RTA-OS3.1

Reference Guide

2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2010 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10483-RG-1.0.0

Copyright

Contents

1 Introduction 12
1.1 AboutYou 12
1.2 Document Conventions 12
1.3 References 13

2 RTA-0S3.x API calls 14
2.1 Guideto Descriptions o 14
2.2 ActivateTask 16
2.3 CallAndProtectFunction 18
2.4 CallTrustedFunction 21
2.5 CancelAlarm e 23
2.6 ChainTask e 25
2.7 CheckISRMemoryACCess oo e e e 27
2.8 CheckObjectAccesso i ittt 29
2.9 CheckObjectOwnership 31
2.10 CheckTaskMemoryAccess i i i i i n 33
2.11 ClearEvent 35
2.12 DisableAllinterrupts 37
2.13 EnableAllinterrupts 38
2.14 GetActiveApplicationMode 39
2.15 GetAlarm e 40
2.16 GetAlarmBase 42
2.17 GetApplicationID 44
2.18 GetCounterValue 45
2.19 GetElapsedCounterValue 47
2.20 GetEvent. 49
2.21 GetlSRID 51
2.22 GetResoUIrCe . . . i 53
2.23 GetScheduleTableStatus 55
2.24 GetTaskID o 57
2.25 GetTaskState 59
2.26 IncrementCounter e 61
2.27 NextScheduleTable 63
2.28 Os AdvanceCounter. 65
2.29 Os_AdvanceCounter_<CounterlD> 68
2.30 Os_GetExecutionTime 70
2.31 Os_GetISRMaxExecutionTime 72
2.32 Os_GetlISRMaxStackUsage 74
2.33 Os GetStackSize 76
2.34 Os GetStackUsage. i 78
2.35 Os GetStackValue 80
2.36 Os_GetTaskMaxExecutionTime 81
2.37 Os_GetTaskMaxStackUsage 83
2.38 Os GetVersionIinfo 85
2.39 Os_IncrementCounter_<CounterlD> 86

Contents

2.40 Os_ResetISRMaxExecutionTime. 87
241 Os_ResetISRMaxStackUsage 89
2.42 Os_ResetTaskMaxExecutionTime 91
2.43 Os_ResetTaskMaxStackUsage 93
2.44 Os Restart 95
2.45 Os_SetRestartPoint 97
2.46 Os TimingFaultDetected 99
2.47 ReleaseResource i 101
2.48 ResumeAlllnterrupts. 103
2.49 ResumeOSinterrupts 105
2.50 Schedule 107
2.51 SetAbsAlarm 109
2.52 SetEvent 111
2.53 SetRelAlarm 113
2.54 SetScheduleTableAsync 115
2.55 ShutdownOS 117
2.56 StartOS 119
2.57 StartScheduleTableAbs. 121
2.58 StartScheduleTableRel 123
2.59 StartScheduleTableSynchron 125
2.60 StopScheduleTable. 127
2.61 SuspendAllinterrupts 129
2.62 SuspendOSiInterrupts 131
2.63 SyncScheduleTable 133
2.64 TerminateApplication 136
2.65 TerminateTask 139
2.66 WaitEvent e 141
3 RTA-0S3.x Callbacks 143
3.1 Guideto Descriptions oo 143
3.2 ErrorHook 144
3.3 Os_Cbk Cancel <CounterlD> 146
3.4 Os _Cbk CheckMemoryACcesso i v v i 147
3.5 Os Cbk Disable <ISRName> 150
3.6 Os Cbk GetStopwatch 151
3.7 Os Cbhk Idle. i e 152
3.8 Os Cbk Now <CounterlID>.............. ... 153
3.9 Os_Cbk_RegSetRestore <RegisterSetID> 154
3.10 Os_Cbk_RegSetSave <RegisterSetlD> 155
3.11 Os Cbk SetMemoOryAccess 156
3.12 Os_Cbk_SetTimeLimit. 160
3.13 Os Cbk Set <CounterlD> 162
3.14 Os _Cbk_StackOverrunHook. 164
3.15 Os _Cbk State <CounterlD> 167
3.16 Os _Cbk SuspendTimeLimit 168
3.17 Os Cbk Terminated <ISRName> 169

Contents

3.18 Os_Cbk _TimeOverrunHook 170
3.19 PostTaskHook 172
3.20 PreTaskHook 173
3.21 ProtectionHook 174
3.22 ShutdownHook 176
3.23 StartupHook 177
RTA-0OS3.x Types 178
4.1 ACCESSTYPE . o o 178
4.2 AlarmBaseRefType 178
4.3 AlarmBaseType i e 179
4.4 AlarmType e 179
4.5 AppModeType e 179
4.6 ApplicationType e 180
4.7 CounterType . .. o e 180
4.8 EventMaskRefType i 180
4.9 EventMaskType e 181
4.10 ISRREfTYpE . .. e 181
4.11 ISRTYPE . 181
4.12 MemorySizeType e 182
4.13 MemoryStartAddressType. oo i i i i 182
4.14 OSServiceldTypeo 182
4.15 ObjectAccessType . . oo v i it 183
4.16 ObjectTypeType . . . o o v it e e 183
4.17 OS ANYTYPE. . ot 184
4.18 Os _CounterStatusRefType 184
4.19 Os CounterStatusType oo it 184
4.20 Os _StackOverrunTypeo 185
4.21 Os StackSizeType i 186
4.22 Os StackValueType i 186
4.23 Os StopwatchTickType o 186
4.24 Os TimeLimitType e 187
4.25 Os_UntrustedContextRefType 187
4.26 Os _UntrustedContextType 187
4.27 PhysicalTimeType, 188
4.28 ProtectionReturnType o i 188
4.29 ResourceType 189
4.30 RestartType 189
4.31 ScheduleTableRefType 190
4.32 ScheduleTableStatusRefType 190
4.33 ScheduleTableStatusType 190
4.34 ScheduleTableType 191
4.35 StatusType 191
4.36 Std ReturnType o 192
4.37 Std VersionIinfoType 192
4.38 TaskRefType 193

Contents

4.39 TaskStateRefType. 193
4.40 TaskStateType i e 193
4.41 TaskType . . .o o e 194
4.42 TickRefType o e 194
4.43 TickType . . o e e 195
4.44 TrustedFunctionlndexType 195
4.45 TrustedFunctionParameterRefType 195
4.46 boolean. e 196
4.47 float32 e 196
4.48 floate4d 196
4.49 SINELG . . . e 196
4.50 sintle least. 197
4,51 SINE32 . . e 197
4.52 sint32 least. 197
4.53 SINE8 . . . e 198
4.54 sint8 least. 198
4.55 UiNt16 e 198
4.56 uintlé least 199
4.57 UINE32 . . e 199
4.58 uint32 least 199
4.59 UINt8 . . . e 200
4.60 uint8 least 200
5 RTA-0S3.x Macros 201
5.1 ALARMCALLBACK e 201
5.2 CATL ISR . . . 201
5.3 DeclareAlarm e 201
5.4 DeclareCounter i 201
5.5 DeclareEvent. e 202
5.6 DeclarelSR e 202
5.7 DeclareResource i 202
5.8 DeclareScheduleTable 203
5.9 DeclareTask. e 203
5.10 ISR . 203
5.11 OSCYCLEDURATION . .. oo 203
5.12 OSCYCLESPERSECOND o oo 204
5.13 OSErrorGetServiceld 204
5.14 OSMAXALLOWEDVALUE 204
5.15 OSMAXALLOWEDVALUE_<CounterlID> 205
5.16 OSMEMORY _IS EXECUTABLE 205
5.17 OSMEMORY_IS READABLE 205
5.18 OSMEMORY _IS STACKSPACE 205
5.19 OSMEMORY_IS WRITEABLE 206
5.20 OSMINCYCLE e 206
5.21 OSMINCYCLE_<CounterlD> 206
5.22 OSSWTICKDURATION oo e e e 207

Contents

5.23 OSSWTICKSPERSECOND e 207
5.24 OSTICKDURATION e 207
5.25 OSTICKDURATION_<CounterlD> 207
5.26 OSTICKSPERBASE e 208
5.27 OSTICKSPERBASE_<CounterlD> 208
5.28 OS_EXTENDED _STATUS 208
5.29 OS MAIN . .. 209
5.30 OS_NOAPPMODE e 209
5.31 OS_NUM_ALARMS 209
5.32 OS_NUM_APPLICATIONS e 209
5.33 OS_NUM_APPMODES 209
5.34 OS_NUM_COUNTERS i 210
5.35 OS NUM EVENTS e 210
5.36 OS NUM_ISRS 210
5.37 OS NUM RESOURCES e 210
5.38 OS_NUM_SCHEDULETABLES 210
5.39 OS NUM TASKS e 210
5.40 OS_NUM_TRUSTED_FUNCTIONS 211
5.41 OS _REGSET <RegisterSetID> SIZE 211
5.42 OS _SCALABILITY CLASS 1 e 211
5.43 OS_SCALABILITY CLASS 2 e 211
5.44 OS _SCALABILITY CLASS 3 e 212
5.45 OS _SCALABILITY CLASS 4 e 212
5.46 OS_STACK_ MONITORING e 212
5.47 OS_STANDARD _STATUS e 213
5.48 OS_TICKS2<Unit>_<CounterID>(ticks) 213
5.49 OS TIME_MONITORING e 214
5.50 TASK . 214
RTA-TRACE API calls 215
6.1 Guideto Descriptions 215
6.2 Os CheckTraceOutput 217
6.3 Os ClearTrigger i e e e e 218
6.4 Os DisableTraceCategories. 219
6.5 Os DisableTraceClasses 221
6.6 Os _EnableTraceCategories 223
6.7 Os EnableTraceClasses 225
6.8 Os_LogCatlISRENd. i 227
6.9 Os LogCatlISRStart 229
6.10 Os_LogCriticalExecutionEnd 231
6.11 Os_LogintervalEnd 233
6.12 Os_LogintervalEndData 235
6.13 Os_LogintervalEndValue 237
6.14 Os_LogintervalStart, 239
6.15 Os_LoglintervalStartData 241
6.16 Os LoglintervalStartvalue 243

Contents

6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55

Contents

Os LogProfileStart 245
Os_LogTaskTracepoint 247
Os_LogTaskTracepointData 249
Os_LogTaskTracepointValue 251
Os _LogTracepoint 253
Os LogTracepointData 255
Os_LogTracepointValue 257
Os SetTraceRepeat 259
Os SetTriggerWindow 260
Os StartBurstingTrace 262
Os_StartFreeRunningTrace 263
Os StartTriggeringTrace it 264
Os StopTrace e 266
Os TraceComminit, 267
Os TraceDUmMPpASYNCo oo e 268
Os TriggerNOWo e 269
Os TriggerOnActivation 270
Os TriggerOnAdvanceCounter 271
Os TriggerOnAlarmEXpiry o v v v v e e e e 272
Os TriggerOnCatlISRStart 273
Os TriggerOnCatlISRStop i 274
Os TriggerOnCat2ISRStart 275
Os TriggerOnCat2ISRStop i i i i i 276
Os TriggerOnChain 277
Os TriggerOnError o 278
Os TriggerOnGetResource 279
Os _TriggerOnincrementCounter 280
Os TriggerOnintervalEnd 281
Os TriggerOnintervalStart 282
Os TriggerOnintervalStop 283
Os TriggerOnReleaseResource 284
Os_TriggerOnScheduleTableExpiry 285
Os TriggerOnSetEvent 286
Os TriggerOnShutdown 287
Os TriggerOnTaskStart 288
Os TriggerOnTaskStop oo oo 289
Os _TriggerOnTaskTracepoint 290
Os TriggerOnTracepoint 291
Os UploadTraceData 292

7 RTA-TRACE Callbacks

7.1 Guide to Descriptions
7.2 Os_Cbk_TraceCommDataReady

7.3 Os_Cbk_TraceCommlnitTarget.
7.4 Os_Cbk _TraceCommTxByte
7.5 Os_Cbk_TraceCommTxEnd
7.6 Os_Cbk_TraceCommTxReady
7.7 Os Cbk TraceCommTxStart

8 RTA-TRACE Types

8.1 Os_AsyncPushCallbackType
8.2 Os TraceCategoriesType
8.3 Os TraceClassesTypeo
8.4 Os TraceDatalengthType
8.5 Os TraceDataPtrType
8.6 Os TraceExpirylIDType
8.7 Os TracelndexType
8.8 Os TracelnfoType.
8.9 Os TracelntervallDType

8.10 Os TraceStatusType
8.11 Os TraceTracepointiIDType
8.12 Os TraceValueType

9 RTA-TRACE Macros

9.1 OS_NUM_INTERVALSot
9.2 0S_NUM_TASKTRACEPOINTS
9.3 0OS_NUM_TRACECATEGORIES
9.4 0S_NUM_TRACEPOINTS
9.5 OS TRACE . . oot

10 Coding Conventions

10.1 Namespace

Contents

10

11 Configuration Language

11.1
11.2

11.3
11.4

11.5

ConfigurationFiles
Understanding AUTOSAR XML Configuration
11.2.1 Packages
ECU Configuration Description
RTA-OS3.x Configuration Language Extensions.
11.4.1 Container: OsAppMode
11.4.2 Container: OsRTATarget
11.4.3 Container: OsCounter
11.4.4 Container: Oslsr
11.4.5 Container: OsOS
11.4.6 Container: OsRegSet
11.4.7 Container: OsTask
11.4.8 Container: OsTrace
Project Description Files

12 Command Line

12.1

12.2

13 Output File Formats

13.1
13.2

Contents

rtaoscfg e
12.1.1 Options e
12.1.2 GeneratedFiles
12.1.3 Examples
rtaosgen
12.2.1 Options e
12.2.2 GeneratedFiles,
12.2.3 Examples
RTA-TRACE Configurationfiles
ORTIFiles e e
13.2.1 OS ... e
13.2.2 Task
13.2.3 Category 1 ISR,
13.2.4 Category 2ISR
13.2.5 Resource
13.2.6 Events
13.2.7 Counter
13.2.8 Alarm
13.2.9 ScheduleTable

307
307
307
308
309
311
313
313
314
314
315
316
316
316
321

322
322
322
325
325
325
325
328
329

14 Compatibility and Migration 336

14.1 ETASToOIS 336
14.2 APl Call Compatibility 337
1421 Tasksets 340

14.2.2 Time Monitoring 340

14.2.3 Schedules. 341

1424 OSEKCOM i 341

14.2.5 Behavior of Start0S() 341

14.2.6 Behavior of ShutdownOS() 341

14.2.7 Hardware Counter Driver 341

14.2.8 Forbidding of Zero for SetRelAlarm() 341

14.2.9 Changes to Schedule Table API 342

14.2.10 Software Counter Driver 342

14.2.11 Stack Monitoring 342

14.2.12 RestartingtheOS 342

15 Contacting ETAS 344
15.1 Technical Support 344
15.2 General Enquiries 344
15.2.1 ETAS Global Headquarters 344

15.2.2 ETAS Local Sales & Support Offices 344

Contents

11

1.1

1.2

12

Introduction

RTA-OS3.x is a statically configurable, preemptive, real-time operating sys-
tem (RTOS) for use in high-performance, resource-constrained applications.
RTA-OS3.x is a full implementation of the open-standard AUTOSAR OS Re-
lease 3.x and includes functionality that is fully compliant and independently
certified to Version 2.2.3 of the OSEK/VDX OS Standard.

This guide contains the complete technical reference for RTA-OS3.x. The con-
tent is arranged into two parts:

e Part 1 deals with the OS kernel, describing the API, types, macros, etc.
that are supported by RTA-OS3.x and common to all target hardware.

e Part 2 deals with the PC-based tooling provided with RTA-OS3.x. The com-
mand line interfaces, input and output file formats etc. that are common
to all target hardware are described.

For each supported target there is an Target/Compiler Port Guide which pro-
vides auxiliary details for port-specific OS features.

About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows 2000,
Windows XP or Windows Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and folders.

Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters
Press <Enter>. Key commands are enclosed in an-

gle brackets.

Introduction

1.3

The “Open file” dialog box appears

Activate(Taskl)

See Section 1.2.

ETAS

A

References

The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Program code, header file names,
C type names, C functions and
API call names all appear in a
monospaced typeface.

Hyperlinks through the document
are shown in blue letters.

Functionality that is provided in
RTA-OS but may not be portable to
another AUTOSAR OS implementa-
tion is marked with the ETAS logo.

Caution! Notes like this contain im-
portant instructions that you must
follow carefully in order for things
to work correctly.

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

Introduction

13

http://www.osek-vdx.org
http://www.autosar.org

2.1

14

RTA-0S3.x API calls

Guide to Descriptions

All API calls have the following structure:

Syntax

/* C function prototype for the API call x/
ReturnValue NameOfAPICall(Parameter Type, ...)

Parameters

A list of parameters for each API call and their mode:

in The parameter is passed in to the call

out The parameter is passed out of the API call by passing a reference
(pointer) to the parameter into the call.

inout The parameter is passed into the call and then (updated) and passed
out.

Return Values

Where API calls return a StatusType the values of the type returned and
an indication of the reason for the error/warning are listed. The build column
indicates whether the value is returned for both standard and extended status
builds or for extended status build only.

Description

A detailed description of the behavior of the API call.

Portability
The RTA-OS3.x APl includes four classes of API calls:

OSEK OS calls are those specified by the OSEK OS standard. OSEK OS calls
are portable to other implementations of OSEK OS and are portable to
other implementations of AUTOSAR OS R3.x.

AUTOSAR OS calls are those specified by the AUTOSAR OS R3.x standard.
AUTOSAR OS calls are portable to other implementations of AUTOSAR
0OS R3.x. The calls are portable to OSEK OS only if the call is also an
OSEK OS call.

RTA-TRACE calls are provided by RTA-OS3.x for controlling the RTA-TRACE
run-time profiling tool. These calls are only available when RTA-TRACE
support has been configured.

RTA-0S3.x API calls

RTA-0S3.x callsinclude all those from the other three classes plus calls that
provide extensions AUTOSAR OS functionality. These calls are unique to
RTA-OS3.x and are not portable to other implementations.

Example Code
A C code listing showing how to use the API calls

Calling Environment

The valid calling environment for the API call. A / indicates that a call can be
made in the indicated context. A X indicates that the call cannot be made in
the indicated context.

See Also
A list of related API calls.

RTA-0S3.x API calls

15

2.2

16

ActivateTask

Activate a task.

Syntax

StatusType ActivateTask(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
The task to activate.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_OS_LIMIT all The requested activation would exceed
the maximum number of queued activa-
tions specified by configuration. The re-
quested activation is ignored.

E_0S_ID extended | TaskID is not a valid TaskType.

E_OS_ACCESS extended | TaskID is not accessible from the calling
OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

If TaskID is in the suspended state then it is transferred into the ready state.

If TaskID is in either the ready or the running state and the total number of
queued activations is less than the task activation limit then the requested
activation is queued.

Rescheduling behavior depends on the caller:

- if the caller is a non-preemptive task the rescheduling does not occur until
the caller terminates or makes a Schedule() call.

- ifthe caller is a preemptive task and TaskID is higher priority then reschedul-
ing will take place immediately.

RTA-0S3.x API calls

- if the caller is a Category 2 ISR then rescheduling will not occur until the

Category 2 ISR terminates.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK (MyTask) {

ActivateTask(YourTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR v/ | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

*xX X X \ %

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

ChainTask
DeclareTask
GetTaskID
GetTaskState
TerminateTask

RTA-0S3.x API calls

17

2.3 CallAndProtectFunction

Call a time-limited OS-Application function.

Syntax

StatusType CallAndProtectFunction(
TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams,
Os_TimelLimitType TimeLimit

Parameters

Parameter Mode Description

FunctionIndex TrustedFunctionIndexType

The index of the function to be called. This is
the same as the name declared for the func-
tion.

FunctionParams | in TrustedFunctionParameterRefType

A pointer to the parameters of the function.
Can be NULL.

TimeLimit in Os_TimeLimitType

The maximum number of ticks of the stop-
watch that the function is allowed to run for.
If this value is less than 1 then no limit is ap-
plied.

Return Values

The call returns values of type StatusType.

18 RTA-0S3.x API calls

Value " Build Description |

E_OK all No error.

E_OS_SERVICEID all Functionindex is not valid.

E_OS_PROTECTION_TIME all Function timed out AND the
ProtectionHook returned
PRO_TERMINATETASKISR.

E_O0S_PROTECTION_LOCKED all Function locked a resource or

interrupt for too long AND
the ProtectionHook returned
PRO_TERMINATETASKISR.
E_0S_PROTECTION_MEMORY all Function experienced a mem-
ory protection violation AND
the ProtectionHook returned
PRO_TERMINATETASKISR.
E_OS_PROTECTION_EXCEPTION | all Function experienced an
unexpected exception AND
the ProtectionHook returned
PRO_TERMINATETASKISR.
E_OS_CALLEVEL extended | Called from an invalid context
(only when Service Protection
is configured).
E_OS_DISABLEDINT extended | Called while interrupts are
disabled (only when Service
Protection is configured).

Description

This is exactly the same as CallTrustedFunction, but with the addition of a
Timing Protection execution limit and the ability to recover from a memory
protection violation.

If the function execution time reaches the specified limit, then Protection-
Hook gets called with Reason 'E_OS_PROTECTION_TIME’. Within Protection-
Hook you can choose to shutdown or kill the OS-Application. Alternatively if
you return PRO_TERMINATETASKISR then you merely terminate the remain-
ing execution of the function and CallAndProtectFunction will return with a
status of E_OS _PROTECTION_TIME.

Similarly resource and interrupt lock violations can cause termination with
"E_OS_PROTECTION_LOCKED’, and memory violations can cause termination
with 'E_OS_PROTECTION_MEMORY’ or 'E_OS_PROTECTION_EXCEPTION'.

CallAndProtectFunction can only be used if you configure the OS option 'Func-
tion Protection’.

RTA-0S3.x API calls

19

20

Portability
RTA-0S3.x | OS

EKOS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK (MyTask) {
struct {
uint32 vall;
uint32 val2;
} data = {1U, 2U};

CallAndProtectFunction(Func3, &data, (0.001 x
OSSWTICKSPERSECOND)); /* Limit 1ms */

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

AUTOSAR OS Hooks

X X X X X X

RTA-0OS3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

CallTrustedFunction
Os_TimeLimitType
ProtectionHook

RTA-0S3.x API calls

2.4

CallTrustedFunction

Call an OS-Application function.

Syntax
StatusType CallTrustedFunction(
TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams

Parameters
Paramster __ Mode Description
FunctionIndex TrustedFunctionIndexType
The index of the function to be called. This is
the same as the name declared for the func-
tion.
FunctionParams | in TrustedFunctionParameterRefType
A pointer to the parameters of the function.
Can be NULL.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.
E_O0S_SERVICEID all Functionindex is not valid.
E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

Call a function provided by an OS-application. The service is typically used
to allow a non-trusted OS-Application to call a function provided by a trusted
OS-Application. It is, however, equally possible to call a function provided by
an untrusted OS-Application.

When a function is called, it will always run with same access permissions
as the OS-Application to which it belongs. When called from a non-trusted
0OS-Application this may mean that the call will trigger a mode switch and will
execute with all memory protection mechanisms disabled.

RTA-0S3.x API calls

21

22

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK (MyTask) {
struct {
uint32 vall;
uint32 val2;
} data = {1U, 2U};

CallTrustedFunction(Funcl, (TrustedFunctionParameterRefType)O0U);
CallTrustedFunction(Func2, &value);
CallTrustedFunction(Func3, &data);

Calling Environment

ProtectionHook

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
X

See Also

CallAndProtectFunction

RTA-0S3.x API calls

2.5

CancelAlarm

Cancel an alarm.

Syntax

StatusType CancelAlarm(
AlarmType AlarmID
)

Parameters

Parameter Mode Description

AlarmID in AlarmType
Name of the alarm to cancel.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_OS_NOFUNC all AlarmID is not running.

E_0S_ID extended | AlarmID is not a valid alarm.

E_OS_ACCESS extended | AlarmID is not accessible from the calling
OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call cancels (stops) the specified alarm.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyExtendedTask) {

CancelAlarm(TimeOutAlarm);

RTA-0S3.x API calls

23

24

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

*xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

CancelAlarm
DeclareAlarm
GetAlarm
GetAlarmBase
SetRelAlarm

RTA-0S3.x API calls

2.6

ChainTask

Terminate the calling task and activate another task

Syntax
StatusType ChainTask(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
The task to be activated

Return Values

The call returns values of type StatusType.

Value Build Description

E_OS_LIMIT all The requested activation would exceed
the maximum number of queued activa-
tions specified by configuration. The re-
quested activation is ignored.

E_0S_ID extended | TaskiD is not a valid TaskType.

E_OS_ACCESS extended | TaskID is not accessible from the calling
OS-Application.

E_0S_RESOURCE extended | Calling task still holds resources.

E_OS_CALLEVEL extended | Called at interrupt level.

E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This service causes the termination of the calling task followed by the activa-
tion of TaskID. A successful call of ChainTask() does not return to the calling
context.

Internal resources held by the calling task are released automatically.

Standard or linked resources held by the calling task are also released auto-
matically and this is reported as an error condition in extended status.

A task can chain itself without affecting the queued activation count.

RTA-0S3.x API calls

25

26

The ChainTask() call always causes re-scheduling. However, note that TaskID
may not run immediately - there may be higher priority tasks in the ready
queue that will run in preference, for example tasks with a higher priority
that share an internal resource with TasklID.

If the "Fast Terminate’ is enabled in Optimizations for RTA-OS then ChainTask()
must only be called from the task entry function and the return status should
not be checked (ErrorHook, when configured, will be called if there is an er-
ror). This optimization saves memory and execution time.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

ChainTask(YourTask);
/* Any code here will not execute if the call is successful */

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X
ShutdownHook X
ErrorHook X
ProtectionHook X
See Also
ActivateTask
DeclareTask
GetTaskID
GetTaskState

TerminateTask

RTA-0S3.x API calls

2.7

CheckISRMemoryAccess

Check if a memory region is read/write/execute/stack accessible by a speci-
fied ISR.

Syntax
AccessType CheckISRMemoryAccess (
ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size

Parameters

Parameter Mode | Description

ISRID in ISRType
The ISR for which the memory access is being

checked.

Address in MemoryStartAddressType
A pointer to the start address of the memory area
(the base).

Size in MemorySizeType

The size of the memory area in bytes (the bound).

Return Values

The call returns values of type AccessType.

Description

If ISRID represents a valid ISR, then CheckISRMemoryAccess() determines
whether the inclusive range of memory addresses from Address to (Ad-
dress+Size) is:

- readable by ISRID

- writeable by ISRID

- executable by ISRID

- represents stack space

If a memory access condition is not valid for the whole specified memory
area, then CheckISRMemoryAccess() reports no access for the type. That
is, if any address in the range is not writeable, CheckTaskMemoryAccess()
reports the range is not writeable.

A call to this service results in the OS calling Os_Cbk_CheckMemoryAccess().

RTA-0S3.x API calls

27

The result of the call is encoded in an AccessType that can be decoded using
the OSMEMORY_IS_* macros.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
ISR(MyISR){
if (OSMEMORY_IS_WRITEABLE (CheckISRMemoryAccess(MyISR, &datum,
sizeof(datum)))) {
datum = ...
}
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook v

See Also

CheckTaskMemoryAccess
Os_Cbk_CheckMemoryAccess

28 RTA-0S3.x API calls

2.8

CheckObjectAccess

Determine whether the OS-Application can access an OS Object.

Syntax
ObjectAccessType CheckObjectAccess(
ApplicationType ApplID,
ObjectTypeType ObjectType,
0s_AnyType Object

Parameters

Parameter Mode | Description

ApplID i ApplicationType
The OS-Application identifier for which access is to
be checked.

ObjectType | in ObjectTypeType
The type of object (OBJECT TASK, OBJECT ISR,
OBJECT _ALARM, OBJECT_RESOURCE, OB-
JECT_COUNTER or OBJECT_SCHEDULETABLE).

Object in 0s_AnyType
The object identifier for which access is to be
checked.

Return Values

The call returns values of type ObjectAccessType.

Value Build | Description

NO_ACCESS | all The OS-Application does not have access to the ob-
ject, oritis an invalid Object and/or ObjectType
ACCESS all The OS-Application has access to the object

Description

The call returns ACCESS only if AppID can access the specified OS Object.
NO_ACCESS is returned otherwise.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

29

Example

if (CheckObjectAccess(GetApplicationID(), OBJECT_TASK, Taskl) ==
ACCESS) {
ActivateTask(Taskl);
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook v
Category 1 ISR X | PostTaskHook X TimeOverrunHook v
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook v

See Also

CheckObjectOwnership

30 RTA-0S3.x API calls

2.9

CheckObjectOwnership

Get the OS-Application that owns the Object.

Syntax
ApplicationType CheckObjectOwnership(
ObjectTypeType ObjectType,
0s_AnyType Object

Parameters
ObjectType ObjectTypeType
The type of object (OBJECT TASK, OBJECT ISR,
OBJECT_ALARM, OBJECT_RESOURCE, OB-
JECT_COUNTER or OBJECT_SCHEDULETABLE).
Object in 0s_AnyType
The object whose ownership is to be checked.

Return Values

The call returns values of type ApplicationType.

Build Description
INVALID_OSAPPLICATION | all Invalid Object and/or ObjectType

Description

The call returns the identifier of the OS-Application that owns the Object, or
INVALID_OSAPPLICATION if the ObjectType and Object do not match an object
that is owned by an OS-Application.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
ApplicationType OwningApplication =
CheckObjectOwnership (OBJECT_TASK, Taskl);

RTA-0S3.x API calls

31

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook v
Category 1 ISR X | PostTaskHook X TimeOverrunHook v
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
v

ProtectionHook

See Also

CheckObjectAccess

32 RTA-0S3.x API calls

2.10

CheckTaskMemoryAccess

Check if a memory region is read/write/execute/stack accessible by a speci-
fied Task.

Syntax
AccessType CheckTaskMemoryAccess (
TaskType TaskID,
MemoryStartAddressType Address,
MemorySizeType Size

Parameters

Parameter Mode | Description

TaskID in TaskType
The task for which the memory access is being
checked.

Address in MemoryStartAddressType
A pointer to the start address of the memory area
(the base).

Size in MemorySizeType
The size of the memory area in bytes (the bound).

Return Values

The call returns values of type AccessType.

Description

If TaskID represents a valid task, then CheckTaskMemoryAccess() determines
whether the inclusive range of memory addresses from Address to (Ad-
dress+Size) is:

- readable by TaskID

- writeable by TaskID

- executable by TaskID

- represents stack space

If a memory access condition is not valid for the whole specified memory
area, then CheckTaskMemoryAccess() reports no access for the type. That
is, if any address in the range is not writeable, CheckTaskMemoryAccess()
reports the range is not writeable.

A call to this service results in the OS calling Os_Cbk_CheckMemoryAccess().

RTA-0S3.x API calls

33

The result of the call is encoded in an AccessType that can be decoded using
the OSMEMORY_IS_* macros.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK (MyTask) {
if (OSMEMORY_IS_WRITEABLE (CheckTaskMemoryAccess(MyTask, &datum,
sizeof(datum)))) {
datum = ...
}
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook v

See Also

CheckISRMemoryAccess
OSMEMORY_IS_EXECUTABLE
OSMEMORY_IS READABLE
OSMEMORY _IS_STACKSPACE
OSMEMORY_IS_WRITEABLE
Os_Cbk_CheckMemoryAccess
Os_Cbk_SetMemoryAccess

34 RTA-0S3.x API calls

2.11

ClearEvent

Clear one (or more) events from the task’s event mask.

Syntax

StatusType ClearEvent(
EventMaskType Mask
)

Parameters

Parameter Mode Description
Mask in EventMaskType
The event(s) to be cleared.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ACCESS extended | Not called from an extended task.
E_OS_CALLEVEL extended | Called from interrupt level.
E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

The events of the extended task calling ClearEvent are cleared according to
the event mask Mask.

Any events that are not set in the event mask remain unchanged.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyExtendedTask) {
EventMaskType WhatHappened;
while (WaitEvent(Eventl | Event2 | Event3) == E_OK) {
GetEvent (MyExtendedTask, &WhatHappened);
if (WhatHappened & Eventl) {
ClearEvent(Eventl);
/* Take action on Eventl x/

RTA-0S3.x API calls

35

36

} else if (WhatHappened & (Event2 | Event3) {

ClearEvent(Event2 | Event3);

/* Take action on Event2 or Event3 x/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR X | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareEvent
GetEvent
SetEvent
WaitEvent

RTA-0S3.x API calls

2.12

DisableAllinterrupts

Disables (masks) all interrupts for which the hardware supports disabling.

Syntax
void DisableAllInterrupts(void)

Description

This call is intended to start a (short) critical section of the code. This critical
section must be finished by calling EnableAllinterrupts(). No API calls are
allowed within the critical section.

The call does not support nesting. If nesting is needed for critical sections,
e.g. for libraries, then SuspendAllinterrupts()/ResumeAllinterrupts() should
be used.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
TASK (MyTask) {

DisableAllInterrupts();

/* Critical section *x/

/* No RTA-0S API calls allowed */
EnableAllInterrupts();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR v | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook v
ProtectionHook v

See Also

EnableAlllnterrupts
ResumeAllinterrupts
ResumeQOSlinterrupts
SuspendAllinterrupts
SuspendOSinterrupts

RTA-0S3.x API calls

37

2.13

38

EnableAllinterrupts

Enables (unmasks) all interrupts.

Syntax
void EnableAllInterrupts(void)

Description

This API call marks the end of a critical section that is protected from any
maskable interrupt occurring. The critical section must have been entered
using the DisableAllinterrupts() call.

This call restores the state of the interrupt mask saved by DisableAllinter-
rupts().

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x RTA-TRACE

Example
TASK (MyTask) {

DisableAllInterrupts();
/x Critical section x/
/* No RTA-0S API calls allowed */
EnableAllInterrupts();

Calling Environment

AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR v | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook v
ProtectionHook v

See Also

DisableAlllnterrupts
ResumeAllinterrupts
ResumeOQOSinterrupts
SuspendAllinterrupts
SuspendOSinterrupts

RTA-0S3.x API calls

2.14

GetActiveApplicationMode

Get the currently active application mode.

Syntax
AppModeType GetActiveApplicationMode(void)

Return Values

The call returns values of type AppModeType.

Description

The call returns the currently active application mode (i.e. the value of
parameter that was passed to StartOS()). The call can be used to write
application-mode dependent code.

It will return OS_NOAPPMODE if the OS is not running.

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
TASK (MyTask) {

if (GetActiveApplicationMode() == DiagnosticsMode) {
/* Send diagnostic message */

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook v
ProtectionHook X

See Also
StartOS

RTA-0S3.x API calls

39

2.15 GetAlarm

Get the number of ticks before an alarm expires.

Syntax

StatusType GetAlarm(
AlarmType AlarmID,
TickRefType Tick

Parameters
Parameter Mode Description |
AlarmID in AlarmType
Name of the alarm of interest.
Tick out TickRefType
Reference to a TickType variable.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description ‘

E_OK all No error.

E_O0S_NOFUNC all AlarmID is not currently set.

E_0S_ID extended | AlarmID is not a valid alarm.

E_0S_ACCESS extended | AlarmID is not accessible from the
calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | Tick is an address that is not
writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description
Returns the relative number of ticks from the point at which the call was made
before the alarm AlarmID is due to expire.

Note that between making this call and evaluating the out parameter Tick
the task may have been preempted and the alarm may have already expired.
Exercise caution when making program decisions based on the value of Tick.

40 RTA-0S3.x API calls

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

TASK (MyTask) {
TickType TicksToExpiry;

GetAlarm(MyAlarm, &TicksToExpiry);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook X
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook X

See Also

CancelAlarm
DeclareAlarm
GetAlarmBase
SetAbsAlarm
SetRelAlarm

RTA-0S3.x API calls 41

2.16 GetAlarmBase

Get properties of the counter associated with an alarm.

Syntax
StatusType GetAlarmBase(
AlarmType AlarmID,
AlarmBaseRefType Info

Parameters
| Parameter Mode Description |
AlarmID in AlarmType
Name of the alarm of interest.
Info out AlarmBaseRefType
Reference to an AlarmBaseType structure.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | AlarmID is not a valid alarm.

E_0S_ACCESS extended | AlarmID is not accessible from the
calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | Info is an address that is not
writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

GetAlarmBase() reads the alarm base characteristics. These are the static
properties of the counter with which AlarmID is associated.

The out parameter Info refers to a structure in which the information of data
type AlarmBaseType gets stored.

42 RTA-0S3.x API calls

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x

RTA-TRACE

Example

TASK (MyTask) {
AlarmBaseType Info;
TickType maxallowedvalue;
TickType ticksperbase;
TickType mincycle;

GetAlarmBase(MyAlarm, &Info);
maxallowedvalue = Info.maxallowedvalue;
ticksperbase = Info.ticksperbase;
mincycle = Info.mincycle;

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook X

See Also

CancelAlarm
DeclareAlarm
GetAlarm
SetAbsAlarm
SetRelAlarm

RTA-0S3.x API calls

43

2.17 GetApplicationID

Get the identifier of the currently running OS-Application.

Syntax
ApplicationType GetApplicationID(void)

Return Values

The call returns values of type ApplicationType.

Description

The call returns the currently running OS-Application. This is the OS-
Application that owns the currently running task or Category 2 ISR.

The call will return INVALID_OSAPPLICATION if no OS-Application is active.

Portability
RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Example
if (GetApplicationID() == Appl) {

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook v
ProtectionHook v
See Also
GetISRID
GetTaskID

44 RTA-0S3.x API calls

2.18

GetCounterValue

Get the value of a counter.

Syntax
StatusType GetCounterValue(
CounterType CounterID,
TickRefType Value

Parameters
[Parameter Mode Description
CounterID | in CounterType
The counter to read.
Value out TickRefType
The current value of the counter.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description

E_OK all No error.

E_0S_ID extended | CounterlD is not a valid counter.

E_0S_ACCESS extended | CounterlD is not accessible from the
calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | Value is an address that is not
writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

Returns the current value of the specified counter CounterID in Value.

The Operating System ensures that the lowest value is zero and consecutive
reads return an increasing count value until the counter wraps.

If CounterID is a hardware counter, then the user callback
Os_Cbk_Now_<CounterID> will be called.

RTA-0S3.x API calls

45

46

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

Task(MyTask) {
TickType Value;

GetCounterValue(MyCounter,&Value);

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

GetElapsedCounterValue

IncrementCounter
Os_AdvanceCounter

Os_AdvanceCounter_<CounterID>
Os_IncrementCounter_<Counter|D>

RTA-0S3.x API calls

2.19

GetElapsedCounterValue

Returns the number of elapsed ticks since the given <Value> value via
<ElapsedValue>.

Syntax

StatusType GetElapsedCounterValue(
CounterType CounterID,
TickRefType Value,
TickRefType ElapsedValue

Parameters
Parameter Mode Description
CounterlID in CounterType
Name of the counter.
Value in TickRefType
A previous counter value.
Value out TickRefType
The current value of the counter.
ElapsedValue | out TickRefType
The difference from the in Value.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | CounterlD is not a valid counter.

E_0S_ACCESS extended | CounterlD is not accessible from the
calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | Value or ElapsedValue is an address
that is not writable by the current
OS-Application (only when there are
untrusted OS-Applications).

RTA-0S3.x API calls

47

Description

Returns the number of ticks that have elapsed on the counter current since
Value.

Value is updated with the current value of the counter when the call returns.

Note that the call can only return a value up to maxallowedvalue ticks in
length.

If the counter has ticked more than maxallowedvalue ticks since Value then
ElapsedValue will be Value modulo maxallowedvalue.

Portability

RTA-OS3.x OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

Task(MyTask) {
TickType Value;
TickType ElapsedValue;

GetCounterValue(MyCounterID,&Value);
/* Value => current count x/

GetElapsedCounterValue(MyCounter,&/alue,&ElapsedValue);
/* ElapsedValue => ticks since original Value, Value => current
count x/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

*xX X X X

See Also

GetCounterValue

48 RTA-0S3.x API calls

2.20

GetEvent

Get the state of all event bits for a task.

Syntax

StatusType GetEvent(
TaskType TaskID,
EventMaskRefType Event

Parameters
[Parameter Mode Descripion
TaskID in TaskType
Name of the Task of interest.
Event out EventMaskRefType
Reference to an event mask.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | TasklID is not a valid task.

E_OS_ACCESS extended | TaskID is not accessible from the
calling OS-Application.

E_OS_ACCESS extended | TaskID is not an extended task.

E_OS_STATE extended | TaskID is in the suspended state.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | Event is an address that is not
writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

This call returns all events that are set for the extended task TaskID.

Note that all set events are returned, regardless of which events the task may
have been waiting for.

RTA-0S3.x API calls

49

50

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK (MyExtendedTask) {
EventMaskType WhatHappened;

while (WaitEvent(Eventl | Event2 | Event3) == E_0K) {
GetEvent (MyExtendedTask, &WhatHappened);

if(WhatHappened & Eventl) {
ClearEvent (Eventl);
/* Take action on Eventl x/

} else if (WhatHappened & (Event2 | Event3) {

ClearEvent(Event2 | Event3);

/* Take action on Event2 or Event3 x/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR v/ | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

v

x N\ X% X% N

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

ClearEvent
DeclareEvent
SetEvent
WaitEvent

RTA-0S3.x API calls

2.21

GetISRID

Get the identifier of the currently running ISR.

Syntax
ISRType GetISRID(void)

Return Values

The call returns values of type ISRType.

Description

The call returns the ID of the currently running Category2 ISR or INVALID ISR
if no ISR is running. The main use of the call is to identify which ISR is running
in hook functions.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){
ISRType ISRInError;
TaskType TaskInError;

ISRInError = GetISRID();

if (ISRInError !'= INVALID_ISR) {
/* Must be an ISR in error */

} else {
/* Maybe it’s a task in error */
GetTaskID(&TaskInError);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
ProtectionHook v/

RTA-0S3.x API calls

51

See Also

GetTaskID

52 RTA-0S3.x API calls

2.22

GetResource

Get (lock) a resource to enter a critical section.

Syntax

StatusType GetResource(
ResourceType ResID
)

Parameters

Parameter Mode Description
ResID in ResourceType
The resource to get.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ResID is not a valid resource.

E_O0S_ACCESS extended | ResID is not accessible from the calling
OS-Application.

E_OS_ACCESS extended | Attempt to get a resource which is (a) al-

ready locked by another task or ISR, or
(b) the priority of the calling task or in-
terrupt routine is higher than the actual
priority of ResID.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call enters a named critical section (the resource), protecting the code
inside the critical section against concurrent access by any other tasks and
ISRs that are configured to be able to access the resource.

A critical section must always be left using ReleaseResource().

Nested resource occupation is allowed, but only where the inner critical
sections are completely executed within the surrounding critical section as
shown in the example.

Nested occupation of the same resource is not allowed, although you can use
linked resources to achieve this effect.

RTA-0S3.x API calls

53

54

Calls that put the running task into any other state must not be used in critical
sections. (e.g. as ChainTask(), Schedule(), TerminateTask() or WaitEvent().)

A system where Category 2 ISRs can lock a resource has slightly higher run-
time overheads than one where only Tasks lock resources.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

GetResource(Outer);
/* Outer Critical Section x/

GetResource(Inner);
/* Inner Critical Section x/

ReleaseResource(Inner);

ReleaseResource(Outer);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
X

ProtectionHook

See Also

DeclareResource
ReleaseResource

RTA-0S3.x API calls

2.23 GetScheduleTableStatus

Get the status of a schedule table.

Syntax
StatusType GetScheduleTableStatus(
ScheduleTableType ScheduleTablelD,
ScheduleTableStatusRefType ScheduleStatus

Parameters

Parameter Mode Description

ScheduleTablelID ScheduleTableType
Schedule table for which the status is re-
quired.

ScheduleStatus out ScheduleTableStatusRefType
Reference to the schedule table status.

Return Values

The call returns values of type StatusType.

Value ' Build ' Description |

E_OK all No error.

E_0S_ID extended | ScheduleTablelID is not a valid
ScheduleTable.

E_O0S_ACCESS extended | ScheduleTablelD is not accessible
from the calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | ScheduleStatus is an address that
is not writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

This call returns the status of the ScheduleTablelD.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

RTA-0S3.x API calls

56

Example

TASK(MyTask) {
ScheduleTableStatusType Status;

GetScheduleTableStatus (MyScheduleTable, &Status);
if (Status != SCHEDULETABLE_RUNNING){
StartScheduleTableAbs (MyScheduleTable,42);

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook X
Category 1 ISR X | PostTaskHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareScheduleTable
NextScheduleTable
SetScheduleTableAsync
StartScheduleTableAbs
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable
SyncScheduleTable

RTA-0S3.x API calls

2.24

GetTaskID

Identify the currently running task.

Syntax

StatusType GetTaskID(
TaskRefType TaskID
)

Parameters

Parameter Mode Description

TaskID out TaskRefType
A reference to the running task.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).
E_OS_TILLEGAL_ADDRESS | extended | TaskID is an address that is
not writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

The call returns a reference to the currently running Task. If the call is made
from a task, then it will return the identifier of that task. If the call is made
from an ISR, then it will return the identifier of the task that was running
when the interrupt occurred. The main use of the call is to identify which task
is running in hook functions.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

57

58

Example

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){

TaskType TaskInError;

GetTaskID(&TaskInError);

if (TaskInError == INVALID_TASK) {
/* Must be an ISR in error x/

} else if (TaskInError == MyTask) {
/* Do something */

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook

Category 1 ISR X | PostTaskHook

Category 2 ISR v | StartupHook
ShutdownHook
ErrorHook

ProtectionHook

AN 2 NN

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

DeclareTask
GetISRID
GetTaskID
GetTaskState
TerminateTask

RTA-0S3.x API calls

2.25

GetTaskState

Get the current state (suspended, ready, running, waiting) of a specified task.

Syntax
StatusType GetTaskState(
TaskType TaskID,
TaskStateRefType State

Parameters
[Parameter Mode Description |
TaskID in TaskType
The task of interest.
State out TaskStateRefType
Reference to the task state.

Return Values

The call returns values of type StatusType.

Value ‘ Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | TaskID is not a valid TaskType.

E_0S_ACCESS extended | TaskID is not accessible from the
calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is config-
ured).

E_OS_DISABLEDINT extended | Called while interrupts are disabled
(only when Service Protection is
configured).

E_OS_ILLEGAL_ADDRESS | extended | State is an address that is not
writable by the current OS-
Application (only when there are
untrusted OS-Applications).

Description

The call returns the state of the task at the point GetTaskState() was called.

The main use of this API is to check that an extended task is not in the sus-
pended state before setting an event.

A task that is preempted by an ISR remains in the running state.

RTA-0S3.x API calls

59

Note that when called from a preemptive task or from an ISR the state may
already be incorrect at the time it is evaluated because preemption may have
occurred between the call returning and the result being evaluated.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
TASK(MyTask) {

TaskStateType CurrentState;

GetTaskState(YourTask, &CurrentState);
switch (CurrrentState) {
case SUSPENDED:
/* YourTask 1s suspended */
case READY:
/* YourTask is ready to run x/
case WAITING:
/* YourTask is waiting (for an event) x/
case RUNNING:
/* YourTask is running. Not possible as MyTask must be
running to make the call */

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook X
Category 1 ISR X | PostTaskHook v | TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook v
X

ProtectionHook

See Also

DeclareTask
GetTaskID
GetTaskState
TerminateTask

60 RTA-0S3.x API calls

2.26

IncrementCounter

Increment a software counter.

Syntax

StatusType IncrementCounter(
CounterType CounterID
)

Parameters

Parameter Mode Description
CounterID | in CounterType
Name of the counter to increment.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | CounterlD is not a software counter.

E_0S_ACCESS extended | CounterlD is not accessible from the call-
ing OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call increments (adds one to) CounterID. CounterlD must be a software
counter.

If any alarms on the counter are triggered by the increment then the alarm
actions will be executed before the call returns.

Note that if an error occurs during the expiry of an alarm (for example, a task
activation raises E_OS_LIMIT), the error hook(s) are called for each error that
occurs.

However, the IncrementCounter() service itself will still return E_OK.
The API call may cause re-scheduling to take place.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

61

62

Example

ISR(MillisecondTimerInterrupt){

IncrementCounter(MillisecondCounter);

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

X
X
X
X
X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

Os_AdvanceCounter

Os_AdvanceCounter_<CounterID>
Os_IncrementCounter_<CounterID>

RTA-0S3.x API calls

2.27

NextScheduleTable

Change the execution pattern from one ScheduleTable to another.

Syntax
StatusType NextScheduleTable(
ScheduleTableType ScheduleTableID_From,
ScheduleTableType ScheduleTableID_To

Parameters
Parameter Mode | Description
ScheduleTableID_From | in ScheduleTableType
Schedule table to switch from.
ScheduleTableID_To in ScheduleTableType
Schedule table to switch into.

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘

E_OK all No error.

E_OS_NOFUNC all ScheduleTableID_From is not started.

E_0S_ID extended | ScheduleTablelD_From or Sched-
uleTableID To is not a valid Sched-
uleTable.

E_OS_ACCESS extended | ScheduleTablelD_From or Sched-

uleTableID To is not accessible from
the calling OS-Application.

E_OS_STATUS extended | ScheduleTablelD_To is already started or
nexted.
E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call starts the processing of schedule table of ScheduleTablelD_To
ScheduleTablelD_From.FinalDelay ticks after the Final Expiry Point on Sched-
uleTableID_From has been processed.

The Initial Expiry Point on ScheduleTablelD To is processed Sched-
uleTable_To.InitialOffset ticks after the start of ScheduleTablelD_To.

RTA-0S3.x API calls

63

If ScheduleTableID_From already has a 'nexted’ schedule table then Sched-
uleTablelD To replaces the previous 'nexted’ schedule table and that previ-
ous table is set to state SCHEDULETABLE_STOPPED.

If either schedule table is not valid or they are driven by different counters
then the states of both tables remain unchanged.

The synchronization strategy of ScheduleTableID_To comes into effect when
the OS processes the first expiry point of ScheduleTablelD_To.

Portability

RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
TASK(MyTask) {
/* Stop MyScheduleTable at the end and start
YourScheduleTable x/
NextScheduleTableAbs (MyScheduleTable, YourScheduleTable);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

See Also

DeclareScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync
StartScheduleTableAbs
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable
SyncScheduleTable

RTA-0S3.x API calls

2.28

Os_AdvanceCounter

Inform the OS that a hardware counter has reached the previously pro-
grammed value.

Syntax

StatusType 0Os_AdvanceCounter(
CounterType CounterID
)

Parameters

Parameter Mode @ Description

CounterID | in CounterType
Name of the counter that has reached a pro-
grammed value.

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | CounterID is not a hardware counter.

E_0S_ACCESS extended | CounterlID is not accessible from the call-
ing OS-Application.

E_OS_STATE extended | CounterID is not running.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call tells the OS that the counter value has matched the value previously
set via the Os_Cbk _Set <CounterID> callback.

The OS will then process any alarm or expiry point actions that are due. It will
then either set a new match value (via Os_Cbk_Set <CounterID>) or cancel
counter matching (via Os_Cbk_Cancel_<CounterlD>).

Note that it is possible for the new counter match value to be reached before
leaving any interrupt that is being used to drive the counter. It is important
that this occurrence is not missed because otherwise the counter will not
be awoken again until a complete wrap of the underlying hardware counter
value has occurred.

RTA-0S3.x API calls

65

On some hardware platforms no special action is needed because the inter-
rupt will simply get reasserted when the existing instance exits.

On other platforms, the interrupt has to be reasserted in software or, where
this is not possible, the code must loop as shown in the example. In either
case great care has to be taken to avoid missing matches that occur while
the driver is executing.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X X

Example

/* For systems where the interrupt will be re-entered
automatically if the match occurs before leaving the ISR: x/
ISR(SimpleCounterDriver){
Os_AdvanceCounter (MyHWCounter) ;
}
/* For systems where the software can force the interrupt to get
re-entered if the match occurs before leaving the ISR: x/
ISR(RetriggeringCounterDriver){
0s_ScheduleTableStatusType CurrentState;
0s_AdvanceCounter (MyHWCounter) ;
0s_Cbk_State_MyHWCounter(&CurrentState);
if (CurrentState.Running && CurrentState.Pending) {
/* Retrigger this interrupt x/
}
}
/* For systems where the software has to loop if the match occurs
before leaving the ISR: x/
ISR(LoopingCounterDriver){
0s_ScheduleTableStatusType CurrentState;
do {
0s_AdvanceCounter (MyHWCounter) ;
0s_Cbk_State_MyHWCounter(&CurrentState);
} while (CurrentState.Running && CurrentState.Pending);
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

66 RTA-0S3.x API calls

See Also

IncrementCounter
Os_AdvanceCounter_<CounteriD>
Os_Cbk_Cancel_<CounterlD>
Os_Cbk _Set <CounterIlD>

Os_Cbk State_<CounterlD>
Os_IncrementCounter_<CounterIiD>

RTA-0S3.x API calls

67

2.29 Os_AdvanceCounter_<CounterlD>

Inform the OS that a hardware counter has reached a programmed value.

Syntax
StatusType 0s_AdvanceCounter_CounterID(void)

Return Values
The call returns values of type StatusType.
Value Build ' Description |

E_OK all No error.
E_OS_STATE | extended | CounterID is not running.

Description

This call has the same behavior as Os_AdvanceCounter(CounterID) but is cus-
tomized for a specific counter. This makes the call faster and more suitable
for use in interrupt handlers.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

/* For systems where the interrupt will be re-entered
automatically if the match occurs before leaving the ISR: x*/
ISR(SimpleCounterDriver){
0s_AdvanceCounter_MyHWCounter();
}
/* For systems where the software can force the interrupt to get
re-entered if the match occurs before leaving the ISR: */
ISR(RetriggeringCounterDriver){
0s_ScheduleTableStatusType CurrentState;
0s_AdvanceCounter_MyHWCounter();
0s_Cbk_State_MyHWCounter(&CurrentState);
if (CurrentState.Running && CurrentState.Pending) {
/* Retrigger this interrupt x/
}
}

/* For systems where the software has to loop if the match occurs
before leaving the ISR: x/
ISR(LoopingCounterDriver){
0s_ScheduleTableStatusType CurrentState;
do {
0s_AdvanceCounter_MyHWCounter();
0s_Cbk_State_MyHWCounter(&CurrentState);
} while (CurrentState.Running && CurrentState.Pending);

68 RTA-0S3.x API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

X
X
X
X
X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

IncrementCounter
Os_AdvanceCounter

Os_Cbk_Cancel_<CounterlD>
Os_Cbk_Set <CounterlD>

Os Cbk State <CounterIiD>
Os_IncrementCounter_<CounterlD>

RTA-0S3.x API calls

69

2.30

70

Os_GetExecutionTime

Get the execution time consumed by the calling Task/ISR.

Syntax
0s_StopwatchTickType Os_GetExecutionTime(void)

Return Values
The call returns values of type 0s_StopwatchTickType.

Description

Returns the net execution time consumed (i.e. excluding all preemptions)
since the start of the Task or ISR.

In the case of an extended task, execution time restarts on return from a
WaitEvent() call.

The value is not valid in PreTaskHook().

Any value read in PostTaskHook() is valid, but it will be greater than the value
that is used to determine a task’s maximum execution time.

If the value overflows, then the returned value will be the wrapped value.

Time monitoring must be enabled for this API to give meaningful results. It
returns zero if time monitoring is not enabled.

Portability
RTA-OS3.x | OSEKOS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example
TASK(MyTask) {

Os_StopwatchTickType Start, Finish, Used, APICallCorrection;

Start = GetExecutionTime();

Finish = GetExecutionTime();

APICallCorrection = Finish - Start; /x Get time for
GetExecutionTime() call itself. x/

Start = GetExecutionTime();

Call3rdPartyLibraryFunction(); /* Measure 3rd Party
Library Code Execution Time x/

Finish = GetExecutionTime();

Used = Finish - Start - APICallCorrection; /* Calculate the
amount of time used. x/

RTA-0S3.x API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

Os_GetISRMaxExecutionTime
Os_GetTaskMaxExecutionTime
Os_ResetlISRMaxExecutionTime
Os_ResetTaskMaxExecutionTime

RTA-0S3.x API calls

71

2.31

72

Os_GetISRMaxExecutionTime

Get the longest observed execution time consumed by an ISR.

Syntax

Os_StopwatchTickType 0s_GetISRMaxExecutionTime(
ISRType ISRID
)

Parameters

Parameter Mode Description
ISRID in ISRType
The ISR of interest.

Return Values

The call returns values of type 0s_StopwatchTickType.

Description

Returns the maximum observed execution time for the Category 2 ISR iden-
tified by ISRID.

This maximum value is over all complete invocations of the Category 2 ISR
that have completed since the previous call to ResetISRMaxExecutionTime()
for that Category 2 ISR or to StartOS().

Portability
RTA-0S3.x | OSEKOS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example
TASK(LoggingTask) {

0s_StopwatchTickType ExecutionTimes[MAXISRS];

GetISRMaxExecutionTime(ISR1);
GetISRMaxExecutionTime(ISR2);

ExecutionTimes[0]
ExecutionTimes[1]

RTA-0S3.x API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook v

See Also

Os_GetExecutionTime

Os_GetTaskMaxExecutionTime
Os_ResetlISRMaxExecutionTime
Os_ResetTaskMaxExecutionTime

RTA-0S3.x API calls

73

2.32

74

Os_GetISRMaxStackUsage

Get the maximum observed stack usage of an ISR.

Syntax
0s_StackSizeType 0s_GetISRMaxStackUsage(
ISRType ISRID
)

Parameters

Parameter Mode Description
ISRID in ISRType
The ISR of interest.

Return Values

The call returns values of type 0s_StackSizeType.

Description

Returns the maximum observed stack usage for the Category 2 ISR identified
by ISRID.

This maximum value is over all invocations of the Category 2 ISR since the
previous call to ResetISRMaxStackUsage() for that Category 2 ISR or to Star-
tOS().

Portability
RTA-0S3.x | OSEKOS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example
TASK(LoggingTask) {

0s_StackSizeType StackUsages[MAXISRS];

StackUsages[0]
StackUsages[1]

GetISRMaxStackUsage(ISR1);
GetISRMaxStackUsage (ISR2);

RTA-0S3.x API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook v

See Also

Os_GetStackUsage

Os_GetTaskMaxStackUsage
Os_ResetlISRMaxStackUsage
Os_ResetTaskMaxStackUsage

RTA-0S3.x API calls

75

2.33 Os_GetStackSize

Get the difference between 2 stack values.

Syntax

Os_StackSizeType 0s_GetStackSize(
0s_StackValueType Base,
Os_StackValueType Sample

Parameters
[Parameter Mode Description |
Base in 0s_StackValueType
The position to measure the stack from.
Sample in 0s_StackValueType
The position to measure the stack to.

Return Values

The call returns values of type 0s_StackSizeType.

Description

Returns the difference between 2 Os_StackValueType values. To obtain a cor-
rect value, it is important that 'Base’ represents an instant when the stack
size was smaller than (or the same as) the point at which 'Sample’ was mea-

sured.
Portability
RTA-0S3.x A OSEKOS AUTOSAR OS R3.x @ RTA-TRACE
v X X X
Example

Os_StackValueType start_position;
Os_StackValueType end_position;
0s_StackSizeType stack_size;
TASK(MyTask) {

start_position = 0s_GetStackValue();

nested_call();

stack_size = Os_GetStackSize(start_position, end_position);
}
void nested_call(void) {

end_position = Os_GetStackValue();
}

76 RTA-0S3.x API calls

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook v
Category 1 ISR v | PostTaskHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook v
ProtectionHook v

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_GetStackUsage
Os_GetStackValue

RTA-0S3.x API calls

77

2.34

78

Os_GetStackUsage

Get the amount of stack consumed by the calling Task/ISR.

Syntax
0s_StackSizeType 0Os_GetStackUsage(void)

Return Values

The call returns values of type 0s_StackSizeType.

Description

Returns the amount of stack used by the calling Task or ISR at the point of the
call.

The value is measured from the point at which the OS kernel starts to run the
Task or ISR, and it includes overheads within the kernel so that the values re-
turned can be used directly in the configuration of the stack allocation budget
for a Task or ISR.

Calling this API has the side-effect of updating the recorded maximum stack
usage for the calling Task or ISR (where necessary).

If the Task/ISR has a stack allocation budget, then a stack overrun may be
reported before this API returns.

Stack monitoring must be enabled in general OS configuration for this API to
give meaningful results. It returns zero if stack monitoring is not enabled.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example
TASK(MyTask) {

0s_StackSizeType stack_size;
stack_size = 0Os_GetStackUsage();
nested_call();
}
void nested_call(void) {
Os_GetStackUsage(); /* Identifies a possible max stack usage
location */

RTA-0S3.x API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

Os_Cbk_StackOverrunHook
Os_GetISRMaxStackUsage
Os_GetTaskMaxStackUsage
Os_ResetISRMaxStackUsage
Os_ResetTaskMaxStackUsage

RTA-0S3.x API calls

79

2.35

80

Os_GetStackValue

Get the current stack value.

Syntax
0s_StackValueType Os_GetStackValue(void)

Return Values
The call returns values of type 0s_StackValueType.

Description

Returns the current position of the stack pointer (or pointers).

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

Os_StackValueType start_position;
Os_StackValueType end_position;
0s_StackSizeType stack_size;
TASK(MyTask) {

start_position = 0s_GetStackValue();

nested_call();

stack_size = Os_GetStackSize(start_position, end_position);
}
void nested_call(void) {

end_position = Os_GetStackValue();
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook
Category 1 ISR v | PostTaskHook v TimeOverrunHook
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook v
ProtectionHook v

4
4

See Also

Os_GetStackSize
Os_GetStackUsage

RTA-0S3.x API calls

2.36

Os_GetTaskMaxExecutionTime

Get the longest observed execution time consumed by a Task.

Syntax
Os_StopwatchTickType Os_GetTaskMaxExecutionTime (
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
The Task of interest.

Return Values

The call returns values of type 0s_StopwatchTickType.

Description
Returns the maximum observed execution time for TaskID.
This maximum value is over all complete invocations of TaskiD that have

completed since the previous call to ResetTaskMaxExecutionTime() for TaskID
or to StartOS().

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(LoggingTask){
0s_StopwatchTickType ExecutionTimes[MAXTASKS];
ExecutionTimes[0] GetTaskMaxExecutionTime(Taskl

ExecutionTimes[1]

ExecutionTimes[2]

ExecutionTimes[3]

’

)
GetTaskMaxExecutionTime(Task2);
GetTaskMaxExecutionTime(Task3);
GetTaskMaxExecutionTime(Task4)

’

RTA-0S3.x API calls

81

82

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR X

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetExecutionTime

Os_GetISRMaxExecutionTime
Os_ResetlISRMaxExecutionTime
Os_ResetTaskMaxExecutionTime

RTA-0S3.x API calls

2.37

Os_GetTaskMaxStackUsage

Get the maximum observed stack usage of a Task.

Syntax
0s_StackSizeType Os_GetTaskMaxStackUsage(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
The Task of interest.

Return Values

The call returns values of type 0s_StackSizeType.

Description

Returns the maximum observed stack usage for TaskID.

This maximum value is over all invocations of TaskID since the previous call
to ResetTaskMaxStackUsage() for TaskID or to StartOS().

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example

TASK(LoggingTask){
0s_StackSizeType StackUsages[MAXTASKS];

StackUsages[0]

= GetTaskMaxStackUsage(Taskl);
StackUsages[1l] = GetTaskMaxStackUsage(Task2);
StackUsages[2] = GetTaskMaxStackUsage(Task3);
StackUsages[3] = GetTaskMaxStackUsage(Task4);

RTA-0S3.x API calls

83

84

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR X

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetISRMaxStackUsage

Os_GetStackUsage

Os_ResetlISRMaxStackUsage
Os_ResetTaskMaxStackUsage

RTA-0S3.x API calls

2.38

Os_GetVersioninfo

Get the version information for the OS

Syntax

void 0Os_GetVersionInfo(
Std_VersionInfoType *versioninfo

)

Parameters

Parameter Mode Description

versioninfo | out Std_VersionInfoType
Pointer to variable used to get the OS Version in-
formation

Description

The content of the structure 'Std_VersionInfoType’ is defined in Std_Types.h

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example

Std_VersionInfoType ver;
Os_GetVersionInfo(&ver);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook Ve StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook Ve
ErrorHook Ve
ProtectionHook v
See Also
None.

RTA-0S3.x API calls

85

2.39 Os_IncrementCounter_<CounteriD>

Increment a software counter.

Syntax
StatusType IncrementCounter_<CounterID>(void)

Return Values

The call returns values of type StatusType.

Value Build Description |
E_OK all No error.

Description

This call has the same behavior as IncrementCounter(CounterlD) but is cus-
tomized for a named counter. This makes the call faster and more suitable
for use in interrupt handlers.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
ISR(MillisecondTimerInterrupt){

Os_IncrementCounter_MillisecondCounter();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X
ShutdownHook X
ErrorHook X
ProtectionHook X
See Also
IncrementCounter

Os_AdvanceCounter
Os_AdvanceCounter_<CounterID>

86 RTA-0S3.x API calls

2.40

Os_ResetISRMaxExecutionTime

Reset the maximum observed execution time for an ISR.

Syntax
StatusType Os_ResetISRMaxExecutionTime(
ISRType ISRID
)

Parameters

Parameter Mode Description
ISRID in ISRType
Name of the ISR to reset.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ISRID is not a valid Category 2 ISR.

E_OS_ACCESS | extended | ISRID is not accessible from the calling OS-
Application.

Description

Reset the maximum observed execution time for the Category 2 ISR identified
by ISRID to zero.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(ProfilingTask) {
0s_StopwatchTickType ExecutionTimelLog[SAMPLES];

ExecutionTimeLog[index++] = 0s_GetISRMaxExecutionTime(ISR1);
0s_ResetISRMaxExecutionTime(ISR1);

RTA-0S3.x API calls

87

88

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetExecutionTime

Os_GetISRMaxExecutionTime
Os_GetTaskMaxExecutionTime
Os_ResetTaskMaxExecutionTime

RTA-0S3.x API calls

2.41

Os_ResetISRMaxStackUsage

Reset the maximum observed stack usage for an ISR.

Syntax
StatusType 0s_ResetISRMaxStackUsage(
ISRType ISRID
)

Parameters

Parameter Mode Description
ISRID in ISRType
Name of the ISR to reset.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ISRID is not a valid Category 2 ISR.

E_OS_ACCESS | extended | ISRID is not accessible from the calling OS-
Application.

Description

Reset the maximum observed stack usage for ISRID to zero.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(ProfilingTask){
0s_StackSizeType StackUsagelLog[SAMPLES];

StackUsagelog[index++] = 0s_GetISRMaxStackUsage(ISR1);
0s_ResetISRMaxStackUsage(ISR1);

RTA-0S3.x API calls

89

20

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetISRMaxStackUsage

Os_GetStackUsage

Os_GetTaskMaxStackUsage
Os_ResetTaskMaxStackUsage

RTA-0S3.x API calls

2.42

Os_ResetTaskMaxExecutionTime

Reset the maximum observed execution time for a task.

Syntax
StatusType Os_ResetTaskMaxExecutionTime(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
Name of the task to reset.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | TaskID is not a valid task.

E_0S_ACCESS | extended | TaskID is not accessible from the calling OS-
Application.

Description

Reset the maximum observed execution time for TaskID to zero.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(ProfilingTask){
0s_StopwatchTickType ExecutionTimelLog[SAMPLES];

ExecutionTimeLog[index++] = 0s_GetTaskMaxExecutionTime(Taskl);
0s_ResetTaskMaxExecutionTime(Taskl);

RTA-0S3.x API calls

91

92

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetExecutionTime

Os_GetISRMaxExecutionTime
Os_GetTaskMaxExecutionTime
Os_ResetISRMaxExecutionTime

RTA-0S3.x API calls

2.43

Os_ResetTaskMaxStackUsage

Reset the maximum observed stack usage for a task.

Syntax
StatusType Os_ResetTaskMaxStackUsage(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
Name of the task to reset.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | TaskID is not a valid task.

E_0S_ACCESS | extended | TaskID is not accessible from the calling OS-
Application.

Description

Reset the maximum observed stack usage for TaskID to zero.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(ProfilingTask){
0s_StackSizeType StackUsagelLog[SAMPLES];

StackUsagelog[index++] = 0s_GetTaskMaxStackUsage(Taskl);
Os_ResetTaskMaxStackUsage(Taskl);

RTA-0S3.x API calls

93

924

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ X X X X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook Vv

See Also

Os_GetISRMaxStackUsage

Os_GetStackUsage

Os_GetTaskMaxStackUsage
Os_ResetISRMaxStackUsage

RTA-0S3.x API calls

2.44

Os_Restart

Restart the OS by jumping to a previously specified location.

Syntax
StatusType Os_Restart(void)

Return Values

The call returns values of type StatusType.

Value ‘ Build Description ‘

E_0S_SYS_RESTART all The call was not made from the Shut-
downHook.

E_0S_SYS_NO_RESTART | all No restart point has been set.

Description
The call re-initializes any necessary context and branches to the restart point
set by Os_SetRestartPoint. The call does not return to the calling context.

The restart point must occur before a call to StartOS(), so that all OS re-
initialization re-occurs with the subsequent call to StartOS().

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
FUNC(void, OS_APPL_CODE) ShutdownHook(StatusType Error){

Os_Restart();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X

ShutdownHook v
ErrorHook X
ProtectionHook X

RTA-0S3.x API calls

95

See Also

Os_SetRestartPoint
ShutdownQOS
StartOS

96 RTA-0S3.x API calls

2.45

Os_SetRestartPoint

Mark a location in code before StartOS() from where a restart of the OS can
be made.

Syntax
StatusType 0Os_SetRestartPoint(void)

Return Values

The call returns values of type StatusType.

Value Build Description

E_0S_SYS_NO_RESTART | all The call was not made before StartOS.

Description

The call marks the location from which the code should resume following a
call to Os_Restart(). The location must be outside of OS control, i.e. at a point
before StartOS() was called. Making the call when a restart point is already
sets the restart point to the new location.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0S_MAIN() {

0Os_SetRestartPoint();

Start0S(OSDEFAULTAPPMODE) ;

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X
ShutdownHook X
ErrorHook X
X

ProtectionHook

RTA-0S3.x API calls

97

See Also

Os_Restart
ShutdownQOS
StartOS

98 RTA-0S3.x API calls

2.46

Os_TimingFaultDetected

Report detection of a timing protection fault.

Syntax
void Os_TimingFaultDetected(void)

Description

When timing protection is configured and a timing interrupt is being used to
enforce time limits, the timing interrupt must call this APl whenever it runs.

The timing interrupt must run whenever the time limit that was set by the
most recent call to Os_Cbk_SetTimeLimit() has been reached - unless a sub-
sequent call to Os_Cbk_SuspendTimeLimit() has occurred to cancel it.

The timing interrupt must be a Category 1 ISR, and it should have priority
higher than the highest Category 2 ISR. It is recommended that no other
Category 1 ISRs are used. If you must have some, you should ensure that the
timing interrupt cannot preempt them.

The OS responds to this call by calling ProtectionHook which means that
it will normally not return to the timing interrupt. You must there-
fore perform any interrupt cleanup code that is needed before calling
Os_TimingFaultDetected().

Portability

RTA-O0S3.x ‘ OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

CAT1_ISR(timing_interrupt) {
/* Reset pending interrupt flags here if needed x/
Os_TimingFaultDetected();

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR v | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-0S3.x API calls

929

See Also

Os_Cbk_SetTimeLimit
Os_Cbk _SuspendTimeLimit
ProtectionHook

100 RTA-0S3.x API calls

2.47

ReleaseResource

Release (unlock) a previously held resource to leave a critical section.

Syntax

StatusType ReleaseResource(
ResourceType ResID
)

Parameters

Parameter Mode Description
ResID in ResourceType
The resource to release.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ResID is not a valid resource.

E_O0S_ACCESS extended | ResID is not accessible from the calling
OS-Application.

E_OS_ACCESS extended | Attempt to release a resource which has

a lower ceiling priority than the config-
ured priority of the calling task/ISR.
E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

ReleaseResource is the counterpart of GetResource and serves to quit a crit-
ical section in the code.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

GetResource(Outer);
/* Outer Critical Section x/

GetResource(Inner);

RTA-0S3.x API calls

101

102

/* Inner Critical Section x/
ReleaseResource(Inner);

ReleaseResource(Outer);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR v | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareResource
GetResource

RTA-0S3.x API calls

2.48

ResumeAllinterrupts

Resume recognition of Category 1 and Category 2 interrupts.

Syntax
void ResumeAllInterrupts(void)

Description

This API call marks the end of a critical section that is protected from any
maskable interrupt occurring. The critical section must have been entered
using the SuspendAllinterrupts() call.

No API calls beside SuspendAllinterrupts()/ResumeAllinterrupts() pairs and
SuspendOSinterrupts()/ResumeOSinterrupts() pairs are allowed within this
critical section.

Interrupt processing is restored to that in effect before the immediately prior
SuspendAllinterrupts() call.

When calls to SuspendAllinterrupts() and ResumeAllinterrupts() are nested
then the interrupt recognition status saved by the first call of SuspendAllinter-
rupts() is restored by the last call of the ResumeAlllnterrupts().

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

SuspendAllInterrupts():
/* Critical Section 1 x/
FunctionWithNestedCriticalSection();
ResumeAllInterrupts():

}

void FunctionWithNestedCriticalSection(void) {
SuspendAllInterrupts():

/* Critical Section 2 x/
ResumeAllInterrupts():

RTA-0S3.x API calls

103

104

Calling Environment

Tasks/ISRs
Task v
Category 1ISR vV
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook Vv

See Also

DisableAlllnterrupts
EnableAlllnterrupts
ResumeQOSinterrupts
SuspendAllinterrupts
SuspendOSinterrupts

RTA-0S3.x API calls

2.49 ResumeOSinterrupts

Resume recognition of Category 2 interrupts

Syntax
void ResumeOSInterrupts(void)

Description

This API call marks the end of a critical section that is protected from any
Category 2 (OS level) interrupt occurring. The critical section must have been
entered using the SuspendOSinterrupts() call.

No API calls beside SuspendAllinterrupts()/ResumeAllinterrupts() pairs and
SuspendOSinterrupts()/ResumeOSinterrupts() pairs are allowed within this
critical section.

Interrupt processing is restored to that in effect before the immediately prior
SuspendOSinterrupts() call.

When calls to SuspendOSinterrupts() and ResumeOSinterrupts() are nested
then the interrupt recognition status saved by the first call of SuspendOSin-
terrupts() is restored by the last call of the ResumeOSinterrupts().

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

Suspend0SInterrupts():
/* Longer Critical Section */
SuspendAllInterrupts();
/* Shorter Critical Section x/
ResumeAllInterrupts();
ResumeOSInterrupts():

RTA-0S3.x API calls 105

106

Calling Environment

Tasks/ISRs
Task v
Category 1ISR vV
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

AN N NN

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DisableAlllnterrupts
EnableAlllnterrupts
ResumeAllinterrupts
SuspendAllinterrupts
SuspendOSinterrupts

RTA-0S3.x API calls

2.50

Schedule

Forces the OS to check if a higher priority task can be run.

Syntax
StatusType Schedule(void)

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘
E_OK all No error.

E_0S_RESOURCE extended | Calling task still holds resources.
E_OS_CALLEVEL extended | Called at interrupt level.

E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

The call allows a non-preemptive task or a task/ISR that uses an internal re-
source to offer a preemption point.

Rescheduling occurs if:

1. The calling task is non-preemptive and a higher priority task has been
activated while the calling task was in the running state.

2. The calling task/ISR shares an internal resource with a higher priority
task/ISR and that higher priority task/ISR has been activated.

If no higher-priority task/ISR is in the ready state the calling task/ISR resumes.

This service has no influence on preemptive tasks or ISRs that do not use
internal resources.

Note that allowing ISRs to share internal resources is an RTA-OS specific fea-
ture.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

107

108

Example

TASK(MyTask) {
CooperativeProcessA();
Schedule();
CooperativeProcessB();
Schedule();
CooperativeProcessC();
Schedule();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook X
Category 1 ISR X | PostTaskHook X
Category 2 ISR X | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareTask
GetTaskID
GetTaskState
TerminateTask

RTA-0S3.x API calls

2.51

SetAbsAlarm

Set an alarm for an absolute counter value.

Syntax
StatusType SetAbsAlarm(
AlarmType AlarmID,
TickType start,
TickType cycle

Parameters

AlarmID in AlarmType
Name of the alarm to set.

start in TickType
Absolute tick value at which the alarm is first trig-
gered.

cycle in TickType
Ticks before the alarm is triggered subsequently..

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘

E_OK all No error.

E_OS_STATE all AlarmID already running.

E_0S_ID extended | AlarmID is not a valid alarm.

E_0S_ACCESS extended | AlarmID is not accessible from the calling
OS-Application.

E_0S_VALUE extended | The value of start or cycle is outside the

permitted range. 0 <= increment <=
maxallowedvalue. cycle = 0 or mincycle
<= cycle <= maxallowedvalue.
E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call starts an alarm running and sets the match value with the associated
counter that triggers the alarm.

If cycle is equal to zero then the alarm will be triggered once only. If cycle is
nonzero then the alarm will be triggered every cycle ticks after start.

RTA-0S3.x API calls

109

When the alarm expires, the statically configured action (activate a task / set
an event / run an alarm callback / increment a counter) occurs.

You must cancel an alarm if it is running before you can restart it with different
values.

Note that if the value of start is less than or equal to the current counter value
then AlarmID will not be triggered until a full wrap of the underlying counter.

In particular, note that if an absolute alarm is set at startup with a start of
zero - SetAbsAlarm(MyAlarm,0,x) - then the alarm will not be triggered until
maxallowedvalue+1 ticks of the counter have elapsed.

Portability
RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v v v X
Example
TASK(MyTask) {

/* SingleShotAlarm at tick 42 x/
SetAbsAlarm(SingleShotAlarm, 42, 0);

/* PeriodicAlarm at 10, 60, 110, 160,... *x/
SetAbsAlarm(PeriodicAlarm, 10, 50);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook v

ShutdownHook X
ErrorHook X
ProtectionHook X

See Also

CancelAlarm
DeclareAlarm
GetAlarm
GetAlarmBase
SetRelAlarm

110 RTA-0S3.x API calls

2.52

SetEvent

Set event(s) for a task.

Syntax

StatusType SetEvent(
TaskType TaskID,
EventMaskType Mask

Parameters
[Parameter Mode Description |
TaskID in TaskType
Name of the Task to set the Event for.
Mask in EventMaskType
A mask of events to set.

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘

E_OK all No error.

E_0S_ID extended | TaskiD is not a valid task.

E_0S_ACCESS extended | TaskID is not accessible from the calling
OS-Application.

E_OS_ACCESS extended | TaskID is not an extended task.

E_OS_STATE extended | TaskiID is in the suspended state.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This API call sets events for task TaskID according to Mask.

If the task is waiting for any event in Event, it is immediately transferred to
the ready state and re-scheduling can occur.

Multiple events can be set simultaneously by logically bitwise or-ing events.
Any unset events in the event mask remain unchanged.

Events cannot be set for extended tasks that are in the suspended state.
In extended status this results in the error E_OS_STATE. In standard status,
setting an event for a suspended task has no effect.

RTA-0S3.x API calls

111

112

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

/* Set a single event */
SetEvent (MyExtendedTask, Eventl);

/* Set multiple events x/

SetEvent (MyOtherExtendedTask, Eventl | Event2 | Event3);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR v | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

ClearEvent
DeclareEvent
SetEvent
WaitEvent

RTA-0S3.x API calls

2.53

SetRelAlarm

Set an alarm for a relative counter value.

Syntax
StatusType SetRelAlarm(
AlarmType AlarmID,
TickType increment,
TickType cycle

Parameters

Parameter Mode | Description

AlarmID in AlarmType
Name of the alarm to set.

increment in TickType
Relative number of ticks before the alarm is first
triggered.

cycle in TickType
Ticks before the alarm is triggered subsequently.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_O0S_STATE all AlarmID already running.

E_0S_ID extended | AlarmID is not a valid alarm.

E_OS_ACCESS extended | AlarmID is not accessible from the calling
OS-Application.

E_O0S_VALUE extended | The value of increment or cycle is out-

side the permitted range. 0 < increment
<= maxallowedvalue. cycle =0 or min-
cycle <= cycle <= maxallowedvalue.
E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call starts an alarm running and sets the match value with the associated
counter that triggers the alarm. The match value is equal to the current
counter value plus the increment.

RTA-0S3.x API calls

113

If cycle is equal to zero then the alarm will be triggered once only. If cycle is
nonzero then the alarm will be triggered every cycle ticks after start.

When the alarm expires, the statically configured action (activate a task / set
an event /run an alarm callback / increment a counter) occurs.

You must cancel an alarm if it is running before you can restart it with different
values.

Care must be taken when the value of increment is small because the out-
come of SetRelAlarm() can produce different results depending on whether
the counter has ticked past the match value before the call completes. It will
either result in the alarm expiring almost immediately or when the value is
reached again (after the next wrap of the underlying counter).

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v v v X
Example
TASK(MyTask) {

/* SingleShotAlarm in Now+123 ticks x/
SetRelAlarm(SingleShotAlarm, 123, 0);

/* PeriodicAlarm at Now+42, Now+142, Now+242... x/
SetRelAlarm(PeriodicAlarm, 42, 100);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook v

ShutdownHook X
ErrorHook X
X

ProtectionHook

See Also

CancelAlarm
DeclareAlarm
GetAlarm
GetAlarmBase
SetAbsAlarm

114 RTA-0S3.x API calls

2.54

SetScheduleTableAsync

Cancels synchronization on a schedule table.

Syntax

StatusType SetScheduleTableAsync(
ScheduleTableType ScheduleTablelID
)

Parameters

Parameter ‘ Mode ‘ Description
ScheduleTablelD | in ScheduleTableType
Name of the schedule table.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ScheduleTablelD is not an explicitly syn-
chronized table.

E_0S_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call sets the status of ScheduleTableID to SCHEDULETABLE_RUNNING if
and only if ScheduleTablelD is running and is configured as explicitly synchro-
nized.

The OS will continue to process expiry points on ScheduleTablelD, but will
stop expiry point synchronization until a SyncScheduleTable() call is subse-
quently made.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

RTA-0S3.x API calls

115

116

Example
TASK(MyTask) {

StartScheduleTableRel (MyScheduleTable, 2U);

SyncScheduleTable (MyScheduleTable, 12U);

SetScheduleTableAsync(MyScheduleTable);

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook X
Category 1 ISR X | PostTaskHook X
Category 2 ISR v/ | StartupHook v

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareScheduleTable
GetScheduleTableStatus
NextScheduleTable
StartScheduleTableAbs
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable
SyncScheduleTable

RTA-0S3.x API calls

2.55

ShutdownOS

Shutdown the operating system.

Syntax

void ShutdownOS (
StatusType Error
)

Parameters

Parameter Mode Description
Error in StatusType
The reason for the shutdown.

Description

This API causes the OS to shut down. Task scheduling, all interrupts, alarms
and schedule tables are stopped.

PostTaskHook (if configured) is not called when ShutdownOS() occurs.

ShutdownHook is called (if configured) and is passed the Error argument as
the OS shuts down.

If ShutdownHook() returns, then the operating system disables all interrupts
and enter an endless loop.

ShutdownOS() can be called internally by the operating system in response
to an unrecoverable error.

Portability
RTA-OS3.x HOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
TASK(MyTask) {

if (ErrorCondition != E_OK) {

ShutdownOS(ErrorCondition);
}

RTA-0S3.x API calls

117

118

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

> N\ * \ % X%

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook v

See Also

Os_Restart
Os_SetRestartPoint
StartOS

RTA-0S3.x API calls

2.56

StartOS

Start the operating system in a specified mode.

Syntax

void StartO0S(
AppModeType Mode
)

Parameters

Parameter Mode | Description
Mode in AppModeType
The application mode to use for startup.

Description

StartOS() initializes all internal OS data structures and starts the OS in the
specified Mode.

Any tasks that are autostarted in the specified Mode are set to the ready
state.

Any alarms or schedule tables that are autostarted in the specified Mode are
initialized appropriately.

Software counters are initialized to zero.

The Mode OSDEFAULTAPPMODE must always exist, but other names can be
configured as needed.

StartOS() is only allowed outside the context of the OS. It has no effect if
called while the OS is already running.

StartOS() does not return to the caller.

Restarting the OS can be achieved using Os SetRestartPoint() to set a
restart point before the call the StartOS() and jumping to the point using
Os_Restart().

If StartOS() is called with invalid preconditions, it may call Shut-
downOS(E_OS_STATE). The preconditions are port-specific, so are docu-
mented in the port user guide. They may include issues such as the CPU
being in the wrong mode, or the stack not being set up correctly.

NOTE: For efficiency, StartOS is implemented as a C macro and Mode may
be evaluated twice. To avoid unwanted side effects, do not use code such as
StartOS(mode++).

RTA-0S3.x API calls

119

120

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0S_MAIN() {

/* Initialize target hardware before starting 0S */
Start0S(OSDEFAULTAPPMODE) ;

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task X
Category 1 ISR X
Category 2 ISR X

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks

StackOverrunHook X

TimeOverrunHook X

See Also

Os_Cbk_ldle
Os_Restart
Os_SetRestartPoint
ShutdownOS

RTA-0S3.x API calls

2.57

StartScheduleTableAbs

Set the counter tick at which a schedule table starts.

Syntax
StatusType StartScheduleTableAbs(
ScheduleTableType ScheduleTablelD,
TickType Start

Parameters
Parameter Mode Description
ScheduleTablelID ScheduleTableType
Name of the schedule table to start.
Start in TickType

Absolute counter tick value at which the
schedule table starts.

Return Values

The call returns values of type StatusType.

Value Build ' Description |

E_OK all No error.

E_OS_STATE all ScheduleTablelD already running.

E_0S_ID extended | ScheduleTablelD is not a valid Sched-
uleTable.

E_OS_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_OS_VALUE extended | Start > maxallowedvalue of the underly-
ing counter.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description
If the parameters are valid, this call starts ScheduleTablelD running and sets
the state of ScheduleTablelD to SCHEDULETABLE_RUNNING.

The first expiry point is processed at Start+InitialOffset ticks, where InitialOff-
set is the numerically lowest of the statically configured offsets defined for
expiry points on ScheduleTablelD.

RTA-0S3.x API calls

121

Note that if this gives a value less than or equal to the current counter value
then the first expiry will not happen until a full modulus wrap of the underlying
counter has occurred.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example

TASK(MyTask) {
/* Start MyScheduleTable when the associated counter reaches
100 x/
StartScheduleTableAbs (MyScheduleTable, 100);

Calling Environment

ProtectionHook

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook v

ShutdownHook X
ErrorHook X
X

See Also

DeclareScheduleTable
GetScheduleTableStatus
NextScheduleTable
SetScheduleTableAsync
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable
SyncScheduleTable

122 RTA-0S3.x API calls

2.58

StartScheduleTableRel

Set the number of counter ticks before a schedule table starts.

Syntax
StatusType StartScheduleTableRel(
ScheduleTableType ScheduleTablelD,
TickType Offset

Parameters
Parameter Mode Description
ScheduleTablelID ScheduleTableType
Name of the schedule table to start.
Offset in TickType

Relative number of ticks before the schedule
table starts.

Return Values

The call returns values of type StatusType.

Value Build ' Description |

E_OK all No error.

E_O0S_STATE all ScheduleTablelD is not in the state
SCHEDULETABLE_STOPPED.

E_0S_ID extended | ScheduleTablelD is not a valid Sched-
uleTable.

E_0S_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_0S_VALUE extended | Offset == zero or Offset > maxallowed-
value - InitialOffset.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

If the parameters are valid, this call starts ScheduleTablelD running and sets
the state of ScheduleTablelD to SCHEDULETABLE_RUNNING.

The first expiry point on ScheduleTablelD is processed after Off-
set+InitialOffset ticks have elapsed, where InitialOffset is the numerically
lowest of the statically configured offsets defined for expiry points on Sched-
uleTablelD.

RTA-0S3.x API calls

123

The call is not permitted for a schedule table that is configured as implicitly
synchronized. If ScheduleTablelD is an implicitly synchronized schedule table
then the call will return E_OS_ID.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
TASK(MyTask) {

/* Start MyScheduleTable at Now+42 ticks */
StartScheduleTableRel (MyScheduleTable, 42);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook v

ShutdownHook X
ErrorHook X
X

ProtectionHook

See Also

DeclareScheduleTable
GetScheduleTableStatus
NextScheduleTable
StartScheduleTableAbs
StartScheduleTableSynchron
StopScheduleTable
SyncScheduleTable

124 RTA-0S3.x API calls

2.59

StartScheduleTableSynchron

Start an explicitly synchronized schedule table and wait for a synchronization
call.

Syntax
StatusType StartScheduleTableSynchron(
ScheduleTableType ScheduleTableID
)

Parameters

Parameter Mode Description

ScheduleTablelD | in ScheduleTableType
Name of the schedule table to start.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ID extended | ScheduleTablelD is not a valid Sched-
uleTable.

E_0S_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_OS_STATE extended | The state of ScheduleTablelD is not
SCHEDULETABLE_STOPPED.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call primes the explicitly synchronized ScheduleTablelD to start syn-
chronously once a synchronization count to be provided by the call Sync-
ScheduleTable(). The call returns E_OS_ID if ScheduleTablelD is not explicitly
synchronized.

A successful call results in ScheduleTablelD entering the state SCHED-
ULETABLE_WAITING. Expiry point processing for ScheduleTableID does not
start until a call to SyncScheduleTable() is made while the schedule table
is in state SCHEDULETABLE_WAITING.

Note that if no call to SyncScheduleTable() (or StopScheduleTable()) is made
after ScheduleTablelD is started synchronously, then it will remain in the state
SCHEDULETABLE_WAITING indefinitely.

RTA-0S3.x API calls

125

126

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK (MyTask) {

StartScheduleTableSynchron(MyScheduleTable);

SyncScheduleTable(MyScheduleTable, 12U);

}

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

*xX X X \ %

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareScheduleTable

GetScheduleTableStatus

NextScheduleTable
StartScheduleTableAbs
StartScheduleTableRel
StopScheduleTable
SyncScheduleTable

RTA-0S3.x API calls

2.60

StopScheduleTable

Stop a schedule table.

Syntax

StatusType StopScheduleTable(
ScheduleTableType ScheduleTablelID
)

Parameters

Parameter ‘ Mode ‘ Description

ScheduleTablelD | in ScheduleTableType
Name of the schedule table to stop.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_OS_NOFUNC all ScheduleTablelD is not running.

E_0S_ID extended | ScheduleTablelD is not a valid Sched-
uleTable.

E_OS_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call stops ScheduleTablelD immediately. A call to StartSched-
uleTableAbs(), StartScheduleTableRel() or StartScheduleTableSynchron()
(where appropriate) will re-start ScheduleTablelD at the start.

Note that any schedule table that was nexted from ScheduleTablelD will
not start and will remain in the state SCHEDULETABLE_NEXT. StopSched-
uleTable() will need to be called on such tables in order to reset their state.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

127

128

Example
TASK(MyTask) {

StopScheduleTable(MyScheduleTable);

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareScheduleTable

GetScheduleTableStatus

NextScheduleTable
StartScheduleTableAbs
StartScheduleTableRel

StartScheduleTableSynchron

RTA-0S3.x API calls

2.61

SuspendAlllnterrupts

Suspend recognition of Category 1 and Category 2 interrupts.

Syntax

void SuspendAllInterrupts(void)

Description

This API call marks the start of a critical section that is protected from any
maskable Category 1 or Category 2 interrupt occurring. The critical section

must be left by using the ResumeAllinterrupts() call.

No API calls beside SuspendAllinterrupts()/ResumeAllinterrupts() pairs and
SuspendOSinterrupts()/ResumeOSinterrupts() pairs are allowed within this

critical section.

The call saves the current interrupt mask so that it can be restored later by

the ResumeAllinterrupts() call.

When calls to SuspendAllinterrupts() and ResumeAllinterrupts() are nested
then the interrupt recognition status saved by the first call of SuspendAllinter-

rupts() is restored by the last call of the ResumeAlllnterrupts().

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

SuspendAllInterrupts();

ResumeAllInterrupts();

Calling Environment

Tasks/ISRs
Task v
Category 1ISR v/
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

v

v/
v
v/
v/
v/

RTA-0S3.x Hooks
StackOverrunHook
TimeOverrunHook

v/
v

RTA-0S3.x API calls

129

See Also

DisableAllInterrupts
EnableAlllnterrupts
ResumeAllinterrupts
ResumeQOSlinterrupts
SuspendOSinterrupts

130 RTA-0S3.x API calls

2.62 SuspendOSinterrupts

Suspend recognition of Category 2 interrupts.

Syntax
void SuspendOSInterrupts(void)

Description

This API call marks the start of a critical section that is protected from any
Category 2 interrupt occurring. Category 1 interrupts may still occur. The
critical section must be left using the ResumeOQOSinterrupts() call.

No API calls beside SuspendAllinterrupts()/ResumeAllinterrupts() pairs and
SuspendOSinterrupts()/ResumeOSinterrupts() pairs are allowed within this
critical section.

The call saves the current interrupt mask so that it can be restored later by
the ResumeOSinterrupts() call.

When calls to SuspendOSinterrupts() and ResumeOSinterrupts() are nested
then the interrupt recognition status saved by the first call of SuspendOSin-
terrupts() is restored by the last call of the ResumeOSinterrupts().

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
TASK(MyTask) {

Suspend0SInterrupts();
/* Longer Critical Section */

SuspendAllInterrupts();
/* Shorter Critical Section x/

ResumeAllInterrupts();

ResumeOSInterrupts();

RTA-0S3.x API calls 131

132

Calling Environment

Tasks/ISRs
Task v
Category 1ISR vV
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

AN N NN

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DisableAlllnterrupts
EnableAlllnterrupts
ResumeAllinterrupts
ResumeOQOSinterrupts
SuspendOSinterrupts

RTA-0S3.x API calls

2.63

SyncScheduleTable

Provide the synchronization count for an explicitly synchronized schedule ta-
ble.

Syntax

StatusType SyncScheduleTable(
ScheduleTableType ScheduleTablelID,
TickType Value

Parameters
ScheduleTablelID ScheduleTableType
Name of the schedule table to start.
Value in TickType
Absolute value of the synchronizing counter.

Return Values

The call returns values of type StatusType.

Value Build ' Description |

E_OK all No error.

E_0S_ID all ScheduleTablelD is not an explicitly syn-
chronized table.

E_0S_ACCESS extended | ScheduleTablelD is not accessible from
the calling OS-Application.

E_O0S_VALUE all Value exceeds the duration of the table.

E_OS_STATE all The status of ScheduleTablelD s

SCHEDULETABLE_STOPPED or SCHED-
ULETABLE_NEXT.

E_OS_CALLEVEL extended | Called from an invalid context (only
when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call provides the synchronization Value for an explicitly synchronized ta-
ble ScheduleTablelD. ScheduleTablelD must be either waiting for a synchro-
nization value or be running.

Control of and knowledge about the synchronizing counter is outside the do-
main of the OS. The OS assumes that the synchronizing counter has a du-
ration equal to ScheduleTablelD and that the resolution of the synchronizing

RTA-0S3.x API calls

133

134

counter is equal to the resolution of the OS counter used to drive Sched-
uleTablelD. It is your responsibility to verify that your application satisfies
these constraints.

If ScheduleTablelD is in the state SCHEDULETABLE_WAITING then Sync-
ScheduleTable() causes ScheduleTableID to change state to SCHED-
ULETABLE_RUNNING_AND_SYNCHRONOUS and the OS to start processing ex-
piry points. The current deviation between ScheduleTablelD and the synchro-
nization count will be zero.

The first expiry point that will be processed is the one with the smallest stati-
cally configured offset. The smallest offset is known as the InitialOffset. The
point at which the first expiry point is processed is determined as follows:

- if Value is less than the InitialOffset, then the first expiry point will be pro-
cessed when InitialOffset-Value ticks have elapsed on the counter driving
ScheduleTablelD.

- if Value is greater than or equal to InitialOffset, then the first expiry point will
be processed when (Duration-Value)+InitialOffset ticks have elapsed. This
may require a full wrap of the underlying drive counter before the first expiry
point is processed.

This means that calling SyncScheduleTable() when ScheduleTablelD is in the
state SCHEDULETABLE_WAITING has behavior that is logically equivalent to
calling StartScheduleTableRel() with an Offset equal to InitialOffset-Value or
(Duration-Value)+InitialOffset accordingly.

If the ScheduleTablelD is in the state SCHEDULETABLE_RUNNING or SCHED-
ULETABLE_RUNNING_AND_SYNCHRONOUS then SyncScheduleTable() will cal-
culate the current deviation between the notional position on Sched-
uleTablelD and Value. The deviation is equal to P-Value mod Duration. The
state of ScheduleTablelD is set according to the different between the calcu-
lated deviation and the statically configured precision as follows:

- if deviation <= precision then the state will be set to SCHED-
ULETABLE_RUNNING _AND_SYNCHRONOUS

- if deviation > precision then the state will be set to SCHED-
ULETABLE_RUNNING

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

Example
TASK(MyTask) {

StartScheduleTableSynchron(MyScheduleTable);

SyncScheduleTable (MyScheduleTable, 12U);

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR v | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

x X% % N\ %

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareScheduleTable
GetScheduleTableStatus
NextScheduleTable
SetScheduleTableAsync
StartScheduleTableAbs
StartScheduleTableRel
StartScheduleTableSynchron
StopScheduleTable

RTA-0S3.x API calls

135

2.64

136

TerminateApplication

Terminates the calling OS-Application

Syntax

StatusType TerminateApplication(
RestartType RestartOption
)

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_OS_VALUE all RestartOption is neither RESTART nor
NO_RESTART.

E_OS_CALLEVEL | all Called from an invalid context (only when Ser-
vice Protection is configured).

Description

This call terminates the OS-Application that owns the calling task or ISR.
The running task/ISR of the OS-Application is forcibly terminated. The ready
tasks/ISRs of the OS-Application are forcibly terminated before they are re-
sumed.

The interrupt sources for all Category 2 ISRs owned by the OS-Application are
disabled by the OS calling Os_Cbk Disable_<ISRName>() for each ISRName
owned by the OS-Application.

All alarms owned by the OS-Application are cancelled. All schedule tables
owned by the OS-Application are stopped.

If any of the tasks/ISRs holds any resources (whether standard, linked
or internal) then the resources are released. Similarly, if any of the
tasks/ISRs had masked interrupts using the Suspend[All|OS]interrupts() or
DisableAlllnterrupts() service calls then OS will automatically call the services
Resume[All|OS]interrupts() or EnableAllinterrupts() as appropriate.

If the RestartOption is RESTART, the OS-Application’s restart task will be acti-
vated.

Applications should take note of the following race conditions when using
TerminateApplication():

RTA-0S3.x API calls

- if resources had been locked and/or interrupts masked to protect a critical
section shared between OS-Applications, then be aware that the forced ter-
mination of tasks/ISRs may leave the data which is manipulated in the critical
section in an unknown state. It is the application’s responsibility to protect
the system against the impact of this possibility.

- other OS-Applications that have access to any of the terminated OS-
Application’s objects may use those objects even if the application has been
terminated. For example, another OS-Application may activate a task in a
terminated OS-Application.

- there is no guarantee that the restart task will execute before any other task
in the OS-Application unless the restart task has the highest priority

- counters that are accessed by other OS-Applications will cease to be oper-
ational after termination until the interrupts that drive them are re-enabled.
This may cause failures to propagate to other OS-Applications.

- tasks (and events set for them) in other OS-Applications that are triggered
by alarms or schedule in terminated OS-Application will not be activated (or
set). This may cause other OS-Applications to fail.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x RTA-TRACE

Example
TASK(MyTask) {

if (ErrorDetected == TRUE) {
TerminateApplication(RESTART);
}
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR v | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-0S3.x API calls

137

See Also

Os_Cbk Disable_<ISRName>
Os_Cbk Terminated <ISRName>
TerminateTask

138 RTA-0S3.x API calls

2.65

TerminateTask

Terminates the calling task

Syntax
StatusType TerminateTask(void)

Return Values

The call returns values of type StatusType.

Value Build ‘ Description ‘
E_OK all No error.

E_0S_RESOURCE extended | Calling task still holds resources.
E_OS_CALLEVEL extended | Called at interrupt level.

E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).
E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

This call terminates the calling task. This transfers the calling task from the
running state to the suspended state. The call does not return to the calling
context if successful.

If the calling task has queued activations pending then the next instance of
the task is automatically transferred into the ready state.

Internal resources are released automatically.

Standard or linked resources are also released automatically and this is re-
ported as an error condition in extended status.

TerminateTask() always causes re-scheduling.

If the 'Fast Terminate’ is enabled in Optimizations for RTA-OS then Terminate-
Task() must only be called from the task entry function and the return status
should not be checked (ErrorHook, when configured, will be called if there is
an error). This optimization saves memory and execution time. For further
savings, you can actually omit the call to TerminateTask() in SC1 and SC2.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

RTA-0S3.x API calls

139

140

Example
TASK(MyTask) {

TerminateTask():

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks

Task v | PreTaskHook
Category 1 ISR X | PostTaskHook
Category 2 ISR X | StartupHook
ShutdownHook
ErrorHook
ProtectionHook

X

X
X
X
X
X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

DeclareTask
GetTaskID
GetTaskState
TerminateTask

RTA-0S3.x API calls

2.66

WaitEvent

Wait for one or more events.

Syntax

StatusType WaitEvent(
EventMaskType Mask
)

Parameters

Parameter Mode Description
Mask in EventMaskType
The event(s) to be waited upon.

Return Values

The call returns values of type StatusType.

Value Build Description

E_OK all No error.

E_0S_ACCESS extended | Not called from an extended task.
E_OS_CALLEVEL extended | Called from interrupt level.
E_O0S_RESOURCE extended | The calling task holds a resource.
E_OS_CALLEVEL extended | Called from an invalid context (only

when Service Protection is configured).

E_OS_DISABLEDINT | extended | Called while interrupts are disabled (only
when Service Protection is configured).

Description

Puts the calling task into the waiting state until one of the specified events is
set.

If one or more of the events is already set, then the task remains in the run-
ning state.

The API call may cause re-scheduling to take place.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x API calls

141

142

Example

TASK(MyExtendedTask) {

WaitEvent(Eventl);

/* Task resumes here when Eventl is set */

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR X

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

AUTOSAR OS Hooks

X

xX X X X X

RTA-0S3.x Hooks
StackOverrunHook X
TimeOverrunHook X

See Also

ClearEvent
DeclareEvent
GetEvent
SetEvent

RTA-0S3.x API calls

3.1

RTA-0S3.x Callbacks

Guide to Descriptions

Callbacks are code that is required by the OS but must be provided by the
user. This section documents all the callbacks in RTA-OS3.x. The descriptions
have the following structure:

Syntax

/* C function prototype for the callback x/
ReturnValue NameOfCallback(Parameter Type, ...)

Parameters

A list of parameters for each callback and their mode:

in The parameter is passed in to the callback by the OS

out The parameter is passed out of the API callback by passing a reference
(pointer) to the parameter into the call.

inout The parameter is passed into the callback and then (updated) and
passed out.

Return Values

A description of the return value of the callback,

Description

A detailed description of the required functionality of the callback.

Portability
The portability of the call between OSEK OS, AUTOSAR OS, RTA-0OS3.x and
RTA-TRACE.

Example Code
A C code listing showing how to implement the callback.

Configuration Condition

The configuration of RTA-OS3.x that requires user code to implement the call-
back.

See Also

A list of related callbacks.

RTA-0S3.x Callbacks

143

3.2

144

ErrorHook

Callback routine used for trapping errors resulting from incorrect use of the
0OS API.

Syntax

FUNC(void, OS_APPL_CODE) ErrorHook(
StatusType Error
)

Parameters

Parameter Mode Description

Error in StatusType
The type of the error that has occurred.

Description

This is called when an API call returns a StatusType not equal to E_OK. The
StatusType is passed into ErrorHook().

Macros are provided for obtaining information about the source of the error
ErrorHook(), but they are only available if the OS has been configured to gen-
erate them.

The macros should only be used within ErrorHook().

(1) The macro OSErrorGetServicelD() returns an OSServiceldType that indi-
cates the API that raised the error. The values take the form OSServiceld xxx
where xxx is the name of an API call. e.g. OSServiceld_ActivateTask.

(2) Macros of the form OSError <APIName>_ <ParameterName>() re-
turn the values of the parameters were passed to APl e.g. OSEr-
ror_ActivateTask TaskID()

ErrorHook runs at OS level and will not be preempted by Tasks or Category 2
ISRs.

A sample ErrorHook can be generated automatically by rtaosgen. See the
RTA-OS User Guide for further details.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
4 X

RTA-0S3.x Callbacks

Example

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){

switch (Error){

case E_0S_ID:
/* Handle illegal identifier error x/
break;

case E_OS_VALUE:
/* Handle illegal value error */
break;

case E_OS_STATE:
/* Handle illegal state error */
break;

default:
/* Handle all other types of error x/
break;

Configuration Condition

Required when the ErrorHook is configured.

RTA-0S3.x Callbacks

145

3.3

146

Os_Cbk_Cancel_<CounterIlD>

Callback routine to cancel the interrupt from a hardware counter.

Syntax
FUNC(void, OS_APPL_CODE) 0s_Cbk_Cancel_<CounterID>(void)

Description

The callback must prevent interrupts related to the hardware counter occur-
ring.

The interrupt source should be disabled and any interrupt that has become
pending while the callback was running should be cleared.

It is not required to stop the associated hardware from incrementing.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

FUNC(void, OS_APPL_CODE) Os_Cbk_Cancel_MyCounter(void){
DISABLE_HW_COUNTER_INTERRUPT_SOURCE;
CLEAR_HW_COUNTER_PENDING_INTERRUPT;

}

Configuration Condition

Required for each hardware counter configured.

See Also

Os_Cbk Now_<CounterID>
Os_Cbk _Set <CounterlD>
Os Cbk_State <CounterID>

RTA-0S3.x Callbacks

3.4

Os_Cbk_CheckMemoryAccess

Check if a memory region is read/write/execute/stack accessible by a speci-
fied OS-Application.

Syntax
FUNC(AccessType, OS_APPL_CODE) 0s_Cbk_CheckMemoryAccess(
ApplicationType Application,
TaskType TaskID,
ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size

Parameters
Parameter Mode Description
Application ApplicationType
The OS-Application to which the task or ISR be-
longs.
TaskID in TaskType

If not INVALID_TASK, the task for which the mem-
ory access is being checked.

ISRID in ISRType

If not INVALID ISR, the ISR for which the memory
access is being checked.

Address in MemoryStartAddressType
The start address of the memory area.
Size in MemorySizeType

The size in bytes of the memory area.

Return Values

The call returns values of type AccessType.

Description

The OS calls this when the CheckTaskMemoryAccess() or CheckISRMemory-
Access() service calls are made.

It is provided so that you have full control over the access permissions that
you wish to apply on a particular project. For example, you may choose to
limit write-access for untrusted code but allow any read and execute access.
Alternatively you may wish to limit read/write and execute access for un-
trusted code.

RTA-0S3.x Callbacks

147

148

The callback needs to determine whether the memory locations bounded by
Address and (Address + Size) are available for read/write/execute/stack ac-
cess by the OS-Application (and optionally the Task or ISR that is currently
executing).

If called in response to a CheckTaskMemoryAccess() service call, then the
OS will set ISRID to INVALID_ISR. Similarly, if called in response to a Check-
ISRMemoryAccess() call, the OS will set TaskID to INVALID_TASK.

The returned AccessType can be constructed using the following constants:
OS_ACCESS _READ - the memory range is readable

OS_ACCESS_EXECUTE - the memory range is executable
OS_ACCESS_WRITE - the memory range is writeable

OS_ACCESS STACK - the memory range is stack

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v X X X
Example

FUNC(AccessType, OS_APPL_CODE)
0s_Cbk_CheckMemoryAccess (ApplicationType Application, TaskType
TaskID, ISRType ISRID, MemoryStartAddressType Address,
MemorySizeType Size) {
AccessType Access = 0S_ACCESS_EXECUTE;
/* Check for stack space in address range x/
if ((Address >= STACK_BASE) && (Address + Size < STACK_BASE +
STACK_SIZE)) {
Access |= 0S_ACCESS_STACK;
}
/* Address range is read/write if it is in RAM x/
if ((Address >= RAM_BASE) && (Address + Size < RAM_BASE +
RAM_SIZE)) {
Access |= (OS_ACCESS_WRITE | OS_ACCESS_READ);
}
switch (Application) {
case APP1:
/* Trusted application - no further restrictions x/
break;
case APP2:
/* Untrusted application - write restrictions x/
if ((Address <= APP2_BASE) || (Address + Size > APP2_BASE +
APP2_SIZE)) {
Access &= ~0S_ACCESS_WRITE;

RTA-0S3.x Callbacks

}

break;

}

return Access;

}

Configuration Condition

Required when memory protection is configured.

See Also

CheckISRMemoryAccess
CheckTaskMemoryAccess
Os_Cbk _SetMemoryAccess

RTA-0S3.x Callbacks 149

3.5

150

Os_Cbk_Disable_<ISRName>

Callback routine indicating that the ISR <ISRName> must be disabled.

Syntax
FUNC(void, OS_APPL_CODE) Os_Cbk_Disable_<ISRName>(void)

Description
The OS calls this function during TerminateApplication to request that the
interrupt source associated with the named ISR is disabled.

AUTOSAR requires that all interrupts belonging to an OS Application are dis-
abled when it is terminated.

You would normally re-enable an OS Application’s interrupts in its Restart
Task.

Portability
RTA-0S3.x A OSEKOS AUTOSAR OS R3.x RTA-TRACE
v X X X
Example

FUNC(void, OS_APPL_CODE) Os_Cbk_Disable_App2Isrl(void) {
disable_interrupt_source(_App2Isrl_);

}
Configuration Condition
Required for each ISR if TerminateApplication is supported.

See Also

ProtectionHook
TerminateApplication

RTA-0S3.x Callbacks

3.6

Os_Cbk_GetStopwatch

Callback routine to get the current value of a free-running counter.

Syntax
FUNC(0s_StopwatchTickType, OS_APPL_CODE) 0Os_Cbk_GetStopwatch(void)

Return Values
The call returns values of type 0s_StopwatchTickType.

Description

Os_Cbk_GetStopwatch() must return the current value of a free-running timer
which increments and overflows at the end of its range.

This timer provides the timebase for execution time and trace measurements.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC (0s_StopwatchTickType, OS_APPL_CODE)
0s_Cbk_GetStopwatch(void){
return (0s_StopwatchTickType) HARDWARE_TIMER_CHANNEL;

}

Configuration Condition

The callback must be provided if time monitoring or tracing is configured in
the OS.

See Also

Os_GetExecutionTime
Os_GetISRMaxExecutionTime
Os_GetTaskMaxExecutionTime
Os_ResetISRMaxExecutionTime
Os_ResetTaskMaxExecutionTime

RTA-0S3.x Callbacks

151

3.7

152

Os_Cbk_Idle

Runs when the OS becomes idle.

Syntax
FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle(void)

Return Values

The call returns values of type boolean.

Description
Os_Cbk Idle() is called when the OS first becomes idle after startup. Any
autostarted tasks will have run before it gets called.

If Os _Cbk Idle() exits with a return value TRUE then it will be called again
immediately. If Os_Cbk_lIdle() exits with a return value FALSE then it will not
be called again and the OS will busy wait when there are no tasks or ISRs
ready to run.

A default implementation is supplied in the library that returns FALSE.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

FUNC (boolean, OS_APPL_CODE) 0s_Cbk_Idle(void) {
sleep();
return TRUE;

}
Configuration Condition
Optional in user code. No configuration required.

See Also

StartOS
ShutdownOS

RTA-0S3.x Callbacks

3.8

Os_Cbk_Now_<CounterIiD>

Callback routine that returns the current tick value of the counter.

Syntax
FUNC(TickType, OS_APPL_CODE) 0s_Cbk_Now_<CounterID>(void)

Return Values
The call returns values of type TickType.

Description

The callback must return the current value of hardware counter.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(TickType, OS_APPL_CODE) 0s_Cbk_Now_MyCounter(void){
return (TickType) HW_COUNTER_NOW_VALUE;
}

Configuration Condition

Required for each hardware counter configured.

See Also

Os_Cbk_Cancel_<CounterlD>
Os_Cbk_Set <CounterIlD>
Os_Cbk State_<CounterlD>

RTA-0S3.x Callbacks

153

3.9

154

Os_Cbk_RegSetRestore_<RegisterSetID>

Callback routine requiring that the context for register set <RegisterSetiD>
gets restored.

Syntax

FUNC(void, OS_APPL_CODE) Os_Cbk_RegSetRestore_<RegisterSetID>(
0s_RegSetDepthType Depth
)

Description
This callback is provided so that the application can restore the current con-
text for register set <RegisterSetiD>.

Depth gives the position in the application-provided save buffer
from which the context must be read. It ranges from zero to
(OS_REGSET_<RegisterSetID>_SIZE - 1).

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

#ifdef OS_REGSET_FP_SIZE

static fp_context_save_area fpsave[O0S_REGSET_FP_SIZE];

FUNC(void, OS_APPL_CODE)
0s_Cbk_RegSetRestore_FP(0s_RegSetDepthType Depth){
. = fpsave[Depth];

}

#endif /x OS_REGSET_FP_SIZE x/

Configuration Condition

The callback must be provided if Register Set <RegisterSetID> exists and
preemption may require its context to be restored.

See Also

OS_REGSET_<RegisterSetID>_SIZE
Os_Cbk _RegSetSave_ <RegisterSetID>

RTA-0S3.x Callbacks

3.10

Os_Cbk_RegSetSave_<RegisterSetID>

Callback routine requiring that the context for register set <RegisterSetID>
gets saved.

Syntax

FUNC(void, OS_APPL_CODE) Os_Cbk_RegSetSave_<RegisterSetID>(
0s_RegSetDepthType Depth
)

Description
This callback is provided so that the application can save the current context
for register set <RegisterSetID>.

Depth gives the position in the application-provided save buffer
into which the context must be stored. It ranges from zero to
(OS_REGSET_<RegisterSetID>_SIZE - 1).

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

#ifdef OS_REGSET_FP_SIZE
static fp_context_save_area fpsave[O0S_REGSET_FP_SIZE];
FUNC(void, OS_APPL_CODE) Os_Cbk_RegSetSave_FP(0s_RegSetDepthType
Depth){
fpsave[Depth] = ...;
}
#endif /x OS_REGSET_FP_SIZE x/

Configuration Condition

The callback must be provided if Register Set <RegisterSetID> exists and
preemption may require its context to be saved.

See Also

OS_REGSET_<RegisterSetID>_SIZE
Os_Cbk_RegSetRestore_<RegisterSetID>

RTA-0S3.x Callbacks

155

3.11

156

Os_Cbk_SetMemoryAccess

Callback routine used to prepare the memory protection system for a switch
from trusted to untrusted mode.

Syntax

FUNC(void, OS_APPL_CODE) Os_Cbk_SetMemoryAccess(
Os_UntrustedContextRefType ApplicationContext

)

Parameters
Parameter Mode | Description
ApplicationContext | in Os_UntrustedContextRefType
A reference to an

Os_UntrustedContextType that describes
the Untrusted context.

Description

This callback is provided so that you have full control over the memory pro-
tection hardware on your device, and so that you can decide the degree of
protection that you want to apply on a particular project. For example, you
may choose to limit write-access for untrusted code but allow any read and
execute access. Alternatively you may wish to limit read/write and execute
access for untrusted code.

In an AUTOSAR OS, code that runs in the context of a Trusted OS Application
is assumed to have full access to any area of RAM, ROM or 10 space that is
available. Such code runs in a privileged mode. On the other hand, code
that runs in the context of an Untrusted OS Application may have restrictions
placed on it that prevent it from being able access certain areas. Such code
typically runs in 'user’ mode.

Whenever RTA-OS is about to switch from Trusted to Untrusted code, it
makes a call to Os_Cbk SetMemoryAccess. It passes in a reference to an
Os_UntrustedContextType data structure that you can use to determine what
permissions to set for untrusted code. The Os_UntrustedContextType struc-
ture contains information about the OS Application, Task/ISR and stack re-
gion that applies to the code that is about to be executed. Depending
on the context of the switch, some of these may contain NULL values.
Os_Cbk_SetMemoryAccess is only called from trusted code.

Os_Cbk_SetMemoryAccess gets called in the following cases:

1) Before calling a Task that belongs to an Untrusted OS-Application.

RTA-0S3.x Callbacks

2) Before calling a Category 2 ISR that belongs to an Untrusted OS-
Application.

3) Before calling an Untrusted OS-Application Startup, Shutdown or Error
hook.

4) Before calling a 'TrustedFunction’ that belongs to an Untrusted OS-
Application. (This extends the AUTOSAR concept, and allows a core trusted
task to call out to untrusted code supplied by third parties.)

When using memory protection features, you must initialize the memory pro-
tection hardware before calling StartOS(). You can choose what hardware to
use, how many regions to protect and what restrictions to apply.

Note:

On certain target processors supported by RTA-OS, there are restrictions on
the addresses that can be used to configure MPU protection regions. For
example they may have to be aligned on a 256 byte boundary. If you wish to
fully protect the stack in these cases, RTA-OS supports an extra field in the
Os_UntrustedContextType called 'AlignedAddress’.

When 'AlignedAddress’ is present, its value is initially set to the same value
as 'Address’. You may change its value so that it reflects the next address on
the stack that would be legal for the MPU. For example you might change it
from 0x580 to 0x500 if the region has to start on a 256-byte boundary (and
the stack grows to lower addresses!).

RTA-OS will detect the change in "AlignedAddress’ and ensure that the stack is
moved to this position just before the untrusted code is run so that it operates
in the memory protection region that you set up.

You will have to account for these adjustments in any stack budgets that you
declare.

"FunctionlID’ is only present when there are untrusted functions. Its value will
be INVALID_FUNCTION, except when the callback is for an untrusted function.
In this case, 'FunctionID’ contains the function identifier.

You must not attempt to move the stack to a position that would not be on the
normal stack. This will invalidate many of the assumptions and optimizations
in RTA-OS.

This mechanism is only available on the RTA-OS target ports that support it
and provide the command-line option 'Enable stack repositioning’.

RTA-0S3.x Callbacks

157

This mechanism may not be used for ECC tasks currently, so it is not recom-
mended that you have untrusted ECC tasks if you want to use stack reposi-
tioning.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

FUNC(void, OS_APPL_CODE)
0s_Cbk_SetMemoryAccess (0s_UntrustedContextRefType
ApplicationContext) {
/ *

When called for an Untrusted Task:
ApplicationContext->Application contains the ID of the 0S
Application that the task belongs to.
ApplicationContext->TaskID is the ID of the task
ApplicationContext->ISRID is INVALID_ISR
ApplicationContext->FunctionID (when present) 1is
INVALID_FUNCTION

* ApplicationContext->Address is the starting address for the

task’s stack. (If stack monitoring is disabled, this will
be zero.)

* ApplicationContext->Size is the stack budget configured for

the task. (Zero if no budget or if stack monitoring is
disabled.)

*

*

When called for an Untrusted ISR:
ApplicationContext->Application contains the ID of the 0S
Application that the ISR belongs to.
ApplicationContext->TaskID is INVALID_TASK
ApplicationContext->ISRID is the ID of the ISR
ApplicationContext->FunctionID (when present) is
INVALID_FUNCTION

* ApplicationContext->Address is the starting address for the

ISR’s stack. (If stack monitoring is disabled, this will be
zero.)

* ApplicationContext->Size is the stack budget configured for

the ISR. (Zero if no budget or if stack monitoring is

disabled.)

* ¥ ¥

* %

When called for an Untrusted function, an untrusted
application-specific error hook,

* an untrusted application-specific startup hook or an
untrusted application-specific shutdown hook:

ApplicationContext->Application contains the ID of the 0S

Application that the function/hook belongs to.

ApplicationContext->TaskID is INVALID_TASK

*

*

158 RTA-0S3.x Callbacks

ApplicationContext->ISRID is INVALID_ISR
ApplicationContext->FunctionID is the function index
ApplicationContext->Address is the position of the stack
just before the untrusted code gets called.
ApplicationContext->Size is zero
*
*/

if (ApplicationContext->TaskID == ApplTaskl) {
/* Set memory protection regions for ApplTaskl x/
return;

}

if (ApplicationContext->ISRID == App2ISR1l) {
/* Set memory protection regions for App2ISR1 */
return;

}

if (ApplicationContext->Application == Appl) {
/* Set memory protection regions for Appl hooks and

functions */

return;

}

if (ApplicationContext->Application == App2) {
/* Set memory protection regions for App2 hooks and

functions x/

return;

}
0S_MAIN() {
InitializeMemoryProtectionHardware();

Start0S(OSDEFAULTAPPMODE) ;

Configuration Condition

The callback must be provided memory protection is selected and there are
untrusted OS Applications.

See Also

Os_Cbk CheckMemoryAccess
Os_UntrustedContextType

RTA-0S3.x Callbacks

159

3.12

160

Os_Cbk_SetTimeLimit

Callback routine to enable the timing interrupt and set a time limit for it.

Syntax

FUNC(void,0S_APPL_CODE) Os_Cbk_SetTimeLimit(
Os_TimelLimitType Limit
)

Return Values

The call returns values of type Os_TimeLimitType.

Description

Os_Cbk_SetTimeLimit() must be implemented if timing protection is config-
ured and a timing interrupt is being used to enforce time limits.

You must use it to ensure that the timing interrupt is enabled and
that it will fire after ’'Limit’ ticks from now, unless cancelled by
Os_Cbk_SuspendTimeLimit().

Note that an Os_TimeLimitType tick is expected to have the same duration as
a Stopwatch tick.

If called with a value zero, you may call Os_TimingFaultDetected() immedi-
ately and skip enabling the interrupt.

Portability

RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE

v X X X
Example
FUNC(void, 0S_APPL_CODE) 0s_Cbk_SetTimeLimit(0Os_TimeLimitType

Limit) {

Os_TimeLimitType now = <read current counter value>;

if (Limit == 0) {

Os_TimingFaultDetected();
}

<set current counter compare value>(now + Limit + 1);

Configuration Condition

The callback must be provided if timing protection is configured and a timing
interrupt is being used to enforce time limits.

RTA-0S3.x Callbacks

See Also

Os_TimingFaultDetected
Os_Cbk _SuspendTimeLimit
ProtectionHook
Os_TimeLimitType

RTA-0S3.x Callbacks 161

3.13

162

Os_Cbk_Set_<CounterlD>

Callback routine to set the next match value for a hardware counter.

Syntax
FUNC(void, OS_APPL_CODE) 0s_Cbk_Set_<CounterID>(
TickType Match
)

Parameters

Parameter Mode Description

Match in TickType
The next absolute match value.

Description
The callback must set up the hardware counter to raise the appropriate inter-
rupt when its value reaches the new Match value.

Match is an absolute value at which the next counter action needs to be pro-
cessed.

This is called from within Os_AdvanceCounter_<CounterlD>() to set the
match value appropriate for the next alarm or expiry point.

It can also be called from SetAbsAlarm() or SetRelAlarm() if the newly started
alarm has to execute before the currently set time.

Care must be taken to cope with the following situations:

- Where intervals are short, it is possible for the hardware count to have
already moved past the Match value at the point this get called. If so, it is
important to ensure that the interrupt pending bit gets set in software.

- Where an alarm can be started with an interval shorter than one already set,
the code must be able to reduce the match value and detect if this means that
the hardware count has already passed this point.

The callback does not normally initialize the underlying hardware. This is
normally done in initialization code before the OS is started.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X X

RTA-0S3.x Callbacks

Example

FUNC(void, OS_APPL_CODE) Os_Cbk_Set_MyCounter(TickType Match){
/* Prevent match interrupts for maxallowedvalue+l ticksx/
HW_OUTPUT_COMPARE_VALUE = COUNTER - 1lu;
dismiss_interrupt();

HW_OUTPUT_COMPARE = Match;
enable_interrupt();

Configuration Condition

Required for each hardware counter configured.

See Also

Os_AdvanceCounter
SetAbsAlarm

SetRelAlarm

Os_Cbk Cancel _<CounterID>
Os_Cbk Now_<CounterID>
Os_Cbk State_<CounterlD>

RTA-0S3.x Callbacks 163

3.14

164

Os_Cbk_StackOverrunHook

Callback routine to trap stack-related errors.

Syntax

FUNC(void, OS_APPL_CODE) 0s_Cbk_StackOverrunHook (
0s_StackSizeType Overrun,
Os_StackOverrunType Reason

Parameters
Parameter Mode Description |
Overrun in 0s_StackSizeType
The amount of the overrun.
Reason in 0s_StackOverrunType
The cause of the overrun.

Description
This hook routine is called if:

(a) a stack allocation budget has been specified for a task/ISR and this budget
has been exceeded.

(b) an ECC task failed to start because there was no space on the stack

(c) an ECC task failed to resume from wait because there was no space on
the stack

(d) an ECC task failed to wait because it was using too much stack (and its
state could not, therefore, be safely preserved)

GetTaskID() and GetISRID() can be used to determine which Task or ISR is
involved.

A default version of the hook is present in the kernel that calls Pro-
tectionHook() (if configured, otherwise ShutdownOS()) with the status
E_OS STACKFAULT. You can implement Os Cbk StackOverrunHook within
your application to override this behavior.

Budget overruns are detected at preemption points (or when
Os_GetStackUsage() is called) and are only be reported the first time
that the overrun is first detected in a given run.

A budget overrun does not result in a Task/ISR being forcibly terminated.
(Note that it is not permissible to call TerminateTask within the hook.)

RTA-0S3.x Callbacks

ECC related overruns occur when lower priority tasks exceed their stack bud-
get, or when the stack preemption overheads are set to values that are too
small.

An ECC overrun does result in the Task being forcibly terminated.

OS_BUDGET and OS_ECC_WAIT can only occur when Stack Monitoring is con-
figured.

OS_ECC_START and OS_ECC_RESUME can occur independently of whether
Stack Monitoring is configured.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) 0Os_Cbk_StackOverrunHook(0s_StackSizeType
Overrun, 0s_StackOverrunType Reason) {
switch (Reason) {
case 0S_BUDGET:
/* The currently running task or ISR has exceeded its stack
budget */
break;
case 0S_ECC_START:
/*x An ECC task has failed to start because there 1is
insufficient room on the stack */
break;
case 0S_ECC_RESUME:
/* An ECC task has failed to resume from wait because there
is insufficient room on the stack x/
break;
case 0S_ECC_WAIT:
/* An ECC task has failed to enter the waiting state
because it 1is exceeding its stack budget x/
break;

Configuration Condition

Optional when Stack Monitoring is configured and budgets are assigned, or
when there are ECC tasks.

RTA-0S3.x Callbacks

165

See Also

Os_GetStackUsage
Os_GetISRMaxStackUsage
Os_GetTaskMaxStackUsage
Os_ResetlISRMaxStackUsage
Os_ResetTaskMaxStackUsage
GetISRID

GetTaskID

166 RTA-0S3.x Callbacks

3.15

Os_Cbk_State_<CounterlD>

Callback routine to read the current state of a hardware counter.

Syntax

FUNC(void, OS_APPL_CODE) 0Os_Cbk_State_<CounterID>(
Os_CounterStatusRefType State
)

Parameters

Parameter Mode Description
State out 0Os_CounterStatusRefType
The counter state.

Description

This function must update the counter status structure to indicate if it is run-
ning, whether a counter interrupt is pending, and how long the interval is to
the next match.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE)
0s_Cbk_State_MyCounter(0s_CounterStatusRefType State) {
State.Delay = HW_OUTPUT_COMPARE_VALUE - HW_COUNTER_NOW_VALUE;
State.Pending = counter_interrupt_pending();
State.Running = counter_interrupt_enabled();

}

Configuration Condition

Required for each hardware counter configured.

See Also

Os_Cbk_Cancel_<CounterlD>
Os_Cbk Now_<CounterID>
Os _Cbk Set <CounterlD>

RTA-0S3.x Callbacks

167

3.16

168

Os_Cbk_SuspendTimeLimit

Callback routine to cancel the timing interrupt and determine how much time
was left.

Syntax
FUNC(0s_TimeLimitType,0S_APPL_CODE) Os_Cbk_SuspendTimeLimit(void)

Return Values

The call returns values of type 0s_TimeLimitType.

Description

Os_Cbk_SuspendTimeLimit() must be implemented if timing protection is con-
figured and a timing interrupt is being used to enforce time limits.

The OS calls it to cancel a previous call to Os_Cbk_SetTimeLimit(). You must
ensure that the timing interrupt does not fire when the time limit is reached,
and if it is currently pending, that its pending status is cleared.

The return value must be the number of ticks that were remaining to the limit
at the point that the call was made.

Portability
RTA-O0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example
FUNC(Os_TimeLimitType,0S_APPL_CODE) Os_Cbk SuspendTimelLimit(void)
{

Os_TimelLimitType now = <read current counter value>;
<disable timing interrupt>;

<clear timing interrupt pending flag>;

return now - <read current counter compare value>;

Configuration Condition

The callback must be provided if timing protection is configured and a timing
interrupt is being used to enforce time limits.

See Also

Os_TimingFaultDetected
Os_Cbk_SetTimeLimit
ProtectionHook
Os_TimeLimitType

RTA-0S3.x Callbacks

3.17

Os_Cbk_Terminated_<ISRName>

Callback routine indicating that the Category 2 ISR <ISRName> has been
forcibly terminated.

Syntax
FUNC(void, OS_APPL_CODE) 0s_Cbk_Terminated_<ISRName>(void)

Description

This callback is provided so that the application can take appropriate action
when a Category 2 ISR is forcibly terminated by the OS.

An ISR can be terminated in the following situations:

1) You call TerminateApplication() while the ISR is running (including when it
has been interrupted by a higher priority interrupt).

2) There is a timing or memory protection violation while the ISR is running
and you return PRO_TERMINATETASKISR from ProtectionHook().

3) There is a timing or memory protection violation while a pre-
empting ISR is running and you return PRO_TERMINATEAPPL or
PRO_TERMINATEAPPL _RESTART from ProtectionHook().

On target processors where you have to clear some ’interrupt pending’ status
for the interrupt source, you must use this callback to clear the status. If you
fail to do this, the interrupt will be re-entered when the processor priority is
subsequently lowered.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) Os_Cbk_Terminated_App2Isrl(void) {
clear_interrupt_source(_App2Isrl_);

}

Configuration Condition

Required for each Category 2 ISR if forced termination of interrupts is sup-
ported.

See Also

ProtectionHook
TerminateApplication

RTA-0S3.x Callbacks

169

3.18

170

Os_Cbk_TimeOverrunHook

Callback routine to trap errors detected during time monitoring.

Syntax

FUNC(void, OS_APPL_CODE) 0s_Cbk_TimeOverrunHook (
0s_StopwatchTickType Overrun
)

Parameters

Parameter Mode Description

Overrun in 0s_StopwatchTickType
The amount of the overrun in stopwatch ticks.

Description
This hook routine is called if an execution budget has been specified for a
task/ISR and the execution time has exceeded this budget.

Budget overruns are detected at preemption points or when the Task/ISR ter-
minated. This hook is called once, when the overrun is first detected.

A budget overrun does not result in a Task/ISR being forcibly terminated.
(Note that it is not permissible to call TerminateTask within the hook.)

GetTaskID() and GetISRID() can be used to determine which Task or ISR has
overrun.

Portability
RTA-OS3.x | OSEKOS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

FUNC(void, OS_APPL_CODE)
0s_Cbk_TimeOverrunHook (0s_StopwatchTickType Overrun) {

}

Configuration Condition

Required when Time Monitoring is configured and budgets are assigned.

RTA-0S3.x Callbacks

See Also

Os_GetExecutionTime
Os_GetISRMaxExecutionTime
Os_GetTaskMaxExecutionTime
Os_ResetISRMaxExecutionTime
Os_ResetTaskMaxExecutionTime
GetISRID

GetTaskID

RTA-0S3.x Callbacks 171

3.19

172

PostTaskHook

Callback routine called when context switching from a task.

Syntax
FUNC(void, OS_APPL_CODE) PostTaskHook(void)

Description

This hook routine is called by the operating system immediately before it
leaves the running state.

This means it is safe to evaluate the TaskID.

The PostTaskHook is not called if a task is leaving the running state because
the ShutdownOS() call has been made.

A sample PostTaskHook can be generated automatically by rtaosgen. See the
RTA-OS User Guide for further details.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v v v X
Example

FUNC (void, OS_APPL_CODE) PostTaskHook(void){
TaskType LeavingTask;
GetTaskID(&LeavingTask);
if (LeavingTask == TaskA) {

/* Do action for leaving A */
} else if (LeavingTask == TaskB) {
/* Do action for leaving B */

}

Configuration Condition

Required when the PostTaskHook is configured.

See Also

PreTaskHook

RTA-0S3.x Callbacks

3.20

PreTaskHook

Callback routine called when context switching into a task.

Syntax
FUNC(void, OS_APPL_CODE) PreTaskHook(void)

Description

This hook routine is called by the operating system immediately after it enters
the running state but before the task itself begins to execute.

This means it is safe to evaluate the TaskID.

A sample PreTaskHook can be generated automatically by rtaosgen. See the
RTA-0S3.x User Guide for further details.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
FUNC(void, OS_APPL_CODE) PreTaskHook(void){
TaskType EnteringTask;
GetTaskID(&EnteringTask);
if (EnteringTask == TaskA) {
/* Do action for entering A */
} else if (EnteringTask == TaskB) {
/* Do action for entering B x/

}

Configuration Condition

Required when the PreTaskHook is configured.

See Also

PostTaskHook

RTA-0S3.x Callbacks

173

3.21

174

ProtectionHook

Callback routine used for trapping protection faults.

Syntax

FUNC(ProtectionReturnType, OS_APPL_CODE) ProtectionHook(
StatusType FatalError
)

Parameters

Parameter Mode Description

FatalError | in StatusType
The type of the error that has occurred.

Return Values

The call returns values of type ProtectionReturnType.

Description

This is called when a timing or memory protection fault occurs. The type of
fault is passed into ProtectionHook().

The return type determines what action the OS takes after the callback:

PRO_IGNORE: The fault is ignored and processing continues. Only allowed for
E_OS_PROTECTION_ARRIVAL.

PRO_TERMINATETASKISR: The task, ISR or protected function that caused the
fault is forcibly terminated. Only valid when memory or timing protection are
configured.

PRO_TERMINATEAPPL: The OS Application that contains the faulting task or
ISR is forcibly terminated. Only valid when memory or timing protection are
configured.

PRO_TERMINATEAPPL _RESTART: The OS Application that contains the faulting
task or ISR is forcibly terminated and then restarted. Only valid when memory
or timing protection are configured.

PRO_SHUTDOWN: ShutdownOS() is called.

If any Category 2 ISR is terminated, the OS will use the callback
Os_Cbk_Terminated_<ISRName=>() to allow you to ensure that the interrupt
source is dealt with appropriately.

ProtectionHook runs at OS level and will not be preempted by Tasks or Cate-
gory 2 ISRs.

RTA-0S3.x Callbacks

A sample ProtectionHook can be generated automatically by rtaosgen. See
the RTA-OS User Guide for further details.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
FUNC(ProtectionReturnType, OS_APPL_CODE)
ProtectionHook(StatusType FatalError) {
switch (FatalError) {
case E_OS_PROTECTION_MEMORY:
/* A memory protection error has been detected */
break;
case E_OS_PROTECTION_TIME:
/* Task, Category 2 ISR or time-limited function
exceeds 1its execution time */
break;
case E_OS_PROTECTION_ARRIVAL:
/* Task/Category 2 arrives before its timeframe has
expired */
return PRO_IGNORE; /* This is the only case where
PRO_IGNORE is allowed x*/
case E_0S_PROTECTION_LOCKED:
/* Task/Category 2 ISR blocks for too long */
break;
case E_OS_PROTECTION_EXCEPTION:
/* Trap occurred x/
break;
}
return PRO_SHUTDOWN;
}

Configuration Condition

Required when the ProtectionHook is configured. Should be configured when
timing or memory protection are required.

See Also

Os_Cbk _Terminated_<ISRName>

RTA-0S3.x Callbacks

175

3.22

176

ShutdownHook

Callback routine called during OS shutdown.

Syntax

FUNC(void, OS_APPL_CODE) ShutdownHook (
StatusType Error
)

Parameters

Parameter Mode Description
Error in StatusType
The reason for the shutdown.

Description

If a ShutdownHook() is configured, this hook routine is called by the operating
system when the OS API call ShutdownQS() has been called.

This routine is called during the operating system shutdown. The OS can be
restarted from the ShutdownHook() using Os_Restart()

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example

FUNC(void, OS_APPL_CODE) ShutdownHook(StatusType Error){
if (Error == E_OS_STACKFAULT) {
/* Attempt recovery by restart x/
Os_Restart();
/* Never reach here... x/
} else if (Error == E_OK) {
/* Normal shutdown procedure x/

}

Configuration Condition

Required when the ShutdownHook is configured.

See Also

Os_Restart
StartupHook

RTA-0S3.x Callbacks

3.23

StartupHook

Callback routine called during OS startup.

Syntax
FUNC(void, OS_APPL_CODE) StartupHook(void)

Description
If a StartupHook() is configured, this hook routine is called by the OS at the
end of the OS initialization, but before the scheduler is running.

The application can start tasks, initialize device drivers and so on within Star-
tupHook().

StartupHook() runs with Category?2 ISRs disabled so it is safe to enable inter-
rupt sources from the hook.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) StartupHook(void){
/* Enable timer interrupt x/
CHANNELO_CONTROL_REG |= ONE_MILLISECOND_TIMER;
CHANNELO_CONTROL_REG |= ENABLE;

}

Configuration Condition

Required when the StartupHook is configured.

See Also

ShutdownHook

RTA-0S3.x Callbacks

177

4 RTA-0OS3.x Types

4.1 AccessType

An integral value that holds information about how a specific memory region
can be accessed.

Portability
RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Constants
0S_ACCESS_READ
0S_ACCESS_WRITE
0S_ACCESS_EXECUTE
0S_ACCESS_STACK

Example
FUNC(AccessType, 0S_APPL_CODE)
0s_Cbk_CheckMemoryAccess (ApplicationType Application, TaskType
TaskID, ISRType ISRID, MemoryStartAddressType Address,
MemorySizeType Size) {
AccessType Access = 0S_ACCESS_EXECUTE;
/* Address range is read/write if it is in RAM x/
if ((Address >= RAM_BASE) && (Address + Size < RAM_BASE +
RAM_SIZE)) {
Access |= (OS_ACCESS_WRITE | OS_ACCESS_READ);
}

return Access;

4.2 AlarmBaseRefType

A pointer to an object of AlarmBaseType.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v v 4 X

178 RTA-0S3.x Types

4.3

4.4

4.5

Example

AlarmBaseType AlarmBase;
AlarmBaseRefType AlarmBaseRef = &AlarmBase;

AlarmBaseType

Defines the configuration of a counter. The type is a C struct that contains
the fields maxallowedvalue, ticksperbase and mincycle.

maxallowedvalue is the maximum allowed count value in ticks.

ticksperbase is the number of ticks required to reach a counter-specific (sig-
nificant) unit.

mincycle is the smallest allowed value for the cycle-parameter of SetRelAlar-
m/SetAbsAlarm.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

All values are of type TickType.

Example
TickType max,min,ticks;
AlarmBaseType SomeAlarmBase;
AlarmBaseRefType PointerToSomeAlarmBase = &SomeAlarmBase;
max = SomeAlarmBase.maxallowedvalue;
ticks = SomeAlarmBase.ticksperbase;
min = SomeAlarmBase.mincycle;

AlarmType

The type of an Alarm.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
AlarmType SomeAlarm;

AppModeType

The type of an application mode.

RTA-0S3.x Types

179

4.6

4.7

4.8

180

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

Symbolic names of the application modes declared at configuration time.

(Must include OSDEFAULTAPPMODE)

Example
AppModeType SomeAppMode;

ApplicationType

The type of an OS-Application.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X 4 X
Values

Symbolic names of the OS-Applications declared at configuration time.

Constants
INVALID_OSAPPLICATION

Example
ApplicationType SomeOSApplication;

CounterType

The type of a Counter.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v v v X
Example

CounterType SomeCounter;

EventMaskRefType

A pointer to an object of EventMaskType.

RTA-0S3.x Types

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
EventMaskRefType SomeEventRef;

4.9 EventMaskType

The type of an event.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

Symbolic names of the EventMasks declared at configuration time.

Example
EventMaskType SomeEvent;

4.10 ISRRefType

A pointer to an object of ISRType.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example

ISRType SomeISR;
ISRRefType PointerToSomeISR = &SomelISR;

4.11 ISRType
The type of a ISR.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

The symbolic names of ISRs declared at configuration time.

RTA-0S3.x Types 181

4.12

4.13

4.14

182

Constants
INVALID_ISR

Example
ISRType SomelSR;

MemorySizeType

This data type holds the size (in bytes) of a memory region.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Example

MemorySizeType DatumSize = sizeof(datum);
CheckISRMemoryAccess (SomeISR, &datum, DatumSize);

MemoryStartAddressType

This data type is a pointer which is able to point to any location in the address
space.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

MemoryStartAddressType StartAddress = &datum;
CheckISRMemoryAccess(SomeISR, StartAddress, sizeof(datum));

OSServiceldType

The type of a OS API call. Used only in the ErrorHook(). The values take the
form OSServiceld__APICallName_ where _APICallName_ represents the name
of an API call (without any leading Os_).

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE
4 X

RTA-0S3.x Types

Example
FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){
0SServiceldType ServiceExecuting;
ServiceExecuting = OSError_GetServicelID();
switch (ServiceExecuting) {
case 0SServiceld_None: /x Used for errors detected when an
ISR exits with resources or interrupts locked */
break;
case 0SServiceId_ActivateTask:
break;
case 0SServiceId_CancelAlarm:
break;
case 0SServiceld_ChainTask:
break;

default:

4.15 ObjectAccessType

Enumerated type defining whether an OS-Application has access to an object.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

ACCESS
NO_ACCESS

Example
if (ACCESS == CheckObjectAccess(My0SApp, OBJECT_TASK, MyTask)
{...}

4.16 ObjectTypeType

Enumerated type defining the type of an OS object.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x Types 183

Values

OBJECT _TASK
OBJECT ISR

OBJECT ALARM

OBJECT _RESOURCE
OBJECT COUNTER
OBJECT SCHEDULETABLE

Example
if (ACCESS == CheckObjectAccess(My0SApp, OBJECT_TASK, MyTask)
{...}

4.17 Os_AnyType

A reference to an OS object.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v X v X
Example

Check0ObjectOwnership (OBJECT_TASK, Taskl);

4.18 Os_CounterStatusRefType

A pointer to an object of Os_CounterStatusType.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_CounterStatusType MyHwCounterStatus;
do {
0s_AdvanceCounter_MyHWCounter();
0s_Cbk_State_MyHWCounter (&MyHwCounterStatus);
} while (MyHwCounterStatus.Running && MyHwCounterStatus.Pending);

4.19 Os_CounterStatusType

Defines the status of a hardware counter. The type is a C struct that contains
the fields Running, Pending and Delay.

Running is TRUE only if the counter driver is running.

184 RTA-0S3.x Types

4.20

Pending is TRUE only if an expiry of an associated alarm and/or schedule table
expiry point is pending.

Delay is a value that defines the number of ticks - relative to the last expiry
- at which the next expiry is due. An Os_CounterStatusType.Delay value of
zero represents maxallowedvalue+1 (the modulus) of the counter.

The Delay field is only valid when Running and Pending are TRUE.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0Os_CounterStatusType CounterStatus;

Os_StackOverrunType

Enumerated type defining the reason for a stack overrun.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

0S_BUDGET
0S_ECC_START
0S_ECC_RESUME
0S_ECC_WAIT

Example

FUNC(void, OS_APPL_CODE) 0Os_Cbk_StackOverrunHook(0s_StackSizeType
Overrun, 0s_StackOverrunType Reason) {
switch (Reason) {
case 0S_BUDGET:
/* The currently running task or ISR has exceeded its stack
budget */
break;
case 0S_ECC_START:
/*x An ECC task has failed to start because there 1is
insufficient room on the stack x/
break;
case 0S_ECC_RESUME:
/* An ECC task has failed to resume from wait because there
is insufficient room on the stack x/
break;

RTA-0S3.x Types

185

case 0S_ECC_WAIT:
/* An ECC task has failed to enter the waiting state
because it is exceeding its stack budget */
break;

4.21 Os_StackSizeType

An unsigned value representing an amount of stack in bytes.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

0s_StackSizeType stack_size;
stack_size = 0s_GetStackSize(start_position, end_position);

4.22 Os_StackValueType

An unsigned value representing the position of the stack pointer (ESP).

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X X
Example

Os_StackValueType start_position;
start_position = Os_GetStackValue();

4.23 Os_StopwatchTickType

Scalar representing ticks of a stopwatch (time monitoring or protection)
counter.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

186 RTA-0S3.x Types

4.24

4.25

4.26

Example
0s_StopwatchTickType Duration;
GetExecutionTime(&Duration);

Os_TimeLimitType

Scalar representing an execution time limit, used with timing protection. The
duration of one Os_TimeLimitType is the same as one Os_StopwatchTickType

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_TimeLimitType limit = 100;
CallAndProtectFunction(Func3, &data, limit);

Os_UntrustedContextRefType

A pointer to an object of Os_UntrustedContextType.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
FUNC(void, OS_APPL_CODE)
0s_Cbk_SetMemoryAccess (0s_UntrustedContextRefType
ApplicationContext) {}

Os_UntrustedContextType

Defines the context of the untrusted code that is about to be executed. It is
only used by the Os_Cbk _SetMemoryAccess() callback when memory protec-
tion features are configured.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Values

ApplicationType Application
TaskType TaskID

ISRType ISRID
MemoryStartAddressType Address
MemorySizeType Size

RTA-0S3.x Types

187

Example

FUNC(void, OS_APPL_CODE)
0s_Cbk_SetMemoryAccess (0s_UntrustedContextRefType
ApplicationContext) {}

4.27 PhysicalTimeType

Scalar representing a units of physical (wall clock) time.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X

Example
PhysicalTimeType Milliseconds = 0S_TICKS2MS_MyCounter(42);

4.28 ProtectionReturnType

Enumerated type defining the action taken following a protection fault.

Portability
RTA-OS3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Values
PRO_IGNORE

PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN

Example

FUNC(ProtectionReturnType, OS_APPL_CODE)
ProtectionHook(StatusType FatalError) {
switch (FatalError) {
case E_OS_PROTECTION_MEMORY:
/* A memory protection error has been detected */
break;
case E_OS_PROTECTION_TIME:
/* Task, Category 2 ISR or time-limited function
exceeds 1its execution time x*/
break;
case E_OS_PROTECTION_ARRIVAL:
/* Task/Category 2 arrives before its timeframe has
expired */

188 RTA-0S3.x Types

return PRO_IGNORE; /x This is the only case where
PRO_IGNORE is allowed x*/
case E_OS_PROTECTION_LOCKED:
/* Task/Category 2 ISR blocks for too long */
break;
case E_OS_PROTECTION_EXCEPTION:
/* Trap occurred x/
break;
}
return PRO_SHUTDOWN;
}

4.29 ResourceType

The type of a Resource.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

RES_SCHEDULER plus the symbolic names of Resources declared at configu-
ration time.

Constants
RES_SCHEDULER

Example
ResourceType SomeResource;

4.30 RestartType

Enumerated type defining the action to be taken in TerminateApplication().

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

RESTART
NO_RESTART

RTA-0S3.x Types 189

4.31

4.32

4.33

190

Example
TerminateApplication(RESTART);

ScheduleTableRefType

A pointer to an object of ScheduleTableType.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

ScheduleTableType SomeScheduleTable;
ScheduleTableRefType PointerToSomeScheduleTable =
&SomeScheduleTable;

ScheduleTableStatusRefType

A pointer to an object of ScheduleTableStatusType.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X 4 X
Example

ScheduleTableStatusType SomeScheduleTableStatus;
GetScheduleTableStatus (&SomeScheduleTableStatus);

ScheduleTableStatusType

Enumerated type defining the runtime state of a schedule table.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Values

SCHEDULETABLE_STOPPED
SCHEDULETABLE_NEXT
SCHEDULETABLE_WAITING
SCHEDULETABLE_RUNNING
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS

RTA-0S3.x Types

4.34

4.35

Example
ScheduleTableStatusType SomeScheduleTableStatus;

ScheduleTableType

The type of a ScheduleTable.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
ScheduleTableType SomeScheduleTable;

StatusType

Enumeration type defining the status of an API call.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

E_OK

E_OS_ACCESS
E_OS_CALLEVEL

E_0OS_ID

E_OS_LIMIT

E_OS_NOFUNC
E_OS_RESOURCE
E_OS_STATE

E_OS_VALUE
E_OS_SERVICEID
E_OS_ILLEGAL ADDRESS
E_OS_MISSINGEND
E_OS_DISABLEDINT
E_OS_STACKFAULT
E_OS_PROTECTION_MEMORY
E_OS_PROTECTION_TIME
E_OS_PROTECTION_ARRIVAL
E_OS_PROTECTION_LOCKED
E_OS_PROTECTION_EXCEPTION
E_OS_SYS_NO_RESTART
E_OS_SYS_RESTART
E_OS_SYS_OVERRUN

RTA-0S3.x Types

191

4.36

4.37

192

Example

StatusType ErrorCode;
ErrorCode = ActivateTask(MyTask);

Std_ReturnType

AUTOSAR'’s standard API service return type. This is NOT used by AUTOSAR
0S. The type is an 8-bit unsigned integer whose top 6 bits may encode
module-specific error codes.

Portability
RTA-OS3.x HOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

E_OK=0
E_NOT_OK=1

Example

Std_ReturnType ErrorCode;
Std_ReturnType ErrorMask = 0x03;
ErrorCode = Rte_Call_SomePort_SomeOperation(self, 42);
if ((ErrorCode & ErrorMask)== E_NOT_OK) {
/*x call succeeded */

}

Std_VersionInfoType

A C struct whose fields contained AUTOSAR version information for a module.
(Defined in Std_Types.h)

The fields are:
vendorID
modulelD
instancelD
SW_major_version
SW_minor_version

sw_patch_version

RTA-0S3.x Types

4.38

4.39

4.40

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x

RTA-TRACE

Values

The field vendorID for ETAS is 11
The field modulelD for AUTOSAR OS is 1

Example
Std_VersionInfoType Version;
GetVersionInfo(&Version);
if (Version.vendorID == 11) {
/* Make ETAS-specific API call x/
AdvanceCounter(HardwareCounter);

}

TaskRefType

A pointer to an object of TaskType.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x

RTA-TRACE

Example

TaskType SomeTask;
TaskRefType TaskRef = &SomeTask;

TaskStateRefType

A pointer to an object of TaskStateType.

Portability

RTA-0S3.x HOSEK OS AUTOSAR OS R3.x

RTA-TRACE

Example

TaskStateType TaskState;
TaskStateRefType TaskStateRef = &TaskState;

TaskStateType

Enumerated type defining the current state of a task.

RTA-0S3.x Types

193

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

SUSPENDED
READY
WAITING
RUNNING

Example

TaskStateType TaskState;
GetTaskState(&TaskState);

4.41 TaskType

The type of a task.

Portability
RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Values

The symbolic names of tasks declared at configuration time.

Constants
INVALID_TASK

Example
TaskType SomeTask;

4.42 TickRefType

A pointer to an object of TickType.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
4 X

194 RTA-0S3.x Types

4.43

4.44

4.45

Example

TickRefType SomeTick;
GetCounterValue(MyCounter, SomeTick);

TickType

Scalar representing a ticks of a counter.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TickType StartTime = 42;
TickType NoRepeat = 0;
SetAbsAlarm(MyAlarm,StartTime, NoRepeat) ;

TrustedFunctionlndexType

The index value of a Trusted function.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

Symbolic names of the Trusted functions declared at configuration time.

Constants
INVALID_FUNCTION

Example
CallTrustedFunction(Func3, &data);

TrustedFunctionParameterRefType

A reference to the parameters for a Trusted function.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x

RTA-TRACE

RTA-0S3.x Types

195

4.46

4.47

4.48

4.49

196

Example
CallTrustedFunction(Func3, &data);

boolean

Addressable 8 bits only for use with TRUE/FALSE. (Defined in Plat-

form_Types.h)

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
4 X

Values

0=FALSE
1=TRUE

Example
if (Condition == TRUE) {
X =Y;

}

float32

Single precision floating point number. (Defined in Platform_Types.h)

Portability
RTA-OS3.x AOSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Example
float32 x;
float64

Double precision floating point number. (Defined in Platform_Types.h)

Portability
RTA-O0S3.x HOSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X v X
Example
float64 x;
sintl6

Signed 16-bit integer. (Defined in Platform_Types.h)

RTA-0S3.x Types

4.50

4.51

4.52

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

-32768..32767

Example
sintl6 Xx;

sintl6e_least

Signed integer at least 16-bits wide. (Defined in Platform_Types.h)

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values
At least -32768..32767

Example
sintl6_least x;

sint32

Signed 32-bit integer. (Defined in Platform_Types.h)

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Values

-2147483648..2147483647

Example
sint32 x;

sint32_least

Signed integer at least 32-bits wide. (Defined in Platform_Types.h)

RTA-0S3.x Types 197

4.53

4.54

4.55

198

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

At least -2147483648..2147483647

Example
sint32_least x;

sint8

Signed 8-bit integer. (Defined in Platform_Types.h)

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
4 X

Values
-128..127

Example
sint8 x;

sint8_least

Signed integer at least 8-bits wide. (Defined in Platform_Types.h)

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Values

At least -128..127

Example
sint8_least x;

uintle

Unsigned 16-bit integer. (Defined in Platform_Types.h)

RTA-0S3.x Types

4.56

4.57

4.58

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Values

0..65535

Example
uintl6 x;

uintle_least

Unsigned integer at least 16-bits wide. (Defined in Platform_Types.h)

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values
At least 0..65535

Example
uintl6_least x;

uint32

Unsigned 32-bit integer. (Defined in Platform_Types.h)

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Values

0..4294967295

Example
uint32 x;

uint32 least

Unsigned integer at least 32-bits wide. (Defined in Platform_Types.h)

RTA-0S3.x Types 199

4.59

4.60

200

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

At least 0..4294967295

Example
uint32_least x;

uint8

Unsigned 8-bit integer. (Defined in Platform_Types.h)

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
4 X

Values
0..255

Example
uint8 x;

uint8_least

Unsigned integer at least 8-bits wide. (Defined in Platform_Types.h)

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE ‘

Values

At least 0..255

Example
uint8_least x;

RTA-0S3.x Types

5.1

5.2

5.3

5.4

RTA-OS3.x Macros

ALARMCALLBACK

Declares an alarm callback. The only OS API calls that can be made in an
alarm callback are SuspendAllinterrupts() and ResumeAllinterrupts().

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
ALARMCALLBACK(MyCallback){...}

CAT1_ISR

Macro that should be used to create a Category 1 ISR entry function. This
macro exists to help make your code portable between targets.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
CAT1_ISR(MyISR) {...}

DeclareAlarm

This is used to declare an alarm and works similarly to external declaration
of variables in C. You will not normally need to use this because RTA-OS auto-
matically declares all Alarms in your configuration.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
DeclareAlarm(MyAlarm);

DeclareCounter

This is used to declare a Counter and works similarly to external declaration
of variables in C. You will not normally need to use this because RTA-OS auto-
matically declares all Counters in your configuration.

RTA-0S3.x Macros

201

5.5

5.6

5.7

202

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
DeclareCounter(MyCounter);

DeclareEvent

This is used to declare an Event and works similarly to external declaration
of variables in C. You will not normally need to use this because RTA-OS auto-
matically declares all Events in your configuration.

Portability
RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
DeclareEvent (MyEvent);

DeclarelSR

This is used to declare an ISR and works similarly to external declaration of
variables in C. You will not normally need to use this because RTA-OS auto-
matically declares all ISRs in your configuration.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v v v X
Example

DeclareISR(MyISR);

DeclareResource

This is used to declare a Resource and works similarly to external declara-
tion of variables in C. You will not normally need to use this because RTA-OS
automatically declares all Resources in your configuration.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

RTA-0S3.x Macros

5.8

5.9

5.10

5.11

Example
DeclareResource(MyResource) ;

DeclareScheduleTable

This is used to declare a ScheduleTable and works similarly to external decla-
ration of variables in C. You will not normally need to use this because RTA-OS
automatically declares all ScheduleTables in your configuration.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
DeclareScheduleTable(MyScheduleTable);

DeclareTask

This is used to declare a Task and works similarly to external declaration of
variables in C. You will not normally need to use this because RTA-OS auto-
matically declares all Tasks in your configuration.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
DeclareTask(MyTask) ;

ISR

Macro that must be used to create a Category 2 ISR entry function.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
ISR(MyISR) {...}

OSCYCLEDURATION

Duration of an instruction cycle in nanoseconds.

RTA-0S3.x Macros

203

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
time_in_ns = CycleMeasurement * OSCYCLEDURATION;

5.12 OSCYCLESPERSECOND

The number of instruction cycles per second.

Portability
RTA-OS3.x A OSEKOS AUTOSAR OS R3.x RTA-TRACE
v X X X
Example

time_in_secs = CycleMeasurement / OSCYCLESPERSECOND;

5.13 OSErrorGetServiceld

Returns the identifier of the service that generated an error.

Values are of OSServiceldType.

Portability
RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
0SServiceldType WhatServiceFailed = 0SErrorGetServiceld();

5.14 OSMAXALLOWEDVALUE

Constant definition of the maximum possible value of the Counter called Sys-
temCounter in ticks.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v v 4 X

204 RTA-0S3.x Macros

5.15

5.16

5.17

5.18

Example
SetAbsAlarm(MyAlarm, 0SMAXALLOWEDVALUE, 0)

OSMAXALLOWEDVALUE_<CounterlD>

Constant definition of the maximum possible value of the Counter called
CounterlD in ticks.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
SetAbsAlarm(MyAlarm, OSMAXALLOWEDVALUE_SomeCounter,0)

OSMEMORY_IS_EXECUTABLE

Check whether access rights indicate that memory is executable.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

rights = CheckTaskMemoryAccess(MyTask, &datum, sizeof(datum));
if (OSMEMORY_IS_EXECUTABLE(rights)) {...}

OSMEMORY_IS_READABLE

Check whether access rights indicate that memory is readable.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

rights = CheckTaskMemoryAccess(MyTask, &datum, sizeof(datum));
if (OSMEMORY_IS_READABLE(rights)) {...}

OSMEMORY _IS_STACKSPACE

Check whether access rights indicate that memory is stack space.

RTA-0S3.x Macros

205

5.19

5.20

5.21

206

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

rights = CheckTaskMemoryAccess(MyTask, &datum, sizeof(datum));
if (OSMEMORY_IS_STACKSPACE(rights)) {...}

OSMEMORY_IS_WRITEABLE

Check whether access rights indicate that memory is writeable.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

rights = CheckTaskMemoryAccess(MyTask, &datum, sizeof(datum));
if (OSMEMORY_IS_WRITEABLE(rights)) {...}

OSMINCYCLE

Constant definition of the minimum number of ticks for a cyclic alarm on the
Counter called SystemCounter.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v v v/ X
Example

if (ComputedValue < OSMINCYCLE) {
SetAbsAlarm(MyAlarm,42,0SMINCYCLE);

} else {
SetAbsAlarm(MyAlarm,42,ComputedValue);

}

OSMINCYCLE_<CounterID>

Constant definition of the minimum number of ticks for a cyclic alarm on the
Counter called CounterlID.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X

RTA-0S3.x Macros

5.22

5.23

5.24

5.25

Example
if (ComputedValue < OSMINCYCLE_SomeCounter) {
SetAbsAlarm(MyAlarm,42,0SMINCYCLE_SomeCounter);
} else {
SetAbsAlarm(MyAlarm,42,ComputedValue);
}

OSSWTICKDURATION

Duration of a stopwatch tick in nanoseconds.

Portability
RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
time_in_ns = StopwatchMeasurement * OSSWTICKDURATION;

OSSWTICKSPERSECOND

The number of stopwatch ticks per second.

Portability
RTA-OS3.x HOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
time_in_secs = CycleMeasurement / OSSWTICKSPERSECOND;

OSTICKDURATION

Duration of a tick of the Counter called SystemCounter in nanoseconds.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

uint32 RealTimeDeadline = 50000000; /*x 50 ms x/
TickType Deadline = (TickType)RealTimeDeadline / OSTICKDURATION;
SetRelAlarm(Timeout,Deadline,Q);

OSTICKDURATION_<CounterID>

Duration of a tick of the Counter called CounterlID in nanoseconds.

RTA-0S3.x Macros

207

5.26

5.27

5.28

208

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
uint32 RealTimeDeadline = 50000000; /*x 50 ms x/
TickType Deadline = (TickType)RealTimeDeadline /
OSTICKDURATION_SomeCounter;
SetRelAlarm(Timeout,Deadline,0);

OSTICKSPERBASE

Constant definition of the ticks per base setting of the Counter called System-
Counter in ticks.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

OSTICKSPERBASE_<CounterIlD>

Constant definition of the ticks per base setting of the Counter called Coun-
terID in ticks.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X

OS_EXTENDED_STATUS

Defined when extended status is configured.

Portability

Example
#ifdef OS_EXTENDED_STATUS
CheckStatusType = ActivateTask(Taskl);
if (CheckStatusType == E_O0S_LIMIT) {
/* Log an error x/
}
#else
ActivateTask(Taskl);
#endif

RTA-0S3.x Macros

529 0S_MAIN

Declare the main program. Use of OS_MAIN() rather than main() is preferred
for portable code, because different compilers have different requirements
on the parameters and return type of main().

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
#include "0Os.h"
0S_MAIN() {

/* Initialize target hardware x*/
Start0S(OSDEFAULTAPPMODE) ;
}

5.30 OS_NOAPPMODE

The value returned by GetActiveApplicationMode() when the OS is not run-
ning.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

5.31 OS_NUM_ALARMS

The number of alarms declared.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

5.32 OS_NUM_APPLICATIONS

The number of OS Applications declared.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

5.33 0S_NUM_APPMODES

The number of AppModes declared.

RTA-0S3.x Macros 209

5.34

5.35

5.36

5.37

5.38

5.39

210

Portability

RTA-0S3.x ‘ OSEK OS AUTOSAR OS R3.x | RTA-TRACE

0S_NUM_COUNTERS

The number of counters declared.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X X

0S_NUM_EVENTS

The number of Events declared.

Portability

RTA-O0S3.x ‘ OSEK OS AUTOSAR OS R3.x | RTA-TRACE

0S_NUM_ISRS

The number of Category 2 ISRs declared.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X X

OS_NUM_RESOURCES

The number of resources declared (excludes internal).

Portability

0S_NUM_SCHEDULETABLES

The number of schedule tables declared.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X X

0S_NUM_TASKS

The number of tasks declared.

RTA-0S3.x Macros

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

5.40 OS_NUM TRUSTED FUNCTIONS

The number of Trusted functions declared.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

5.41 OS_REGSET_<RegisterSetiD>_SIZE

This macro defines the size of the buffer needed to preserve Register Set
<RegisterSetID> at run time. If no buffer is needed, then it is not declared.
This can happen if no task/ISR that uses the register set can be preempted
by another one that also uses it.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

#ifdef OS_REGSET_FP_SIZE
fp_context_save_area fpsave[0S_REGSET_FP_SIZE];
#endif /x OS_REGSET_FP_SIZE x/

5.42 0OS_SCALABILITY CLASS 1

Defined when AUTOSAR Scalability Class 1 is configured.

Portability

RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

#ifdef O0S_SCALABILITY_CLASS_1
ALARMCALLBACK(OnlyInSC1){

}
#endif

5.43 OS_SCALABILITY_CLASS 2

Defined when AUTOSAR Scalability Class 2 is configured.

RTA-0S3.x Macros 211

5.44

5.45

5.46

212

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
#if defined(0S_SCALABILITY_CLASS_2) ||
defined (0S_SCALABILITY_CLASS_4)
StartScheduleTableSynchron(Table);
#endif

OS_SCALABILITY_CLASS 3

Defined when AUTOSAR Scalability Class 3 is configured.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
#if defined(0S_SCALABILITY_CLASS 3) ||
defined (OS_SCALABILITY_CLASS_4)
FUNC(void, OS_APPL_CODE)
ErrorHook _MyApplication(StatusType Error){
/* Handle 0S-Application error =/

}
#endif

OS_SCALABILITY_CLASS 4

Defined when AUTOSAR Scalability Class 4 is configured.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v X X X
Example

#if defined(0S_SCALABILITY_CLASS_3) ||

defined (0S_SCALABILITY_CLASS_4)
FUNC(void, OS_APPL_CODE)
ErrorHook_MyApplication(StatusType Error){
/* Handle 0S-Application error x/

}
#endif

0S_STACK_MONITORING

This macro is only defined if stack monitoring is configured.

RTA-0S3.x Macros

5.47

5.48

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
FUNC (boolean, OS_APPL_CODE) 0s_Cbk_Idle(void){
#ifdef OS_STACK_MONITORING
0s_StackSizeType TasklStack, Task2Stack, Task3Stack;
TasklStack = 0s_GetTaskMaxStackUsage(Taskl);

Task2Stack = 0s_GetTaskMaxStackUsage(Task2);
TaskNStack = O0s_GetTaskMaxStackUsage(TaskN);
#endif

return TRUE;

0S_STANDARD_STATUS

Defined when standard status is configured.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
#ifdef OS_STANDARD_STATUS
ActivateTask(Taskl);
#else
CheckStatusType = ActivateTask(Taskl);
if (CheckStatusType == E_Q0S_LIMIT) {
/* Log an error */

}
#endif

OS_TICKS2<Unit>_<CounterlD>(ticks)

Converts ticks on CounterID to Unit where Unit is: NS (nanosecond), MS (Mil-
lisecond), US (Microsecond), SEC(Second).

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-0S3.x Macros

213

Example
time_in_ms = O0S_TICKS2MS_SystemCounter(time);

5.49 OS_TIME_MONITORING

This macro is only defined if time monitoring is configured.

Portability

RTA-O0S3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

#ifdef OS_TIME_MONITORING

Os_StopwatchTickType start,end, function_duration;
start = Os_GetExecutionTime();

#endif

ThirdPartyFunction(x,y);

#ifdef OS_TIME_MONITORING

end = 0s_GetExecutionTime();

function_duration = end - start;

#endif

550 TASK

Macro that must be used to create the task’s entry function.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
TASK(MyTask) {...}

214 RTA-0S3.x Macros

6.1

RTA-TRACE API calls

Guide to Descriptions

All API calls have the following structure:

Syntax

/* C function prototype for the API call x/
ReturnValue NameOfAPICall(Parameter Type, ...)

Parameters

A list of parameters for each API call and their mode:

in The parameter is passed in to the call

out The parameter is passed out of the API call by passing a reference
(pointer) to the parameter into the call.

inout The parameter is passed into the call and then (updated) and passed
out.

Return Values

Where API calls return a StatusType the values of the type returned and
an indication of the reason for the error/warning are listed. The build column
indicates whether the value is returned for both standard and extended status
builds or for extended status build only.

Description

A detailed description of the behavior of the API call.

Portability
The RTA-OS3.x APl includes four classes of API calls:

OSEK OS calls are those specified by the OSEK OS standard. OSEK OS calls
are portable to other implementations of OSEK OS and are portable to
other implementations of AUTOSAR OS R3.x.

AUTOSAR OS calls are those specified by the AUTOSAR OS R3.x standard.
AUTOSAR OS calls are portable to other implementations of AUTOSAR
0OS R3.x. The calls are portable to OSEK OS only if the call is also an
OSEK OS call.

RTA-TRACE calls are provided by RTA-OS3.x for controlling the RTA-TRACE
run-time profiling tool. These calls are only available when RTA-TRACE
support has been configured.

RTA-TRACE API calls

215

216

RTA-0S3.x callsinclude all those form the other three classes plus calls that
provide extensions AUTOSAR OS functionality. These calls are unique to
RTA-OS3.x and are not portable to other implementations.

Example Code
A C code listing showing how to use the API calls

Calling Environment

The valid calling environment for the API call. A v/ indicates that a call can be
made in the indicated context. A X indicates that the call cannot be made in
the indicated context.

See Also

A list of related API calls.

RTA-TRACE API calls

6.2

Os_CheckTraceOutput

Checks for the presence of trace data.

Syntax
void O0s_CheckTraceOutput(void)

Description

When tracing in free-running mode, this must be called regularly by the ap-
plication. It is used to detect when the trace buffer has data to upload to
RTA-TRACE.

It does not have to be called in Bursting or Triggering modes, though it is not
harmful to do so.

It causes Os_Cbk_TraceCommbDataReady() to be called when there is data to
send.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_CheckTraceOutput();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR X | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X
ShutdownHook X
ErrorHook X
X

ProtectionHook

See Also

Os_Cbk TraceCommbDataReady
Os_Cbk TraceCommTxByte
Os_Cbk TraceCommTxEnd
Os_Cbk TraceCommTxReady
Os_Cbk TraceCommTxStart

RTA-TRACE API calls

217

6.3 Os_ClearTrigger

Clear all triggering conditions.

Syntax
void Os_ClearTrigger(void)

Description
This API call clears all trigger conditions that have been set using an
Os_TriggerOnXXX() API.

Trace information will continue to be logged in the trace buffer, but no trace
record will trigger the upload of the trace buffer to the host.

Portability
RTA-0S3.x A OSEKOS AUTOSAR OS R3.x @ RTA-TRACE
v X X v
Example

Os_ClearTrigger();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_SetTraceRepeat
Os_SetTriggerWindow
Os_StartBurstingTrace
Os_StartFreeRunningTrace

218 RTA-TRACE API calls

6.4

Os_DisableTraceCategories

Control which tracepoints are traced.

Syntax

void Os_DisableTraceCategories(
Os_TraceCategoriesType CategoriesMask

)

Parameters

Parameter Mode Description

CategoriesMask | in Os_TraceCategoriesType
Mask of the trace categories to disable.

Description

Trace categories are used to filter whether tracepoints, task tracepoints and
intervals get recorded and are typically used to control the volume of data
that gets traced.

A category can be configured at build time to be active always, never
or under run-time control. Categories that are under run-time con-
trol are enabled using Os_EnableTraceCategories and disabled using
Os_DisableTraceCategories.

This call disables the specified run-time categories and therefore will inhibit
the logging of all tracepoints, task tracepoints and intervals that are filtered
by these categories.

Categories not listed in the call will be left in their current state.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

Os_DisableTraceCategories(DebugTracePoints | DatalLogTracePoints);
/* Disable DebugTracePoints and DatalogTracePointsx/

Os_LogTracepoint(tpTest, DebugTracePoints); /* tpTest is not
recorded: DebugTracePoints is disabled */

Os_LogTracepoint(tpTest, OS_TRACE_CATEGORY_ALWAYS); /* tpTest is
recorded here */

Os_DisableTraceCategories(0OS_TRACE_ALL_CATEGORIES); /* Disable
all categories except for OS_TRACE_CATEGORY_ALWAYS x/

RTA-TRACE API calls

219

220

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_EnableTraceCategories

RTA-TRACE API calls

6.5

Os_DisableTraceClasses

Control which types of objects are traced.

Syntax
void Os_DisableTraceClasses(
Os_TraceClassesType ClassMask

)

Parameters

Parameter Mode | Description

ClassMask | in Os_TraceClassesType
Mask of the trace classes to disable.

Description

Trace classes are used to filter whether complete types of trace events get
recorded. They are typically used to control the volume of data that gets
traced.

Trace classes can be configured at build time to be active always, never or
under run-time control. Classes that are under run-time control are enabled
using Os_EnableTraceClasses and disabled using Os_DisableTraceClasses.

This call disables the specified run-time classes and therefore will inhibit the
tracing of events that are filtered by these classes.

Classes not listed in the call will be left in their current state.

Portability

RTA-0S3.x = OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_DisableTraceClasses(0S_TRACE_TRACEPOINT_CLASS);
Os_LogTracepoint(tpTest, OS_TRACE_ALL_CATEGORIES); /* Will not
get recorded x/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

221

See Also

Os_EnableTraceClasses

222 RTA-TRACE API calls

6.6

Os_EnableTraceCategories

Control which tracepoints are traced.

Syntax

void Os_EnableTraceCategories(
Os_TraceCategoriesType CategoriesMask

)

Parameters

Parameter Mode Description

CategoriesMask | in Os_TraceCategoriesType
Mask of the trace categories to enable.

Description

Trace categories are used to filter whether tracepoints, task tracepoints and
intervals get recorded and are typically used to control the volume of data
that gets traced.

A category can be configured at build time to be active always, never
or under run-time control. Categories that are under run-time con-
trol are enabled using Os_EnableTraceCategories and disabled using
Os_DisableTraceCategories.

This call enables the specified run-time categories.

Categories not listed in the call will be left in their current state.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

Os_EnableTraceCategories(DebugTracePoints | DatalLogTracePoints);

Os_LogTracepoint(tpTest, DebugTracePoints); /* tpTest is recorded
*/

Os_LogTracepoint(tpTest, FunctionProfileTracePoints); /* tpTest
is not recorded - FunctionProfileTracePoints not enabled x/

Os_LogTracepoint(tpTest, OS_TRACE_ALL_CATEGORIES); /x* tpTest is
recorded x/

RTA-TRACE API calls

223

224

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_DisableTraceCategories

RTA-TRACE API calls

6.7

Os_EnableTraceClasses

Control which types of objects are traced.

Syntax

void Os_EnableTraceClasses(
Os_TraceClassesType ClassMask
)

Parameters

Parameter Mode Description
ClassMask | in Os_TraceClassesType
Mask of the trace classes to enable.

Description

Trace classes are used to filter whether complete types of trace events get
recorded. They are typically used to control the volume of data that gets
traced.

Trace classes can be configured at build time to be active always, never or
under run-time control. Classes that are under run-time control are enabled
using Os_EnableTraceClasses and disabled using Os_DisableTraceClasses.

This call enables the specified run-time classes.

Classes not listed in the call will be left in their current state.

Portability
RTA-OS3.x #OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

Os_EnableTraceClasses (0S_TRACE_TRACEPOINT_CLASS);
Os_LogTracepoint(tpTest, OS_TRACE_ALL_CATEGORIES); /x* Will get
recorded x/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

225

See Also

Os DisableTraceClasses

226 RTA-TRACE API calls

6.8

Os_LogCatlISRENnd

Log the end of a Category 1 ISR.

Syntax
void O0s_LogCat1ISRENd(
ISRType ISRID
)

Parameters

Parameter Mode Description

ISRID in ISRType
Category 1 ISR identifier.

Description

This call marks the end of a Category 1 ISR. This type of ISR is not controlled
by the operating system so no automatic tracing of it can occur. If Category
1 ISRs need to be logged then it is necessary to do this manually using this
call.

This event is only logged if the OS_TRACE_TASKS AND ISRS CLASS trace
class is active.

Take care to ensure that both the start and end of the Category 1 ISR logged,
otherwise the resulting trace will be incorrect.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
CAT1_ISR(CategorylHandler) {
Os_LogCatlISRStart(CategorylHandler);

0s_LogCatlISREnd(CategorylHandler);
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR v | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-TRACE API calls

227

See Also

Os_LogCatlISRStart

228 RTA-TRACE API calls

6.9

Os_LogCatlISRStart

Log the start of a Category 1 ISR.

Syntax
void Os_LogCatlISRStart(
ISRType ISRID
)

Parameters

Parameter Mode Description

ISRID in ISRType
Category 1 ISR identifier.

Description

This call marks the start of a Category 1 ISR. This type of ISR is not controlled
by the operating system so no automatic tracing of it can occur. If Category
1 ISRs need to be logged then it is necessary to do this manually using this
call.

This event is only logged if the OS_TRACE_TASKS AND ISRS CLASS trace
class is active.

Take care to ensure that both the start and end of the Category 1 ISR are
logged, otherwise the resulting trace will be incorrect.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
CAT1_ISR(CategorylHandler) {
Os_LogCatlISRStart(CategorylHandler);

0s_LogCatlISREnd(CategorylHandler);
}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task X | PreTaskHook X StackOverrunHook X
Category 1 ISR v | PostTaskHook X TimeOverrunHook X
Category 2 ISR X | StartupHook X

ShutdownHook X
ErrorHook X
ProtectionHook X

RTA-TRACE API calls

229

See Also

Os_LogCatlISRENnd

230 RTA-TRACE API calls

6.10

Os_LogCriticalExecutionEnd

Log the completion of a critical execution event.

Syntax

void Os_LogCriticalExecutionEnd(
Os_TraceInfoType CriticalExecutionID

)

Parameters

Parameter Mode Description

CriticalExecutionID | in Os_TraceInfoType
Critical execution profile identifier.

Description

Logs the end of a critical point of execution in the trace buffer. This is typically
used to indicate that a task/ISR has completed a time-critical section of code.
This might be needed if the deadline that needs to be met by the task/ISR
occurs before the end of the task/ISR.

CriticalExecutionID is only logged if the OS TRACE_TASKS _AND ISRS CLASS
class is active.

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
TASK (MyTask) {

ReadSensor (X) ;
Os_LogCriticalExecutionEnd(SensorRead);

WriteActuator(Y);
Os_LogCriticalExecutionEnd(SensorRead);

TerminateTask();

RTA-TRACE API calls

231

232

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

None.

RTA-TRACE API calls

6.11

Os_LoglntervalEnd

Log the end of a measurement interval.

Syntax
void Os_LogIntervalEnd(
Os_TracelIntervallDType IntervallD,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode | Description
IntervallD in Os_TraceIntervalIDType
Interval Identifier.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the end of an interval in the trace buffer.

The interval is only logged if the OS_TRACE_INTERVAL CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogIntervalStart(EndToEndTime, SystemLoggingCategory);

Os_LogIntervalEnd (EndToEndTime, SystemLoggingCategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

233

234

See Also

Os_LoglintervalEndData
Os_LoglntervalEndValue
Os_LoglntervalStart
Os_LoglintervalStartData
Os_LoglntervalStartValue

RTA-TRACE API calls

6.12

Os_LoglntervalEndData

Log the end of a measurement interval together with associated data.

Syntax

void Os_LogIntervalEndData(
Os_TracelIntervallDType IntervallD,
Os_TraceDataPtrType DataPtr,
Os_TraceDatalLengthType Length,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
IntervallD in Os_TraceIntervallDType
Interval Identifier.
DataPtr in Os_TraceDataPtrType
A pointer to the start address of the data block
to log.
Length in Os_TraceDatalengthType
The length of the data block in bytes.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the end of an interval in the trace buffer and associate some data with it.

The interval is only logged if the OS_TRACE_INTERVAL_CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogIntervalStart(EndToEndTime, SystemLoggingCategory);

Os_LogIntervalEndData(EndToEndTime, &DataBlock,
4,SystemLoggingCategory);

RTA-TRACE API calls

235

236

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook Vv

See Also

Os_LogintervalEnd

Os_LoglIntervalEndValue

Os_LoglntervalStart

Os_LoglntervalStartData

Os_LoglntervalStartValue

RTA-TRACE API calls

6.13

Os_LoglntervalEndValue

Log the end of a measurement interval together with an associated value.

Syntax
void Os_LogIntervalEndValue(
Os_TracelIntervallDType IntervallD,
Os_TraceValueType Value,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
IntervallD in Os_TraceIntervalIDType
Interval Identifier.
Value in Os_TraceValueType
Numerical value to be logged with the interval.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the end of an interval in the trace buffer and associate a value with it.

The interval is only logged if the OS_TRACE_INTERVAL_CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
Os_LogIntervalStart(EndToEndTime, SystemLoggingCategory);

Os_LogIntervalEndValue(EndToEndTime, 42, SystemLoggingCategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

237

238

See Also

Os_LoglintervalEnd
Os_LogintervalEndData
Os_LoglintervalEndValue
Os_LoglintervalStartData
Os_LoglntervalStartValue

RTA-TRACE API calls

6.14

Os_LoglntervalStart

Log the start of a measurement interval.

Syntax
void Os_LogIntervalStart(
Os_TracelIntervallDType IntervallD,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode | Description
IntervallD in Os_TraceIntervalIDType
Interval Identifier.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the start of an interval in the trace buffer.

The interval is only logged if the OS_TRACE_INTERVAL CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogIntervalStart(EndToEndTime, SystemLoggingCategory);

Os_LogIntervalEnd (EndToEndTime, SystemLoggingCategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

239

240

See Also

Os_LoglintervalEnd
Os_LogintervalEndData
Os_LoglintervalEndValue
Os_LoglintervalStartData
Os_LoglntervalStartValue

RTA-TRACE API calls

6.15

Os_LoglntervalStartData

Log the start of a measurement interval together with associated data.

Syntax
void Os_LogIntervalStartData(
Os_TracelIntervallDType IntervallD,
Os_TraceDataPtrType DataPtr,
Os_TraceDatalLengthType Length,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
IntervallD in Os_TraceIntervallDType
Interval Identifier.
DataPtr in Os_TraceDataPtrType
A pointer to the start address of the data block
to log.
Length in Os_TraceDatalengthType
The length of the data block in bytes.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the start of an interval in the trace buffer and associate some data with
it.

The interval is only logged if the OS_TRACE_INTERVAL_CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

Os_LogIntervalStartData(EndToEndTime, &DataBlock, 4,
SystemLoggingCategory);

Os_LogIntervalEnd (EndToEndTimeSystemLoggingCategory);

RTA-TRACE API calls

241

242

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR vV

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook Vv

See Also

Os_LogintervalEnd

Os_LoglIntervalEndData
Os_LoglintervalEndValue

Os_LogintervalStart

Os_LoglntervalStartValue

RTA-TRACE API calls

6.16

Os_LoglntervalStartValue

Log the start of a measurement interval together with an associated value.

Syntax
void Os_LogIntervalStartValue(
Os_TracelIntervallDType IntervallD,
Os_TraceValueType Value,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
IntervallD in Os_TraceIntervalIDType
Interval Identifier.
Value in Os_TraceValueType
Numerical value to be logged with the interval.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the start of an interval in the trace buffer and associate a value with it.

The interval is only logged if the OS_TRACE_INTERVAL_CLASS class is active
and one or more of the categories in CategoryMask are active.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
Os_LogIntervalStartValue(EndToEndTime, 42, SystemLoggingCategory);

Os_LogIntervalEnd(EndToEndTime, SystemlLoggingCategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

243

244

See Also

Os_LoglintervalEnd
Os_LogintervalEndData
Os_LoglintervalEndValue
Os_LoglntervalStart
Os_LoglntervalStartData

RTA-TRACE API calls

6.17

Os_LogProfileStart

Log the start of a new execution profile.

Syntax

void Os_LogProfileStart(
Os_TraceInfoType ProfilelD
)

Parameters

Parameter Mode Description
ProfileID | in Os_TraceInfoType
Profile Identifier.

Description

Logs which execution profile is active in the trace buffer. Execution profiles
can be used to identify which route is taken through a Task or ISR when this
depends on external conditions.

The profile is only recorded if the OS_TRACE_TASKS AND ISRS_CLASS class is
active.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

TASK(MyTask) {
if (some_condition()) {
Os_LogProfileStart(TrueRoute);

} else {
Os_LogProfileStart(FalseRoute);

}

TerminateTask();

}

RTA-TRACE API calls

245

246

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

None.

RTA-TRACE API calls

6.18

Os_LogTaskTracepoint

Log a tracepoint in the specified categories.

Syntax
void Os_LogTaskTracepoint(
Os_TraceTracepointIDType TaskTracepointID,
Os_TraceCategoriesType CategoryMask

Parameters
[Parameter __ Mode Description |
TaskTracepointID | in O0s_TraceTracepointIDType
Task Tracepoint Identifier.
CategoryMask in Os_TraceCategoriesType
A category mask.

Description

Log the task tracepoint event in the trace buffer.

TaskTracepointID is recorded only if the OS_TRACE_TASK TRACEPOINT _CLASS
class is active and one or more of the categories in CategoryMask are active.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogTaskTracepoint (MyTaskTracePoint, ACategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

247

248

See Also

Os_LogTaskTracepointData
Os_LogTaskTracepointValue
Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointValue

RTA-TRACE API calls

6.19

Os_LogTaskTracepointData

Log a tracepoint in the specified categories together with associated data.

Syntax

void Os_LogTaskTracepointData(
Os_TraceTracepointIDType TracepointlID,
Os_TraceDataPtrType DataPtr,
Os_TraceDatalLengthType Length,
Os_TraceCategoriesType CategoryMask

Parameters

Parameter Mode Description

TracepointID | in Os_TraceTracepointIDType
Tracepoint Identifier.

DataPtr in Os_TraceDataPtrType
A pointer to the start address of the data block
to log.

Length in Os_TraceDatalengthType
The length of the data block in bytes.

CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the task tracepoint event in the trace buffer and associate some data
with it.

TaskTracepointlD is recorded only if the OS_TRACE_TASK_TRACEPOINT_CLASS
class is active and one or more of the categories in CategoryMask are active.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogTaskTracepointData(MyTracePoint, &DataBlock, 4, ACategory);

RTA-TRACE API calls

249

250

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook v
Category 1 ISR X | PostTaskHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook Vv

See Also

Os_LogTaskTracepoint
Os_LogTaskTracepointValue
Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointValue

RTA-TRACE API calls

6.20

Os_LogTaskTracepointValue

Log a tracepointin the specified categories together with an associated value.

Syntax
void Os_LogTaskTracepointValue(
Os_TraceTracepointIDType TracepointlID,
Os_TraceValueType Value,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
TracepointID | in Os_TraceTracepointIDType
Tracepoint Identifier.
Value in Os_TraceValueType
Numerical value to be logged with the trace-
point.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description
Log the task tracepoint event in the trace buffer and associate a value with
it.

TaskTracepointID is recorded only if the OS_TRACE_TASK TRACEPOINT _CLASS
class is active and one or more of the categories in CategoryMask are active.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogTaskTracepointValue(MyTracePoint, 99, ACategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

251

252

See Also

Os_LogTaskTracepoint
Os_LogTaskTracepointData
Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointValue

RTA-TRACE API calls

6.21

Os_LogTracepoint

Log a tracepoint in the specified categories.

Syntax
void Os_LogTracepoint(
Os_TraceTracepointIDType TracepointlID,
Os_TraceCategoriesType CategoryMask

Parameters

Parameter Mode | Description

TracepointID | in Os_TraceTracepointIDType
Tracepoint Identifier.

CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the tracepoint event in the trace buffer.

TracepointlD is recorded only if the OS_TRACE_TRACEPOINT_CLASS class is
active and one or more of the categories in CategoryMask are active.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_LogTracepoint(MyTracepoint, ACategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

253

254

See Also

Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointData
Os_LogTracepointValue
Os_LogTracepointValue

RTA-TRACE API calls

6.22

Os_LogTracepointData

Log a tracepoint in the specified categories together with associated data.

Syntax
void Os_LogTracepointData(
Os_TraceTracepointIDType TracepointID,
Os_TraceDataPtrType DataPtr,
Os_TraceDatalLengthType Length,
Os_TraceCategoriesType CategoryMask

Parameters
TracepointID | in Os_TraceTracepointIDType
Tracepoint Identifier.
DataPtr in Os_TraceDataPtrType
A pointer to the start address of the data block
to log.
Length in Os_TraceDatalLengthType
The length of the data block in bytes.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the tracepoint event in the trace buffer and associate some data with it.

TracepointID is recorded only if the OS_TRACE_TRACEPOINT_CLASS class is
active and one or more of the categories in CategoryMask are active.

Portability
RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
Os_LogTracepointData(MyTracePoint, &DataBlock, 4, ACategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

255

256

See Also

Os_LogTracepoint
Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointValue
Os_LogTracepointValue

RTA-TRACE API calls

6.23

Os_LogTracepointValue

Log a tracepointin the specified categories together with an associated value.

Syntax
void Os_LogTracepointValue(
Os_TraceTracepointIDType TracepointlID,
Os_TraceValueType Value,
Os_TraceCategoriesType CategoryMask

Parameters
Parameter Mode Description
TracepointID | in Os_TraceTracepointIDType
Tracepoint Identifier.
Value in Os_TraceValueType
Numerical value to be logged with the trace-
point.
CategoryMask | in Os_TraceCategoriesType
A category mask.

Description

Log the tracepoint event in the trace buffer and associate a value with it.

TracepointlD is recorded only if the OS_TRACE_TRACEPOINT_CLASS class is
active and one or more of the categories in CategoryMask are active.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_LogTracepointValue(MyTracePoint, 99, ACategory);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-TRACE API calls

257

258

See Also

Os_LogTracepoint
Os_LogTracepoint
Os_LogTracepointData
Os_LogTracepointData
Os_LogTracepointValue

RTA-TRACE API calls

6.24

Os_SetTraceRepeat

Control whether trace repeats or not.

Syntax

void Os_SetTraceRepeat (
boolean Repeat

)

Parameters

Parameter Mode Description
Repeat in boolean
Control whether bursting/triggering traces repeat.

Description

When TRUE, bursting and triggering trace modes automatically restart once
the most recent trace content has been transmitted from the trace buffer to
the RTA-TRACE client.

The API has no effect in free-running trace mode.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
Os_SetTraceRepeat (TRUE) ;

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_StartBurstingTrace
Os_StartTriggeringTrace

RTA-TRACE API calls

259

6.25

260

Os_SetTriggerWindow

Set the size of the trace buffer window to be uploaded in triggering mode.

Syntax
void Os_SetTriggerWindow(
0s_TraceIndexType Before,
Os_TraceIndexType After

Parameters
[Parameter Mode Description
Before in 0s_TraceIndexType
Number of records to be recorded before the trigger
event.
After in Os_TraceIndexType
Number of records to record after the trigger event.

Description

This call sets the number of records to be recorded before and after a trigger
event.

When the trigger occurs, tracing events continue to be logged until After trace
records have been written to the trace buffer, and the data is then uploaded.

The total number of records uploaded (Before + After) is limited by the size
of the trace buffer.

Note that a trace event that contains data values may require multiple
records to be written to the trace buffer. This means that the number of
complete events seen before or after the trigger point may be less than the
number of records requested.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

extern FUNC(void, OS_APPL_CODE) StartupHook(){

0s_SetTriggerWindow(100,50);
Os_StartTriggeringTrace();

RTA-TRACE API calls

Calling Environment

Tasks/ISRs
Task v
Category 1 ISR X
Category 2 ISR v/

AUTOSAR OS Hooks

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

N> NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_StartBurstingTrace

Os_StartFreeRunningTrace

RTA-TRACE API calls

261

6.26

262

Os_StartBurstingTrace

Starts tracing in bursting mode.

Syntax
void Os_StartBurstingTrace(void)

Description

Bursting trace mode logs trace information into the trace buffer until the
buffer is full. When the trace buffer is full, tracing stops and data transfer
begins. No attempt is made to upload data to the host until the trace buffer
has filled.

Where Os SetTraceRepeat() has been used to enable repeated bursting
traces, tracing resumes once the buffer is empty (i.e. once data transfer
is complete).

The trace buffer is cleared and tracing restarts again if this call is made while
tracing.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

extern FUNC(void, OS_APPL_CODE) StartupHook(){

Os_StartBurstingTrace();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
v

ProtectionHook

See Also

Os_SetTraceRepeat
Os_StartFreeRunningTrace
Os_StartTriggeringTrace

RTA-TRACE API calls

6.27

Os_StartFreeRunningTrace

Starts tracing in free-running mode.

Syntax

void Os_StartFreeRunningTrace(void)

Description

Free running trace mode logs trace information while there is space in the
trace buffer. Data is uploaded to the host from the buffer as soon as it is
available, concurrently with capture.

If the trace buffer becomes full, logging of trace data is suspended until there
is space in the buffer. When space in the buffer is available again, tracing
resumes. The buffer might become full if the communications link is too slow
for the desired volume of trace data.

The trace buffer is cleared and tracing restarts again if this call is made while

tracing.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

extern FUNC(void, OS_APPL_CODE) StartupHook(){

Os_StartFreeRunningTrace();

Calling Environment

Tasks/ISRs
Task v
Category 1ISR X
Category 2 ISR v/

PreTaskHook
PostTaskHook
StartupHook
ShutdownHook
ErrorHook
ProtectionHook

AUTOSAR OS Hooks

N >X NSNS S

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_StartBurstingTrace

Os_StartTriggeringTrace

RTA-TRACE API calls

263

6.28

264

Os_StartTriggeringTrace

Starts tracing in triggering mode.

Syntax
void Os_StartTriggeringTrace(void)

Description

Triggering trace mode logs trace information into the buffer continuously,
waiting for a trigger condition. If the buffer overflows, then new trace infor-
mation overwrites existing information.

A pre- and post-trigger number of buffer records must be specified using
Os_SetTriggerWindow() so that only the set of events before and after the
trigger event can be seen. Unpredictable behavior may occur if the trigger
window is not set.

Trigger events are set using the Os_TriggerOnXXX() APlIs.

When a triggering event occurs (for example, when a task starts execut-
ing), data collection continues until post-trigger number of trace records are
logged. Data transfer to the host then begins.

Tracing resumes after the data transfer completes if Os_SetTraceRepeat()
permits this.

The trace buffer is cleared and tracing restarts again if this call is made while
tracing.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

extern FUNC(void, OS_APPL_CODE) StartupHook(){

0s_SetTriggerWindow(100,50);
Os_StartTriggeringTrace();

RTA-TRACE API calls

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook v
Category 1 ISR X | PostTaskHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_SetTraceRepeat
Os_SetTriggerWindow
Os_StartBurstingTrace
Os_StartFreeRunningTrace

RTA-TRACE API calls

265

6.29 Os_StopTrace

Stops tracing.

Syntax
void Os_StopTrace(void)

Description

Stops data logging to the trace buffer. Any data remaining in the trace buffer
is uploaded to the host.

Note that the call does not stop the data link.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

Os_StopTrace();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_StartBurstingTrace
Os_StartFreeRunningTrace
Os_StartTriggeringTrace

266 RTA-TRACE API calls

6.30

Os_TraceCommlnit

Initializes external communication support for tracing.

Syntax
Os_TraceStatusType Os_TraceCommInit(void)

Return Values

The call returns values of type 0s_TraceStatusType.

Description
This function is used to initialize a trace communications link. It should not
be used if you use a debugger link to extract trace data.

It calls the callback Os_Cbk TraceCommlnitTarget() to initialize the appropri-
ate target hardware and its return value indicates the return value from the
call to Os_Cbk_TraceCommlInitTarget().

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
extern FUNC(void, OS_APPL_CODE) StartupHook(){

0s_TraceCommInit();
Os_StartFreeRunningTrace();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_Cbk_TraceCommlnitTarget

RTA-TRACE API calls

267

6.31

268

Os_TraceDumpAsync

Uses an asynchronous communication to upload trace data in a single opera-
tion.

Syntax

void Os_TraceDumpAsync(
0s_AsyncPushCallbackType fn
)

Description

This APl is normally called in response to Os_Cbk TraceCommbDataReady(). It
gets passed a reference to a function that can transmit a single character. It
will call this function for each character that needs to be transmitted before
returning to the caller.

An appropriate asynchronous serial device must be available and previously
initialized. A typical serial link might be set to 115200bps, 8 data bits, no
parity and 1 stop bit.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

FUNC(void, OS_APPL_CODE) push_async_io(uint8 val) {
while('async_tx_ready) {/* wait for room */}
async_transmit(val) ;

}
FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {

0s_TraceDumpAsync(push_async_io);

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_Cbk TraceCommDataReady

RTA-TRACE API calls

6.32

Os_TriggerNow

Trigger upload of the trace buffer.

Syntax
void Os_TriggerNow(void)

Description

This API call forces a trigger condition to occur. This will cause the trace buffer
to be uploaded, regardless of any other trigger conditions.

The call does not modify the state of the trigger conditions.

The call only has an effect in triggering trace mode.

Portability

RTA-OS3.x #OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerNow();

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
ProtectionHook Ve
See Also
None.

RTA-TRACE API calls

269

6.33

270

Os_TriggerOnActivation

Trigger when a task is activated.

Syntax

void Os_TriggerOnActivation(
TaskType TaskID
)

Parameters

Parameter Mode Description

TaskID in TaskType
Identifier of the task to trigger on.

Description

Causes a trace trigger to occur when specified task is activated.

TaskID can be set to OS_TRIGGER_ANY, in which case activation of any task
will cause the trigger to occur.

The trigger will occur when a task is activated through ActivateTask, StartOS,
Alarms or ScheduleTables.

Note that ChainTask(TasklD) does not cause an activation trigger; see
Os_TriggerOnChain().

Portability

RTA-O0S3.x ‘ OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0s_TriggerOnActivation(InterestingTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
v

ProtectionHook

See Also

Os_TriggerOnChain

RTA-TRACE API calls

6.34 Os_TriggerOnAdvanceCounter

Trigger when a counter is advanced.

Syntax

void Os_TriggerOnAdvanceCounter(
CounterType CounterID
)

Parameters

Parameter Mode Description

CounterID | in CounterType
Identifier of the hardware counter that triggers on
advance.

Description
Causes a trace trigger to occur when a specified hardware counter is ad-
vanced.

CounterID can be set to OS TRIGGER_ANY, in which case advancing any
counter will cause the trigger to occur.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0s_TriggerOnAdvanceCounter (HWCounter);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnincrementCounter

RTA-TRACE API calls 271

6.35

272

Os_TriggerOnAlarmExpiry

Trigger when an alarm expires.

Syntax

void Os_TriggerOnAlarmExpiry(
AlarmType AlarmID
)

Parameters

Parameter Mode Description
AlarmID in AlarmType
Identifier of the alarm.

Description

Causes a trace trigger to occur when a specified alarm expires.

AlarmID can be set to OS_TRIGGER_ANY, in which case any alarm expiry or
expiry point will cause the trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnAlarmExpiry(Alarm_10ms);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
ProtectionHook Ve
See Also
None.

RTA-TRACE API calls

6.36

Os_TriggerOnCat1ISRStart

Trigger when a Category 1 ISR starts.

Syntax
void Os_TriggerOnCatlISRStart(
ISRType ISRID
)

Parameters

Parameter Mode Description

ISRID in ISRType
Identifier of the Category 1 ISR to trigger on.

Description

Causes a trace trigger to occur when a specified Category 1 ISR starts run-
ning.

ISRID can be set to OS_TRIGGER_ANY, in which case any such ISR will cause
the trigger to occur.

Note that Category 1 ISRs are not controlled by RTA-OS, so you are respon-
sible for calling Os_LogCat1ISRStart() at the beginning of your interrupt han-
dler.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0s_TriggerOnCatlISRStart(InterestingCatlISR);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_LogCatlISRENnd
Os_TriggerOnCat1ISRStop

RTA-TRACE API calls

273

6.37

274

Os_TriggerOnCat1ISRStop

Trigger when a Category 1 ISR stops.

Syntax
void 0s_TriggerOnCatlISRStop(
ISRType ISRID
)

Parameters

Parameter Mode Description

ISRID in ISRType
Identifier of the Category 1 ISR to trigger on.

Description
Causes a trace trigger to occur when a specified Category 1 ISR stops run-
ning.

ISRID can be set to OS_TRIGGER_ANY, in which case any such ISR will cause
the trigger to occur.

Note that Category 1 ISRs are not controlled by RTA-OS, so you are responsi-
ble for calling Os_LogCatlISREnd() at the end of your interrupt handler.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

0s_TriggerOnCatlISRStop(InterestingCatlISR);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_LogCatlISRENnd
Os_LogCatlISRStart
Os_TriggerOnCatlISRStart

RTA-TRACE API calls

6.38

Os_TriggerOnCat2ISRStart

Trigger when a Category 2 ISR starts.

Syntax
void Os_TriggerOnCat2ISRStart(
ISRType ISRID
)

Parameters

Parameter Mode Description
ISRID in ISRType
Identifier of the Category 2 ISR to trigger on.

Description

Causes a trace trigger to occur when a specified Category 2 ISR starts run-
ning.

ISRID can be set to OS_TRIGGER_ANY, in which case any such ISR will cause
the trigger to occur.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
0s_TriggerOnCat2ISRStart(InterestingCat2ISR);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnCat2ISRStop

RTA-TRACE API calls

275

6.39 Os_TriggerOnCat2ISRStop

Trigger when a Category 2 ISR stops.

Syntax

void Os_TriggerOnCat2ISRStop(
ISRType ISRID
)

Parameters

Parameter Mode Description

ISRID in ISRType
Identifier of the Category 2 ISR to trigger on.

Description

Causes a trace trigger to occur when a specified Category 2 ISR stops run-
ning.

ISRID can be set to OS_TRIGGER_ANY, in which case any such ISR will cause
the trigger to occur.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE |

Example
0s_TriggerOnCat2ISRStop(InterestingCat2ISR);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnCat2ISRStart

276 RTA-TRACE API calls

6.40

Os_TriggerOnChain

Trigger when a task is chained.

Syntax
void Os_TriggerOnChain(
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
Identifier of the task to trigger on.

Description

Causes a trace trigger to occur when an attempt is made to chain a specified
task. (Noting that chain attempts can fail.)

TaskID can be set to OS_TRIGGER_ANY, in which case chaining of any task will
cause the trigger to occur.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
0s_TriggerOnChain(InterestingTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnActivation

RTA-TRACE API calls

277

6.41

278

Os_TriggerOnError

Trigger when an error occurs.

Syntax

void Os_TriggerOnError(
StatusType Error
)

Parameters

Parameter Mode Description

Error in StatusType
Identifier of the error to trigger on.

Description

Causes a trace trigger to occur when a specified error is raised.

Error can be set to OS_TRIGGER_ANY, in which case any error will cause the
trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnError(E_OS_LIMIT);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
ProtectionHook Ve
See Also
None.

RTA-TRACE API calls

6.42

Os_TriggerOnGetResource

Trigger when a resource is locked.

Syntax

void Os_TriggerOnGetResource(
ResourceType ResourcelID

)

Parameters

Parameter Mode Description
ResourcelD | in ResourceType
Identifier of the resource to trigger on.

Description

Causes a trace trigger to occur when a specified resource is locked.

ResourcelD can be set to OS_TRIGGER_ANY, in which case any resource lock
will cause the trigger to occur.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnGetResource(CriticalSection);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnReleaseResource

RTA-TRACE API calls

279

6.43 Os_TriggerOnincrementCounter

Trigger when a counter is incremented.

Syntax

void Os_TriggerOnIncrementCounter(
CounterType CounterID
)

Parameters

Parameter Mode Description

CounterID | in CounterType
Identifier of the software counter.

Description

Causes a trace trigger to occur when a specified counter is incremented.

CounterID can be set to OS_TRIGGER_ANY, in which case any counter incre-
ment will cause the trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnIncrementCounter(SWCounter);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
v

ProtectionHook

See Also

Os_TriggerOnAdvanceCounter

280 RTA-TRACE API calls

6.44

Os_TriggerOnlintervalEnd

Trigger when a trace interval ends.

Syntax

void Os_TriggerOnIntervalEnd(
Os_TraceIntervallDType IntervallD
)

Parameters

Parameter Mode Description
IntervallD | in Os_TraceIntervallDType
Identifier of the interval to trigger on.

Description

Causes a trace trigger to occur when a specified interval ends.

IntervallD can be set to OS_TRIGGER_ANY, in which case any interval end will
cause the trigger to occur.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnIntervalEnd(EndToEndTimeMeasurement);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnlintervalStart
Os_TriggerOnintervalStop

RTA-TRACE API calls

281

6.45

282

Os_TriggerOnlintervalStart

Trigger when a trace interval is started.

Syntax

void Os_TriggerOnIntervalStart(
Os_TraceIntervallDType IntervallD
)

Parameters

Parameter Mode Description

IntervallD | in Os_TraceIntervallDType
Identifier of the interval to trigger on.

Description

Causes a trace trigger to occur when a specified interval starts.

IntervallD can be set to OS_TRIGGER_ANY, in which case any interval start
will cause the trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnIntervalStart(EndToEndTimeMeasurement);

See Also

Os_TriggerOnintervalEnd
Os_TriggerOnintervalStop

RTA-TRACE API calls

6.46

Os_TriggerOnlintervalStop

Trigger when a trace interval ends.

Syntax

void Os_TriggerOnIntervalStop(
Os_TraceIntervallDType IntervallD
)

Parameters

Parameter Mode Description

IntervallD | in Os_TraceIntervallDType
Identifier of the interval to trigger on.

Description

This call is a synonym for Os_TriggerOnintervalEnd.
It causes a trace trigger to occur when a specified interval ends.

IntervallD can be set to OS_TRIGGER_ANY, in which case any interval end will
cause the trigger to occur.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0s_TriggerOnIntervalStop(EndToEndTimeMeasurement);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnintervalEnd

RTA-TRACE API calls

283

6.47 Os_TriggerOnReleaseResource

Trigger when a resource is unlocked.

Syntax

void Os_TriggerOnReleaseResource(
ResourceType ResourceID

)

Parameters

Parameter Mode Description

ResourcelD | in ResourceType
Identifier of the resource to trigger on.

Description

Causes a trace trigger to occur when a specified resource is unlocked.

ResourcelD can be set to OS_TRIGGER_ANY, in which case any resource un-
lock will cause the trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnReleaseResource(CriticalSection);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
v

ProtectionHook

See Also

Os_TriggerOnGetResource

284 RTA-TRACE API calls

6.48

Os_TriggerOnScheduleTableExpiry

Trigger when a specified expiry point expires.

Syntax

void Os_TriggerOnScheduleTableExpiry(
ExpiryID
)

Parameters

Parameter Mode Description

ExpiryID in Os_TraceExpiryIDType
Identifier of the expiry to trigger on. The ExpirylD
is formed by combining the name of the Sched-
uleTable and Expiry with an underscore character.

Description

Causes a trace trigger to occur when a specific expiry point is reached.

ExpiryID can be set to OS_TRIGGER_ANY, in which case any expiry *or alarm*
will cause the trigger to occur.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

StartScheduleTableRel(SchedTable, 1);
0s_TriggerOnScheduleTableExpiry(SchedTable_epl);
IncrementCounter(SystemCounter);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

None.

RTA-TRACE API calls

285

6.49

286

Os_TriggerOnSetEvent

Trigger when an event is set for a task.

Syntax

void Os_TriggerOnSetEvent (
TaskType TaskID
)

Parameters

Parameter Mode Description

TaskID in TaskType
Identifier of the task to trigger on.

Description

Causes a trace trigger to occur when an event is set for a specified task.

TaskID can be set to OS_TRIGGER_ANY, in which case any event setting will
cause the trigger to occur.

Portability

RTA-O0S3.x AOSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnSetEvent (ExtendedTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
ProtectionHook Ve
See Also
None.

RTA-TRACE API calls

6.50

Os_TriggerOnShutdown

Trigger when the OS is shutdown.

Syntax

void Os_TriggerOnShutdown (
StatusType Status
)

Parameters

Parameter Mode Description
Status in StatusType
Identifier of the shutdown exit code.

Description

Causes a trace trigger to occur when a specific status is passed to Shut-
downOS.

Status can be set to OS_TRIGGER_ANY, in which case status value passed to
ShutdownOS will cause the trigger to occur.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Example
0s_TriggerOnShutdown(E_OK); /* Trigger on normal shutdown x*/

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
ProtectionHook Ve
See Also
ShutdownQOS

RTA-TRACE API calls

287

6.51

288

Os_TriggerOnTaskStart

Trigger when a task is started.

Syntax

void Os_TriggerOnTaskStart(
TaskType TaskID
)

Parameters

Parameter Mode Description

TaskID in TaskType
Identifier of the task to trigger on.

Description

Causes a trace trigger to occur when a specified task starts running.

TaskID can be set to OS_TRIGGER_ANY, in which case any task start will cause
the trigger to occur.

Note that a TaskID is started when its entry function is called, or when it
resumes from the WAITING state.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
0s_TriggerOnTaskStart(InterestingTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks

Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v
ShutdownHook v
ErrorHook X
v

ProtectionHook

See Also

Os_TriggerOnTaskStop

RTA-TRACE API calls

6.52

Os_TriggerOnTaskStop

Trigger when a task is stopped.

Syntax
void Os_TriggerOnTaskStop (
TaskType TaskID
)

Parameters

Parameter Mode Description
TaskID in TaskType
Identifier of the task to trigger on.

Description

Causes a trace trigger to occur when a specified task stops running.

TaskID can be set to OS_TRIGGER_ANY, in which case any task stop will cause
the trigger to occur.

Note that a TasklID is stopped when its entry function is called, or when it
enters the WAITING state.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnTaskStop(InterestingTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnTaskStart

RTA-TRACE API calls

289

6.53

290

Os_TriggerOnTaskTracepoint

Trigger when a task tracepoint is logged.

Syntax
void Os_TriggerOnTaskTracepoint(
Os_TraceTracepointIDType TaskTracepointlID,
TaskType TaskID

Parameters
Paramster _____Mode Description ______________|
TaskTracepointID 0s_TraceTracepointIDType
Identifier of the tracepoint to trigger on.
TaskID in TaskType
Identifier of the task.

Description
Causes a trace trigger to occur when a specified task-tracepoint for a speci-
fied task is logged.

TaskID can be set to OS_TRIGGER_ANY, in which any task-tracepoint with the
specified value will cause the trigger to occur.

Portability

RTA-0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
X 4

Example
0s_TriggerOnTaskTracepoint(MyTaskTracepoint,InterestingTask);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os_TriggerOnTracepoint

RTA-TRACE API calls

6.54

Os_TriggerOnTracepoint

Trigger when a tracepoint is logged.

Syntax

void Os_TriggerOnTracepoint(
Os_TraceTracepointIDType TracepointID
)

Parameters

Parameter | Mode | Description

TracepointID | in Os_TraceTracepointIDType
Identifier of the tracepoint to trigger on.

Description

Causes a trace trigger to occur when a specified tracepoint is logged.

TracepointID can be set to OS_TRIGGER_ANY, in which any tracepoint will
cause the trigger to occur.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example
0s_TriggerOnTracepoint(MyTracepoint);

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks RTA-0S3.x Hooks
Task v | PreTaskHook v StackOverrunHook v
Category 1 ISR X | PostTaskHook v | TimeOverrunHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

See Also

Os _TriggerOnTaskTracepoint

RTA-TRACE API calls

291

6.55

292

Os_UploadTraceData

Uses asynchronous communication to upload trace data a byte at a time.

Syntax
void Os_UploadTraceData(void)

Description

This APl is responsible for sending individual bytes of trace data over a serial
communications link. It uses callbacks into the application code to manage
access to the actual communications link.

In polled mode, it is necessary to call this function frequently enough to en-
sure data is transmitted in a timely manner.

As a special case in interrupt mode, this function should be called from the
Os_Cbk_TraceCommbDataReady() callback and the transmit-interrupt handler.

An appropriate asynchronous serial device must be available and previously
initialized. A typical serial link might be set to 115200bps, 8 data bits, no
parity and 1 stop bit.

Portability
RTA-0S3.x | OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

/* This callback occurs when a new frame is ready for upload */
FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {
Os_UploadTraceData(); /* Causes call to
0s_Cbk_TraceCommTxStart() */
}
ISR(asyncio) {
Os_UploadTraceData();
}
FUNC(void, OS_APPL_CODE) 0s_Cbk_TraceCommTxStart(void) {
/* Called from UploadTraceData when the first byte of a frame
is ready to send.
* It is immediately followed by a call to
Os_Cbk_TraceCommTxByte() .
* In interrupt mode, this is used to enable the transmit
interrupt.
*/
enable_asyncio_interrupt();
}
FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 val) {

RTA-TRACE API calls

/* Called from UploadTraceData when there is a byte ready to

send x/
async_transmit(val);

}

FUNC(void, OS_APPL_CODE) 0s_Cbk_TraceCommTxEnd(void) {
/* Called from UploadTraceData when the last byte of data has

been sentx/
disable_asyncio_interrupt();

}

FUNC(boolean, OS_APPL_CODE) Os_Cbk_TraceCommTxReady(void) {
/* Called from UploadTraceData to determine whether there is

room in the transmit buffer x/

/* This should always return true in interrupt mode, because

the interrupt should only

* fire when there is room to send the next byte. x/

return async_tx_ready();

}

Calling Environment

Tasks/ISRs AUTOSAR OS Hooks
Task v | PreTaskHook v
Category 1 ISR X | PostTaskHook v
Category 2 ISR v | StartupHook v

ShutdownHook v
ErrorHook X
ProtectionHook v

RTA-0S3.x Hooks
StackOverrunHook v
TimeOverrunHook v

See Also

Os_Cbk TraceCommbDataReady
Os_Cbk TraceCommTxByte
Os_Cbk TraceCommTxEnd
Os_Cbk _TraceCommTxReady
Os_Cbk TraceCommTxStart
Os_CheckTraceOutput

RTA-TRACE API calls

293

7.1

294

RTA-TRACE Callbacks

Guide to Descriptions

Callbacks are code that is required by RTA-TRACE but must be provided by
the user. This section documents all the callbacks required for RTA-TRACE.
The descriptions have the following structure:

Syntax

/* C function prototype for the callback x/
ReturnValue NameOfCallback(Parameter Type, ...)

Parameters

A list of parameters for each callback and their mode:

in The parameter is passed in to the callback by the OS

out The parameter is passed out of the API callback by passing a reference
(pointer) to the parameter into the call.

inout The parameter is passed into the callback and then (updated) and
passed out.

Return Values

A description of the return value of the callback,

Description

A detailed description of the required functionality of the callback.

Portability
The portability of the call between OSEK OS, AUTOSAR OS, RTA-OS3.x and
RTA-TRACE.

Example Code
A C code listing showing how to implement the callback.

Configuration Condition

The configuration of RTA-TRACE that requires user code to implement the call-
back.

See Also

A list of related callbacks.

RTA-TRACE Callbacks

7.2

Os_Cbk_TraceCommbDataReady

Callback routine that signals when there is trace data ready to be sent.

Syntax
FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void)

Description
When tracing in Bursting or Triggering modes, this gets called automatically
when there is a new frame of data to be uploaded to RTA-TRACE.

When tracing in Free-running mode, this gets «called from
Os_CheckTraceOutput(), which must be called regularly by the applica-
tion.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {
Os_UploadTraceData(); /* Causes call to
0s_Cbk_TraceCommTxStart() x*/

Configuration Condition

The callback may be provided if a communications link is used with tracing.
A default version is present in the kernel library.

See Also

Os_UploadTraceData
Os_CheckTraceOutput
Os_Cbk TraceCommTxStart
Os_Cbk TraceCommTxByte
Os_Cbk TraceCommTxEnd
Os_Cbk TraceCommTxReady

RTA-TRACE Callbacks

295

7.3

296

Os_Cbk_TraceCommilnitTarget

Callback routine used to allow the application to perform initialization of ex-
ternal communication for tracing.

Syntax

FUNC(Os_TraceStatusType, OS_APPL_CODE)
0s_Cbk_TraceCommInitTarget(void)

Return Values

The call returns values of type 0s_TraceStatusType.

Description

Os_Cbk_TraceCommilnitTarget supports the Os TraceCommilnit by providing
application-specific code to initialize the communication link to RTA-TRACE.
Typically it sets up an RS232 link.

E_OK should be returned if the initialization succeeded. Any other value will
result in trace communication being disabled.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

FUNC(Os_TraceStatusType, OS_APPL_CODE)
0s_Cbk_TraceCommInitTarget(void){
initialize_uart();
return E_OK;
}

Configuration Condition

The callback must be provided if Os_TraceCommlinit is used to initialize trac-
ing using an external communications link.

See Also

Os_TraceCommlnit

RTA-TRACE Callbacks

7.4

Os_Cbk_TraceCommTxByte

Callback routine that supplies a byte of trace data for sending.

Syntax

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte (
uint8 val

)

Description

This is called from UploadTraceData when there is a byte of data to send.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 val) {
/* Called from UploadTraceData when there is a byte ready to
send x/
async_transmit(val);

}

Configuration Condition

The callback must be provided if Os_UploadTraceData is used.

See Also

Os_UploadTraceData
Os_CheckTraceOutput

Os _Cbk TraceCommbDataReady
Os_Cbk_TraceCommTxStart
Os_Cbk TraceCommTxEnd
Os_Cbk TraceCommTxReady

RTA-TRACE Callbacks

297

7.5

298

Os_Cbk_TraceCommTxEnd

Callback routine that signals that the last byte of trace data has been sent.

Syntax
FUNC(void, OS_APPL_CODE) 0s_Cbk_TraceCommTxEnd(void)

Description

This is called from UploadTraceData when the last byte of a frame has been
sent.

In interrupt mode, this is used to disable the transmit interrupt.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

FUNC(void, OS_APPL_CODE) 0s_Cbk_TraceCommTxEnd(void) {
disable_asyncio_interrupt();

}

Configuration Condition

The callback must be provided if Os_UploadTraceData is used.

See Also

Os_UploadTraceData
Os_CheckTraceOutput

Os_Cbk TraceCommbDataReady
Os_Cbk TraceCommTxStart
Os_Cbk TraceCommTxByte
Os_Cbk _TraceCommTxReady

RTA-TRACE Callbacks

7.6

Os_Cbk_TraceCommTxReady

Callback routine used to discover if there is room to send the next trace data
byte.

Syntax
FUNC(boolean, OS_APPL_CODE) 0s_Cbk_TraceCommTxReady(void)

Return Values

The call returns values of type boolean.

Description

This is called from UploadTraceData to determine whether there is room in
the transmit buffer to send the next byte.

This should always return true in interrupt mode, because the interrupt
should only fire when there is room to send the next byte.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

Example

FUNC(boolean, OS_APPL_CODE) Os_Cbk_TraceCommTxReady(void) {
return async_tx_ready();

}

Configuration Condition

The callback must be provided if Os_UploadTraceData is used.

See Also

Os_UploadTraceData
Os_CheckTraceOutput

Os_Cbk TraceCommbDataReady
Os_Cbk TraceCommTxStart
Os_Cbk TraceCommTxByte
Os_Cbk TraceCommTxEnd

RTA-TRACE Callbacks

299

7.7

300

Os_Cbk_TraceCommTxStart

Callback routine that signals that the first byte of trace data is ready to be
sent.

Syntax
FUNC(void, OS_APPL_CODE) 0Os_Cbk_TraceCommTxStart(void)

Description

This is called from UploadTraceData when the first byte of a frame is ready to
send.

It is immediately followed by a call to Os_Cbk_TraceCommTxByte().

In interrupt mode, this is used to enable the transmit interrupt.

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Example

FUNC(void, OS_APPL_CODE) 0s_Cbk_TraceCommTxStart(void) {
enable_asyncio_interrupt();

}

Configuration Condition

The callback must be provided if Os_UploadTraceData is used.

See Also

Os_UploadTraceData
Os_CheckTraceOutput

Os_Cbk TraceCommbDataReady
Os_Cbk TraceCommTxByte
Os_Cbk _TraceCommTxEnd
Os_Cbk_TraceCommTxReady

RTA-TRACE Callbacks

8.1

8.2

8.3

RTA-TRACE Types

Os_AsyncPushCallbackType

Type that represents a pointer to a void function that gets passed a single
uint8 value. Used by Os_TraceDumpAsync()

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Os_TraceCategoriesType

Type that is used to contain mask values relating to user-defined trace filter
categories. An all and a non category are defined by default.

Portability

RTA-OS3.x HOSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values
OS TRACE_NO_CATEGORIES
OS TRACE_ALL CATEGORIES

Example

Os_TraceCategoriesType ExtraTracing = DebugTracePoints |
DatalLogTracePoints;

Os_TraceClassesType

Type that is used to contain mask values relating to trace filter classes.

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-TRACE Types

301

Values

0S_TRACE_ACTIVATIONS_CLASS
0S_TRACE_RESOURCES_CLASS
OS_TRACE_INTERRUPT_LOCKS_CLASS
0S_TRACE_SWITCHING_OVERHEADS_CLASS
0S_TRACE_TASKS_AND_ISRS_CLASS
0S_TRACE_ERRORS_CLASS
0S_TRACE_TASK_TRACEPOINT CLASS
0S_TRACE_TRACEPOINT _CLASS
OS_TRACE_INTERVALS_CLASS
0S_TRACE_MESSAGE_DATA_CLASS
OS_TRACE_STARTUP_AND_SHUTDOWN_CLASS
0S_TRACE_ALARMS_CLASS
0S_TRACE_SCHEDULETABLES_CLASS
0S_TRACE_OSEK_EVENTS_CLASS
OS_TRACE_EXPIRY_POINTS_CLASS
0S_TRACE_NO_CLASSES
0S_TRACE_ALL_CLASSES

Example

Os_TraceClassesType AllTracepoints = OS_TRACE_TRACEPOINT_CLASS |
0S_TRACE_TASK_TRACEPOINT_CLASS;

8.4 Os_TraceDatalLengthType

The length of a data block (in bytes).

Portability
RTA-OS3.x A OSEK OS AUTOSAR OS R3.x @ RTA-TRACE
v X X v
Example

Os_TraceDatalLengthType BlockLength = 8;

8.5 Os_TraceDataPtrType

A pointer to a block of data to log at a trace point or interval.

Portability

RTA-O0S3.x OSEK OS AUTOSAR OS R3.x @ RTA-TRACE

302 RTA-TRACE Types

8.6

8.7

8.8

8.9

Example

Os_TraceDataPtrType DataPtr;
uint8 DataValues[10];

DataPtr = &DataValue;

Os_TraceExpirylDType

Enumerated type that defines Expiry points.

Portability

RTA-O0S3.x A OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Values

The names of expiry points. These are generated using the pattern <sched-
uletable_name>_<expiry_name>.

Os_TracelndexType

An unsigned integer value of at least 16 bits representing a number of trace
records.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

Example
Os_TraceIndexType PreTriggerRecords = 100;

Os_TracelnfoType

An unsigned integer value representing a traced object.

Portability

RTA-0S3.x \ OSEK OS AUTOSAR OS R3.x \ RTA-TRACE

Os_TracelntervallDType

Enumerated type that defines RTA-TRACE trace intervals.

Portability

RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE

RTA-TRACE Types

303

Values

The names of user defined trace intervals.

8.10 Os _TraceStatusType

Type containing the status of a trace API call.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Values

0S_TRACE_STATUS_OK
0S_TRACE_STATUS_COMM _INIT_FAILURE

8.11 Os_TraceTracepointIDType

Enumerated type that defines RTA-TRACE tracepoints.

Portability
RTA-0S3.x OSEK OS AUTOSAR OS R3.x | RTA-TRACE
v X X v
Values

The names of user defined trace points.

8.12 Os_TraceValueType

An unsigned integer value representing either 16 or 32 bits depending on the
configuration of compact time.

Portability

RTA-O0S3.x HOSEK OS AUTOSAR OS R3.x | RTA-TRACE

304 RTA-TRACE Types

9.1

9.2

9.3

9.4

9.5

RTA-TRACE Macros

0S_NUM_INTERVALS

The number of Trace Intervals declared.

Portability
RTA-O0S3.x

OSEK OS AUTOSAR OS R3.x

RTA-TRACE

0S_NUM_TASKTRACEPOINTS

The number of TaskTracepoints declared.

Portability
RTA-0OS3.x

OSEK OS AUTOSAR OS R3.x | RTA-TRACE

0S_NUM_TRACECATEGORIES

The number of Trace Categories declared.

Portability
RTA-0S3.x

OSEK OS AUTOSAR OS R3.x

RTA-TRACE

0S_NUM_TRACEPOINTS

The number of Tracepoints declared.

Portability
RTA-0S3.x

OSEK OS AUTOSAR OS R3.x | RTA-TRACE

0S_TRACE

This macro is only defined if tracing is enabled.

Portability
RTA-0S3.x

OSEK OS AUTOSAR OS R3.x

RTA-TRACE

Example
#ifdef OS_TRACE

#endif

RTA-TRACE Macros

305

10

10.1

306

Coding Conventions

Namespace

The C programming language provides a single global scope for all names.
This prevents any two names declared in an entire program code from be-
ing identical even if the names are declared in different compilation units.
The AUTOSAR standard defines a naming convention for every basic soft-
ware module to avoid problems with namespace clashes. This is defined by
the “AUTOSAR General Requirements on Basic Software Modules”. RTA-OS3.x
has been implemented to satisfy these requirements. The namespace used
by RTA-OS3.x therefore reserves all names that are prefixed by:

e (0Sx

e O0Osx

Note however, that the interface provided by AUTOSAR OS R3.x does not
comply with the AUTOSAR naming convention. This means that the names
used by AUTOSAR OS R3.x for types, API calls, macros, constants, callbacks
etc. are also reserved names and should not be duplicated in user code

RTA-0OS3.x defines OS API calls and macros internally according to the
AUTOSAR general requirements and provides the AUTOSAR OS R3.x
names to the user through C macros. This does not apply to standard
callbacks which retain their standard name, for example ErrorHook (),
ShutdownHook () etc.

This means the following forms are identical:

Os_StatusType Os_ActivateTask(Os_TaskType, 0Os_TaskId)

StatusType ActivateTask(TaskType, TaskId)

The two forms can be used interchangeably in user code if required, but only
the second form represents standard AUTOSAR OS R3.x API.

Coding Conventions

11 Configuration Language

11.1 Configuration Files

RTA-0S3.x is configured using AUTOSAR’s ECU Parameter description lan-
guage. This section gives a short overview of AUTOSAR basic software mod-
ule configuration in AUTOSAR XML and the extensions made by ETAS to the
description language.

11.2 Understanding AUTOSAR XML Configuration

AUTOSAR uses eXtensible Markup Language (XML) as its configuration file
format. AUTOSAR defines the tags and their semantics using an XML schema
definition.

Every AUTOSAR XML file needs to reference the AUTOSAR schema instance
that defines the structure of the XML elements for AUTOSAR XML files. In the
simple case this is done as follows:

<?xml version="1.0" encoding="UTF-8"?>

<AUTOSAR

xsi:schemaLocation="http://autosar.org/3.0.2 autosar.xsd" xmlns
="http://autosar.org/3.0.2" xmlns:xsi="http://www.w3.0rg
/2001/XMLSchema-instance">

</AUTOSAR>

All element between <AUTOSAR> and </AUTOSAR> have the form
<ELEMENT-NAME>. Only one AUTOSAR element is allowed per XML con-
figuration file. All other AUTOSAR definitions are contained within this
element.

If you need to mix AUTOSAR and non-AUTOSAR content within the same file
then it is recommended that you use autosar as the namespace identifier.
This is done as follows:

<?xml version="1.0" encoding="UTF-8"7?>

<autosar:AUTOSAR

xmlns:autosar="http://autosar.org/3.0.2" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="http://
autosar.org/3.0.2 autosar.xsd">

</autosar:AUTOSAR>

In this case, all elements must now occur between <autosar:AUTOSAR> and
</autosar:AUTOSAR> have the form <autosar:TAG-NAME>,

Configuration Language 307

11.2.1

308

Packages

The <AUTOSAR> element is a container for exactly one
<TOP-LEVEL-PACKAGES> element. The <TOP-LEVEL-PACKAGES> element
represents the root of an XML object tree from which all objects in all
configuration files can be accessed. The <TOP-LEVEL-PACKAGES> itself
then contains one or more packages each defined with the <AR-PACKAGE>
element. Each <AR-PACKAGE> defines a group of AUTOSAR elements or a set
of sub-packages related to some part of AUTOSAR configuration.

Each <AR-PACKAGE> package definition is named using the <SHORT-NAME> el-
ement. Each package should have a unique name so that the elements con-
tained within the package can be referenced by other packages. If two pack-
ages share the same name then they are assumed to be parts of the same
package.

<AUTOSAR>
<TOP-LEVEL - PACKAGES>
<AR-PACKAGE>
<SHORT -NAME>MyPackage</SHORT - NAME>
<DESC>This is one of my packages</DESC>
</AR-PACKAGE>

<AR-PACKAGE>
<SHORT-NAME>MyOtherPackage</SHORT - NAME>
<DESC>This is another</DESC>
</AR-PACKAGE>
</TOP-LEVEL - PACKAGES>
</AUTOSAR>

The <AR-PACKAGE> element is used to define the package name as well as
acting as a container for other elements, including<SUB- PACKAGES>.

Non basic software configuration can only be split at the
<TOP-LEVEL-PACKAGES> level. When you need to work with multiple
XML files you must therefore split them at the <TOP-LEVEL - PACKAGES> level.
In the previous example, we might have decided to split this file into two
different files, in which case in File 1 we would have:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR>
<TOP-LEVEL - PACKAGES>
<AR-PACKAGE>
<SHORT - NAME>SWCs</SHORT - NAME>
<DESC>This is one of my packages</DESC>

Configuration Language

11.3

</AR-PACKAGE>
</TOP-LEVEL - PACKAGES>
</AUTOSAR>

In File 2 we would have the second AR-PACKAGE:

<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR>
<TOP-LEVEL-PACKAGES>
<AR-PACKAGE>
<SHORT -NAME>Interfaces</SHORT - NAME>
<DESC>This is another</DESC>

</AR-PACKAGE>

</TOP-LEVEL - PACKAGES>
</AUTOSAR>

ECU Configuration Description

AUTOSAR basic software uses a different configuration concept to the rest of
AUTOSAR. Configuration uses an ECU configuration description file. This file
is also an XML file, but the use of XML is significantly different to the rest of
AUTOSAR configuration.

Rather than define a dedicated set of XML tags for the configuration of
each basic software module, the ECU configuration description defines a
<MODULE - CONFIGURATION> that contains CONTAINERS that hold configuration
data in a <CONTAINER>.

Each <CONTAINER> holds <PARAMETER-VALUES>, <REFERENCE-VALUES> and
<SUB-CONTAINERS>. <SUB-CONTAINERS> hold <CONTAINER> definitions, allow-
ing a hierarchy of configuration containers to be formed.

This structure is common to all AUTOSAR basic software modules. The
same format is used for the OS as for COM, NM, etc. The structure is cus-
tomized for different basic software modules using a <DEFINITION-REF>.
Each <MODULE-CONFIGURATION> and <CONTAINER> has a <DEFINITION-REF>
which references the AUTOSAR ECU Configuration Definition. The
<DEFINITION-REF> is an absolute reference to the definition of a configu-
ration item in the AUTOSAR ECU Configuration Definition. This is also an XML
file and defines the type of the container and what configuration elements
are allowed.

By default, references are rooted at /AUTOSAR. For the OS there are things
like:

Configuration Language

309

310

e /AUTOSAR/Os/OsTask
e /AUTOSAR/Os/OsTask/OsTaskPriority
e /AUTOSAR/Os/OsResource

e /AUTOSAR/Os/Oslsr

Each definition in the definition file specifies:

e how many instance of the <CONTAINER> can exist in the
<MODULE - CONFIGURATION>

e how many of each of the <PARAMETER-VALUES>, <REFERENCE-VALUES>
and <SUB-CONTAINERS> the container can hold. This is called the mul-
tiplicity and the definition file specifies a <LOWER-MULTIPLICITY> and an
<UPPER-MULTIPLICITY>.

e the definitions of the <PARAMETER-VALUES>, <REFERENCE-VALUES> and
<SUB-CONTAINERS> the <CONTAINER> can hold

The description files used to configure AUTOSAR OS is written according to
the rules specified in the definition file. The following example shows a valid
description file for the OS that includes a single task called MyTask:

<ELEMENTS>
<MODULE - CONFIGURATION>
<SHORT-NAME>My0SConfiguration</SHORT-NAME>
<DEFINITION-REF>/AUTOSAR/Os</DEFINITION-REF>
<CONTAINERS>
<!-- Configuration containers -->
<CONTAINER>
<SHORT -NAME>MyTask</SHORT - NAME>
<DEFINITION-REF>/AUTOSAR/Os/0OsTask</DEFINITION-REF>
<!-- Parameters (or sub-containers) as defined by the
DEFINITION-REF -->
<PARAMETER - VALUES>
<INTEGER-VALUE>
<DEFINITION-REF DEST="INTEGER-PARAM-DEF">/
AUTOSAR/0s/0sTask/0OsTaskPriority</DEFINITION
-REF>
<VALUE>27</VALUE>
</INTEGER-VALUE>
<INTEGER-VALUE>

Configuration Language

11.4

<DEFINITION-REF DEST="INTEGER-PARAM-DEF">/
AUTOSAR/0s/0sTask/0OsTaskActivation</
DEFINITION-REF>
<VALUE>1</VALUE>
</INTEGER-VALUE>
<ENUMERATION-VALUE>
<DEFINITION-REF DEST="ENUMERATION-PARAM-DEF">/
AUTOSAR/0s/0sTask/0sTaskSchedule</DEFINITION
-REF>
<VALUE>FULL</VALUE>
</ENUMERATION-VALUE>
</PARAMETER-VALUES>
</CONTAINER>

<CONTAINERS>
</MODULE - CONFIGURATION>
</ELEMENTS>

Standard AUTOSAR configuration elements for the OS are documented in
the AUTOSAR Specification of Operating System Release Release 3.x Version
3.x.1 Revision 0003 .

RTA-OS3.x Configuration Language Extensions

In addition to the standard AUTOSAR configuration elements, each AUTOSAR
OS vendor will also define their own pieces of ECU configuration to capture
things that are not standardized in AUTOSAR - for example the allocation of
vector addresses and priorities to interrupts.

Vendor extensions to AUTOSAR configuration take the standard AUTOSAR
Standard Module Definition (called the StMD) and produce a Vendor Specific
Module Definition (VSMD). This includes all the elements from AUTOSAR plus
those defined by the vendor. More information about this process can be
found in AUTOSAR Specification of ECU Configuration Release Release 3.x
Version 2.0.1 Revision 0002.

The AUTOSAR <PACKAGE> name for the VSMD must not be AUTOSAR so
that tools can distinguish between standard configuration and vendor-
specific configuration. In RTA-OS3.x, the VSMD <PACKAGE> is called
RTAOS and all references to RTA-OS configuration objects have the form
/RTAOS/path to configuration element. References to standard AU-
TOSAR objects retain the form /AUTOSAR/path to configuration element.
For example:

<CONTAINER>

Configuration Language

311

312

<!-- Top-level container for global 0S configuration
parameters -->

<SHORT-NAME>0sInfo</SHORT-NAME>

<DEFINITION-REF DEST="PARAM-CONF-CONTAINER-DEF">/AUTOSAR/Os/
0s0S</DEFINITION-REF>

<PARAMETER - VALUES>
<!-- Standard AUTOSAR configuration parameters -->
<ENUMERATION-VALUE>
<DEFINITION-REF DEST="ENUMERATION-PARAM-DEF">/AUTOSAR/0s/
0s0S/0sStatus</DEFINITION-REF>
<VALUE>...</VALUE>
</ENUMERATION-VALUE>
<ENUMERATION-VALUE>
<DEFINITION-REF DEST="ENUMERATION-PARAM-DEF">/AUTOSAR/0Os/
0s0S/0sScalabilityClass</DEFINITION-REF>
<VALUE>...</VALUE>
</ENUMERATION-VALUE>
<BOOLEAN-VALUE>
<DEFINITION-REF DEST="BOOLEAN-PARAM-DEF">/AUTOSAR/0s/0s0S
/0sStackMonitoring</DEFINITION-REF>
<VALUE>. . .</VALUE>
</BOOLEAN-VALUE>

<l-- ... -->

<!-- RTA-0S-specific configuration parameters -->
<STRING-VALUE>
<DEFINITION-REF DEST="STRING-PARAM-DEF">/RTA0S/0s/0s0S/
OsDefTaskStack</DEFINITION-REF>
<VALUE>. . .</VALUE>
</STRING-VALUE>
<STRING-VALUE>
<DEFINITION-REF DEST="STRING-PARAM-DEF">/RTA0S/0s/0s0S/
OsDefCat1Stack</DEFINITION-REF>
<VALUE>. . .</VALUE>
</STRING-VALUE>
<STRING-VALUE>
<DEFINITION-REF DEST="STRING-PARAM-DEF">/RTA0S/0s/0s0S/
OsDefCat2Stack</DEFINITION-REF>
<VALUE>...</VALUE>
</STRING-VALUE>

<l-- ... -->
</PARAMETER-VALUES>
</CONTAINER>

Configuration Language

The following sections define the extensions to the standard AUTOSAR
configuration attributes that are supported by RTA-OS3.x. Each sec-
tion defines (or extends) a <CONTAINER> and the <PARAMETER-VALUES>,
<REFERENCE-VALUES> and <SUB-CONTAINERS> that the <CONTAINER> can
hold.

The presence of vendor specific extensions to AUTOSAR is portable to
3rd party AUTOSAR configuration tooling. However, this applies only to
the syntax of extensions. The semantics of extensions is, of course, not

= i/ \= portable. For example, if one vendor defines a configuration element

called OsEnableSpecialOptimization then another vendor will not be
able to do anything with this configuration because their implementa-
tion cannot know the meaning of a “special optimization”.

11.4.1 Container: OsAppMode

11.4.2

Integer Parameters

Occurs Description

OsAppModeld | 1..1 Internal ID of an AppMode. Necessary, so that
an AppMode is addressable by other modules.
Range: ..maxint

Container: OsRTATarget

Description

Parameters to represent a specific piece of target hardware.

Multiplicity
0..1

String Parameters

Name Occurs Description

OsRTATargetName 1.1 The name of the target system.

OsRTATargetVersion | 0..1 The version number of the OS on the tar-
get system.

OsRTATargetVariant | 0..1 The variant of the OS for this target sys-
tem.

Sub-container: Param

Description

Target-specific parameter representation.

Multiplicity
0“*

Configuration Language

313

11.4.3

11.4.4

314

String Parameters

Name Occurs Description |
Value | 1..1 Value of the parameter

Container: OsCounter

String Parameters

Occurs Description

OsFormat | 0..1 A string that specifies a format for each tracepoint.

Container: Oslsr

Enumeration Parameters

Name Occurs | Description

OsTraceFilter Describes whether this ISR is traced with RTA-
TRACE.
Permitted values are:

ALWAYS Always trace this ISR
NEVER Never trace this ISR

RUNTIME Allow the user to control tracing of
this ISR at runtime.

Integer Parameters

Occurs Description

OslsrPriority | 1..1 The Interrupt Priority
Range: 0..maxint

String Parameters

Name Occurs Description

OslsrBudget 0..1 Execution budget expressed as a float,

then timebase name, then units.
OslsrStackAllocation | 0..1 ISR manual stack allocation in bytes
OslsrAddress 1.1 The Interrupt Vector

Reference Parameters

Name Occurs Destination

OsRegSetRef | 0..* /AUTOSAR/Os/OsRegSet

Configuration Language

11.4.5 Container: 0sOS

Boolean Parameters

Occurs | Description

OsSuppressVectorGen | 0..1 Suppresses generation of the vector
table.

Integer Parameters

Name ' Occurs Description |

OsCyclesPerSecond | 0..1 Defines the clock speed of the target
Range: 0..maxint

OsTicksPerSecond 0..1 Defines the stopwatch speed of the tar-
get
Range: 0..maxint

String Parameters

Name ' Occurs Description |
OsDefTaskStack | 0..1 Default stack values

OsDefCatlStack | 0..1 Default category 1 stack values
OsDefCat2Stack | 0..1 Default category 2 stack values

Sub-container: Param

Description

Representation of parameters
Multiplicity

0..*

String Parameters

Name Occurs Description
Value | 1..1 Value of the parameter

Sub-container: OsHooks

Boolean Parameters

Name Occurs Description

OsStackFaultHook | 0..1 Use stack fault hook

Configuration Language 315

11.4.6 Container: OsRegSet

11.4.7

11.4.8

316

Description

Target specific register sets that can be associated with a task or ISR. By
association with a task or ISR, the integrator is specifying that a specific task
or ISR uses this register set. Having no association defined allows potential
optimization.

Multiplicity

0..*

Container: OsTask

Enumeration Parameters

Name Occurs Description

OsTraceFilter Describes whether this Task is traced with RTA-
TRACE.
Permitted values are:

ALWAYS Always trace this ISR
NEVER Never trace this ISR

RUNTIME Allow the user to control tracing of
this ISR at runtime.

String Parameters

Name Occurs | Description

OsTaskStackAllocation | 0..1 Task manual stack allocation

OsTaskWaitStack 0..1 Task stack usage when invoking Wait-
Event

OsTaskBudget 0..1 Execution budget expressed as a float,
then timebase name, then units.

Reference Parameters

Name ' Occurs Destination |
OsRegSetRef | 0..* /AUTOSAR/Os/OsRegSet

Container: OsTrace

Description
RTA-TRACE Data

Configuration Language

Multiplicity
0..1

Boolean Parameters

Name ' Occurs | Description |
OsTraceEnabled 0..1 Enables or disables tracing.
OsTraceCompactiD 0..1 Trace Compact Identifiers
OsTraceCompactTime | 1..1 Use compact time format
OsTraceTgtStack 1..1 Enable stack recording.
OsTraceTgtTrigger 1..1 Runtime target triggering.
OsTraceAutoComms 1..1 Initialise trace comms link at startup
OsTraceAutoRepeat 1..1 Call set trace repeat at startup

Enumeration Parameters

Name Occurs | Description |
OsTraceAuto | 1..1 The autostart type for RTA-TRACE
Permitted values are:

NONE Don’t automatically start tracing

BURSTING Start tracing in bursting mode (wait
till buffer is full before uploading)

TRIGGERING Start tracing, waiting for a trigger

FREE_RUNNING Start tracing continuously

Integer Parameters

Occurs Description

OsTraceBufferSize | 1..1 The trace buffer size (in number of trace
records)
Range: 0..maxint

Sub-container: OsEnumeration

Description

Specifies an enumeration for tracing.

Multiplicity
0“*

Configuration Language 317

318

Sub-container: OsEnumeration/Param
Description

Representation of name-value pairs

Multiplicity
0..*

String Parameters

Name Occurs | Description

Value | 1..1 Value of the parameter

Sub-container: OsTraceTracepoint

Description

Specifies a tracepoint

Multiplicity
0..*

Integer Parameters

Occurs | Description

OsTraceTracepointiD | 1..1 Specifies a tracepoint ID (1-n, 0 indi-
cates auto)
Range: 0..maxint

String Parameters

Occurs Description

OsTraceTracepointFormat | 0..1 A string that specifies a format for
each tracepoint.

Sub-container: OsTraceTaskTracepoint

Description

Specifies a task tracepoint

Multiplicity
0..*

Integer Parameters

Description

OsTraceTaskTracepointiD | 1..1 Specifies a tracepoint ID (1-n, 0 in-
dicates auto)
Range: 0..maxint

Configuration Language

String Parameters

Occurs Description

OsTraceTaskTracepointFormat | 0..1 A string that specifies a format
for each tracepoint.

Reference Parameters

Name Occurs | Destination

| OsTaskRef | /AUTOSAR/Os/OsTask
OslsrRef O. 1 /AUTOSAR/Os/Oslsr

Sub-container: OsiInterval

Description

Specifies a named interval.
Multiplicity

0..*

Integer Parameters

Occurs Description

OslintervallD | 1..1 Specifies a interval identifier (1-n, 0 indicates
auto)
Range: 0..maxint

String Parameters

Occurs | Description

OslintervalFormat | 0..1 A string that specifies a format for each in-
terval

Sub-container: Param

Description

Representation of name-value pairs
Multiplicity
0..*

String Parameters

Name Occurs Description |
Value | 1..1 Value of the parameter

Configuration Language

319

320

Sub-container: OsClass

Description

Specifies an unnamed trace class.
Multiplicity

0..*

Boolean Parameters

Occurs | Description

OsClassAutostart | 0..1 For a run-time trace class, this determines
whether it is started automatically at run-
time.

Enumeration Parameters

Name Occurs Description

OsClassFilter | 1..1 Specifies the filtering for a class.
Permitted values are:

ALWAYS Always trace this class
NEVER Never trace this class

RUNTIME Allow the user to control tracing of
this class at runtime.

Sub-container: OsCategory

Description

Specifies a named trace class.

Multiplicity
0..*

Boolean Parameters

Occurs | Description

OsCategoryAutostart | 0..1 For a run-time trace category, this de-
termines whether it is started automat-

ically at runtime.

Configuration Language

Enumeration Parameters

Name Occurs | Description |
OsCategoryfFilter | 1..1 Specifies the filtering for a category.
Permitted values are:

ALWAYS Always trace this category
NEVER Never trace this category

RUNTIME Allow the user to control tracing
of this category at runtime.

Integer Parameters

Occurs Description

OsCategoryMask | 1..1 Specifies a category mask. 0 represents
auto.
Range: 0..maxint

11.5 Project Description Files

A single logical OS configuration can be split across multiple XML configu-
ration files. The files can be edited individually or simultaneously by the
rtaoscfg configuration tool.

To help with the management of large, complex, configurations, RTA-OS3.x
provides a convenient shorthand for you to group a set of multiple files that
represent a single logical OS configuration. This is called a “project”. The
files that comprise the project are referenced from a project file.

=T/\= Project files are specific to the RTA-OS3.x tools and may not be portable
- = to third party AUTOSAR tooling.

A project file is an XML file that has the following structure:

file ::= <?xml version="1.0"7>
<RTAOS_Project version="1.0">
[<Working name="filename"/>]
{<File name="filename"/>}

[options]
</RTAOS_Project>
options ::= <Options>
{<Option name="filename">value</Option>}
</0Options>

value :: booleanvalue | stringvalue |integervalue

Configuration Language 321

12

12.1

Command Line

The tools shipped with RTA-OS3.x can be invoked from the command line,
making them easy to integrate into a build process. All commands accept any
number of XML input files together with tool-specific options as parameters.
The ordering of command line parameters is unimportant: options and XML
files can be mixed freely.

Some command line options can be specified using either short or long
(POSIX style) names. The two options forms provide identical functionality
and can be used interchangeably.

When a command line option takes an argument, the argument appears im-
mediately following short name options and after a colon following long name
options. For example, an option with argument arg could appear as either

command -oarg or command --option:arg
The two forms are equivalent and can be mixed on the command line.

Optional settings for arguments are placed in brackets immediately before
the argument itself. For example, assuming argument arg had a setting s, it
would appear as either:

command -o[s]arg or command --option:[s]arg

rtaoscfg

The command rtaoscfg runs the graphical RTA-OS3.x configuration editor.

rtaoscfg [options] <files>

12.1.1 Options

322

Option Description

@<FILE> Read command line parameters from
<FILE>. Each command in <FILE>
must appear on a separate. Quo-
tation marks are not required to es-
cape white space for filenames inside
a command file. The @<FILE> option
can itself appear multiple times inside
<FILE>.

Command Line

Option Description

--diagnostic

Display the diagnostic information on
the standard output. Diagnostic infor-
mation includes:

e The version of the tool executable
e The names and versions of all tool

plug-ins

e The names and version of all tar-
get plug-ins

e The location and contents of the li-
cense file

-h, -?, --help

Display usage information on the stan-
dard output.

--output: [<EXPS>]<DIR>

--nomsgbox Do not prompt the user with a mes-
sage box when an error causes the
configuration tool to exit.

-0[<EXPS>]<DIR> Place all generated output files into

the directory <DIR>. The optional
<EXPS> clause places all generated
files whose names match the comma-
separated lost of expressions in
<EXPS> in the directory <DIR>. Ex-
pressions can include the following
wildcards:

? matches a single character

* matches a sequence of 1 or more
characters

--status:<STATUS>

Generate a kernel library for the speci-
fied <STATUS> level. <STATUS> has two
valid options:

1. STANDARD
2. EXTENDED

If the OsStatus value is set in the input
configuration then this option over-
rides the setting.

Command Line

323

Option Description

--target: [<VARIANT>]<TARGET> | Generate a kernel library for the
specified <TARGET>. If multiple
versions of <TARGET> are installed
then the most recent version of
the <TARGET> is selected. Selec-
tion of a specific version is possi-
ble using <TARGET>_<VERSION>. The
option <VARIANT> selects a variant
of <TARGET>. Both <TARGET> and
<VARIANT> override the OsTarget and
OsTargetVariant settings in the con-
figuration file. A list of available
targets and their associated versions
and variants can be generated using
--target:?
--target_option:<NAME=VALUE> | Override target option <NAME> with
<VALUE>. A list of options is obtained
using --target_option:?.

--target_include:<PATH> Add the directory <PATH>
to the locations which are
searched for target DLLs. e.g.
--target_include:..\MyTargets

--trace:<OPTION> Enable or disable RTA-TRACE.

<OPTION> may be one of:

on enables RTA-TRACE (equivalent to
setting OsTraceEnabled to true)

off disables RTA-TRACE (equivalent
to setting OsTraceEnabled to
false

--xml:<OPTION> Control the behavior of the XML
processor when reading <files>.
<OPTION> can be one of:

Novalidate do not validate the input
against the XML schema.

- -xmlschema:<SCHEMA> If validating the XML against a schema
(--xml:novalidate is not set) then
use the <SCHEMA> for the validation.

324 Command Line

12.1.2

12.1.3

12.2

12.2.1

Generated Files

rtaoscfg does not generate any files directly. When the Builder is used in
rtaoscfg this calls rtaosgen. See Section 12.2.2 for details of the files gener-
ated by rtaosgen.

Examples

Open a single file Config.xml for editing:

rtaoscfg Config.xml

Open an RTA-0OS3.x project file for editing:

rtaoscfg MyProject.rtaos

rtaosgen

The command rtaosgen runs the RTA-OS3.x kernel library generator.
rtaosgen [options] <files>

Options

| Option _________________ Description

@<FILE> Read command line parameters from
<FILE>. Each command in <FILE>
must appear on a separate. Quo-
tation marks are not required to es-
cape white space for filenames inside
a command file. The @<FILE> option
can itself appear multiple times inside
<FILE>.

--build:<OPTION> Pass <OPTION> to the build environ-
ment. <OPTION> may be one of:

verbose display all build messages
on the standard output

quiet display no build messages on
the standard output

clean clean the build directory before
building

- -debug:<OPTION> Keep generated assembler or source

codel

1Keeping source code is only possible with a valid source code license

Command Line

325

Option Description

--diagnostic

Display the diagnostic information on
the standard output. Diagnostic infor-
mation includes:

e The version of the tool executable
e The names and versions of all tool

plug-ins

e The names and version of all tar-
get plug-ins

e The location and contents of the li-
cense file

-h, -?, --help

Display usage information on the stan-
dard output.

-I<PATHS>
--include: <PATHS>

Add the each path in the comma-
separated list <PATHS> to the include
path for the builder.

--output: [<EXPS>]<DIR>

--nobuild Perform checks on the input configu-
ration but does not build an RTA-OS3.x
library.

--noinfo Suppress all information messages.

--nowarnings Suppress all warning messages.

-0[<EXPS>]<DIR> Place all generated output files into

the directory <DIR>. The optional
<EXPS> clause places all generated
files whose names match the comma-
separated lost of expressions in
<EXPS> in the directory <DIR>. Ex-
pressions can include the following
wildcards:

? matches a single character

* matches a sequence of 1 or more
characters

--report:<REPORT>

Generate the REPORT. A list of avail-
able reports is displayed on the stan-
dard output using - -report:?

Command Line

Option Description

--samples: [<SAMPLE>]<OPTION>

Generate example code
for <SAMPLE>. Use
--samples: [<SAMPLE>]overwrite

to write over existing samples. Use
--samples:? to view available sam-
ples.

--status:<STATUS>

Generate a kernel library for the speci-
fied <STATUS> level. <STATUS> has two
valid options:

1. STANDARD
2. EXTENDED

If the OsStatus value is set in the input
configuration then this option over-
rides the setting.

--target: [<VARIANT>]<TARGET>

Generate a kernel library for the
specified <TARGET>. If multiple
versions of <TARGET> are installed
then the most recent version of
the <TARGET> is selected. Selec-
tion of a specific version is possi-
ble using <TARGET>_<VERSION>. The
option <VARIANT> selects a variant
of <TARGET>. Both <TARGET> and
<VARIANT> override the OsTarget and
OsTargetVariant settings in the con-
figuration file. A list of available
targets and their associated versions
and variants can be generated using
--target:?

--target_include:<PATH>

Add the directory <PATH>
to the locations which are
searched for target DLLs. e.g.
--target_include:..\MyTargets

--target_option:<NAME=VALUE>

Override target option <NAME> with
<VALUE>. A list of options is obtained
using --target_option:?.

Command Line

327

Option Description

--trace:<OPTION> Enable or disable RTA-TRACE.
<0OPTION> may be one of:

on enables RTA-TRACE (equivalent to
setting OsTraceEnabled to true)

off disables RTA-TRACE (equivalent
to setting OsTraceEnabled to
false

--using:<FILES> #include each file in the comma-
separated list <FILES> at the start of
each library source file.

--verbose Generate additional information when
running.
--version Show version information in compact

form. More detailed information can
be obtained using --diagnostic.
--xml:<OPTION> Control the behavior of the XML
processor when reading <files>.
<OPTION> can be one of:

Novalidate do not validate the input
against the XML schema.

- -xmlschema:<SCHEMA> If validating the XML against a schema
(--xml:novalidate is not set) then
use the <SCHEMA> for the validation.

12.2.2 Generated Files

When rtaosgen runs and terminates without generating any errors or fatal
messages then it will have generated the following files:

328 Command Line

12.2.3

Filename ' Contents |

0s.h The main include file for the OS.

0s_Cfg.h Declarations of the objects you have configured. This
is included by 0s.h.

0s_MemMap.h AUTOSAR memory mapping configuration used by
RTA-OS to merge with the system-wide MemMap . h file.

RTAOS.<lib> The RTA-OS library for your application. The extension

<lib> depends on your target.

RTAOS.<lib>.sig | A signature file for the library for your application.
This is used by rtaosgen to work out which parts of
the kernel library need to be rebuilt if the configura-
tion has changed. The extension <lib> depends on
your target.

There may be other files which are generated that are specific to your port. A
list of additional files that can be generated can be found in the Target/Com-
piler Port Guide for your port.

Examples

Display the usage information

rtaosgen --help

Generate the OS described by Config.xml and generate sample AUTOSAR
header files that will work with the OS. Create the library including both these
generated files and the OS-specific generated files that are placed in the cur-
rent directory. This is the standard command line you use when you will not
be integrating RTA-OS3.x with 3rd party AUTOSAR software:

rtaosgen --samples:[Includes] --include:Samples\\Includes
Config.xml

Generate the OS described in BigConfig.rtaos using the AUTOSAR header files
located at PathToAutosarHeaderFiles and the OS-specific header files that
will be generated in the current directory. This is the standard command line
you use when integrating RTA-OS3.x with 3rd party AUTOSAR software:

rtaosgen --include:PathToAutosarHeaderFiles BigConfig.rtaos

List which sample files can be generated for the ManchesterMk1 target:

rtaosgen --target:ManchesterMkl --samples:?

List which reports can be generated for the ManchesterMk1 target:

rtaosgen --target:ManchesterMkl --report:?

Command Line

329

330

Generate the OS as in the first example, but overwrite the existing sample
includes files and override the target to be ManchesterMk1:

rtaosgen --samples:[Includes]overwrite
--include:Samples\\Includes --target:ManchesterMkl Config.xml

Generate the OS from a description split between CoreConfig.xml and
TargetConfig.xml:

rtaosgen --include:PathToAutosarHeaderFiles CoreConfig.xml
TargetConfig.xml

Generate the OS described in Config.xml, place the header files in
C:\working\0S\inc and the library (plus the associated signature file) in
C:\working\0S\1lib

rtaosgen --include:PathToAutosarHeaderFiles
--output:[*.h]C:\\working\\0S\\inc
--output:[*.lib,*.sig]C:\\working\\0S\\inc Config.xml

Command Line

13

13.1

13.2

Output File Formats

RTA-TRACE Configuration files

RTA-OS3.x generates an RTA-TRACE configuration file when RTA-TRACE is en-
abled. The format of this file is similar to the ORTI format and is described in
detail in the RTA-TRACE OS Instrumenting Kit Manual.

ORTI Files
This section describes the ORTI objects output by RTA-OS3.x.

When ORTI output is supported by a port and ORTI generation is configured
then a file called RTAOS.orti is generated when the kernel is built using
rtaosgen.

An ORTI object encapsulates information about OS objects in RTA-OS3.x, for
example tasks, ISRs, alarms etc. An application may contain zero or more
instances of each ORTI objects, each of which has a unique name. Each ORTI
object has a number of attributes and each attribute has a value.

For example, the OS has a RUNNINGTASK attribute that shows the task that is
currently running.

The following sections present the ORTI objects generated. Each section has
the following structure:

Object
Name of the ORTI object

Description

A description of the ORTI object.

Attributes
The attributes for the ORTI object.

Attribute Description

Attribute Name | Attribute ORTI file description - Description of attribute

Each row of the table names the attribute being described and gives a brief
explanation of it. The name of each attribute is given in the Attribute column.
Attributes that are prefix with vs_ have been added for RTA-OS3.x support
and are not standard ORTI attributes. Your debugger may or may not be able
to display these attributes depending on how well it conforms to the ORTI
standard.

Many debuggers display the attribute name. However, some debuggers
choose to display the attribute description that is present in the ORTI file

Output File Formats

331

instead. The descriptions used in RTA-OS3.x appear in quotation marks at
the start of the Description column.

13.2.1 OS

Object
0s

Description

There is only one OS object. It takes the name of the RTA-OS3.x project.

Attributes
| Attribute ' Description |
RUNNINGTASK Running task - The name of the TASK

that is currently running. If an ISR in-
terrupts a task this attribute will con-
tinue to display the name of the task
that was interrupted while the ISR is
executing.

RUNNINGTASKPRIORITY | Running task priority - The current pri-
ority of the running task, using the
same terms as in the OIL file. RUN-
NINGTASKPRIORITY does not show the
effect of locking a resource shared by
tasks and ISRs.

RUNNINGISR2 Running cat 2 ISR - The value of this
attribute is the name of the Category
2 ISR that is currently running (if there
is one). NO_ISR is displayed if no Cat-
egory 2 ISR is currently running.
SERVICETRACE OS Services Watch- Indicates the en-
try or exit of a service routine (an RTA-
0S3.x Component APl call) and the
name of this routine. Some debug-
gers recognize this attribute as a spe-
cial trace attribute and can provide ad-
ditional diagnostic support. On other
debuggers, you will be shown which
API call was most recently entered or
completed.

LASTERROR Last OSEK error - Gives the name of
the last error that has occurred. Ini-
tially set to E_OK.

332 Output File Formats

13.2.2

13.2.3

13.2.4

Attribute
CURRENTAPPMODE

' Description

Current AppMode - Current application
mode using the names stated in the
XML file. The value unknown AppMode
is reported if the application mode
does not conform to a value in the XML
file.

Task

Object
TASK

Description

Generated in response to task declarations in the configuration file.

Attributes

Attribute
STATE

' Description

State - The task state. One of SUS-
PENDED, RUNNING, READY and WAIT-
ING.

vs_BASEPRIORITY

Base priority - Gives the base priority
of the task. The base priority is the pri-
ority of the task as defined in the OIL
file.

PRIORITY

Dispatch priority - Gives the dispatch
priority of the task. The dispatch pri-
ority is the priority that the task starts
running at. This can be higher than the
base priority if internal resources are
used or if the task is non-preemptable.

CURRENTACTIVATIONS

Activations - Gives the maximum num-
ber of activations allowed.

Category 1 ISR

There are no ORTI objects generated for Category 1 ISRs.

Category 2 ISR

There are no ORTI objects generated for Category 2 ISRs.

Output File Formats

333

13.2.5

13.2.6

13.2.7

13.2.8

334

Resource

Object
RESOURCE

Description

Generated in response to resource declarations in the configuration file.

Attributes

Attribute Description |

PRIORITY | Ceiling Priority - Gives the ceiling prior-
ity of the resource in terms of the task
priority that defines the ceiling.

LOCKER Resource locker - Shows the current
holder of the resource.
STATE Resource State - Shows the state of

the resource as locked or not locked.

Events

There are no ORTI objects generated for events.

Counter

There are no ORTI objects generated for counters.

Alarm

Object
ALARM

Description

Only generated in response to alarm declarations in the configuration file.

Attributes

Attribute Description

ALARMTIME | Alarm Time - Shows when the alarm
expires next. Refer to the Count value
in the COUNTER object to establish the
current count value.

CYCLETIME | Cycle Time - Gives the period of the cy-
cle for a cyclic alarm. CYCLETIME will
be zero for a single-shot alarm.

Output File Formats

Attribute Description

ACTION

Action - The action to perform when
the alarm expires. This can include the
following:

e Activate a task.
e Setan event.

e Execute a callback function.

STATE

Alarm state - Indicates whether the
alarm is running. Takes the value RUN-
NING or STOPPED.

COUNTER

Counter - Gives the name of the
counter to which this alarm is at-
tached.

13.2.9 Schedule Table

Object
SCHEDULETABLE

Description

Only generated in response to alarm declarations in the configuration file.

Attributes

Attribute Description

COUNTER

Counter - Gives the name of the
counter to which this alarm is at-
tached.

STATE

State - Indicates the state of the
schedule table.

EXPIRYTIME

Expiry Time - The tick at which the
next expiry point is due to be pro-
cessed.

NEXT

Next table - The next schedule table (if
set).

Output File Formats

335

14 Compatibility and Migration

This chapter provides compatibility information for RTA-OS3.x with other ETAS
tooling and outlines the major changes between RTA-OS3.x and the earlier
RTA-OSEK series of operating systems to assist users migrating to RTA-OS3.x.

14.1 ETAS Tools

The following table outlines the compatibility between RTA-OS3.x and other
ETAS software tools. Compatibility is split into two parts - the configuration
language and the use of the API. The following indications are given:

v/ Fully compatible
Partially compatible, see the notes for more details
X Not compatible

For a more detailed discussion of specific cases, please contact ETAS.

Version Compatibility
Config | API

ERCOSEK 4.x X 1
RTA-OSEK 4.x X 2
5.x X 2
RTA-TRACE | 2.x v v 3
RTA-RTE2.x | 1.x X v 4
ASCET 4.x X X 5
5.x X v 6
6.X X v 6

Notes on ETAS Tool compatibility

1. OSEK API calls are portable with the exceptions which have slightly
modified behavior in AUTOSAR OS:
e Start0S() does not return.

e SetRelAlarm() cannot use zero as the offset parameter.
2. See Section 14.2 for specific details

3. RTA-OS3.x adopts the AUTOSAR guidelines for namespaces in basic
software modules for all internal names. However, the external names
of all AUTOSAR OS R3.x API calls, macros and type definitions are pro-
vided in the external API for compatibility with the AUTOSAR standard.

Any RTA-0S3.x functionality which is not part of the AUTOSAR OS R3.x
adopts the AUTOSAR naming convention for both internal and external
names. For the OS this means:

336 Compatibility and Migration

14.2

e Variable, API call names and constants are prefixed 0s_

e Macros are prefixed 0S_

The AUTOSAR naming convention has also been applied to RTA-
TRACEZ2.1 instrumentation code. While this does not change the behav-
ior of RTA-TRACE2.1 and it transparent to users, it does mean that the
documentation that ships with RTA-TRACE2.1 does not accurately reflect
the names of API calls and types used in RTA-OS3.x. However, conver-
sion between the documented names and those generated is trivial:

e All API calls, types and variables are prefixed 0s_. For example:
LogTracepoint (MyTracepoint)
becomes
Os_LogTracepoint(MyTracepoint).
e All macros are prefixed 0S_. For example:
TRACE_ERRORS_CLASS
becomes

0S_TRACE_ERRORS_CLASS.

. RTA-RTE2.x generates an OS configuration in OIL that is compatible with

AUTOSAR OS R2.x but this is not compatible with AUTOSAR OS R3.x.
Most OS calls generated by RTA-RTE2.x are compatible with AUTOSAR
OS R3.x. The API call StartScheduleTable() is used by the RTE li-
brary when integrating with an AUTOSAR OS R1.0. This call needs
to be replaced by the StartScheduleTableRel() call to work with
AUTOSAR OS R3.x. Full compatibility with the RTE is possible if the
OSENV_UNSUPPORTED is defined instead. You should consult the RTA-
RTEZ2x Toolchain Integration Guide for further details.

. ASCET uses non-OSEK calls from the ERCOSEK API and is therefore not

compatible with RTA-OS3.x.

. ASCET uses the RTA-OSEK API such that generated code is compatible

with RTA-OS3.x. The generated OIL file is not compatible with RTA-OS3.x
and will need to be converted to XML.

API Call Compatibility

The following table shows the compatibility between RTA-OS3.x and the AU-
TOSAR OS R3.x standard. In addition, compatibility between RTA-OS3.x and
the earlier RTA-OSEK family of operating systems (and compatibility with the
OSEK OS and AUTOSAR OS R1.0 standards) is also shown.

Compatibility and Migration

337

=] - N | M| <
(6] OV U |V
o 0 nl un n | un
N XS X222
§ >z 5 2 2 2 & . 5
SRR
API call 6 k2 k23 23 & 3§
ActivateTask VA I A I A I A I A B A BV A
ActivateTaskset v v 14.2.1
AdvanceSchedule v v 14.2.3
AssignTaskset v v 14.2.1
CallTrustedFunction iV |/
CancelAlarm N A A A A A v
ChainTask IV
ChainTaskset v v 14.2.1
CheckISRMemoryAccess VA
CheckObjectAccess VR AN
CheckObjectOwnership IV |/
CheckTaskMemoryAccess iV |/
ClearEvent VA A B A I A I A B A IV A B 4
CloseCOM AN a N 14.2.4
DisableAllInterrupts IV VIS
EnableAllInterrupts VA A I A I A I A B A BV A
GetActiveApplicationMode IV NN
GetAlarm VA I A I A I A I A BV A IV A
GetAlarmBase VA A I A A I A B A BV A
GetApplicationID a4
GetArrivalpointDelay v v 14.2.3
GetArrivalpointNext v v 14.2.3
GetArrivalpointTasksetRef v v 14.2.3
GetCounterValue v AR AR A RAR AR
GetElapsedCounterValue IV
GetEvent VA A I A A I A B A BV A
GetExecutionTime v 14.2.2
GetISRID I N
GetLargestExecutionTime v v 14.2.2
GetMessageResource AN and 14.2.4
GetMessageStatus VAN and 14.2.4
GetResource R AN AR AN AR AR AN
GetScheduleNext v v 14.2.3
GetScheduleStatus v v 14.2.3
GetScheduleTableStatus VA A A A A A 4
GetScheduleValue v v 14.2.3
GetStackOffset v v 14.2.11
GetTaskID IV VNN
GetTasksetRef v v 14.2.1
GetTaskState A I A I A I A I A B A BV A I
IncrementCounter VA A A VA VA 4

338 Compatibility and Migration

API call

InitCOM

InitCounter

MergeTaskset
NextScheduleTable
0s_AdvanceCounter
0s_GetExecutionTime
0s_GetISRMaxExecutionTime
0s_GetISRMaxStackUsage
0s_GetStackUsage
Os_GetStackValue
0s_GetTaskMaxExecutionTime
0s_GetTaskMaxStackUsage
0s_ResetISRMaxExecutionTime
0s_ResetISRMaxStackUsage
0s_ResetTaskMaxExecutionTime
0s_ResetTaskMaxStackUsage
Os_Restart
Os_SetRestartPoint
osAdvanceCounter
osReset0S

ReadFlag

ReceiveMessage
ReleaseMessageResource
ReleaseResource
RemoveTaskset

ResetFlag
ResetlLargestExecutionTime
ResumeAllInterrupts
ResumeOSInterrupts
Schedule

SendMessage

SetAbsAlarm
SetArrivalpointDelay
SetArrivalpointNext
SetEvent

SetRelAlarm
SetScheduleNext
SetScheduleTableAsync
Shutdown0S

StartCOM

Start0S

StartSchedule

A OSEK OS v2.2.x

AN AN N N N T N N N N

AN

A RTA-OSEK v4.x

N

SNAANNRNANSNRNSNSNSNSANSNANSNS

ANENENEN

A AUTOSAR R1.0 SC1

<SS NN N N N N AN

AN

) N m <
@ @ & a
X Qe|lQe Q9
S B R e €
¥ 2 2 = oo X 2
A
o o
s BBIBIRB & @
B33 & &
v 14.2.4
v
v 14.2.1
A AR A RAR AR
v
V| 1422
V| 1422
v/ | 14211
v/ | 14211
v | 14211
V| 1422
v/ | 14211
V| 1422
v/ | 14211
V| 1422
v | 14211
v
v
v 14.2.7
v 14.2.12
v 14.2.4
v 14.2.4
v 14.2.4
A AR AR AR AR
v 14.2.1
v 14.2.4
v 14.2.2
AN AR AR AR
A AN AR AN AN
VA A VA B A 4
v 14.2.4
A AN AR AN AR
v 14.2.3
v 14.2.3
AN AR AR AN
IV /S| 1428
v
v v |/
IV VS| 1426
v 14.2.4
IV VN V| 1425
v 14.2.3

Compatibility and Migration

339

14.2.1

14.2.2

340

0 O 0 O o

o 0 nl un n | un

N : : I: © Q Q9 9

§ >z 5 2 2 2 & . 5

xfggggees ¢
API call 6 k2 k23 23 & 3§
StartScheduleTable v |/ 14.2.9
StartScheduleTableAbs AR AN AN
StartScheduleTableRel IV
StartScheduleTableSynchron v v |/
StopCOM I v 14.2.4
StopSchedule v v 14.2.3
StopScheduleTable VA A A A A e
SuspendAllInterrupts VA I A I A I A I A BV A BV A I
Suspend0SInterrupts VA A I A I A I A B A BV A
SyncScheduleTable v |/
TerminateApplication IV |/
TerminateTask IV VNS
TestArrivalpointWriteable v v 14.2.3
TestEquivalentTaskset v v 14.2.1
TestSubTaskset v v 14.2.1
Tick_<CounterID> v v 14.2.10
TickSchedule v v 14.2.3
WaitEvent IV VNN
Tasksets

RTA-OSEK taskset API. Tasksets are deprecated in RTA-OS3.x. The function-
ality can be implemented by executing multiple ActivateTask() calls in se-
quence. However, note that this only provides the same run-time behavior
when the set of tasks that are activated are all of equal or lower priority than
the task making the calls.

Time Monitoring

The RTA-OSEK timing build is replaced by the configuration option ‘Time Moni-
toring’. This provides means that it is possible to use EXTENDED status without
needing to provide stub implementations for time monitoring.

In RTA-OS3.x the API calls are modified to take the Os_ prefix but have
identical behavior as the old RTA-OSEK calls. However, there are now spe-
cific calls for tasks and ISRs that replace the GetLargestExecutionTime and
GetLargestExecutionTime calls.

e (s_GetlLargestExecutionTime is replaced by
0s_Get[Task|ISR]MaxExecutionTime

Compatibility and Migration

14.2.3

14.2.4

14.2.5

14.2.6

14.2.7

14.2.8

e (s_ResetlLargestExecutionTime is replaced by
Os_Reset[Task|ISR]MaxExecutionTime

Schedules

The RTA-OSEK schedule mechanism is replaced by AUTOSAR's ScheduleTable
Mechanism. Note that it is not possible in RTA-OS3.x to modify the schedule
at runtime (this functionality is not supported by AUTOSAR OS). If runtime
modification is required then alarms should be used instead.

OSEK COM

In OSEK OS, OSEK COM features may be provided by the OS (when OSEK
COM is not used). This feature is deprecated in AUTOSAR OS R3.x as internal
communication for applications is provided by the AUTOSAR RTE.

Behavior of Start0S()

The Start0S() call may return in OSEK OS. This is the behavior provided
in RTA-OSEK. In AUTOSAR OS this behavior is prohibited - the call must not
return. This is the behavior provided by RTA-OS3.x. This means that it is
no longer possible to use an idle loop placed after Start0S() as the idle
mechanism. In RTA-OS3.x the kernel will busy wait by default when there are
no tasks and ISRs to run. You can replace this default behavior by providing
a function called 0s_Cbk_Idle() that implements your own idle (background
task) functionality.

Behavior of Shutdown0S ()

OSEK OS allows implementations to return from Shutdown0S(). In AUTOSAR
OS Shutdown0S () must not return. RTA-OSEK always had the behavior spe-
cific by AUTOSAR OS, but it you are migrating from another OS then you may
need to modify your application to reflect this change.

Hardware Counter Driver

The RTA-OSEK hardware counter driver call, osAdvanceCounter() is renamed
0s_AdvanceCounter in RTA-OS3.x. The behavior of the call is also modified.
In RTA-OSEK the call returned the status of the counter so the user could set
up the next expiry. In RTA-OS3.x this operation is performed internally (via
a call to the user-provided 0s_Cbk_Set_CounterID API callback) for the first
setup and application code must then call the 0s_Cbk_Status_CounterID to
check for multiple expiries.

Forbidding of Zero for SetRelAlarm()

SetRelAlarm(_, 0, _) isallowed in OSEK OS but forbidden in AUTOSAR OS.

Compatibility and Migration

341

14.2.9

14.2.10

14.2.11

14.2.12

342

Changes to Schedule Table API

The AUTOSAR 0OS standard has modified the call to start a sched-
ule table so that the mechanism has the same concepts of absolute
and relative start that are found with OSEK OS alarms. The API call
StartScheduleTable() has been removed from the standard and is replaced
by StartScheduleTable[Rel|Abs] in AUTOSAR R3.0. If you need to replicate
the behavior of the StartScheduleTable(Tbl,At) call then you should used
StartScheduleTableRel(Tbl,At).

Software Counter Driver

The RTA-OSEK Tick_CounterID() calls have been replaced by AUTOSAR
standard IncrementCounter() counter call which takes the CounterID as
a parameter. However, to replicate the performance improvements that the
‘static’ version of the call provides, RTA-OS3.x includes a ‘static’ version of
the AUTOSAR call - IncrementCounter_CounterID() - which has identical
behavior to the Tick_CounterID() call.

Stack Monitoring

The behavior of stack measurement is modified between RTA-OSEK and RTA-
0S3.x. In RTA-OSEK stack measurements are made from the base address
of the stack using the GetStackOffset (). Typically the base address of the
stack was given to RTA-OSEK at link time by defining label called SP_INIT.

In RTA-OS3.x the GetStackOffset() call is replaced by
Os_GetStackValue().

RTA-OSEK required you to calculate the amount of stack used by each task
or ISR. You can still do this with RTA-OS3.x, but an additional API call,
Os_GetStackUsage(), has been provided that returns the stack consumed
by the calling task/ISR alone at the point of the call. The avoids the need to
do any stack calculations yourself.

RTA-0S3.x also logs the worst-case observed stack usage for each task/ISR
when a context switch (or a call to Os_GetStackUsage() is made. Addi-
tional API calls are provided to get the largest observed stack usage for each
task/ISR and to reset the largest observed value.

This model parallels the time monitoring functionality provided by RTA-OS3.x.

Restarting the OS

Neither OSEK OS or AUTOSAR OS provide facilities to re-start the OS at run-
time. As this is commonly required functionality, RTA-OSEK provided the
osReset0S() API call that allowed a restart to be performed.

Compatibility and Migration

In RTA-OS3.x this is replaced by a general-purpose restart mechanism. The
API call 0Os_SetRestartPoint is provided that can be made anywhere before
you call Start0S() to place a marker from where the restart should hap-
pen. This means you can re-initialize any hardware required before the call
to Start0S(). A restart is then achieved by calling 0s_Restart which jumps
to the marker you have set.

Compatibility and Migration 343

15

15.1

15.2
15.2.1

15.2.2

344

Contacting ETAS

Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 15.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.
The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

e your support contract number;

e your .xml and/or . rtaos configuration files;

e the command line which caused the error;

e the version of the ETAS tools you are using;

e the version of the compiler tool chain you are using;
e the error message you received (if any); and

e the file Diagnostic.dmp if it was generated.

General Enquiries

ETAS Global Headquarters

ETAS GmbH

Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany WWW: www .etas.com

ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www .etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

Contacting ETAS

www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

A
AccessType, 178
ActivateTask, 16
AlarmBaseRefType, 178
AlarmBaseType, 179
ALARMCALLBACK, 201
AlarmType, 179
ApplicationType, 180
AppModeType, 179
AUTOSAR OS includes
Os.h, 329
Os_Cfg.h, 329
Os_MemMap.h, 329

B
boolean, 196

C

CallAndProtectFunction, 18
CallTrustedFunction, 21
CancelAlarm, 23

CAT1_ ISR, 201

ChainTask, 25
CheckISRMemoryAccess, 27
CheckObjectAccess, 29
CheckObjectOwnership, 31

CheckTaskMemoryAccess, 33

ClearEvent, 35
CounterType, 180

D

DeclareAlarm, 201
DeclareCounter, 201
DeclareEvent, 202
DeclarelSR, 202
DeclareResource, 202
DeclareScheduleTable, 203
DeclareTask, 203
DisableAllinterrupts, 37

E

EnableAlllnterrupts, 38
ErrorHook, 144
EventMaskRefType, 180

EventMaskType, 181

F
float32, 196
float64, 196

G
GetActiveApplicationMode, 39
GetAlarm, 40
GetAlarmBase, 42
GetApplicationID, 44
GetCounterValue, 45
GetElapsedCounterValue, 47
GetEvent, 49

GetISRID, 51

GetResource, 53
GetScheduleTableStatus, 55
GetTasklID, 57

GetTaskState, 59

|

IncrementCounter, 61
ISR, 203

ISRRefType, 181
ISRType, 181

L
Library
Name of, 329

M
MemorySizeType, 182
MemoryStartAddressType, 182

N
NextScheduleTable, 63

(o]

ObjectAccessType, 183

ObjectTypeType, 183

Os_AdvanceCounter, 65

Os_AdvanceCounter_<CounteriD>,
68

Os_AnyType, 184

Os_AsyncPushCallbackType, 301

Index

345

346

Os_Cbk_Cancel_<CounterlD>, 146
Os_Cbk _CheckMemoryAccess, 147
Os_Cbk Disable_<ISRName>, 150
Os_Cbk_GetStopwatch, 151
Os_Cbk_Idle, 152
Os_Cbk_Now_<CounterlD>, 153

Os_IncrementCounter_<CounterID>,
86

Os_LogCatlISREnd, 227

Os_LogCatlISRStart, 229

Os_LogCriticalExecutionEnd, 231

Os_LogintervalEnd, 233

Os_Cbk_RegSetRestore_<RegisterSetIDSs_LogIntervalEndData, 235

154

Os_LoglintervalEndValue, 237

Os_Cbk_RegSetSave_<RegisterSetID>, Os_LogintervalStart, 239

155
Os_Cbk_Set_<CounterlD>, 162
Os_Cbk_SetMemoryAccess, 156
Os_Cbk_SetTimeLimit, 160
Os_Cbk_StackOverrunHook, 164
Os_Cbk_State_<CounterlD>, 167
Os_Cbk_SuspendTimeLimit, 168
Os_Cbk Terminated_<ISRName>,

169
Os_Cbk TimeOverrunHook, 170
Os_Cbk_TraceCommbDataReady, 295
Os_Cbk_TraceCommiInitTarget, 296
Os_Cbk TraceCommTxByte, 297
Os_Cbk TraceCommTxEnd, 298
Os_Cbk TraceCommTxReady, 299
Os_Cbk_TraceCommTxStart, 300
Os_CheckTraceOutput, 217
Os_ClearTrigger, 218
Os_CounterStatusRefType, 184
Os_CounterStatusType, 184
Os_DisableTraceCategories, 219
Os DisableTraceClasses, 221
Os_EnableTraceCategories, 223
Os_EnableTraceClasses, 225
OS_EXTENDED_STATUS, 208
Os_GetExecutionTime, 70
Os_GetISRMaxExecutionTime, 72
Os_GetISRMaxStackUsage, 74
Os_GetStackSize, 76
Os_GetStackUsage, 78
Os_GetStackValue, 80
Os_GetTaskMaxExecutionTime, 81
Os_GetTaskMaxStackUsage, 83
Os_GetVersioninfo, 85

Index

Os_LoglintervalStartData, 241
Os_LoglntervalStartValue, 243
Os_LogProfileStart, 245
Os_LogTaskTracepoint, 247
Os_LogTaskTracepointData, 249
Os_LogTaskTracepointValue, 251
Os_LogTracepoint, 253
Os_LogTracepointData, 255
Os_LogTracepointValue, 257
OS_MAIN, 209
OS_NOAPPMODE, 209
OS_NUM_ALARMS, 209
OS_NUM_APPLICATIONS, 209
OS_NUM_APPMODES, 209
OS_NUM_COUNTERS, 210
OS_NUM_EVENTS, 210
OS_NUM_INTERVALS, 305
OS_NUM_ISRS, 210
OS_NUM_RESOURCES, 210
OS_NUM_SCHEDULETABLES, 210
OS_NUM_TASKS, 210
OS_NUM_TASKTRACEPOINTS, 305
OS_NUM_TRACECATEGORIES, 305
OS_NUM_TRACEPOINTS, 305
OS_NUM _TRUSTED_FUNCTIONS, 211
OS_REGSET_<RegisterSetID>_SIZE,
211
Os_ResetISRMaxExecutionTime, 87
Os_ResetlISRMaxStackUsage, 89
Os_ResetTaskMaxExecutionTime, 91
Os_ResetTaskMaxStackUsage, 93
Os_Restart, 95
OS_SCALABILITY_CLASS 1, 211
OS_SCALABILITY_CLASS 2, 211
OS_SCALABILITY_CLASS 3, 212

OS_SCALABILITY_CLASS 4, 212
Os_SetRestartPoint, 97
Os_SetTraceRepeat, 259
Os_SetTriggerWindow, 260
OS_STACK _MONITORING, 212
Os_StackOverrunType, 185
Os_StackSizeType, 186
Os_StackValueType, 186
OS_STANDARD_STATUS, 213
Os_StartBurstingTrace, 262
Os_StartFreeRunningTrace, 263
Os_StartTriggeringTrace, 264
Os_StopTrace, 266
Os_StopwatchTickType, 186

Os_TriggerOnincrementCounter, 280
Os_TriggerOnintervalEnd, 281
Os_TriggerOnlintervalStart, 282
Os_TriggerOnlintervalStop, 283
Os_TriggerOnReleaseResource, 284
Os_TriggerOnScheduleTableExpiry,
285
Os_TriggerOnSetEvent, 286
Os_TriggerOnShutdown, 287
Os_TriggerOnTaskStart, 288
Os_TriggerOnTaskStop, 289
Os_TriggerOnTaskTracepoint, 290
Os_TriggerOnTracepoint, 291
Os_UntrustedContextRefType, 187

OS_TICKS2<Unit>_<CounterlD>(ticks),0s_UntrustedContextType, 187

213
OS_TIME_MONITORING, 214
Os _TimeLimitType, 187
Os_TimingFaultDetected, 99
OS_TRACE, 305
Os_TraceCategoriesType, 301
Os_TraceClassesType, 301
Os_TraceComminit, 267
Os_TraceDatalLengthType, 302
Os_TraceDataPtrType, 302
Os_TraceDumpAsync, 268
Os_TraceExpirylDType, 303
Os_TracelndexType, 303
Os_TracelnfoType, 303
Os_TracelntervallDType, 303
Os_TraceStatusType, 304
Os_TraceTracepointiDType, 304
Os_TraceValueType, 304
Os_TriggerNow, 269
Os_TriggerOnActivation, 270
Os_TriggerOnAdvanceCounter, 271
Os_TriggerOnAlarmExpiry, 272
Os_TriggerOnCatlISRStart, 273
Os_TriggerOnCat1ISRStop, 274
Os_TriggerOnCat2ISRStart, 275
Os_TriggerOnCat2ISRStop, 276
Os_TriggerOnChain, 277
Os_TriggerOnError, 278
Os_TriggerOnGetResource, 279

Os_UploadTraceData, 292
OsAppMode, 313
OsAppModeld, 313
OsCategory, 320
OsCategoryAutostart, 320
OsCategoryfFilter, 321
OsCategoryMask, 321
OsClass, 320
OsClassAutostart, 320
OsClassFilter, 320
OsCounter, 314
OSCYCLEDURATION, 203
OSCYCLESPERSECOND, 204
OsCyclesPerSecond, 315
OsDefCatlStack, 315
OsDefCat2Stack, 315
OsDefTaskStack, 315
OsEnumeration, 317
OSErrorGetServiceld, 204
OsFormat, 314

OsHooks, 315

Oslinterval, 319
OslntervalFormat, 319
OslintervallD, 319

Oslsr, 314

OslsrAddress, 314
OslsrBudget, 314
OslsrPriority, 314
OslsrRef, 319

Index

347

348

OslsrStackAllocation, 314
OSMAXALLOWEDVALUE, 204

OSMAXALLOWEDVALUE_<CounterlD>,

205
OSMEMORY _IS_EXECUTABLE, 205
OSMEMORY _|IS READABLE, 205
OSMEMORY _IS_STACKSPACE, 205
OSMEMORY _IS WRITEABLE, 206
OSMINCYCLE, 206
OSMINCYCLE_<CounterID>, 206
0s0S, 315
OsRegSet, 316
OsRegSetRef, 314, 316
OsRTATarget, 313
OsRTATargetName, 313
OsRTATargetVariant, 313
OsRTATargetVersion, 313
OSServiceldType, 182
OsStackFaultHook, 315
OsSuppressVectorGen, 315
OSSWTICKDURATION, 207
OSSWTICKSPERSECOND, 207
OsTask, 316
OsTaskBudget, 316
OsTaskRef, 319
OsTaskStackAllocation, 316
OsTaskWaitStack, 316
OSTICKDURATION, 207

OSTICKDURATION_ <CounterlD>, 207

OSTICKSPERBASE, 208

OSTICKSPERBASE_<CounterlD>, 208

OsTicksPerSecond, 315
OsTrace, 316

OsTraceAuto, 317
OsTraceAutoComms, 317
OsTraceAutoRepeat, 317
OsTraceBufferSize, 317
OsTraceCompactiD, 317
OsTraceCompactTime, 317
OsTraceEnabled, 317
OsTraceFilter, 314, 316
OsTraceTaskTracepoint, 318
OsTraceTaskTracepointFormat, 319
OsTraceTaskTracepointiD, 318

Index

OsTraceTgtStack, 317
OsTraceTgtTrigger, 317
OsTraceTracepoint, 318
OsTraceTracepointFormat, 318
OsTraceTracepointiD, 318

P
Param, 313, 315, 318, 319
PhysicalTimeType, 188
PostTaskHook, 172
PreTaskHook, 173
ProtectionHook, 174
ProtectionReturnType, 188

R
ReleaseResource, 101
ResourceType, 189
RestartType, 189
ResumeAllinterrupts, 103
ResumeOSinterrupts, 105
rtaoscfg

Options, 322
rtaosgen

Options, 325

S

Schedule, 107
ScheduleTableRefType, 190
ScheduleTableStatusRefType, 190
ScheduleTableStatusType, 190
ScheduleTableType, 191
SetAbsAlarm, 109

SetEvent, 111

SetRelAlarm, 113
SetScheduleTableAsync, 115
ShutdownHook, 176
ShutdownOS, 117

sintle, 196

sintl6_least, 197

sint32, 197

sint32_least, 197

sint8, 198

sint8 least, 198

StartOS, 119
StartScheduleTableAbs, 121

StartScheduleTableRel, 123
StartScheduleTableSynchron, 125
StartupHook, 177

StatusType, 191

Std_ReturnType, 192
Std_VersionIinfoType, 192
StopScheduleTable, 127
SuspendAllinterrupts, 129
SuspendOSinterrupts, 131
SyncScheduleTable, 133

T
TASK, 214

TaskRefType, 193
TaskStateRefType, 193
TaskStateType, 193
TaskType, 194
TerminateApplication, 136
TerminateTask, 139

TickRefType, 194

TickType, 195

TrustedFunctionIndexType, 195

TrustedFunctionParameterRefType,
195

U

uintl6, 198
uintl6_least, 199
uint32, 199
uint32_least, 199
uint8, 200
uint8_least, 200

\"
Value, 314, 315, 318, 319

W
WaitEvent, 141

Index

349

	Introduction
	About You
	Document Conventions
	References

	RTA-OS3.x API calls
	Guide to Descriptions
	ActivateTask
	CallAndProtectFunction
	CallTrustedFunction
	CancelAlarm
	ChainTask
	CheckISRMemoryAccess
	CheckObjectAccess
	CheckObjectOwnership
	CheckTaskMemoryAccess
	ClearEvent
	DisableAllInterrupts
	EnableAllInterrupts
	GetActiveApplicationMode
	GetAlarm
	GetAlarmBase
	GetApplicationID
	GetCounterValue
	GetElapsedCounterValue
	GetEvent
	GetISRID
	GetResource
	GetScheduleTableStatus
	GetTaskID
	GetTaskState
	IncrementCounter
	NextScheduleTable
	Os_AdvanceCounter
	Os_AdvanceCounter_<CounterID>
	Os_GetExecutionTime
	Os_GetISRMaxExecutionTime
	Os_GetISRMaxStackUsage
	Os_GetStackSize
	Os_GetStackUsage
	Os_GetStackValue
	Os_GetTaskMaxExecutionTime
	Os_GetTaskMaxStackUsage
	Os_GetVersionInfo
	Os_IncrementCounter_<CounterID>
	Os_ResetISRMaxExecutionTime
	Os_ResetISRMaxStackUsage
	Os_ResetTaskMaxExecutionTime
	Os_ResetTaskMaxStackUsage
	Os_Restart
	Os_SetRestartPoint
	Os_TimingFaultDetected
	ReleaseResource
	ResumeAllInterrupts
	ResumeOSInterrupts
	Schedule
	SetAbsAlarm
	SetEvent
	SetRelAlarm
	SetScheduleTableAsync
	ShutdownOS
	StartOS
	StartScheduleTableAbs
	StartScheduleTableRel
	StartScheduleTableSynchron
	StopScheduleTable
	SuspendAllInterrupts
	SuspendOSInterrupts
	SyncScheduleTable
	TerminateApplication
	TerminateTask
	WaitEvent

	RTA-OS3.x Callbacks
	Guide to Descriptions
	ErrorHook
	Os_Cbk_Cancel_<CounterID>
	Os_Cbk_CheckMemoryAccess
	Os_Cbk_Disable_<ISRName>
	Os_Cbk_GetStopwatch
	Os_Cbk_Idle
	Os_Cbk_Now_<CounterID>
	Os_Cbk_RegSetRestore_<RegisterSetID>
	Os_Cbk_RegSetSave_<RegisterSetID>
	Os_Cbk_SetMemoryAccess
	Os_Cbk_SetTimeLimit
	Os_Cbk_Set_<CounterID>
	Os_Cbk_StackOverrunHook
	Os_Cbk_State_<CounterID>
	Os_Cbk_SuspendTimeLimit
	Os_Cbk_Terminated_<ISRName>
	Os_Cbk_TimeOverrunHook
	PostTaskHook
	PreTaskHook
	ProtectionHook
	ShutdownHook
	StartupHook

	RTA-OS3.x Types
	AccessType
	AlarmBaseRefType
	AlarmBaseType
	AlarmType
	AppModeType
	ApplicationType
	CounterType
	EventMaskRefType
	EventMaskType
	ISRRefType
	ISRType
	MemorySizeType
	MemoryStartAddressType
	OSServiceIdType
	ObjectAccessType
	ObjectTypeType
	Os_AnyType
	Os_CounterStatusRefType
	Os_CounterStatusType
	Os_StackOverrunType
	Os_StackSizeType
	Os_StackValueType
	Os_StopwatchTickType
	Os_TimeLimitType
	Os_UntrustedContextRefType
	Os_UntrustedContextType
	PhysicalTimeType
	ProtectionReturnType
	ResourceType
	RestartType
	ScheduleTableRefType
	ScheduleTableStatusRefType
	ScheduleTableStatusType
	ScheduleTableType
	StatusType
	Std_ReturnType
	Std_VersionInfoType
	TaskRefType
	TaskStateRefType
	TaskStateType
	TaskType
	TickRefType
	TickType
	TrustedFunctionIndexType
	TrustedFunctionParameterRefType
	boolean
	float32
	float64
	sint16
	sint16_least
	sint32
	sint32_least
	sint8
	sint8_least
	uint16
	uint16_least
	uint32
	uint32_least
	uint8
	uint8_least

	RTA-OS3.x Macros
	ALARMCALLBACK
	CAT1_ISR
	DeclareAlarm
	DeclareCounter
	DeclareEvent
	DeclareISR
	DeclareResource
	DeclareScheduleTable
	DeclareTask
	ISR
	OSCYCLEDURATION
	OSCYCLESPERSECOND
	OSErrorGetServiceId
	OSMAXALLOWEDVALUE
	OSMAXALLOWEDVALUE_<CounterID>
	OSMEMORY_IS_EXECUTABLE
	OSMEMORY_IS_READABLE
	OSMEMORY_IS_STACKSPACE
	OSMEMORY_IS_WRITEABLE
	OSMINCYCLE
	OSMINCYCLE_<CounterID>
	OSSWTICKDURATION
	OSSWTICKSPERSECOND
	OSTICKDURATION
	OSTICKDURATION_<CounterID>
	OSTICKSPERBASE
	OSTICKSPERBASE_<CounterID>
	OS_EXTENDED_STATUS
	OS_MAIN
	OS_NOAPPMODE
	OS_NUM_ALARMS
	OS_NUM_APPLICATIONS
	OS_NUM_APPMODES
	OS_NUM_COUNTERS
	OS_NUM_EVENTS
	OS_NUM_ISRS
	OS_NUM_RESOURCES
	OS_NUM_SCHEDULETABLES
	OS_NUM_TASKS
	OS_NUM_TRUSTED_FUNCTIONS
	OS_REGSET_<RegisterSetID>_SIZE
	OS_SCALABILITY_CLASS_1
	OS_SCALABILITY_CLASS_2
	OS_SCALABILITY_CLASS_3
	OS_SCALABILITY_CLASS_4
	OS_STACK_MONITORING
	OS_STANDARD_STATUS
	OS_TICKS2<Unit>_<CounterID>(ticks)
	OS_TIME_MONITORING
	TASK

	RTA-TRACE API calls
	Guide to Descriptions
	Os_CheckTraceOutput
	Os_ClearTrigger
	Os_DisableTraceCategories
	Os_DisableTraceClasses
	Os_EnableTraceCategories
	Os_EnableTraceClasses
	Os_LogCat1ISREnd
	Os_LogCat1ISRStart
	Os_LogCriticalExecutionEnd
	Os_LogIntervalEnd
	Os_LogIntervalEndData
	Os_LogIntervalEndValue
	Os_LogIntervalStart
	Os_LogIntervalStartData
	Os_LogIntervalStartValue
	Os_LogProfileStart
	Os_LogTaskTracepoint
	Os_LogTaskTracepointData
	Os_LogTaskTracepointValue
	Os_LogTracepoint
	Os_LogTracepointData
	Os_LogTracepointValue
	Os_SetTraceRepeat
	Os_SetTriggerWindow
	Os_StartBurstingTrace
	Os_StartFreeRunningTrace
	Os_StartTriggeringTrace
	Os_StopTrace
	Os_TraceCommInit
	Os_TraceDumpAsync
	Os_TriggerNow
	Os_TriggerOnActivation
	Os_TriggerOnAdvanceCounter
	Os_TriggerOnAlarmExpiry
	Os_TriggerOnCat1ISRStart
	Os_TriggerOnCat1ISRStop
	Os_TriggerOnCat2ISRStart
	Os_TriggerOnCat2ISRStop
	Os_TriggerOnChain
	Os_TriggerOnError
	Os_TriggerOnGetResource
	Os_TriggerOnIncrementCounter
	Os_TriggerOnIntervalEnd
	Os_TriggerOnIntervalStart
	Os_TriggerOnIntervalStop
	Os_TriggerOnReleaseResource
	Os_TriggerOnScheduleTableExpiry
	Os_TriggerOnSetEvent
	Os_TriggerOnShutdown
	Os_TriggerOnTaskStart
	Os_TriggerOnTaskStop
	Os_TriggerOnTaskTracepoint
	Os_TriggerOnTracepoint
	Os_UploadTraceData

	RTA-TRACE Callbacks
	Guide to Descriptions
	Os_Cbk_TraceCommDataReady
	Os_Cbk_TraceCommInitTarget
	Os_Cbk_TraceCommTxByte
	Os_Cbk_TraceCommTxEnd
	Os_Cbk_TraceCommTxReady
	Os_Cbk_TraceCommTxStart

	RTA-TRACE Types
	Os_AsyncPushCallbackType
	Os_TraceCategoriesType
	Os_TraceClassesType
	Os_TraceDataLengthType
	Os_TraceDataPtrType
	Os_TraceExpiryIDType
	Os_TraceIndexType
	Os_TraceInfoType
	Os_TraceIntervalIDType
	Os_TraceStatusType
	Os_TraceTracepointIDType
	Os_TraceValueType

	RTA-TRACE Macros
	OS_NUM_INTERVALS
	OS_NUM_TASKTRACEPOINTS
	OS_NUM_TRACECATEGORIES
	OS_NUM_TRACEPOINTS
	OS_TRACE

	Coding Conventions
	Namespace

	Configuration Language
	Configuration Files
	Understanding AUTOSAR XML Configuration
	Packages

	ECU Configuration Description
	RTA-OS3.x Configuration Language Extensions
	Container: OsAppMode
	Container: OsRTATarget
	Container: OsCounter
	Container: OsIsr
	Container: OsOS
	Container: OsRegSet
	Container: OsTask
	Container: OsTrace

	Project Description Files

	Command Line
	rtaoscfg
	Options
	Generated Files
	Examples

	rtaosgen
	Options
	Generated Files
	Examples

	Output File Formats
	RTA-TRACE Configuration files
	ORTI Files
	OS
	Task
	Category 1 ISR
	Category 2 ISR
	Resource
	Events
	Counter
	Alarm
	Schedule Table

	Compatibility and Migration
	ETAS Tools
	API Call Compatibility
	Tasksets
	Time Monitoring
	Schedules
	OSEK COM
	Behavior of StartOS()
	Behavior of ShutdownOS()
	Hardware Counter Driver
	Forbidding of Zero for SetRelAlarm()
	Changes to Schedule Table API
	Software Counter Driver
	Stack Monitoring
	Restarting the OS

	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices

