memory protection is configured;

• a system uses TerminateApplication().

18.3.2 OS-Applications

The following actions are done when an OS-Application is terminated:

• each task and ISR owned by the OS-Application is forcibly terminated (see
Section 18.3.1).

• all running alarms owned by the OS-Application are canceled.

• all running schedule tables owned by the OS-Application are stopped
(note that this may result in a next-ed schedule table owned by the OS-
Application being left in the SCHEDULETABLE_NEXT state).

• all interrupt sources of ISRs owned by the OS-Application are disabled
(see Section 18.3.3).

18.3.3 Disabling Interrupt Sources

Disabling interrupt sources has the same issue as clearing the interrupt pend-
ing flag - RTA-OS3.x knows nothing about the peripheral itself because it is
correctly decoupled from the hardware to provide minimum dependencies.
However, the system integrator knows which peripheral (or peripherals) is
handled by a particular ISR, so RTA-OS3.x expects to find a callback that can
be used to disable the interrupt source.

Interrupt source control is not standardized in AUTOSAR OS R3.x so this
model is not necessarily portable to other implementations.

The callback has the form Os_Cbk_Disable_<ISRName>. An implementa-
tion of this callback must be provided for each ISR in a system where
TerminateApplication() is used. Code Example 18.2 shows how such a
callback might be programmed.

Protected Systems 283

FUNC(void, OS_APPL_CODE) Os_Cbk_Disable_MyISR(void){
DEVICE_CTRL |= SET_MASK_BIT;

}

Code Example 18.2: Disabling an ISR source

Interrupt disable callbacks need to be trusted code. RTA-OS3.x executes
the callbacks at OS level and with the same access rights as the OS
itself.

18.4 Generating a Skeleton ProtectionHook()

RTA-OS3.x can generate the framework for the ProtectionHook() that in-
cludes checking for all types of protection error.

The framework protectionHook()is generated using the following rtaosgen
command line:

C:>rtaosgen --samples:[ProtectionHook] MyConfig.xml

This generates a protection hook in Samples\Hooks\ProtectionHook.c that
you can use in your application. If the file is already present, then rtaosgen
will generate a warning. If you want to overwrite an existing file, then you
can use:

C:>rtaosgen --samples:[ProtectionHook]overwrite MyConfig.xml

18.5 Summary

• When applications share the same processor, faults in one application
can propagate to another application, causing it to fail.

• AUTOSAR OS R3.x provides three types or protection mechanisms to pre-
vent fault propagation.

• Timing Protection

• Service Protection

• Memory Protection

• Attempted violations of the protection boundaries result are detected by
RTA-OS3.x

• The reaction to protection faults is user-programmable using the
ProtectionHook()

284 Protected Systems

19 Timing Protection

Timing protection is provided in Scalability Classes 2 and 4. It is independent
of whether or not OS-Applications are configured.

In a Scalability Class 2 configuration, timing protection can be applied to tasks
and ISRs as required - it is permitted to omit the configuration of protection
for objects that work correctly.

In a Scalability Class 4 configuration, all tasks and ISRs in non-trusted OS-
Applications must define timing protection attributes. Tasks and ISRs in
trusted OS-Applications can optionally define timing attributes.

19.1 What is a timing fault?

A timing fault occurs in a real-time system when a task or ISR misses a dead-
line. A deadline is a statement of the longest acceptable time between the
task or ISR being released into the system and it completing its execution. For
tasks, this is typically the time between activation and termination. For ISRs,
this is typically the time between the interrupt occurring and the interrupt
handler returning.

The time required for a task or ISR to complete its processing is called the
response time. Typically we are interested in the worst-case response time
- the longest time it will ever take the task or ISR to complete. A deadline is
satisfied if the response time is less than or equal to the deadline. Figure 19.1
shows how response time is related to the deadline.

In a preemptive real-time system, the response time for a task or ISR com-
prises three different aspects of time:

Execution Time which is the time the task (or ISR) itself takes to execute,
excluding all preemptions.

Interference Time which is the amount of time for which a task (or ISR) is
preempted by higher priority tasks (or ISRs) executing in preference.
This is determined by how often higher priority tasks execute (their ar-
rival rate) and how long they run for (their execution times).

Blocking Time which is how long a task (or ISR) is prevented from running
because a lower priority task (or ISR) has locked a shared resource or
disabled interrupts

You can calculate response times, and check whether deadlines can be met,
using an analytical technique called schedulability analysis. A full discussion
of schedulability analysis is outside the scope of this guide, but you can learn
more about this topic in the Analysis Visualizer User Guide which explains

Timing Protection 285

Figure 19.1: Relationship between the response time and the deadline

how to model systems for analysis and use the schedulability analysis tools
supplied with RTA-OS3.x.

19.2 Meeting Deadlines at Runtime

19.2.1 Why deadline monitoring is not sufficient

One solution to the problem of missed deadlines is deadline monitoring,
where each task and ISR is associated with a deadline and the OS checks
whether the deadline is exceeded at runtime. In a preemptive OS like AU-
TOSAR OS R3.x this solution can tell you that a task or ISR misses a deadline,
but cannot tell you the cause of the overrun.

Deadline monitoring cannot identify which task is at fault because the re-
sponse time includes the interference and blocking times - both of which are
dependent on other tasks in the system. If any of these other tasks execute
for longer than expected, then the task being monitored will have a longer
response time. In consequence, a task may miss its deadline even though it
is executing correctly. Note that it is impossible to tell which higher priority
task (or tasks) is at fault - deadline monitoring simply cannot tell you.

Consider a system with three tasks with the following characteristics:

Task Priority Execution Time Period/Deadline

A High 1ms 5ms
B Medium 3ms 10ms
C Low 5ms 15ms

Assume that all tasks are released at the same time zero and that the dead-
lines are equal to the period of the tasks. This system models an AUTOSAR
OS system with basic, non-queued tasks (BCC1) driven by alarms with the

286 Timing Protection

specified period and which were all started at the same time (e.g. using
SetAbsAlarm(<Alarm>,<SameTime>,<Period>).

Figure 19.2(a) shows the intended behavior: all tasks execute correctly, and
all meet their deadlines.

Figure 19.2(b) shows the same set of tasks, but this time Tasks A and B some-
times execute for too long and the second arrival of Task B occurs 2 ticks
before specified. In this case, Tasks A and B both meet their respective dead-
lines, even though they demonstrate incorrect behavior, but Task C fails to
meet its deadline even though it is the only task in the system that executes
correctly.

Deadline monitoring cannot help to prevent timing problems in a preemptive
OS because it allows timing faults to propagate around the system until they
appear as failures (missed deadlines). In AUTOSAR OS R3.x, where timing
violations are handled by terminating the offending object, this is a significant
safety risk.

19.2.2 Meeting Deadlines and Identifying Violators

An alternative approach to deadline monitoring is to guarantee upper (or
lower) bounds on the factors determining response times:

1. the worst case (longest) execution time of tasks and ISRs

2. the worst case (longest) time for which each standard resource is held

3. the worst case (longest) time for which interrupts are disabled

4. the worst case (shortest) time between task activations (or resumptions
from waiting)

5. the worst case (shortest) time between occurrences of an ISR

This is the scheme used by AUTOSAR OS R3.x to provide timing protection.
Even though there are 5 aspects to control, there are two types of protection
mechanism that need to be used:

execution budget protection to prevent tasks and ISRs from executing
for longer than allowed, locking resources for longer than allowed or
disabling interrupts for longer than allowed.

time frame protection to prevent tasks and ISRs from occurring more fre-
quently than allowed.

Timing Protection 287

(a) Tasks A, B and C run correctly

(b) Tasks A and B at fault, but failure occurs in Task C

Figure 19.2: Impact of faulty timing behavior on lower priority objects

288 Timing Protection

This scheme provides protection against missed deadlines by actively check-
ing that each time a task or ISR executes it does so within the permitted
bounds of the timing model. Furthermore, the scheme will immediately iden-
tify the faulty object - timing faults are therefore stopped at the point they
occur instead of propagating through the system.

19.3 Execution Budgets and Time Frames

Each task and ISR can optionally define timing protection parameters. By
default, these parameters are undefined and no timing protection is applied
by RTA-OS3.x.

Basic timing protection requires that you define:

1. the execution budget

2. the time frame

All AUTOSAR OS R3.x timing protection parameters are measured in
seconds.

The timing protection model of AUTOSAR OS R3.x is intrinsically linked with
the state model of the OS. Figure 19.3 shows how these two models interact.

Timing protection for ISRS has a similar three-state model to basic tasks.

19.3.1 Execution Budgets

The execution budget captures the worst-case execution time of a task or
ISR for a single invocation. This is the longest time for which the task or
ISR executes. It includes the time spent in hook routines and the time spent
making OS API calls.

Execution time is measured as follows:

Basic Tasks The net time a task spends in the RUNNING state without enter-
ing the SUSPENDED state.

Extended Tasks The net time a task spends in the RUNNING state without
entering the SUSPENDED or WAITING state. An extended task executing
the WaitEvent() API call to wait on an event which is already set is said
to have entered the WAITING state.

Note that the execution budget for an extended task must only specify
the longest time between starting and the first call to WaitEvent(),
successive calls to WaitEvent() or between WaitEvent() and
TerminateTask(). For example, in Code Example 19.1 you would set

Timing Protection 289

Figure 19.3: Execution time protection and OS state transitions

290 Timing Protection

Figure 19.4: Configuration of the execution budget and time frame

the execution budget for the task to 200ms as this is the maximum time
that the task will execute without entering the SUSPENDED or WAITING
state.

#include <Os.h>
TASK(ExtendedTask){

/* 10ms */
WaitEvent(Event1);
/* 200ms */
WaitEvent(Event2);
/* 50ms */
WaitEvent(Event3);
/* 120ms */
TerminateTask();

}

Code Example 19.1: Execution budget for extended tasks

ISRs The net time from the first to the last instruction of the user-provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Figure 19.4 shows the configuration of a 10ms execution budget.

Each time a task or ISR executes, RTA-OS3.x will check its execution time
against the configured execution budget. If the execution budget is exceeded
then a protection error occurs and RTA-OS3.x will call the ProtectionHook()
with E_OS_PROTECTION_TIME.

Detection of an overrun will occur at the next tick of the timing protec-
tion time reference. It is not possible to detect violations at a resolution
greater than that provided by the time reference.

Timing Protection 291

Figure 19.5: ProtectionHook() invocation

19.3.2 Execution Budget Detection Modes

RTA-OS3.x provides two ways to detect execution budget timing faults:

1. Active Detection is the default model in AUTOSAR OS R3.x. A budget
overrun attempt is detected as soon as possible and reported through
the ProtectionHook(). This is shown in Figure 19.3.2.

2. Passive Detection is a secondary model provided by RTA-OS3.x. A
budget overrun is detected on the next appropriate context switch.
For a task which is preempted, ProtectionHook() may be called
upon resumption of the task; for a task which terminates, the
ProtectionHook() may be called at task termination.

The Passive Detection model is not as rigorous as Active detection, and
will still allow timing errors to propagate - it is provided as a lower-
overhead optimization.

Passive detection is not part of the AUTOSAR OS R3.x standard.

Passive detection uses the same RTA-OS3.x functionality as time-monitoring,
but ProtectionHook() is called instead of Os_Cbk_TimeOverrunHook(). Al-
though passive mode detects errors later, it consumes fewer system re-
sources because it can be provided using the same time reference (stop-
watch) that is used for time frame protection.

19.3.3 Time Frames

The time frame captures the worst-case inter-arrival time. An inter-arrival
time is used to indicate the minimum time between task executions and is
measured as follows:

292 Timing Protection

Basic Tasks The time between successively entering the READY state from
the SUSPENDED state. Activation of a task always represents a new ar-
rival. This applies in the case of multiple activations, even if an existing
instance of the task is in the RUNNING or READY state.

Extended Tasks The time between successively entering the READY state
from the SUSPENDED or WAITING states. Setting an event for a task in
the WAITING state represents a new arrival if the task is waiting on the
event. Waiting for an event in the RUNNING state which is already set
represents a new arrival.

ISRs The time between successive occurrences of an interrupt.

Figure 19.4 shows the configuration of a 50ms time frame.

Note that time frame protection still allows you to have queued tasks acti-
vations. Task queuing captures how many pending activations are allowed
independently of when the activation occur. Time frame protection controls
how often things can be added to the queue.

Each time a task or ISR arrives, RTA-OS3.x logs the arrival time. This marks
the start of a new time frame. If the time since the last arrival is shorter than
the configured time frame then a protection error occurs and RTA-OS3.x will
call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL.

The execution budget should always be less than the time frame.

If the execution budget is longer than the timeframe then there will never
be enough time to execute the task or ISR to completion. The ratio of the
execution budget to the time frame gives the worst case CPU utilization, so
you can do the following simple checks to identify whether your configuration
is incorrect:

• Is the utilization of each task and ISR less than 100%?

• Is the sum of utilizations for all tasks and ISRs less than 100%?

If the answer to either of these question is “Yes” then you have defined a
system which will take more time than there is available and you should re-
check your configuration1.

Timing Protection 293

Figure 19.6: Global configuration of timing protection

19.4 Configuring Timing Protection

Figure 19.4 shows the global timing-protection configuration page. The con-
trols function as follows:

Timing Protection Interrupt Declare a Category 1 ISR to be used to
support timing protection. If an ISR is declared then Active tim-
ing protection is enabled, otherwise Passive timing protection is
used (See Section 19.3.2). The ISR declared here must call
Os_TimingFaultDetected. You are also responsible for implementing
the Os_Cbk_SetTimeLimit and Os_Cbk_SuspendTimeLimit callbacks
as appropriate for the interrupt source.

Omit Timing Protection Under normal circumstances, timing protection is
enabled when any Task or ISR is configured with timing protection val-
ues (see Section 19.5). This option allows timing protection to be glob-
ally disabled without removing budgets individually from each Task and
ISR.

1A utilization less than 100% is not a guarantee that the system is schedulable, but a uti-
lization more that 100% is definitely not schedulable.

294 Timing Protection

19.5 Lock Budgets

Any task or ISR that disables interrupts or locks resources needs to declare
the worst-case (longest) time for the lock. If a lock is made multiple times
during execution, then only the longest lock needs to be specified. rtaoscfg
will show the resources that each task or ISR locks and you need only provide
budget.

The list will also include RES_SCHEDULER if it is available (see Section 6.7 for
more details). If the task or ISR does not lock RES_SCHEDULER then a budget
of zero should be set.

Figure 19.7 shows the lock times of the task shown in Code Example 19.2.

#include <Os.h>
TASK(ExtendedTask){

if (State == Initial) {
DisableOSInterrupts();
/* 0.5ms */
EnableOSInterrupts();
...
SuspendOSInterrupts();
/* 1ms - Longest OS lock */
SuspendOSInterrupts();

GetResource(Resource1);
/* 2ms - Longest Resource1 lock */
ReleaseResource(Resource1);

} else
GetResource(Resource2);
/* 1ms */
GetResource(Resource1);
/* 0.5ms */
ReleaseResource(Resource1);
/* 1ms */
ReleaseResource(Resource2);
...
GetResource(Resource2);
/* 3ms - Longest Resource2 lock */
ReleaseResource(Resource2);
...
DisableAllInterrupts();
/* 1ms - Longest ALL lock */
EnableAllInterrupts();

}
TerminateTask();

Timing Protection 295

Figure 19.7: Configuration of the lock budgets

}

Code Example 19.2: Lock budgets

Each time a task or ISR locks an interrupt or resource, RTA-OS3.x starts to
check the time it is held against the configured budget. If the lock is held for
longer than configured, then RTA-OS3.x will call the ProtectionHook() with
E_OS_PROTECTION_LOCKED.

19.6 Providing a Time Reference

Provision of a time reference for timing protection is not defined by the
AUTOSAR OS R3.x standard. RTA-OS3.x uses the same philosophy here
as elsewhere in the OS by providing a simple and convenient way for
you to provide the time reference. However, this is not portable to other
implementations.

RTA-OS3.x needs to be provided with a time reference that it can use for
measuring times for timing protection.

The time reference required depends on whether you use the active or
passive detection mode for execution budget overruns described in Sec-
tion 19.3.2.

19.6.1 Passive Detection

When using passive detection, RTA-OS3.x uses the “stopwatch” as the free-
running timer for monitoring time frames. You will need to provide an im-
plementation of the Os_Cbk_GetStopwatch() which provide access to your
timer of choice. The free running timer used for the stopwatch must have

296 Timing Protection

sufficient resolution to monitor the shortest execution times and sufficient
range to monitor the longest time frame.

Section 15.1.1 provides additional information on the “stopwatch”.

19.6.2 Active Detection

For active detection of budget overruns you need to provide two callbacks:

Os_Cbk_SetTimeLimit This callback is responsible for enabling the timing
interrupt and setting it to fire after the specified number of ticks.

Os_Cbk_SuspendTimeLimit This callback must cancel the timing interrupt,
returning the number of ticks remaining in the current time limit.

You must also provide the timing interrupt itself, which calls
Os_TimingFaultDetected when it fires.

Os_Cbk_SetTimeLimit, Os_Cbk_SuspendTimeLimit and
Os_TimingFaultDetected are described in greater detail (with examples) in
the Reference Guide.

19.6.3 Rounding Errors

Whichever form of time reference you provide, RTA-OS3.x will need to convert
the configured timing protection parameters, specified in seconds, into ticks
of the time reference source.

AUTOSAR OS R3.x requires timing protection parameters to be rounded down
to the nearest tick of the associated counter (or stopwatch).

This requirement is safe for time frames because if a system works with a
shortened time frame then it will also be work with a longer time frame. In
this case, timing protection will work on a tighter bound than the system
will actually exhibit (it will be expecting more interference that will actually
occur).

However, rounding an execution budget down causes it to become shorter
than the task or ISR may actually require. This can result in ‘false posi-
tives’ during development as objects will cause timing protection faults even
though they are actually behaving correctly.

To avoid any problems that occur due to this, execution times should be
rounded up at configuration time to the nearest tick and then one additional
tick added.

Timing Protection 297

19.7 Function-Level Timing Protection

RTA-OS3.x extends the AUTOSAR OS R3.x specification to allow time-limited
function calls. The option is enabled from the General Ô Optimizations
page of the OS Configuration Workspace.

The API CallTimeLimitedFunction() is very similar to the standard AU-
TOSAR OS R3.x API CallTrustedFunction(), but takes a third parameter
which specifies the time limit to be applied to the function call.

StatusType
CallTimeLimitedFunction(
TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams,
Os_TimeLimitType TimeLimit)

Code Example 19.3: CallTimeLimitedFunction API

19.8 Summary

• Timing protection is used to prevent deadlines being missed at runtime.

• AUTOSAR OS R3.x uses a mode of enforcement, where tasks and ISRs
cannot:

• execute for longer than specified.

• hold standard resources for longer than specified.

• disable interrupts for longer than specified.

• run more often than specified.

• Execution budgets, lock budgets and time frames need to be specified if
they are to be protected.

• RTA-OS3.x must be given a time reference that it can use to enforce the
protection scheme.

298 Timing Protection

20 Service Protection

In a protected system it is important that when a user application interacts
with the OS though API call this does not place the OS itself into an unknown
or unsafe state.

In Scalability Classes 3 and 4, RTA-OS3.x performs additional runtime checks
to prevent this from happening. There are three types of error which may
occur:

1. calling an API called with an invalid parameter or an out of range value

e.g. calling ActivateTask(ResourceName) or
SetRelAlarm(Alarm,MAXALLOWEDVALUE+1),0. This type of error is
checked when RTA-OS3.x is built using extended status. Therefore,
Scalability Classes 3 and 4 require that extended status is configured.

2. calling an API in the wrong context

e.g. calling ActivateTask() in the StartupHook() or making an API
call from a Category 1 ISR. This type of error is prevented by additional
error checking that is done only when Scalability Classes 3 or 4 is se-
lected.

3. failing to call an API that is required for correct operation

e.g. a task not calling TerminateTask(). This type of error is identified
by RTA-OS3.x at runtime and an appropriate default action is done, but
only when Scalability Classes 3 or 4 is selected.

In addition to these errors, when there are multiple applications integrated
onto the same ECU there it is also important that one application does not
place another application into an unknown state. There are two additional
types of error that can occur:

4. one application making an API call that impacts the behavior of other
applications in the system

e.g. ShutdownOS().

5. one application manipulating OS objects that belong to another appli-
cation

e.g. setting or canceling an alarm in an unrelated application.

RTA-OS3.x reports the occurrence of service protection errors through the
return value of API calls in the same way that other errors are returned. An
appropriate corrective action can be programmed in the application itself by

Service Protection 299

checking the return value or as part of system-wide error handling using the
ErrorHook() (see Section 13.1).

If you can ensure that your system is free from these type of errors (for
example, by offline analysis) then RTA-OS3.x allows you to use combine
Scalability Classes 3 and 4 with standard status to reduce the memory
footprint of the OS and increase its runtime performance.

20.1 OS-Applications

Any protection scheme needs to define the scope of protection. This means
that the protection boundary must be defined.

In the AUTOSAR OS systems we have see so far, there has been no way to
identify which Tasks, ISRs, Events, Resources, Alarms, Schedule Tables and
Counters etc. belong to which applications, or even which applications have
been integrated.

AUTOSAR OS R3.x provides a higher-level abstraction that allows OS ob-
jects to be grouped together into a cohesive functional unit called an OS-
Application.

OS-Applications are not related in any way to Application Modes (see
Section 12.2.2). OS-Applications create partitions between OS objects.
Application Modes control the mode of the complete OS and which
tasks, alarms and schedule tables are auto-started during StartOS().

An OS-Application is said to own the OS objects in the group. An OS-
Application is used to define the privilege level and the protection boundary
of the tasks and ISRs it owns. There are two types of OS-Application:

Trusted OS-Applications run in privileged (supervisor) mode, when sup-
ported by the processor. They have unrestricted access to memory, all
configured OS objects and the complete OS API. Timing protection is not
required but can be optionally configured. All trusted OS-Applications
have a different service protection boundary but share the same mem-
ory protection boundary - there is no difference in memory protec-
tion between declaring a multiple trusted OS-Applications and a single
trusted OS-Application.

Non-Trusted OS-Applications run in non-privileged (user) mode, when sup-
ported by the processor. Memory protection is mandatory in Scalability
Classes 3 and 4. Timing protection is mandatory in Scalability Classes 2
and 4. Tasks and ISRs in an OS-Application only have access to objects
owned by the same OS-Application by default.

300 Service Protection

Figure 20.1: Specifying the type of an OS-Application

Figure 20.2: Allocating tasks to an OS-Application

The OS itself is trusted.

OS-Applications are mandatory when using service protection. OS-
Applications are also used to define the scope of memory protection de-
scribed in Chapter 21. This means that OS-Applications must always be con-
figured then when building Scalability Class 3 or 4 systems.

There is limited control of OS-Applications at runtime - they can only termi-
nate themselves (and optionally restart).

20.2 Configuring OS-Applications

OS-Applications are defined at configuration time and are allocated a unique
name. An OS-Application must specify whether it is trusted or not. An OS
configuration can define as many OS-Applications as it requires.

Figure 20.1 shows how an OS-Application is configured as “Trusted” or “Non-
Trusted”.

20.2.1 Ownership of OS objects

When OS-Application are defined, each object in the system must be allo-
cated to exactly one OS-Application. Figure 20.2 shows how tasks are as-
signed by way of example. RTA-OS3.x shows when an object has already
been allocated to an OS-Application by identifying the current owner in brack-
ets after the name of the object. Objects that have not yet been allocated are
unmarked.

An object is moved from one OS-Application to another by moving it from the
“Available” column to the “In Use” column.

Service Protection 301

Figure 20.3: Access relations ships for OS objects

Objects can be freely allocated to any OS-Application.

If you have ignored the warning in Section 18 and are using Category 1
ISRs then they must belong to a trusted OS-Application.

20.2.2 Access to OS objects

You will typically assign interacting objects to the same OS-Application(i.e.
those that form a cohesive application)1. In particular note that tasks re-
leased by alarm actions or from schedule table expiry points should be as-
signed to the same OS-Application as the alarm or schedule table otherwise
they will not be accessible. Similarly, counters that drive alarms or schedule
tables should be allocated to the same OS-Application.

Figure 20.3 shows the possible ownership relationships between OS objects.
A solid arrow indicates that object X may need to access object Y. A dotted
arrow indicates indirect ownership and applies to events only. Any event is
accessible if the task using the event is accessible.

1It is possible to share objects between OS-Applications. This described in Section 20.3.

302 Service Protection

Figure 20.4: Incorrectly configured ownership causes configuration errors

The “Check Now” feature of rtaoscfg will perform a consistency check on
your configuration and report any conflicts in the error pane as shown in Fig-
ure 20.4.

It is not possible to identify all inconsistencies at configuration time. For
example, if task A calls ActivateTask(B) then task A will need access
to task B at runtime, but this cannot be identified from the OS configu-
ration.

20.3 Accessing Applications

All objects owned by the same OS-Application have access to each other.
Objects in the same OS-Application can use API calls to manipulate other
objects without needing any special declaration or configuration.

By default, RTA-OS3.x prevents access to objects across the protection
boundary, so each OS-Application, whether trusted or non-trusted, remains
isolated from other OS-Applications as shown in Figure 20.5.

It is possible, however, for an object in one OS-Application to grant access
to other OS-Applications at configuration time. An OS-Application which is
granted access to an object is called an accessing application.

Access rights are granted for an OS-Application.This means that every
object in the accessing OS-Application can manipulate the object which
grants access. It is not possible in AUTOSAR OS R3.x to grant access on
a per-object basis.

Events owned by tasks are a special case - if a task is accessible then so
are all the events that can be set for the task. Events do not need to be
configured as accessible individually.

Service Protection 303

Figure 20.5: Isolated OS-Applications

304 Service Protection

Figure 20.6: Configuring the accessing applications for a task

Any object in an accessing application can use the object granting access,
either at configuration time or at runtime. For example, if a task TaskA grants
access to OS-Application OtherApp then:

• an alarm in OtherApp can activate TaskA in the alarm action

• any task or ISR in OtherApp can call ActivateTask(A)

Figure 20.2 shows how the accessing applications are configured for a task.
Access can be granted by moving a task from “Available” to “In Use”.

Granting access to other OS-Applications creates holes in the protection
boundary. It is your responsibility to verify whether granting of access
to an OS-Application is safe.

20.3.1 Hidden Accesses

All objects within an OS-Application are accessible to each other. When an
object grants access to another OS-Application, and that object manipulates
other objects in its owning OS-Application, there is a route by which the ac-
cessing application can indirectly manipulate those other objects.

For example, if an alarm which activates a task is made accessible, then any
object in the alarm’s accessing OS-Application can use the alarm to indirectly

Service Protection 305

Figure 20.7: Objects in the same OS-Application do not need to declare tran-
sitive access

Figure 20.8: Accessing an alarm from a counter and a task from an alarm

control whether the task is activated (or not). This relationship is shown in
Figure 20.7.

If the manipulated object is in another OS-Application then access needs to
be defined. For example, consider the case where a counter is owned by
one OS-Application, an alarm driven by the counter is owned by a second
OS-Application and the task activated by the alarm is owned by a third OS-
Application as shown in Figure 20.8.

In this case, the following accessing applications need to be defined:

• the alarm needs to be accessible to the counter by which it is driven.

• the task needs to be accessible by the alarm (so that the alarm can per-
form the action when it expires)

The same model is true for schedule tables, where every task in a different
OS-Application to the schedule table will need to define an accessing applica-
tion as illustrated by Figure 20.9.

306 Service Protection

Figure 20.9: Accessing tasks from a schedule table

20.3.2 Safety Risks

Every time an object declares an accessing OS-Application, it is actively
breaking the protection boundary provided by the OS-Application concept2.
This means that faults in the accessing application can propagate across the
protection boundary and create secondary (possibly more serious) problems
in the application granting access.

The ability to define accessing OS-Applications violates one of the basic
principles safety critical systems engineering - do not provide any un-
controlled route though which faults can propagate. You should avoid
defining accessing OS-Applications if you plan to build any type of criti-
cal system.

20.4 Identifying the Running OS-Application

OS-Applications do not have any state themselves, but are said to ‘running’ if
a task or ISR owned by the OS-Application is in the RUNNING state.

The identity of the running OS-Application is available at runtime using
GetApplicationID(). If this is called from a task or ISR then it will re-
turn the owning application. However the API call is of most use in system-
wide hook routines. Code Example 20.1 shows how it might be used in the
PreTaskHook().

FUNC(void, OS_APPL_CODE) PreTaskHook(void) {
ApplicationType RunningApplication;
RunningApplication = GetApplicationID();

switch (RunningApplication) {

2This is analogous to locking your house but providing people with a key. The more keys
your distribute, the less safe your house becomes.

Service Protection 307

case AppA:
...

case AppB:
...

default:
...

}
}

Code Example 20.1: Identifying the running OS-Application

20.5 Access and Ownership

The accessibility and ownership of OS objects can be checked at runtime in
two ways.

The first way is to check the return code of the API call. If a OS object is not
accessible at runtime, the API call will return the E_OS_ACCESS status code.
This can be checked at runtime and appropriate corrective action taken as
shown in Code Example 20.2.

TASK(FaultTolerant){
if (ActivateTask(MaybeAccessible) == E_OS_ACCESS) {

/* Task could not be activated */
}
TerminateTask();

}

Code Example 20.2: Checking access using status codes

The second way to check success rights is before an API call is attempted.
This can be done using CheckObjectAccess() as shown in Code Exam-
ple 20.3. The call can be used to check access to any type of object, but
must be told the type of the object that is passed in.

if CheckObjectAccess(GetApplicationID(),OBJECT_TASK,SomeTask) {
/* SomeTask is accessible */
ActivateTask(SomeTask);

}

Code Example 20.3: Checking access using an API

Similarly, the ownership of an OS object can be checked at runtime using
CheckObjectOwnership() as shown in Code Example 20.4. The call returns
the name of the OS-Application that owns an object.

if CheckObjectOwnership(OBJECT_TASK,SomeTask) ==
GetApplicationID() {
/* If we own SomeTask, then activate it */
ActivateTask(SomeTask);

308 Service Protection

}

Code Example 20.4: Checking object ownership

20.6 Terminating OS-Applications

An OS-Application can terminate itself using the TerminateApplication()
API call. This is similar in concept to TerminateTask(), but instead of termi-
nating the current instance of a task, it terminates the current instance of an
OS-Application.

The TerminateApplication() call takes a parameter which controls what
happens after termination:

• NO_RESTART terminates the OS-Application

• RESTART also terminates the OS-Application but tells RTA-OS3.x to acti-
vates a restart task to ’tidy-up’ the application’s state

Code Example 20.5 shows how the call might be used.

TASK(ApplicationChecker){
...
switch (ApplicationState) {

case Completed:
TerminateApplication(NO_RESTART);
break;

case TransientFaultDetected:
TerminateApplication(RESTART);
break;

case PersistentFaultDetected:
TerminateApplication(NO_RESTART);
break;

}
...

}

Code Example 20.5: Terminating an OS-Application

The current instance of an OS-application comprises the tasks and ISRs that
are running or ready (or preempted) and all alarms and schedule tables that
are running. When an OS-Application is terminated, RTA-OS3.x takes the fol-
lowing actions:

• each task and ISR owned by the OS-Application is forcibly terminated (see
Section 18.3.1).

• all running alarms owned by the OS-Application are canceled.

Service Protection 309

Figure 20.10: Configuring the restart task

• all running schedule tables owned by the OS-Application are stopped
(note that this may result in a next-ed schedule table owned by the OS-
Application being left in the SCHEDULETABLE_NEXT state).

• all interrupt sources of ISRs owned by the OS-Application are disabled
(see Section 18.3.3).

20.6.1 The Restart Task

If an OS-Application does not have any accessing applications, then termina-
tion ensures that every OS object owned by the OS-Application will not be
used until either the ECU is power-cycled or StartOS() is called again. In this
case, termination disables the OS-Application.

Alternatively, you may want to terminate an OS-Application in response
to some kind of internal error and the restart. However, because
TerminateApplication() forcibly terminates tasks and ISRs, the state of the
OS-application may be inconsistent. For example, the termination might have
occurred during a critical section and data might not be in a consistent state.

RTA-OS3.x does not know how to make this state consistent, but it can ac-
tivate a task owned by the OS-Application that can ‘clean up’ or re-initialize
the internal state.

This task is known as the restart task. It is a normal OS task and will run
according to its defined scheduling policy and priority level. Any task which
is owned by the OS-Application can be configured as the restart task.

Figure 20.10 shows how the restart task is configured.

The restart task will be activated:

310 Service Protection

• when TerminateApplication(RESTART) is called.

• if the OS-Application has attempted to violate the memory or
timing protection boundary and the ProtectionHook() returns
PRO_TERMINATEAPPL_RESTART.

20.6.2 Interaction with Accessing Applications

If an OS-Application has accessing applications, then they can interact with
the objects in a terminated OS-Application, for example by starting an alarm,
or activating a task, or locking a shared resource to enter a shared critical
section.

This is particularly dangerous because the accessing application does not
know whether the accessed application objects are operating on corrupt data
or not.

Even if the terminated OS-Application has a restart task and it has been acti-
vated, there is no guarantee that the restart task will run before an accessing
OS-Application with higher priority tasks (or ISRs) interacts with objects in the
terminated OS-Application. This can trigger failures in both the accessing ap-
plication, the terminated but partially restarted OS-Application or the wider
system.

It is possible with careful application design to avoid some of these problems,
for example by ensuring that restart tasks are dedicated tasks and are allo-
cated the highest priorities in the system (but note that this will not prevent
interaction problems with ISRs).

However, these type of problems are best avoided by not introducing them
into your OS-Application design - i.e. do not define any accessing applica-
tions.

20.7 OS-Application Hooks

An OS-Application is similar to a virtualized OS - it has its own lifecycle that
involves startup, shutdown and error handling.

At integration time, OS-Application specific code could be added to the
standard StartupHook(), ShutdownHook() and ErrorHook() for each OS-
Application. However, each time the integration changes these hooks would
need to be re-written.

AUTOSAR OS R3.x provides a more elegant solution to the problem of OS-
Application specific hook functionality by allowing each OS-Application to de-
fine application-specific hooks. These hooks have the same parameters as

Service Protection 311

Figure 20.11: Configuring application-specific hooks

Figure 20.12: Execution of Application-specific Startup Hooks

the system-wide hooks but they have a unique name derived from the name
of the OS-Application as follows:

<hook-name>_<os-application-name>

Figure 20.11 shows how the hooks can be enabled or disabled.

You must provide an implementation of any application-specific hook
you configure. If you do not provide an implementation then your pro-
gram will not link correctly.

The ordering of calls to OS-Application hooks is non-deterministic. Your
system must therefore not rely on calls being executed in any particular
order.

20.7.1 Startup Hook

Application-specific startup hooks are called after the system-wide
StartupHook() returns and before the scheduler is running. If more than
one OS-Application declares its own startup hook, then the ordering in which
the hooks are called is non-deterministic.

The hooks run with the access rights of the owning OS-Application - they are
trusted if the OS-Application is trusted and non-trusted otherwise.

Figure 20.12 shows the execution of the Startup Hook relative to the initial-
ization of RTA-OS3.x.

Code Example 20.6 shows how an application-specific startup hook should
appear in your code.

FUNC(void, OS_APPL_CODE) StartupHook_MyApplication(void) {
/* Startup hook code. */
EnableIOInterrupts();
EnableTimerInterrupts();

312 Service Protection

Figure 20.13: Execution of Application-specific Shutdown Hooks

...
}

Code Example 20.6: Application-specific Startup Hook

20.7.2 Shutdown Hook

Application-specific shutdown hooks are called when ShutdownOS() is called.
The hooks run before the system-wide ShutdownHook() is called. As with
the startup hook, if more then one OS-Application declares its own shutdown
hook, then the ordering in which the hooks are called is non-deterministic.
Similarly, the hooks run with the access rights of the owning OS-Application.

Figure 20.13 shows the execution of the Shutdown Hook relative to the call of
ShutdownOS().

Code Example 20.7 shows how an application-specific shutdown hook should
appear in your code.

FUNC(void, OS_APPL_CODE) ShutdownHook_MyApplication(void) {
/* Shutdown hook code. */
DisableIOInterrupts();
DisableTimerInterrupts();
WritePersistantDataToNVRAM();
...

}

Code Example 20.7: Application-specific Startup Hook

20.7.3 Error Hook

Each OS-Application can do localized error handling by defining an
application-specific error hook.

An application-specific error hook is called after the system-wide
ErrorHook() is called. The hook runs with the access rights of the owning
OS-Application.

Code Example 20.8 shows an application-specific error hook.

FUNC(void, OS_APPL_CODE) ErrorHook_MyApplication(StatusType
status) {

switch (status) {
case E_OS_ACCESS:

Service Protection 313

Figure 20.14: Declaring trusted functions

/* Handle error then return. */
break;

case E_OS_LIMIT:
/* Terminate the OS-Application and then restart it */
TerminateApplication(RESTART);

default:
break;

}
}

Code Example 20.8: Application-specific error hook

20.8 Trusted Functions

Trusted OS-Applications can export functions, called trusted functions, whose
purpose is to encapsulate functionality that needs to run in privileged mode
and make it available to non-trusted OS-Applications. For example, a trusted
function may be used to access peripheral hardware that can only be used
when the processor is in a privileged mode.

Trusted functions are another case where AUTOSAR OS R3.x allows you
to break the protection boundary of OS-Applications. You should exer-
cise caution when using them.

RTA-OS3.x needs to be told the names of the trusted functions which will be
exported by each trusted OS-Application. Figure 20.14 shows the declaration
of three trusted functions; FunctionX(), FunctionY() and FunctionZ().

20.8.1 Calling Trusted Functions

Trusted functions are called indirectly through the CallTrustedFunction()
API. This API provides the necessary wrapper functionality to move between
non-privileged and privileged modes (e.g. when calling the trusted function
from a non-trusted OS-Application). The call has the form:

CallTrustedFunction(<FunctionName>,<PointerToParameters>)

Note that RTA-OS3.x does not need to know either the number or the type
of the parameters because the function itself is responsible for doing any

314 Service Protection

parameter marshalling required. If the trusted function is parameter-less,
then this can be indicated using zero.

Code Example 20.9 shows some examples of how the mechanism can be
used:

/* Parameter-less function */
CallTrustedFunction(FunctionX,

(TrustedFunctionParameterRefType)0U);

/* Single parameter */
uint8 one_parameter 42;
CallTrustedFunction(FunctionY, &one_parameter);

/* Multiple parameters passed in a C struct */
struct {

uint32 parameter1;
bool parameter2;
float32 parameter3;
sint16 parameter4;

} multiple_parameters = {99,true,0.1,-42};
CallTrustedFunction(FunctionZ, &multiple_parameters);

Code Example 20.9: Calling trusted functions

20.8.2 Implementing Trusted Functions

You are responsible for providing the implementation of each trusted func-
tion and marshalling the parameters correctly. All trusted functions have the
following function prototype:

void FunctionName (<parameter type> *<name>)

They take a single reference parameter which is a pointer to the type of the
parameters and return void.

If the function needs to provide some return value then this needs to be done
using an ‘out’ parameter.

Code Example 20.10 shows how trusted function FunctionZ() from Code
Example 20.9might be implemented.

void FunctionZ (parameter_struct *local_struct)
{

if (local_struct.parameter1 < 100) {
...

}
}

Code Example 20.10: Implementing a trusted function

Service Protection 315

The trusted function itself can write to any memory location, so there
is the possibility that a non-trusted caller can corrupt the system state
using by calling a trusted function.

Some protection against this can be provided in the trusted function itself
by validating whether or not the caller is permitted to write to selected
locations using the Check[Task|ISR]MemoryAccess() API call.

20.9 Summary

• OS-Applications allow application software running on the same OS con-
figuration to be partitioned to prevent unwanted interactions.

• OS-Applications can be trusted and run in privileged (supervisor) mode
or can be non-trusted and run in non-privileged (user) mode.

• OS objects that share the same OS-Application have access to each other.
OS objects in other OS-Applications are denied access by default.

• Access can be granted to other OS-Applications at configuration time.

• Access and ownership can be checked at runtime so that systems can be
defensively programmed.

316 Service Protection

21 Memory Protection

Memory protection is provided when using Scalability Class 3 or 4. If a mem-
ory access violation is detected, RTA-OS3.x calls the ProtectionHook() with
status code E_OS_PROTECTION_MEMORY.

AUTOSAR OS’s memory protection model interacts with the OS-Application
service protection boundary as follows:

Trusted Os-Applications: Tasks and ISRs in trusted OS-Applications have
unrestricted access to all memory locations and can perform any oper-
ation on those locations that is permitted by the hardware1.

Non-trusted Os-Applications: Tasks and ISRs in non-trusted applications
have unrestricted access to their own memory locations and any data
owned by their owning OS-Application. However, they have (option-
ally) restricted read, write and execute access to other memory loca-
tions. Figure 21.1 shows the mandatory and optional restrictions for
non-trusted OS-Applications.

The following table summarizes the memory access restrictions defined
by AUTOSAR OS R3.x for Tasks and ISRS in trusted and non-trusted OS-
Applications:

1They can read, write and execute the contents of RAM locations but only read and execute
from ROM locations.

Figure 21.1: Memory protection restrictions for non-trusted OS-Applications

Memory Protection 317

Access Type Trusted Non-Trusted

Read Unrestricted (Optionally) cannot read from private data
belonging to other OS-Applications.

Write Unrestricted Cannot write to:

• RTA-OS3.x’s stack;

• RTA-OS3.x’s private data;

• private data belonging to other OS-
Applications;

• private data belonging to Tasks/ISRs in
different OS-Applications;

• the stack of Tasks/ISRs in different OS-
Applications;

• non-assigned peripherals;

• (optionally) private data belonging to
another Task/ISR in the same OS-
Application.

Execute Unrestricted (Optionally) cannot execute code from
other OS-Applications.

21.1 Hardware Limitations

The capability of the MPU on your hardware will define what protection model
is possible and this may mean that the AUTOSAR OS R3.x memory protection
model cannot be implemented practically.

MPUs typically will define a fixed (usually small) number of protection regions
called contexts and will define restrictions on the size of the memory region
that can be protected. Similarly, on many devices it may not be possible to
grant or deny access to peripherals on a per-peripheral basis.

Each context must be contiguous block of memory. The number of contexts
provided by your MPU therefore controls the number of distinct blocks of
memory that can be protected. For example, if you have a section of initial-
ized and non-initialized data and locate them in different areas of the memory
space, then two contexts will be required to protect them. However, if you
locate the sections adjacently then you will be able to use a single context to
protect both sections.

Even if there are large numbers of contexts are available, the minimum size
restriction, called the granularity, of contexts will also need to be considered.
On some devices, the granularity may be as little as 1 byte, on others it may
be a few kilobytes. In the latter case, if only a few bytes need to be protected,
then a block of memory equal to minimum granularity of a context would

318 Memory Protection

Figure 21.2: Impact of protection region granularity on wasted memory space

need to be allocated. This can be wasteful of memory. Figure 21.2 shows the
amount of space that would be wasted when protecting one byte on devices
with granularities of 2 bytes, 8 bytes and 16 bytes.

The granularity of your device may require you to aggregate memory sec-
tions in order to make the least wasteful use of the memory available.

21.2 AUTOSAR Limitations

The memory protection model defined by the AUTOSAR OS R3.x standard
may be too restrictive (or not restrictive enough) for your needs. You may,
for example, have multiple third party OS-Applications that you want to share
the same protection region, or you may want to assign different levels of
protection to different OS-Applications. These use-cases are not supported
by AUTOSAR OS R3.x.

To avoid these issues, RTA-OS3.x places the setup of the memory regions
and the programming of the MPU in the user domain using a callback mecha-
nism. Each time RTA-OS3.x performs a context switch that requires a switch
of the protected regions, it calls the Os_Cbk_SetMemoryAccess() callback
with the name of the Task or ISR that will be switched into and its owning OS-
Application. The callback is responsible for programming the MPU with the
required protection settings.

This model provides complete freedom, within the capabilities provided by
the hardware, to define whatever protection model is appropriate to your
needs. RTA-OS3.x simply applies the chosen scheme at the correct points

Memory Protection 319

in scheduling. Section 21.5 explains how this scheme works and how to get
started with sample implementations.

21.3 Defining and Using Memory Regions

You are responsible for defining memory sections and allocating data to them.
AUTOSAR already provides a standardized mechanism for this with the mem-
ory mapping concept. Memory sections can be defined in application code
and can be aggregated and named for linking using MemMap.h. You will then
need to use the linker control file to locate the regions accordingly. The same
scheme is used by RTA-OS3.x for memory protection.

Recall from Section 3.3.2 that BSW modules can define and allocate memory
into the sections using the START_ and END_ macros:

#define <Module>_START_SEC_<SectionName>
#include "MemMap.h"
/* Things to place in the section here */
#define <Module>_STOP_SEC_<SectionName>
#include "MemMap.h"

The user file MemMap.h defines how these logical sections are aggregated
into larger sections (when required) and how those aggregated sections are
defined using the compiler’s mechanism for placing data into sections:

/* Map OS code into the section containing all BSW code */
#ifdef <Module>_START_SEC_<SectionName>

#undef <Module>_START_SEC_<SectionName>
#define START_SECTION_<AggregatedSectionName>

#endif
...
/* Name the system section with a compiler primitive */
#ifdef START_SECTION_<AggregatedSectionName>

#pragma section code "aggregated_section"
#endif

The same model can be used by Tasks and ISRs in the application to place
their data sections and then aggregate this into regions.

This gives you a huge amount of flexibility in terms of how many sections you
define, what they are called and whether you decide to group data together
in your Task code or in the MemMap.h file.

21.3.1 Placing Task and OS-Application Data into the same section

In the simple case, assume that all data for all Tasks and their owning OS-
Application should be placed into the same memory region. Data needs to
be placed into the same section in your application code as shown in Code
Example 21.1.

320 Memory Protection

#include <Os.h>

/* Place all data in this file into the same section */
#define APP1_START_SEC_SHARED_DATA
#include "MemMap.h"
uint32 sVar;
uint32 aVar;
uint32 bVar;

Task(A){
...

}

Task(B){
...

}
#define APP1_STOP_SEC_SHARED_DATA
#include "MemMap.h"

Code Example 21.1: Placing Task and OS-Application data into the same
section

In MemMap.h the ‘virtual’ section APP1_START_SEC_SHARED_DATA is mapped
to a real section name using the mechanism supported by the compiler. Typ-
ically this is using compiler vendor specific pragmas. Code Example 21.2
shows how this can be done.

#ifdef APP1_START_SEC_SHARED_DATA
#pragma section data="APP1_data"

#endif

Code Example 21.2: Mapping to locator sections - same section

Figure 21.3(a) shows how all data is placed into the same section.

In this example, there is a single data section, APP1_data which contains the
program data. In practice, the compiler may place data into different sections
automatically. For example, zero initialized data is often placed in a section
called .bss.

You must ensure that the default memory sections used by the com-
piler/linker are accounted for in the pragmas in MemMap.h. Any vari-
ables that are allocated during compilation, but not expressly placed in
an named section, will be aggregated automatically and placed in the
standard sections.

Memory Protection 321

(a) Data located in
the same section

(b) Data located in
unique sections

Figure 21.3: Placing data into sections

21.3.2 Placing Task and OS-Application Data into unique sections

Now assume that you want to separate each Task’s data from the OS-
Application’s data. Code Example 21.3 shows how to place an OS-Application
shared data item and a Task-specific private data into individual sections.

#include <Os.h>

/* Place OS-Application shared data in one section */
#define APP1_START_SEC_SHARED_DATA
#include "MemMap.h"
uint32 aVar;

#define APP1_STOP_SEC_SHARED_DATA
#include "MemMap.h"

/* Place TaskA’s data in a different section */
#define TASKA_START_SEC_PRIVATE_DATA
#include "MemMap.h"
uint32 aVar;

#define TASKA_STOP_SEC_PRIVATE_DATA
#include "MemMap.h"

/* Place TaskB’s data in a different section */
#define TASKB_START_SEC_PRIVATE_DATA
#include "MemMap.h"
uint32 bVar;

#define TASKB_STOP_SEC_PRIVATE_DATA
#include "MemMap.h"

Task(A){
...

}

322 Memory Protection

Task(B){
...

}

Code Example 21.3: Placing Task and OS-Application data in unique sections

MemMap.h now needs to map each of these three sections as shown in Code
Example 21.4.

#ifdef APP1_START_SEC_SHARED_DATA
#pragma section data="APP1_data"

#endif
#ifdef TASKA_START_SEC_PRIVATE_DATA

#pragma section data="TaskA_data"
#endif
#ifdef TASKA_START_SEC_PRIVATE_DATA

#pragma section data="TaskB_data"
#endif

Code Example 21.4: Mapping to locator sections - unique sections

Figure 21.3(b) shows which data lives in which section.

Merging sections in MemMap.h

After carefully ensuring that all Tasks and application data can be located
separately, you may decide that you really did want to protect data at the
level of an OS-Application. In this case, all the data from the Tasks and the OS-
Application itself can be aggregated into a single linker section in MemMap.h
as shown in Code Example 21.5.

#ifdef APP1_START_SEC_SHARED_DATA
#undef APP1_START_SEC_SHARED_DATA
#define START_SECTION_ALL_NON_TRUSTED_DATA

#endif
#ifdef TASKA_START_SEC_PRIVATE_DATA

#undef TASKA_START_SEC_PRIVATE_DATA
#define START_SECTION_ALL_NON_TRUSTED_DATA

#endif
#ifdef TASKB_START_SEC_PRIVATE_DATA

#undef TASKB_START_SEC_PRIVATE_DATA
#define START_SECTION_ALL_NON_TRUSTED_DATA

#endif
...
/* Name the system section with a compiler primitive */
#ifdef START_SECTION_ALL_NON_TRUSTED_DATA

#pragma section data="APP1_data"
#endif

Code Example 21.5: Mapping to locator sections - Merged sections

Memory Protection 323

This version of MemMap.h achieves the same result as that shown in Code
Example 21.2, but the decision about how to group sections has been made
later inn the development process.

In this case (if your protection policy changes between different projects) the
only change you would need to make is to MemMap.h. Of course, this flexibility
is paid for by the additional complexity of marking up all your application’s
data as shown in Code Example 21.3. Of course, you are free to choose
a hybrid approach, for example placing Task data and ISR data in different
sections.

21.4 Locating

The regions you define in MemMap.h need to be accessible after linking. Typi-
cally this can be done in your linker control file by generated a label to mark
each section.

There are primarily two models that are used by linkers to specify a memory
region:

Base and Bound uses the base address of the section and the size (bound)
of the section. When the bound is added to the base, this gives the end
address of the section.

Start and End Address uses the base address of the section and the end
address of the section directly.

Both schemes can be supported providing that the start and end addresses
of each section can be identified. These addresses must be accessible at
runtime but are only known at the point the application is linked. Most linkers
allow labels to be defined that are associated with particular addresses. For
example, assuming that data is placed into individual sections but needs to
be located in the same region of memory, the sections could be aligned like
this:

label APP1_ram_start;
section APP1_data;
section TASKA_data;
section TASKB_data;

label APP1_ram_end;

You should try to minimize the number of memory sections you need
to protect at runtime as this will make your application simpler to un-
derstand and it will make context switches faster (because there will be
less programming of the MPU to do).

The labels define the symbolic names that will need to accessible to the
Os_Cbk_SetMemoryAccess() callback discussed in the following section.

324 Memory Protection

21.5 Interacting with an MPU or MMU

RTA-OS3.x places the programming of the MPU in the user domain. This pro-
vides complete flexibility in the protection model. For example, you might
want to have higher protection than offered by AUTOSAR OS R3.x (e.g. stop-
ping one OS-Application from reading data owned by another OS-Application)
or you might want to have lower protection (e.g. simply prevent erroneous
writes to OS-Application data).

When memory protection is configured, an implementation of the
Os_Cbk_SetMemoryAccess() callback function must be provided. RTA-OS3.x
will call this function each time the memory protection regions need to be
changed - typically on every context switch.

There are two basic models used by MPUs:

1. non-privileged code is denied memory access by default and access
rights must be specifically granted.

2. non-privileged code is granted memory access by default and access
rights must be specifically denied.

The model can impact the amount of reprogramming work that is needed
at runtime. For non-trusted OS-Applications, the AUTOSAR OS R3.x model
denies write access to all memory except that used by the Tasks and ISRs
they own.

If the first model is used, then each of these sections needs to be opened up
for use, so you should limit the number of regions that have to be opened.
If the second model, then all non-accessible code needs to be closed off for
use, so you should limit the number of sections that need to be closed off.
In both cases, it is advisable to place all trusted OS-Application data in the
same section where possible. This will minimize the number of MPU registers
that need to be re-programmed on each context switch and therefore have
optimal performance.

FUNC(void, OS_APPL_CODE)
Os_Cbk_SetMemoryAccess(Os_UntrustedContextRefType

ApplicationContext) {
if (ApplicationContext->Application == a) {
/* Set memory protection regions that apply for a generally */
SET_UNTRUSTED_WRITE_RANGE(a_BASE, a_SIZE); /* Example */

}
}

Code Example 21.6: The Os_Cbk_SetMemoryAccess callback

Memory Protection 325

21.5.1 Default Implementations

If the target micro controller has an MPU then RTA-OS3.x can provide a sample
implementation of Os_Cbk_SetMemoryAccess() that implements the manda-
tory part of the AUTOSAR OS R3.x memory protection scheme:

Read access is unrestricted

Write access is unrestricted for trusted OS-Applications. Tasks and ISRs in
non-trusted OS-Applications may only write to:

• their own data sections

• their own stack

• data sections defined by their owning OS-Application

Execute access is unrestricted

The sample Os_Cbk_SetMemoryAccess() is generated using:

C:\>rtaosgen --samples:[Os_Cbk_SetMemoryAccess] --target:<target>

21.6 Interaction with Stack Monitoring

If a stack fault is detected by stack monitoring in Scalability Class 1 or 2, then,
by default, the OS calls ShutdownOS() with the status E_OS_STACKFAULT2.

In Scalability Classes 3 and 4, a stack fault will be detected by memory pro-
tection as erroneous write access to the stack. In this case, RTA-OS3.x calls
the ProtectionHook() with the status E_OS_STACKFAULT.

Figure 21.4 shows the three types of behavior that can occur when a stack
fault is detected.

21.7 Checking Memory Access

Applications can be programmed defensively against memory problems by
checking whether they have the necessary permissions to access memory at
runtime.

RTA-OS3.x provides two API calls to do this:

1. CheckTaskMemoryAccess() checks whether a named Task can access a
specified memory range

2In RTA-OS3.x this behavior can be overridden at configuration time so that the
Os_Cbk_StackOverrunHook() is called instead (which allows you to debug the stack overrun
rather than simply be made aware that it has occurred).

326 Memory Protection

Figure 21.4: Decision tree for stack overrun handling

2. CheckISRMemoryAccess() checks whether a named ISR can access a
specified memory range

The calls use a base and bound model for checking access. The base defines
the start of the memory region to check and the bound defines the number
of bytes of memory to check. The access rights are returned by the function.
Code Example 21.7 shows how to check whether a Task can access a data
structure.

uint32 DataValues[100];
...
rights = CheckTaskMemoryAccess(MyTask,&DataValues,

sizeof(DataValues));

Code Example 21.7: Checking access to a data structure

21.7.1 Setting Access Permissions

RTA-OS3.x does not know where your code is located or what
permissions you have chosen to apply. On each call to
CheckTaskMemoryAccess() or CheckISRMemoryAccess(), RTA-OS3.x calls
the Os_Cbk_CheckMemoryAccess() callback so that user code can perform
the check.

The callback needs to:

Memory Protection 327

• check the permitted memory ranges allowed for the OS-Application (or
Task or ISR) depending on what protection scheme you want to enforce.

• Set the permissions accordingly.

RTA-OS3.x provides 4 permission constants that can be used to set the access
permissions:

Constant Definition

OS_ACCESS_EXECUTE The memory range is executable
OS_ACCESS_READ The memory range is readable
OS_ACCESS_STACK The memory range is stack space
OS_ACCESS_WRITE The memory range is writable

Permissions can be combined using C’s bit-wise operators, for example if a
section is readable and writeable this can be expressed as:

rights = OS_ACCESS_READ & OS_ACCESS_WRITE

Similarly, you can also deny permissions using tilde, for example if a section
is readable and not writeable then this can be expressed as:

rights = OS_ACCESS_READ & ~OS_ACCESS_WRITE

Code Example 21.8 shows how the Os_Cbk_CheckMemoryAccess() callback
might be written.

FUNC(AccessType,OS_APPL_CODE)
Os_Cbk_CheckMemoryAccess(ApplicationType Application,

TaskType TaskID,
ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size) {

AccessType Access = 0u;

/* Check for stack space in address range */
if ((Address >= STACK_BASE)

&& (Address < STACK_BASE + STACK_SIZE))
|| ((Address+Size >= STACK_BASE)

&& (Address < STACK_BASE + STACK_SIZE)) {
Access |= OS_ACCESS_STACK;

}

/* Address range is only writeable if it is not in ROM */
if ((Address >= ROM_BASE)
&& (Address < ROM_BASE + ROM_SIZE))
|| ((Address+Size >= ROM_BASE)
&& (Address < ROM_BASE + ROM_SIZE)) {

328 Memory Protection

Access |= ~OS_ACCESS_WRITE;
}

switch (Application) {
case APP1:

...
Access |= OS_ACCESS_READ | OS_ACCESS_EXECUTE;
break;

case APP2:
...
Access |= ~OS_ACCESS_READ | OS_ACCESS_EXECUTE;
break;

}
return Access;

}

Code Example 21.8: The Os_Cbk_CheckMemoryAccess callback

21.7.2 Checking Access Permissions

The access permissions that are returned by CheckTaskMemoryAccess() and
CheckISRMemoryAccess() can be used with one of 4 macros to determine
access as shown in the following table:

Macro Definition

OSMEMORY_IS_EXECUTABLE True if the memory can be executed, false
otherwise

OSMEMORY_IS_READABLE True if the memory can be read, false other-
wise

OSMEMORY_IS_STACKSPACE True if the memory is stack space, false oth-
erwise

OSMEMORY_IS_WRITETABLE True if the memory can be written, false oth-
erwise

All of the macros will only evaluate to true only if the full range of locations
satisfies the access type. For example, if one byte of DataValues was not
readable then OSMEMORY_IS_READABLE(rights) would return false.

21.8 Summary

• Memory protection requires the placement of data into named sections.

• Applications can use the AUTOSAR memory mapping concept to place
data into sections.

• Any number of sections can be defined.

• The sections can follow any naming convention you require.

Memory Protection 329

• You can aggregate sections in application code, in MemMap.h or a com-
bination of both.

• Locating can further aggregate different memory areas into a single block
of data to protect.

• The locator needs to export labels that you can use to program the mem-
ory ranges and access types for the MPU.

• RTA-OS3.x uses the callback Os_Cbk_SetMemoryAccess() to program the
MPU on each context switch.

330 Memory Protection

22 Contacting ETAS

22.1 Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 22.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.

The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

• your support contract number;

• your .xml and/or .rtaos configuration files;

• the command line which caused the error;

• the version of the ETAS tools you are using;

• the version of the compiler tool chain you are using;

• the error message you received (if any); and

• the file Diagnostic.dmp if it was generated.

22.2 General Enquiries

22.2.1 ETAS Global Headquarters

ETAS GmbH
Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany WWW: www.etas.com

22.2.2 ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www.etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

Contacting ETAS 331

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

A
Access Rights, 308
Alarms, 142

Absolute, 147
Action on expiry, 143
Activating Tasks, 143
Auto-starting, 151
Callbacks, 144
Canceling, 152
Cyclic, 148, 151
Incrementing Counters, 145
Periodic, see Cyclic
Relative, 147, 150
Setting Events, 144
Single-shot, 147, 150

API Protection, see Service Protection
Application Modes, 217
Applications, see OS-Applications
Assistants, 36
AUTOSAR, 20

Include file dependencies, 38
Operating System, 20
Scalability Class, 20

AUTOSAR includes
Compiler.h, 38
Compiler_Cfg.h, 38
MemMap.h, 40
Os_Compiler_Cfg.h, 38
Os_MemMap.h, 40
Platform_Types.h, 38
Std_Types.h, 38

AUTOSAR OS includes
Os.h, 43
Os_Cfg.h, 43
Os_MemMap.h, 43

C
C Startup Code, 212
Compilation, 45
Compiler, 36
Configuration Files, 29

Project Files, 30
XML, 29

Conformance Classes, 56

Context switch, 73

Counter Attributes

Accessing at runtime, 137

MAXALLOWEDVALUE, 129

MINCYCLE, 129

TICKSPERBASE, 129

Counter Driver, 186

Counters, 128

Cascading, 145

Free running timers, 139

Getting the value of, 138

Hardware, 128

Hardware Driver, 134

Schedule Tables and Alarms on,
158

Software, 128

Software Driver, 130

Ticks, 128

CPU Clock rate, see Instruction Rate

Critical Section, 103

D

Deadline, 285

Deadline Monotonic, 49

Deadlock

Freedom from, 105

Debugging

API Usage, 225

ORTI, 251

RTA-TRACE, 255

Stack Monitoring, 233

Time Monitoring, 242

Development process, 24

Deviation, 176

E

ECU Link

Debugger, 270

Serial, 271

Asynchronous Dump, 272

Byte-wise, 273

Driver Callbacks, 273

332 Index

Interrupt Driven, 275

Polling, 274

Error Codes, 225

Error Handling, 225

Events, 119

Clearing, 125

Multiple Waits, 122

Setting, 124

Waiting On, 120

Execution Budget, 289

Expiry Point

Processing, 167

Runtime Adjustment, 180

Extended Status, 225

Extended Tasks

Risk of deadlock, 123

Simulation using Basic Tasks, 126

F

Fixed Priority, 49

Free running timer, 139

G

Generated files, 42

H

Hooks

Error, 226

PostTask, 81

PreTask, 81

Shutdown, 222

Startup, 217

I

Idle Mechanism, 80

Limitations, 80

Imprecise Computation, 247

Instruction Cycle Rate, 248

Instruction Rate, 242

Internal Resources, 110

Shared with interrupts, 110

Stack Saving with, 113

Interrupt Source

Disabling, 283

Interrupts, 44, 88

Category 1, 89, 95
Category 2, 89, 96
Compiler Directives, 95
Default Interrupt, 99
Enabling and disabling, 98
Multi-level, 88
Nested, 88
Priority, 89
Register Sets, 99
Single-level, 88

ISR, 96

L
Library, 36

Name of, 43
Linked Resources, 108
Locating, 324

M
Memory

Checking access permissions,
326

Memory Protection, 317
MPU Usage, 325
Section Definition, 320

MISRA, 34
MissingReferences.xml, 31
MPU

Programming for protection, 325
Mutual Exclusion, 103

O
Optimization

Fast Task Termination, 79
Omit Schedule() API, 78
Wait Event Stack, 67

Optimizations
Customized Scalability Classes,

278
Stack Reduction, 112

ORTI, 251
OS-Application, 300
OS-Applications, 300

Access Rights, 308
Accessing Applications, 303

Index 333

Error Hook, 313
Restart Task, 310
Safety Risks, 307
Shutdown Hook, 313
Startup Hook, 312
Termination, 309

OS-level, 92
OSEK, 17

Operating System, 18

P
Priority Ceiling Protocol, 104
Priority Inversion, 104

R
Rate Monotonic, 49
Register Sets

Saving in ISRs, 99
Saving in Tasks, 83

Reports, 34
RES_SCHEDULER, 114
Reset, 211
Resources, 103

Ceiling Priority, 104
Internal, 110
Linked, 108
Nesting locks, 108
Race Conditions, 117
Sharing with Interrupts, 105

Response Time, 285
Restart Task, 310
Restarting, 223
RTA-TRACE, 255

Burst Mode, 257
Categories, 264
Classes, 258
Configuration, 256
ECU Links, 269
Enumerations, 267
Filters, 259
Format Strings, 266
Free-Running Mode, 257
Instrumentation, 255
Intervals, 262
Task Tracepoints, 262

Tracepoints, 261

Triggering Mode, 257

RTA-TRACE Configuration, 28

rtaoscfg, 24

Builder, 42

rtaosgen, 41

Invoking from rtaoscfg, 29

S

Sample Code, 43

Samples, 43

Schedulability Analysis, 286

Schedule Table

Deviation, 176

Explicit Synchronization, 173

Implicit Synchronization, 171

Stopping, 167

Schedule Tables, 156

Absolute Start, 163

Attributes, 158

Disable Synchronization, 183

Expiry Points, 156, 160

Relative Start, 165

State, 184

Switching, 169

Synchronization, 160, 180

Explicit, 160

Implicit, 160

None, 160

Synchronized Start, 166

Scheduler, 49

Scheduling

Cooperative, 51, 77

Non-Preemptive, 50

Preemptive, 49

Scheduling Policy, 49

Semaphore, see Resources

Service Protection, 299

Shutdown, 222

Shutdown Hook, 222

Single-Stack, 61

Extended Tasks, 62

Stack, 61

Allocation, 67

334 Index

Default Allocation, 70
Mandatory Figures, 64
Measurement of, 238
Optimization, 67
Per Task and ISR Figures, 66
Reducing Size, 113, 114

Stack Management
Overruns, 70

Stack Monitoring
Interaction with Memory Protec-

tion, 326
Stack Resource Protocol, 104
Standard Resources

Stack Saving with, 114
Standard Status, 225
Starting RTA-OS3.x, 44
StartOS, 216
Startup

Activating Tasks, 60
Alarms, 151, 220
Schedule Tables, 221
Tasks, 219

Startup Hook, 217
Static Interface

Software Counters, 132
Status

Extended, 225
Standard, 225

Stopwatch, 243
Scaling, 244
Uncertainty, 243

Stopwatch Speed, 248
SystemCounter, 138
SystemTimer, see SystemCounter

T
Tasks, 44, 49

Activation, 54
Basic, 51
Entry Function, 72
Extended, 52

Fast Termination, 79
Maximum supported, 57
Optimization, 57, 60, 62
Queuing Activations, 55
Register Sets, 83
Sharing Priorities, 54
States, 52
Synchronization, 52
Termination, 54, 78

Termination
Forced, 282

Tick/Time Conversion, 139
Time Frame, 292
Time Measurement

Arbitrary Code, 246
ISR, 244
Tasks, 244

Time Monitoring, 242, 248
Budgets, 249
Resetting Budgets, 250

Time-base, 139
Timing Protection, 285

Active Detection, 292
Blocking, 295
Configure, 294
Configuring Timing Protection,

294
Execution Budget, 289
Lock Budgets, 295
Time Frame, 292

Toolchain, 36
Trusted Functions, 314

U
Uncertainty, 243
User-level, 92

V
Vector Table

Generation, 94
Writing by hand, 94

Index 335

	Welcome to RTA-OS3.1!
	Related Documents
	About You
	Document Conventions
	References

	Introduction
	Features of the RTA-OS3.x Kernel
	OSEK
	AUTOSAR
	Unique RTA-OS3.x Features

	Summary

	Development Process
	Configuration
	OS Configuration
	RTA-TRACE Configuration
	Build
	Project Files
	Error Checking
	Generating Reports

	Assistants
	Library Generation
	Preparing the Tool Chain
	Understanding AUTOSAR Dependencies
	Running rtaosgen
	Building the library
	Generated Files

	Integration
	Accessing the OS in your Source Code
	Implementing Tasks and ISRs
	Starting the OS
	Interacting with the RTA-OS3.x
	Compiling and Linking

	Memory Images and Linker Files
	Sections
	The Linker Control File

	Summary

	Tasks
	Scheduling
	Basic and Extended Tasks
	Task States
	Task Priorities
	Queued Task Activation

	Conformance Classes
	Maximizing Performance and Minimizing Memory
	Task Configuration
	Scheduling Policy
	Queued Activation
	Auto-starting Tasks

	Stack Management
	Working with Extended Tasks
	Mandatory Stack Information
	Specifying Task Stack Allocation
	Optimizing the Extended Task context save
	Handling Stack Overrun

	Implementing Tasks
	Activating Tasks
	Direct Activation
	Indirect Activation

	Controlling Task Execution Ordering
	Direct Activation Chains
	Using Priority Levels

	Co-operative Scheduling in RTA-OS3.x
	Optimizing out the Schedule() API

	Terminating Tasks
	Optimizing Termination in RTA-OS3.x

	The Idle Mechanism
	Pre and Post Task Hooks
	Saving Hardware Registers across Preemption
	Summary

	Interrupts
	Single-Level and Multi-Level Platforms
	Interrupt Service Routines
	Category 1 and Category 2 Interrupts
	Category 1 Interrupts
	Category 2 Interrupts

	Interrupt Priorities
	User Level
	OS Level

	Interrupt Configuration
	Vector Table Generation

	Implementing Interrupt Handlers
	Category 1 Interrupt Handlers
	Category 2 Interrupt Handlers
	Dismissing Interrupts
	Writing Efficient Interrupt Handlers

	Enabling and Disabling Interrupts
	Saving Register Sets
	The Default Interrupt
	Summary

	Resources
	Resource Configuration
	Resources on Interrupt Level
	Using Resources
	Nesting Resource Calls

	Linked Resources
	Internal Resources
	Using Resources to Minimize Stack Usage
	Internal Resources
	Standard Resources

	The Scheduler as a Resource
	Choosing a Preemption Control Mechanism
	Avoiding Race Conditions
	Summary

	Events
	Configuring Events
	Defining Waiting Tasks

	Waiting on Events
	Single Events
	Multiple Events
	Deadlock with Extended Tasks

	Setting Events
	Setting Events with an Alarm
	Setting Events with a Schedule Table Expiry Point

	Clearing Events
	Simulating Extended Tasks with Basic Tasks
	Summary

	Counters
	Configuring Counters
	Counter Drivers
	Software Counter Drivers
	Hardware Counter Drivers

	Accessing Counter Attributes at Runtime
	Special Counter Names

	Reading Counter Values
	Tick to Time Conversions
	Summary

	Alarms
	Configuring Alarms
	Activating a Task
	Setting an Event
	Alarm Callbacks
	Incrementing a Counter

	Setting Alarms
	Absolute Alarms
	Relative Alarms

	Auto-starting Alarms
	Canceling Alarms
	Working out when an Alarm will occur
	Non-cyclic (aperiodic) Alarms
	Summary

	Schedule Tables
	Configuring a Schedule Table
	Synchronization

	Configuring Expiry Points
	The Schedule Table Assistant
	Starting Schedule Tables
	Absolute Start
	Relative Start
	Synchronized Start

	Expiry Point Processing
	Stopping Schedule Tables
	Restarting a stopped schedule table

	Switching Schedule Tables
	Choosing an Synchronization Strategy
	Implicit Synchronization
	Explicit Synchronization
	Counter Constraints
	Specifying Synchronization Bounds
	Startup
	Synchronizing the Schedule Table
	Synchronization
	Disabling Synchronization

	Schedule Table Status
	Summary

	Writing Hardware Counter Drivers
	The Hardware Counter Driver Model
	Interrupt Service Routine
	Callbacks

	Using Output Compare Hardware
	Callbacks
	Interrupt Handlers
	Handling a Hardware modulus not equal to TickType

	Free Running Counter and Interval Timer
	Callbacks
	ISR

	Using Match on Zero Down Counters
	Callbacks
	Interrupt Handler

	Software Counters Driven by an Interval Timer
	Summary

	Startup and Shutdown
	From System Reset to StartOS()
	Power-on or Reset
	C Language Start-up Code
	Running main()

	Starting RTA-OS3.x
	Startup Hook
	Application Modes

	Shutting Down RTA-OS3.x
	Shutdown Hook

	Restarting RTA-OS3.x
	Summary

	Error Handling
	Centralized Error Handling - the ErrorHook()
	Configuring Advanced Error Logging
	Working out which Task is Running
	Working out which ISR is Running
	Generating a Skeleton ErrorHook()

	In-line Error Handling
	Conditional Inclusion of Error Checking Code
	Summary

	Measuring and Monitoring Stack Usage
	Stack Monitoring
	Setting Defaults
	Configuring Stack Allocation per Task/ISR

	Using the OsCbkStackOverrunHook()
	Measuring Stack Usage
	Marking the Worst Case for Function Calls

	Summary

	Measuring and Monitoring Execution Time
	Enabling Time Monitoring
	Providing a Stopwatch
	Scaling the Stopwatch

	Automatic Measurement of Task and ISR Execution Times
	Manual Time Measurement
	Imprecise Computation
	Monitoring Execution Times against Budgets
	Summary

	Using an ORTI-Compatible Debugger
	Development Process
	Intrusiveness
	Validity
	Interactions
	Summary

	RTA-TRACE2.1 Integration
	Basic Configuration
	Controlling RTA-TRACE2.1
	Controlling with Objects are Traced

	User-Defined Trace Objects
	Tracepoints
	Task Tracepoints
	Intervals
	Controlling which User-Defined Objects are Traced
	Format Strings

	ECU Links
	Debugger Links
	Serial Links

	Summary

	Protected Systems
	Customized Protection Schemes
	Handling Protection Errors
	Fallbacks

	Forced Termination
	Tasks and ISRs
	OS-Applications
	Disabling Interrupt Sources

	Generating a Skeleton ProtectionHook()
	Summary

	Timing Protection
	What is a timing fault?
	Meeting Deadlines at Runtime
	Why deadline monitoring is not sufficient
	Meeting Deadlines and Identifying Violators

	Execution Budgets and Time Frames
	Execution Budgets
	Execution Budget Detection Modes
	Time Frames

	Configuring Timing Protection
	Lock Budgets
	Providing a Time Reference
	Passive Detection
	Active Detection
	Rounding Errors

	Function-Level Timing Protection
	Summary

	Service Protection
	OS-Applications
	Configuring OS-Applications
	Ownership of OS objects
	Access to OS objects

	Accessing Applications
	Hidden Accesses
	Safety Risks

	Identifying the Running OS-Application
	Access and Ownership
	Terminating OS-Applications
	The Restart Task
	Interaction with Accessing Applications

	OS-Application Hooks
	Startup Hook
	Shutdown Hook
	Error Hook

	Trusted Functions
	Calling Trusted Functions
	Implementing Trusted Functions

	Summary

	Memory Protection
	Hardware Limitations
	AUTOSAR Limitations
	Defining and Using Memory Regions
	Placing Task and OS-Application Data into the same section
	Placing Task and OS-Application Data into unique sections

	Locating
	Interacting with an MPU or MMU
	Default Implementations

	Interaction with Stack Monitoring
	Checking Memory Access
	Setting Access Permissions
	Checking Access Permissions

	Summary

	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

