RTA-OS3.1

Analysis Visualizer User Guide



2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008-2010 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10483-AVUG-1.0.0

Copyright



Contents

1

Welcome

1.1 AboutYou .. ...... .. ... . e
1.2 Document Conventions . ...................
1.3 References . ... ... . . i
Introduction

2.1 Working with the Analysis Visualizer . ..........

Introduction to Schedulability Analysis

3.1 What is “real-time” anyway? . . .. .............
3.2 Testing for Real-Time . .....................
3.3 Analyzing for Real-Time ....................
3.3.1 Utilization-Based Schedulability Analysis .
3.4 Deadline Monotonic Analysis . ...............
3.4.1 Terminology . ....................
3.4.2 Calculating Response Times . . . . ... ...
3.4.3 Blocking . ....... ... ... ... . ..
3.5 Practical Considerations . . .. ................
351 Operating System Constraints for Analysis . ..
3.5.2 Optimism & Pessimism . ............
3.6 SUMMaAIY . . e e

Getting Started
4.1 Summary

Basic Modeling

5.1 DefiningtheKernel . ... .. ... ... ... ... .......
5.2 Timebases. . . ... .
5.2.1 The Stopwatch Timebase . . ... .......
5.2.2 Non-Time Timebases . . .............
5.2.3 Stopwatch Conversions . ............
5.2.4 Hints for using timebases . . . ... ......
5.3 Modeling Executable Objects . ... ............
5.3.1 Tasks . ..
5.3.2 ISRS . . .
5.3.3 The Idle Mechanism. . ..............
5.4 Accounting for Blocking . ...................
54.1 Standard Resources. .. .............
5.4.2 Internal Resources. . .. .............
5.4.3 Interrupt Masking . ................
5.5 Modeling Timing Relationships with Transactions . .
5.5.1 How transactionsareused . .. ........
5.5.2 What transactions are required? . . . . . ..
5.6 Timelines ... ... . . . . .
5.6.1 Arrivalpoint Analysis Clauses ... ......

o v Vo

12

14
14
14
15
15
16
17
18
21
22
22
24
25

26
32

Contents



5.6.2 Periodic Timelines . . . ... ............... 57

5.6.3 Single-Shot Timelines ... ............... 59

5.7 Activators . .. ... . . e 61
5.7.1 Activator declaration . . ............ ... .. 61

5.8 Timeline Transactions. . . . . .. ... . . ... 62
5.9 Bursting Transactions . . .. ...................... 65
5.9.1 Multiple ArrivalRules . . . . . .............. 67

5.9.2 Specifying that something happens justonce . 68

5.10 Modeling Alarms . . ... ... .. . . 69
5.10.1 Reducing Pessimism for a single alarm . ... .. 70

5.10.2 Reducing pessimism for multiple alarms . . . .. 72

5.10.3 Alarms thatoccuronce ................. 73

5.11 Modeling Schedule Tables . . . . ................... 74
5.11.1 Using Sequential Timelines . ............. 74

5.11.2 Using Periodic Timelines .. .............. 76

5.11.3 Synchronized Schedule Tables ... ......... 77

5.11.4 Schedule Table Transactions. . . ........... 78

5.12 Auto-started Tasks . . .. ... ... .. . 79
5.13 The ldle Mechanism . . ....... ... . ... ... 80
5.14 ANoteonDeadlines. .......... ... ... . . ... 81
5.15 SUMMaAIY . s e e e 81
6 Advanced Modeling 83
6.1 Arbitrary Deadlines and Critical Execution Time . ... ... 83
6.2 Multiple Profiles . . . . . ... ... . 85
6.2.1 Identifying and Referencing Multiple Profiles .. 86

6.2.2 Resource Considerations . ............... 87

6.2.3 Restrictions on Profiles and Transactions . . . . . 88

6.3 Handling Queuing and Buffering . ... .............. 88
6.3.1 Queued Task Activation . ................ 89

6.3.2 Buffered Interrupts . . .................. 92

6.4 Co-operative Tasks. . . ... oo i i i 95
6.5 Modeling Extended Tasks . . .. ................... 98
6.5.1 Re-factoring the application . ... .......... 98

6.5.2 Partial analysis .. ..................... 99

6.6 Release Delay &Jitter. . . ... ... ... ... . . . . ... 100
6.7 ResponseDelay . . ....... .. . . 102
6.8 Accounting forthe OS Overheads . ................ 103
6.8.1 Interrupt Recognition . . .. ............... 103

6.8.2 OSlatencies. . ......... ... ... ....... 103

6.9 Telling the Analysis Visualizermore . . .. ............ 105
6.9.1 Analysis Only Transactions . . . .. .......... 105

6.9.2 Removing interrupt pessimism .. .......... 106

6.9.3 Non-periodic timebases . ... ............. 108

6.10 SUMMAIY . . . e e e 110

Contents



7 Performing Analysis 111

8

7.1

7.2

7.3

7.4

7.5

Tutorials

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Schedulability Analysis . . . .. ....... ... .. .. ... ... 111
7.1.1 Running the Analysis . . .. ............... 112
7.1.2 Schedulability Analysis Reports . .......... 112
7.1.3 Unschedulable Objects .. ............... 113
7.1.4 Utilization Greater Than 100% . ........... 120
7.1.5 Indeterminate Objects . . . . .............. 122
Sensitivity Analysis . ... ... ... . . 125
7.2.1 Performing Sensitivity Analysis . . ... ... .... 125
7.2.2 Schedulability Analysis Reports . .......... 126
7.2.3 Sensitivity of the Idle Mechanism . ......... 131
Priority Optimization ........... ... .. .......... 133
7.3.1 Running Priority Optimization . .. .......... 133
7.3.2 Priority Optimization Reports . ... ......... 134
7.3.3 Controlling the Priority Optimization Algorithm 135
Clock Optimization. . . ....... ... .. ... .. ... ..... 136
7.4.1 Running Clock Optimization . ............. 137
7.4.2 Clock OptimizationReport .. ............. 137
SUMMaAIY . st e e e 139

140
Critical execution times and deadlines . . .. .......... 140
8.1.1 Example . .. ... ... . e 140
8.1.2 Accounting forOverheads . .............. 147
Executionprofiles ... ...... ... . . . . . . . . . . . . ... 147
8.2.1 Example .. ... ... . e 150
Shared Resources and Blocking. . ................. 160
8.3.1 Example . . ... ... . 160
8.3.2 Exercise ... ... . . . ... 168
Periodic timelines and bursting transactions . ........ 168
8.4.1 Examplel ........ ... . ... .. . . .. 170
8.4.2 Example2 ........ . . . . ... 171
Looping and re-triggering behavior . ... ............ 174
8.5.1 Examplel ......... .. . ... . . . . ... 175
8.5.2 Example2 ........ . . . . ... 177
8.5.3 Exercise ... ... . . . ... e 179
Allocating priorities . .. ...... ... . ... . . . o . 179
8.6.1 Example . . ... ... . . 180
Changing processor frequency . .................. 187
8.7.1 Example . . ... ... . . . 187

Contents

5



9 Configuration Language Reference 190

9.1 Overviewofsyntax ............ .. ... .. .. ..... 190
9.1.1 Notation ... ... ... . . . . . . . . . . . 190

9.1.2 Declarationrules . . .. .................. 191

9.2 Base definitions . . . .. ... .. 192
9.2.1 Time definitions . .. ................... 192

9.2.2 Executable object profiles .. ............. 193

9.3 Operating system environment definitions . . . . . ... ... 194
9.4 Resource declaration . ........ ... ... ... .. ... .... 195
9.5 Timebase declarations . . ... .................... 196
9.6 Timebase conversion . . ... . 198
9.7 Task declarations . . . . ... ... .. . . . 199
9.7.1 Task execution profile . ................. 200

9.8 Priority constraints . . . . ... ... ... . .. .. . .. 203
9.9 Non-preemption group declarations . .............. 204
9.10 Interrupt declarations. . . . ....... ... .. .. ... .. ... 205
9.10.1 Interrupt execution profile .. ............. 206

9.11 Timelinedeclarations . . . ............. ... . ...... 208
9.11.1 Sequential timelines .. ................. 208

9.11.2 Periodic timelines ... .................. 210

9.12 Activator declarations . ............. ... ... ..... 212
9.13 Transaction declarations. . .. .................... 213
9.13.1 Timelinetransaction ................... 213

9.13.2 Bursting transaction ................... 213

9.14 Arbitrationorder ... ... ... . . 216
9.15 Systemtimingvalues.......................... 217
9.16 Interrupt recognition .. ....... ... .. . ... . . . . ... 218
9.17 Task priorityorder ... ... ... ... ... 219
9.18 Reservedwords . . . ... ... . i 219
10 Configuration Language Pre-processor Reference 221
10.1 Preprocessorsyntax . ............ ... 221
10.1.1 Fileinclusion . .. ........ ... ............ 221

10.1.2 Macro definition .. .................... 221

10.1.3 Macroundefine . ... ....... . ... ... ... .. 222

10.1.4 Macroexpansion . . ... ................. 222

10.1.5 Info . ... . . 222

10.1.6 Warn ... .. 222

10.1.7 Error. . .. 223

10.1.8 Fatal . ...... ... ... . . . . 223

10.1.9 ifdef . ... ... 223

10.1.10 ifndef ... ... ... .. 224

10.1.11 Compatibility with the C preprocessor. ... ... 224

10.2 Examples of Common Usage .................... 224
10.2.1 Commonusage . .. ....... ... 224

10.2.2 Nesting. .. ...... ... . . ... . . ... 228

Contents



10.2.3 Precedenceorder ........... .. .. .. .... 228

10.2.4 Order of evaluation .. .................. 228
10.2.5 Macro indirection. . . . . ... ... .. . . . ... 229
10.2.6 String concatenation . . ... ... ... . L. 230
10.2.7 Compatibility with the C preprocessor. ... ... 231
Command Line 233
11.1 Options . . ... e 233
11.2 Examples ... ... . . e 234
Error Codes 236
12.1 Fatal Messages . ........ .. . . ... 237
12.2 Error Messages . .. ..ot 249
12.3 Warning Messages . . . . ... .. 286
12.4 Information Messages . ........ ... . ... ... 293
Finding out more 295
Glossary 296
Contacting ETAS 304
15.1 Technical Support . ......... .. . . . ... . . . . 304
15.2 General Enquiries ... .. ... ... . .. . 304
15.2.1 ETAS Global Headquarters . .. ............ 304
15.2.2 ETAS Local Sales & Support Offices . . .. ... .. 304

Contents



Welcome

Welcome to the Analysis Visualizer!

In this guide you will find out how to build a timing model of an RTA-OS3.x
application, perform schedulability analysis on the model using the Analysis
Visualizer and interpret the results. Schedulability analysis is a mathematical
technique used to prove that an application meets all of its deadlines.

This guide provides a general introduction to the RTA-OS3.x Analysis Visual-
izer. It describes the basic concepts and functionality of the Analysis Visual-
izer and gives examples of how to model some fundamental system behavior
using the Analysis Visualizer configuration language.

The guide is ordered as follows:
Chapter 2 provides a quick overview of the analysis capabilities of the Anal-
ysis Visualizer and how you might use them.

Chapter 3 explains the theory which underlies the Analysis Visualizer. It
is useful to understand this in order to understand why the Analysis
Visualizer needs to be told different types of information.

Chapter 4 provides a quick tutorial introduction to modeling real-time sys-
tems and analyzing them with the Analysis Visualizer.

Chapters 5 and 6 explain how to model RTA-OS3.x-based applications for
analysis with the Analysis Visualizer. For basic modeling, it is only re-
quired to understand Chapter 5. Chapter 6 can be skipped if necessary.

Chapter 7 explains how to run analyses, interpret the results and fix any
problems that may be highlighted.

Chapter 8 provides a set of tutorials.

Chapters 9 to 11 provides a complete technical reference for the Analysis
Visualizer, including the configuration language, the configuration lan-
guage pre-processor, command line options and error codes.

Chapter 13 provides a list of further reading material.

Chapter 14 provides a glossary of terms used in the guide.

Welcome



1.1

1.2

About You

You are a trained embedded systems developer who wants to build real-time
applications using a preemptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen toolchain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals and so on, is essential.

You should also be familiar with common use of the Microsoft Windows 2000,
Windows XP or Windows Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and folders.

The intended audience of this manual is designers, developers and engineers
who are using RTA-OS3.x to develop real-time systems and wish to demon-
strate that their systems are schedulable.

You are assumed to understand the concepts of RTA-OS3.x. In particular, you
should have read the User Guide and be familiar with concepts it explains
before you read this guide.

Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters
Press <Enter>. Key commands are enclosed in an-

gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Taskl) Program code, header file names,
C type names, C functions and
API call names all appear in a
monospaced typeface.

See Section 1.2. Hyperlinks through the document
are shown in blue letters.

Welcome



1.3

10

— — - Functionality that is provided in
:: i /'\ ':. RTA-OS but may not be portable to
another AUTOSAR OS implementa-
tion is marked with the ETAS logo.

Caution! Notes like this contain im-
A portant instructions that you must
follow carefully in order for things

to work correctly.

References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.o0sek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

Welcome


http://www.osek-vdx.org
http://www.autosar.org

Introduction

The Analysis Visualizer is a general purpose schedulability analysis tool sup-
plied with RTA-OS3.x. The Analysis Visualizer is suitable for analyzing any
system that can be modeled within the constraints imposed by the mathe-
matical theory of schedulability (see Chapter 3).

The Analysis Visualizer is a stand-alone program, called rtaosanvis, that
takes a model of your OS application as its input and shows the analysis re-
sults as its output. The Analysis Visualizer provides the following types of
analysis:

Schedulability analysis - Determines whether all tasks and ISRs can meet
their deadlines and other constraints in the worst case. If a system
cannot meet its deadlines then the analysis will tell you why. The Anal-
ysis Visualizer provides extensions to classical schedulability analysis
that allow you to determine the maximum buffer sizes required by in-
terrupts. You can use this to guide hardware selection and to determine
the maximum activation count for tasks whose activations are queued
by the OS.

Sensitivity analysis - Calculates how far a range of timing parameters for
each task and ISR can be extended to obtain a system that is just
schedulable. Sensitivity analysis can tell you how much longer a task
could run for before the system becomes unschedulable, for how long
you can hold a resource and how long you can disable interrupts. This
can assist you in determining the possibility that the execution time
tasks or interrupts can be extended and is an invaluable aid when ex-
tending or enhancing a legacy system, without violating its existing per-
formance requirements.

Priority optimization - Allocates task priorities to give the minimum num-
ber of preemption levels commensurate with a schedulable system. Re-
search has shown that, even where systems are running at 99% CPU
utilization, this technique can be used to modify preemption patterns,
which can resultin an 8-fold decrease in application stack requirements.
This can be used with RTA-OS3.x to gain significant reductions in RAM
leading to reduced unit costs.

Clock optimization - Calculates the minimum clock speed for which task
priorities can be allocated to give a schedulable system. This can be
used to show the slowest speed that the application can run and still
meet its deadlines. You can use this functionality to reduce power re-
quirements, to avoid EMC problems or to determine whether cheaper
silicon can be used to meet the same performance requirements.

Introduction

11



2.1

12

[ RTA-OS3.0 Project

Analysis Results

TimingModel.stc

A
RTA-0S3.0
[Analysis Visualizer]
4

~=
Sensitivity Analysis
Schedlability Analysis
Task Priority Allocation
Clock rate Optimization

Figure 2.1: User interaction with the Analysis Visualizer

ualizer [C:\ste\blocking.ste] =lolx
He Edt e
| | | Clock Opimization | Timing Model { Schedilbiity Anysi | Sensitvity Anabsis | Prionty Optinizaton | Clock Optinization |

8 RTA Analysis Visualizer [C:\stc\blockingstc]

£ kemel A A

version "RTA-OS";
target "Babbage’s Analytical Engine";
build level = standard;

)

timebase tb_ms {
stopwatch;
units cycles { define 1 as 1 ticks; } _ - .
units ms { define 1 as 1000 ticks; } # 1 MHz [-] Schedulability Analysis
modulus B553 ticks;

[-] Overview

task Read_Data {
o entry : [} -
gniry ReadData_entry Key: Blocking time  Interference tme  Execution time
locks resource Data_Guard;
profile {
this pririty duration 40

1
2

3

4

5

6

7

8

9

10

1 )

12 resource Data_Guard;
13

i

15

18

17

18

19

E] task Check_Data (
entry Check_Data_entry ;
locks resource Data_Guard;
profile { -

this priiity duration 2000 cycles;

resource Data_Guard duration 1000 cycles;

eritical 1400 cycles has deadline 4 ms;

L

htemupt 1581 { -
pirioi A |
ol o e

o

Yoo

4000 cycles

Response time: 4.25ms
o (@250 cycles)
profile pi

this priority duration 150 cycles; buffer limit 1; has se-time of 3.64ms

a5 a respon:
diine of 4000 cycles

Bl profile p2 {
L this priority duration 200 cycles; buffer limit 1;

0! I I
i [po00 cycles
timeline (
timebase tb_ns; 5000 cycles

default readonly; o Blocking: 25 cycles Response time: 8.76ms
sequence { ime: (2755 cycles)

arivalpoint ap1 {

task Read_Data; i
delay 10 ms;

) = Jid|

T Anslysis complete, | T Anslysis complte. :

VNG EEASHEODEEBBARRLBVLEBRIPRRBNNE

(a) Timing Model (b) Analysis Results

Figure 2.2: Using rtaosanvis interactively

Working with the Analysis Visualizer

The Analysis Visualizer requires a model of the OS configuration to work from.
You need to build this yourself. The model is captured using the Analysis
Visualizer configuration language, which has a C-like syntax for expressing
which OS objects you have and how they interact. The model can be created
and edited in the Analysis Visualizer or using a text editor of your choice.

Once you have built your model then it can be analyzed and optimized. You
can then use the information you have obtained to improve your RTA-OS3.x
configuration. Figure 2.1 shows the basic process.

You can use the Analysis Visualizer in two ways:

Introduction



RTA Analysis Yisualizer k|

Ferfarming Schedulability analysiz...

Figure 2.3: Command line progress reporting by rtaosanvis

interactive where you use the built-in editor to create your timing model
and then the analysis tools to analyze the model. This is shown in Fig-
ure 2.2. Results can be exported as HTML files.

command-line where the Analysis Visualizer is given a model and will run
the analysis and save the results as a HTML file:

C:\working\DevTrunk\Bin>rtaosanvis
c:\working\UserDocs\STC\examples\blocking.stc
results.html

The Analysis Visualizer will inform you of progress using a progress in-
dicator like that shown in Figure 2.3

In this guide, it is assumed that you are modeling RTA-OS3.x applications and
examples focus on how to model an RTA-OS3.x application in the Analysis
Visualizer configuration language. However, any OS configuration that can
be expressed in the Analysis Visualizer configuration language is amenable
to analysis with the Analysis Visualizer.

Introduction

13



3.1

3.2

14

Introduction to Schedulability Analysis

What is “real-time” anyway?

The meaning of the term ‘real-time’ is frequently misunderstood and often
abused. People tend to think that real-time means ‘real-fast’. A true real-time
system is one where whatever deadline has been set on an activity taking
place, the deadline can always be satisfied. The deadline might be a few
nanoseconds or many years, but irrespective of the length of the deadline it
is critically important that it can be met, on time, every time. So, in short,
real-time is about meeting deadlines.

Deadlines are measured from the point at which work is released into a sys-
tem. A deadline will be met if the work can be completed before the deadline
expires. Doing the work itself always consumes some time - this is amount of
time is usually called an execution time. In the most trivial case, the amount
of time required to do work can not be longer than the associated deadline.

If there was only ever one thing to do then things would be easy. Of course,
in most systems, there is more that one thing to work on at time, so other
jobs may take precedence. This means that when work is released, we may
not start it immediately and it may be interrupted while we are doing it. For
example, consider a day working in the office when you are interrupted by
telephone calls and emails.

It follows that the elapsed time required to complete the work may be longer
than the time to do the work. The elapsed time is known in schedulability
analysis terms as the response time. If the response time is less than the
deadline then the deadline is met.

To be able to show that a deadline is met at runtime we therefore need to
work out the longest response time and check that this is less than (or equal
to) the required deadline.

Testing for Real-Time

One approach to solving this problem is to test the system, measuring the re-
sponse time for each release of work. While this sounds easy, it is extremely
difficult in practice. The core problem is that the worst case response time re-
lies on observing the critical instant. The critical instant is the point where the
worst case release of multiple jobs occurs simultaneously with the worst case
time required for each of those jobs to execute. In a real-time system of the
type you might build with RTA-OS3.x, this means that the test for response
time must ensure that the worst-case phasing of task and interrupt arrivals
occur simultaneously with the worst case execution times of each task and
interrupt.

Introduction to Schedulability Analysis



3.3

3.3.1

’tDeadline sat\sﬁed?»‘ Deadline that we need
Longest observed to meet
response time

A

Probability

Response Time

Best case response Worst case response
time time

Figure 3.1: Probability density function for response times

Figure 3.1 shows the probability density function of observing the response
time of a task/ISR in a preemptive system. The best case time is unlikely to be
seen, as too is the worst case. This means that the probability of observing
the worst case response time is extremely low. During testing therefore, it
is possible to observe a worst case response time that appears to meet a
specified deadline but is actually shorter than the real worst case.

This means that there is a significant risk that a system which has been tested
for real-time correctness will fail to meet deadlines. This is hardly surprising
because testing for real-time relies upon the extremely improbable observa-
tion of the worst-case response time.

What is required is an alternative approach that guarantees that the worst-
case response time we obtain, and check against the deadline, really is the
worst-case. That approach is to determine the response time analytically.

Analyzing for Real-Time

Schedulability analysis uses mathematics to calculate worst-case response
times using knowledge about how long work takes to execute and how often
work is released. Recall that with testing the problem is ensuring that the
critical instant occurs. Schedulability analysis avoids this problem by calcu-
lating the critical instant (or likely candidates for the critical instant) and then
calculating the response time for every object.

Utilization-Based Schedulability Analysis

An elementary form of schedulability analysis is to check utilization, which is
the amount of load placed on the CPU.

The utilization of task 7 in a system can be calculated by dividing its execution
time (C;) by its arrival rate (T;) and expressing the result as a percentage. By

Introduction to Schedulability Analysis

15



3.4

16

summing the utilization of all tasks and ISRs in a system the overall utilization
can be calculated.

If the CPU is more than 100% loaded then it is obvious that some tasks are
going to miss deadlines - there is simply not enough CPU time to do all the
work required. However, in 1973, Liu and Leyland proved that a system which
satisfied the constraints of Rate Monotonic Analysis (RMA) can meet its dead-
lines if CPU utilization is less than 69.3%.

The constraints of RMA are:

o No shared resources

e Deadlines are exactly equal to periods

e Unique, static priorities

e Preemptive scheduling

e Tasks with shorter periods/deadlines are given higher priorities

e OS context switching times are zero
The insight provided by Liu and Leyland was that for this type of system, the
critical instant occurs when all tasks are released a some notional time zero.

In practice, utilization-based analysis is quite restrictive. The lack of shared
resources means that it would not be possible to use this model for practical
AUTOSAR OS R3.x systems. While it would be nice is an OS could run in zero
time, in practice this is not possible, so there must be some way to account
for OS overheads in the schedulability test,

RMA is also unnecessarily pessimistic - there are systems which are schedu-
lable and have significantly higher than 69.3% utilization. If we used RMA
as the only guide to schedulability then we would reject systems that are
schedulable.

Deadline Monotonic Analysis

An alternative test for schedulability is Deadline Monotonic Analysis (DMA)
which makes the following assumptions about the properties of a system:

Fixed number of tasks. There is a bounded, fixed, number of tasks (in this
context, a task is work that needs to be done by the system, in AUTOSAR
OS R3.x terms this can be a task or an ISR).

Unique priorities. Tasks have fixed, unique priorities.

Introduction to Schedulability Analysis



3.4.1

No self suspension. Tasks do not suspend themselves during execution.

Independence. Tasks are independent of each other apart from their use of
shared protected data. Shared data is protected by a ceiling protocol.

Preemptive Scheduling. Tasks are scheduled preemptively.

DMA is more flexible in the types of systems it can analyze than RMA. In
DMA, periods need not be static and deadlines can be shorter than periods
(in fact, extensions to basic DMA allow for arbitrary deadlines, including those
that are longer than periods). DMA does not require rate-monotonic priority
assignment so task priority is not tied to task period as with RMA?.

In essence, DMA is based on knowing:

1. how often objects are released into the system (e.g. how often do inter-
rupts occur, how often are tasks activated).

2. for how long an object executes.

The analysis approach is a form of divide and conquer - it divides the prob-
lem of determining the response time into two simpler problems of identify-
ing arrival patterns and execution times and divides the problem of system
schedulability into multiple problems of executable object schedulability.

DMA uses the data supplied to calculate the worst case response time for
each executable object. It is then trivial to compare the calculated response
time against the required deadline to determine whether or not it is schedu-
lable. If all executable objects in a system are schedulable, then the system
as a whole is schedulable.

DMA is the core technology upon which the Analysis Visualizer is based. In
this section we look at how basic DMA works because it will help you to un-
derstand why you are required to provide the information requested by the
Analysis Visualizer and understand how it is used.

Terminology

Figure 3.2 is an annotated time diagram defining the notation used in the
analysis.

The term T; is the period of a task <. The period is the minimum time between
a task being made ready to run and being made ready again. This model

A Deadline Monotonic Priority Assignment would assign higher priorities to tasks with
shorter deadlines, however, there is no restriction on priority assignment as far as DMA it-
self is concerned.

Introduction to Schedulability Analysis

17



3.4.2

18

F—Computation Time = C,—»

Task1 required to complete

Task1 generates
response

Task1 terminates

Task1 activated Task1 activated
Time
FiResponse Time = R‘4>1
} Deadiine = D, :
} Period =T, ‘

Figure 3.2: DMA Notation

supports both sporadic and strictly periodic tasks. Each time the task i is
made ready it may execute for up to C; processor time. This is known as the
worst-case execution time of task 7. Note that this time does not include the
time for which other tasks and interrupt handlers use the processor: it is the
processor time required only by task i. The worst-case response time of a
task ¢ is measured from the time the task is made ready to the time the task
completes its worst-case execution time ;. This worst-case response time
is denoted R;. The deadline of a task ¢ is denoted D; and a task will always
meet its deadline if R; < D;.

Calculating Response Times

The basic idea of DMA is to find an equation that will calculate R;. This time is
made up of two times: the time a task takes to execute its own code, and the
time it takes for higher priority tasks to execute and finish with the processor.
The following equation indicates this:

Ri=Ci+1I; (3.1)

The term I; is the preemption time from higher priority tasks and interrupt
handlers and is called the interference. The problem now focuses on how to
find the interference time.

Figure 3.3 shows a task i being preempted by a higher priority task k. Task
k initially preempts the task then preempts again when it is made ready for
a second time. By the time task k comes back for a third time the lower
priority task has already finished, and so this time there is no interference.
The number of times that a given task k can preempt a task ¢ while task i is
ready is given by :

Introduction to Schedulability Analysis



}‘7Tk (TTask2)4+7Tk (TTaskz)g’{

) “CyCraa)” <Gy Crasa)®
EZV-?LZLFISKZ Erival of Task2 Erivm of Task2
[ ]
Task1 Task1
Time
}4 Ri (RTask1) ’{

Figure 3.3: Impact of preemption on a lower priority task

R;
M (3:2)

The total time taken by a higher priority task k£ when it preempts and executes
is simply the number of times it preempts multiplied by its execution time:

R;
{TJ Ch (3.3)

The symbol [] is the ceiling function that performs a “round up” function. For
example [1.2] =2, [2] =2 and [2.1] = 3.

To calculate the total interference from all higher priority tasks we simply
calculate the interference for each higher priority task and then add them
together. Assuming that hp; is the set containing all higher priority tasks
(and ISRs) in the system, the calculation can be expressed by the following
equation:

RA
L= > {TW Ch (3.4)
Vkehp;, '~k
This can be substituted into Equation 3.1 to give the basic DMA response time

equation:
R;
RZ' = Cz + Z _ Ck (3.5)
Ty,
Vkehp;

Introduction to Schedulability Analysis

19



20

Task/ISR | Priority

il Highest | 10ms | 0.50ms 3ms
tl 3ms | 0.50ms 3ms
t2 6éms | 0.75ms 6ms
t3 14ms | 1.25ms | 14ms
t4 Lowest | 14ms | 5.00ms | 14ms

Table 3.1: ECU Node Specification

You will notice that the term R; now appears on both sides of the equation - it
would appear that we can only find the worst-case response time if we know
the worst-case response time! However, we know that R; will never be less
than C; so this can be solved by forming a recurrence relation:

R?
R)=CR'"' =Ci+ ) [] Ch (3.6)
Ty
VEkE€hp;
This forms the basic DMA equation that can be used to calculate the response
time for each task (and ISR) in a system. The recurrence relation will con-
verge on a value for R; if a value exists. This means that the calculation can

halt if the calculated response time is the same as the previously calculated
response time, i.e. when:

R = R ! (3.7)

Furthermore, because the equation does not oscillate around a solution, as
soon as the response times begin to diverge they will continue to diverge. The
observation of divergence can therefore also act as a termination condition:

R} — R > R - Rr2 (3.8)

Itis trivial to checking schedulability by checking that the calculated response
times are less than the associated deadlines:

Vi € Taskse R; < D; (3.9)

Example

Assume we have a system with the following of tasks and ISRs:

For brevity, we will just calculate the response time for task t4 and check
whether it meets its deadline. We start with an initial R estimate of 5ms, i.e.

Introduction to Schedulability Analysis



3.4.3

5 0.5 (2x0.5) 0.75 1.25 3.5 8.50

8.5 0.5 (3x0.5) (2x0.75) 1.25 4.75 9.75
9.75 05 (4x0.5) (2x0.75) 1.25 5.25|10.25
10.25 | (2x0.5) (4x0.5) (2x0.75) 1.25 5.75]| 10.75
10.75 | (2x0.5) (4x0.5) (2x0.75) 1.25 5.75| 10.75

u b~ WN B

Table 3.2: Worst-Case Response Time for Task t4

the computation time of task t4. Table 3.2 shows the calculation of worst-
case response time for Task t4. The calculation stops at Step 5 because it
converges on R;, i.e. R? = R}.

So the worst-case response time of task t4 is 10.75ms. This is less than the
deadline of 14ms and proves that task t4 will always meet its deadline in all
situations.

Blocking

So far we have assumed that a higher priority task is not delayed by a lower
priority one. This means that no lower priority task is allowed to disable in-
terrupts or even share a resource with a higher priority task. Clearly this
assumption is unrealistic and we need to do something about it. The way we
deal with this is to allow for blocking time, denoted B;, and equal to the time
for which the execution of lower priority tasks can delay a given task :.

What we need to do is be able to work out this blocking time. A desirable
property to simplify the calculation of blocking time is that a task is blocked
at most once. The worst-case blocking can then be calculated by determin-
ing the longest blocking time imposed by any lower priority task. The Priority
Ceiling Protocol for resource locking achieves exactly this and allows the cal-
culation of blocking time. Priority Ceiling Protocol introduces the notion of
ceilings. Each resource has a ceiling priority: this is the priority of the highest
priority task that can lock the resource. A task can hold several resources at
once, but only if they are locked in a nested pattern for example:

GetResource(R1);
GetResource(R2);
ReleaseResource(R2);

ReleaseResource(R1);

We can more formally define the blocking time for a given task ¢ by defining
the following terms:

Introduction to Schedulability Analysis

21



3.5

3.5.1

22

Ip; the set of tasks with priorities lower than task

locksy,; the set of resources locked by a task k where the resources have
a ceiling priority equal to or higher than the priority of task i.

s the time for which a task k holds a resource s.

The blocking time B; is defined as follows:

B; = max VkeElp; (tk,s)
Vsclocksy, ;

Accounting for blocking time in the calculation of a task’s response time is
easy - because a task is blocked at most once then we just need to add B; to
the equation for the worst-case response time:

R"
R =B+ Ci+ > [TZW Ci
Vkehp;, 'k

Practical Considerations

For simple system you can do DMA analysis by hand, but as systems become
more complex you need a dedicated tool like the Analysis Visualizer. The
Analysis Visualizer calculates the worst-case response times for each task
and ISR in your application based on the values you provide for C; and then
checks that all the responses meet their deadlines.

Operating System Constraints for Analysis

The Analysis Visualizer analyses a model of a system. It is therefore nec-
essary that the runtime behavior of an OS-based system does not break the
constraints of the model - i.e. the OS configuration must be amenable to DMA.
This does not mean that every system that can be built with the OS must be
analyzable. The OS may provide features that are not analyzable, but this is
not a problem providing those features are not used in a configuration?. This
is illustrated in Figure 3.4

The constraints of the DMA model of analysis interact with RTA-OS3.x config-
urations in the following ways:

Fixed number of tasks. DMA requires a static system with known set of
tasks and interrupts. This does not impact AUTOSAR OS R3.x as it is a
statically configured OS.

2Compare this to a MISRA compliance checker. Any valid C program can be compiled by a
C compiler, but only the subset of programs that satisfy the MISRA guidelines can be checked
successfully.

Introduction to Schedulability Analysis



All systems

Systems that can be built
with RTA-0S3.0

Systems that satisfy the
constraints of
schedulability analysis

Figure 3.4: Analyzable systems as a subset of buildable systems

Unique priorities If two (or more) objects are released simultaneously then
it must be possible to determine the order of execution. This means:

Tasks must not share priorities. Tasks are allowed to share priority
levels, which is what happens when they use AUTOSAR OS R3.x
internal resources.

ISRs should not share priorities where possible.

When the hardware forces ISR to share priorities, then the arbitra-
tion order (i.e. the order in which they are processed by the hard-
ware) needs to be modeled for the Analysis Visualizer.

No self-suspension. DMA does not permit objects to block themselves.
This has two impacts for AUTOSAR OS R3.x:

Extended tasks cannot be analyzed. Ideally, you should not use ex-
tended tasks in your system. If you do have extended tasks then
they cannot, in general, be analyzed for schedulability. This also
means that any tasks of lower priority than the highest priority ex-
tended task cannot be analyzed for schedulability (as the interfer-
ence contributed by the extended tasks cannot be calculated). The
Analysis Visualizer does allow you to analyze tasks of higher priority
than the highest priority extended tasks subject to accounting for
the blocking factors they introduce on higher priority objects. See
Section 6.5 for further details.

The Schedule() API call cannot be used to force rescheduling to
take place.

Priority Ceiling Protocol. Resources and interrupt locks must be managed
according to the priority ceiling protocol. This guarantees that tasks
are blocked at most once during their execution and that blocking only
occurs at the start of execution. This does not impact AUTOSAR OS
R3.x.

Introduction to Schedulability Analysis

23



3.5.2

24

Optimistic times Pessimistic Times

Longest (worst case)
execution time

Figure 3.5: Pessimism and optimism

»
Execution Time

No upwards activation. A task must only activate tasks of lower priority.

Optimism & Pessimism

When you provide data to model the system for analysis, it is important to
provide data that is as accurate as possible. Inaccuracy has two effects:

Optimism If you tell the Analysis Visualizer that execution times are shorter
that they really are or that arrivals are closer together than they really
are then the analysis will be optimistic. This means that, even though
the Analysis Visualizer will tell you that the system is schedulable then
if will fail to meet deadlines at runtime3. You should avoid optimistic
figures at all costs if you want to trust the results of the analysis.

Pessimism If you provide executions times that are longer than normal or
arrival rates are more frequent than they really are then he analysis
will be pessimistic. This is must less critical - the analysis will report
systems as unschedulable when, in fact, they are - so the results will
always be safe.

Figure 3.5 shows the relationship between pessimism and optimism for exe-
cution times and arrival rates.

If you cannot guarantee that your data is accurate, then supply data that
is pessimistic. You can make your data pessimistic by supplying execution
times that are longer than the actual execution times, for example. You could
also declare delays between releases as shorter than the actual delays.

3This is a case of “garbage in, garbage out”.

Introduction to Schedulability Analysis



3.6

Summary

Real-time is about meeting deadlines.
The real-time characteristics of an application are difficult to test.
Real-time behavior can be analyzed off-line using schedulability analysis.

Analysis requires knowledge about execution times and arrival rates to
calculate the worst-case response time for each task and interrupt in a
system. If all tasks and ISRs are schedulable then the system is schedu-
lable.

AUTOSAR 0OS R3.x-based applications can be designed to fit within the
theoretical limits for analyzable systems.

Data provided for analysis should be as accurate as possible.

Introduction to Schedulability Analysis

25



26

Getting Started

Before we look in more detail at various areas of functionality we start with
a simple example to provide a quick overview of how the Analysis Visualizer
operates. You should the Analysis Visualizer and type in any configuration
you are shown. Let’s consider a preemptive system containing three tasks
with following properties:

Computation time [ms]
5

Task 3 | 20 20
Task 2 | 40 10 40
Task_1 | 80 40 80

The task’s period specifies the minimum time between consecutive execu-
tions. Computation time is the worst-case execution time from the start of the
first instruction in the entry-function to the end of the ‘return’ instruction. The
deadline is the maximum allowable time for the task to complete execution
and equals the task’s period, i.e. tasks must complete before their next invo-
cation is due. Ignoring any existing overheads, such as task-switching time or
task entry-latencies, you can see that this trivial system is just schedulable,
with Task_1 finishing execution just in time for its next release. Figure 4.1
shows how the system is scheduled.

All tasks are released at time Oms. Task 3 has the highest priority, Task 1
the lowest. Therefore Task 3 runs to completion before Task 2 starts (at time
5ms) and Task_2 runs to completion before Task_1 starts (at time 15ms),
giving the tasks response times of 5ms and 15ms respectively. Task 1 cannot
complete before Task 3 and Task 2 start again and gets preempted by Task 3
at time 20ms, 40ms and 60ms. It also has to wait for Task 2 to complete at
time 45ms. However, there is still enough execution time left for Task 1 to
complete at time 80ms, the time when all three tasks are released again. The
response time of Task 1 is therefore 80ms. This means all three tasks meet
their deadlines and the system is schedulable.

One interesting aspect of this system, however, is that it fails the basic
schedulability test by Liu and Leyland (1973) because the combined utiliza-
tion of the system is 100%. This test considers the utilization of sets of tasks
where priorities are assigned according to the tasks periods (i.e. shortest
period task is assigned the highest priority, etc).

In order to represent this example system in the Analysis Visualizer configu-
ration language you will need to declare the three tasks, a timeline and one
transaction for this particular timeline. The timeline defines the sequence in
which your tasks will execute and the transaction follows that timeline.

Getting Started



All tasks arrive at
the same time

Task_3 I
Task_2

Figure 4.1: Task execution with all tasks arriving at time zero

_ >
Time

You start your configuration by specifying the system’s environment. The
kernel clause is usually the first clause in a configuration file and informs
the Analysis Visualizer of the RTA-OS3.x version used, the target platform
and the build level required. The version and target parameters must be
provided and you are free to choose any value you like. Valid values for
build level are standard, timing and extended but these do not impact the
analysis performed. You configuration should start with the following kernel
declaration:

kernel {
version "RTA-0S";
target "Babbage’s Analytical Engine";
build level = standard;

Every configuration file must have at least the stopwatch timebase declared.
As you only need one timebase for this example, declare a millisecond-
timebase (we assume the processor clock runs at 100kHz and the stopwatch
clock runs at the same rate) directly after the kernel clause:

timebase th_ms {
stopwatch;
units cycles { define 1 as 1 ticks; }
units sec { define 1 as 100000 ticks; }
units ms { define 1000 as 1 sec; }
modulus 65536 ticks;

Getting Started

27



28

For each task, the task declaration only needs to contain the entry name
of the corresponding function and an execution profile which specifies the
computation time of the task:

task Task_1 {
entry taskl_entry ;
profile { this priority duration 4000 cycles; }

}

task Task_2 {
entry task2_entry ;
profile { this priority duration 1000 cycles; }

}

task Task_3 {
entry task3_entry ;
profile { this priority duration 500 cycles; }

The Analysis Visualizer uses timelines to specify when things happen. The fol-
lowing configuration defines a sequential timeline which describes the timing
of the tasks:

timeline {

timebase tb_ms;
default readonly;

sequence {
arrivalpoint apl {
analysis {
task Task_1;
task Task_2;
task Task_3;
delay 20 ms;
}
}
arrivalpoint {
analysis {
task Task_3;
delay 20 ms;
}
}
arrivalpoint {
analysis {
task Task_2;
task Task_3;
delay 20 ms;
}
}

arrivalpoint {

Getting Started



analysis {

task Task_3;
delay 20 ms;
next apl;

You can see that Task_3 runs every 20ms, Task_2 every 40ms and Task_1
every 80ms.

Finally, you need to tell the Analysis Visualizer that a timeline should be con-
sidered for analysis. The Analysis Visualizer uses the notion of a transaction
to capture this. You will learn more about transactions later, but for now you
just need to declare a simple transaction which follows the arrivalpoints in
your timeline.

transaction tl1 {
start apl;
}

The starting point apl is the first arrivalpoint in the timeline defined above,
and the transaction will follow the timeline beginning at apl.

Next, you will need to add a system timings and an interrupt recognition
clause. The system timings and interrupt recognition values are target de-
pendent and may differ significantly between different platforms. This tuto-
rial will not use realistic values but only describe the impact certain values
can have. In the current example you can ignore any overheads and there-
fore set every value to zero.

system timings { 0; 0; 0; 0; 0; 0; 0; 0; }

interrupt recognition 0 cycles;

Finally, you have to specify a task priority order for your system. The Anal-
ysis Visualizer requires each task to be allocated a unique priority, so you
either add a task priority order clause to your configuration file or select auto-
matic priority allocation (option -p) when running the Analysis Visualizer. For
this example you already know that tasks are assigned priorities in deadline-
monotonic order, i.e. the task with shortest deadline is assigned the highest
priority, etc. Therefore, you can declare the following task priority order:
task priority order {
task Task_3;

task Task_2;
task Task_1;

Getting Started

29



30

The structure of your configuration file should now look as follows:

1. Kernel clause

2. One timebase

3. Three tasks (Task 1, Task 2, Task_3)
4. One timeline

5. One transaction (t1)

6. System timings

7. Interrupt recognition

8. Task priority order

After you have saved your configuration file as getting-started.stc it is
time to check whether the system is schedulable. Select the “Schedulability
Analysis” tab in the Analysis Visualizer.

Provided you typed in everything correctly, the Analysis Visualizer should pro-
duce output like that shown in Figure 4.2.

All timing values are given in stopwatch cycles and milliseconds. By default
‘cycles’ is the smallest unit of a stopwatch timebase and, if not defined differ-
ently, 1 cycle equals 1 tick. As we expected, all three tasks are schedulable
with Task 1 just finishing before its next invocation. The largest blocking time
is zero for all three tasks, which is not very surprising, as we ignored all over-
heads and didn’t declare any resource locking.

To get a better understanding on how sensitive the schedule of your system
actually is, you should now change one of the delay values in the timeline
from 20ms to 19ms and rerun the analysis. This time the Analysis Visualizer
reports that the system is not schedulable as shown in Figure 4.3.

The Analysis Visualizer always performs a quick utilization test first to check
whether or not utilization is greater than 100%. Ifitis, then the system cannot
be schedulable, so the analysis will fails and the Analysis Visualizer finishes
execution. This result, of course, is not surprising, as the original system was
already stretched to its limit with a combined utilization of 100%. Therefore,
reducing the period to 79ms was not feasible. Now, let’'s assume the period
of 79ms had to stay this way and you would have to reduce your task exe-
cution times in order to obtain a schedulable system. The Analysis Visualizer
provides special sensitivity analysis for your system which will tell you ex-
actly what changes are needed to make your system schedulable. Select the
“Sensitivity Analysis” tab to run sensitivity analysis.

Getting Started



@ RTA Analysis Yisualizer [C:%stc’ getting-started.stc] — |EI |i|

File  Edit Help

Tirnirg Model § Senazitivity Snalysis | Friority Optimization | Clock. Dptimization

[-]1 Schedulability Analysis

[-]1 Overview

Key: | _ .
Blocking time Interference time Execution time
Task_3
e Blocking: 0 cycles Response time: 5.00ms
e Interference time: 0 cycles, (500 cycles)

e Execution time: 500 cycles

Task_=2
e Blocking: 0 cycles Response time: 15.00ms e
& Interference time: 500 cycles, {1500 cycles)

& Execution tirme: 1000 cvcles

Task_1
e Blocking: 0 cycles Response time: 30.00ms
e Interference time: 4000 cycles, (8000 cycles)

® Execution time: 4000 cycles

Analysis complete,

Figure 4.2: Successful schedulability analysis

Getting Started

31



4.1

32

RTA Analysis Yisualizer [C:"stc’ getting-started.stc] - |E| |5|
File  Edit Hel

Timing Model 5 |Sensitivity Ainalysis | Priority Optimization | Clock Optimization
B
The system is NOT schedulable
Copyright @ ETAS GmbH, 2009
-

Analysis complete.,

Figure 4.3: Unsuccessful schedulability analysis

The Analysis Visualizer will output the following result shown in Figure 4.4.

For every task the Analysis Visualizer calculates the maximum execution time
that, if applied, would allow your system to be schedulable. Alternatively, you
can change the processor clock speed and sometimes this might be the only
option left to make a system schedulable. Note that if you decide to change
task execution times you only need to change one task.

You should now make the suggested changes to the execution time of one
of the tasks in your configuration file, then rerun the analysis and check that
your system is schedulable.

Summary

This chapter has shown how a simple, but complete, system can be modeled
for analyzed by the Analysis Visualizer. The following chapters explain more
about modeling applications. Additional tutorial examples can be found in
Chapter 8.

Getting Started



@ RTA Analysis Yisualizer [C:\stc getting-started.stc] - |EI |£|
File  Edit Help

Timing Model | Schedulability &nalpsis ~ Sensitivity Snalpsis | Pririty Optimization | Clock Optimization

Y
[-] System sensitivity to execution and lock times
[-1 Summary
Task 3 [Click graphs to zoom infout]
Available Execution time: 4.75ms (475 cycles)
Declared Execution tirme: 500 cycoles
Task_Z [Click graphs to zoom infout]
Awailable Execution time: 9.50ms (950 cycles)
Declared Execution tirme: 1000 cycles
Task_1 [Click graphs to zoom infout]
Awailable Execution time: 39.00ms (3900 cycles)
Ceclared Execution time: 4000 cycles
[-1 Detail
In taskO7as4 3, the system can be schedulable for execution tirme up to 4.75ms (475 cycles),
In taskO7as4 2, the systemn can be schedulable for execution time up to 2.50ms {950 cycles),
In taskO7as4 1, the system can be schedulable for execution tirme up to 39.00ms (3200
cycles),
[-] System sensitivity to clock speed
The systern is schedulable if the processar clock speed is increased to 101.33% of its current
walue,
100%
101.33% j

Analysis compleke,

Figure 4.4: Sensitivity analysis

Getting Started

33



5.1

34

Basic Modeling

In this chapter you will learn how to model basic, non-queued, tasks and
Category 1 and 2 ISRs. The models you will create will be sufficient for many
practical applications. The Analysis Visualizer also provides many advanced
features that relax the constraints of classical DMA analysis. Once you have
mastered the basic modeling concepts presented in this chapter you should
consult Chapter 6 for how to model more sophisticated systems.

To analyze a real-time system you must provide:
e Adescription of the software architecture in terms of the tasks, interrupts,
resources, counters, alarms and schedule tables.
e The execution times for each task and ISR.

e A timing model that defines the timing relationship between executable
objects. This defines the periods and deadlines for your application.
These are the release of time into the system. A task is released when it
enters the ready state. An ISR is released when the CPU has recognized
the interrupt that causes it

e Target specific timing information (optional).

Defining the Kernel

The Analysis Visualizer configuration language requires that you provide a
kernel definition clause. This is not used for analysis.

The kernel clause is the first clause in a configuration file. The version and
target parameters must be provided and you are free to choose any value
you like.

Valid values for build level are standard, timing and extended but these
do not impact the analysis performed. The following example illustrates the
syntax :
kernel {
version "RTA-0S";
target "Babbage’s Analytical Engine";
build level = standard;

Basic Modeling



5.2

Timebases

A timebase defines the units, granularity and range of a counter. A time-
base may correspond to a regular time reference that marks the passing of
time (for example, a millisecond timer), or to some other kind of application-
specific counter (for example a count of the number of times a tooth on a
toothed wheel passes in front of a sensor). A counter increment is referred to
as a tick.

The value of the timebase ranges from zero up to (but not including) the
timebase modulus. The timebase value is always stored as a 32-bit unsigned
integer and so the largest timebase modulus is 4294967295 (232 — 1).

A timebase is declared in the configuration file as follows:

timebase cpu_clock {
modulus 65536 ticks;
}

The above declaration defines a timebase called tb1l that can count 65536
ticks (i.e. it counts ticks from 0 to 65535 inclusive). This is the simplest way
of declaring a timebase.

The default unit for a timebase is a tick and a tick can be anything that you
want it to be. However, tick values can be assigned symbolic names using a
units declaration in the timebase declaration.

timebase cpu_clock {
units s { // A second has 8 million ticks on an 8MHz clock
define 1 as 8000000 ticks;

}

units ms { // There are 1000 milliseconds per second
define 1000 as 1s;

}

units us { // There are 1000 microseconds per millisecond
define 1000 as 1ms;

}

units ns { // There are 1000 nanoseconds per microsecond
define 1000 as 1lus;

}
modulus 65536 ticks;

The above declaration defines a timebase that counts from 0 to 65535. It also
defines some units (nanoseconds, microseconds, and seconds), and maps
the units to the timebase by defining one second to be 8,000,000 ticks.

If the conversion between units results in a large rounding error for a constant
then the Analysis Visualizer will generate a warning of lost accuracy.

Basic Modeling

35



In this example the timebase might correspond to a hardware counter count-
ing from 0 to 65535, driven from the processor clock with a frequency of
8MHz. If the crystal frequency or counter prescale is changed then you only
need modify the definition of s.

Your hardware/software implementation of a counter must tick at the rate
specified in the configuration file. Otherwise, your definition of units, con-
stants and delays used in timelines (see sub-section ‘arrivalpoints and time-
lines’) will be incorrect.

A unit name applies only to the timebase in which it is declared. There
is no relationship between the same unit name in different timebases.

A If you declare the same name in multiple timebases and intend these to
represent the same times then you will need to define conversions. The
Analysis Visualizer allows this using the “stopwatch” timebase, but it
your responsibility to ensure that all stopwatch conversions are correct.
For hints about how to do this, see Section 5.2.4.

5.2.1 The Stopwatch Timebase

When the Analysis Visualizer performs its analysis it represents time inter-
nally as 'cycles’. Cycles are defined by a a special timebase called the stop-
watch timebase. As there can be multiple timebases in the system, the Anal-
ysis Visualizer must be told which is the stopwatch timebase. This is done by
using the keyword stopwatch in the timebase declaration.

A Exactly one timebase must be marked a stopwatch timebase in the con-
figuration file.

By default, the Analysis Visualizer assumes that one tick of the stopwatch
timebase represents one cycle. The rate for cycles should be as fast as pos-
sible, ideally the same as the CPU clock or the fastest time that can be mea-
sured in the CPU. It is therefore recommended that the stopwatch timebase
is used to model the CPU clock. The following declaration defines a 20MHz
CPU clock rate:

timebase cpu_clock {

stopwatch;
units s {

define 1 as 20000000 ticks; // 1 tick = 1 cycle
}
units ms {

define 1000 as 1s;
}
units us {

define 1000 as 1ms;
}
modulus 65536 ticks;

36 Basic Modeling



Scaling the Stopwatch

The largest interval of time that can be analyzed by the Analysis Visualizer
is 232 — 1 ticks. The CPU clock frequency will therefore limit the maximum
delay or to busy period that can be analyzed. The following table shows how
increasing CPU clock rate reduces the maximum analyzable intervals:

CPU Clock Rate (MHz) Longest Time (secs)

1 4294
16 298
80 53

150 28

However, it may be the case that the intervals are too short for your
model. To overcome this, the Analysis Visualizer allows the unit cycles
to be defined so that the stopwatch timebase case be scaled. Cy-
cles are not allowed to be greater than ticks, e.g. the declaration
units cycles define 1 as 2 ticks will result in an error message from
the Analysis Visualizer.

In the example below, the CPU clock is 20MHz as before, buy cycles have
been scaled for analysis so there are 20 cycles in a stopwatch tick.

timebase cpu_clock_scaled {
stopwatch;
units cycles {
define 20 as 1 tick;

}
units s {
define 1 as 20000000 cycles; // Note! expressed in cycles
}
units ms {
define 1000 as 1s;
}
units us {
define 1000 as 1ms;
}

modulus 65536 ticks;

Scaling the stopwatch timebase results in pessimism in the analysis because
execution times are rounded up by up to scaling factor cycles, and inter-
arrival times are rounded down by up to scaling factor cycles.

Basic Modeling

37



5.2.2

5.2.3

38

Non-Time Timebases

The use of timebases for defining time units is merely one way of using time-
bases. There is no special treatment of time as a unit, and no units are pre-
defined: you can name units as you wish. So you could define a timebase to
measure angular rotation rather than time.

timebase spindle {
units deg {
define 360 as 1128 ticks;

}
units rad {
define 6.283185 as 360 deg; // 2pi radians = 360 degrees

}
units mrad {
define 1000 as 1 rad;

}
modulus 360 deg;

The above example defines a timebase representing a counter than counts
from 0 to 1127. The counter could be connected to a sensor that senses a
toothed wheel on a motor spindle and is reset to zero when a particular tooth
passes the sensor. In the example the sensor generates 1128 pulses for each
full rotation of the spindle. The unit deg is defined to represent degrees, with
360 degrees for a full rotation of the spindle. The unit mrad is a milliradian,
and one rad is one thousand milliradians.

Stopwatch Conversions

If the application uses any timebases in addition to the stopwatch timebase, it
is necessary to supply a conversion factor between these and the stopwatch
timebase.

Typically other timebases will be declared if the application uses timelines
driven by activators that are triggered by counters running at a different fre-
quency to the stopwatch timebase. In common usage, you may have many
timebases that define ‘wall clock’ time units like seconds, milliseconds, for
example:

timebase cpu_clock {
stopwatch;
units s {
define 1 as 20000000 ticks; // 20MHz
}
units ms {
define 1000 as 1 s;
}
modulus 65536 ticks;

Basic Modeling



}
timebase timerl {
units ms {
define 1 as 1 ticks;

}
units s {
define 1 as 1000 ms;
}
modulus 65536 ticks;
}
timebase timer2 {
units s {
define 1 as 1 ticks;
}
modulus 65536 ticks;
}

In this case, the stopwatch defines the unit s as 20000000 ticks, i.e. the
processor is clocked at 20MHz. However, timebases timerl and timer2 also
define a units called s, but as 1 tick and 1000 ticks respectively.

Recall from Section 5.2 that unit names apply only to the timebase in which
they are declared. Assuming that you want the units to mean the same thing
everywhere in the model a stopwatch conversion is used to ensure that these
units will be converted to cycles correctly:

stopwatch conversion {
on timerl 1s is 1s;
on timer2 1s 1is 1s;

There is a trade-off when using this form of stopwatch conversion: this form
of the conversion tells the user nothing about the relative rate of ticks on
slow_tick to the stopwatch timebase. However if the frequency of either
timebase could change, a modification needs to be made in only one place
in the configuration file, rather than in the timebase declaration and at the
stopwatch conversion.

Where a timebase is associated with non-periodic events, the stopwatch con-
version needs to specify the highest frequency that events can arise. For
example in the case of a slotted disk (where light passing through a slot falls
on a light sensor and causes an interrupt), with 8 equally spaced slots and a
maximum rotational speed of 6000rpm, the following timebase and timebase
conversion would be used:

timebase tb_disk {
units revolution {
define 1 as 8 ticks;

Basic Modeling

39



5.2.4

40

}
units mins {
define 1 as 6000 revolution;
} // at worst
units s {
define 60 as 1 mins;
}
}
stopwatch conversion {
on tb_disk 6000 revolutions is at worst 1 minute;

}

The optional at worst keyword has been used here to show that the con-
version represents a worst-case conversion (the disk may often rotate slower
than 6000 RPM).

Where the conversion from a timebase to the stopwatch tick results in a non-
integral value, rounding is used to ensure that worst case values are used.
Execution times, blocking times, jitter and release delay all rounded up. De-
lays between arrivalpoints and deadlines are both rounded down. Thus 3
ticks on the slow_tick timebase, defined above, are equivalent to 23437.5
(3 x 8000000 / 1024) ticks of the stopwatch timebase. If used as an execu-
tion time, this is treated as 23438 stopwatch ticks, but if used as a deadline,
it is treated as 23437 ticks.

Hints for using timebases

The following hints will help you to make best use of timebases:

e Execution times should be declared in terms of processor cycles. If the
processor speed is changed then the ‘wall clock time’ the code takes to
execute will shorten or lengthen accordingly.

e Use timebases to capture units of time that you use with various timing
values accurately reflect the meaning of those values. For example, if
a delay is measured in seconds to conform to a specification, then you
should have a timebase which defines a seconds unit on the timebase
with which it is to be implemented.

o Define a timebase for each OS counter you have in your system. This
means that the relationship between a tick of the counter and the under-
lying time is captured by the timebase declaration.

Following these hints will help you to build a timing model that is robust to
changes in your configuration file.

Basic Modeling



To simplify the setting up of timebases, the following example gives a tem-
plate that uses the Analysis Visualizer macro preprocessor to ensure that ‘wall
clock’ timing units on multiple timebases are correctly mapped to CPU cycles
for analysis.

// CPU (System) clock frequency = 10MHz
(define FREQUENCY 10000000)

// Prescale for peripheral timer
(define CLOCK_PRESCALE 32)

// Define any units of wall clock time from seconds
(define DERIVE_UNITS_FROM_SECONDS
units ms {
define 1000 as 1 s;
}
units us {
define 1000 as 1 ms;
}
units ns {
define 1000 as 1 us;
}
)

timebase cpu_clock {
stopwatch;
units s {
define 1 as (FREQUENCY) cycles;
}
(DERIVE_UNITS_FROM_SECONDS)
modulus 65536 ticks;
}

timebase peripheral_timer {
units s {
define (CLOCK PRESCALE) as (FREQUENCY) ticks;
}
(DERIVE_UNITS_FROM_SECONDS)
modulus 65536 ticks;
}

// Unify seconds
stopwatch conversion {
on peripheral_timer 1 s is 1 s;

}

5.3 Modeling Executable Objects

In order to perform schedulability analysis of a system, the runtime behavior
of each of the executable objects within the system must be modeled. An

Basic Modeling

41



42

switch ... {
case Green:

break;
case Orange:

break;
case Blue:

break;

Figure 5.1: The longest path gives the worst case execution time

executable object is a task or an ISR. The execution characteristics of tasks
and ISRs are declared in execution profiles. At least one execution profile is
required for each task and ISR. You can also use multiple profiles to model sit-
uations where you know that different invocations of a task/ISR have different
execution time. Multiple profiles are considered in Section 6.2.

The execution profile declares the worst-case execution time of the corre-
sponding task and ISR. Worst-case execution times are usually determined
by the amount of code executed, so they are measured in processor cycles.
This means that if you change the CPU clock rate, the execution time for your
tasks and ISRs will scale automatically®.

The worst-case execution time for tasks and ISRs is measured from the start
of the first machine code instruction of the task entry function, through the
longest path in time and then to the end of the ‘return’ instruction as shown
in Figure 5.1. It excludes the effects of preemption or interrupts. You are
responsible for ensuring that the effects of any cache or instruction pipelines
are at their most pessimistic.

There are many techniques available for obtaining a worst-case execution
time. Techniques fall into two classes:

Tasks that perform imprecise computation are an exception to this rule. This type of task
executes until it observes a value in a particular time. You should, therefore, express execution
time using ‘real-world’ time units.

Basic Modeling



Static techniques analyze the object code and calculate the worst-case ex-
ecution times based on instruction set timing and/or models of the pro-
cessor. Examples of commercial tools are Absint’s aiT?.

Dynamic technigues measure execution times on the target and therefore
rely on the worst case execution path in the program being executed.
There are many measurements approaches, including two provided by
RTA-OS3.x:

e time monitoring in the RTA-OS3.x kernel which automatically logs
the longest observed execution time. This provides a single worst-
case figure.

e RTA-TRACE integration which calculates worst-case execution times
offline using logged OS trace data. Using RTA-TRACE can provide
additional insight into how different releases of tasks and ISRs exe-
cute and this additional information can be used to build advanced
timing models. See Section 6.2 for further details.

Third-party tools include Rapita System’s Rapitime3.

The following sections describe how to model the execution time for tasks
and ISRs.

5.3.1 Tasks

If t1_entry is found to have a worst-case execution time of 600 processor
cycles, it will have the following task declaration:

task t1 {
entry tl_entry;
profile {
this priority duration 600 cycles;

}

By default, an execution time within a profile is specified in terms of the stop-
watch timebase (see Section 5.2.1). Other timebases can be used instead if
they are explicitly referenced as in the following example.

task t1 {
entry tl_entry;
profile {
this priority duration on low_resolution_timebase 150
ticks;
}
}

2www.absint.com
3www. rapitasystems.com

Basic Modeling 43


www.absint.com
www.rapitasystems.com

44

Activating Tasks

If a task activates another task, either through the ActivateTask() or
ChainTask() calls then this needs to be captured in the model by specify-
ing an activates task clause:

task tl1 {
entry tl_entry;
activates task t2; // By ActivateTask(t2);
activates task t3; // By ChainTask(t3);
profile {
this priority duration 600 cycles;

}

Activations must be downwards, i.e. you can only model a system where a
task activates only lower priority tasks. The Analysis Visualizer will check for
incorrect upwards activations in your model and generate an error if any are
found.

Task activations must be recorded even if they are conditional because
this represents the worst case.

Task Priorities

Unlike AUTOSAR OS R3.x, where the priority of a task is a humber associ-
ated with the task itself, an Analysis Visualizer model does not need to care
about what priority value is associated with a task, but only with the relative
ordering of task priorities.

Task priorities are specified in the task priority order clause in the sys-
tem tail of the configuration file. This is required if more than one task is
declared.

task priority order {
task TaskA; // Highest
task TaskB;
task TaskC; // Lowest

The above example specifies the priority order for a system of three tasks:
TaskA has the highest priority, TaskB the second highest and TaskC the low-
est priority. All tasks declared in the configuration file must appear in the
task priority order clause. The Analysis Visualizer will generate an error
if this is not the case.

Basic Modeling



A

The task priority order is a total ordering over the tasks in the sys-
tem. This means that it is not possible to share task priorities (as re-
quired by the constraints of DMA) for system that you want to analyze,
even though you can build them with AUTOSAR OS R3.x. It is, however,
possible to share priority levels by declaring non-preemption groups as
described in Sections 5.3.1 and 5.4.2.

Non-Preemptive Tasks

The Analysis Visualizer does not allow you to say that a task is non-
preemptive. Instead, a general purpose mechanism called a non-preemption
group that allows you to group a set of tasks together that need to run non-
preemptively is used?.

Tasks in the non-preemption group run at the priority level defined by the
highest priority task in the same group.(i.e. they run at the ceiling prior-
ity of the non-preemption group). To correctly model the notion of a non-
preemptive task it therefore follows that one of the tasks in the group must
be the highest priority task in the system even if the highest priority task
itself is preemptive.

Consider a system with the following tasks:

Task Priority | Non-Preemptive

t4 4 v
t3 3 X
t2 2 4
tl 1 X

The non-preemptive tasks would be modeled using the following non-
preemption group:
nonpreemption group {
task t5; // Included as it is highest priority

task t4;
task t2;

Analysis assumes that the tasks in the non-preemption group run at the
ceiling priority for their entire duration. This means that the tasks must
not use the Schedule() call during execution. More information about
modeling so-called “co-operative " tasks can be found in Section 6.4.

“The same construct will be used in Section 5.4.2 to model tasks sharing an internal re-
source.

Basic Modeling

45



5.3.2

46

ISRs

The Analysis Visualizer defines two types of interrupts:

controlled interrupts are managed by the OS. In AUTOSAR OS R3.x this
maps directly on to Category 2 ISRs.

uncontrolled interrupts are not managed by the OS. In AUTOSAR OS R3.x
this maps directly on to Category 1 ISRs.

Each interrupt must define a priority. Priority 1 defines the lowest interrupt
priority. The highest interrupt priority will depend on your target microcon-
troller. The priority clause defines the interrupt priority level (IPL) for the
interrupt.

The Analysis Visualizer configuration language requires an interrupt vector to
be specified to be syntactically correct. It is not required that this is a valid
vector address for your target or that the vector is correct for the interrupt.
The vector is not used for analysis.

As with tasks, interrupts also need to specify an execution time in a profile
clause.

The following is a declaration of a controlled interrupt called int1:

interrupt intl {
entry il _handler;
controlled;
priority 4;
vector 0x1000;
profile {
this priority duration 100 cycles;

}

All uncontrolled interrupts must have a priority greater than or equal
to the highest controlled interrupt priority. This is the same model as
RTA-OS3.x applies for Category 1 and Category 2 ISRs.

Arbitration Ordering

IPLs can be shared between interrupts if this is supported by your target mi-
crocontroller. However, when ISRs share an interrupt priority level, you will
have to specify an interrupt arbitration order. The arbitration order is the
sequence in which interrupts of the same priority are serviced if several are
pending at the same time. You can usually find this information in the data

Basic Modeling



book for your target microcontroller. The arbitration ordering allows the Anal-
ysis Visualizer to determine interrupt blocking correctly for the specified in-
terrupts.

arbitration order {
interrupt priority 2 {
interrupt TimerChannel;
interrupt IOport;

The above order specifies that TimerChannel is serviced first if both the
TimerChannel and IOport interrupts are pending simultaneously.

You should ensure that the arbitration order that you specify matches
the arbitration order of the interrupts with your application. For many

A processors, the interrupt arbitration order is fixed and can be found in
the processor reference manual, for others it can be defined by the
application programmer. In both cases, care must be taken to ensure
that the information given in the configuration file correctly describes
the run-time behavior of interrupts.

5.3.3 The Idle Mechanism

If the idle mechanism makes any API calls it can introduce blocking. This must
be considered in the analysis.

A profile for the idle mechanism is specified in the same way as for a task, in
fact in the Analysis Visualizer it is called the “idle task”. If the idle task has no
deadlines to meet, however, the exact value of the execution time specified
is irrelevant.

The use of the idle task in this way is shown below:

idle task {
profile {
this priority duration 1 cycle;

}

If the idle task performs resource locking, setting the interrupt priority level or
has any deadlines, an idle task profile must be provided that includes these.
This profile has the same structure and possible contents as task and ISR
profiles.

Basic Modeling 47



5.4

5.4.1

48

Accounting for Blocking

The modeling we have considered so far has been enough to specify exe-
cution times of executable objects. In this section we look at how to model
blocking.

Tasks and ISRs that get resources or mask interrupts block the execution of
higher priority tasks and ISRs. Let’s look at an example of a system that
contains two tasks. The tasks are called Taskl and Task2 and they share a
resource. Task2 has a higher priority than Task1.

If Task2 becomes ready when Taskl owns the resource, it is blocked until
Task1l releases the resource.

To determine whether your application is schedulable, the Analysis Visualizer
must know for how long resources are held and for how long interrupts are
disabled. The Analysis Visualizer does not need to know when the resource is
locked relative to the start of the task or ISR.

Standard Resources

Every task and ISR that locks a resource needs to declare this in the model
as follows:

task tl1l {
entry tl_entry;
locks resource rl;
locks resource r2;
profile {
this priority duration 600 cycles;

}

If you do not specify resource and interrupt locking times, then the Analysis
Visualizer assumes that the resource is held or that the interrupt is disabled
for the entire execution time of the task or ISR. In most cases this will be
pessimistic as the resource will only be locked for a part of the execution
time.

You can reduce the pessimism in the analysis by adding the time for which a
resource is locked to the task’s profile. The analysis uses this information to
determine how blocking affects the schedulability of the system. The Analysis
Visualizer does not need to know the time at which the resource is locked
relative to the start of the locking task - the analysis will always assume that
this happens at the time that gives the worst case response time.

As an example, consider the following task:

Basic Modeling



TASK(t1){

GetResource(rl);
/* 25 cycles x/
ReleaseResource(rl);

GetResource(r2);
/* 100 cycles x/
ReleaseResource(r2);

GetResource(rl);
/*x 75 cycles x/

ReleaseResource(rl);

TerminateTask();

The following profile shows the execution time of the associated task in terms
of CPU cycles in addition to showing the durations for which the task locks the

specified resources.

task t1 {
entry tl_entry;
locks resource rl;
locks resource r2;
profile {

this priority duration 600 cycles;

resource rl duration

75

cycles;

resource r2 duration 100 cycles;

When a resource is locked multiple times then only the longest time for which
the resource is continuously locked is required. However, it is recommended
that each separate locking duration is specified in order to improve the clarity
and maintenance of the configuration file (see for example, the two locking

durations of resource r1, above).

task tl1 {

entry tl_entry;

locks resource rl;

locks resource r2;

profile {
this priority duration
resource rl duration
resource r2 duration
resource rl duration

600
25
100
75

cycles;
cycles; // Optional
cycles;
cycles;

Basic Modeling

49



5.4.2

5.4.3

50

You do not need to distinguish whether or not resource requests are nested.
the Analysis Visualizer takes account of this automatically during analysis.
Even when resources are nested then you must provide the worst case lock-
ing time for entire duration the resource is held - irrespective of whether any
other resources are locked inside.

Internal Resources

indexBlocking!Internal Resources

Internal resources are modeled using non-preemption groups that you will
recall from Section 5.3.1.

A non-preemption group should be defined for each internal resource and the
tasks that lock the resource should be listed as the members of the group.

nonpreemption group {
task TaskA;
task TaskC;
task TaskH

A task can belong to multiple non-preemption groups (i.e. it can share mul-
tiple internal resources). The Analysis Visualizer will automatically calculate
the correct ceiling priorities during analysis.

Note that it is not necessary to specify a duration when modeling an inter-
nal resource in this way - the Analysis Visualizer already knows how much
blocking time will be introduced by looking at the worst case execution times
specified for each task.

RTA-0S3.x provides an extension to AUTOSAR OS R3.x that allows inter-
nal resources to be shared between tasks and ISRs. However, it is not
possible to model this in the Analysis Visualizer.

Interrupt Masking

indexBlocking!Interrupt Masking

All tasks and interrupts can raise the interrupt priority level to prevent tasks
and interrupts at the same or lower IPL from executing. In the case of tasks
and controlled interrupts, this is done by means of API calls. For uncontrolled
interrupts, the IPL is modified by more direct means, such as changing the
processor status word.

Like resource locks, there may be several interrupt priority sub-clauses within
a single profile. An example of a profile that declares interrupt locks is shown
below:

Basic Modeling



5.5

profile {
this priority duration 120000 cycles;
interrupt priority 0S level duration 24000 cycles;
interrupt priority 42 duration 8000 cycles;

Each clause specifies the duration at which the task (or ISR) spends
at the indicated IPL. In AUTOSAR OS R3.x applications, the use of the
Suspend0SInterrupts() API call locks to “OS level”. The Analysis Visualizer
allows you to use the shorthand 0S level to define this priority level and au-
tomatically calculates the value of 0S level from the interrupt priorities you
specify.

To model disabling all interrupts using SuspendAllInterrupts() and
DisableAlllInterrupts() you need to specify that you lock to the priority
of the highest priority interrupt in your system. In the example above this is
assumed to be priority level 42. You will need to identify this priority level
yourself and specify the time spent at this level for each task and ISR that
executes SuspendAllInterrupts() and/or DisableAllInterrupts().

To avoid the need to modify every executable object each time you add a
new higher priority interrupt, the use of the Analysis Visualizer macro prepro-
cessor is recommended. A macro called MAXIMUM can be defined and used as
follows:

(define MAXIMUM 42)
profile {
this priority duration 120000 cycles;

interrupt priority 0S level duration 24000 cycles;
interrupt priority MAXIMUM duration 8000 cycles;

When a new interrupt is added that is higher priority than the current highest
priority interrupt, only the definition of MAXIMUM needs to be changed.

Modeling Timing Relationships with Transactions

Profiles are used to specify the detailed timing behavior of individual exe-
cutable objects. In order to analyze a system containing these objects, it is
necessary to describe timing relationships between execution profiles. For
this purpose, the Analysis Visualizer uses a transaction to model timing re-
lationships. Any number of transactions can be created and the Analysis
Visualizer assumes that all transactions are asynchronous.

Each transaction is used to link the following information:

Basic Modeling

51



5.5.1

52

e The delays between consecutive releases of tasks/ISRs into the system.
e The profiles of tasks and interrupts that are released.

e Delays (if any) between the arrival of the triggering event and the release
of tasks and interrupts .

There are two categories of transaction:

timeline transactions allow you to specify a notional timeline of events
and associated delays. A timeline transaction is typically used to model
the activation of tasks via an alarm or from a schedule table expiry
point, this is described in Section 5.8.

bursting transactions provide a shorthand for expressing sporadic events.
You typically use an bursting transaction to model the case where an
ISR activates a task but you can specify arbitrarily complex bursting
clauses. Bursting transactions are also used to model situations where
something happens once.

Each profile can be associated with exactly one transaction. In the case
of a timeline transaction, the profile can appear multiple times in the
same transaction. If you need the same task or ISR to appear in multiple
transactions then you will need to create multiple profiles. Section 6.2
describes this advanced form of modeling in more detail.

Note that, so far as the analysis is concerned, there is no difference between
an arrival directly causing a set of executable objects to be released and
a sequence of executable objects activating other executable objects when
upwards activation is forbidden. This is the response time is always measured
from the initial trigger, so the observed behavior of the above two situations
is identical. This is illustrated in Figure 5.2.

In the second case, even though Task3 activates Task2 and Task2 activates
Taskl, the effect is as if all three tasks had been released at the same time.
This means you do not need to specify when a ISR activates a task (or when
a task activates another task) - it is sufficient for analysis simply to know that
it does.

How transactions are used

DMA analysis is based upon the notion of a critical instant - that point in time
that represents the worst-case set of arrivals of tasks and interrupts. If the
system is schedulable at a critical instant, then if is schedulable for other
(non-critical) alignments. Classic DMA has a critical instant that corresponds
to every higher priority object being released at the same time as the object

Basic Modeling



Ermination of ISR @

ErminateTask();

ErminateTask();

ErminateTask();

v

Errival of ISR Time

(a) Objects released simultaneously

\Ermination of ISR @

ErminateTask();

\ErminateTask();

EtivateTask(Task(S);

ErminateTask();

ActivateTask(Task@
ActivateTask(TaskE
>
- >
Wiveﬂ of ISR Time

(b) Objects released by downwards activation

Figure 5.2: Simultaneous versus activation chain release of executable ob-

Basic Modeling

53



5.5.2

54

of interest, i.e. there is some notional time zero at which the task under
analysis is released together with every higher priority task or ISR. This is
why the DMA equation from Chapter 3.4 calculated the interference from all
higher priority objects.

However, this model is pessimistic if it is known that some higher priority
objects are never released at the same time. It may be the case that the
execution of a higher priority task is offset from notional time zero in such a
way that it does not contribute to the interference suffered by the task under
analysis.

Each transaction defined specifies the offsets between releases of executable
objects. When the Analysis Visualizer runs it calculates the critical instant
(or critical instants) for each task by checking every possible alignment of
all transactions and then performing the analysis. This means that Analysis
Visualizer only includes interference from higher priority tasks that can be re-
leased while the task under analysis is in the ready or running state, allowing
the analysis to be less pessimistic (i.e. more accurate) than it would be if
classical DMA was performed.

What transactions are required?

In typical usage, a transaction will be required for each of the following:

e Each Category 1 interrupt.
e Each Category 2 interrupt that activates tasks directly.

e Each task that is activated by an alarm driven by an RTA-OS3.x software
counter.

e The set of alarms driven by an RTA-OS3.x hardware counter.

e Each AUTOSAR OS R3.x Schedule Table.

As the transaction is used as the basis of analysis, any executable objects
that are not referenced by a transaction will not be included in the analysis.

Basic Modeling



5.6

Omitting executable objects from the analysis may result in incorrect
results. This applies irrespective of whether the omitted objects have
deadlines or other timing behavior that needs to be guaranteed: the
mere presence of the objects in the system can cause other objects to
become less schedulable. This occurs because any low priority tasks in
the system lock the interrupt priority level to OS level for short amounts
of time, and thus introduce a certain amount of blocking. High prior-
ity tasks (that is tasks with a higher priority than any tasks that are
analyzed) or interrupts will increase the response time of analyzed ex-
ecutable objects. If these effects are not accounted for in the analysis,
the Analysis Visualizer may report that the system is schedulable when
it is not.

Before looking at transactions in more detail, it is necessary to understand
how to model timelines. The following sections explain how to model time-
lines and activators before looking at how timeline transactions and bursting
transactions are build in Sections 5.8 and 5.9 respectively.

Timelines

A timeline is used to define when tasks (and optionally ISRs) are released
into the system. Each timeline contains a list of arrivalpoint declarations that
specify what happens at that point and how long elapses until the next ar-
rivalpoint. The timeline is associated with a timebase so that you can specify
arrivalpoint delays in meaningful units.

timeline {
timebase tb_ms;
sequence {
arrivalpoint somename ... // Specify which tasks are
released
arrivalpoint ...
arrivalpoint ...
next ... // (Optionally) repeat from a named point
}

The timeline can also specify a next clause after the sequence of arrivalpoints
which specifies a named arrivalpoint at which to repeat processing.

Each arrivalpoint has five properties:

1. An (optional) identifier which is required if you need to refer to the ar-

rivalpoint. Typically only the first arrivalpoint needs to be named as
this will be the arrivalpoint from which the timeline is started. Other ar-
rivalpoints need only be named if they need to be referenced by next
clause. In the above example, the second and third arrivalpoints are
not named.

Basic Modeling

55



56

2. A set of task profiles, which specify tasks to be executed.

3. A delay (called ‘delay’) before the next arrivalpoint occurs.

A A delay of zero means “the full modulus value of the associated

timebase”, not “zero delay”.

4. A (optional) next clause which specifies which arrivalpoint will be pro-
cessed next. If the next clause is omitted then the next arrivalpoint in
the timeline’s configuration is processed.

5. An (optional) analysis clause that is used to provide additional informa-
tion to the Analysis Visualizer for accurate schedulability analysis.

Delays are expressed in units of the timeline’s timebase. When the delay is
converted into ticks of the timebase, it must not exceed the modulus of the
timebase. If you want a delay that exceeds the timebase modulus, then you
can add arrivalpoints with no tasks to span the large delay required.

The following example shows a timeline with two arrivalpoints that specifies
that task t1 and task t2 should be activated together, then there should be a
delay of 20 ms, then task t1 should be activated followed by another delay of
20 ms before the repeating:

timeline {
timebase tb_ms;
sequence {
arrivalpoint start {
task t1;
task t2;
delay 20 ms;
}
arrivalpoint {
task tl1;
delay 20 ms;
}

next start; // Repeat from start

The next clause does not have to go back to the start of the timeline. This is
useful if you want an initialization part where tasks are activated in a special
pattern, then the rest of the timeline is the looping part to repeat the acti-
vation of tasks. In the configuration file you can only put next after the last
arrivalpoint declaration in a timeline or inside an arrivalpoint itself.

A timeline with a loop is a good way to handle periodic tasks. You can con-
struct a repeating timeline where all the periodic tasks appear in the right

Basic Modeling



5.6.1

5.6.2

places to give the periodic behavior required. The timeline will need to be
long enough so that each task appears at least once, and this usually means
that the duration of the timeline is as long as the least-common multiple
(LCM) of the periods of all the tasks.

Arrivalpoint Analysis Clauses

The Analysis Visualizer uses the information supplied by the arrivalpoint for
analysis. When an optional analysis clause is given, the delay and next anal-
ysis attributes override the application attributes as far as timing analysis is
concerned. When profiles are given in the application attributes and in the
analysis-only attributes, all profiles from both sources are considered to be
released. For example consider the following arrivalpoint:

arrivalpoint {

task t1;

delay 20 ms;

next X;

analysis {
task t2;
delay 10 ms; // Delay will override 20 ms
next Y; // Next overrides X with Y

When this arrivalpoint occurs, the Analysis Visualizer would consider that the
arrivalpoint releases both t1 and t2 and, instead of processing arrivalpoint X
20 ms later, arrivalpoint Y would be processed 10 ms later.

Periodic Timelines

It can be quite awkward to have to work out the timeline to activate tasks
periodically when there are more than a small number of tasks. For example,
assume a timeline is required to model a system where task tl will be acti-
vated every 5ms, task t2 will be activated every 10ms, and task t3 will be
activated every 20ms. Task t3 also has an offset of 5ms relative to the start
of the timeline. The resulting timeline would be:

timeline {
timebase tb3;
sequence {
arrivalpoint start {
task t1;
task t2;
delay 5.0ms;
}
arrivalpoint {
task t1;
task t3;

Basic Modeling

57



58

delay 5.0ms;

}

arrivalpoint {
task t1;
task t2;
delay 5.0ms;

}

arrivalpoint {
task t1;
delay 5.0ms;

}

next start;

As this is a common type of model, the Analysis Visualizer configuration syn-
tax has a shorthand form called a periodic timeline declaration. This lets you
define the period and offset of each task. Offsets must be less than the period
of the task, and at least one task in the timeline must have an offset of zero.

timeline {
timebase millisecond;
periodic start {
task tl every 5ms offset Oms;
task t2 every 10ms offset Oms;
task t3 every 20ms offset 5ms;

This periodic timeline has identical behavior to the sequential timeline, but
is must easier to write. When the Analysis Visualizer analyses the system, it
will automatically expand the periodic timeline into the sequential timeline,
creating arrivalpoints as required.

When the sequential timeline is generated, it will have a number of arrival-
points equal to the Least Common Multiple (LCM) of the periods in the pe-
riodic timelines. You should check that the length of each periodic timeline
is reasonable given the task periods, sometimes small rounding errors in the
unit conversions can result in a set of periods that have a large LCM, even
though the specified values are harmonic. The Analysis Visualizer provides
the -t option that can be used to check this.

Multiple Offsets

You can give a task more than one offset (as long as all the offsets for the task
are less than the period). This makes a timeline where the task is activated
several times for each period. You might find this useful when you need the

Basic Modeling



task to make an output for the first time it runs then a short time later the
task to run again and check the output.
timeline {
timebase tb3;
default readonly;

periodic start4 {
task t2 every 100ms offset 0 ms offset 5.5 ms;

}

In the above timeline, task t2 will be activated at 0, 5.5ms, 100ms, 105.5ms,
200ms, 205.5ms, and so on (measured relative to the start of the timeline).

5.6.3 Single-Shot Timelines

If the final arrivalpoint does not specify a next clause then the timeline be-
comes single-shot timeline. This means that once the sequence of arrival-
points has occurred the timeline is assumed to be stopped. A single-shot
timeline is quite useful when you want to cause a sequence of phased activa-
tions in response to a sporadic event.

The following declaration specifies a one-shot timeline:

timeline {
timebase tb3;
sequence {
arrivalpoint first {
task t1;
task t2;
delay 10.0ms;
}
arrivalpoint second {
task t1;
task t2;
delay 5.0ms;
}
arrivalpoint third {
task t1;
delay 5.0ms; // Don’t care, there is no next
}
}
}

Repeating a Single-Shot Timeline

If a transaction is declared which references a single-shot timeline, the anal-
ysis will consider this to mean that the timeline only occurs once.

Basic Modeling

59



60

However, a single-shot timeline may be processed repeatedly by the system.
In this case, you need to indicate that the timeline is single shot, but that it
repeats for analysis purposes. To achieve this, the final arrivalpoint must be
annotated with an analysis. For example the final arrivalpoint in a single-shot
timeline could be set to the following:

timeline {

arrivalpoint first {

}

arrivalpoint third {
task t1;
delay 5.0 ms; // Don’t care - last point
analysis {

next ap_first; // Timeline can be repeated

}

Unless the enclosing timeline has a next clause, the delay clause of the fi-
nal arrivalpoint of a one-shot timeline has no meaning for the application.
However, when the analysis clause of this arrivalpoint specifies a "next" ar-
rivalpoint, the analysis will use this value to give the time between repetitions
of the timeline. It is good practice to also specify this delay in the analysis
clause. This clearly allows a reader of the configuration file to see that the de-
lay has been provided for analysis purposes. Thus the above example might
be modified as follows:

arrivalpoint third {

task t1;

delay 5.0 ms; // this value is ignored for application
purposes as this arrivalpoint is the last in a one shot
timeline

analysis {
delay 5.0 ms; // in the analysis, this overrides the

other delay value

next first;

The value selected for the delay between subsequent repetitions of the
timeline needs to be based upon knowledge of the application. If the
delay given is larger than the minimum delay, the result of the analysis
may be optimistic and could falsely indicate that a system is schedula-
ble; whereas too-small a value results in unnecessary pessimism. If you
are in doubt then make this one tick of the underlying timebase.

Basic Modeling



5.7

5.7.1

Activators

An activator is used to model the processing of the arrivalpoints in a timeline,
activating tasks and waiting for the necessary delays (represented in ticks).
An activator provides the encapsulation of the AUTOSAR OS R3.x counter
model.

Each activator contains a logical counter that counts ticks and is associated
with a timebase, which describes how the counter ticks (the range, granular-
ity, units, etc). The activator uses the counter to determine when the required
number of ticks has occurred so that it can process the next arrivalpoint.

An activator can only process timelines that are associated with the same
timebase as the activator. This is to make sure that the ticks for arrivalpoint
delays are in the same units as the ticks counted by the activator’s counter.

While the Analysis Visualizer allows several activators to be associated
with the same timeline at the same time, this represents a model which
is not permitted in AUTOSAR OS R3.x. In your models, you should make
that any timelines you declare are associated with exactly one activator.

There are two types of activator:

coarse activators capture the ticking of counter and model the case of a
software counter in AUTOSAR OS R3.x.

fine activators assume that counting is performed by external hardware,
typically a timer driver, and the activator processes each arrivalpoint
only when a requested number of ticks have occurred. This models the
case of a hardware counter in AUTOSAR OS R3.x.

Activator declaration

Assume the following timebase declaration:

timebase low_resolution {
units s {
define 1 as 1000 ticks; // frequency = 1 kHz

}
units ms {

define 1000 as 1 s;
}

modulus 65536 ticks;

You can declare a coarse activator called software_counter associated with
timebase tb4 like this:

Basic Modeling

61



activator software_counter {
timebase low_resolution;
coarse;

A fine activator is declared in much the same way as a coarse activator but
you must specify placeholders for the driver callbacks. Typically you will use
this when you have a high resolution timebase:

activator hardware_counter {

timebase high_resolution;

fine;

driver callbacks {
now 0s_Cbk_Now_hardware_counter ;
cancel 0s_Cbk_Cancel_hardware_counter ;
state 0s_Cbk_State_hardware_counter ;
set 0s_Cbk_Set_hardware_counter ;

é The driver callbacks are not used by the analysis and the names
given are not important. They are required only to make the configura-
tion file syntactically correct.

5.8 Timeline Transactions

A timeline transaction will directly reference the first arrivalpoint in a time-
line. This arrivalpoint and each subsequent one in the timeline represents
the arrival of some (usually external) event. In the case of timeline transac-
tions that are driven by activators, the Analysis Visualizer needs to know how
to account for the occurrence of interrupt and the associated processing of
the arrivalpoint.

Consider the following timeline:

timeline {
timebase tb_millisecond;
default readonly;

sequence {

arrivalpoint ap_first {
task t3;
delay 5ms;

}

arrivalpoint ap_second{
task t2;
delay 8ms;

}

arrivalpoint ap_third {
task tl1;

62 Basic Modeling



L 5ms 8ms L 6m
[ [

“ -
"l ]

>
>
‘ ap_first ap_second ap_third ‘ ap_first Time

Figure 5.3: Automatic inclusion of a fine activator profile in a timeline trans-
action

delay 6ms;
}

next ap_first;

A transaction can be based upon this timeline by specifying the start arrival-
point (ap_start) and by giving the executable object that drives the activator
along the timeline as follows:

transaction timeline_transaction {
start ap_start;
activator actl driven by il;

If the activator that drives this timeline (actl) is a fine activator, the exe-
cutable object referenced by the profile i1 will run whenever an arrivalpoint
on the timeline becomes due. Therefore, to model this correctly, the Analysis
Visualizer automatically includes the invocation of il in every arrivalpoint in
the timeline. Figure 5.3 shows the inclusion of 11 and the resulting execution
at each arrivalpoint.

This is equivalent to defining the following analysis-only timeline and associ-
ated transaction:

timeline {

timebase tb_millisecond;

default readonly;

sequence {

arrivalpoint ap_first {
analysis {

interrupt il;
task t3;
delay 5ms;

Basic Modeling

63



64

‘ 5m 8ms %— 6m }

Missed ISRs Missed ISRs Missed ISRs Missed ISRs
A A A A

A}

I EEER ] TR

tz‘ -
m‘ l:‘

>
>
ap_first ap_second ap_third l ap_first Time

Figure 5.4: Missed profile releases with automatic inclusion of a coarse acti-
vator profile in a timeline transaction

}
arrivalpoint ap_second {
analysis {
interrupt il;
task t2;
delay 8ms;
}
}
arrivalpoint ap_third {
analysis {
interrupt il;
task t1;
delay 6ms;
next ap_first;
}
}

If actl is a coarse activator, then the profile for i1 which is responsible for
‘ticking’ the software counter modeled by the activator is not automatically
included in the timeline. This is because one executable object may ’tick’
more than one activator, and a timeline will typically require more than one
tick per activation.

For example, consider assume that il is driven by a 1 millisecond clock in-
terrupt. In this case, including the ISR profile in the timeline will result in four
releases of the ISR profile being missed between ap_first and ap_second
and then seven releases being missed between ap_second and ap_third.
The impact of this is shown in Figure 5.4 where the shaded arrivals of the
coarse activator are the ones that would be missed.

Basic Modeling



5.9

Instead, when a coarse activator is used to drive a timeline, it must be mod-
eled as a separate transaction. The following example shows how this is
modeled as a timeline transaction:

timeline {

timebase tb_millisecond;

readonly;

sequence {

arrivalpoint ap_int {
analysis {

interrupt il;
delay 1 ms;
next ap_int;

}
}

transaction tr_coarse_activator {
start ap_int;

}

The Analysis Visualizer will align the transactions for analysis and then deter-
mine schedulability when arrivals align as shown in 5.5

Note that the use of the coarse activator results in additional interference in
the execution of the tasks and therefore increases task response time.

Bursting Transactions

Bursting transactions are a useful means for describing any event that is ini-
tiated by an interrupt. Either sporadic or periodic interrupts can be modeled
with bursting transactions. They allow the user to express a set of rules de-
scribing the arrival pattern of the arrivals.

transaction tr2 {
bursting {
1 times in 100ms;

}
interrupt istl;
task taskl;

In this case, a single arrival rule is used. This results in a transaction with peri-
odic arrival behavior. Bursting transactions can be used as an alternative way
to model timer interrupts, without the need to explicitly provide arrivalpoints.
In this case, this transaction has identical behavior to the simple timeline
transactions shown in Section 6.9.1

Basic Modeling

65



66

)-1ms

ARRRRRARRRRRRRRRRRRRRE

Time
} 8m } 6ms
3
2
1

>
\i’ﬁ rst ap_second ap_third \ﬁ*ﬁ rst Time

(b) Transaction timeline_transaction

)-1 ms»
;— 5ms 8ms ;— 6ms —}
i1
3
t2
t1
>
—>
\ijrst ap_second ap_third \ﬁjlrst Time

(c) Execution of the aligned transactions

Figure 5.5: Alignment of coarse activator transactions for analysis

Basic Modeling



Multiple Arrival Rules

A more complex example of a bursting transaction uses multiple arrival rules:

transaction tr3 {
bursting {
1 times in 1 ms; // Rule 1
2 times in 5 ms; // Rule 2
3 times in 20 ms; // Rule 3

}

interrupt il;
task t2;

task t3;

In this example, the transaction describes the timing behavior of an inter-
rupt and two tasks. The bursting clause of the transaction specifies the rules
governing the frequency of arrivals. In this case, the release will occur:

Rule 1 No more than once in any one millisecond;

Rule 2 No more than twice in any five milliseconds;

Rule 3 No more than three times in any twenty milliseconds.
These rules combine to form a worst-case arrival pattern as follows:
e 0Oms, Ims, 2ms, 3ms...(Rule 1 allows the minimum inter-arrival time of

1ms).

e 0Oms, Ims, 5ms, 6ms, 10ms, 11ms...(Rule 2 prevents more than 2 ar-
rivals in a period of 5ms, so bursts of 2 are separated by 5ms periods).

e 0Oms, 1ms, 5ms, 20ms, 21ms, 25ms...(Rule 3 prevents more than 3 ar-
rivals within a 20 ms interval).
Figure 5.6 shows the impact of each rule on the arrivals.

When more than one arrival rule is given, another rule covers the values that
are allowed. If values are arranged in increasing order, each successive pair
of values (arrivals, interval) must be greater than the previous pair. The rate
of arrivals (that is, arrivals/interval) must strictly decrease.

Following on from the previous example you can see that:

e 1 time <2 times <3 times

Basic Modeling

67



5.9.2

68

| Crrrrrrrrr e Time.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1

|

I

4

(@) 1timesin1lms

N

Crrrrrr Tl Time.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

~N —
o —}
©o —]

(b) 2 timesin5 ms

. »
‘ Time

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

[p—
w —}
o

o —}
~ — 1}
o — |
© —}

(c) 3 timesin 20 ms

Figure 5.6: Impact of multiple bursting clauses on arrivals

e 1ms <5ms <20ms

e 1/ms (1 time in 1ms) >0.4/ms (2 times in 5ms) >0.15/ms (3 times in
20ms)

Generally, pessimism in analysis will become lower the more bursting clauses
that are given. However, if the bursting interval is greater than the longest
busy period for the system, the arrival rule doesn’t give you any benefit. So,
in this example, if you know that the system will never run for longer than
20ms before the idle task runs, then Rule 3 will not improve the accuracy of
the analysis.

Specifying that something happens just once

A bursting clause of ‘1 times in forever’ means that the arrival of the event
can only occur once during the operating cycle of the system. This could be
used to represent the triggering of a one-off safety device, such as an airbag
in a vehicle.

transaction tro0 {
bursting {
1 times in forever;

}

interrupt air_bag;

Basic Modeling



5.10

When you have a bursting clause of ‘1 times in forever’ the Analysis Visualizer
will automatically search for the worst case scenario for the event to occur
and then check whether the system is schedulable if it occurs at that time.

Modeling Alarms

From the preceding discussion about timelines and transactions it should be
clear that there are a number of ways available to model AUTOSAR OS R3.x
alarms.

The choice of how to model the alarms depends on two factors:

1. what type of counter, software or hardware, is used to drive the alarms.

2. whether the alarms need to be modified after they are initially started.

Alarms represent independent, asynchronous, releases of tasks into the sys-
tem. This means that they must be modeled as separate transactions. Even
when alarms are driven by the same counter, there is no guarantee that they
are synchronized with respect to other alarms on the same counter in the gen-
eral case. This occurs because the alarms times and periods can be modified
at runtime with the SetAbsAlarm() and SetRelAlarm() API calls. Modeling
alarms as independent transactions therefore ensures that worst-case timing
behavior of the alarms is modeled.

It is only possible to model task activation from an alarm. It is not pos-
sible to model event setting or alarm callbacks.

To model alarms, the following transactions need to be defined:

e a bursting transaction for the counter tick

e a bursting transaction for each alarm attached to the counter

All the transactions should use the same timebase.

It does not matter whether alarms are driven by a hardware or a soft-
ware counter. In the case of a software counter driven alarm, there will
always be a tick of the counter. In the case of a hardware counter, be-
cause it is possible to set and reset the alarms independently, in the
worst case arrival for the counter interrupt will be an expiry of the hard-
ware counter for every tick. It is only possible to reliably account for
reduced interrupt interference if the characteristics of the alarms driven
by a hardware counter are fixed. See Section 5.10.2 for further details.

For example, assume a system with an interrupt which ticks a software
counter every 1ms. There are two alarms in the system. The first alarm

Basic Modeling

69



5.10.1

70

is single-shot and programmed to expire at a range of values between 10
and 200ms. Each expiry results in a new value being programmed. The sec-
ond alarm is auto-started and runs at a period of 50ms. It is never modified
during runtime.

The following declarations model this system:

transaction timer_interrupt {
bursting {
1 times in 1 ms;

}
interrupt timer;
}
transaction alarml {
bursting {
1 times in 10 ms;
}
task t1;
}
transaction alarm2 {
bursting {
1 times in 50 ms;
}
task t2;
}

When the analysis is run, it will check the alignments of the three transactions
to identify the worst case phasing of releases (though it should be obvious
that this will be every 50ms when the interrupt and both alarms can occur
simultaneously).

Note that there is no difference between the models for the single-shot alarm
which is programmed multiple times and the alarm with is programmed to
run periodically. For the purposes of analysis these difference runtime pro-
gramming models have the same net effect in the time domain - they release
execution time into the system. The Analysis Visualizer does not need to
know how the time is released - simply the durations between time being
released.

Reducing Pessimism for a single alarm

In the previous example alarml was modeled using the shortest time for the
bursting interval. This is because this represents the worst case between two
successive expiries of the alarm. If there is additional information available
about how alarml is set and reset at runtime then it would be possible to
create a more accurate model. For example, assume that it can be identified
that alarml is set in the following sequence:

Basic Modeling



10 ms, 50 ms, 160ms, 30ms, 200 ms, 10 ms, 50 ms, 160ms, 30 ms, 200 ms,
10 ms, ...

In this case, the arrivals of the alarm can be more accurately modeled as a
timeline transaction:

timeline alarml_sequence {
timebase tb_millisecond;

sequence {
arrivalpoint first_expiry {
analysis {
task t1;
delay 10 ms;
}
}
arrivalpoint {
analysis {
task t1;
delay 50 ms;
}
}
arrivalpoint {
analysis {
task t1;
delay 160 ms;
}
}
arrivalpoint {
analysis {
task t1;
delay 30 ms;
}
}
arrivalpoint {
analysis {
task t1;
delay 200 ms;
}
}

next first_expiry;

}

transaction alarml {
start first_expiry;

}

Basic Modeling 71



5.10.2 Reducing pessimism for multiple alarms

A common use of alarms an AUTOSAR OS R3.x system is to define their peri-
ods at configuration time, autostart the alarms at runtime and not make any
runtime modifications to their periods or expiry times. However, if the alarms
are auto-started and they are not modified at run-time, this model is unnec-
essarily pessimistic because it fails to account for alarms that run at an offset
to each other.

For example, if two alarms run every 10 ms and activate tasks that run for 2
and 3 ms respectively then the analysis must assume in the worst case that
the alarms occur simultaneously, resulting in the lower priority task suffering
2 ms interference from the higher priority task and respond in 5 ms in the
worst case. However, if it is known that the second alarm is offset from the
first alarm by 5ms then the two alarms will not occur simultaneously and,
therefore, the lower priority task suffers no interference and responds in 3ms
in the worst case.

If it can be guaranteed that two (or more) alarms on the same counter are
auto-started and are not used in SetAbsAlarm() and SetRelAlarm() at run-
time, then this pessimism in the analysis can be removed by modeling the
alarms as a timeline transaction as follows:

task tl1l {
entry tl_entry;
profile {
this priority duration 2ms;
}
}
task t2 {
entry t2_entry;
profile {
this priority duration 3ms;
}
}
timeline {
timebase millisecond;
periodic start {
task tl every 10ms offset Oms;
task t2 every 10ms offset 5ms;
}
}

transaction alarml {
start first_expiry;

}

72 Basic Modeling



If alarms all the alarms associated with a specific hardware counter are mod-
eled on the same timeline transaction, then pessimism can be reduced fur-
ther by modeling the hardware counter as a fine activator used by the trans-
action:

activator hardware_counter {

timebase high_resolution;

fine;

driver callbacks {
now 0s_Cbk_Now_hardware_counter ;
cancel 0s_Cbk_Cancel_hardware_counter ;
state 0s_Cbk_State_hardware_counter ;
set 0s_Cbk_Set_hardware_counter ;

}

transaction alarml {
start first_expiry;
activator hardware_counter driven by timer_interrupt;

This will mean that the analysis only accounts for the time released by the
hardware counter interrupt when there is an alarm to expire. If the hardware
counter was running at 1ms resolution then, instead of the analysis assum-
ing that an interrupt occurs every 1ms, it would now from the transaction
that an interrupt will only occur every 5ms, resulting in 80% less interrupt
interference from the hardware counter driver.

You are restricted to one fine activator driver per transaction so you

A cannot use this model if there are alarms driven by the same hardware
counter that are not included in the transaction, or there are schedule
tables that are driven by the same hardware counter.

5.10.3 Alarms that occur once

Alarms that occur at most once can be modeled trivially as bursting transac-
tions:

transaction runs_once {
bursting {
1 times in forever;

}

task emergency_task;

This model is only appropriate if the alarm occurs once only. This is not

A the same as a single-shot alarm (i.e. one with a period of zero) that can
be set multiple times during system execution which should be modeled
in the way described in Section 5.10.

Basic Modeling

73



5.11

5.11.1

74

Modeling Schedule Tables

Schedule tables can be modeled trivially as sequential timelines. You need to
declare an arrivalpoint for each expiry point on the schedule table.

The Analysis Visualizer only allows you to model task releases from a
schedule table. It is not possible to model event setting. See Section 6.5
for further details.

The schedule table model in AUTOSAR OS R3.x is very similar to the sequen-
tial timeline model in the Analysis Visualizer so each schedule table expiry
point can be mapped onto an arrivalpoint. However, there are differences in
how delays between releases occur:

Schedule Table Timeline

Expiry points do not have to occur
at the notional zero of the table. The
first expiry occurs at a (potentially
non-zero) number of ticks from the
start of the table.

There must be an arrivalpoint at
zero offset from the start of the
timeline.

Expiry points occur at an absolute
offset number of ticks measured
from the start of the table

Arrivalpoints occur at a relative de-
lay from the previous expiry point.

A single-shot schedule table ends
when a final delay has expired. The
final delay is equal to the duration of
the table minus the largest offset.

The timeline ends when the final ar-
rivalpoint is processed. Any final de-
lay is ignored as there are no re-
leases after the final arrivalpoint.

The following sections explain how to map the schedule table model onto the
timeline model.

Using Sequential Timelines

Any schedule table can be modeled by a sequential timeline.

Each expiry point on a schedule table has a unique offset. This property
ensures that expires are totally ordered. Arrivalpoints in the schedule table
model must follow the same ordering. Each arrivalpoint must include the
same set of tasks released as found on the expiry point.

The delay to the next arrivalpoint should be calculated by subtracting the
offset for the current expiry point from the offset of the next expiry point. If
the arrivalpoint models the final expiry point then the offset of the next expiry
point needs to be replaced by the duration of the schedule table.

For example, consider a repeating schedule table with a duration of 25ms
and the following expiry points:

Basic Modeling



Expiry Point Offset Activated Tasks

epl Oms | t1, t3
ep2 3ms | t2

ep3 7ms | t1,t2
ep4 19ms | t2,t3

This could be modeled with the following periodic timeline:

timeline schedule_table_duration_25ms {
timebase tb_millisecond;

sequence {

arrivalpoint epl {

task tl1;

task t3;

delay 3ms; // 3ms - Oms
}
arrivalpoint ep2 {

task t2;

delay 4ms; // 7ms - 3ms
}
arrivalpoint ep3 {

task t1;

task t2;

delay 12ms; // 19ms - 7ms
}
arrivalpoint ep4 {

task t2;

task t3;

delay 6ms; // 25ms (duration) - 19ms
}
next epl;

Note that because the schedule table is defined as ‘repeating’ then a next
clause is needed to tell the Analysis Visualizer that the timeline loops back to
the first arrivalpoint.

If the schedule table is modified then make sure that the timeline is up-
dated to match the new configuration. In particular, note that changing
an offset for an expiry point will mean that the delay for the associated
arrivalpoint and every later arrival point will need to be updated.

Non-zero initial delays

If the initial delay is non-zero then an arrivalpoint is required to capture the
start of the schedule table. The following example assumes an initial delay of
10 ms:

timeline non_zero_initial_offset {
timebase tb_millisecond;

Basic Modeling

75



5.11.2

76

sequence {
arrivalpoint fake_arrival_at_zero {
// Do nothing
delay 10 ms; // Schedule table Initial delay

This declaration ensures that the Analysis Visualizer correctly accounts for
the work done by the schedule table driver to start the schedule table, even
though no profiles are released.

Single-Shot Schedule Tables

If the schedule table is single-shot then an arrival point will need to be created
to model the end of the schedule table and there must be no next clause
specified:

timeline single_shot_schedule_table {

timebase tb_millisecond;
sequence {

arrivalpoint fake_table_end {
// Do nothing
delay 1 tick; // Ignored, there is no next.

This fake arrivalpoint captures the work that needs to be done by the OS
to change the schedule table start from RUNNING to STOPPED as this does not
automatically happen when the last sequence of task releases are made from
the final expiry point.

Recall however from Section 5.6.3 that the Analysis Visualizer assumes that
a single-shot timeline runs once in the entire run-time of the system. If the
single-shot schedule table can be started multiple times then the final arrival-
point will need to model this as suggested in Section 5.6.3.

Using Periodic Timelines

If the schedule table is repeating then it can be modeled as a periodic time-
line. This removes the need to convert between offsets on the schedule table
and delays on the sequential timeline as offsets can often be used directly.

Rather than map each schedule table expiry point onto an arrivalpoint, each
task reference in any expiry points is modeled with a periodic timeline entry.

Basic Modeling



The period specified for the task should equal the duration of the schedule
table.

The offsets used for each periodic timeline entry are equal to the specified
expiry point offsets minus the initial offset (i.e. the smallest expiry point
offset in the schedule table). If the initial offset is zero, then this means that
expiry point offset figures can be copied directly from the OS configuration.

For example, consider a schedule table with a duration of 50ms and the fol-
lowing expiry points:

Expiry Point Offset | Activated Tasks

Oms | t1, t3
3ms | t2
7ms | t1, t2
19ms | t2, t3
21ms | t1
35ms | t3
40ms | t1, t2, t3
47ms | tl

This could be modeled with the following periodic timeline:

timeline {
timebase millisecond;
periodic start {
task tl every 50ms offset Oms offset 7ms offset 21ms
offset 40ms offset 47ms;
task t2 every 50ms offset 3ms offset 7ms offset 19ms
offset 40ms;
task t3 every 50ms offset Oms offset 19ms offset 35ms
offset 40ms;

5.11.3 Synchronized Schedule Tables

Synchronized schedule tables allow the delays between adjacent expiry
points to be modified at runtime within pre-defined bounds) to re-synchronize
the schedule table with an auxiliary (so called “global”) time reference.

The Analysis Visualizer does not need to know about any delays becoming
longer as this cannot lengthen the busy period of a task or ISR. However,
delays which can be shortened need to be modeled.

One approach is simply to use the shortest delays in the timeline model. The
shortened delays are defined by Next.Offset-Next.MaxRetard-This.Offset.

Basic Modeling

77



A more elegant way to model this is to use the analysis clause of the ar-
rivalpoint to capture the worst case behavior when the full synchronization
adjustment is made as follows:

arrivalpoint adjustable {
task t1;
delay 20 ms; // Next.Offset-This.Offset
analysis {
delay 11lms; // Next.Offset-Next.MaxRetard-This.Offset
}

The analysis delay overrides the arrivalpoint delay whenever it is
present.

5.11.4 Schedule Table Transactions

A schedule table transaction needs to reference the first arrivalpoint on the
schedule table. If the schedule table is driven by a software counter then
the counter should be modeled as a coarse activator and referenced in the
transaction:

activator software_counter {
timebase millisecond;
coarse;
}
transaction schedule_table {
start schedule_table_first_arrival;

}

If the schedule table is driven by a software counter, then the counter will
need to be modeled as a bursting transaction at the counter tick rate as it
was modeled for alarms:

transaction software_counter {
bursting {
1 times in 1 ms;
}

interrupt tick software_counter;

Similarly, if the schedule table is driven by a hardware counter then a fine
activator should be created and referenced from the transaction:

activator hardware_counter {
timebase millisecond;
fine;
driver callbacks {
now 0s_Cbk_Now_hardware_counter ;
cancel 0s_Cbk_Cancel_hardware_counter ;

78 Basic Modeling



state 0s_Cbk_State_hardware_counter ;
set 0s_Cbk_Set_hardware_counter ;
}
}
transaction schedule_table {
start schedule_table_first_arrival;
activator hardware_counter driven by timer_capcom_interrupt;

Q You are restricted to one fine activator driver per transaction so you
cannot share a hardware counter between multiple schedule tables or
schedule tables and alarms.

5.12 Auto-started Tasks

Where the system includes auto-started tasks, it is possible to use a simple
form of timeline transaction to represent them. For example:

timeline {

timebase tb_sw;

default readonly;

sequence {

arrivalpoint ap_autostart {
analysis {

task t1;
task t2;
delay 0 ticks; // delay is mandatory here

}
}

transaction tr_autoactivate {
start ap_autostart;

}

The arrivalpoint ap_autostart lists the profiles of the tasks that are auto-
started. Note that the timeline starting with ap_autostart contains no next
arrivalpoint. This means that the transaction will consist of only one invoca-
tion of ap_autostart. This example is used to represent the situation where
tl and t2 are auto-started.

However, if your system contains other timelines, it is possible to include the
auto-started task as the first arrivalpoint of the timeline. This results in a less
pessimistic analysis, and is therefore preferred. For example, if the applica-
tion includes a periodic timeline starting with ap_periodic_thereafter, the
auto-started tasks could be included as follows:

timeline {
timebase tb_sw;

Basic Modeling 79



5.13

80

default readonly;

sequence {
arrivalpoint ap_autostart {
analysis {
task t1;
task t2;
delay 2 ms;
}
}
arrivalpoint ap_periodic_thereafter {
task t3;
delay 1 ms;
}

next ap_periodic_thereafter;

This timeline is used by a transaction that starts with ap_autostart. The
analysis delay in ap_autostart represents the delay between starting the
0OS and the point at which the activator processes the first arrivalpoint, i.e.
the point at which an auto-started alarm or schedule table will begin to run.

If your system contains multiple timelines, each auto-started task must be in-
cluded at the start of the timeline that later activates that task. If no timeline
activates the task, it can be included at the start of any of the timelines.

The Idle Mechanism

If the idle task has been modeled (see Section 5.3.3) this will be because
it needs to be included in the analysis. Therefore, it must be included in a
transaction.

The simplest way to include the idle task is in a bursting transaction:

transaction tr_idle {
bursting {
1 times in forever;

}

os_idle_task;

Alternatively, the idle task can be modeled as an auto-started task for the
purposes of analysis. Thus, it can be included as the initial arrivalpoint of a
timeline intended for other purposes as an analysis-only arrivalpoint:

timeline {
timebase tb_sw;
default readonly;
sequence {

Basic Modeling



5.14

5.15

arrivalpoint ap_idle {

analysis {
task os_idle_task;
delay 10ms;
}
}
arrivalpoint tp_periodic {
task t5;
delay 5ms;
}
next tp_periodic;
}

}

transaction tr_idle {
start ap_idle;
}

A Note on Deadlines

Simple executable objects have an implicit deadline: they must complete
before they are next released. In AUTOSAR OS R3.x terms this means that
you are limited to modeling basic tasks.

The Analysis Visualizer automatically calculates the deadlines for your sys-
tem using this assumption. For example, a task in a bursty transaction that
executes every 20ms must complete before 20ms of time has elapsed. This
is referred to as an implicit deadline.

The Analysis Visualizer provides support for specifying explicit deadlines too,
both those that are shorter then the inter-arrival time (the task activated
every 20ms might have to generate its response no later then 10ms after
arrival) as well as deadlines that are longer than the inter-arrival time (which
happens when task activations or ISR arrivals are queued by either the OS
itself or by peripheral hardware).

Summary

e Timebases provide a way to capture time (and other types of event
steams) upon which all other analysis objects rely.

e Itis good practice to specify execution times in terms of cycles of the CPU
clock rate (modeled as an appropriate timebase) and to specify arrival
times in terms of physical units like milliseconds, degrees etc. This will
ensure that if the CPU clock rate is modified then execution times scale
correctly but the system’s timing requirements remain constant.

Basic Modeling

81



82

The execution time characteristics of an object - its execution time and
the time for which it holds shared resources and/or disabled interrupts -
are captured in a profile.

Each executable object to be analyzed needs to be declared and used in
a transaction. Objects not involved in a transaction will be excluded from
analysis.

A model can include multiple transactions.

Timeline transactions use arrivalpoints to specify when tasks (and pos-
sible ISRs) are released. A shorthand form called a periodic timeline is
provided for strictly periodic tasks. Timeline transactions should be used
to model schedule tables and can be used to model synchronized alarms.

Bursting transactions specify which tasks and ISRs are released at the
specified burst rate. Bursting transactions are used to model interrupts
(for example counter tick sources) as well as direct activations of tasks
by ISRs. Bursting transactions should be used to model alarms that are
not synchronized.

Basic Modeling



6.1

Advanced Modeling

In Chapter 5 you saw how to model useful and practical RTA-OS3.x systems
for analysis with the Analysis Visualizer. If you are happy with your models
then you should skip ahead to Chapter 7 to see how to analyze your models.

This chapter shows you how to build more complicated models, for example
those that use queued task activations and/or buffered interrupts. The chap-
ter also shows how to model the situations where a deadline is shorter than
the inter-arrival time (period) for a task/ISR and how to provide more accurate
(i.e. less pessimistic) models of execution times.

Arbitrary Deadlines and Critical Execution Time

The most common form of timing constraint that needs to be guaranteed by
schedulability analysis is the deadline . From the occurrence of a particular
external event, the time taken for the software to respond must be less than
some specified deadline. Within the configuration file, the external event is
represented as an arrivalpoint. The time at which the system responds to
that event is defined by the profile of the executable object that makes the
response.

In Chapter 5, no deadlines were specified. The Analysis Visualizer knows that
all computation must occur before a task or ISR is next released and can
therefore determine an implicit deadline for a executable object automati-
cally from the timing model.

However, it may be the case that execution must complete before the implicit
deadline is reached. For example a task may be released every 10ms but
must complete within 2ms. Examples of very short deadlines often occur
for releases that might only happen once during the lifetime of a system but
which must be completed in a very short time, for example when deploying
an airbag.

It may also be the case that the work done by the task or ISR to generate the
response completes before then end of execution, for example in the follow-
ing code the task generates the response and then performs some additional
computation before terminating:

TASK(A){
/* Do work x/
GenerateResponse();
LogDiagnosticInformation();
TidyUp();
TerminateTask();

Advanced Modeling

83



84

A

Deadline 7[

Eeneration of
Respone——————»
/| response
Arriva
‘ A %Critical Execution Time »
®

Time
Figure 6.1: Critical execution times and deadlines

Here thereisacritical execution time, from the task entry function up to
and including the call to GenerateResponse();, that must complete before
the deadline.

The Analysis Visualizer model can capture explicit deadlines and critical ex-
ecution times for each profile. In order to declare an explicit deadline for a
profile, it is necessary to specify a critical execution time and an associated
deadline. Figure 6.1 shows these values related to the execution of a task.

The arrival represents the occurrence of the external event that eventually
results in the execution of the task. There may be some delay between the
arrival event and the start of task execution, for example, a higher priority
task or ISR might already be executing.

During the execution of the task, the response is made at the critical point.
The critical execution time is the worst-case execution time measured from
the start of the task’s entry function until the point at which the critical com-
putation is completed.

The deadline gives the longest permitted time between the arrival point and
the point by which the critical computation must be completed, and is nor-
mally derived from the system requirements.

Advanced Modeling



6.2

When defining the value for a deadline, it must be noted that the mea-
surement is from the arrival of the triggering event until the time at
which the software executes the instruction representing the critical
point. The execution of the critical point will normally result in some re-
sponse being made to the outside world. The deadline specified should
take account of any hardware delays between executing the critical
code and the real-world response.

The example below shows a profile that specifies a critical execution time and
a deadline:

profile {
this priority duration 1500 cycles;
critical 500 cycles has deadline 6 ms;

The critical execution time must be no greater than the execution time for
the profile. Note that it can be equal to the execution time for the profile if
you want to make an implicit deadline into an explicit one.

There is no constraint on the deadline it can be shorter or longer than the
minimum inter-arrival time.

It is not necessary for every profile within a system to define critical points:
often ISRs and intermediate tasks have no deadlines directly associated with
their activities.

Multiple Profiles

In the systems we have modeled so far, each task and ISR has been given an
execution profile that models its worst case behavior. However, tasks or ISRs
can occur in several different execution contexts and execute for different
times. If we always use the worst case then this means that the analysis will
be pessimistic.

However, the Analysis Visualizer allows additional information to be provided
in the model to help reduce pessimism by allowing multiple profiles to be
specified for each executable object. Each profile can contains the same type
of configuration found in the single profile case.

Multiple profiles are useful when tasks or ISRs have different execution times
when called from different contexts, for example:

e An ISR that services several different sources of interrupt and its execu-
tion behavior is different for each source.

Advanced Modeling

85



e Atask that implements round-robin scheduling of its activities. For exam-
ple, the first time it is activated, it performs A; the second time it performs
B and so on.

e Atask or ISR has different behavior depending on the current application
mode.

For example, assuming the following task implementation:

TASK (taskl){
if (Condition) {
/* Short computation. */
} else {
/* Long computation. x/

}

TerminateTask();

The two paths through the task could be modeled as separate profiles as
follows:

task taskl {
entry taskl_entry;
profile short {
this priority duration 20 cycles;

}
profile long {
this priority duration 1000000 cycles;

}

Q If you declare a profile but do not use it in a transaction then the Analysis
Visualizer will assume that the profile does not run and will not include
it for analysis.

6.2.1 Identifying and Referencing Multiple Profiles

When an executable object has a single profile then the profile can be refer-
enced using the name of its parent executable object. However, when there
are multiple profiles it becomes necessary to reference specific profiles so
the Analysis Visualizer can be told which profile is released at which time.

Each profile can be allocated a unique identifier by defining a profile name
given after the profile keyword. The profile can then be referenced using
objectname.profilename. For example, assuming a model where taskl is
activated every 10ms but toggles between the short and long paths on each
invocation, the two profiles for taskl would be referenced as follows:

86 Advanced Modeling



timeline {
timebase tb_short_ticks;
default readonly;
sequence {
arrivalpoint tp_start {
task taskl.short; // Short path
delay 10ms;
}
arrivalpoint {
task taskl.long; // Long path
delay 10ms;
}

next tp_start;

6.2.2 Resource Considerations

When constructing multiple profiles for tasks or ISRs that can get resources
or disable interrupts, you must consider whether or not each profile gets each
specific resource.

In the following example, Taskl gets resource Resourcel in one profile and
disables OS interrupts in another profile.

TASK(Taskl) {
if (Condition) {

éééResource(Resourcel);
ééieaseResource(Resourcel);
} else {
6i;ableOSInterrupts();
éﬁébleOSInterrupts();

}

TerminateTask();

You only need to specify execution times for the profiles where a resource is
used or where an interrupt is disabled. You can enter zero execution times
for the profiles that do not lock the resource or disable the interrupt. If any
information is missing you may receive inaccurate results from the analysis
of your application.

task Taskl {

Advanced Modeling

87



6.2.3

6.3

88

entry Taskl_entry;
resource Resourcel;
profile pl {
this priority duration 250 cycles;
resource r2 duration 75 cycles;
}
profile p2 {
this priority duration 100 cycles;
interrupt priority 0S level duration 30 cycles;

Restrictions on Profiles and Transactions

A single profile can be associated with:

e exactly one bursting transaction; or
e exactly one timeline transaction (the profile can appear at most once per

arrivalpoint).

When an executable object declares multiple profiles then each declared pro-
file must either:

e be associated with a different transaction (for example an ISR with mul-
tiple profiles could have each profile in a different bursting transaction or
associate each with a different activator); or

e appear on the same timeline transaction (each profile can appear at most
once per arrivalpoint and they will need to be buffered (Section 6.3.1).

Handling Queuing and Buffering

All the timing models in Chapter 5 assumed that deadlines were equal to the
inter-arrival time - i.e. that executable objects must complete before their
next release. The Analysis Visualizer calls this simple behavior. Section 6.1
explained how to relax this constraint by showing how arbitrary deadlines
could be modeled.

When a deadline is longer than the minimum inter-arrival time it follows that
one (or more) invocations can be pending at any moment in time. Obviously,
if all arrivals are periodic and the deadlines are longer than the period then
the system will never be schedulable. However, sometimes the tasks and
ISRs may arrive faster than they can be processed for a window of time. You
will see this if, for instance, you have to deal with the arrival of bursting mes-
sages over a network or if you have a system that queues task activations. In

Advanced Modeling



6.3.1

Executable Objects -

|
A
Behavior Retriggering
\

|

FIFO By Profile

[Prioritized by order in
configuration file]

Buffering Strategy

[First-in, first-out]

Figure 6.2: Permitted combinations of behavior and buffering strategy

these cases the deadline is longer than the period because the next instance
of the task or ISR can arrive before the previous instance was completed.

In additional to simple behavior, the Analysis Visualizer can model two addi-
tional types of behavior that allow you analyze these types of system called
re-triggering and looping behavior. Re-triggering can be used by tasks and
ISRs. Looping can be used only by ISRs. Figure 6.2 shows the permitted
combinations of behavior and buffering strategy.

The following sections explain how to uses this feature of the Analysis Visual-
izer to model task queuing and interrupt buffering.

Queued Task Activation

The Analysis Visualizer allows you to indicate that a task that can be queued
by specifying that it is re-triggering. Re-triggering tells the Analysis Visualizer
that the task will be immediately ready to run again when it terminates.

If you want to model systems that contain queued (BCC2) tasks or if you have
a task that activates itself (using ChainTask() then you will need to use re-
triggering behavior to do this.

Advanced Modeling

89



20

As an example, consider the case where a communications controller triggers
an interrupt ist_data to indicate that data has arrived. ISR ist_data trans-
fers the incoming data to a buffer, then activates a task t_data to process
the data. It is known that ist_data can always complete before the next
interrupt arrives (and therefore can be implemented as a simple ISR).

interrupt ist _data {

entry ist_data_entry;

controlled;

priority 1;

vector OxFF;

resource BufferLock;

profile {
this priority duration 43000 cycles;
resource BufferLock duration 4000 cycles;

However, ist_data activates a task called t_data which is relatively com-
plex and cannot always be expected to complete before the buffer is next
updated. Thus t_data can be declared as a re-triggering task:

Example task declaration:

task t_data {
entry t_data_entry;
retriggering fifo buffer limit 5;
resource BufferLock;
profile {
this priority duration 350000 cycles;
resource BufferLock duration 4000 cycles;

The FIFO buffer limit of 5 is based upon the maximum number of messages
that can be contained within the buffer between isr_data and t_data. This
limit specified should match the maximum number of activations that you
specify for your queued task activations in the AUTOSAR OS R3.x configura-
tion.

When analysis is performed, the Analysis Visualizer will report if the buffer
ever overflows (i.e. whether the maximum activation count for the task is
ever exceeded).

The Analysis Visualizer can actually calculate the maximum buffer limit au-
tomatically. To use this feature you specify that a buffer limit of unlimited
and the Analysis Visualizer will report the maximum buffer size required. The
previous example could have simply used:

Advanced Modeling



task t_data {
entry t_data_entry;
retriggering fifo unlimited; // The STC will work out the
buffer size required
profile {
this priority duration 350000 cycles;
resource BufferLock duration 4000 cycles;

Multiple Profiles

When a task contains multiple profiles it is possible to tell the Analysis Visu-
alizer how the execution of the queued task activations proceeds. There are
two options:

FIFO where profiles are assumed to be released in first-come, first-served
order.

By profile where each profile can be assigned its own buffer limit and pro-
files within the task are assumed to execute in priority order.

Section 6.3.1 has shown how to specify FIFO buffer limits already. To buffer
by profile, the task must specify if it is re-triggering and then specify a buffer
limit for each profile:

task tl1 {
entry tl_entry;
retriggering; // Activations can be queued
profile pl {
this priority duration 12000 cycles;
buffer limit 2; // Allow 2 retriggers for pl
}
profile p2 {
this priority duration 500 cycles;
buffer limit 7; // Allow 7 retriggers for p2

Retriggers are processed in priority order of the task profiles where the pri-
ority of the profile is defined by its occurrence in the Analysis Visualizer con-
figuration file. In the example above, profile t1.pl has higher priority than
tl.p2.

Advanced Modeling

91



6.3.2

92

Buffered Interrupts

Interrupts can also be buffered, but this is done by the interrupt hardware
rather than by the OS. CAN controllers, for example, often provide some hard-
ware buffering for messages arriving over the network.

There are two ways that ISRs can deal with buffered interrupts:

Looping. The outermost level of the ISR consists of a loop that checks
whether unprocessed interrupts remain and, if so, repeats the process-

ing.
Re-triggering. The final instruction(s) of the ISR checks whether unpro-

cessed events remain and, if so, causes the interrupt to trigger the
handler again.

Q The interrupt mechanism on your target platform affects the way

that re-triggering is achieved. Usually you must reassert the inter-
rupt.

Normally re-triggering behavior is recommended. There are three factors
that will influence your choice of behavior:

1. some hardware will not support re-triggering behavior for interrupts. If
this happens, a looping ISR must be used.

2. a re-triggering handler may be better if the interrupt that invokes the
handler is at the same level as another interrupt in the system and if
that other interrupt has a higher arbitration precedence. Higher arbitra-
tion precedence means that it will be handled first if both are pending.
This may reduce the amount of blocking suffered by the other interrupt,
which is important if your target only supports a single interrupt level.

3. a re-triggering ISR could have a smaller execution time than a looping
executable object when a single interrupt is processed. It doesn’t matter
that a looping handler may be ‘more efficient’ when several events are
handled in one invocation, because the analysis must assume worst-
case behavior. This is where interrupts occur in a pattern that results in
each one being handled by a separate invocation of the ISR.

If you want the Analysis Visualizer to take account of buffered behavior when
analysis is performed, you must specify:

e That buffering is used.

Advanced Modeling



e Whether the buffer is processed by re-triggering the ISR or looping within
it.

e The size of the buffer.

Re-triggering

If an ISR is re-triggering then this needs to be indicated in the configuration
file:

interrupt buffered_isr {
entry buffered_isr;
controlled;
priority 1;
vector OxFF;
retriggering fifo limit 2; // Allow 2 retriggers
profile {
this priority duration 200 cycles;

}

Looping

Looping is configured in a similar way:

interrupt buffered_isr {
entry buffered_isr;
controlled;
priority 1;
vector OxFF;
looping fifo limit 2; // Allow 2 loops
profile {
this priority duration 200 cycles;

}

Note that the limit for the looping clause provides an upper bound on how
may times the ISR will loop.

Multiple Profiles

Consider an ISR which handles three interrupt sources detected by functions
Sourcel(), Source2() and Source3().

ISR(LoopingHandler) {
do {
if (Sourcel()) {
/* Handle Sourcel. x/
/* Clear interrupt sourcel x/
} else if (Source2()) {

Advanced Modeling

93



/* Handle Source2. x/

/* Clear interrupt source2 x/
} else if (Source3()) {

/* Handle Source3. x/

/x Clear interrupt source3 */

}
} while (interrupt_pending());

}

Three separate execution profiles are defined for the ISR. They can be char-
acterized by the results of the tests:

e Sourcel() returns true. The profile for this situation will include the worst-
case execution time of the successful check of Sourcel handler code.

e Sourcel() returns FALSE and Source2() returns TRUE. The execution time
for this profile will include the worst-case execution time required for the
unsuccessful check of Sourcel, the successful check of Source2 and the
Source2 handler code.

e Sourcel() and Source2() return FALSE and Source3() returns TRUE.

Each of these profiles represents a complete path through the ISR (from the
first instruction until the end of the final return instruction) making only one
iteration of the do-while loop. Note that no profile exists for the case where all
checks fail. This is because there is no way that the interrupt could be entered
(or the loop repeated) without one of the above conditions being true.

Representing each of the three profiles within the interrupt declaration is
achieved as follows:

interrupt LoopingHandler {

entry ist_handler;

priority 1;

looping; // No fifo buffer limit here

profile pr_sourcel {
this priority duration 10000 cycles;
buffer limit 2;

}

profile pr_source2 {
this priority duration 15000 cycles;
buffer limit 3;

}

profile pr_source3 {
this priority duration 35000 cycles;
buffer limit 1;

924 Advanced Modeling



The ISR is the example is defined as looping, but no fifo buffer limit
sub-clause is given. Without this, the order in which the profiles are given rep-
resents a priority order. If during analysis three separate transactions release
the different profiles simultaneously, profile LoopingHandler.pr_sourcel is
assumed to execute first and profile LoopingHandler.pr_source3 last. A
buffer limit is provided for each profile.

If the ISR had been declared as follows:

ISR(RetriggeringHandler) {

if (Sourcel()) {

/* Handle Sourcel. x/

/x Clear interrupt sourcel */
} else if (Source2()) {

/* Handle Source2. x/

/*x Clear interrupt source2 x/
} else if (Source3()) {

/* Handle Source3. x/

/* Clear interrupt source3 x/
}

ReassertInterrupt();

then it would be modeled as:

interrupt RetriggeringHandler {

entry ist_handler;

priority 1;

retriggering; // Changed to re-triggering - still no fifo
buffer limit here

profile pr_sourcel {
this priority duration 10000 cycles;
buffer limit 2;

}

profile pr_source2 {
this priority duration 15000 cycles;
buffer limit 3;

}

profile pr_source3 {
this priority duration 35000 cycles;
buffer limit 1;

6.4 Co-operative Tasks

A set of tasks that are co-operative run non-preemptively with respect to
other tasks in the set and preemptively with respect to tasks are not in the

Advanced Modeling



96

set. Within the set of co-operative tasks, each task can tell the OS it can be
preempted.

In AUTOSAR 0OS R3.x co-operative scheduling is achieved by sharing an inter-
nal resource between the tasks that are required to run co-operatively and
then inserting Schedule () API calls in the task bodies to tell the OS that pre-
emption is possible. For example:

TASK(Cooperative){
ééhedule();/* Allow preemption x/
ééhedule();/* Allow preemption */
ééhedule();/* Allow preemption */

TerminateTask();

The execution time for a co-operative task is calculated in the same way
as any other type of task. However, it is necessary to model the blocking
time that the co-operative task introduces for co-operative tasks with higher
priority.

Each co-operative task is dispatched according to its assigned (or base) pri-
ority, but runs at the priority of the highest priority task in the set of co-
operative tasks. At each call to Schedule(), the task’s priority is momentarily
lowered to its base priority and the OS checks if a context switch is needed.
Conceptually, this is almost the same as a task that locks and unlocks a stan-
dard resource multiple times during execution as follows:

TASK(Cooperative){
GetResource(Shared);

ReleaseResource(Shared);
/* Allow preemption */
GetResource(Shared);

ReleaseResource(Shared);
/* Allow preemption x/
GetResource(Shared);

ReleaseResource(Shared) ;
/* Allow preemption */

GetResource(Shared) ;

ReleaseResource(Shared);
TerminateTask();

Advanced Modeling



Recall from Section 3.4.3 that a higher priority task is blocked at most once
during execution and the maximum time for which it is blocked is equal to
the maximum time that a lower priority task holds the resource. This means
that the blocking time introduced by a co-operative task is the longest of the
following durations:

e The task being entered and the first Schedule() call.
e Between each Schedule() call

e Between the final Schedule() call and the termination of the task.

This means that a co-operative task can be modeled as a normal task that
locks a standard resource which is used by all co-operative tasks. The re-
source need not appear in your actual OS configuration file, but it needs to
be created in the Analysis Visualizer model. As described in Section 5.4.1,
it is good practice to include all lock times in the configuration rather than
simply the longest.

For example, a co-operative task with the following structure:

TASK(Cooperative){
/x A x/
Schedule();/* Allow preemption x/
/* B x/
Schedule();/* Allow preemption */
/x C x/
TerminateTask();

would be modeled for Analysis Visualizer analysis as:

resource Coop;

task Cooperative {

priority 2;

locks Coop;

profile {
this priority duration 20000 cycles;
resource Coop duration 5000 cycles; // A
resource Coop duration 9000 cycles; // B
resource Coop duration 6000 cycles; // C

However, this isn't quite accurate because the Analysis Visualizer would al-
low the task to be preempted between completing /*xC */ and executing

Advanced Modeling

97



6.5

6.5.1

928

terminateTask()!. This cannot happen in the co-operative model because
the task terminates while holding the resource. The Analysis Visualizer allows
a resource lock to be marked as “locked when the task terminates” to model
this situation by using the at exit syntax:

resource Coop;

task Cooperative {

priority 2;

locks Coop;

profile {
this priority duration 20000 cycles;
resource Coop duration 5000 cycles; // A
resource Coop duration 9000 cycles; // B

resource Coop duration at exit 6000 cycles; // C

Modeling Extended Tasks

In general, it is not theoretically possible to determine schedulability for ex-
tended tasks because they break the constraint of DMA analysis that for-
bids tasks from self-suspending during execution. The problem posed by self-
suspension is that the worst case response time for a self-suspending task oc-
curs when it remains suspended for the longest time. Unfortunately, this also
represents the best-case scenario for all lower priority tasks in the system be-
cause this minimizes the interference they suffer due to the self-suspending
(and higher priority) task. Conversely, the worst-case interference suffered
by the lower priority tasks occurs when the self-suspending task is suspended
for the shortest time (typically this would be zero cycles, corresponding to the
case that the event upon which the task waits already being set at the point
the wait occurs). This represents the best case response-time for the self-
suspending task.

In order to determine system schedulability it is therefore required that the
self-suspending task suspends for both the shortest and longest times simul-
taneously. This is obviously impossible.

Re-factoring the application

A solution to this problem is to not allow deadlines to span the time when
a task self-suspends. In this case, the system reverts to one where tasks
do not self-suspend between being released and generating a response and
analysis can proceed as normal. The User Guide provides more details on

This is why it was described as almost the same as a task that locks and unlocks a standard
resource multiple times.

Advanced Modeling



6.5.2

how a system with extended tasks can be re-factored into one comprising
basic tasks only. Once in basic tasks only format, it can be modeled as usual.

Partial analysis

If re-factoring is not possible then it is possible to perform a partial analysis
of the system. As the Analysis Visualizer cannot determine interference from
higher priority extended tasks, it follows that a partial model will only be able
to analyze the set of basic tasks that are of higher priority than all extended
tasks.

There is are no special changes required to the basic tasks in this set in order
to construct this model. However, it is necessary to account for the blocking
that the lower priority tasks that are not part of the model introduce on tasks
that are part of the model.

The simplest way to do this is by including the required blocking times in
the idle task and using the idle task in a bursting transaction that runs once
in forever. Even if a lower priority task locks a resource multiple times dur-
ing multiple invocations, it is sufficient to assume that it is locked once be-
cause a higher priority object will be delayed at most once during execution.
A1l times in forever clause is therefore sufficient to model the blocking
from the lower priority task. The Analysis Visualizer will automatically iden-
tify the worst place where the blocking could occur when it checks for the
alignments of the transactions.

Consider the following system where tasks and ISRs are presented in decreas-
ing priority order:

Task/ISR Resources Task Type
rl r2 r3

ISR1 | Ims N/A
Taskl | 2ms 1ms Basic
Task2 | 2ms Basic
Task3 | 3ms 5ms Extended
Task4 2ms Basic
Task5 | 4ms 10ms Extended

The highest priority extended task is Task3. Any lower priority tasks than
task3 cannot be analyzed. However, since Task3, Task4 and Task5 all share
resources with the tasks and ISRs that are amenable to analysis, the blocking
that they introduce needs to be modeled in the idle task.

idle task {
profile {
this priority duration 1 cycle;
resource rl duration 1lms; // Task3

Advanced Modeling

929



6.6

100

resource r2 duration 2ms; // Task4
resource rl duration 4ms; // Task5

}

transaction tr_idle {
bursting {
1 times in forever;

}

os_idle_task;

Note that it is not necessary to specify that resource r3 is locked because
it is not shared with any tasks in the model and therefore cannot introduce
blocking on those tasks when locked by tasks excluded from the model.

Release Delay & Jitter

In many situations, there is a lag between the arrival of some event and the
notional release of the profiles associated with that event. There are many
possible causes for this delay, such as slow hardware performing the detec-
tion (for example, some A/D converters), or because the release cannot occur
until after the event has completed. This delay can be represented by two pa-
rameters: release delay and jitter. The release delay represents the shortest
time between the event occurring and the notional release of profiles. The
jitter represents the difference between the shortest and longest delay time.
Thus the sum of release delay and jitter gives the longest possible time be-
tween the event occurring and the notional release of profiles.

You can see an illustration of this in Figure 6.3.

The Analysis Visualizer allows you to model the release delay and input jitter
for each transaction. The Analysis Visualizer will assume that release delay
and jitter are zero if no times are defined. The following example specifies a
release delay of 170ns and jitter of 50ns.

transaction delayed {
release delay 170ns;
jitter 50ns;
start some_timeline;

Each time a profile in the timeline that includes arrivalpoint some_timeline is
released, the impact of the release delay and jitter will be taken into account.

Advanced Modeling



A

%Release Delay —»| Jitter
A A A
>
Time
Arrival in ; '
real world ‘| Earliest time that the Latest time that the
arrival is detected arrival is detected

Figure 6.3: Release delay and jitter

If you use a coarse activator then you will have a separate transaction
is required for the processed timeline and the activator driver (typically
an ISR). Both transactions should normally be declared with the same
release delay and jitter.

Bursting transactions can also supply values for the release delay and the
jitter.

The following example shows a transaction representing the reception of
messages across a network. Messages arrive in bursts of up to five mes-
sages every 20ms, with a separation of 1ms between each message. Each
message has a minimum transmission time of 300us and a maximum trans-
mission time of 350us (which gives a release delay of 300us and a jitter of
50us). Upon receiving a message, the ISR msg_rx is started, which in turn
activates process_message.

transaction tr_b_delayed {
release delay 300us;
jitter 50us;
bursting {
1 times in 1ms;
5 times in 20ms;
}
interrupt msg_rx;
task process_message;

Advanced Modeling

101



6.7

102

4

i: Deadline

«—Deadline satisifed —»

Software response Response il
A generated delay expires
! ‘ ®
Task Response Delay
Arrival in Deadline in 7
real world real world

Figure 6.4: Response delay

Time

Response Delay

Similarly to release delay, there is often a lag between the generation of a re-
sponse and it actually occurring in the real world. This is called the response
delay and it is typically due the impact of inertia of physical devices.

The impact of release delay is trivially a duration which is added to each
response time.

Figure 6.4 shows the impact of the release delay on a task’s response time.
The response delay is specified by adding an optional max_response declara-

tionto a critical...has deadline clause as follows:

profile {
this priority duration 25000 cycles;
critical 10000 cycles has deadline 5 ms max_response 1ms;

This declaration tells the Analysis Visualizer that a response delay of 1ms
should be added to the calculated response time before the deadline is
checked.

Advanced Modeling



6.8
6.8.1

6.8.2

A

Accounting for the OS Overheads

Interrupt Recognition

The interrupt recognition represents the maximum time during which an in-
terrupt will not be recognized by your target hardware. This is a single value
and is entered in terms of CPU cycles.

Interrupt recognition time is usually at least equal to the execution time of
the longest instruction (unless lengthy instructions can be interrupted part
way through). Have a look at the Target/Compiler Port Guide and the manu-
facturers’ data book for your target to find out this information.

Interrupt recognition time is specified as follows:

interrupt recognition 6 cycles;

Interrupt recognition time is treated as blocking time by the analysis. This
means that, for the entire duration of the interrupt recognition time, the pro-
cessor will be executing instructions of a (soon to be interrupted) task, as if no
interrupt had occurred. You must make sure that you do not classify interrupt
handling overhead as interrupt recognition time.

OS Latencies

In order to provide accurate schedulability analysis, the Analysis Visualizer
must be told about how to account for operating system overheads. Sys-
tem timing data describes how many processor cycles key operating system
operations consume.

System timing information is specific to a particular hardware configu-
ration. If you change your hardware or locate the application in a dif-
ferent memory area (by moving from on-chip to off-chip ROM, for in-
stance) the system timings will need to be measured again. The values
may also differ if you change the characteristics of an application by, for
example, adding an extended task or an alarm.

There are 8 core system timings:

task entry latency is the worst-case time taken to context switch into a
task. This is the maximum excess time taken to get to the first instruc-
tion of a new task, as opposed to simply returning from an OS call with-
out switching.

task switch overhead is the worst-case overhead due to the OS perform-
ing a task switch. This is the same as the difference in time between a
task activating a higher priority task using an OS call versus making a

Advanced Modeling

103



104

non-switching OS call and simply calling the higher priority task’s entry
function

controlled interrupt entry latency is the worst-case time from the end of
the instruction prior to the interrupt being serviced, to the start of the
first instruction of the ISR’s entry function

controlled interrupt overhead is the worst-case time taken to service a
controlled interrupt, excluding the time taken in the handler. It is mea-
sured from the end of the instruction prior to the interrupt being ser-
viced to the start of the next instruction in the interrupted code. As-
sumes no task switch or interrupt in returning from the interrupt.

uncontrolled interrupt entry latency applies only where the OS intro-
duces extra code overhead that executes before the user-supplied un-
controlled interrupt handler. It is the worst-case time from the end of
the instruction prior to the interrupt being serviced, up to the start of
the first instruction of handler. In most cases, this is zero.

uncontrolled interrupt overhead applies only where the OS introduces
extra code overhead on uncontrolled interrupts. It is measured from
the end of the instruction prior to the interrupt being serviced to the
start of the next instruction in the interrupted code. In most cases, this
is zero.

minimum OS level blocking is the worst-case time for which any OS API
executes at OS level or above. This is used as the minimum OS level
blocking for all tasks and ISRs, apart from the idle task. It will be ap-
proximately equal to the longest running API

uncontrolled interrupt blocking is the worst-case time for which any 0OS
call or interrupt wrapper prevents uncontrolled interrupts above OS
level from being recognized.

The following example shows how system timings are configured:

system timings {
96; /x* task entry latency x/
274; /* task switch overhead */
69; /x controlled interrupt entry latency x*/
136; /* controlled interrupt overhead x/
0; /* uncontrolled interrupt entry latency x/
0; /* uncontrolled interrupt overhead =/
387; /* minimum 0S level blocking x/
0,; /* uncontrolled interrupt blocking */

Advanced Modeling



6.9
6.9.1

System timing values are required for accurate analysis. If you cannot gen-
erate these values you will need to supply a set of plausible system timings.
You could do this, for example, to scope the timing behavior of a proposed
system early in the development lifecycle. If you do not provide any set val-
ues, the Analysis Visualizer will assume that they are zero (i.e. that the OS
executes in zero time).

Telling the Analysis Visualizer more

Analysis Only Transactions

In the transactions considered so far, whether bursting of timeline, there is
usually an interrupt that occurs which either directly releases tasks or which
causes an arrivalpoint on the timeline to be processed. The Analysis Visual-
izer will typically assuming that the worst case arrival of these transactions
occurs when every interrupt becomes pending at the same time.

However, you may know from the implementation of system that some com-
binations are not possible, for example if one interrupt handler enables a
secondary interrupt (say to signify a timeout).

Analysis only transactions can be created that capture this additional infor-
mation and allow the Analysis Visualizer make the analysis less pessimistic.

For example, consider the timing behavior of an interrupt handler that ex-
ecutes periodically every 10ms and activates a task directly. This could be
trivially modeled using a bursting transaction:

timeline {
timebase tb_ms;
bursting {
1 times in 10 ms;
}
interrupt isrl;
task taskl;

However, assume that the interrupt also enables a secondary interrupt to
occur 7ms later. As the interrupt always occurs as a result of the primary
interrupt expiring, it is pessimistic to model this as an interrupt that occurs
every 7ms. Instead, this sequencing of interrupts can be modeled using an
analysis only transaction:

timeline {
timebase tb_ms;
sequence {
arrivalpoint ap {
analysis {
interrupt isrl;

Advanced Modeling

105



6.9.2

106

task taskl;

delay 7 ms;
}
}
arrivalpoint {
analysis {
interrupt isr2;
delay 3 ms; // isrl occurs with 10 ms period
next ap;
}
}

This can then be included in a transaction as follows:

transaction tr_simple {
start ap;

}

The start clause indicates that the first arrivalpoint in the transaction is ap.

Removing interrupt pessimism

It is common to use one ISR to tick two different software counters:

uint8 count;
ISR(Millisecond){
count++;
Tick(MillisecondCounter);
if (count%1000) {
Tick(SecondCounter);

}

In this case, the MillisecondCounter is ticked every time the interrupt oc-
curs and the SecondCounter every 1000 occurrences of the interrupt. The
worst case execution time for the ISR is when the condition is true, but this
only occurs every 1000 interrupts. Assume that the ISR is modeled simply as:

interrupt Millisecond {
profile {
this priority duration 150 cycles;

}
}

transaction {
timebase tb_ms;
bursting {

Advanced Modeling



1 times in 1ms;

}

interrupt Millisecond;

This model introduces pessimism in the analysis because the longest path is
assumed to occur 999 times more frequently then it really does. This pes-
simism can be reduced by modeling the interrupt with multiple profiles and
then specifying the arrivals with a sequential timeline:

interrupt Millisecond {

profile normal_case {
this priority duration 80 cycles;
}
profile long_case {
this priority duration 150 cycles;
}
}

transaction {
timebase tbh_ms;

sequence {
arrivalpoint apl {
analysis {
interrupt Millisecond.normal_case;
delay 1ms;
}
}
arrivalpoint ap2 {
analysis {
interrupt Millisecond.normal_case;
delay 1ms;
}
}

. // 996 additional arrivals
arrivalpoint ap999 {

analysis {
interrupt Millisecond.normal_case;
delay 1ms;
}
}
arrivalpoint apl000 {
analysis {
interrupt Millisecond.long_case;
delay 1ms;
next apl;
}
}

Advanced Modeling 107



6.9.3

108

Figure 6.5: Non-uniform timing wheel

Non-periodic timebases

In some applications, where timebases are used to represent the passage
of events rather than time, a coarse activator may be triggered at varying
intervals. In such a case, a more accurate representation can be created by
including the ticks of the timebase as arrivalpoints on a bursting timeline.

For example, consider a toothed wheel (where interrupt i_whee'l is triggered
as each tooth passes a sensor). One half of the wheel has 10 equally spaced
teeth and the other half of the wheel has 4 equally spaced teeth, as shown in
the Figure 6.5.

A timebase, tb_wheel, is defined to indicate the passage of the teeth past
the sensor. At the maximum speed, one rotation takes 100ms (this gives a
separation of 5ms between the closely spaced teeth and 12.5ms between
wider spaced teeth). The arrival of interrupt events can be modeled using a
bursting transaction:

transaction tr_wheel {
bursting {
1 times in 5ms;
10 times in 50ms;
11 times in 62.5ms;
12 times in 75ms;
13 times in 87.5ms;
14 times in 100ms;
}

interrupt ist_tooth_sensor;

However, the timebase conversion factor can use only one value, namely the
shortest time, as follows:

Advanced Modeling



stopwatch conversion {
on tb_wheel 1 ticks is at worst 5ms;

}

If a timeline is defined where a task (t1) is released on every second occur-
rence of this interrupt, the Analysis Visualizer will treat this as a delay of
10ms between each release of tl (irrespective of the arrival behavior of the
interrupt driving the timeline). This introduced pessimism can be reduced by
accurately modeling the delay between activations of t1. This accurate model
can be produced by specifying the timeline corresponding to the bursting pat-
tern of the interrupt and associating activations of t1 with this as follows:

timeline {
timebase tb_wheel;
default readonly;
sequence {
// min delay between interrupts is time for smallest
teeth to pass sensor
arrivalpoint tp_start { task tl; delay 2 ticks; analysis
{interrupt i_wheel; delay 5 ms;}}
arrivalpoint { analysis { task tl; interrupt i_wheel;
delay 5 ms; } }
arrivalpoint { analysis { interrupt i wheel; delay 5 ms;
3
arrivalpoint { analysis { task tl1l; interrupt i_wheel;
delay 5 ms; } }
arrivalpoint { analysis { interrupt i_wheel; delay 5 ms;
1}
arrivalpoint { analysis { task tl1l; interrupt i_wheel;
delay 5 ms; } }
arrivalpoint { analysis { interrupt i_wheel; delay 5 ms;
Pl
arrivalpoint { analysis { task tl; interrupt i_wheel;
delay 5 ms; } }
arrivalpoint { analysis { interrupt i_wheel; delay 5 ms;
!
// min delay is time for largest teeth to pass sensor
arrivalpoint { analysis { task tl1l; interrupt i_wheel;
delay on stopwatch 12.5ms; } }
arrivalpoint { analysis { interrupt i_wheel; delay on
stopwatch 12.5 ms; } }
arrivalpoint { analysis { task t1l; interrupt i_wheel;
delay on stopwatch 12.5ms; } }
arrivalpoint { analysis { interrupt i_wheel; delay on
stopwatch 12.5 ms; } }
next tp_start;

Advanced Modeling

109



6.10

110

Note that this level of analysis may be unnecessary: if the Analysis Visualizer
indicates that the system is schedulable without this expanded timeline, the
above expansion can be omitted.

Summary

Timing models can specify arbitrary deadlines, provided they are associ-
ated with a specification of the critical execution time that must elapse
before the response associated with the deadline is satisfied.

Executable objects can specify multiple profiles if required. Each profile
must be uniquely named.

Tasks and ISRs can include modeling for buffered invocations. This allows
queued task activations to be handled and elaborate interrupt handlers
(e.g. those handle more than one interrupt source or those that buffer
interrupts) to be modeled. Buffer depth can be specified in the configu-
ration or can be calculated automatically by the Analysis Visualizer.

Cooperative task execution can be modeled by synthesizing the behavior
using a standard resource lock.

Extended tasks cannot be modeled. If a system includes extended tasks,
then it is only possible to determine the schedulability of the tasks and
ISRs that are higher priority than the highest priority extended task.

Delays between the arrival of an (external) event and the release of one
(or more) profiles can be modeled by configuring release delay and jitter
for a transaction. Similarly, delays between the internal response and the
external response of a system can be modeled by specifying a response
delay.

OS overheads and target hardware interrupt recognition time can be ac-
counted for in the analysis if true cycle accuracy is required.

Advanced Modeling



7.1

Performing Analysis

The Analysis Visualizer provides the following types of analysis:

e Schedulability analysis;
e Sensitivity analysis;
e Task Priority Allocation;
e Clock Optimization.

Schedulability and sensitivity analysis are used to tell you about the memory
usage and timing behavior of your application. Task priority allocation and
clock rate optimization suggest ways that your application can be optimized
for either space or time.

Schedulability Analysis

Schedulability analysis is the most straightforward of the analysis options of-
fered by the Analysis Visualizer. Schedulability analysis operates on a config-
uration file supplied by the user. The supplied configuration file must describe
ah analyzable system (that is, it should be constructed using the guidelines
in Chapters 5 and 6). For any analyzable system, schedulability analysis re-
ports that a system is either schedulable or not schedulable. If a system is
schedulable, this means that all executable objects in the system will always
meet all of their deadlines, and will never fail to recognize arrival points. If the
system is reported to be not schedulable, this is because either: the system
will not meet its deadlines (it is unschedulable), or because it is not possi-
ble to determine whether or not the system is schedulable (schedulability is
indeterminate or unknown).

Schedulability analysis is used to work out whether each response can be
generated before its deadline. The deadline can be either explicitly declared
in the profile or implicitly derived from the timing model.

When the schedulability analysis is performed, there are several possible out-
comes:

e The system is schedulable.

e The schedulability of tasks or interrupts is indeterminate.
e The system contains unschedulable tasks or interrupts.

e The system exceeds 100% utilization.

Because some assumptions made in modeling the system can be pessimistic,
a system that is described as being unschedulable or of indeterminate
schedulability may actually be schedulable if the analysis is repeated using

Performing Analysis



7.1.1

7.1.2

112

a less pessimistic representation. Note that provided no optimistic assump-
tions have been made, the Analysis Visualizer will never report a system as
being schedulable when it actually is not.

Running the Analysis

Schedulability analysis is performed by selecting the “Schedulability Analy-
sis” tab in the Analysis Visualizer.

Alternatively, it can be run from the command line using:

C:\>rtaosanvis --analysis:Schedulability Model.stc Results.html

Schedulability Analysis Reports

When the analysis finished, the Analysis Visualizer generates a schedulability
analysis report. Each bar in the graphical analysis report shows the response
time for the execution profile. Each bar has up to 5 sections:

e Delay/Jitter. This is the maximum amount of between the arrival of the
triggering event and the release of the associated task or ISR profile.

e Blocking time. This is the amount of time that the execution profile is
prevented from executing by a lower priority profile that holds a shared
resource or has disabled interrupts.

e Interference. This is the amount of time that the execution profile is pre-
vented from running by higher priority tasks or ISRs. This is the total
amount of time that the profile is preempted during execution.

e Execution time. This is the worst-case execution time that you specified
for the execution profile.

e Response delay. This is the time from the response being generated by
the software to it being observable in the external environment. This is
usually only specified when the response drives some external hardware.

If you have specified explicit deadlines for responses, these are represented
on the bar as small tags with the deadline specified. Implicit deadlines are
not shown.

In addition to this information, the textual output will tell you about queued
activation counts, buffered interrupts and the parts of the system that con-
tribute to the blocking time. For any analyzable system, schedulability analy-
sis reports that a system is either schedulable or not schedulable. If a system
is schedulable, this means that all tasks or ISRs in the system will always
meet all of their deadlines.

Performing Analysis



7.1.3

Unschedulable Objects

Individual executable objects within the system may be unschedulable. There
are three main reasons for this:

e The simple executable object cannot complete before it is next released.
e The executable object cannot reach its critical point before the deadline.

e The looping/re-triggering executable object has exceeded its buffer limit.

Task or ISR Cannot Complete Before Next Release

Assume a system with the following characteristics:

e Task_1 that is released twice every 3ms (with offsets of 0 and 1ms) and
takes 900us to execute.

e ISR 1 which occurs every 100us and its handler takes 25us to execute.
The interrupt drives a software counter (modeled as a coarse activator)
which drives the scheduling of Task1.

When this system is analyzed, the Analysis Visualizer will produce the result
shown in Figure 7.2.

This output shows that neither Task_1 nor ISR_1 is subject to blocking, and
that although Task_1 cannot be scheduled, ISR_1 is schedulable. The re-
sponse time given for ISR_1 represents the longest elapsed time from the
interrupt occurring until ISR_1 completes, which is the same as its execution
time in this instance.

In this case, the total interference on Task_1 in a 1ms period amounts to
250us (i.e. the interrupt ISR_1 occurring 10 times in 1ms and taking 25us
execution time), which means that Task_1 does not complete before its next
activation. This situation is illustrated in the Figure 7.2. At the completion of
a 1ms period, Task_1 has only executed for a total of 750us.

There are a number of approaches you can use to make this type of system
schedulable:

e Reduce the execution time of the task or any other higher priority tasks
or interrupts. By reducing execution times you can reduce the amount of
interference suffered by lower priority tasks and interrupts.

Performing Analysis

113



114

EH RTA Analysis ¥isualizer [C:, stch cannot-complete-before-next-release.stc]

File Edit Help
Timing Model  Schedulability Analysis | Sensitivity Analysisl Priarity Dptimizationl Clack Dptimizationl

The system is NOT schedulable

[-]1 Schedulability Analysis

[-]1 Overview
Key: - . -
Blocking time Interference time Execution time

I56_1

Response tirme: 25.00us

e Blocking: 0 cycles
(25 cycles)

& Interference time: 0 cycles,
® Execution time: 25 cycles

Task_1 fs WOT schedulable.
execution not cornplete befors release

[-1 Detail

I55_1 s schedulable,
Calculated response time is 25.00us (25 cycles) with blocking of 0 cycles

Task_ 1 is MOT schedulable,
execution not cormmplete befare release

Copyright @ ETAS GmbH, 2009

-
Analysis complete,
Figure 7.1: Analysis shows task cannot complete before next release
Task t1 has an implicit deadline -
it must complete before the next
| |
Task t1 released again but previous
invocation has not finished executing A
t1Ht1Ht1HHHHH“HHHHHHHH
>
- - >
| ‘ ‘ ‘ ‘ ‘ ‘ ‘ Time in us
0 100 200 300 400 500 600 700 800 900 1000
t1 executed | t1executed  t1executed | t1executed | t1executed | t1executed | t1executed | executed | t1executed | t1 executed
for 75us for 150us for 225us for 300us for 375us for 450us for SZSuﬂ for 600us for 675us for 750us

Figure 7.2: Task cannot complete before next release

Performing Analysis



e |If the task or any higher priority tasks or interrupts are periodic, their
periods can be increased. If the task being adjusted has multiple offsets,
these can be altered.

e Introduce queued activation for tasks or buffer interrupts to ensure that
activations made while the tasks or ISRs are executing are not lost.

e Other tasks within the system may be making a specific task unschedula-
ble. You could use best task priorities analysis (which you’ll find out more
about in Section 7.3) to see if a different priority ordering will make the
system schedulable.

e If the unschedulable task or ISR shares a resource with lower priority
tasks or ISRs then you could try reducing the amount of time for which
the resource is held by these tasks and ISRs. This reduces blocking times
and may make the task schedulable.

These measures can also be used where systems are found not to be schedu-
lable for other reasons.

A Task or ISR Cannot Meet its Deadline

If an executable object cannot meet a deadline, this also results in an un-
schedulable system. There are two different ways in which this is detected:

1. A specific profile is found to be not schedulable because the deadline
has been exceeded.

In this case, other profiles of the same executable object might also
be found to be schedulable (or unschedulable). This case applies to
all types of executable objects except those that have looping or re-
triggering behavior and FIFO execution order.

2. An executable object has been found to be not schedulable because
the deadline of one of its profiles has been exceeded. No profiles of this
object will be found to be schedulable.

This case applies only to profiles belonging to looping or re-triggering
executable objects with a FIFO execution order.

Consider the following re-triggering interrupt:

interrupt isrl {
entry isrl_entry;
uncontrolled;
priority 1;
vector OxA;
re-triggering fifo buffer limit 4;

Performing Analysis

115



116

80 cycles

«—25 cycles—i
[ |

A
A < 80 cycles >
65 cycles ————
[ cycles —ﬂ N
80 cycles
< 95 cycles >
ISR1
[Profile pr2] ISR1
[Profile pr1] ISR1

[Profil ISR1
[Profile pr2]

Time
Figure 7.3: Buffered release cannot meet deadline

profile prl {
this priority duration 20 cycles;

}

profile pr2 {
this priority duration 40 cycles;
critical 25 cycles has deadline 80 cycles;

If a transaction is declared that can lead to the pattern of interrupts shown in
Figure 7.3 then profile pr2 will cause isrl to be unschedulable.

The first release is handled immediately and starts isrl.pr2. The releases
of the interrupt are FIFO buffered until the first instance of isrl.pr2 is com-
plete. The first instance of isrl.pr2 reaches its critical point 25 cycles after
the arrival of the interrupt. The second release of isrl.pr2 takes 65 cycles to
reach its critical point, just meeting its deadline. The third release of isr.pr2
instance takes 95 cycles and is therefore not schedulable. The Analysis Visu-
alizer will produce the result shown in Figure 7.4.

When a task or ISR is not schedulable because its deadline cannot be met,
you can try to:

e Increase the deadline.

Performing Analysis



EH RTA Analysis ¥isualizer [C: stc' cannot-complete-before-next-release-stc]

File Edit Help
Timing Model  Schedulability Analpsis | Senaitivity Anal_l,lsisl Friority Ophimization | Clock Dptimizationl

The system is NOT schedulable

[-]1 Schedulability Analysis

[-1 Overview

Key:
y Blocking time Interference time Execution time

ISE_1

Response time: 25.00us

w Blocking: 0 cycles
(25 cycles)

o Interference time: 0 cycles,
& Execution time: 25 cycles

Task_1 is WOT scheduwabis,
execution not cormplete befors release

[-]1 Detail

F5E_1 s schedulable,
Calculated response time is 25.00us (25 cycles) with blocking of 0 cycles

Tasi_ I is NOT schedulable,
execution not complete before release

Copyright @ ETAS GmbH, 2009

Analysis complate.

Figure 7.4: Analysis shows task cannot meet deadline

Performing Analysis

117



e Move the response generation code earlier in the program. This shortens
the amount of time that the task or ISR must execute to generate the
response.

e Use the suggestions for unschedulable systems that are mentioned
above.

Buffer Limits Exceeded

Sometimes a system will not be schedulable because the buffering for
queued task activations is not long enough to hold the maximum number
of activations that can occur while the task is running. Similarly, for inter-
rupts that are buffered, the number of interrupts that need to be buffered
may exceed the buffer size.

Consider the following configuration:

task Task_1 {
entry taskl entry ;
re-triggering fifo buffer limit 4;
profile {
this priority duration 140 us;
}
}

interrupt timer_tick {
entry timer_tick_entry;
controlled;
priority 1;
vector OxA;
profile {
this priority duration 25 us;
}
}

transaction tl1 {
bursting {
1 times in 50 us;
3 times in 170 us;
5 times in 830 us;

}
interrupt timer_tick;
task Task_1;

Figure 7.5 shows the results from the Analysis Visualizer for buffered task
which takes 140us to execute and is activated from an ISR with the following
bursting rate:

118 Performing Analysis



EEI RTA Analysis ¥Yisualizer [C:\stchbuffer-limit-exceeded.stc] — |EI |5|
Eile  Edit Help
Timing kode Sensitivityhnalysisl PFricrity Dptimizationl Clock, Dptimizationl
[
The system is NOT schedulable
[-] Schedulability Analysis
[-]1 Overview
Key: | . .
Blocking time Interference time Execution time
Her_tok
e Blocking: 0 cycles Response time: 25.00us
# Interference time: 0 cycles, (25 oycles)
» Execution time; 25 cycles
Task_1is WOT schedulabie.
retriggering buffer limit excesdsd
[-1 Detail
#mer_tick is schedulable,
Caleulated response tirme is 25.00ps (25 cycles) with blocking of 0 cycles
Tasik 1 is NOT schedulable.
retriggering buffer limit exceeded
Copyright ® ETAS GmbH, 2009
B
Analysis complete,

Figure 7.5: Buffer limit exceeded

Performing Analysis 119



7.1.4

120

There are two things that may be causing this problem:
e The tasks or interrupts are being activated more frequently than they can
be handled.
e The buffer sizes are too small.

Systems, which are unschedulable for these reasons, can be made schedula-
ble. You can try to:

e Change the priorities to ensure that the task can handle the inputs at a
required rate. If you do this, try using best task priorities analysis.

e Decrease the period of the task or ISR.

e Increase the buffer size.

e Decrease the execution time of the task.

If the analysis is repeated with a buffer size larger than needed or a buffer

size of unlimited, the Analysis Visualizer reports the buffer size required to
make the system schedulable, as shown in Figure 7.6.

In addition to reporting the maximum buffer size, the maximum retriggers
value is also reported. This value represents the largest number of times
that an executable object will be re-triggered before the buffer is emptied.
This value will always be greater than or equal to the maximum buffer size.

Utilization Greater Than 100%

The Analysis Visualizer may report that utilization is greater than 100%. This
means that your application requires more time to execute than the time
available on your target hardware.

There are a number of strategies you can use to fix this problem:
e Increase the CPU speed. This may be possible by specifying a faster part
in your hardware design.
e Reduce the execution times for tasks and ISRs.

e Increase the periods for system stimuli.

Performing Analysis



@ RTA Analysis Yisualizer [C:hstch buffer-limit-exceeded.stc J* - IEI Iil

File Edit  Help

Tirning Model Senghivity Analysiz | Priority Optimization I Clock Dptimization I

[-]1 Schedulability Analysis

[-1 Overview

Key: — . I

y Blocking time Interference time Execution time

Hener_tiok
e Blocking: 0 cycles Respaonse time: 25.00us
e Interference time: O cycles, (25 oycles)

# Execution time: 25 cycles

Task_1
¢ Blocking: 0 cyoles Response time: 605.00us
e Interference time: 465 cycles, (605 cycles)

® Execution time: 140 cycles

[-1 Detail

trner_tick is schedulable,
Calculated response time is 25.00ps (25 cycles) with blocking of 0 cycles

Tasi_ 1 is schedulable,
Calculated response time is 605.00ps (605 oycles) with blocking of 0 cycles
Maximum buffer usage is 5
Maximum retriggers is 5

Copyright @ ETAS GmbH, 2009

Analysis complete,

Figure 7.6: Using the Analysis Visualizer to calculate maximum buffer size

Performing Analysis

121



7.1.5 Indeterminate Objects

There are two reasons why the schedulability of tasks or interrupts can be
indeterminate:

e The busy period for an object can be too long to analyze.

e The schedulability of the object may depend on blocking from a lower
priority looping object that isn’t schedulable. In this case the blocking
factor for the higher priority object cannot be calculated as it depends
upon the number of times that the lower priority object loops, so the
system must be modified to make the lower priority object schedulable
first.

Busy Period too Long to Analyze

If the sum of release delay, jitter and busy period (which is the total time that
a task spends in the ready or running state) exceeds the maximum value
of the stopwatch (represented as a 32-bit integer), it is considered that the
object cannot be analyzed. This case will also generate an error code as
shown in Figure 7.7.

It is unlikely that this situation will occur, unless especially long running tasks
are defined, or tasks with large buffers allow a long time between the arrival
of a task and its processing. However, in such a situation, it is possible to
analyze such tasks by changing the stopwatch timebase to cause each cy-
cle to represent multiple cycles of the processor. This does result in some
pessimism (since the smallest time that can be represented is some multiple
of processor cycles). Note that if you do this, be careful to scale the system
timings and interrupt recognition times as these are given in cycles.

Indeterminate Blocking from Lower Priority Tasks or ISRs

When the Analysis Visualizer performs schedulability analysis, it attempts to
establish the schedulability of the lowest priority executable object first, then
progressively analyses higher priority objects. If an object is detected as not
schedulable, the Analysis Visualizer will attempt to continue its analysis on
higher priority objects. These objects will be marked as “NOT SCHEDULABLE"
in the Analysis Visualizer results view as shown in Figure 7.8.

In this case, Task4 is the lower priority task, and is not schedulable. It is not
possible to determine whether the higher priority tasks are schedulable or
not.

Fixing this situation requires an incremental approach. Make the lower pri-
ority task schedulable first then iteratively apply schedulability analysis until
your system is schedulable.

122 Performing Analysis



tc'busy-period-too-long.st ;Iglil

File Edt Help

Timing Model | 5chedulability Analysis | Sensitivity Analysis | Priority Optimization | Clack Optimization

The system is NOT schedulable

[-]1 Schedulability Analysis

[-]1 Overview

Key' Blacking tirme Interference time Execution time

Task_1
e Blocking: O cycles Response tirme: 55.00s
» Interference time: 0 cycles, (440000000 cycles)

® Execution time: 440000000 cycles

Task_2 is WOT schedulzble,
busy period exceeds spstem capacity

[-] Detail

Tast_1is schedulable,
Calculated response time is 55.00s (440000000 cycles) with blocking of 0 cycles

Task_2 is NOT schedulable.
busy period exceeds systern capacity

[-]1 Errors and Warnings

Code Description Line

Unable to analyse "Task_2" because busy period exceeds analysis limit, ***
Schedulability Analysis results *#* task Task_1 is schedulable, Calculated response
Warningd time is 440000000 cycles (55 5), with blacking 0 cycles. task Task_2 is not analysed
WABD7 because its busy period exceeds the capacity of the system. First detected after 1
arrival point on transaction t2 {alignment 13, Blocking time is 0 cycles, The system is
NOT schedulable,

Informationd

10408 Warnings were generated. =

Analysis complete.

Figure 7.7: Busy period is too long to analyze

Performing Analysis 123



ﬂzill RTA Analysis Yisualizer working'UserDocs STC",; k i - |E| |5|
File Edit Help

Timing Model | Sengitivity Analysiz | Priority Optimization | Clock Optimization I

I

The system is NOT schedulable

[-]1 Schedulability Analysis

[-]1 Overview

Key' Blocking time Interference time Execution tirme

CAN
» Blocking: 0 cycles Response time: 56,25us (450
» Interference time: Mah cycles, cycles)

* Execution time:

e
» Blocking: 30.00ps (240 cycles) Response time: 56.25us (450
» Interference time: Mal cycles, cycles)

& Execution time:
Taskl is NOT schedulzble,
Schegulabilty depends upon non-schedwlzble task Taskd default_profile

Taskz is NOT schedulzble,
Schegulabilty depends upon non-schedwlzble task Taskd default_profile

Taskd is NOT schedulzble,
Schegulability depends upon non-schedwlzble task Taskd default_profile

Taskd is NOT schedulzble,
execution not complete before release

Analysis complete,

Figure 7.8: Indeterminate schedulability stops higher priority objects being
analyzed

124 Performing Analysis



7.2

7.2.1

Sensitivity Analysis

Sensitivity analysis is used to explore the boundaries for your system. It
allows you to answer questions like:

e What variation of clock speed is feasible?

e What is the maximum execution time allowed for a task or ISR?

e How long can | get a particular resource for?

e How long can | disable interrupts for?

e Can | vary the execution time for critical instant and still meet my dead-

line?

Sensitivity analysis allows you to determine what changes may make an un-
schedulable system schedulable. You might be able to optimize task and ISR
execution times and a small reduction may be enough to make the system
schedulable. Alternatively, if you want to add additional functionality to an
existing application then you can use sensitivity analysis to investigate how
much headroom is available on which tasks or ISRs.

The sensitivity of the tasks and ISRs is considered against the following fac-
tors:

e Sensitivity to processor clock speed.

e Sensitivity to execution times.

e Sensitivity to resource and interrupt locking times.

e Sensitivity to deadlines associated with critical instants.

Performing Sensitivity Analysis

Schedulability analysis is performed by selecting the “Sensitivity Analysis”
tab in the Analysis Visualizer.

Alternatively, it can be run from the command line using:

C:\>rtaosanvis --analysis:Sensitivity Model.stc Results.html

Performing Analysis

125



7.2.2

126

Schedulability Analysis Reports

When the analysis is completed the results are presented in a sensitivity anal-
ysis report.

The sensitivity analysis is output in three sections:

1. critical execution time sensitivity
2. system sensitivity to execution and lock times

3. system sensitivity to clock speed

The following sections explain how to interpret the sensitivity analysis results.

Sensitivity to Critical Execution Times

An example output for the critical execution time sensitivity section is shown
in Figure 7.9.

In this section, each of the deadlines within the system is considered. It is
not possible to meet the deadlines on the critical instants for either task t1
or task t4. However, tasks t2 and t3 could have execute for longer in their
critical instants and still meet their deadlines.

Note that the maximum critical execution times given are complementary. If
all critical values can be set to their reported maximum values the system
will be schedulable.

Where it is not possible to meet the deadline you will need to either:

Reduce the execution time for the critical instant.

e Increase the deadline for the task.

e Increase the clock speed (as recommended by system sensitivity to clock
speed).

e Reduce the execution time (or decrease the frequency of activation) of
any higher priority tasks or interrupts.

e Reduce the time of any blocking times that are applied to the task. Block-
ing times can arise from any lower priority task that locks a resource or
changes interrupt priority levels. Lower priority tasks in a non-preemption
group with the current task (or with any task with a higher priority than
the current task) can also block the execution of the current task.

Performing Analysis



'@ RTA Analysis Visualizer [C:\stc\critical-instant-sensitivity.stc]*®

File Edit Help

Timing Mode! | Schedulabilty Analysis | Sensitivity Analysis | Priorty Optimization | Clock Optimization

[-] Critical Execution Sensitivity

[-]1 Detail

In task

In task t2
* Deadline

In task t3
* Dea

In task t4

# Deadline 150.00ps (300 cycles) can be met for critical execution time up to 66.67ps (400 cydes).
.00ms (6000 cycles) can be met for critical execution time up to 416.67ps (2500 cycles).

mé 2.FDD-|'n5 (12000 cycles) can be met for critical execution time up to 683.33ps (4100 cycles).

# Deadline 2.50ms ({15000 cycles) can be met for critical execution time up to 150.00ps (500 cycles).

[-] System sensitivity to execution and lock times

[-1 Summary

= [Click graphs te zeom in/out]

Available Execution time:

Declared Execution time:

Available Resource-locking time for r1:

Declared Resource-locking time for ri:

= [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

Available Rezource-locking time for r1:

Declared Resource-locking time for ri:

400.00ps (2400 cycles)

3000 cycles

400.00ps (2400 cycles)

100 cycles

7.78ms (46700 cycles)

25000 cycles

0 cycles

300 cycles

=10l ]

Analysis complete,

Figure 7.9: Sensitivity to Critical Execution Times

Performing Analysis

127



A\

128

Sensitivity to Execution and Lock Times

The sensitivity to execution and lock times shows:

e The difference between the execution time declared for each task and in-
terrupt and the longest time for which if could run. In some instances this
may indicate that a particular task/interrupt can never be schedulable,
irrespective of the value of the CPU clock speed.

e The difference between the time declared for each resource lock and the
longest time for which it could be locked.

e The difference between the time declared for each interrupt lock and the
longest time for which it could be locked.

The reported limits of maximum execution and lock times given in this
section of the report are mutually exclusive for each executable object.

Thus for any one executable object, the maximum execution times, resource
locking times and interrupt priority level disable times can be changed to the
values given in the report for the system to remain (or become) schedulable.
No other executable objects should be changed.

When the declared times are less than the maximum times then this gives
you an indication of how much additional functionality can be added to a task
or ISR and the system remain schedulable.

An example report is shown in Figure 7.10.

When a declared time is longer then the maximum time, then the difference
shows you by how much the execution time needs to be reduced to make
the system schedulable. In some cases, the Analysis Visualizer will show you
that no change to a task or ISR (even it removal from the system) will cause
the system as a whole to become schedulable. This means that sensitivity
analysis tells you where to direct your optimization effort

An example report is shown in Figure 7.11. This shows that all the tasks are
executing for too long for the system to be schedulable. Furthermore, it also
shows that even deleting both interrupts would not make the system as a
whole schedulable.

To make this system schedulable we could:

e Increase the clock speed (as recommended by system sensitivity to clock
speed).

Performing Analysis



@ RTA Analysis Yisualizer [
File Edit Help

Timing Maodel I Schedulability &nalysis  Sensitivity Analysis | Friority Dptimization I Clock Optimization I

[-] System sensitivity to execution and lock times

[-1 Summary

Hrner.default_profite [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

CAN_Fx. defzult_profite [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

t1.default_profite [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

Available Resource-locking time for «2:

Declared Resource-locking time for 2

12, default_profite [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

Available Resource-locking time for «2:

Declared Resource-locking time for #2:

#3.default_profite [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

146,335 (878 cycles)

210 cycles

352.00us (2112 cycles)

240 cycles

812.00us (4872 cycles)

3000 cycles

812.00us (4872 cycles)

100 cycles

1.57ms {2390 cycles)

6000 cycles

1.57ms {2390 cycles)

200 cycles

Z2.81ms (16860 cycles)

7500 cycles ﬂ

Analysis complete,

Figure 7.10: Sensitivity analysis

report showing scope for extension

Performing Analysis

129



130

ity-overrun.stc]

File Edit Help

Timing Model | Schedulability Analysis  Sensitivity Analusis | Priority O ptimization

# gefault_profile [Click graphs to zoom infout]

fvailable Execution time:

Declared Execution time:

Available Resource-locking time for «2:

Declared Resource-locking time for #1:

#2. gefault_profile [Click graphs to zoom infout]

fvailable Execution time:

Declared Execution time:

Available Resource-locking time for «2:

Declared Resource-locking time for 72

#3.gefault_profile [Click graphs to zoom infout]

fvailable Execution time:

Declared Execution time:

Available Resource-locking time for 1

Declared Resource-locking time for 713

Available Resource-locking time for «2:

Declared Resource-locking time for #2:

#d, gefault_profile [Click graphs to zoom infout]

Available Execution time:

Declared Execution time:

Available Resource-locking time for 1

Declared Resource-locking time for #2:

Clock Optimization

T20.00ps (4320 cycles)

4500 cycles

F20.00ps {4320 cycles)

100 eycles

1.27ms (7640 cycles)

5000 cycles

1.27ms {7640 cycles)

200 cycles

1.55ms (2280 cycles)

10000 cycles

1.55ms {9280 cycles)

300 cycles

1.55ms {9280 cycles)

2000 cycles

4.05ms (24280 cycles)

25000 cycles

2.07ms (12390 cycles)

5000 cycles

=lolx|

Analysis complete,

Figure 7.11: Sensitivity analysis report showing areas needing fixing

Performing Analysis




7.2.3

RTA Analysis Yisualizer [C:'stc\sensitivity-overhead.skc]* - IEI Iil

File Edit Help

Timing Model | Schedulabilty Analysis  Sensiivity Analpsis | Friority Optimization | Clock Optimization

[+]1System sensitivity to execution and lock times

[-] System sensitivity to clock speed

The system is schedulable if the processor clock speed is reduced to 88.88% of its current value,

100%:

85.88%

Analysis complete,

Figure 7.12: Clock speed sensitivity showing scope for reduction

e Reduce the execution time (or decrease the frequency of activation) of
any tasks or interrupts with a higher priority than Task3.

Sensitivity to Clock Speed

The current speed that is displayed will always be 100% of the CPU clock
frequency. The new speed will be a percentage of the clock speed required
so that the system is schedulable.

If the new figure is less than 100%, as shown in Figure 7.12, then there is
scope for reducing the clock speed of your target hardware. This can be
useful, for instance, in the case of devices that must minimize power con-
sumption.

If the new figure is greater than 100%, as shown in Figure 7.13, then you
will have to increase your CPU clock speed to make the system schedulable.
The analysis gives you the smallest increase required for your application to
become schedulable.

Sensitivity of the Idle Mechanism

There is one case in which the results produced by sensitivity analysis might
seem slightly unusual. This is the case where the lowest priority task is ex-
ecuted only once. So far as the schedulability of the system is concerned,
the task need never terminate. Sensitivity analysis will attempt to extend the
maximum execution time of such a task as far as possible. Since this exe-
cution time can be extended indefinitely, the reported maximum execution
time is shown as unlimited. Figure 7.14 shows an example.

Performing Analysis

131



@ RTA Analysis Yisualizer [C:stc)sensitivity-overrun.stc] - IEI I!I
File Edit Help

Timing Model | Schedulabilty Analysis  Sensitivity Analpsis | Friority Optimization | Clock Optimization

[+]1System sensitivity to execution and lock times
[-] System sensitivity to clock speed 7
The system is schedulable if the processaor clock speed is increased to 101.02% of its current value,
100%:
101.02%
El

Analysis complete,

Figure 7.13: Clock speed sensitivity showing need for a higher CPU clock rate

E RTA Analysis Visualizer [C:\stc\idle-task.stc] ;IEIL'

Fle Edit Help
Timing Mode! | Schedulabilty Analysis | Sersitivity

Aﬂa'ﬁs.\él Priarity Oy | I Clock O | |

I

[-] System sensitivity to execution and lock times

[-]1 Summary

e [Click graphs to zoom infout]

Available Execution time: 999.38ps (7999 cycles)

Declared Execution time: 3000 cycles

ile [Click graphs te zoom infout]

Available Execution time: unlimited
Declared Execution time: 1 cycles
[-1 Detail
In task ¢ the system can be schedulable for execution time up to 959.88ps (7995 cycles).

In task os_id! =, the system can be schedulable for unlimited execution time.

Analysis complete.

Figure 7.14: Sensitivity analysis for the idle mechanism

Performing Analysis



7.3

7.3.1

Priority Optimization

Priority optimization aims to make a system schedulable by assigning prior-
ities to tasks, and by placing tasks into soft non-preemption groups. Soft
non-preemption groups are a subclass of non-preemption groups generated
solely by priority allocation. When priority allocation is performed on a con-
figuration file that initially contains user-defined non-preemption groups and
soft non-preemption groups, the user-defined non-preemption groups are in-
cluded in the analysis and the soft non-preemption groups are discarded.

You should not declare any non-preemption groups in the configuration file
as soft non-preemption groups. If you do this, they will not be included in a
priority allocation.

Maximizing the number of tasks in a non-preemption group has two key ef-
fects on the system:

1. Total required stack for the system is minimized. The worst case stack
usage for an arbitrary set of tasks is normally the sum of the worst case
stack usages for each of the tasks. In the case of a non-preemption
group, the worst case stack usage is the single largest stack usage of
any of the tasks in the group.

2. Schedulability of the system may by impacted: the additional over-
head of switching from one task to another is not incurred by a non-
preemption group, however one task must complete before another,
even of higher priority, may begin. Generally speaking a system
is expected to become less schedulable as tasks are placed in non-
preemption groups, but in certain circumstances schedulability may im-
prove.

The allocation of priorities to tasks is based upon the partial ordering implied
by priority constraints and the activates clauses of task declarations. Within
these constraints, the tool searches for the priority ordering that best allows
the system to meet its schedulability requirements.

Allocation of tasks to non-preemption groups proceeds by adding tasks to a
non-preemption group. The algorithm keeps adding tasks to non-preemption
groups until there is no task that can be added that will result in a schedulable
system.

Running Priority Optimization

Priority Optimization is performed by selecting the “Priority Optimization” tab
in the Analysis Visualizer.

Alternatively, it can be run from the command line using:

Performing Analysis

133



7.3.2

134

EEI RTA Analysis ¥isualizer [C:' working',UserDocs' STC skt priority-allocation.stc] = IEI Iil

Fil=  Edit  Help
Timing Model | Schedulability &nalysis I Sensitivity &nalpsiz  Priority Optimization | Clock Optimization I

[-] Priority Allocation
task A has been assigned a priority of 5.
task 8 has been assigned a priority of 4,
task £ has been assigned a priority of 3.
task O has been assigned a priority of 2.
task € has been assigned a priority of 1.
The following non-preemption groups must be present:
[c,0,E,8]
[=] Priority Ordering
High priority
CAN {interrupt)
Timer (interrupt)
A (task)
B (task)
E {task)
D {task)
(N (task)
Low priority
[+]1Schedulability Analysis
Copyright © ETAS GmbH, 2009
B

Analysis complete,

Figure 7.15: Priority optimization

C:\>rtaosanvis --analysis:Priority Model.stc Results.html

Priority Optimization Reports

Priority allocation will only succeed if some set of priorities that result in a
schedulable system can be found. If no such priorities can be found, the
Analysis Visualizer reports that the system is not schedulable. Such reports
are the same as those described in the chapter on Schedulability Analysis.

If priority allocation is successful, it reports the priority levels for each task
in the system and any non-preemption groups to which tasks should be allo-
cated as shown in Figure 7.15.

Performing Analysis



7.3.3

It also reports the results of the schedulability analysis resulting from this
allocation. For example:

In this example, the tasks A to E were declared with decreasing priority:

task priority order {
task A;
task B;
task C;
task D;
task E;

After priority optimization, the Analysis Visualizer determines that the best
allocation of priorities would be:

task priority order {
task A;
task B;
task E;
task D;
task C;

and that all tasks excluding A could share an internal resource.

If priority allocation is not successful, the priority allocation results report
which tasks are not schedulable. In the schedulability analysis results, the
reasons for this are given in the usual way.

Controlling the Priority Optimization Algorithm

When you configure your system, you declare the relative ordering of task
priorities using the task priority order clause (see Section 5.3.1).

When you use the priority allocation facility of the Analysis Visualizer the task
priority order clause is not used. However, other information can be given to
the priority allocation facility that does affect the eventual priority ordering.
Two sources of information exist for this purpose:

1. the activates task clause within a task declaration; and

2. a priority constraints declaration.

The priority constraints declaration and the activates task clause are both
used whenever analysis is performed to ensure that the specified priority
ordering is consistent with the constraints.

Performing Analysis

135



7.4

136

In general, when using automatic priority allocation, the fewer priority con-
straints that are placed on the system, the better the priority ordering that
can be defined. Therefore, only priority constraints that are absolutely nec-
essary should be given in the priority constraints declaration.

Activates Task Clauses

When a task activates other tasks, it must include an activates task clause
in its declaration. In addition to being used by priority allocation, this infor-
mation is used by the Analysis Visualizer to confirm that analysis is possible
and to ensure that tasks never activate a higher priority task.

task t2 {
entry t2_main;
activates t1;
profile {
this priority duration 200000 cycles;
}

This example shows the situation where task t2 can activate tl1. Because
tasks can never activate higher priority tasks, providing this information en-
sures that in the resulting priority allocation task t2 has a higher priority than
t1.

Priority Constraints

If it is known that certain tasks must have a higher priority than others (for
example to ensure a specific execution order), these constraints must be pro-
vided in a priority constraints declaration.

For example, suppose that t3 and t4 are activated together, but t3 prepares
some data that is then used by t4 so t3 must execute first. This requires that
the following priority constraints are given:

priority constraints {
task t3 higher than task t4;
}

Clock Optimization

Clock optimization is similar in concept to task priority allocation, but it opti-
mizes for time rather than space. It looks for the lowest possible clock rate
that gives a schedulable system.

Clock optimization can be used to determine the minimum processor clock
frequency at which a schedulable configuration can be achieved. Clock opti-
mization will rearrange task priorities if this results in a system that is schedu-

Performing Analysis



7.4.1

7.4.2

lable at a lower clock frequency than is possible with tasks at their declared
priorities.

Clock optimization can be thought of as a combination of sensitivity analysis
and priority allocation:

e As with clock sensitivity, it is assumed that the effect of changing the
clock frequency only impacts on execution times (including critical exe-
cution times, resource and interrupt lock times). Deadlines and delays
between arrivalpoints do not get scaled. Any timelines that use clocks
derived from the processor clock will need to have their delays rescaled
to compensate for changes.

e As with priority allocation, task priorities may get rearranged. Non-
preemption groups, the activates clauses in task declarations and the
higher than declarationsinpriority constraints declarations can be
used to impose any necessary constraints on re-prioritization.

Designers of applications for which power consumption or heat dissipation is
critical should consider using clock optimization on their final application.

Running Clock Optimization

Clock Optimization is performed by selecting the “Clock Optimization” tab in
the Analysis Visualizer.

Alternatively, it can be run from the command line using:

C:\>rtaosanvis --analysis:Clock Model.stc Results.html

Clock Optimization Report

Clock optimization will only succeed if some set of priorities can be found that
result in a schedulable system at some frequency. If no such priorities can be
found, the Analysis Visualizer reports that the system is not schedulable.

If clock optimization is successful, it reports the priority levels for each task in
the system on the standard output together with any non-preemption groups
required to provide the reduction. Figure 7.16 shows the impact of clock
optimization on the same configuration that priority optimization was applied
in Figure 7.15.

Optimizing for clock speed gives a very different result, with the task priority
ordering placing task B as highest priority and suggesting the creation of two
non-preemption groups.

Performing Analysis

137



138

@ RTA Analysis ¥isualizer [C:working'UserDocs' STC' skch priority-allocation.stc]

File  Edit Help

Timing Model | Schedulability Analyzis | Sensitivity Analwsiz | Priority O ptimization £

[-] Clock optimization

The systemn is schedulable if the processor speed is reduced to 64% of its current value based on the following task
priorities:

task 8 has been assigned a priority of 5.
task A has been assigned a priority of 4.
task O has been assigned a priority of 3.
task € has been assigned a priority of 2,
task £ has been assigned a priority of 1,

The following non-preemption groups must be present:

[c,0]
[4,8]

100%

6

[-] Priority Ordering

High priority

CAN {interrupt)
Timer {interrupt)
{task)
(task)
(task)
(task)
(task)

moO»m

Low priority

=1oix]

[»

Analysis complete,

Figure 7.16: Clock optimization

Performing Analysis




7.5

Summary

Schedulability analysis tells you whether or not every response dead-
line in your application will be met at run-time for all tasks and ISRs. If
your application is found to be unschedulable, there are a number of ap-
proaches your can use to make it schedulable.

Sensitivity analysis lets you explore the boundaries of your application,
either to detect areas that are making your system unschedulable or to
look at the scope for possible future enhancements.

Best task priorities analysis determines the best priority allocation for
your tasks, such that the system is schedulable. Required lower priority
tasks can be specified for tasks whose execution ordering is important.
Best task priorities analysis also determines which tasks can share an
internal resource, so that stack space can be minimized.

Clock optimization is similar to best task priorities, but optimizes for min-
imum CPU clock rate rather than for minimum stack space.

Performing Analysis

139



8.1

8.1.1

140

Tutorials

This chapter presents some tutorial examples using the Analysis Visualizer.
All examples are fully explained including the correct syntax. However, the
reader should work through this tutorial in chronological order, as some later
sections are based on previous examples. Readers are also advised not sim-
ply to copy the solutions from this document but to write their own config-
uration files and then to check whether their results match the documented
results. Complete files for each of the tutorial examples are provided in the
Documents/RTA-0S3.x Analysis Visualizer Examples folder of the RTA-
0S3.x installation.

Critical execution times and deadlines

One of the most important requirements of hard real-time systems is that
tasks always have to meet their deadlines. Deadlines are usually determined
during the design stage of a system and are mainly based on system require-
ments and hardware restrictions.

The Analysis Visualizer distinguishes between the overall computation time
and the critical execution time it takes until a specific critical event has been
executed. A critical event, for example, could be the acknowledgment of
a message. This critical execution time can, of course, be identical to the
overall computation time of a task or interrupt handler. A Analysis Visualizer
deadline, therefore, specifies the maximum permitted time from the arrival
of an event until a task or interrupt handler has executed for at least the
associated critical execution time as shown in Figure 8.1.

Note that the Analysis Visualizer always imposes an implicit deadline on tasks
and interrupt handlers: they must complete before they are released again
(unless they have been declared as looping or re-triggering, see Section 6.3.2
for more details).

In order to specify a deadline for a critical execution time you have to add
a critical...has deadline clause to the execution profile of the task or
interrupt.

Example

To demonstrate how critical execution times and deadlines can affect the
schedulability of a system we consider the following example system:

e A controlled interrupt, which is raised every 4ms, causes interrupt service
task ISR_1 to run and tick a coarse activator. The activator, which follows
a periodic timeline, activates a single task Task_1 every 100ms.

Tutorials



A

Deadline >;

Eeneration of
Respone——————» :
7| response
Arriva
‘ A %Criticel Execution Time »
®

|
Time

Figure 8.1: Critical execution must occur before the deadline

e Task_1 has a computation time of 1000 cycles and ISR_1 of has a com-
putation time of 200 cycles. We know that Task_1 needs 6ms to write to
a specific 10 register. The system’s specification requires this 10 register
to be written with a maximum delay of 20ms.

e In this example, we assume the stopwatch clock runs at 100 kHz. In
addition, another timebase for the coarse activator runs at a frequency
that has been divided down by a factor of 400 from the processor clock.

e |Initially, we want to ignore any additional overheads.

You will have to create a new configuration file which contains:

1. Kernel clause

2. Two timebases (tb_ms, tb_coarse_ms)
3. One stopwatch conversion

4. One task (Task_1)

5. One interrupt (ISR_1)

6. Two timelines

7. One activator (actl)

8. Two transactions (t1, t2)

9. System timings

Tutorials 141



142

10. Interrupt recognition

After you have specified the kernel clause you have to declare two timebases;
the first one is the stopwatch timebase at 100kHz.

timebase tb_ms {
stopwatch;
units cycles { define 1 as 1 ticks; }
units sec { define 1 as 100000 ticks; } //100kHz
units ms { define 1000 as 1 sec; }
modulus 65536 ticks;

You also have to specify a coarse activator timebase for its much slower
clock. This timebase is necessary because our example uses a coarse activa-
tor which is ticked each time an interrupt is raised. Since the ratio between
the clock speeds is 400, the Analysis Visualizer will treat a 100ms delay as 25
ticks of the activator.

timebase tb_coarse_ms {
units sec { define 400 as 100000 ticks; }
units ms { define 1000 as 1 sec; }
modulus 65536 ticks;

Whenever you declare more than one timebase you also have to specify a
stopwatch conversion. It allows the Analysis Visualizer to convert every tim-
ing value into stopwatch cycles which is the smallest meaningful unit of anal-
ysis time and a default unit of the stopwatch timebase. Since we are using
real time units on both timebases, we simply make them consistent. Note
that the keywords 'on stopwatch’ are optional.

stopwatch conversion {
on th_coarse_ms 1 sec is on stopwatch 1 sec ;

}

In order to specify the execution behavior of Task_1 you will have to add
a critical ... has deadline clause to the task’s execution profile. Note
that time expressed in profiles refers to the stopwatch timebase, unless you
explicitly specify a different timebase.

task Task_1 {
entry taskl entry ;
profile {
this priority duration 1000 cycles;
critical 600 cycles has deadline 20 ms;

Tutorials



Next, you declare the controlled interrupt. Similar to the task declaration, it
contains the execution properties of the interrupt service task ISR_1.

interrupt ISR_1 {
entry istl_entry ;
controlled;
priority 1;
vector OxA;
profile { this priority duration 200 cycles; }

You will now have to declare a sequential timeline, containing a single ar-
rivalpoint, to model the periodic timing behavior of Task_1. As the task is
activated every 100ms, you will need to specify a delay of 100ms on the
coarse activator timebase.

timeline {

timebase tb_coarse_ms;
default readonly;

sequence {
arrivalpoint apl {task Task_1; delay 100 ms; }
next apl;

}

Next, you have to model the periodic behavior of ISR_1. You know that ISR_1
runs every 4ms,

which can be easily expressed by creating a sequential timeline with one
analysis-only arrivalpoint ap2. In this case, the referenced timebase is the
stopwatch timebase tb_ms, therefore the delay is given in units defined for
this timebase, i.e. stopwatch milliseconds.

timeline {
timebase tb_ms;
default readonly;
sequence {
arrivalpoint ap2 {
analysis { interrupt ISR_1; delay 4 ms; next ap2; }
}

You will now have to declare a coarse activator which is used by RTA-0S3.x
to follow the task’s timeline, starting from the first arrivalpoint apl. You must
specify the same timebase you declared earlier in the timeline for your task.

activator act_1 {
timebase tb_coarse_ms;

Tutorials

143



144

coarse;
initial apl;

Finally, you have to create two transactions representing the timing behavior
of Task_1 and ISR_1. The task’s timeline transaction starts at apl and runs
on the coarse activator act_1, which is driven by the interrupt service task
ISR 1.

transaction tl1 {
start apl;
activator act_1 driven by interrupt ISR 1;

Transaction t2 defines the ISR’s timing behavior, using the timeline starting
with arrivalpoint ap2. As this transaction describes the interrupt, it does not
run on any activator.

transaction t2 {

start ap2 ;
}

As before, system timings and interrupt recognition time are set to zero, thus
ignoring operating system overheads.

system timings { 0; 0; 0; 0; 0; 0; 0; 0; }

interrupt recognition 0 cycles;

After you have saved your configuration file as critical-instants.stc it
is time to run the Analysis Visualizer. Note, this time, you do not need a
priority order clause (or automatic priority allocation), as your system only
contains a single task. Open the file in the Analysis Visualizer and select the
“Schedulability Analysis” tab.

Provided you typed in everything correctly, the Analysis Visualizer should re-
port the results shown in Figure 8.2.

As you can see from the output, Task_1 is schedulable with an overall re-
sponse time of 20ms (200 cycles of the stopwatch timebase). More interest-
ing, of course, is the fact that Task_1 will comfortably meet its deadline. The
worst case response time for executing the critical section is 12ms, which is
well below the permitted deadline of 20ms. As a matter of fact, this system is
even schedulable if the critical execution time was increased to 10ms, which
means the whole task will always meet its deadline. A look at the output of
the sensitivity analysis will confirm this result as shown in Figure 8.3.

This result explains precisely by how much the execution time of each item is
allowed to change without making the system unschedulable.

Tutorials



B RTA Analysis Visualizer [C:\stc\exa i u _ 18] x|

File Edit Help

[-]1 Schedulability Analysis

[-]1 Overview

Key:

y Blocking time Interference time Execution time

ISA_1
» Blocking: 0 cv_cles Response time: 2.00ms (200
e Interference time: 0 cycles, cycles)

» Execution time: 200 cycles

Task_1
600 cycles
2000 cycles|
» Blocking: 0 cv_cles Rezponse time: 20.00ms
e Interference time: 1000 cycles, (2000 cycles)
» Execution time: 1000 cycles
» Critical instant at 600 cycles has a response-time of 12.00ms (1200

cycles), meeting its deadline of 2000 cycles

[-1 Detail

I5A_1 iz schedulable.
Calculated response time is 2.00ms (200 cycles) with blocking of 0 cycles

Tas=lk_1 is schedulable.
Calculated response time is 20.00ms (2000 cycles) with blocking of 0 cycles
» Critical instant at 600 cycles has a response-time of 12.00ms (1200 cycles), meeting its deadline of
2000 cycles

Bl

Analysis complete.

Figure 8.2: critical-instants.stc schedulability analysis

Tutorials

145



146

B RTA Analysis Visualizer [C:\stc\examples\critical-instants.stc]*

File  Edit Help
Timing Maode! I Schedulabilty Analysis  Senstivity Analysis | Priority Optimization I Clock Optimization I
[-] Critical Execution Sensitivity

[-1 Detail

In task Task_1

s Deadline 20.00ms (2000 cycles) can be met for critical execution time up to 10.00ms (1000 cycles).

[-] System sensitivity to execution and lock times

[-1 Summary

ISA_1 [Click graphs te zeom infout]

Available Execution time: 2.80ms (280 cycles)
Declared Execution time: 200 cycles
Task_1 [Click graphs to zeom infout]
Available Execution time: 50.00ms (5000 cycles)
Declared Execution time: 1000 cycles
[-1 Detail

In interrupt I1SR_1, the system can be schedulable for execution time up to 2.80ms (280 cycles).

In task Task 1, the system can be schedulable for execution time up to 50.00ms (5000 cycles).

[-] System sensitivity to clock speed

The system is schedulable if the processor clock speed is reduced to 80.00% of its current value.

= [=]

Analysis complete.

Figure 8.3: critical-instants.stc sensitivity analysis

Tutorials



8.1.2

8.2

Accounting for Overheads

In order to introduce system overheads you will have to change the sys-
tem timings and interrupt recognition time values. Edit the configuration
file critical-instants.stc and change the system timings values and in-
terrupt recognition time as follows:

system timings { 10; 20; 30; 40; 0; 0; 50; 0; }

interrupt recognition 15 cycles;

These values represent latencies, blocking and overheads. For the interrupt
recognition time you can choose 15 cycles. Note, the values in this exam-
ple are not supposed to represent any realistic platform. Save the file as
critical-instants-2.stc and rerun the analysis. The Analysis Visualizer
will output the results shown in Figure 8.4.

As you can see, Task_1 will still meet its deadline quite comfortably but the
response time for both task and ISR has significantly increased. Note, the
different blocking times that the task and ISR experience.

Now change the critical execution time of Task_1 from 600 cycles to 1000
cycles (the maximum indicated by sensitivity analysis with system timings
set to zero), and rerun the analysis. Figure 8.5 shows the results.

This time Task_1 will not be able to meet its deadline anymore. This is simply
because we introduced overheads to task and interrupt execution. Note that
the schedulability of ISR_1 has not changed.

The question of course is what is the maximum critical execution time for
which Task_1 is still schedulable? Use sensitivity analysis to answer this
question.

Execution profiles

When calculating the execution time of a task or interrupt handler it often
turns out that the actual worst-case timing behavior does not occur all the
time. Unless the code has been implemented without any conditional state-
ments it is quite possible that the execution time of a task or interrupt handler
will vary significantly depending on the state the system is currently execut-
ing in. This of course would make any timing analysis very pessimistic, as the
ahalyzer would always have to consider the worst case time for every invoca-
tion of a task or interrupt handler. The following code example demonstrates
this situation:

void Check_Data(void) {

if (check_level == 1) {
/* do lots of work x/
} else {

Tutorials

147



148

EEIRTA Analysis Yisualizer [ i 8T, examples' critical-instants-2.skc] _|EI|£|
File  Edit Help

Timing Model | Schedulability Analpsis §| S engitivity Analysis | Priority Optimization | Clock Optimization I

[-] Schedulability Analysis

[-] Overview

Key:

Blocking time Interference time Execution time
ISE_1
e Blocking: 50 cycles Response tirme: 2.90ms (290
» Interference time: 40 cycles, cycles)

e Execution time: 200 cycles

Task_1
600 cycles
2000 cycles

» Blocking: 15 c_ycles Response time: 27.15ms
e Interference time: 1700 cycles, (2715 cycles)
# Execution time: 1000 cycles

& Critical instant at 600 cycles has a response-time of 15.85ms (1585

cycles), meeting its deadline of 2000 cycles
[-]1 Detail

I5R_ 1 is schedulable,
Caloulated response time is 2.90ms (290 cycles) with Blacking of 50 cycles due to systern O3S level
blocking.

Task 1 is schedulable.
Calculated response time is 27.15ms (2715 cycles) with blocking of 15 cycles due to interrupt recognition
time.
® Critical instant at 600 cycles has a response-time of 15.65ms {1585 cycles), meeting its deadline of
2000 cycles

Analysis complete.

Figure 8.4: critical-instants-2.stc schedulability analysis

Tutorials



itical-instants-2.stc]* _ o x|

UserDocs', STC examples’,

% RTA Analysis ¥isualizer
File  Edit Help
Timing Model | Schedulability Analysis | Senitivity Analysis | Priority Optimization | Clock Optimization I

The system is NOT schedulable

[-] Schedulability Analysis

[-] Overview
Key:
Y Blocking time Interference time Execution time

I5R_1

Response time: 2.90ms (290

# Blocking: 50 cycles
& Interference time: 40 cycles, cycles)
® Execution time: 200 cycles

Task_1 {5 NOT schedulable,
Deadiine of 20.00ms (2000 cpcles ) is exceeded after 1 arvival points on transaction ¥ (aiignment 1),

Deadiine was 20.00ms (2000 cpcles ).
Blocking time is 15 cpcles due fo lnterrupt recagnition Hime.,

[-]1 Detail
I5R_1 is schedulable,
Calculated response time is 2.90ms (290 cycles) with blocking of 50 cycles due to systermn O3S level
blocking.

Task_1 is MOT schedulable.
Deadline of 20.00ms (2000 cycles) is exceeded after 1 arrival points on transaction #7 {alignment 1),

Deadline was 20.00ms (2000 cycles).
Blocking time is 15 cycles due to interrupt recognition time.

Copyright @ ETAS GmbH, 2009

Analysis complete.

Figure 8.5: critical-instants-2.stc schedulability analysis - 1000 cycle
critical instant

Tutorials 149



8.2.1

150

/* do nothing x/

The timing behavior of the function Check_Data() depends on the value
of check_level. If, for example, the worst case was 1000 cycles, but
check_level~==~1 could only become true every hundredth time, the overall
analysis would probably report a rather pessimistic result.

The Analysis Visualizer provides execution profiles to resolve this problem.
For every task or interrupt you can specify as many profiles as necessary
to describe the detailed timing behavior. If you only specify one execution
profile (at least one must be specified) it is not necessary to name it and you
can address it by simply stating the name of the task or interrupt, otherwise
execution profiles must be named. Named execution profiles are addressed
by extending the task or interrupt name with the profile name, separated by
a point (e.g. Task_1.profile2).

The following working example will explain how to declare multiple execution
profiles in a configuration file.

Example

Before we explain the example system let’'s have a look at the following
source code for an interrupt handler which is supposed to process incom-
ing messages. Work out the number of execution profiles you will have to
declare in the interrupt clause.

ISR(istl_entry) {
confirm_interrupt();
get_message();

if (message == START_MESSAGE) {
/* initialize global work buffer x/
initialize_buffer();

} else if (message == END_MESSAGE) {
/* activate Task_1 to process message */
ActivateTask(Task_1);

} else {
/* add message to working buffer x/
add_message_to_buffer();

In this example, an interrupt ISR_1 is triggered by one of three possible
causes: a START_MESSAGE notification, data contained within the message
or an END_MESSAGE notification. When the END_MESSAGE notification has been

Tutorials



received, Task_1 is activated which processes the message and writes infor-
mation to various log-files.

e The interrupt service task ISR_1 handles all messages. An end-to-end
message sequence (START_MESSAGE - add message to working buffer -
END_MESSAGE) takes place every 300 microseconds. There is a delay of
100 microseconds between each part of a message sequence.

e There are three different execution paths which all need to be analyzed
separately. The specification states that the START_MESSAGE execution
path has a worst-case execution time of 2 cycles, the END_MESSAGE exe-
cution path of 3 cycles and the third execution path of 7 cycles.

e The task Task_1 has an overall execution time of 10 cycles. It has to
complete its critical section of 2 cycles (processing the message) before
the next message is added to the buffer, giving it a maximum deadline
of 200 microseconds.

e Asecond ‘polling’ interrupt ISR_2 occurs every 90 ticks. The initial design
specifies that the interrupt service task ISR_2 will execute for 10 cycles .

e ISR _1 should execute at a higher interrupt priority level than ISR_2.
e A default stopwatch timebase; all overheads can be ignored.
In the configuration file, in addition to the standard clauses, you will have
to declare the task, the interrupts, two analysis-only timelines to model the
workflow and two transactions to follow those timelines. This is the structure
the configuration file should eventually have:

1. Kernel clause

2. One timebase

3. One task (Task_1)

4. Two interrupts (ISR_1, ISR_2)

5. Two timelines

6. Two transactions (t1, t2)

7. System timings

8. Interrupt recognition

The task declaration has to specify the deadline for the critical section of the
task:

Tutorials

151



152

ISR 1.p2 arrives SR_1.p1 arrives ISR_1.p3 arrives
ISR 2 arrives P ISR_2 arrives

-

ISR_2 D

Task_1 activated
by ISR_1.p2

Task_1 completes its
critical execution

\ 4

Time

+———Deadiine (D ,) = 200us———»

Figure 8.6: Deadlines are measured from the arrival which activates the task

task Task_1 {
entry taskl_entry ;
profile {
this priority duration 10 cycles;
critical 2 cycles has deadline 200 us;

The task’s deadline of 200 microseconds may surprise you. You might have
expected a deadline of 50 microseconds in order to complete before the next
buffer is written, as the interrupt has already take up to 15 cycles to execute.
The reason for specifying 200 microseconds is that the Analysis Visualizer
measures all deadlines as from the arrival of an event, in this case the arrival
of the interrupt that activates Task_1. Figure 8.6 illustrates this.

Next, you will have to declare the interrupts ISR_1 and ISR_2. You should
assign ISR_1 a priority of 2 and ISR_2a priority of 1 (as larger numbers mean
higher priorities).
interrupt ISR 2 {
entry ist2_entry ;

controlled;
priority 1;
vector 0OxB;
profile { this priority duration 10 cycles; }
}
Tutorials



The interrupt declaration of ISR_1 should contain three execution profiles;

each profile must be given a uni

interrupt ISR_1 {

entry istl_entry ;
controlled;

priority 2;

vector OxA;

profile pl { this prio
profile p2 { this prio
profile p3 { this prio

que identifier.

rity duration 2 cycles; } /x start x/
rity duration 3 cycles; } /* end */
rity duration 7 cycles; } /* message */

Note that the priority and vector values are normally target dependent. Also,

multiple interrupt priority levels

might not be applicable to your specific plat-

form. For a complete list of valid values you will need to refer to the Target/-
Compiler Port Guide for your specific platform.

The timing behavior of the system is modeled in two timelines. Both timelines

contain only analysis-only arriv

alpoints, as Task_1 is directly activated by

ISR_1 (instead of using an activator) and interrupts can only appear in the
analysis clause of an arrivalpoint. The individual interrupt profiles of ISR_1

are used to model the message

timeline {
timebase tb_sw;
default readonly;

sequence {
arrivalpoint apl {
analysis {
interrupt
delay 100
}
}
arrivalpoint { /x*
analysis {
interrupt
delay 100
}
}
arrivalpoint { /x
analysis {
interrupt
task Task_
delay 100
next apl;
}
}

sequence.

/* START_MESSAGE </
ISR 1.pl;

us;

message */

ISR_1.p3;

us;

END_MESSAGE x/
ISR_1.p2;

1;
us,;

Tutorials

153



154

ISR_1.p2 arrives _ ISR_1.p2 arrives

Task_1 activated by ISR_1.p2 Task_1 activated by ISR_1.p2
Task_1 Task_1
- >
Time

Figure 8.7: The time at which the a task is activated is not required

Note that it is not necessary to specify the time at which ISR_1.p2 activates
Task_1. As an interrupt is always of higher priority than a task, Task_1 can
never start to execute until the interrupt handler has finished and in the worst
case this will be for the entire duration of ISR_1. p2. Figure 8.7 illustrates this.

The second timeline you have to create describes the timing behavior of
ISR 2.
timeline {

timebase tb_sw;
default readonly;

sequence {
arrivalpoint ap2 {
analysis {
interrupt ISR _2;
delay 900 us;
next ap2;
}
}
}
}
Tutorials



You can now declare two basic transactions for both timelines, starting at apl
and ap2 respectively. As both transactions describe interrupts, only, they do
not refer to any activator.

transaction t1 {

start apl ;
}
transaction t2 {
start ap2 ;
}

As all system overheads can be ighored, you finally add the following two
clauses:

system timings { 0; 0; 0; 0; 0; 0; 0; 0; }

interrupt recognition 0 cycles;

Save your configuration file as execution-profiles.stc and run schedula-
bility analysis. Figure 8.8 shows the results of analysis.

Because of the interference Task_1 experiences it will not finish in time be-
fore its next activation. The sensitivity analysis highlights the problem as
shown in Figure 8.9.

Let’'s assume that the initial execution time estimated for ISR_2 was too pes-
simistic and in reality the execution of ISR_2 only takes 8 cycles instead of 10
cycles (as indicated by the above result). If you update the interrupt declara-
tion and rerun the analysis then you will see that the system is schedulable.

The important information is that Task_1 is schedulable with an overall re-
sponse time of 30 cycles, just in time before its next invocation. Although the
task itself is not able to finish execution before the next buffer is written its
critical section is executed within the deadline specified (in fact it even fin-
ishes five cycles earlier). Note that this system would not have been schedu-
lable if you had used the interrupt’'s worst case execution time instead of
individual profiles.

However, if you compare the above results with the system’s timing behav-
ior illustrated in Figure 8.10, you will notice that the actual response time of
interrupt ISR_2 is only 13 cycles instead of 18 cycles reported by the Anal-
ysis Visualizer. The reason for this is that Figure 8.6 shows the worst-case
response time of Task_1, which only occurs when ISR_2 and Task_1 are re-
leased simultaneously. Figure 8.10 displays the worst-case response time for
ISR _2, which only occurs if ISR_2 arrives at the same time as ISR_1.p3.

The above illustration shows that Task_1 finishes its critical section after 10
cycles and its worst-case response time is only 20 cycles. This means that the

Tutorials

155



156

% RTA Analysis ¥i i working',UserDocs',STC examplest execution-profiles.stc]
File Edit Help

Timing Model

Sensitivity Analysiz | Priority Optimization I Clack Optimization I

The system is NOT schedulable

[-]1 Schedulability Analysis

[-] Overview

Key:

Blacking tirne Interference time Execution tirme
IsE_1.p01
#» Blocking: 0 cycles Response time: 2 cycles

# Interference time: 0 cycles,
# Execution time: 2 cycles

ISE_1.p2

» Blocking: 0 cycles Response time: 3 cycles
» Interference time: 0 cycles,
» Execution time: 3 cycles

ISE_1.p3

# Blocking: 0 cycles Response time: 7 cycles
# Interference time: 0 cycles,
# Execution time: 7 cycles

1582

s Blocking: 0 cycles Fesponse time: 20 cycles
Interference time: 10 cycles,
# Execution time: 10 cycles

Task I s NOT schedulable,
execution not complete before release

Analysis complete.

Figure 8.8: execution-profiles.stc schedulability analysis

Tutorials




& RTA Analysis Visualizer [C:\working\RTA-0S\SystemTest\TestSuite_Tools\TimingModels tion- o [m] 24|
File  Edit Help
Timing Model | Schedulabilty Analysie  Senstivity Analysis I Priarity Optimization | Clock Cptimization |

[-]1 Critical Execution Sensitivity
[-1 Detail
In task Task_1
e Deadline 20 cycles can not be met for any execution time.
[-] System sensitivity to execution and lock times
[-]1 Summary
1.p1 [Click graphs ta zoom infout]
Available Execution time: 0 cycles
Declared Execution time: 2 cycles
' 1.p2 [Click graphs to zoom infout]
fyailable Execution time: 1 cycles
Declared Execution time: 3 cycles b
1.p53 [Click graphs ta zoom infout]
Mvailable Execution time: S cycles
Declared Execution time: 7 cycles
ISA_2 [Click graphs to zoem in/out]
Lvailable Execution time: & cycles
Declared Execution time: 10 cycles
Task_1 [Click graphs to zoom infout]
Mvailable Execution time: 3 cycles j
Analysis complete.
Figure 8.9: execution-profiles.stc sensitivity analysis
Tutorials

157



158

ISR 1.p2 arrives SR_1.p1 arrives ISR_1.p3 arrives
ISR _2 arrives P ISR_2 arrives

-

Task_1 completes
its critical
execution
ISR _2 D ISR 2

ISR_2 suffers the worst
Task_1 activated case interference when
by ISR_1.p2

_ releasedat the same time
as ISR_1.p3

Time

+———Deadiine (D ,) = 200us———»

Figure 8.10: Worst case arrival for ISR_2

\ 4

test system will never actually experience the worst-case behavior of Task_1
and ISR _2 at the same time. The Analysis Visualizer, however, reports both
worst-case values, as the transactions for ISR_1 and ISR_2 are not synchro-
nized and the Analysis Visualizer has to assume that either case is possible.

If you know that your system will always execute in a particular order, for
example Task_1 and ISR_2 are always released simultaneously, you will have
to synchronize the transactions in your configuration file by merging the two
separate timeline transactions into a single timeline transaction as shown
below.

timeline {

timebase tb_sw;

default readonly;

sequence {

arrivalpoint apl {
analysis {

interrupt ISR_1.pl;
delay 100 us;

}
}
arrivalpoint {
analysis {
interrupt ISR_1.p3;
delay 100 us;
}
}
arrivalpoint {
analysis {

Tutorials



interrupt ISR_1.p2;

interrupt ISR_2;

task Task_1;

delay 100 us; /* time 300 us =/

}
b
arrivalpoint {
analysis {
interrupt ISR_1.pl;
delay 100 us;
}
}
arrivalpoint {
analysis {
interrupt ISR_1.p3;
delay 100 us;
}
}
arrivalpoint {
analysis {
interrupt ISR 1.p2;
task Task_1;
delay 100 us; /* time 600 us */
}
}
arrivalpoint {
analysis {
interrupt ISR_1.pl;
delay 100 us;
}
}
arrivalpoint {
analysis {
interrupt ISR_1.p3;
delay 100 us;
}
}
arrivalpoint {
analysis {
interrupt ISR 1.p2;
task Task_1;
delay 100 us; /* time 900 us */
next apl;
}
}
}
}
transaction tl1 {
start apl ;

Tutorials 159



8.3

8.3.1

160

Save your configuration file as execution-profiles-2.stc and run the
schedulability analysis.

The Analysis Visualizer will output the following results, showing the 13 cycles
response time for ISR_2 that we'd expect, as shown in Figure 8.8.

Shared Resources and Blocking

When global data is shared amongst different tasks it is important to guar-
antee that this data cannot get corrupted. The recommended way to do this
in RTA-OS3.x is by using resource locking: every task that wants to access
shared data must first lock a particular resource. A task that wants to lock a
resource will only start executing if the resource has not already been locked
by another task. Of course, resource locking introduces another level of over-
head, as even the most sophisticated resource locking protocol, such as the
priority ceiling protocol which is used by RTA-OS3.x, cannot avoid blocking
time. Blocking time occurs when a task is delayed by another task with lower
priority. You must not confuse blocking time with interference, as the latter
is caused by higher-priority tasks or interrupts. Figure 8.12 shows what could
happen if two tasks shared the same resource (Task_2 is released twice and
has a higher priority than Task_1).

Note that the Analysis Visualizer also considers interrupt recognition time (the
maximum time for a single instruction during which an interrupt will not be
recognized) as blocking time. The Analysis Visualizer configuration language
provides resource clauses in task execution profiles where you can specify for
how long the task will lock a particular resource. There must be a resource
clause for every resource the task locks (specified in the locks resource clause
in the task declaration).

Example

For this example we consider a ‘polling’ system with two independent tasks,
Read_Data and Check_Data.
e Check_Data should be of higher priority than Read_Data.

e Aninterrupt service task expires two fine activators; both follow separate
timelines and periodically activate the tasks.

e Both tasks share a resource Data_Guard.

e In this example the processor clock and stopwatch clock both run at 1
MHz, so 1ms equals 1000 ticks.

Tutorials



working',UserDocs' STCh examples' execution-profiles-2.skc] = IEI |£|

File Edit Help

Timing Model  Schedulability Analysis | Sensitivity Analysis | Priority O ptimization I Clock Optirization |

[-1 Schedulability Analysis

[-] Overview

Key:
y Blocking time Interference time Execution time
IsE_1.pl1
» Blocking: 0 cycles Response time: 2 cycles

» Interference time: 0 cycles,
» Execution time: 2 cycles

SE_I.p2

» Blocking: 0 C\,r_cles Response time: 3 cycles
» Interference time: 0 cycles,
® Execution time: 3 cycles

ISR_1.p3

» Blocking: 0 C\,r_cles Response time: 7 cycles
» Interference time: 0 cycles,
e Execution time: 7 cycles

I5R_2

e Blocking: 0 cycles Response time: 13 cyoles —
Interference time: 5 cycles,
®» Execution time: 8§ cycles

Task 1
» Blocking: 0 C\,r_cles Response time: 30 cycles
» Interference time: 20 cycles,
» Execution time: 10 cycles
» Critical instant at 2 cycles has a response-time of 15 cycles, meeting its

deadline of 20 cycles

Analysis complete.

Figure 8.11: execution-profiles-2.stc schedulability analysis

Tutorials 161



162

Task_2 arrives Task_2 arrives
Task_1 arrives —

— Task_2 is blocked while

A Task_2 locks a A Task_1 holds the
resource shared resource

\ with Task_2 L

Task_2 Task 2

v

Time
Task_1 sufferes Task_1 releases the resource
interferences from Task_2 and Task_2 preempts
| Task_1 locks resources shared with Task_2
’ Task_1 runs with priority of Task_2

Figure 8.12: Impact of blocking on higher priority tasks

e The system timings values are: 10, 20, 30, 40, 0, 0, 50, 0 and the inter-
rupt recognition time is 25 cycles .

The timing behavior of the system can be summarized as follows:

Task/ISR Period Execution Data_Guai Critical Deadline
[ms] [ms]

ISR 1.p1 2 0.15 N/A N/A N/A

ISR_1.p2 2 0.2 N/A N/A N/A

Read_Data 10 4 1.8 2 5

Check_Data | 5 2 1 1.4 4

In order to implement this example system you will have to declare the re-
source Data_Guard, both tasks and interrupt execution profiles, two time-
lines, two fine activators and two transactions to follow the timelines. Fur-
thermore, you must define the timebase, system timings and interrupt recog-
nition time.

The resource declaration is done in the resource clause.

resource Data_Guard;

As both tasks share the same resource you have to include a locks resource
clause in each declaration.

task Read_Data {
entry Read_Data_entry ;
locks resource Data_Guard;

Tutorials



profile {
this priority duration 4000 cycles;
resource Data_Guard duration 1800 cycles;
critical 2000 cycles has deadline 5 ms;

}

task Check_Data {
entry Check_Data_entry ;
locks resource Data_Guard;
profile {
this priority duration 2000 cycles;
resource Data_Guard duration 1000 cycles;
critical 1400 cycles has deadline 4 ms;

The interrupt declaration must contain two execution profiles. The Analysis
Visualizer does not allow a simple ISR (completes execution before its next
invocation) to appear in more than one transaction. As the two tasks require
two separate transactions which are driven by the same ISR (though different
profiles) you will have to declare ISR _1 to be either looping or re-triggering.
In this case you also need to specify a buffer limit for each execution profile
(see Section 6.3.2 for more information).

For this example system you can declare ISR_1 as re-triggering and specify
a buffer limit of 1 for each profile. A buffer limit of 1 indicates that a re-
triggering of the same profile actually doesn’t take place but a profile can re-
quire processing before the other profile has finished its execution. Note that
for looping or re-triggering interrupts buffer limits are mandatory for each
profile unless you specify a fifo (first-in-first-out) ordering of profile execution
and an overall fifo buffer limit.

interrupt ISR_1 {
entry istl_entry ;
controlled;
priority 1;
vector OxA;
retriggering;
profile pl {
this priority duration 150 cycles; buffer limit 1;
}
profile p2 {
this priority duration 200 cycles; buffer limit 1;

}

Tutorials

163



164

Note that for re-triggering or looping executable objects the order in which
execution profiles are declared is important, as it determines the order of
execution in the case where more than one invocation of the same object is
ready to execute.

Next, you have to declare two separate timelines to model the periodic be-
havior of each individual task. Note that there is no need to declare extra
timelines for the interrupts , as all transactions run on fine activators.

timeline {
timebase tb_ms;
default readonly;
sequence {
arrivalpoint apl {
task Read_Data;

delay 10 ms;
}
next apl;
}
}
timeline {
timebase tbh_ms;
default readonly;
sequence {
arrivalpoint ap2 {
task Check_Data;
delay 5 ms;
}
next ap2;
}
}

After you have declared the two fine activators actl and act2 (one for each
timeline, with initial arrivalpoints apl and ap2, respectively), you need to
declare two transactions, indicating that two timelines are processed by fine
activators driven by interrupt profiles pl and p2 respectively.

transaction transl {

start apl ;
activator actl driven by interrupt ISR 1.pl;

}
transaction trans2 {

start ap2 ;

activator act2 driven by interrupt ISR 1.p2;
}

Next, you need to declare the systems overheads.

Tutorials



system timings { 10; 20; 30; 40; 0; 0; 50; 0; }
interrupt recognition 25 cycles;

After you have specified the priority order clause for your tasks your configu-
ration file should now have the following structure:
e Kernel clause

e One timebase

e One resource (Data_Guard)

e Two tasks (Read_Data, Check_Data)

e Oneinterrupt (ISR_1)

e Two timelines

e Two activators (actl, act2)

e Two transactions (transl, trans2)

e System timings

e Interrupt recognition

Task priority order

When you have finished (do not forget the timebase) you should save the con-
figuration file as blocking.stc and run schedulability analysis. Figure 8.13
shows the results you should get from the Analysis Visualizer.

As you can see, all tasks and interrupts are schedulable. The maximum block-
ing time Check_Data experiences is 1.8ms, caused by task Read_Data which,
on the other hand, is only blocked for 25 cycles, due to the interrupt recogni-
tion time. Interrupt profile pl is blocked for 240 cycles by the lower priority
profile p2 (pl is declared first and hence of higher priority than p2). Interrupt
profile p2 is blocked for 50 cycles due to OS level blocking defined in the sys-
tem timings values. A look at the results of the sensitivity analysis reveals
the maximum time each task is permitted to lock the resource Data_Guard
without jeopardizing the schedulability of the system.

Figure 8.14 shows the results you should get from the Analysis Visualizer.

Tutorials

165



166

File  Edit  Help

Timing Model Sensitivity Analysiz | Priorty Optimization | Clock Optirmization I

[-]1 Schedulability Analysis

[-]1 Overview

Key:
y Blocking time Interference time Execution time
SR _1.p1
o Blocking: 240 cycles Response time: 430 cycles

e Interference time: 40 cycles,
 Execution time: 150 cycles

I56_1.p2
» Blocking: 50 cycles Response time: 480 cycles

e Interference time: 230 cycles,
e Execution time: 200 cycles

Checl_Dats

1400 cycles

4000 cycles
Blocking: 1.80ms (1800 cycles) Response tirme:! 4.25ms
Interference time: 450 cycles, (4250 cycles)
Execution time: 2000 cycles
Critical instant at 1400 cycles has a response-time of 3.64ms (3640
cveles), meeting its deadline of 4000 cycles

Read Data
2000 cycles
5000 cycles
» Blocking: 25 cycles Response time: 8.76ms
e Interference time: 4730 cycles, (8755 cycles)
® Execution time: 4000 cycles
® Critical instant at 2000 cycles has a response-time of 4.49ms (4485

cyeles), meeting its deadline of 5000 cycles

Analysis complete.

Figure 8.13: blocking.stc schedulability analysis

Tutorials




& RTA Analysis Visualizer [C:\working\RTA-0S\SystemTest\TestSuite_Tools\TimingModels) = I EI|Z_£|
File  Edit Help
Timing Model | Schedulabilty Analysis | Senstivity Analysi IPrim'ty'Optimizaﬁm | Clock Optimization |
a
[-]1 Critical Execution Sensitivity
[-1 Detail
In task Check_ Dats
e Deadline 4.00ms (4000 cycles) can be met for critical execution time up to 1.76ms (1760 cycles).
In task Aead Dats
e Deadline 5.00ms (5000 cycles) can be met for critical execution time up to 2.52ms (2515 cycles).
[-] System sensitivity to execution and lock times
[-1 Summary
ISR_1.p1 [Click graphs to zaem infout]
Available Execution time: 510 cycles
Declared Execution time: 150 cycles
[Click graphs to zoom infout] bero
fwailable Execution time: 560 cycles
Declared Execution time: 200 cycles
Check Data [Click graphs te zoom infout]
Available Execution time: 2.52ms (2515 cycles)
Declared Execution time: 2000 cycles
Available Resource-locking time for O 2.52mes (2515 cycles)
Declared Resource-locking time for Data_1 1000 cycles
ata [Click graphs to zoom infout]
Ayailable Execution time: 5.25ms (5245 cycles) j
Analysis complete,

Figure 8.14: blocking.stc sensitivity analysis

Tutorials 167



8.3.2

8.4

168

Exercise

Try to enhance this example system by adding another ‘polling’ task
Read_Data2 to your test system but without changing any of the existing tim-
ing properties. You will need to declare an additional task, interrupt profile,
timeline, activator and transaction and add the new task to the task priority
order clause.

Periodic timelines and bursting transactions

So far we have only considered sequential timelines and timeline transac-
tions. Very often, however, it is easier to model a system by using periodic
timelines and bursting transactions instead. Consider for example a system
with two periodic tasks running every 3ms and 7ms respectively. If we wanted
to model this simple system in a sequential timeline, we would have to spec-
ify a sequence of nine arrivalpoints:

sequence {

arrivalpoint apl { /*x 0 ms x/
task Task_1;
task Task_2;
delay 3 ms;

}

arrivalpoint ap2 { /x 3 ms x/
task Task_1;
delay 3 ms;

}

arrivalpoint ap3 { /* 6 ms x/
task Task_1;
delay 1 ms;

}

arrivalpoint ap4 { /x 7 ms x/
task Task_2;
delay 2 ms;

}

arrivalpoint ap5 { /*x 9 ms x/
task Task_1;
delay 3 ms;

}

arrivalpoint ap6 { /x 12 ms x/
task Task_1;
delay 2 ms;

}

arrivalpoint ap7 { /x 14 ms x/
task Task_2;
delay 1 ms;

}

arrivalpoint ap8 { /* 15 ms =/
task Task_1;
delay 3 ms;

Tutorials



}
arrivalpoint ap9 { /* 18 ms x/
task Task_1
delay 3 ms;
}
}

next apl;

By using the periodic shorthand form of the timeline declaration (periodic
timelines) we can represent this timing behavior in a much easier and far
more intuitive way.

timeline {
timebase ms_tb;
default readonly;
periodic apl {
task Task 1 every 3 ms offset 0 ms;
task Task_2 every 7 ms offset 0 ms;

During processing the Analysis Visualizer will automatically transform peri-
odic timelines into an equivalent sequential timeline declaration. Periodic
timelines, however, do not allow analysis-only objects, e.g. interrupts can-
not be modeled in periodic timelines. This means that if you want to model
interrupts you will still need to use sequential timelines.

In order to model analysis-only objects, such as interrupts, it is often easier
to use bursting transactions instead of sequential timelines. Bursting trans-
actions do not require a timeline declaration as they only describe the arrival
pattern of a particular task or interrupt. How ever, like periodic timelines the
Analysis Visualizer will internally transform bursting transactions into sequen-
tial analysis-only timelines. Consider for example a system where an inter-
rupt ISR_1 always activates a task Task_1. Let’s assume the interrupt will
not occur more frequently than once in every 1ms, four times in every 9ms
and ten times in every 50ms. The declaration of the corresponding bursting
transaction would then look as follows:

transaction t1 {

bursting {
1 times in 1ms ;
4 times in 9ms ;
10 times in 50ms ;

}

interrupt ISR_1 ;

task Task_1 ;

Tutorials 169



8.4.1

170

This means, the Analysis Visualizer will create an internal analysis-only time-
line with nine arrivalpoints to implement the following worst-case arrival pat-
tern:

Oms; Ims; 2ms; 3ms; 9ms; 10ms; 11ms; 12ms; 18ms; 19ms; 50ms; 51ms;
52ms; 53ms; ...

Note that bursting transactions are used for analysis purposes only. As they
don't allow the specification of arrivalpoints it is not possible to ‘link’ them to
any existing timelines. Bursting transactions should therefore only be used
to model bursting timing behavior of interrupts and tasks if they are not syn-
chronized with any existing timelines.

Example 1

In our working example we consider a system with four tasks, three tasks are
periodically activated by a fine activator expired from an interrupt service
task ISR_1; the fourth task is activated by a second interrupt service task
ISR_2 with bursting behavior.

e ISR _1 executes at priority 1, ISR_2 at priority 2.
e ISR_1 and ISR_2 both execute for 0.1ms.

e Task_1 is activated every 3ms, Task_2 every 8ms and Task_3 every
12ms.

e Task_1 has a worst-case execution time of 0.2ms, Task_2 of 0.3ms and
Task_3 of 0.4ms.

e ISR_2 activates Task_4 and has a bursting arrival of 1 times in 1ms, 3
times in 8ms and 5 times in 20ms.

e Task 4 has a worst-case execution time of 0.5ms and must have the high-
est priority.

e The timebase should define 1ms to equal 1000 ticks.
e The system timings values are: 10, 20, 30, 40, 0, 0, 50, 0 and the inter-

rupt recognition time is 25 cycles.

In order to model your system you will need to declare your tasks and in-
terrupts, a periodic timeline, a fine activator, one timeline transaction which
runs on that activator and one bursting transaction for the second interrupt.

In order to guarantee that Task_4 is assigned the highest priority during auto-
matic priority allocation, you need to specify the following priority constraints
clause immediately after the task declarations:

Tutorials



8.4.2

priority constraints {
task Task_4 higher than task Task_1;
task Task_4 higher than task Task_2;
task Task_4 higher than task Task_3;

The periodic timeline you declare should have the following form:

timeline {
timebase tb_ms;
default readonly;
periodic apl {
task Task_1 every 3 ms offset 0 ms ;
task Task_2 every 8 ms offset 0 ms ;
task Task_3 every 12 ms offset 0 ms ;

The bursting transaction should be declared as follows:

transaction t2 {
bursting {
1 times in 1 ms;
3 times in 8 ms;
5 times in 20 ms;

}
interrupt ISR_2;
task Task_4;

All other objects are declared similar to previous examples. When you have
finished (don’t forget to declare the timebase and systems overheads) you
should save the configuration file as transactions.stc and run priority op-
timization. Figure 8.15 shows the results you should expect to see.

As you can see, all tasks and interrupts are schedulable, and the automatic
priority allocation assigned three tasks to a non-preemption group.

Example 2

You should now use the above information to carry out sensitivity analysis.
Remember that sensitivity analysis requires a task priority clause. You also
have to specify a soft non-preemption group for the suggested tasks. An
example solution can be found in transactions-2.stc of your Analysis Visu-
alizer tutorial folder.

Figure 8.16 shows the results you should expect to see.

Tutorials

171



172

ﬂ RTA Analysis Yisualizer [

File

Timing Model | Schedulability &nalysis I Sensitivity Analysiz  Priority Optimization | Clack Optimization I

Edit  Help

[-]1 Priority Allocation

task Task 4 has been assigned a priority of 4,
task Task 3 has been assigned a priority of 3.
task Task I has been assigned a priority of 2,
task Fask 2 has been assigned a priority of 1,

orking'\UserDocs' STC examples'transactions.skc]*

The following non-preemption groups must be present:
[ Task_z, Task_1, Task_31]

[-]1 Priority Ordering

High priority
ISR 2
ISR 1

Task_4
Task _3
Task_1
Task_2

Low priority

{interrupt)
{interrupt)
(task)
(task)
(task)
(task)

[-1 Schedulability Analysis

[-1 Overview

Key:

I56_2

BElocking time Interference time Execution time

» Blocking: 50 cycles Response time: 190 cycles
» Interference time: 40 cycles,
#» Execution time: 100 cycles

» Blocking: 50 cycles Response time: 330 cycles
» Interference time: 180 cycles,
s Execution time: 100 cycles

Tasl 4

Analysis complete,

Tutorials

Figure 8.15: transactions.stc priority optimization



RTA Analysis Yisualizer i ! ! ! i H ol x|
File  Edit Help

Timing Model | Schedulabilty Analysis  Sensitivity Analpsis | Fricrity Optimization | Clock Optimization

[-] System sensitivity to execution and lock times

[-1 Summary

I5R_Z2 [Click graphs to zoom infout]

Available Execution time: 171 cycles

Declared Execution time: 100 cycles

I5R_1 [Click graphs to zoom infout]

Available Execution time: 250 cycles

Declared Execution time: 100 cycles

Task_d [Click graphs to zoom infout]

Available Execution time: cycles

Declared Execution time: cycles

Task_3 [Click graphs to zoom infout]

Available Execution time: 615 cycles

Declared Execution time: 400 cycles

Task_I [Click graphs to zoom infout]

Available Execution time: 415 cycles

Declared Execution time: 200 cycles

Task_2 [Click graphs to zoom infout]

Available Execution time: 640 cycles

Declared Execution time: 300 cycles

Analysis complete,

Figure 8.16: transactions-2.stc sensitivity analysis

Tutorials 173



8.5

174

Try now to change your configuration file (e.g. remove the soft non-
preemption group clause, increase computation times, etc) and rerun sensi-
tivity analysis. By comparing the results you will get a better understanding
of how the timing behavior of your system is changing. Note that you might
also have to rerun automatic priority allocation as the priority order depends
on the changes you make.

Looping and re-triggering behavior

In hard real-time systems it is essential that deadlines will always be met.
However, it is not always possible that tasks and interrupts finish execution
before their next invocation is due. Re-triggering or looping behavior of tasks
and interrupts, on the other hand, will not change the hard real-time property
of a system, as long its deadlines are met. There are of course limitations as
to how many instances of a task or interrupt can be buffered. Most limitations
are based on hardware restrictions and have to be obtained from appropriate
hardware manuals.

Where declared as re-triggering, tasks will need to chain themselves on com-
pletion while interrupts will need to either leave the interrupt pending or re-
assert it. Interrupts are also allowed to be declared as looping, which means
their handlers will need to loop within their entry function until all pending
occurrences of the interrupt have been dealt with. Re-triggering or looping
tasks and interrupts can be declared with fifo behavior, which means their
profiles execute on a first-in, first-out (FIFO) basis as opposed to priority -
based execution order. When declaring the task you will also have to specify
a buffer limit, either as part of the fifo clause or explicitly in each execution
profile. If you are not sure what buffer size to specify you can always declare
an unlimited buffer, the Analysis Visualizer will then report the buffer size
needed. But be careful when choosing unlimited buffer sizes as the Analysis
Visualizer might use an unrealistic limit to schedule your system.

Re-triggering or looping execution is usually required in systems with bursting
behavior. Take for example an application where an interrupt activates a task.
The interrupt handler executes for 0.1ms, the task for 2ms. Let’'s assume a
single interrupt is normally raised every 13ms but there is a bursting situation
where up to six interrupts (and task activation) can occur with a delay of only
one millisecond in between. We also assume that all six task’s invocations
must have finished their execution within 13ms after the first task invocation
occurred. We, therefore, specify a deadline for the task which is the remain-
ing time from the moment the sixth interrupt is raised; hence we declare a
deadline of 8ms. The task itself executes in FIFO order and re-triggers (chains
itself) until all occurrences have been processed.

Figure 8.17 demonstrates the arrival pattern and execution order of the task.

Tutorials



8.5.1

Worst case depth occurs when arrival 3
is running and arrivals 4,5 and 6 are

ready to run

Bufered Activations >
(e}

Completed

Completed Activations

<

Initial bursting arrival Final bursting arrival Deadline for first bursting arrival Deadline for final bursting arrival

v

Figure 8.17: Effect of FIFO buffering on response times

You can see, for example, that by the time the sixth arrival of the task occurs
the first two invocations have already finished executing. The sixth invocation
also represents the worst-case response time the task will experience. It also
shows that only four fifo buffer levels are required to buffer all arrivals.

Example 1

We can model this arrival pattern as a bursting transaction with a bursting ar-
rival pattern of 1 times in 1ms and 6 times in 13ms. If we specify a deadline of
8ms and declare our task as re-triggering with fifo buffer unlimited,
the Analysis Visualizer will output the results shown in Figure 8.18 (1ms
equals 1000 ticks):.

Tutorials

175



176

@ RTA Analysis Yisualizer ( iy i i ing. [ - IEI I!I

File  Edit Help

Sensitivity Analyziz | Priority Optimization | Clock Optimization I

Timing odel

[-]1 Schedulability Analysis

[-1 Overview

Key:
y BElocking time Interference time Execution time
I5R_1
» Blocking: 0 cycles Response time: 100 cycles

» Interference time: 0 cycles,
® Execution time: 100 cycles

Task_1
2000 cycles
000 cycles
» Blocking: 0 cycles Response time: 7.60ms (7600
» Interference time: 5600 cycles, cycles)
® Execution time: 2000 cycles
® Critical instant at 2000 cycles has a response-time of 7.60ms {7600 cycles),

rmeeting its deadline of 000 cycles

[-1 Detail

i5E_1 s schedulable,
Calculated response time is 100 cycles with blocking of 0 cycles

Task_Iis schedulable,
Caloulated response time is 7.60ms (7600 cycles) with blocking of 0 cycles
® Critical instant at 2000 cycles has a response-time of 7.60ms (7600 cycles), meeting its deadline of 2000
cycles
Maximurn buffer usage is 4
Maximum retriggers is &

Copyright @ ETAS GmbH, 2009

Analysis complete,

Figure 8.18: retriggering.stc schedulability analysis

Tutorials




8.5.2

Most importantly, our task always meets its deadline with an overall response
time of 7.6ms. Furthermore, the Analysis Visualizer confirms that the system
only requires a buffer limit of 4, as there are never more than three events
pending at the same time (level 1 represents the execution level). You can
find the implementation of the above system in retriggering.stc of your
Analysis Visualizer examples directory.

Example 2

For our second example we consider a system with an ISR which activates
one task.

e The interrupt service task ISR_1 has two execution profiles, each repre-
senting a different interrupt source. The first profile executes for 0.8ms
and activates Task_1; it has a bursting arrival pattern of 1 times in 1ms,
3 times in 5ms and 8 times in 100ms. The second profile executes for
0.5ms and runs periodically every 4ms.

e Task_1 has a worst-case execution time of 8ms; its critical execution path
takes 4ms and must be completed within 100ms after the interrupt has
occurred.

e The interrupt ISR_1 should be declared as looping, executing its two pro-
files in priority order (each execution profile must contain a buffer limit).
The task Task_1 should be declared as re-triggering with fifo execu-
tion behavior. All buffer limits are unknown at this stage.

e The timebase should define 1ms to equal 1000 ticks.

e The system timings values are: 10, 20, 30, 40, 0, 0, 50, 0 and the inter-
rupt recognition time is 25 cycles.

Try to model the timing behavior of both interrupt profiles by using two burst-
ing transactions (a periodic behavior of every 4ms can be described as 1
times in 4ms). Save your configuration file as retriggering-2.stc and run
the analysis. Figure 8.19 shows the results you should expect to see.

If your output does not match the above result you should review your inter-
rupt declaration, as the interrupt execution profiles might have been declared
in the wrong order.

As you can see, Task_1 is schedulable with a required fifo buffer size of 8.
The interrupt ISR_1 requires a buffer size of 2 for its profile pl, and a buffer
size of 1 for profile p2.

Tutorials

177



178

File  Edit  Help

Tirning Model Schedulablity Analysis | Sansitivi Ana_l}lsis.l Priori_t_n_,l-.Elptimizat'ronl Clock Dptimization

[-] Schedulability Analysis

[-]1 Overview

Key:

y Blocking tirme Interference time Execution time

I5R_1. sourcet
® Blocking: 540 cycles Response time: 1.38ms (1350
» Interference time: 40 cycles, cycles)

Execution time: 800 cycles

ISR_1.s0urceld

Blacking: 50 cycles Response time; 1.43ms {1430
Interference time! 880 cycles, cycles)
Execution time; 500 cycles

Task_1
4000 cycles
100000 cycles]
e Blocking: 25 cycles Response time: 71.25ms
& Interference time: 63220 cycles, (71245 cycles)
e Execution time! 8000 cycles
® Critical instant at 4000 cycles has a response-time of 66,70ms (66695 cycles),

meeting its deadline of 100000 cycles

[-1 Detail

{561 sowrced is schedulable.
Caloulated response time is 1.38ms (1380 cycles) with blocking of 540 eycles due to IST [22_ 1 sowrces executing at
priority IFL 1,
Maximurn buffer usage is 2

IER_Isources is schedulable.
Calculated response time is 1.43ms (1430 cycles) with blocking of 50 cycles due to system O35 level blocking.
Maximum buffer usageis 1
Maximurn loops is 4
Maximum time looping is 2.94ms (2940 cycles) with 4 loops,

Tasi_1 s schedulable.
Calculated response time is 71.25ms 71245 cycles) with blocking of 25 cycles due to interrupt recognition time,
® Critical instant at 4000 cycles has a response-time of 66.70ms (66695 cycles), meeting its deadline of
100000 cycles
Maximum buffer usage is &
Maximum retriggers is &

Analysis complete.

Figure 8.19: retriggering-2.stc schedulability analysis

Tutorials




8.5.3

8.6

Exercise

Let’'s assume the only available fifo buffer for your platform has a size of 6.
This means your system would not be schedulable anymore. You should now
try to alter your system (e.g. change bursting behavior, execution times, etc)
to make it schedulable again. Use sensitivity analysis to obtain the required
information.

Allocating priorities

The Analysis Visualizer does not require the user to assign priorities to tasks
as it provides automatic priority allocation (command line option -p). Choos-
ing this option will force the Analysis Visualizer to search for a valid prior-
ity assignment (one which allows the system to be schedulable). In some
systems, however, tasks must execute in a particular order and can not be
considered independent from each other. If for example two tasks are re-
leased simultaneously, but Task_2 always depends on the results of Task_1,
it is necessary to take this task design into consideration and assign a higher
priority to Task_1.

The Analysis Visualizer provides two different ways to describe inter-task de-
pendencies. The first one is only suitable for systems where a specific priority
ordering of tasks is desired. In this case you can specify the complete order
of your tasks in the task priority order clause and skip the automatic priority
allocation step. Note that if a task priority clause is given, all user-defined
tasks have to be specified. If you don’t use automatic priority allocation and
your system contains more than one task you must specify a task priority
order clause in your configuration file.

Alternatively, you can specify several task priority constraints, which will then
be taken into consideration by the Analysis Visualizer during the priority allo-
cation process. Here, you will only have to specify any known dependencies;
in the above example you would have to specify that Task_1 is higher than
Task_2. Specifying priority constraints, combined with automatic priority al-
location, is the recommended way to prioritize your system as it can minimize
memory (stack) usage and requires less maintenance. However, the results
of automatic priority allocation can be explicitly specified in a task priority
clause. Thus, the priority order of a system remains under the user’s control
and will only change whenever a new automatic priority allocation is desired.

Automatic priority allocation requires a schedulable system. If your system
is unschedulable the Analysis Visualizer will not be able to determine an opti-
mal priority order. Instead, it will output a default priority order clause which
can be used to carry out sensitivity analysis. Alternatively, you can specify
a reasonable task priority order yourself. A good approach is to assign task
priorities according to deadline monotonic priority ordering, i.e. the task with

Tutorials

179



8.6.1

180

the shortest deadline is assigned the highest priority, the task with the sec-
ond shortest deadline is assigned the next highest priority, etc. Once you
have completed the task priority order clause in your configuration file you
can then run the sensitivity analysis which will tell you what changes are nec-
essary to make your system schedulable. After you applied those changes
you can restart automatic priority allocation to optimize your system.

If you design a task that activates other tasks you have to declare this in your
task declaration. Every task directly activated by your task must be refer-
enced in an activates task clause. The schedulability theory implemented in
the Analysis Visualizer allows a task to only activate other tasks with a lower
priority. As an activates clause implies priority constraints, it is important
that neither the priority constraints nor the priority order clauses contradict
this declaration. The Analysis Visualizer will report an error, if for example
Task A has been declared to activate Task B, but Task B has also been de-
clared to be of higher priority than Task A.

Interrupts must be assigned an interrupt priority level (IPL). Where the user
is free to choose the IPL, these are usually best assigned in deadline mono-
tonic order. However, in many cases the IPL will be fixed by the microcon-
troller’s interrupt controller. Furthermore, the hardware may place more
that one interrupt at the same IPL. The Analysis Visualizer needs to know
which order the hardware will process interrupts and this is specified by an
arbitration order declaration. This allows you to specify the execution or-
der of the interrupts when they are pending at the same time. This clause
is mandatory if you declare more than one interrupt with the same IPL. Note
that the arbitration order is usually defined in the processor reference manual
for your target.

Example

In our working example we want to implement a system with four tasks and
investigate how different priority allocations can affect its schedulability.

e A task Read_Data, which reads available data from a data buffer, is acti-
vated twice every 30ms by a fine activator which is expired by an inter-
rupt service task ISR_1. On its first invocation it activates another task
Copy_Data which copies the data to various display channels. Ten mil-
liseconds after its first activation it will get activated again, this time si-
multaneously with task Display_Data which displays the available data.
On its second invocation Read_Data doesn’t activate any tasks.

e The execution profile of Read_Data that activates the other task takes
3ms to execute with a deadline of 4ms. The second execution profile
requires 7ms to execute and must run to completion in 8ms.

Tutorials



e Copy_Data has a worst-case computation time of 5ms and must complete
within 9ms from occurrence of the interrupt. Note, deadlines are always
measured from the occurrence of an event (see Section 3.4).

e Display_Data executes for 6ms and has to complete in 16ms.

e An independent task Check_Data runs every 10ms, activated by an inter-
rupt service task ISR_2. Check_Data has a worst-case computation time
of 1ms and must complete before it is next activated.

e ISR 1 and ISR_2 are running at the same priority level 1, but ISR_1 will
be serviced first should both interrupts be pending simultaneously. Both
interrupts have a worst-case execution time of 0.2ms.

e All tasks should be assigned priorities according to deadline monotonic
priority ordering.

e The timebase should define 1ms to equal 1000 ticks; all overheads can

be ignored.

In the configuration file, in addition to the standard clauses, you will have to
declare the tasks, the interrupts , two timelines to model the timing behavior,
one activator and two transactions which use these timelines. You also need
to declare an arbitration order for your interrupts and a task priority order
clause. This is the structure the configuration file should eventually have:

1. Kernel clause

2. One timebase

3. Four tasks (Read_Data, Copy_Data, Display_Data, Check_Data)

4. Two interrupts (ISR_1, ISR_2)

5. Two timelines

6. One activator (actl)

7. Two transactions (t1, t2)

8. Arbitration order

9. System timings

10. Interrupt recognition

11. Task priority order

Tutorials

181



182

When you declare task Read_Data you will have to add two execution profiles
to model the task execution behavior. The first profile should represent the
case where Copy_Data is activated,

The second profile represents the case where no tasks are activated. Don’t
forget to include an activates task clause as Read_Data activates another
task. Note that Copy_Data must have been declared prior to Read_Data as
forward references are not permitted and the Analysis Visualizer would oth-
erwise report an error.

task Read_Data {

entry Read Data_entry ;

activates task Copy_Data;

profile READ_AND_COPY {
this priority duration 3 ms;
critical 3 ms has deadline 4 ms;

}

profile READ_WITHOUT_COPY {
this priority duration 7 ms;
critical 7 ms has deadline 8 ms;

After you have completed the interrupt declarations you can now add two
timelines to model the timing behavior. In your first timeline you will
need to describe the periodic timing behavior of Read_Data, Copy_Data and
Display_Data. Specify a delay of 10ms between the first and second ac-
tivation of Read_Data, and a final delay of 20ms to create a 30ms period.
Note that there is no need to declare a third timeline for the interrupt ISR_1.
Where fine activators are used, the Analysis Visualizer will automatically add
the interrupt execution profile(s) to every arrivalpoint of the related timelines.

timeline {
timebase tb_sw;
default readonly;
sequence {
arrivalpoint apl {
task Read_Data.READ_AND_COPY;
delay 10 ms;
analysis { task Copy_Data; }
}
arrivalpoint {
task Read_Data.READ_WITHOUT_COPY;
task Display_Data;
delay 20 ms;
}

next apl;

Tutorials



The activation of Copy_Data is modeled by adding an analysis clause to the
arrivalpoint where Read_Data.READ_AND_COPY is activated. This is necessary
because the activator does not activate Copy_Data directly. The Analysis
Visualizer, however, requires this information to produce accurate analysis
results.

An alternative design would be to remove the RTA-OS3.x activation call of
Copy_Data from Read_Data and instead have the task activated directly by
the activator (provided Read_Data has been declared to be of higher priority
than Copy_Data). In this case you would save one RTA-OS3.x API call and
you would not need the analysis clause either. This design, of course, is
only applicable to systems where the activation of a task by another task is
predictable, i.e. it always occurs at the same time.

The second timeline describes the runtime behavior of ISR_2 and
Check_Data. It contains one arrivalpoint only.

timeline {

timebase tb_sw;

default readonly;

sequence {

arrivalpoint ap2 {
analysis {

interrupt ISR 2;
task Check_Data;
delay 10 ms;
next ap2;

Next, you will have to declare a fine activator.

activator actl {

timebase tb_ms;

fine;

driver callbacks {
now actl_now;
cancel actl_cancel;
state actl _state;
set actl_set;

}

initial apl;

You can now declare two transactions, representing the timing behavior of
the system. The first transaction runs on a fine activator driven by ISR_1; the
other one runs on no activator, as it only describes the behavior of ISR_2.

Tutorials 183



184

transaction tl1 {
start apl ;
activator actl driven by interrupt ISR_1;

}

transaction t2 {
start ap2 ;

}

After you added your fine activator declaration you need to declare the arbi-
tration order of your interrupts. For this example, ISR_1 should always run
first:
arbitration order {
interrupt priority 1 {
interrupt ISR_1;
interrupt ISR_2;

As before, system timings and interrupt recognition time are set to zero, thus
ignoring operating system overheads.

system timings { 0; 0; 0; 0; 0; 0; 0; 0; }
interrupt recognition 0 cycles;

At the end of your configuration file you must declare the task priority order,
unless you specify priority constraints and use automatic priority allocation.
In this example, tasks should be assigned priorities according to their dead-
lines: the task with the shortest deadline is assigned the highest priority, the
task with the second shortest deadline is assigned the next highest priority,
etc. Note that where no deadlines are given explicitly, periods can be used,
as tasks must normally complete before they are reactivated.

task priority order {
task Read_Data;
task Copy_Data;
task Check_Data;
task Display_Data;

Save your configuration file as priority-allocation.stc and run schedula-
bility analysis. Figure 8.20 shows the detailed report that the Analysis Visual-
izer will output (the graphical view has been hidden).

All tasks and interrupts will always meet their deadlines and the complete
system is schedulable. Note that no other priority assignment would have
scheduled your system.

Tutorials



=lolx|

File  Edit Help

Timing Model ~ Schedulabiity Analsis | S ensitivity Snalysis | Priority Optimization | Clock Optimization

|»

[-] Schedulability Analysis

[+] Overview

[-1 Detail

7552 is schedulable,
Caloulated response time is 400 cycles with blocking of 0 cycles

7sf_ 1 is schedulable.
Caloulated response time is 400 cycles with blocking of 200 cycles due to IST 7552 executing at priority IPL 1,

Read Datz READ_AND_CO0Y is schedulable.,
Calculated response time is 3.40ms (3400 cycles) with blocking of 0 cycles
® Critical instant at 3000 cycles has a response-time of 3.40ms {3400 cycles), meeting its deadline of 4000
cycles

Read Datz READ_ WITHOUT COFY is schedulable,
Caloulated response time is 7.40ms (7400 cycles) with blocking of 0 cycles
® Critical instant at 7000 cycles has a response-time of 7.40ms (7400 cycles), meeting its deadline of 8000
cycles

Copp_Oatz is schedulable,
Calculated response time is §.40ms (8400 cycles) with blocking of 0 cycles
® Critical instant at 5000 cycles has a response-time of §.40ms (8400 cycles), meeting its deadline of 3000
cycles

Chect:_Datz is schedulable,
Calculated response time is 9.40ms (9400 oycles) with blocking of 0 cycles

Displap_Ostz is schedulable,
Calculated response time is 15.60ms {15600 cycles) with blocking of 0 eycles
® Critical instant at 6000 cycles has a response-time of 15.60ms {15600 cycles), meeting its deadline of 16000
cycles

Copyright & ETAS GmbH, 2009 —

Analysis complete.,

Figure 8.20: priority-allocation. stc schedulability analysis

Tutorials

185



186

EE] RTA Analysis Yisualizer [C:\working'UserDocs'STC\examples'priority-allocation.stc]*

File  Edit  Help

Timing Model | Schedulability Analysis I Sensitivity Analysis  Priority Optimization | Clock Optimization I

[-] Priority Allocation

task Read Data has been assigned a priority of 4.
task Copy_Data has been assigned a priority of 3.
task Check Data has been assigned a priority of 2.
task Display_Data has been assigned a priority of 1.

The following non-preemption groups must be present:
[ Copy_Dats, Read_Datz ]

[-] Priority Ordering

High priority
ISR 2
ISR 1
Read Data
Copy_Data
Check_Data
Display Data

Low priority

{interrupt)
{interrupt)
(task)
(task)
(task)
(task)

[+]1Schedulability Analysis

Copyright @ ETAS GmbH, 2009

Analysis complete.

Figure 8.21: priority-allocation.stc priority optimization

Tutorials



8.7

8.7.1

Now run priority optimization. Figure 8.21 show the results.

The resulting priority order is identical to the one you first specified in your
configuration file. In addition, the Analysis Visualizer has moved two tasks
(Copy_Data and Read_Data) into a soft non-preemption group (indicated by
‘must not preempt each other’). Using non-preemption groups can reduce
the number of preemption levels, minimizing the required stack size and
memory usage. In some cases they are even essential to a system’s schedu-
lability.

Changing processor frequency

In hard real-time systems it is essential that deadlines will always be met. In
isolation, this requirement could lead to using the maximum approved pro-
cessor frequency for all applications. However, such systems are typically
embedded in environments where there may be conflicting requirements to
reduce the processor frequency, for example to meet a power consumption
target. Or perhaps a less expensive crystal supports a range of frequencies
that does not include the approved maximum. We need to able to perform
two related tasks:

e Given a processor frequency that meets all the system requirements, in-
cluding being no less than the minimum possible frequency, we must be
able to reconfigure the system quickly and accurately

e We must be able to determine the minimum processor frequency for
which we can build a schedulable system.

The first of these can be accomplished by defining a macro to contain the pro-
cessor frequency and defining all timebases in terms of this value, as we have
seen in our earlier examples. The second requires us to use the clock opti-
mization (command line option -c) function of the Analysis Visualizer. Note
that sensitivity analysis tells us the minimum processor frequency given a
fixed set of task priorities but clock optimization may rearrange task priori-
ties to allow deadlines to be met at an even lower clock frequency.

Example

Suppose we are building a system configured with the file
clock-optimization.stc and can easily configure our processor to run
one of ten speeds: 100kHz, 200kHz, ..., 1IMHz. When we ran priority alloca-
tion and then sensitivity analysis before, the indicated minimum processor
clock speed was 930kHz (93% of 1MHz). This would force us to use the 1MHz
frequency. Now carry out clock optimization

Tutorials

187



188

RTA Analysis ¥isualizer [C:\working'UserDocs'STC\examples'.clock-optimization.stc]* = IEI |5|

File  Edit  Help

Timing Model | 5chedulability Analysiz I Senszitivity Analpsis | Priority Optimization

[-]1 Clock optimization

The system is schedulable if the processor speed is reduced to 6% of its current value bhased an the follawing task
priorities:

task Task_4 has been assigned a priority of 4,
task Task I has been assigned a priority of 3.
task Task 3 has been assigned a priority of 2,
task Fask_Z has been assigned a priority of 1.

The following non-preemption groups must be present:
[ Task_z, Task_3]

100%

BB %

[-]1 Priority Ordering

High priority
ISR 2 {interrupt)
ISR 1 {interrupt)
Task_4 {task)
Task_1 {task)
Task 3 {task)
Task_2 {task)

Low priority

Copyright @ ETAS GmbH, 2009

Analysis complete.

Figure 8.22: clock-optimization.stc clock optimization

Figure 8.22 shows that we can, in fact, find a schedulable configuration of
task priorities for less than 930kHz.

Clock optimization has traded some stack usage for clock speed requirement.
By allowing task Task_1 to preempt tasks Task_2 and Task_3, we are able
to lower the processor clock speed to 860kHz. This means that we have
a real choice of using either the 900kHz or 1MHz setting for our final sys-
tem. Suppose it is decided that power consumption is a design factor and
the 900kHz setting is chosen for production. Reconfigure the system by just
changing the PROCESSOR_FREQUENCY macro body from 1000000 to 900000 in
clock-optimization.stc. Now run priority allocation with this frequency to
make sure we have a configuration optimized for exactly 900kHz

Notice that, because the periodic timeline is specified in real-time units (mil-
liseconds) these are scaled correctly for the new processor clock speed. For

Tutorials



example Task_1 must run every 3ms, which at 1IMHz was 3000 clock ticks.
When we change the PROCESSOR_FREQUENCY macro to select 900kHz, this be-
comes 2700 clock ticks without further editing.

Tutorials 189



9 Configuration Language Reference

This chapter provides a complete reference too the STC configuration lan-
guage.

9.1 Overview of syntax

9.1.1 Notation

The syntax is described using a modified BNF summarized below.

Symbol Meaning

= A name on the left of the ::= is expressed us-
ing the syntax on the right
() Used to group together some syntax. This

makes clear the boundaries of optional
clauses. (See | immediately below)

The vertical bar indicates choice. Either the
syntax on the left hand side or that on the right
hand side of the vertical bar must appear.

task The text in bold is reserved, it is either a key-
word or mandatory punctuation.

[1] The text between the square brackets is op-
tional. It may appear at most once.

+ A production marked with a plus is mandatory.
It must appear one or more times.

* A production marked with an asterisk is op-
tional. It may appear zero or more times.

identifier An identifier. Typically these are used to name

objects so that they can be referred to in sub-
sequent clauses. Identifiers follow the nor-
mal C rules for identifiers. In certain circum-
stances it is necessary to include characters
that do not conform to the C conventions. In
these cases the identifier can be enclosed in
quotes “like this”.

integer An integer. Integers can be in decimal (first
digit is in the range 1 to 9), hexadecimal (pre-
fixed with 0x), binary (prefixed with Ob) or oc-
tal (prefixed with 0). For example, 123 is deci-
mal, 0xf00d is hexadecimal, 0b10101 is binary
and 0123 is octal.

integer_or_real | An integer or a real number. A real number is
always in decimal and has an embedded deci-
mal point. For example 1.23.

190 Configuration Language Reference



9.1.2 Declaration rules

Sections 9.2 t0 9.17 describe the STC configuration file syntax for the different
types of object as used by Analysis Visualizer. The following rule unites the
individual parts of the syntax:

configuration ::=

os_environment_definitions

(
timebase_declaration |
timebase_conversion |
resource_declaration |
task_declaration |
priority_constraints |
nonpreemption_group_declaration |
interrupt_declaration |
timeline_declaration |
activator_declaration |
transaction_declaration

) *

[ arbitration_order ]

system_timing_values

interrupt_recognition

soft_nonpreemption_group_declarationx

task_priority_orderx

Note objects need to be declared before they can be referenced. Objects
should appear in the configuration file in the order listed above.

Configuration Language Reference 191



9.2
9.2.1

192

Base definitions

Time definitions

Configuration files are in free format and comments are allowed anywhere.
The comment syntax is similar to that for C++ and allows anything from //
to the end of a line, and anything enclosed in /* and */ delimiters is ignored.

The following syntax rule is used when an interval representing some number
of counter ticks is specified.

units ::=
identifier | ticks

Units always refer to a timebase that has been defined in the configuration
file. The interval itself is specified as some number of ticks or some number
of a named unit indicated by the identifier and defined within the associated
timebase.

The syntax distinguishes between time specified in stopwatch units (units
that are declared in the stopwatch timebase) and generic units (units that
are declared in any timebase).

The following syntax rule is used to represent values expressed in stopwatch
units. Note that ‘on stopwatch’ is optional and simply used for clarity.

sw_time ::=
[on stopwatch] integer_or_real units

Timing values which can only be described in terms of the relevant timebase
(e.g. timeline timebase) are defined by:

gen_time_tb ::=
integer_or_real units

To refer to values expressed in generic units where time values can be speci-
fied in any unit on any timebase, the following two syntax are used:

gen_time_sw_def ::=
[on (timebase_identifier | stopwatch)] integer_or_real units

gen_time_tb_def ::=
[on (timebase_identifier | stopwatch)] integer_or_real units

Configuration Language Reference



9.2.2

Executable object profiles

The only difference between the gen_time_sw_def and gen_time_tb_def
definition is the default behavior. Where no timebase is specified explicitly,
the gen_time_sw_def definition defaults to the stopwatch timebase, while
the gen_time_tb_def definition defaults to the timebase of the ‘owning’ en-
tity - e.g. in a periodic timeline declaration it defaults to the timebase of the
periodic timeline.

Note that timebase identifiers must match an existing timebase name and
unit identifiers must match an existing unit on the specified timebase.

An executable object is a task, controlled or uncontrolled interrupt handler
whose characteristics are described in the configuration file. Although tasks,
controlled and uncontrolled interrupts have their own distinct behaviors, the
Analysis Visualizer distills the features of all of these into a generic executable
object so that the analysis can treat them all equivalently. Executable objects
can be described by their execution profiles.

The identifier for the execution profile of a task is defined as:

task_profile_identifier ::=
task identifier[.profile_identifier]

The identifier for the execution profile of an interrupt is given by:

interrupt_profile_identifier ::=
interrupt identifier[.profile_identifier]

The identifier for the execution profile of an executable object is then defined
as follows:

executable_object_profile_identifier ::=
(task_profile_identifier | interrupt_profile_identifier)

Note that this form also includes execution profile identifiers for the idle task.

If a task or interrupt has more than one execution profile declared, the
profile_identifier must be specified, otherwise it is optional.

Configuration Language Reference

193



9.3

194

Operating system environment definitions

The environment definitions tell the Analysis Visualizer which version of the
operating system is used, the target platform and the build level.

The syntax for the OS declaration is as follows:

os_environment_definitions ::=
kernel {
version identifier ;
target identifier ;
build level = (standard | timing | extended) ;

The identifier in the version clause is a user-defined string and must be
quoted. It is common to use this to indicate which OS is being used(e.g.
“RTA-0S").

Similarly, the identifier in the target clause is a user-defined string that can
be used to indicate the target for which is analysis is performed, or maybe the
name of the project.

Example
kernel {
version "RTA-0S";
target "Babbage’s Analytical Engine";
build level = extended;

Configuration Language Reference



9.4

Resource declaration

A resource declaration defines a resource which can be specified in task
clauses. The syntax is as follows.

resource_declaration ::=
resource identifier;

The identifier in the resource clause names the resource (for later reference

in the configuration file) and also its handle which may be referred to in the
application program.

Configuration Language Reference

195



9.5

196

Timebase declarations

A timebase declaration is an abstraction of the properties of a counter. The
attributes captured are unit definitions and their conversion to counter ticks,
the modulus, and user defined constants. The timebase declaration syntax is
as follows.

timebase_declaration ::=
timebase timebase_identifier {
[ stopwatch ; ]
units_definitionsx
modulus integer_or_real units ;

}

The timebase_identifier after the timebase keyword is the name of the
timebase. This can be used later in the configuration file when other objects
need to refer to the timebase.

The stopwatch keyword marks this timebase for use in specifying the exe-
cution budget of tasks and ISRs. It also defines the units which are normally
used to specify worst case execution times and deadlines. For the analysis,
one timebase must be marked as the stopwatch timebase.

The modulus clause specifies the modulus of the counter represented by this
timebase, e.g. if a counter goes from 0 to 9, then back to 0, its modulus is
10. The modulus can be specified in terms of ticks or some timebase specific
unit (see the units_definition below). The modulus must evaluate to an
integer in the range 2 to 65536 ticks.

The units_definition clause provides a mechanism for defining named
units that can be used in other clauses to specify delays, execution time bud-
gets, worst case execution times, deadlines, etc. Each unit must be specified
as having a conversion factor to ticks or to a previously defined unit within
the same timebase. The syntax for units is as follows:
units_definition ::=
units identifier {
define integer_or_real as integer_or_real units ;

}

The identifier after the units keyword is the name of the new unit. Some
number of these (the first integer_or_real) is defined as being equivalent
to some number (the second integer_or_real) of ticks or some other previ-
ously defined unit within the same timebase.

Non-integer conversion factors are allowed. When dealing with values which
are specified in defined units, the Analysis Visualizer uses a floating point
format until final conversion to an integer value of ticks. If the conversion

Configuration Language Reference



from floating point to an integer causes too much loss of precision, or the
value is too small or too large for its destination, then an error or warning
message will result.

Each timebase has its own list of units. This means that different timebases
may reuse the same names for units.

The stopwatch timebase uses the special unit ‘cycles’ to specify values which
are shorter than a stopwatch tick. Where not explicitly defined, one cycle
is taken to be one tick. Cycles should only be used where analysis-specific
values have to be specified, e.g. in task execution profiles. Note, cycles are
treated in a special way by the analysis, e.g. there are extra conversion rou-
tines for cycles, thus specifying another unit with the same purpose will not
achieve the same result. Cycles are not allowed to be larger than stopwatch
ticks.

Configuration Language Reference

197



9.6 Timebase conversion

The Analysis Visualizer converts all times represented within the configura-
tion file to stopwatch cycles. For the analysis, a timebase conversion must be
specified for each timebase which has been declared in the configuration file
(except the stopwatch timebase).

The syntax of the timebase conversion is as follows:

timebase_conversion ::=
stopwatch conversion {
(on timebase_identifier integer_or_real units
is [at worst] sw_time ;)+

}

The on sub-clause lists the timebase and a time value (specified according to
that timebase), and the is sub-clause lists the corresponding amount of time
according to the stopwatch. Note that ‘at worst’ is optional and simply used
for clarity. If it is not possible to supply an exact conversion from timebase to
stopwatch, i.e. the result is non-integral, rounding may be performed by the
Analysis Visualizer in order to ensure worst case values are used.

If a conversion results in a stopwatch value that exceeds its internal limit of
OxFFFFFFFE 232 — 2, the Analysis Visualizer will report an error. It is also an er-
ror if the conversion results in a timebase tick being smaller than a stopwatch
cycle. All values must be greater than zero.

198 Configuration Language Reference



9.7

Task declarations

A task declaration either defines a user task and its attributes or allows the
attributes of the predefined idle task to be set.

The syntax for task declarations is as follows.

task_declaration ::=
idle_task_declaration |
user_task_declaration

user_task_declaration ::=
task identifier {
entry identifier ;
(Locks resource identifier ;)=
activates task identifier ;)x
[ task_behavior ; 1]
task _execution_profile+

}

idle_task_declaration ::=
idle task {
(locks resource identifier ;)x*
[ task_behavior ; 1]
task_execution_profile+

A user_task_declaration declares a user defined task. The identifier after
the task keyword uniquely names the task. This task name is used by the
Analysis Visualizer in progress and result reporting and for generating tasks
in the output file. It also is the name of the handle which may be referred
to in the application program. Note that a task name must not contain the
character ‘..

The user is allowed to specify certain attributes of the idle task, as indicated
in the idle_task_specification above.

The entry clause specifies the entry point of the function that forms the body
of the task. Task entry points can be shared with those of other tasks and
ISRs. Typically, the identifier given in the entry clause is the name of the C
function used to implement the task.

Each resource that a task locks must be specified in a locks resource clause.
This clause causes the resource handles along with their static interface def-
initions to be output in the task’s header file.

The activates clause is used to declare any tasks that can be directly
activated by the defined task (this also includes task activation with

Configuration Language Reference

199



9.7.1

200

ChainTask()). Any tasks specified must have a lower priority. Also, the task
itself and the idle task must not be included in an ‘activate’ clause. This in-
formation also ensures that automatic priority allocation does not allocate
inappropriate levels.

The behavior of a task is classified as simple or re-triggering. A simple task
must always complete before it can be made ready again. A re-triggering
task permits the next invocation of the task to become ready during task
execution, in which case the task needs to chain itself upon completion. Re-
triggering behavior is not directly provided by RTA-OS3.x, but must be im-
plemented by the user. Note that if a task is declared with no specified task
behavior, it is assumed to be a simple task.

If task behavior is specified, it has the following syntax:

task_behavior ::=
re-triggering [fifo buffer (limit integer | unlimited)];

A re-triggering task can be declared as fifo (first-in-first-out), in which case
task arrivals are processed in the order in which they occur. Otherwise they
are processed in priority order, i.e. the order in which their corresponding
execution profiles have been specified. The buffer limit indicates the number
of entries contained within the buffer and must be greater than zero (or un-
limited). Unless the buffering of re-occurring events is handled by software
the buffer size will be hardware-dependent. If during the analysis the num-
ber of simultaneously pending invocations exceeds the buffer limit, Analysis
Visualizer will report the task to be unschedulable.

Task execution profile

The task execution profile clause is used to describe the timing characteris-
tics of each set of task execution paths the user wishes to distinguish. The
order in which execution profiles are declared is important as it informs the
Analysis Visualizer which profile will be executed if there is more than one
reason for the task to be running. The profile which appears first in the file is
taken to have precedence. For example, a message handling task may have
profiles for ‘priority ' and ‘standard’ messages. If the code always tests for
the presence of priority messages first, then the corresponding profile must
appear first. These precedence rules do not apply to tasks declared as ‘fifo’ -
by definition these execute the profiles in the strict order they occur in time.

The syntax of the task execution profile is as follows:

task_execution_profile ::=
profile [profile_identifier] {
this priority duration (gen_time_sw_def | undefined) ;
(resource identifier duration [at exit]

Configuration Language Reference



(gen_time_sw_def | undefined) ;)=

(interrupt priority ( integer | 0S level) duration [at
exit]

(gen_time_sw_def | undefined) ;)=

(critical (gen_time_sw_def | undefined)

has deadline (gen_time_sw_def |undefined) [max_response
(gen_time_sw_def |undefined)];)x

[ buffer (limit integer | unlimited) ; ]

The profile_identifier after the profile keyword uniquely names the ex-
ecution profile within a task declaration. If more than one execution profile
is given within a task declaration, all profiles must be named. Note that a
profile identifier must not contain the character *.".

All time values in an execution profile must be specified in units defined by
gen_time_sw_def. The keyword undefined is only permitted when no timing
analysis is required. Where time values are specified in stopwatch units which
are shorter than a stopwatch tick, the special unit cycles should be used.

The duration value for this priority is the worst case execution time of the
task from the start of the first instruction of its entry function to the end of
the return instruction of the entry function.

In the case of the resource and interrupt priority sub-clauses, the duration
value represents the worst case time for which the task locks the specified
resource or disables interrupts at the level specified by the first integer (or
OS level). There must be at least one resource sub-clause for every resource
which the task locks. Neither resource nor interrupt priority duration may be
longer than the execution time as defined by this priority. Where multiple
clauses within a profile describe the same resource or interrupt priority level,
the longest duration is used for the analysis.

If a resource is not unlocked or the original interrupt level is not restored
before the task exits, the special keyword at exit must be specified directly
after the duration keyword of the resource or interrupt priority sub-clause.

The critical .. has deadline sub-clause is used to specify particular crit-
ical events. The critical value is the worst-case execution time from the start
of the first instruction of the task’s entry function to the completion of the crit-
ical event. The critical execution time must not exceed the task’s execution
time. The deadline value is the maximum permitted time from the arrival of
the task to the completion of the same critical event. It must not be less than
the associated critical execution time. Note that critical execution times do
not need to be declared in a particular order. Each sub-clause can specify an

Configuration Language Reference

201



optional max_response that defines the response delay - the time between
the response being computed and it manifesting itself in the real world.

The only situation in which the buffer limit can be declared is where the task’s
behavior is described as re-triggering, but for which no fifo buffer limit is
given. In this case, task invocations are serviced in profile precedence order
and a buffer limit must be specified for each profile and must have a value
greater than zero (or unlimited). Please refer to the User Guide for more
information.

202 Configuration Language Reference



9.8

Priority constraints

Sometimes it is useful to specify that one task must be of higher priority than
another. The information is then taken into consideration by the Analysis
Visualizer during analysis or when allocating task priorities.

The syntax is a follows:

priority constraints ::=
priority constraints {
(task identifier higher than task identifier ;)+

}

For the analysis it is important that this clause does not contradict any ex-
isting declarations. e.qg. if a task is declared higher than a task X, where the
same task has already been declared (directly or indirectly) to be of lower
priority than task X, Analysis Visualizer will report an error. If a task activates
other tasks it must always be of higher priority than the tasks it activates. A
task cannot be declared ‘higher than’ itself.

Configuration Language Reference

203



9.9

204

Non-preemption group declarations

A non-preemption group declaration allows tasks to be specified as executing
in mutual exclusion.

The syntax of a non-preemption group declaration is as follows:

nonpreemption_group_declaration ::=
nonpreemption group {
(task identifier ;)+

}

soft_nonpreemption_group_declaration ::=
soft nonpreemption group {
(task identifier ;)+

}

Tasks belonging to the same non-preemption group will not preempt each
other and therefore execute in mutual exclusion. It is possible to specify a
task in more than one non-preemption group.

Output files generated by the Analysis Visualizer during automatic priority al-
location can contain soft non-preemption groups. When building the system,
soft non-preemption groups are treated like ordinary non-preemption groups.
All non-preemption groups are normally retained during priority allocation,
however, a non-preemption group that is defined as soft will be discarded
prior to priority allocation.

Note that soft non-preemption groups are not intended to be declared by the
user. A task must not appear in more than one soft non-preemption group.

Configuration Language Reference



9.10

Interrupt declarations

There are two classes of interrupt: controlled and uncontrolled. A controlled
interrupt is handled by an interrupt service task (ISR) whereas an uncon-
trolled interrupt is serviced by an uncontrolled interrupt handler.

These are defined using the following syntax.

interrupt_declaration ::=
interrupt identifier {

entry identifier ;
( controlled | uncontrolled ) ;
priority integer ;
vector integer ;
[ interrupt_behavior ; 1]
(Llocks resource identifier ;)=*
interrupt_execution_profile+

The identifier after the interrupt keyword is the unique hame of the interrupt
and also the name of the handle which may be used in the application pro-
gram.

The entry clause specifies the entry point of the function that forms the body
of the interrupt handler. The execution budget clause allows the specification
of an execution time budget for an ISR. It is not permitted for an uncontrolled
interrupt. The timebase assumed in the units part of this clause is the stop-
watch timebase. The keyword controlled or uncontrolled specifies the type of
interrupt. Controlled interrupts are handled by RTA-OS3.x, which calls the as-
sociated ISR entry function. Uncontrolled interrupts are outside of the domain
of RTA-OS3.x and must be handled directly by application code.

The priority clause defines (in a processor independent form) the processor
interrupt priority level at which this handler will execute. The vector clause
specifies the interrupt vector address which is usually target dependent.

If an interrupt is declared with no specific interrupt behavior, it is assumed to
be a simple interrupt. If interrupt behavior is specified, it has the following
syntax :
interrupt_behavior ::=
(Looping | re-triggering)
[fifo buffer (limit integer | unlimited)];

This defines how the interrupt handler behaves if the interrupt become pend-
ing again while it is being processed. A looping interrupt handler will loop
within the ISR until all pending interrupts that apply to this ISR have been
dealt with. A re-triggering interrupt handler will either leave the interrupt

Configuration Language Reference

205



9.10.1

206

pending or reassert it, so that the handler is re-entered upon exit. A simple
interrupt is defined on the assumption that another interrupt from the same
source cannot be generated during the execution of the ISR. When an inter-
rupt is defined as looping or re-triggering, it can be considered to be first-in
first-out by including the fifo clause. If a fifo clause is included, the buffer limit
indicates the maximum number of interrupts that can be pending. Unless the
buffering of re-occurring events is handled by software the buffer size will
be hardware-dependent. If during the analysis the number of simultaneously
pending invocations exceeds the buffer limit, the Analysis Visualizer will re-
port the interrupt to be unschedulable.

Interrupt execution profile

The interrupt execution profile clause is used to describe the timing charac-
teristics of each execution path of an interrupt. Each interrupt declaration
(controlled or uncontrolled) must have at least one execution profile spec-
ified. The order in which execution profiles are declared is important as it
informs the Analysis Visualizer which profile will be executed if there is more
than one reason for the interrupt to be pending. The profile which appears
first in the file is taken to have precedence. For example, a UART interrupt
handler may have profiles for ‘transmit buffer empty’ and ‘receive buffer full’.
If the code always tests the receive buffer state first, then the corresponding
profile must appear first. These precedence rules do not apply to interrupts
declared as ‘fifo’ - by definition these execute the profiles in the strict order
they occur in time.

The syntax of the interrupt execution profile is as follows:

interrupt_execution_profile ::=
profile [profile_identifier] {
this priority duration (gen_time_sw_def | undefined) ;
(resource identifier duration [at exit]
(gen_time_sw_def | undefined) ;)=*

(interrupt priority ( integer | 0S level) duration [at
exit]

(gen_time_sw_def | undefined) ;)=

(critical (gen_time_sw_def | undefined)

has deadline (gen_time_sw_def | undefined) [max_response
(gen_time_sw_def | undefined)];)=*

[ buffer (limit integer | unlimited) ; ]

The profile_identifier after the profile keyword uniquely names the ex-
ecution profile within an interrupt declaration. If more than one execution
profile is given within an interrupt declaration, all profiles must be named.

Configuration Language Reference



All time values in an execution profile must be specified in units defined by
gen_time_sw_def. The keyword undefined is only permitted when no timing
analysis is required (e.g. system generation only). Note that where time
is specified in stopwatch units which are shorter than a stopwatch tick, the
special unit cycles should be used.

The duration value for this priority is the worst case execution time from the
start of the first instruction of its entry function (in the case of an ISR) or
the handler (in the case of an uncontrolled interrupt) to the end of the return
instruction of the entry function/handler. In the case of the interrupt priority
sub-clauses, the duration value represents the worst case time for which the
ISR or uncontrolled interrupt handler disables interrupts to the level specified
by the first integer (or OS level). The duration of interrupt priority sub clauses
may not be longer than the execution time (as defined by this priority). Where
multiple clauses within a profile describe the same interrupt priority level, the
longest duration is used for the analysis.

If the original interrupt level is not restored before the interrupt handler exits
, the special keyword at exit must be specified directly after the duration
keyword of the interrupt priority sub-clause.

The critical .. has deadline sub-clause is used to specify particular crit-
ical events. The critical value is the worst-case execution time from the start
of the first instruction of the entry function/handler to the completion of the
critical event. The deadline value is the maximum permitted time from the
arrival of the ISR or uncontrolled interrupt handler to the completion of the
same critical event. The optional max_response defines the maximum per-
mitted time between the response being generated and it being recognized.

The only situation in which the buffer limit can be declared is where the inter-
rupt’s behavior is described as looping or re-triggering, but for which no fifo
buffer limit is given. In this case, the buffer limit must be specified for each
execution profile.

Configuration Language Reference

207



9.11

9.11.1

208

Timeline declarations

A timeline is a sequence of arrivalpoints. A sequence of arrivalpoints de-
scribes the (offset) arrival pattern of a set of executable objects. Arrivalpoints
perform two functions. Firstly, they can indicate which tasks the operating
system will activate upon processing the corresponding arrivalpoint at run-
time. Secondly, they can also contain information that is used to override
some properties of the arrivalpoint. An arrivalpoint that contains only analy-
sis information is termed an analysis-only arrivalpoint.

A timeline must be associated with a timebase to provide definitions of the
units and modulus. There are two methods of specifying arrivalpoints: se-
quential and periodic timelines.

1. A sequential timeline is simply a sequence of arrivalpoints, one after
another.

2. A periodic timeline is specified as a set of tasks to be executed with
fixed periods and offsets. A periodic timeline provides a shorthand form
for specifying the behavior of periodic tasks.

The syntax for sequential and periodic timelines is as follows:

timeline_declaration ::=
timeline {
timebase timebase_identifier ;
default ( writable | readonly) ;
( sequential_spec | periodic_spec )

The timebase clause specifies the timebase associated with the timeline.

Sequential timelines

The default is defunct and can be set to either writable or readonly. It does
not affect the results of analysis.

A sequential timeline is declared as follows:

sequential_spec ::=
sequence {
(arrivalpoint | analysis_only_arrivalpoint)+
[ next arrivalpoint_identifier ; ]

Configuration Language Reference



The sequence keyword differentiates a sequential timeline from a periodic
one. Contained within that clause is a collection of arrivalpoints and an op-
tional next sub-clause. The ‘next’ property of each arrivalpoint is set to the
next arrivalpoint declared within that timeline.

The next clause is optional and allows the successor to the final arrivalpoint to
be specified. This must be an arrivalpoint derived from the same timebase (it
may be from either the same timeline or from a previously declared timeline).
If the next clause is omitted the timeline ends at that point at run-time. Note
that the next arrivalpoint specified must not be an analysis-only arrivalpoint.

An arrivalpoint is defined as follows:
arrivalpoint ::=
arrivalpoint [ arrivalpoint_identifier ] {

(task_profile_identifier ;)=

delay gen_time_tb ;

[ analysis {
(executable_object_profile_identifier ;)=
[ delay gen_time_tb_def ;]
[ next arrivalpoint_identifier ; ]

o

An analysis-only arrivalpoint is defined as follows:

analysis_only_arrivalpoint ::=
arrivalpoint [ arrivalpoint_identifier 1 {
analysis {
(executable_object_profile_identifier ;)=
delay gen_time_tb_def ;
[ next arrivalpoint_identifier ; 1]

The optional arrivalpoint_identifier after the arrivalpoint keyword is
used to uniquely name the arrivalpoint. The arrivalpoint may be referred
to later in the configuration file (for example in a ‘next’ clause).

The optional task_profile_identifier identifies the execution profile of
the task to be activated.

The delay clause specifies the delay before the next arrivalpoint. The units
must be in ticks or a unit defined within the associated timebase. The delay
must not be zero and must not exceed the modulus of the associated time-
base.

The analysis clause allows the user to refer to executable objects that are ac-
tivated indirectly as a result of the event described by the arrivalpoint. This

Configuration Language Reference

209



9.11.2

210

includes tasks that may are added during execution, and interrupt handlers
that execute as a result of interrupts raised in response to the event. The
executable objects specified within the task profiles and the other execution
profiles must be unique within the arrivalpoint (each task can occur once
only). If a delay or a valid next arrivalpoint is specified (one which has been
previously declared and is on a timeline that is bound to the same timebase),
it is used for analysis purposes only in place of the arrivalpoint’s normal val-
ues. Note that a delay of zero is acceptable in this context. If the arrivalpoint
is an analysis-only arrivalpoint, the delay value must be specified. The next
arrivalpoint specified in the analysis clause can also be an analysis-only ar-
rivalpoint.

Periodic timelines

A periodic timeline provides a shorthand form for specifying the behavior of
periodic tasks. It consists of a set of task execution profiles that are acti-
vated with fixed periods. The arrivalpoints generated from the timeline do
not have any analysis clauses, thus periodic timelines cannot have analysis
only elements (e.g. interrupts ).

The syntax of a periodic timeline declaration is as follows:

periodic_spec ::=
periodic arrivalpoint_identifier {
(task_profile_identifier every gen_time_tb (offset
gen_time_tb)+ ;)+

The periodic keyword is used to differentiate a periodic timeline from a se-
quential one. The arrivalpoint_identifier after the periodic keyword is
the unique name of the first arrivalpoint in the timeline.

The task_profile_identifier identifies a task execution profile and the
every sub-clause specifies its period. The period must be greater than zero
and less than or equal to the modulus of the associated timebase.

The offset sub-clause specifies a new activation of the task execution profile
at the offset specified into its period. This means that at run-time, processing
the timeline will result in the task being activated n times per period, where
n is the number of offsets specified for that task. The offset must be greater
than or equal to zero and less than the task’s period. It is not permitted to
specify the same task execution profile more than once in a single periodic
timeline clause and it is not permitted to repeat the same offset for the same
task execution profile.

There must be at least one execution profile with an offset of 0.

Configuration Language Reference



A periodic timeline can be output in a format equivalent to the input format
of a sequential timeline. This allows the generated timeline to be inspected,
modified and if necessary inserted as a sequential timeline. For more details
see Section 11.

Choosing task periods (as specified in the every clause) that have a large
lowest common multiple can result in very long timelines when they are ex-
panded to sequential timelines. Typically this is due to an oversight and the
build process will automatically terminate if an attempt is made to generate
a long timeline. Refer to Chapter 11 on how to change this default behavior.

It is also possible to choose a set of task periods such that the lowest common
multiple exceeds the 32-bit representation used within the build tool. If this
occurs, a fatal error message will result.

Configuration Language Reference

211



9.12

212

Activator declarations

The syntax for activator declarations is as follows:

activator_declaration ::=
activator identifier {

timebase timebase_identifier ;

( fine | coarse ) ;

[ driver callbacks {
now identifier ;
cancel identifier ;
state identifier ;
set identifier ;

]
[ initial arrivalpoint_identifier [ autostart at
gen_time_tb 1 ; 1

The identifier after the activator keyword is the name of the activator.

The timebase clause specifies which timebase this activator is associated
with and therefore, indirectly, which timelines it may process.

The counter associated with an activator can be either fine or coarse. For
fine activators, the driver callbacks clause must be present and must specify
all four callback functions. For coarse activators, the driver callbacks clause
must be absent.

The initial clause specifies the initial value of the ‘next’ arrivalpoint prop-
erty of the activator.

The autostart at clause is only permitted if the activator is coarse and the
initial clause is also present. The autostart at clause specifies the delay be-
fore the activator processes the initial arrivalpoint. The delay can be in ticks
or units defined within the associated timebase. The delay must be greater
than zero and less than or equal to the timebase’s modulus. If the delay
corresponds to 1 tick, then the activator will process the arrivalpoint on the
first call to IncrementCounter() for the RTA-OS3.x counter used to drive the
scheduling. If the delay is 2 ticks, then it will be processed on the second call
to IncrementCounter() and so on).

Configuration Language Reference



9.13

9.13.1

9.13.2

Transaction declarations

Transactions are used to specify the timing relationships between executable
objects. Two different types of transactions can be defined: timeline and
bursting.

transaction_declaration ::=
(timeline_transaction | bursting_transaction)

Timeline transaction

A timeline transaction specifies the timing relationship between a set of exe-
cutable objects related to the processing of a timeline.

timeline_transaction ::=
transaction identifier {
[ release delay gen_time_sw_def ; ]
[ jitter gen_time_sw_def; 1
start arrivalpoint_identifier;
[ activator identifier
driven by executable_object_profile_identifier ; ]

The identifier after the transaction keyword is the unique name of the
transaction.

The release delay and jitter values, if given, describe the delay between
the arrival of an event and its recognition. This delay will have a maxi-
mum and a minimum value. The release delay is the minimum value, and
the jitter is the difference between the maximum value and the minimum
value. If these values are not specified, they default to zero. Note that where
time values are specified in stopwatch units which are shorter than a stop-
watch tick, the special unit cycles should be used.

A timeline transaction follows arrivalpoints on a sequential or periodic time-
line. The start sub-clause indicates the first arrivalpoint in the transaction. If
the transaction is not activator driven, the arrivalpoint specified must be an
analysis-only arrivalpoint.

If an activator drives the transaction, it is necessary to declare this in the
activator clause. The driven by sub-clause specifies the execution profile of
the task or interrupt that drives (ticks or expires) the activator.

Bursting transaction

Note that for a fine activator, the declared driver is added by the Analysis Vi-
sualizer to all arrivalpoints in the transaction. In the case of a coarse activator
Analysis Visualizer will issue a warning if the declared driver does not appear
in any transaction.

Configuration Language Reference

213



214

Due to the nature of activators, any executable objects that are directly re-
leased via an activator are usually ‘simple’. An executable object is normally
not allowed to appear in a timeline for which it is also the activator’s driver
(it’s only permitted if it can’t be reached by following each ‘next arrivalpoint’
beginning at the transaction’s ‘start’ arrivalpoint).

Analysis Visualizer will issue a warning if any executable object (other than
the default idle task) does not appear in any transaction. Executable ob-
jects must not appear in more than one transaction, unless they have been
declared as re-triggering (or looping) and execute in priority order (i.e. non-
fifo). Usually, it is not possible for the same execution profile to appear in
more than one transaction. However, where an executable object is declared
as fifo, it is valid to specify more than one execution profile of that object in
the same transaction.

A bursting transaction specifies the timing behavior of some event which re-
sults in the release of one or more executable objects.

bursting_transaction ::=
transaction identifier {
[ release delay gen_time_sw_def ; ]
[ jitter gen_time_sw_def ; ]
bursting {
(integer times in (gen_time_sw_def | forever);)+

}

(executable_object_profile_identifier ;)+

Like the timeline transaction, the identifier after the transaction keyword is
the unique name of the transaction.

The release delay and jitter values, if given, describe the delay between the
arrival of an event and its recognition. This delay will have a maximum and
a minimum value. The release delay is the minimum value, and the jitter is
the difference between the maximum value and the minimum value. If these
values are not specified, they default to zero. Note that where time values
are specified in stopwatch units which are shorter than a stopwatch tick, the
special unit cycles should be used.

The bursting clause describes the maximum number of arrivals that can occur
within a specified interval. If the interval is infinite it is possible to use the
forever keyword instead. Multiple sub-clauses can be specified, however,
they have to comply with certain rules , otherwise warnings will be issued
stating that a clause has no effect.

Configuration Language Reference



Given a sorted set (in interval order) of bursting clauses, the number of ar-
rivals and interval values for successive clauses must strictly increase, while
the rate of arrival must strictly decrease.

Example of an invalid bursting clause:

bursting {
2 times in 100 ticks;
5 times in 200 ticks;

In the above example the second clause has no effect because the arrival
rate does not decrease.

Example of a valid bursting clause:

bursting {
2 times in 100 ticks;
5 times in 300 ticks;

If more than one clause has the forever value specified, the clauses with the
greater number of arrivals are ignored. All values must be greater than zero.

The Analysis Visualizer will report an error if a task or interrupt profile has
been declared more than once in a bursting transaction. Note that the idle
task can be declared in a bursting transaction.

Configuration Language Reference

215



9.14

216

Arbitration order

The arbitration order clause must be provided when multiple interrupts have
been declared which share the same interrupt priority level. The arbitration
order clause is used to specify the order in which interrupts of the same pri-
ority are serviced when two or more are pending.

The syntax of this clause is as follows:

arbitration_order ::=
arbitration order {
(interrupt priority integer {
(interrupt identifier ;)+

})*

The interrupt priority clause specifies an interrupt priority level. The arbitra-
tion order of interrupts that share that level is given by the order of declara-
tion in the sub-clause (interrupts higher up the list are taken in preference to
those lower down). Where an interrupt priority level is shared, all interrupts
that share this priority must be declared in the sub-clause.

The arbitration order clause can only appear once in the configuration file.
When interrupts share the same priority level the arbitration order clause
must be specified.

Configuration Language Reference



9.15

System timing values

The system timing clause contains eight target-specific values that define
context switching times.

The syntax of the timing values is as follows:

system_timing_values ::
system timings

integer ; //
integer ; //
integer ; //
integer ; //
integer ; //
integer ; //
integer ; //
integer ; //

task entry latency

task switch overhead

ISR entry latency

ISR overhead

Uncontrolled interrupt entry latency
Uncontrolled interrupt overhead
minimum 0S level blocking

UI blocking

The system timings clause must contain eight integer values. They can be
set to zero if you do not know the specific timings for your target.

Configuration Language Reference

217



9.16

218

Interrupt recognition

The interrupt recognition clause defines the maximum time for a single in-
struction during which an interrupt will not be recognized. The Analysis Vi-
sualizer includes this time as blocking time for all interrupt and task priority
levels. This value is defined in terms of the stopwatch time. As the recog-
nition time is target dependent, it is necessary to refer to an appropriate
hardware manual for detailed information.

The syntax for the interrupt recognition clause is as follows:

interrupt_recognition ::=
interrupt recognition sw_time ;

Note that where time values are specified in stopwatch units which are
shorter than a stopwatch tick, the special unit cycles should be used.

Configuration Language Reference



9.17

9.18

Task priority order

Analysis Visualizer uses the task priority ordering clause to specify relative
priorities of tasks.

The syntax is a follows:

task_priority_order ::=
task priority order {
(task identifier ;)+

}

The order in which tasks are specified determines the priority order, i.e. the
earlier a task is declared, the higher its priority. All user defined tasks, ex-
cept the idle task, have to be specified, unless priority allocation has been
requested or there is only one task in your system. Tasks must not appear
more than once.

It is valid to declare more than one task priority clause as long it is still possi-
ble to identify an overall unique priority order.

Note that the Analysis Visualizer will report an error if this clause contradicts
the specifications in the priority constraints declaration or activates
clause of the task declaration.

Reserved words

The following words are reserved by the Analysis Visualizer configuration lan-
guage:

activates callbacks .
. deadline
activator cancel
. debug
alignment budget coarse
. default
analysis buffer constant define
arbitration build constraints
arrivalpoint burstin controlled delay
P g . disabled
as by conversion ,

. driven
at bytes correction driver
autoactivate critical .

duration

autostart cycles
entr fifo

y file
every , has

. fine group .
execution higher
. float
exit
forever

Configuration Language Reference

219



220

idle label
in level
initial limit
. jitter kernel
interface J locks
interrupt looping
is loops
name offset periodic
max_response next on priority
modulus non-preemption order production
now 0s profile
target
task
cequence taskset
9 than
set .
readonly this
. soft . uncontrolled
recognition ticks .
start . undefined
release timebase .
state . . units
resource . timeline .
. . static . . unlimited
re-triggering timepoint
stopwatch ,
times
system .
timing
timings
transaction
vector worst
version writable

Configuration Language Reference




10

10.1

10.1.1

10.1.2

Configuration Language Pre-processor Reference

This chapter provides a reference for the preprocessor language that works
with the Analysis Visualizer configuration language. The preprocessor lan-
guage is interpreted by the Analysis Visualizer when processing configuration
files. Section 10.1 describes the preprocessor syntax , Section 10.2 gives ex-
amples of the operation of the preprocessor.

Preprocessor syntax

The Analysis Visualizer provides a preprocessor that is similar in functionality
to the familiar C preprocessor but uses a different syntax and a more flexible
macro expansion policy.

Each preprocessor command is enclosed by matching brackets: ‘(* and ‘)".
The opening bracket must be followed by either the name of a macro or the
name of a preprocessor command.

The table below gives a summary of the preprocessor commands and their
syntax . In the table, a ‘body’ is a sequence of characters that may contain
preprocessor commands. The preprocessor evaluates a body by repeatedly
scanning it and interpreting preprocessor commands until it results in a se-
quence of characters containing no preprocessor commands. The symbols
‘[" and ‘]’ are used to enclose optional syntax . White-space characters are
space, tab and new-line.

File inclusion

Syntax
(include body)

Description

Textual file inclusion. The body must evaluate to a quoted string such as
"main_definitions.h". The quotes allow unusual characters in the file
name (such as ‘)’).

Macro definition

Syntax

(define name literal)

Configuration Language Pre-processor Reference

221



10.1.3

10.1.4

10.1.5

10.1.6

222

Description

The macro called name is defined to be the text in ‘literal’. The name must not
have any white-space characters in it. The literal starts after the first white-
space character after the name and is delimited by the closing bracket that
matches the one before the define. This allows the literal to be empty and
to contain brackets and white space.

The literal is not evaluated in the definition. It is only evaluated when the
macro is expanded. This allows macros to be nested. Note that the name
may be generated by expansion of a body.

Macro undefine

Syntax

(undefine name)

Description

The macro called name is undefined. Note that the name may be generated
by expansion of a body. See Section 3.

Macro expansion

Syntax

(name)

Description

The macro called name is expanded by pushing the literal (contained in the
macro) back onto the input stream. The literal is then evaluated as a body.

Note that the name may be generated by expansion of a body.

Info

Syntax
(info body )

Description

The body is evaluated and printed on the Analysis Visualizer’s standard out-
put.

Warn

Syntax
(warn body)

Configuration Language Pre-processor Reference



10.1.7

10.1.8

10.1.9

Description

The body is evaluated and printed on the Analysis Visualizer’s standard out-
put. The global warning count is incremented.

Error

Syntax
(error body)

Description

The body is evaluated and printed on the Analysis Visualizer’s standard out-
put. The global error count is incremented.

Fatal

Syntax
(fatal body)

Description

The body is evaluated and printed on the Analysis Visualizer’s standard out-
put. the Analysis Visualizer exits

ifdef

Syntax

(ifdef condition

(then true_body)

[ (else false_body ) 1
)

Description

The condition is evaluated. The resulting text is treated as the name of a
macro that may or may not exist.

If the macro named in the condition exists, then the true_body in the then
clause is evaluated.

If the macro named in the condition does not exist, then the false_body in
the else clause is evaluated.

The existence of the macro named in the condition is only tested when the
condition is evaluated and not when a then or else clause is encountered.

Configuration Language Pre-processor Reference

223



10.1.10 ifndef

10.1.11

10.2

10.2.1

224

Syntax

(ifndef condition
(then true_body)

[ (else false_body ) 1
)

Description

The operation of ifndef is identical to that for ifdef except that the
true_body is evaluated if the macro named in the condition did not exist
and the false_body is evaluated if it did exist.

Compatibility with the C preprocessor

Syntax
# number "file name"

Description

The preprocessor’s current file name and line number are updated. See Sec-
tion 10.2.7 regarding compatibility with the C preprocessor.

Examples of Common Usage

The preprocessor works by reading input and copying it to the output until
an open bracket ‘(" is encountered. The input enclosed by a matching set
of brackets is interpreted as a command to the preprocessor. Section 10.1
defines the commands that the preprocessor recognizes.

Common usage

This section describes simple features of the preprocessor: textual file inclu-
sion and simple macro definition and replacement.

Textual inclusion

Textual file inclusion works in a way similar to the C preprocessor. A file is
included using the include command. For example:

(include "tasks.stc")

Causes the inclusion of the file tasks.stc from the current directory. Note that
inclusions are always relative to the current directory or are absolute paths.
So:

(include "c:\working\timers\hardware.stc")

includes the file hardware.stc from the directory c:\working\timers.

Configuration Language Pre-processor Reference



There is no equivalent of the C preprocessor’s <filename> convention for
finding files on a standard include path. See Section 10.2.6 for an alternative
approach.

The text enclosed in quotes in an include is interpreted literally with no macro
evaluation. This allows the use of spaces and parenthesis within the file
name. Because of this, macro expansion takes place outside of include, see
Section 10.2.6 for an example.

Macros

A macro can be defined on the Analysis Visualizer command line using the
‘D’ command line option. For example:

-Dname
-Dname=

or

-Dname=1literal

In the first two cases the macro called name is defined to expand to an empty
string. In the third case a macro called name is defined to expand to the text
literal.

Macros can also be defined inside a file. For example:
(define mode extended)
Defines a macro called mode that expands to the text extended.

Note that the first white-space character after the macro name is stripped, it
is not part of the literal text that the macro initially expands to.

A macro is evaluated by giving its name in brackets For example:

build level = (mode);
Evaluates to:
build level = extended;

A macro definition can span lines as illustrated in the following example.

(define Time_units // Definitions of standard timebase units
units milli_seconds {
define 1 as 1000 micro_seconds;
}
units seconds {
define 1 as 1000 milli_seconds;

Configuration Language Pre-processor Reference

225



226

}
units minutes {
define 1 as 60 seconds;

}

Note that the C preprocessor’s line continuation character (*
') is not required at the end of each line.

Assuming that the above definition of Time_units is contained in the file
standard.stc, it can be used as follows:

(include "standard.stc")

timebase t {
units micro_seconds {
define 3 as 1 ticks;

}
(Time_units)
modulus 65536 ticks;

The inclusion of standard.stc causes the macro Time_units to be defined.

This is then expanded within a timebase clause to provide a set of unit decla-
rations.

A macro can also appear within the definition of another macro. For example,
the standard. stc file could contain the following macro definition:

(define Standard_header
kernel {
version "v1.6";
target "ARM7T/ARMSDT";
build level = (mode);

To make use of this a configuration file, (called config.stc) might start with:

(include "standard.stc")
(Standard_header)

The Standard_header macro contains an embedded macro called mode. This
must be defined before it is used. The -D’ command line option can be used
to do this, for example:

stc -Dmode=debug config.stc

Configuration Language Pre-processor Reference



This mechanism allows the configuration file to be tailored via simple com-
mand line options.

When a macro contains a reference to another macro, the order of evaluation
is strictly defined. See Section 10.2.4 for details.

If the literal text that a macro initially expands to contains brackets, then
there must be a matching number of open ‘(" and close ‘)".

Conditional evaluation

The preprocessor supports a simple form of conditional evaluation which is
similar to the C preprocessor’s #ifdef and #ifndef directives, for example:

(ifdef debug

(then
task debug_task {
entry ... etc.
}
)
(else
task normal_task {
entry ... etc.
}

Here the task called debug_task is declared only if the macro called debug
is defined. If this macro is not defined then the task normal_task is declared
instead.

ifdefs may nest inside one another, for example:

(ifdef a

(then // This then refers to condition a

(ifdef c // This \code{ifdef} only gets evaluated if a is
defined

(then d) // This then refers to condition c
(else e)) // This else refers to condition ¢

) // terminates the outer then

(else b) // This else refers to condition a

Note that the first white-space character after a then or an else is stripped in
a similar way to macro definitions.

Configuration Language Pre-processor Reference

227



10.2.2

10.2.3

10.2.4

228

Nesting

The preprocessor commands may be nested provided that the following com-
mands are not used when a command, hame or condition is expected:

define, undefine, fatal, error, warn, info.

They can however be used when a body is expected - see Section 10.1 for
details of when the preprocessor syntax expects a command, name or condi-
tion rather than a body. The above commands can also appear in the literal
part of a macro definition, but are not evaluated until the macro is expanded.

Additionally, ifdef and ifndef may not be used in a macro name.

Precedence order

The precedence order for evaluation in descending order or precedence is as
follows:

1. Comments

2. #line directives

3. Preprocessor commands

4. Macro expansions

Note, this means that comments are stripped first, hence, the ‘Unix’ path
(include "//home/files/header.h")

results in an error because // (the C++ style comment) causes the rest of
the line to be discarded.

Order of evaluation

Macros are only evaluated at their point of use. This can be illustrated using
an example from Section 10.2.1 on macros:

(define mode extended)
(define Standard_header
kernel {
version "v1.6";
target "ARM7T/ARMSDT";
build level = (mode);
}

)
(Standard_header)

Configuration Language Pre-processor Reference



10.2.5

The above lines operate as follows. The definition of the macro called
Standard_header uses the macro mode in its literal. The occurrence in the
macro definition is not a point of use and so the macro Standard_header is
defined to initially expand to:

kernel {
version "v1.6";
target "ARM7T/ARMSDT";
build level = (mode);

When the line (Standard_header) is encountered it is evaluated as follows.
The text

kernel {
version "v1.6";
target "ARM7T/ARMSDT";
build level =

passes through unaltered, but as soon as (mode) is encountered it is recog-
nized as a macro expansion and replaced with extended. This is pushed back
onto the input and then passes through unaltered.

The text

’

}

is then encountered and passes through unaltered. So the overall effect of
the macro is to produce:

kernel {
version "v1.6";
target "ARM7T/ARMSDT";
build level = extended;

The order of evaluation used means that any macros embedded in the literal
of another macro need not be defined prior to the definition of the enclosing
macro.

Note that this order of evaluation differs from that of the C-preprocessor
which expands macros when they are encountered.

Macro indirection

Macro expansions can be indirect. For example:

Configuration Language Pre-processor Reference

229



10.2.6

230

(define a b)
(define b ¢)
a

(a)
((a))
Evaluates to:

a

Section 10.2.4 explains why a and (a) produce a and b respectively. The final
case, ((a)), works as follows. The innermost (a) is expanded first to produce
b which is pushed back onto the input. However, as b is now enclosed in the
outer brackets it is expanded and results in c.

Note that it is possible to define macros that are infinitely recursive. For
example:

(define x x)
(define x (x))

(x)

When the preprocessor evaluates the macro x this will result in an error.

String concatenation

This facility is useful for combining two or more pieces of input into a single
string so that the Analysis Visualizer can later interpret it as a single lexeme.

When a preprocessor command is evaluated no extra spaces are inserted.
When a macro is defined the first character after the macro name is dis-
carded. In the then and else clauses of ifdef and ifndef the first character
after the then or else is also stripped. This character stripping is useful when
concatenating strings. For example, the following input:

(define semi_minor_version j)
(define minor_version 4)
(define major_version 2)
version number =
"v(major_version).(minor_version) (semi_minor_version)";

results in the output:

version number = "v2.4j";

If it is necessary for a macro to expand to text with leading spaces then those
extra spaces can be placed on a new line. For example:

Configuration Language Pre-processor Reference



10.2.7

(define macro_with_leading_spaces
there are leading spaces at the start of this line)

Note the new-line is treated as a white-space character and stripped as it is
the first white-space following the macro name.

Concatenation can be used to achieve a similar effect to the C preprocessor’s
-I option. The -I option allows other directories to be searched for standard
include files. For example, there might be a common directory that contains
header files for a particular piece of hardware. Rather than build the full path
name into the configuration file the following might be used.

(ifndef HWPATH
(then (fatal The path to the hardware include files must be
defined))

)
(define hardware " (HWPATH)\hardware.stc")
(include (hardware))

The above code attempts to include a file called hardware. stc from the path
defined in HWPATH.

The Analysis Visualizer might be invoked with the following command line
(from a makefile or batch file):

stc -DHWPATH=c:\project\hardware config.stc

This will result in the correct file being included. The Analysis Visualizer also
understands Microsoft’'s UNC naming convention. This is shown in the follow-
ing example:

stc -DHWPATH=\\Server\project\hardware config.stc

If the path to the hardware is omitted the i fdef code causes the preprocessor
to generate a fatal error message.

Note, the mechanism described above only allows one directory to be
searched for each file and so is less flexible than the C preprocessor’s al-
ternative. It does however have a more clearly defined behavior.

Compatibility with the C preprocessor

Many C compilers allow the results of the preprocessor to be output without
being passed to the compiler. This allows the C preprocessor to be used as a
general purpose preprocessor. The C preprocessor helps the C compiler keep
track of files and line numbers by embedding the line number and file name
in its output.

Configuration Language Pre-processor Reference

231



232

The Analysis Visualizer preprocessor supports the use of the C preprocessor
by recognizing its line number and file directive. This is the purpose of the
syntax below:

# number "file name"

Note that when using this compatibility feature it is assumed that the input
file has already been processed by the C preprocessor and therefore contains
no further directives either for the C preprocessor or this preprocessor. If this
assumption is violated then the correct interpretation of the input file cannot
be guaranteed.

Comments follow the C++ convention of // up to the end of the line, and
anything bracketed by /* and */.

The C++ style // comments are replaced by a new-line. C style comments
/*...x/ are replaced by a single space. This means that:

version/*xmy version numbers */20

becomes two tokens ‘version’ and ‘20’ rather than one ‘version20’.
The /* and */ style comments may not straddle more than one file.
Comments do not nest, so:

/xa /*x b x/c x/

becomes:

c x/

and a warning is generated indicating that an attempt has been made to nest
comments.

Configuration Language Pre-processor Reference



11

11.1

Command Line

The following command line is used to invoke the Analysis Visualizer:

rtaosanvis [Options] [infile.stc] [outfile.html]

Optional command line arguments and parameters are indicated using [].

If outfile.html is present then the Analysis Visualizer run in command-line
mode and store the results in the specified file. The Analysis Visualizer GUI

will not be started.

Options

The following command line options are supported:

Option Description

@<FILE>

Read command line parameters from
<FILE>. Each command in <FILE>
must appear on a separate. Quo-
tation marks are not required to es-
cape white space for filenames inside
a command file. The @<FILE> option
can itself appear multiple times inside
<FILE>.

-A<TYPE>], --analysis:<TYPE>

Specify the analysis type. <TYPE> has
the following options:

e Schedulability
e Sensitivity

e Priority

e Clock

If the Analysis Visualizer is started in
command-line mode then it will per-
form schedulability analysis by de-
fault.

-D<MACRO>, - -define:<MACRO>

Define an Analysis Visualizer macro
called <MACRO>.

Command Line

233



11.2

234

Option Description

--diagnostic Display the diagnostic information on
the standard output. Diagnostic infor-
mation includes:

e The version of the tool executable
e The names and versions of all tool

plug-ins
e The names and version of all tar-
get plug-ins
e The location and contents of the li-
cense file
-h, -?, --help Display usage information on the stan-
dard output.
-S<PATH>, --stc:<PATH> Specify the location of the STC.exe
analysis engine executable.
--version Show version information in compact

form. More detailed information can
be obtained using --diagnostic.

Examples

Open the Analysis Visualizer

rtaosanvis

Open the Analysis Visualizer with TimingModel.stc

rtaosanvis TimingModel.stc

Run schedulability analysis on TimingModel.stc, saving the results to
Results.html

rtaosanvis --analysis:Schedulability TimingModel.stc Results.html

Schedulability analysis is the default analysis type, so the previous command
line could have been written as:

rtaosanvis TimingModel.stc Results.html

Run sensitivity analysis on TimingModel. stc, with macro CPUCLOCK defined
as 42, saving the results to Results.html

rtaosanvis --define:CPUCLOCK=42 --analysis:Sensitivity
TimingModel.stc Results.html

Command Line



Run priority optimization on TimingModel.stc, saving the results to
Results.html

rtaosanvis --analysis:Priority TimingModel.stc Results.html

Ask for help

rtaosanvis --help

Command Line 235



12

236

Error Codes

The Analysis Visualizer reports various messages during operation. In order
of decreasing severity there are:

Fatal messages. Caused where there are conditions in the input file, from
which recovery is not possible. The Analysis Visualizer stops processing
immediately after detecting and reporting a fatal error message.

Error messages. Generated where there are conflicts in the input file that
make it impossible to perform analysis correctly or produce correct out-
put. The tool attempts to report all the errors it can find and then exits.
All errors should be removed and the operation should be repeated be-
fore attempting to use the results or output of the Analysis Visualizer.

Warning messages. Occur when the input file specifies an unusual condi-
tion, something that is redundant or a value that cannot be represented
precisely and is therefore subject to rounding error. When warnings
have been produced, the output files are created and the application
can be built.

Information messages. Reports useful information such as the amount of
memory used or the size of a data structure.

All fatal, error, warning and information messages are sent to the standard
output and can therefore be easily re-directed to a file. All messages appear
in the following format:

«message code»: «where the problem was detected»
«description of problem»
«possibly over more than 1 line»

«message code» This a unique five character error code which describes
the error. The codes consist of one of the letters F, E, W and | (fatal,
error, warning and information respectively) followed by a 4 digit hex-
adecimal number. The value of the number indicates the class of the
error as follows:

0000 to OOFF Configuration language preprocessor.
0100 to 7FFF  General Analysis Visualizer messages.
AO00O0 to AFFF  Analysis-specific Analysis Visualizer messages.

«where the problem was detected» Reports a file and line number if the
problem was found in a file. However, some problems can be found be-
fore any files are opened or after they have been closed. In these cases
the location of the problem indicates that no line number is available as
no input file is open.

Error Codes



RTA Analysis ¥isualizer [C:workingUserDocs' STC' stc' erroroneous-file.stc] = IEI Iil

File Edit Help

Timing Model | o I Sengitivity Analysis | Priority Dpt\mizatinnl Clock Dpt\mizatinnl
=l
[-] Errors and Warnings

Code Description Line

Error EAl44

Warning WABO01 In transaction "alarml” bursting rate of 2 times in 25000 cycles is averridden by bursting 151

rate of 1 times in 18000 cycles.
Information 10405 Errors detected during parsing. Mo output files will be generated.
Copyright @ ETAS GmbH, 2009

Analysis complete,

Figure 12.1: Example error reporting
«description of problem» |s text that describes the problem found.

Figure 12.1 shows an example of the message output from a run of the Anal-
ysis Visualizer on an erroneous input file.

12.1 Fatal Messages

Code | Description

FOO00 | Invalid macro definition “«macro definition»”

Cause: This occurs when a macro defined on the command
line is incorrectly formatted. The format should conform
to that described in Chapter 10.

Remedy: Inspect the command line used to invoke the Anal-
ysis Visualizer and ensure that the macro definition syn-
tax is correct. Some command line interpreters will alter
characters such as “=" and embedded spaces. Check
that this is not the case. Also check that there is no
space after the -D command line option.

Error Codes

237



Code | Description

FO001 | Unrecognized macro or preprocessor command “«name»”

Cause: The macro name or preprocessor command immedi-
ately after a '(’ is unrecognized. Typically this is due to
incorrect spelling or a macro that should have been de-
fined but, for some reason, is not.

Remedy: Use the location information to find the offending
text.

FO002 | EOF in macro definition

Cause: During the definition of a macro an end-of-file was
encountered before the closing ’)’. Any (" and ')’ char-
acters must match in the macro’s literal text. So this
fatal may have been caused by incorrect text.

Remedy: Use the location information to find the offending
text.

FO003 | “else” or “then” with no matching “ifdef” or
“ifndef”

Cause: An else or a then clause was found but outside the
scope of an ifdef. This might be caused because no ifdef
has yet been used or because the closing ')’ of an ifdef
appeared before the then or else.

Remedy: Use the location information to find the offending
text.

FO004 | EOF in comment
Cause: An end-of-file has been found in a comment.

Remedy: Use the location information to find the offending
text.

238 Error Codes



Code | Description

FO005 | EOF in preprocessor directive or macro name
Cause: After a '(" while collecting the name of the macro or
preprocessor directive an end-of-file was found. Typi-
cally this is caused by a ’(" with nothing after it, or a
partially completed macro name or preprocessor direc-
tive.
Remedy: Use the location information to find the offending
text.
FO006 | EOF in include file name
Cause: While processing the file name after an include com-
mand an end-of-file was found. Typically this is caused
by a missing ')’ but may also indicate a missing file
name.
Remedy: Use the location information to find the offending
text.
FO008 | Missing ')’ after include file name
Cause: The ')’ that terminates an include preprocessor com-
mand is missing.
Remedy: The ')’ should be inserted.
FO009 | Failed to open input file called “«name of file»”
Cause: Afile specified eitherin an include preprocessor com-
mand or on the command line could not be opened. The
file name might be incorrect or the file might be pro-
tected in such a way that it can’t be opened.
Remedy: Check the name of the file and its access permis-
sions.

Error Codes

239



Code | Description

FO010 | EOF in “ifdef” or “ifndef”

Cause: During the processing of an ifdef an end-of-file was
found. Typically, this is caused by missing out the clos-
ing’)’.

Remedy: Use the location information to find the offending
text.

FOO11 | EOF inside fatal/error/warning/info message

Cause: While processing the body of a fatal, error, warning
or info preprocessor command an end-of-file was found.
Typically, this would be caused by missing out the clos-
ing’)".

Remedy: Use the location information to find the offending
text.

FO014 | «Message text defined by user»

Cause: A (fatal...) preprocessor command was used in the
configuration file

Remedy: This message was created as a result of preproces-
sor directives added by the user.

F0016 | Macro command used in incorrect context.

Cause: A fatal, error, warn, info, define or undefine com-
mand has been used in a place where only text, macro
expansion, file inclusion or an if[n]def are legal.

Remedy: Check syntax , especially for incorrect bracketing.

240 Error Codes



Code | Description

FOO17

Extraneous character («character») in “ifdef” or
“ifndef” body.

Cause: After the condition in an ifdef the only text that may
appear is the else or then clauses enclosed in parenthe-
sis. This fatal is caused when text has been found out-
side the else and then clauses. Typically this might be
because the closing ')’ of the ifdef has been omitted,
or because the opening (" of a then or else clause has
been omitted. Another possibility is that the condition
evaluates to text with embedded spaces such as:

(define a b c)(ifdef (a) (then \ldots))

In this example the ifdef would evaluate to:

(ifdef b c¢ (then \ldots))
and the c is extraneous.

Remedy: Use the location information to find the offending
text.

F0020

Can’'t set file and line in a macro.

Cause: A # line_number “file_name” directive has been seen
at the point of expansion of a macro. It is legal to have
a # line directive within the definition of a macro.

Remedy: Remove the directive from the macro. See Sec-
tion 10.2.7 for further information.

F0021

EOF in macro name to undefine.

Cause: An end-of-file was found in the macro name within an
undefine command. Typically, this is due to a missing ‘)’.

Remedy: Check that the closing ’)" appears in the undefine
command.

F0022

Missing ')’ in undefine command.

Cause: An undefine command was not terminated with a
closing ’)’.

Remedy: Insert the missing ’)".

Error Codes

241



Code | Description

F0024 | Unexpected “then” clause.

Cause: A then clause can only appear as the first clause in
an ifdef or ifndef. This message is generated when a
then is found elsewhere.

Remedy: Ensure that all then clauses are enclosed by an
ifdef or ifndef clause. Make sure that there is no more
than one then clause in each ifdef and ifndef clause.

FO025 | EOF in body of “then” clause.

Cause: An end-of-file was found before the terminating ')’ in
a then clause.

Remedy: Ensure that the then clause has correctly matched
brackets.

FO0026 | Unexpected “else” clause.

Cause: An else clause can only appear as the second clause
in an ifdef or ifndef. This message is generated when
an else clause has been found elsewhere.

Remedy: Ensure that all else clauses are enclosed by an
ifdef or ifndef clause. Make sure that there is no more
than one else clause in each ifdef and ifndef clause
and that it follows a then clause.

FO0027 | EOF in body of “else” clause.

Cause: An end-of-file was found before the terminating ')’ in
an else clause.

Remedy: Ensure that the else clause has correctly matched
brackets.

242 Error Codes



Code | Description

F0028

Unterminated pre-processor command at end of input.
«further information»

Cause: After processing all input files at least one ')’ was
missing.

Remedy: Check the matching of brackets. The «further in-
formation» gives details of where the opening '(’ oc-
curred.

F0029

Macro name not terminated with closing ')’'.

Cause: A macro expansion was not terminated correctly.
There must be a ‘)’ immediately following the macro
name, instead there was white-space or other text.

Remedy: Ensure that there are no missing brackets or extra
spaces in macro expansions. If the macro name is gener-
ated by other preprocessor commands use the info com-
mand to print the name used and check that it doesn’t
contain white-space.

FO030

Illegal character “«character»” in macro name
“«macro name»"”.

Cause: An attempt was made to define a macro using the -D
command line option and the name of the macro con-
tains brackets.

Remedy: Remove the bracket(s) from the macro name.

FOO31

Unbalanced brackets in literal text of macro called
“«name of macro»”. Text is «body of macro»

Cause: The literal text which a macro is defined as initially
expanding to contains brackets that do not match either
because the number of left and right brackets is not the
same or because a closing bracket occurs first.

Remedy: Ensure that any brackets balance and that a clos-
ing bracket does not appear first.

Error Codes

243



244

Code
F0032

Description
Missing condition or then in ifdef or ifndef.

Cause: An ifdef or ifndef with no condition or then has been
found. For example (ifdef) and (ifdef name) would cause
this fatal error.

Remedy: Ensure that any ifdefs or ifndefs are correctly
formed.

FO033

Extraneous characters in “include”.

Cause: Non-white-space characters were found in an include
command, which were not part of the file name.

Remedy: Remove the extraneous characters. Only white-
space characters are allowed to separate the include
file name from the command and closing bracket. If the
body of the include command was generated using a
macro expansion then use (info) to inspect what is gen-
erated for the body.

FO034

Extraneous characters in “undefine”.

Cause: Non-white-space characters were found in an unde-
fine command, which were not part of the name of the
macro to undefine.

Remedy: Remove the extraneous characters. Only white-
space characters are allowed to separate the macro
name from the command and closing bracket. If the
body of the undefine command was generated using a
macro expansion then use (info) to inspect what is gen-
erated for the body.

FO101

Run out of memory.

Cause: The Analysis Visualizer is attempting to allocate heap
space for an identifier, but cannot do so.

Remedy: Check that there is not a problem with your com-
puter or that the configuration file does not contain too
many objects.

Error Codes




Code

Description

F0102 | Maximum number of labeled objects exceeded.

Cause: The Analysis Visualizer generates internal labels but
has a limit of 65536. This fatal indicates that the limit
has been exceeded.

Remedy: The number of labels used depends upon the com-
plexity of the configuration file. So one solution is to
simplify the file.

F0206 | Identifier too long «copy of identifier».

Cause: The maximum length of an identifier in the Analysis
Visualizer is 63 characters; an identifier longer than this
has been found.

Remedy: Reduce the length of the identifier

FO208 | Quoted identifier too long «copy of identifier».

Cause: The maximum length of an identifier in the STC is 63
characters; a quoted identifier longer than this has been
found.

Remedy: Check that the identifier is correctly terminated
(i.e. that the closing ” is in the right place); if it is, re-
duce the length of the identifier.

FO0209 | End of line or end of file in quoted identifier

«copy of identifier».

Cause: A guoted string has remained unterminated at the
end of the line on which it occurs, or the end of the input
file.

Remedy: Check that the string is correctly terminated, or
look for a spurious opening quote.

Error Codes

245



Code | Description

FO301 | Syntax error near «token» «message describing
syntax error».

Cause: The syntax analyzer detected input that does not
conform to the syntax of the Analysis Visualizer config-
uration language. A description of what the parser ex-
pected to find at that point in the configuration file fol-
lows.

Remedy: Check the syntax and amend the file accordingly.

FO0401 | Attempt to open more than 1 input file.

Cause: More than one input file was specified in the Analysis
Visualizer command line.

Remedy: Ensure only one input file is present on the com-
mand line.

FO801 | Cannot open assembler output file “«filename»”.

Cause: The specified file cannot be created. This may mean
that the directory in which the file is intended to be
placed does not exist or is not writable, that the syn-
tax of the filename is illegal under the host operating
system, or that a file of that name already exists but is
not writable.

Remedy: If the path and filename are correct but this error
persists, contact your system administrator.

F0802 | Cannot open C output file “«filename»”.

Cause: The specified file cannot be created. This may mean
that the directory in which the file is intended to be
placed does not exist or is not writable, that the syn-
tax of the filename is illegal under the host operating
system, or that a file of that name already exists but is
not writable.

Remedy: If the path and filename are correct but this error
persists, contact your system administrator.

246 Error Codes



Code | Description

FO803

Cannot open preprocessor output file “ospp.out”.

Cause: The specified file cannot be created. This may mean
that the directory in which the file is intended to be
placed does not exist or is not writable, that the syn-
tax of the filename is illegal under the host operating
system, or that a file of that name already exists but is
not writable.

Remedy: If the path and filename are correct but this error
persists, contact your system administrator.

F4007

Timebase “«name»” not found.

Cause: An activator must have a timebase associated with
it. The timebase specified has not been declared.

Remedy: Ensure that the name corresponds to a declared
timebase.

F4008

Expecting “«name»” to be declared as a timebase; it
is declared as «type».

Cause: The object referred to in the activator’'s timebase
clause is not declared as a timebase.

Remedy: Ensure that the name corresponds to a declared
timebase.

F4201

Timebase «timebase name» not found in timeline.

Cause: The specified timebase could not be found, hence
initialization of the timeline currently being described
could not be completed.

Remedy: Check that the timebase has been declared cor-
rectly and earlier in the configuration file than the time-
line declaration.

Error Codes

247



Code | Description

F4202 | Expecting “«name»” to be a timebase; it is declared
as a «type».

Cause: This occurs in the timebase clause of a timeline dec-
laration. It occurs when the name used for the timeline
exists but does not correspond to a timebase. It is the
name of an object of type «type».

Remedy: Use the name of a timebase.

F4214 | The periodic timeline named “«name of timeline»” 1is
too complex to generate.

Cause: Calculation of the least common multiple (LCM) of
the task periods resulted in an arithmetic overflow. The
Analysis Visualizer cannot continue generating the peri-
odic timeline.

Remedy: Change one or more task periods in the periodic
timeline clause. Try to avoid sets of periods that are
co-prime. For example 7, 13 and 18 have an LCM of
1638. Whereas 8, 12, and 18 have an LCM of 72. Making
task periods multiples of each other, or some common
number, reduces the length of periodic timelines.

F4216 | Too many timepoints in periodic timelines.

Cause: A count is kept of the number of arrivalpoints that
all periodic timelines create. If the set of periodic time-
lines specified causes a large number of arrivalpoints to
be generated then this fatal error is generated. This is
because long timelines consume large amounts of mem-
ory and are probably not intended. A likely cause is task
periods that are co-prime.

Remedy: Examine all periodic timelines, change one or more
task periods. Making task periods multiples of each
other, or some common number, reduces the length of
periodic timelines. If long time lines are required, then
see the “-I” command line option. The generation of long
timelines may take considerable time and result in large
output files.

248 Error Codes



12.2

Code | Description

FAOO1

Program terminated by user.

Cause: User requested program termination by hitting
<Ctrl+C> or <Ctrl+Break>.

Remedy: N/A.

FA002

Failed to open output file
Cause: Failed to open output file.

Remedy: Check that your disk is not write-protected. If prob-
lem persists, contact your system administrator.

FAOO3

Failed to delete output file
Cause: Failed to delete output file.

Remedy: Check that your disk is not write-protected. If prob-
lem persists, contact your system administrator.

FA004

This computer is not currently licensed for timing
analysis

Cause: Your license file contains license features appropriate
to your installation.

Remedy: Check that your license file is installed in the cor-
rect location and is valid.

FAOO5

This computer is not currently licensed for timing
optimizations

Cause: Your license file contains license features appropriate
to your installation.

Remedy: Check that your license file is installed in the cor-
rect location and is valid.

Error Messages

Error Codes

249



Code | Description

E0013 | «Message text defined by user»

Cause: An (error..) preprocessor command was used in the
configuration file.

Remedy: This message was created as a result of preproces-
sor directives added by the user.

E0201 | The binary number «number» must have at least one
digit.

Cause: Binary numbers are specified in the form Ob[* 0|1 *].
The character after the b was not a zero or one and,
therefore, the number does not have a digit in it. For
example, the number “Obticks” was specified.

Remedy: Correct the syntax of the number.

E0202 | Illegal binary number «number»

Cause: Binary numbers are specified in the form Ob[* 0|1 *].
No punctuation is supported. An illegal character was
found in the number.

Remedy: Correct the syntax of the number.

E0203 | The number «number» is too large

Cause: All numbers in the configuration file must lie within
the range 0 to 4294967295. A number larger than this
has been specified.

Remedy: Use a number within range.

E0204 | The hex number «number» must have at least one
digit.

Cause: Hexadecimal numbers are specified in the form Ox[*
0-9|a-f *]. The character after the x was not a valid hex
digit.

Remedy: Correct the syntax of the number.

250 Error Codes



Code | Description

E0205 | Il1legal octal number «numbers».
Cause: Octal numbers are specified in the form 0O[* 0-7 *].
No punctuation is supported. An illegal character was
found in the number.
Remedy: Correct the syntax of the number.
E0207 | Illegal empty quoted identifier.
Cause: An identifier was expected, but the empty string “”
was found in its place.
Remedy: Replace literal “”s with correct identifiers; check
preprocessor macros are expanded correctly (see the “-
E” command line option).
E0402 | Warnings were detected and are being treated as
errors.
Cause: The “-e” command line option has been used and at
least one warning was generated.
Remedy: Referto earlier Warnings and remove them individ-
ually.
EO601 | Trying to create an object of type
«declared-type» named «name». The name «name» is
already declared as an object of type «found-type».
Cause: Each object declared in the configuration file must
have a unique name. An attempt has been made to cre-
ate two objects with the same name. The name and
type of the object currently being declared and the type
of the existing object which already has this name are
reported.
Remedy: Rename one of the two objects.

Error Codes

251



Code | Description

E0602 | Trying to create an object of type «type» called
“«name»”. Names prefixed by 0S_, os_, _os_ and
_0S_ are reserved for system use.

Cause: Users are not allowed to declare object with names
that impinge upon the namespace reserved for the op-
erating system. An attempt has been made to declare
an object with a reserved name.

Remedy: Rename the object.

EO701 | The timing calibration value specified («value») 1is
out of range.

Cause: When the timing calibration values were being spec-
ified a value was used which was larger than 65535.

Remedy: Enter the correct value. This can be obtained from
the results of the timing calibration.

E1501 | You may only declare the idle task once.

Cause: Only one “idle task” clause is permitted, but more
than one such clause appears in the configuration file.

Remedy: Either remove extra declarations of the idle task or
merge all clauses into a single clause.

E1502 | You may only declare the autoactivate list once.

Cause: Only one “autoactivate” clause is permitted, but
more than one such clause appears in the configuration
file.

Remedy: Remove all but one declaration of the autoactivate
list.

252 Error Codes



Code | Description

E1602

Conversion of «floating value» to integer causes
loss of precision. Converted value is «integer
value»; error is «floating value» %.

Cause: The number of ticks specified, either directly, or
when a time is given in terms of some user defined units
, is converted to a whole number of ticks. If the loss of
precision due to rounding amounts to more than 1% of
the specified value, then this error is produced.

Remedy: Modify the time value specified so that it evaluates
to close to a whole number of ticks, or reduce the size of
each tick, to increase precision.

E2001

Too many tasks for the specified target. Maximum
number of tasks is «tasks» including idle task.

Cause: More tasks have been declared than are permitted
for the target.

Remedy: Reduce the number of tasks.

E2002

Illegal execution budget after addition of budget
correction. The maximum allowed is 65535 cycles.

Cause: The execution budget has a correction value added
to it to account for operating system overheads. The
corrected budget is not allowed to exceed 65535 but has
done so.

Remedy: Correct the budget if it is incorrectly specified. Al-
ternatively, the execution time of the task is too long
for the timebase used for execution time measurement.
Increasing the timebase tick duration would reduce the
number of ticks which the budget evaluates to. How-
ever, it must be ensured that all other time values de-
rived from the same timebase are still correct given the
re-scaling. This can be achieved more easily if budgets
are specified in named units related to ticks (see the
unit declarations clause in Section 9.2.1) rather than in
ticks. Note that timing correction values must be taken
using exactly the same timebase and tick duration as
that used to specify budgets.

Error Codes

253



Code | Description

E2003 | Resource list for task “«name»” can only contain
resources. Object “«name»” is a «type».

Cause: An attempt was made to lock an object that has been
declared as some type other than a resource.

Remedy: Ensure that only resources are locked by tasks.

E2004 | Attempt to use non-existent resource “«resource
name»"” by task “«task name»”

Cause: The named resource does not exist. The resource is
not declared before it is referenced in a “locks” clause.

Remedy: Check that the name of the resource in the “locks”
clause of the task declaration and in the resource decla-
ration is consistent. Ensure that the resource clause is
before the task declarations for any tasks which lock the
resource.

E2006 | Illegal attempt to use the «type» called «object
name» as the entry point for the task called
«taskname».

Cause: An attempt has been made to use an object which
already exists on the namespace as the entry to a task.

Remedy: Change the name of the object or the name of the
task’s entry function to ensure name uniqueness.

E2009 | I1legal execution budget of 0 specified.

Cause: An attempt has been made to specify the execution
budget of a task as 0. Tasks may not have 0 execution
time budgets. The minimum value is 1.

Remedy: Either remove the budget specification if timing
measurement is not required for that task or replace 0
with the correct value.

254 Error Codes



Code | Description

E2010

Attempt to assign priority 0 to task “«name»”.
Priority 0 is reserved for the idle task.

Cause: A task has been declared at priority 0. Only the idle
task can have priority 0.

Remedy: Choose a priority greater than zero for the task

E2102

Couldn’'t find a task called “«tasknamex»”.
Cause: The named task has not been declared.

Remedy: Ensure that the name given in the list corresponds
to a declared task.

E2103

The object “«name»” is a «type» but a task is
expected.

Cause: An attempt has been made to add an object which is
not a task to a list of tasks.

Remedy: Ensure that the name given in the list corresponds
to a declared task.

E4001

In activator “«name»’, the specified autostart
delay of «ticks» ticks is less than minimal
counter resolution.

Cause: An attempt has been made to specify an autostart
delay of less than 1 tick.

Remedy: Increase the delay or reduce the duration of a tick
so that the desired delay can be achieved. If the du-
ration of a tick is changed, take care to ensure that all
other time values derived from the same timebase are
still correct given the re-scaling. This can be achieved
more easily if delays are specified in named units re-
lated to ticks (see the unit declarations clause in Sec-
tion 9.5) rather than in ticks.

Error Codes

255



Code | Description

E4002 | Zero autostart delay not permitted in activator
«name» .

Cause: A zero delay has been specified.

Remedy: Specify a nonzero delay.

E4003 | Specified delay of «ticks» ticks exceeds valid
range for counter modulus of «maxticks» in timebase
“«base»"”.

Cause: A delay longer than the modulus of the timebase be-
ing used by the activator has been requested

Remedy: Decrease the delay or increase the duration of a
tick or increase the modulus of the timebase so that the
desired delay can be achieved. If the duration of a tick is
changed, take care to ensure that all other time values
derived from the same timebase are still correct given
the re-scaling. This can be achieved more easily if de-
lays are specified in named units related to ticks (see
the unit declarations clause in Section 9.5) rather than
in ticks.

E4004 | Expecting “«name»” to be declared as a timepoint;
it is declared as «type».

Cause: The object referred to in the activator’s “initial” entry
is not declared as an arrivalpoint.

Remedy: Ensure that the name corresponds to a declared
arrivalpoint.

E4009 | A coarse counter cannot have callbacks.

Cause: A coarse activator cannot have callbacks. However,
one has been specified as having callbacks in the con-
figuration file.

Remedy: Ensure that the activator type is correct and that
there are no callbacks specified if it is a coarse activator.

256 Error Codes



Code | Description

E4010 | A fine counter must have driver callbacks.

Cause: An activator marked as being associated with a fine
counter must have callbacks. However, one has been
specified as having no callbacks in the configuration file.

Remedy: Ensure that the activator type is correct and that
all four callbacks are present if it is a fine activator.

E4011 | Expecting timebase for timepoint “«timepoint»” to
be “«correct base»”. It is declared with timebase
“«wrong base»”.

Cause: An activator can only process timepoints which are
associated with the same timebase as the activator. The
specified “initial” arrivalpoint for the activator is associ-
ated with a different timebase.

Remedy: Ensure that the activator and its initial arrivalpoint
are associated with the same timebase.

E4012 | The activator “«activator_name»” has a fine
counter. Only activators with coarse counters may
be auto-started.

Cause: Only coarse activators may be auto-started.

Remedy: Use a coarse activator or remove the autostart
clause.

E4013 | Initial timepoint “«name»” not found.

Cause: The arrivalpoint specified as the initial entry for this
activator could not be found.

Remedy: Ensure that «<name» corresponds to a previously
declared arrivalpoint.

Error Codes

257



Code | Description

E4014 | A coarse counter can’t have a modulus other than
65536.

Cause: An attempt has been made to associate a coarse ac-
tivator with a timebase that has a modulus other than
65536. A coarse activator cannot have a modulus other
than 65536.

Remedy: Change the modulus, the timebase or the type of
the activator.

E4101 | Unknown unit “«unit name»” specified.

Cause: An attempt has been made to define a new unit in
terms of some other unit that has not yet been defined.

Remedy: Correct the name of the unit so that it refers to one
that has already been defined or add a definition (earlier
in the file) for the unit, if it does not exist.

E4102 | I1legal modulus «mod» specified.

Cause: The modulus for a counter must be in the range 1
< «mod» < «max», where «max» is a property of the
hardware platform.

Remedy: Ensure that the modulus value is within range.

E4103 | Illegal attempt to declare “«name»” as the
stopwatch timebase. The timebase “«name»” is
already declared as the stopwatch timebase.

Cause: An attempt has been made to declare more than one
timebase as the stopwatch timebase.

Remedy: Remove stopwatch keywords until only the correct
timebase is marked.

258 Error Codes



Code | Description

E4104

The stopwatch timebase modulus must be 65536.

Cause: The timebase that is used for timing measurements
(the stopwatch timebase) must have a modulus of
65536. An attempt has been made to use a timebase
with a modulus other than 65536 as the stopwatch time-
base.

Remedy: Either change the modulus or use a different time-
base for the stopwatch.

E4105

There is no stopwatch timebase defined. Therefore
the only units available are ticks.

Cause: Execution time budgets can always be specified in
ticks. However, if a stopwatch timebase is defined then
the budget can also be specified in units defined for that
timebase. This error is caused when units other than
ticks have been used but no stopwatch timebase has
previously been defined.

Remedy: Mark the correct timebase as the stopwatch time-
base. Ensure that the declaration of the stopwatch time-
base precedes any budget clauses.

E4203

Next timepoint “«timepoint name»” not found.

Cause: The arrivalpoint specified in the “next” clause of a
timeline declaration does not exist.

Remedy: Ensure that the “next” clause refers to a previously
declared arrivalpoint.

E4204

Expecting “«name»” to be a timepoint; it is
declared as a «type».

Cause: The object specified in the “next” clause of a timeline
is not an arrivalpoint; it has been declared as an object
of another type.

Remedy: Specify an arrivalpoint.

Error Codes

259



Code | Description

E4205 | Expecting timebase for “«name»” to be “«realbase»”.
It is declared with timebase “«wrongbase»”.

Cause: The arrivalpoint specified in the “next” clause of a
timeline is not associated with the same timebase as
the timeline.

Remedy: Refer to an arrivalpoint that is associated with the
same timebase as the current timeline.

E4206 | The value specified for the period is illegal
because it is greater than the timebase modulus.

Cause: The value specified in the “every” clause, when con-
verted to ticks, is larger than the modulus of the time-
base associated with the timeline.

Remedy: Reduce the value specified or increase the modu-
lus of the timebase or increase the duration of a tick.
If the duration of a tick is changed, take care to en-
sure that all other values derived from the same time-
base are still correct given the re-scaling. This can be
achieved more easily if delays are specified in named
units related to ticks (see the unit declarations clause
in Section 9.5) rather than in ticks.

E4207 | The period of a periodic timeline component cannot
be less than 1 tick.

Cause: The period is less than 1 tick.

Remedy: Increase the value specified or decrease the dura-
tion of a tick for the associated timebase. If the duration
of a tick is changed, take care to ensure that all other
values derived from the same timebase are still correct
given the re-scaling. This can be achieved more easily if
delays are specified in named units related to ticks (see
the unit declarations clause in Section 9.5) rather than
in ticks.

260 Error Codes



Code | Description

E4210

The value specified for the offset is too large.

Cause: The value specified in the “offset” clause, when con-
verted to ticks, is larger than the modulus of the time-
base associated with the timeline.

Remedy: Reduce the value specified or increase the modu-
lus of the timebase or increase the duration of a tick.
If the duration of a tick is changed, take care to en-
sure that all other values derived from the same time-
base are still correct given the re-scaling. This can be
achieved more easily if delays are specified in named
units related to ticks (see the unit declarations clause
in Section 9.5) rather than in ticks.

E4211

Task “«name of task»” not found.

Cause: The task referred to in the periodic timeline does not
exist.

Remedy: Ensure that the name corresponds to a declared
task.

E4212

The object “«name of object»” is a «type» but a
task was expected.

Cause: The object referred to in the periodic timeline is not
a task.

Remedy: Ensure that the name corresponds to a declared
task.

E4213

The periodic timeline named “«name of timeline»”
cannot be writable.

Cause: A periodic timeline cannot be writable but has been
specified as such.

Remedy: If a periodic timeline must be writable then use the
“-t” command line option to dump the periodic timeline
as a sequential one. The output from the Analysis Visual-
izer can then be edited to make the equivalent sequen-
tial timeline writable and included into the configuration
file.

Error Codes

261



Code | Description

E4218 | The offset in the periodic timeline must be less
than its period.

Cause: After conversion to ticks the offset in a periodic time-
line “every” clause is greater than or equal to the period.

Remedy: Reduce the offset or increase the period of the task
taking care to take into account rounding errors in units.
Alternatively, if an offset greater than the task’s period
is really required, then this can be achieved by specify-
ing a sequential timeline as well as a periodic one. The
total length of the sequential timeline should be equiva-
lent to the offset required. Set the “next” clause of the
sequential timeline to refer to the start of the periodic
timeline. Care must be taken to adjust the offsets tasks
have in the periodic timeline and to include them as nec-
essary in the sequential timeline to achieve the desired
offsets and periodic behavior.

E4219 | At least one task in timeline “«name»” must have a
zero offset.

Cause: Periodic timelines must have one task whose offset
is zero. However a periodic timeline has been specified
where none of the tasks have 0 offset.

Remedy: Specify a zero offset for at least one task or in the
application program start processing the timeline after
a delay equal to the shortest offset originally specified
and subtract this from all the task offsets. Alternatively,
specify a sequential timeline with a single arrivalpoint,
which does not activate any tasks and has a delay equal
to the minimum offset of the tasks in the original peri-
odic timeline. Set the “next” clause of the sequential
timeline to refer to the start of the periodic timeline and
subtract the minimum offset from the offsets of all the
tasks in the periodic timeline. Start the activator at the
beginning of the sequential timeline rather than the pe-
riodic one.

262 Error Codes



Code | Description

E4220

The task «taskname» can only appear once in the
specification of periodic timeline «timeline».

Cause: A task appears more than once in the declaration of
a periodic timeline.

Remedy: Remove superfluous declarations. Note that it is
also illegal to repeat the same offset for a single task.

E4221

Idle task not permitted in periodic timeline.

Cause: The idle task has been specified in a periodic time-
line. This is not permitted.

Remedy: Remove the clause containing the idle task.

E4302

Zero delay not permitted in timepoint.

Cause: A delay of zero has been specified. This is illegal be-
cause delays in arrivalpoints must be greater than zero
and less than or equal to the modulus of the associated
timebase.

Remedy: Change the delay to a non-zero value, or delete
the arrivalpoint and move the tasks into the next arrival-
point.

E4303

Specified delay of «delay» ticks exceeds valid
range for counter modulus of «modulus» in timebase
“«name»"”.

Cause: A delay of greater than the timebase modulus has
been specified. This is illegal because delays in arrival-
points must be greater than zero and less than or equal
to the modulus of the associated timebase.

Remedy: Modify the delay appropriately, or add an arrival-
point with no tasks to bridge the long delay required.

Error Codes

263



Code | Description

E4304 | Specified delay of «ticks» is less than minimal
counter resolution.

Cause: A delay which is shorter than one tick has been spec-
ified. Typically this might be caused because any units
used have evaluated to a number which has rounded
down to zero ticks.

Remedy: Increase the delay , or delete the arrivalpoint and
move the tasks into the next arrivalpoint. Alternatively,
if more precision is required, then reduce the duration
of a tick for the associated timebase. If the duration
of a tick is changed, take care to ensure that all other
values derived from the same timebase are still correct
given the re-scaling. This can be achieved more easily if
delays are specified in named units related to ticks (see
the unit declarations clause in Section 9.5) rather than
in ticks.

E4401 | Illegal zero in conversion for unit “«name»”.

Cause: One of the following conditions has been detected:

unit bobs {
define 0 as N other things

}
or

unit bobs {
define N as 0 other things

}

Remedy: Correct the definition so that no zeros occur.

264 Error Codes



Code | Description

E5001

Illegal attempt to use the «type» called “«name»”
as the entry function for the interrupt called
“«interrupt name»”.

Cause: An attempt has been made to use an object that has
been declared, but not as an interrupt entry function, as
the entry function for an interrupt.

Remedy: Ensure that the correct unique name is being used.
In particular, note that

interrupt fred {
entry fred;
}

is illegal.

E5002

Interrupt “«name»” is declared at priority 0. This
level is reserved for user tasks and is illegal for
interrupts.

Cause: An interrupt has been declared as being at priority 0,
which is illegal.

Remedy: Set the correct priority for the interrupt.

E5003

Uncontrolled interrupt “«name»” must have
priority higher or equal to that of all controlled
interrupts.

Cause: An uncontrolled interrupt has been given a priority
which is below that of a previously defined controlled
interrupt. Uncontrolled interrupts are not permitted to
have priorities below those of controlled interrupts.

Remedy: Reassign the priority of either the uncontrolled in-
terrupt or the previously declared controlled interrupts.

Error Codes

265



Code | Description

E5004 | Controlled interrupt “«name»” must not have a
priority higher than that of any uncontrolled
interrupts.

Cause: A controlled interrupt has been given a priority that
is above that of a previously defined uncontrolled inter-
rupt. Controlled interrupts are not permitted to have pri-
orities above those of uncontrolled interrupts.

Remedy: Reassign the priority of either the controlled inter-
rupt or the previously declared uncontrolled interrupts.

E5005 | Interrupt “«name»” is declared at a priority
higher than the maximum for this target which is
«integer».

Cause: An attempt has been made to use an interrupt prior-
ity that is outside the range supported on the specified
target.

Remedy: Change the priority of the interrupt. The range of
permitted interrupt priorities is defined in the Target/-
Compiler Port Guide for the given target.

266 Error Codes



Code
E5006

Description

Illegal execution budget after addition of budget
correction. The maximum allowed is 65535 cycles.

Cause: The execution budget has a correction value added

to it to account for operating system overheads. The
corrected budget is not allowed to exceed 65535 but has
done so.

Remedy: Correct the budget if it is incorrectly specified. Al-

ternatively, the execution time of the ISR is too long for
the timebase used for execution time measurement. In-
creasing the timebase tick duration would reduce the
number of ticks which the budget evaluates to. How-
ever, it must be ensured that all other time values de-
rived from the same timebase are still correct given the
re-scaling. This can be achieved more easily if budgets
are specified in named units related to ticks (see the unit
declarations clause in Section 9.2.1) rather than in ticks.
Note that the timing correction values must be taken us-
ing exactly the same timebase and tick duration as that
used to specify budgets.

E5009

Interrupt “«name»” is uncontrolled. Execution time
budget not permitted for uncontrolled interrupts.

Cause: An execution time budget has been specified for an
uncontrolled interrupt and this is not permitted. Uncon-
trolled interrupts are outside of the domain of the OS.

Remedy: Remove the execution budget clause.

E5011

Illegal execution budget of 0 specified.

Cause: An execution budget of 0 ticks has been specified.

This is not permitted.

Remedy: Specify a non-zero budget

Error Codes

267



268

Code
E5013

Description

Cannot give the interrupt called “«name»” the label
“«user-name»”; the system requires it to be labeled
«system-name».

Cause: There is an internal requirement that this interrupt
has a particular label. The user has inadvertently tried
to subvert this requirement.

Remedy: Remove the “label” clause from the interrupt dec-
laration.

E5014

Cannot share entry functions between interrupts of
different types; «namel» and «name2».

Cause: Entry functions cannot be shared between controlled
and uncontrolled interrupts. An attempt to share them
has been made.

Remedy: Ensure that interrupt entry functions are not
shared between controlled and uncontrolled interrupts.

E5015

Cannot share entry function “«name»” between a task
and an uncontrolled interrupt.

Cause: Entry points cannot be shared between tasks and
uncontrolled interrupts. An attempt to share them has
been made.

Remedy: Ensure entry points are not shared between tasks
and uncontrolled interrupts.

E5016

The default interrupt entry “«name»” cannot be
shared with controlled interrupt “«name»”.

Cause: The default interrupt may only share its entry func-
tion with uncontrolled interrupts. It must not share an
entry function with a controlled interrupt.

Remedy: Ensure that the entry function name is either
unique, or only shared with uncontrolled interrupts.

Error Codes




Code | Description

E6001 | Illegal attempt to add the idle task to a
non-preemption group.

Cause: An attempt has been made to add the idle task to
a non-preemption group. As the idle task never termi-
nates, this would result in tasks which could never run
and is therefore not permitted.

Remedy: Remove the idle task from any non-preemption
groups.

E7001 | No such resource “«name»”.

Cause: The resource referred to in the execution profile of a
task does not exist.

Remedy: Ensure that the name refers to a declared re-
source.

EA100 | Task «taskname» requested for sensitivity analysis
does not exist.

Cause: Sensitivity analysis requested for a name which does
not correspond to a task, ISR or uncontrolled interrupt.

Remedy: Specify an existing identifier.

EA101 | Task «taskname» does not exist.

Cause: «taskname» does not identify an existing task

Remedy: Specify an existing task identifier.

EA102 | The «objecttype» «objectname» with ‘simple’
behavior appears in transaction «transname» and
«transname».

Cause: A simple executable object appears in more than one
transaction. Simple objects are only permitted to be in
one transaction.

Remedy: Ensure that the executable object only appears in
one transaction, or change the behavior of the object to
‘re-triggering’ or ‘looping’.

Error Codes

269



Code | Description

EA103 | Task «taskname» has already had priority order
specified.

Cause: Task declared more than once in task priority order.

Remedy: Remove duplicated declaration.

EA104 | Task «taskname» has no priority order specified.
Cause: Task omitted in task priority order clause.

Remedy: Add task to task priority order or run automatic pri-
ority allocation.

EA105 | Cannot specify priority order for the idle task,

Cause: The idle task is not allowed in task priority order
clause.

Remedy: Remove declaration from task priority clause.

EA106 | Transaction «transname» is driven by
«objecttype» «objectname», which does not
have a higher priority than activated
«objecttype» «objectname».

Cause: A task drives an activator which is capable of activat-
ing an executable object with base priority greater than
that of the driving task.

Remedy: Tasks are not permitted to activate (directly or in-
directly) a higher priority task. Change the task’s prior-
ities, use different driver task or remove the activated
executable object from timeline.

EA107 | Task «taskname» must be lower than task «taskname».
Cause: Conflicting task priority information.

Remedy: Make sure the parts of the configuration file that
can affect task priorities are consistent. Configuration
file elements that can affect task priorities are the 'ac-
tivates task’ clause of the task declaration, the priority
constraints clause and the task priority order clause.

270 Error Codes



Code | Description

EA108 | Task «taskname» cannot have higher priority than
itself.

Cause: A task cannot be declared higher than itself, or be a
driver on a timeline which it is on.

Remedy: Remove or change declaration.

EA111l | Declared critical execution time «value» cycles for
execution profile «profilename» exceeds execution
time «value» cycles.

Cause: Critical execution time is greater than execution
time.

Remedy: Ensure that all critical execution times are less
than or equal to the ‘this priority’ execution time of the
profile in which they appear.

EA112 | Declared critical execution time «value» cycles for
execution profile «profilename» exceeds deadline of
«value» cycles.

Cause: Deadline is less than the critical execution time.

Remedy: Ensure that all deadlines are no less than their cor-
responding critical execution times.

EAl114 | Task entry latency of «value» cycles cannot
be greater than task switch overhead of
«value» cycles.

Cause: Task entry latency is greater than task switch over-
head.

Remedy: Change system timings values accordingly. The
task switch overhead consists of entry and exit laten-
cies , thus the value cannot be smaller than the task
entry latency.

Error Codes

271



Code | Description

EA116 | Controlled interrupt latency of «value» cycles
cannot be greater than controlled interrupt
overhead of «value» cycles.

Cause: Controlled interrupt latency is greater than controlled
interrupt overhead.

Remedy: Change system timings values accordingly. The
overhead includes entry latency, thus the value cannot
be smaller than the interrupt entry latency.

EA117 | Uncontrolled interrupt latency of «value» cycles
cannot be greater than uncontrolled interrupt
overhead of «value» cycles.

Cause: Uncontrolled interrupt entry latency is greater than
uncontrolled interrupt overhead.

Remedy: Change system timings values accordingly. The
overhead includes entry latency, thus the value cannot
be smaller than the interrupt entry latency

EA120 | Nonexistent time unit in stopwatch conversion for
timebase «name».

Cause: A non-existent time unit is mentioned in stopwatch
conversion.

Remedy: Check that the time unit has been defined.

EA121 | More than one conversion to stopwatch for timebase
«name».

Cause: More than one stopwatch conversion clause has been
specified for the same timebase.

Remedy: Remove the duplicated stopwatch conversion
clause.

272 Error Codes



Code | Description

EA122 | Timebase «name» does not have a stopwatch
conversion defined,

Cause: A timebase does not have a stopwatch conversion.
Stopwatch conversion clauses are required if analysis is
needed.

Remedy: Add a stopwatch conversion for this particular
timebase.

EA123 | The stopwatch timebase «name» cannot have a
stopwatch conversion factor.

Cause: The stopwatch timebase may not have a stopwatch
conversion.

Remedy: Remove stopwatch conversion for stopwatch time-
base.

EA124 | Time «value» ticks on timebase «name» exceeds
system integer capacity.

Cause: A time conversion results in an analysis value that
exceeds the capacity of an integer cycle (4294967295).

Remedy: Use units which, when converted into stopwatch
cycles, will not result in a conversion overflow. It may be
necessary to make stopwatch cycles longer.

EA126 | Interrupt priority level «value» is shared but no
arbitration order for it is present.

Cause: No arbitration order supplied for a shared interrupt
priority level. The analysis needs to know the relative
precedence of interrupts at the same hardware priority
level.

Remedy: Add arbitration order for this interrupt priority level
or change the interrupt priorities so that they are not
equal.

Error Codes

273



Code | Description

EA127 | Interrupt «name» has priority «value». The
arbitration order shows it as «value».

Cause: In an arbitration sub-clause an interrupt is mentioned
which is not at that priority.

Remedy: Change the arbitration order accordingly or de-
clare the interrupt at a different priority.

EA128 | Interrupt «name» at priority «value» not listed in
arbitration order.

Cause: Inan arbitration sub-clause an interrupt that is at that
priority is not mentioned.

Remedy: Add an entry for that interrupt in the arbitration or-
der clause, or correct the interrupt priority if it has been
specified incorrectly.

EA129 | Interrupt «name» is declared more than once in the
arbitration order.

Cause: In an arbitration sub-clause the same interrupt is
mentioned more than once.

Remedy: Remove duplicated entry.

EA130 | Interrupt «name» does not exist.

Cause: In an arbitration sub-clause a non-existent interrupt
is mentioned.

Remedy: Make sure all interrupts mentioned are correctly
declared.

EA131 | In transaction «name», «name» is not a valid
arrivalpoint.

Cause: The start arrival point for a transaction cannot be
found.

Remedy: Check the name of the arrivalpoint specified in the
start clause of the transaction.

274 Error Codes



Code | Description

EA132

In transaction «name», «name» does not represent
an execution profile of a task or controlled
interrupt.

Cause: The ‘driven by’ identifier of a transaction is not a valid
task or controlled interrupt.

Remedy: Check that the identifier has been declared.

EA133

In transaction «name», the driver «name» has been
found to activate itself.

Cause: A executable object is declared in an arrival point
where it is also the driver.

Remedy: Either change the driver or remove the executable
object from transaction.

EA136

In transaction «name» driven by controlled
interrupt «name», another interrupt «name» has been
activated.

Cause: The driveris an ISR and other interrupts are included
in an arrival point.

Remedy: Where a timeline transaction is driven by a con-
trolled interrupt, the timeline must not include interrupts
in analysis clauses. Remove any profiles of interrupts
from the timeline processed by the activator.

EA137

The «objecttype» «objectname» appears more than
once in transaction «name».

Cause: A task or interrupt is declared more than once in a
bursting transaction.

Remedy: Remove duplicated declarations from bursting
transaction.

EA139

Task «name» does not exist.

’

Cause: A non existent task is specified in an ‘activates
clause.

Remedy: Make sure the task specified has been declared.

Error Codes

275



Code | Description

EA140 | Task «name» cannot activate the idle task.
Cause: The idle task is not allowed in an ‘activates ' clause.

Remedy: Remove declaration.

EA141 | Buffer limits must be greater than zero.
Cause: The specified fifo buffer limit is less than 1.

Remedy: Specify a value greater than zero.

EA143 | No execution profile in task «name» uses resource
«name» .

Cause: No timing information is supplied for a resource the
task locks.

Remedy: Add timing information to the execution profile for
this particular resource.

EAl44 | Duration «value» cycles for execution profile
«name» exceeds declared ‘this priority’ duration
«value» cycles.

Cause: Resource locking time or interrupt priority level dis-
able time is longer than the task’s execution time.

Remedy: Change execution times accordingly.

EA148 | Duration «value» cycles for execution profile
«name» exceeds declared ‘this priority’ duration
«value» cycles.

Cause: An interrupt priority level disable time is specified
which is longer than the interrupt’s execution time.

Remedy: Change execution times accordingly.

EA150 | Task name «name» contains the illegal character
«character».

Cause: Task name contains illegal character.

Remedy: Remove illegal character.

276 Error Codes



Code | Description

EA151 | Interrupt name «name» contains the illegal
character «character».

Cause: Interrupt name contains illegal character.
Remedy: Remove illegal character.

EA152 | Execution profile name «name» in task
«name» contains the illegal character «character».
Cause: Task execution profile name contains illegal charac-

ter.
Remedy: Remove illegal character.

EA153 | Execution profiles «name» and «name» detected in
the same arrivalpoint. Only one execution profile
per task or interrupt may be declared in any one
arrivalpoint
Cause: A task or interrupt is defined more than once in an

analysis clause.
Remedy: Remove duplicated entry.

EA157 | Expecting timebase for «name» to be «name». It is
declared with timebase «name».

Cause: A “next” value points to a timeline with another time-
base.

Remedy: Make sure the timelines are declared with the
same timebase.

EA158 | The stopwatch timebase has not been declared yet.
Cause: No stopwatch is declared.

Remedy: Add stopwatch timebase declaration.

Error Codes

277



Code | Description

EA159 | Execution profile name «name» in interrupt
«name» contains the illegal character «character».

Cause: Interrupt execution profile name contains illegal char-
acter.

Remedy: Remove illegal character.

EA160 | Priority allocation, clock optimization and
sensitivity analysis are mutually exclusive.

Cause: More than one of priority allocation, sensitivity anal-
ysis or clock optimization were requested from the com-
mand line.

Remedy: Split the processing into separate phases.

EA161 | The stopwatch timebase does not have a unit named
«name .

Cause: Units identifier for a sw_time value does not match
existing unit on stopwatch timebase.

Remedy: Make sure the specified stopwatch unit has been
defined in the stopwatch timebase.

EA162 | Timebase «name» does not exist.

Cause: Timebase identifier does not match an existing time-
base name.

Remedy: Check that the timebase has been declared.

EA163 | Timebase «name» does not have a unit named «name».

Cause: Units identifier doesn’t match an existing unit on
specified timebase.

Remedy: Make sure the specified unit has been defined in
the particular timebase.

278 Error Codes



Code | Description

EA164

Task «name» does not exist.

Cause: In an execution profile reference, the task identifier
does not match the name of a task

Remedy: Check that the task has been declared.

EA165

Interrupt «name» does not exist.

Cause: In an execution profile, the interrupt identifier does
not match the name of an interrupt

Remedy: Check that the interrupt has been declared.

EAl66

«name» has more than one profile so all profiles
need names.

Cause: Execution profile name omitted but task or interrupt
has more than one execution profile.

Remedy: Add identifiers for each profile.

EAl67

Profile «name» does not exist in
«objecttype» «objectname».

Cause: Profile name specified does not match execution pro-
file name of the task or interrupt.

Remedy: Check that the profile has been declared.

EAl68

Arrivalpoint «name» not found.

Cause: Next identifier does not match an existing arrival-
point.

Remedy: Check the name of the arrivalpoint specified in the
next clause.

Error Codes

279



Code | Description

EA169 | The «objecttype» «objectname» is used in
transactions «name» and «name». A ‘fifo’
«objecttype» may only appear in one transaction.

Cause: An executable object declared with fifo behavior ap-
pears in more than one transaction.

Remedy: Specify different behavior or remove executable
object from the other transaction(s).

EA170 | Execution profile «name» declared more than once.

Cause: The same name has been used for more than one
execution profile in the same task.

Remedy: Make sure all profiles are named uniquely.

EA171 | In execution profile «name», a buffer limit
was specified for a task that does not have
re-triggering behavior.

Cause: Buffer limit declared in a task execution profile but
the task is not re-triggering.

Remedy: Tasks cannot declare a buffer limit if they do not
have re-triggering behavior. Either make the task re-
triggering or remove the buffer limit.

EA172 | In execution profile «name», a buffer limit was
specified for a task declared with ‘fifo’ behavior.

Cause: Buffer limits can be specified in only one place: at
the re-triggering declaration or within a profile. In this
case, buffer limits are given in both places.

Remedy: Remove either the fifo statement and buffer limit
in the re-triggering declaration a task, or remove each
buffer limit in if the execution profiles of that task.

280 Error Codes



Code | Description

EA173

In execution profile «name», the task does not have
‘fifo’ behavior and therefore must have a buffer
limit.

Cause: Buffer limit omitted in a task execution profile and
the task is not ‘fifo’.

Remedy: If a task is re-triggering, every profile of the task
should have a buffer limit. This either comes from the
buffer limit given in the profile, or from a value given in
the ‘re-triggering’ declaration. Ensure that every profile
does have a buffer limit, or consider defining the task as
a simple task (delete the re-triggering declaration).

EA175

Execution profile «name» declared more than once.

Cause: Same name declared for more than one execution
profile in the same interrupt.

Remedy: Make sure all profiles are named uniquely.

EA176

In execution profile «name», a buffer limit was
specified for an interrupt that does not have
looping or re-triggering behavior.

Cause: Buffer limit declared in an interrupt execution profile
but the interrupt is not looping or re-triggering.

Remedy: If the executable object cannot be given looping or
re-triggering behavior, the buffer limit has no meaning
to the analysis and should be removed. Alternatively,
the execution behavior of the executable object should
be changed to re-triggering (in the case of tasks or in-
terrupts ) or looping (in the case of interrupts).

Error Codes

281



Code | Description

EA177 | In execution profile «name», a buffer limit was
specified for an interrupt declared with ‘fifo’
behavior.

Cause: Buffer limits can be specified in only one place: at
the retriggering/looping declaration or within a profile.
In this case, buffer limits are given in both places.

Remedy: Remove either the fifo statement and buffer limit
in the retriggering/looping declaration an interrupt, or
remove each buffer limit in if the execution profiles of
that task.

EA178 | In execution profile «name», the interrupt does
not have ‘fifo’ behavior and therefore must have a
buffer limit.

Cause: Buffer limit omitted in an interrupt execution profile
and the interrupt is not ‘fifo’.

Remedy: If the executable object is to be looping or retrig-
gering it must have a buffer limit specified either after a
fifo clause, or in each profile of the object.

EA179 | Execution profile «name» is used in transactions
«name» and «name».

Cause: Execution profile appears in more than one transac-
tion.

Remedy: If the executable object is used by more than one
transaction, declare a separate profile for each transac-
tion (even if this results in multiple, identical profiles)
and ensure that no profile is common to two or more
transactions.

282 Error Codes



Code | Description

EA180

In transaction «name», «name» is activated with
multiple execution profiles and is not declared as
‘fifo’.

Cause: More than one execution profile in the same transac-
tion from an executable object that is not ‘fifo’.

Remedy: Either remove other execution profiles from trans-
action or declare the executable object as fifo.

EA183

One tick on timebase «name» is less than one
stopwatch cycle.

Cause: Conversion results in value smaller than 1 stopwatch
cycle.

Remedy: Check timebase units definition or change stop-
watch conversion.

EA184

In transaction «name», utilization is over 100%
because loop takes 0 cycles.

Cause: A transaction was detected which contains a loop
with a total analysis delay of 0 cycles, thus causing uti-
lization > 100%.

Remedy: This can occur if very small values are given in
some timebase unit that is rounded down. Check that
the ‘next’ path and delay values (in the analysis clauses
of the arrivalpoints) are correct. Note that an incorrect
timebase unit definition may be the cause of such very
small delays.

EA185

Illegal zero in burst declaration.
Cause: Zero in bursting clause.

Remedy: This can occur if very small values are given in
some timebase unit that is rounded down. Ensure that
all values used in a bursting clause are non-zero.

Error Codes

283



Code | Description

EA186 | Task «name» can only be in one soft non-preemption
group.

Cause: Task declared in more than one soft non-preemption
group.

Remedy: Remove duplicated declarations.

EA187 | Transaction «name» is not activator driven, so must
reference an analysis-only timeline.

Cause: Timeline must be analysis -only if it is not activator
driven

Remedy: Either specify an activator or change all arrival-
points to analysis-only.

EA188 | Illegal zero in stopwatch conversion for timebase
«name>.

Cause: Zero in stopwatch conversion.

Remedy: Change zero values in stopwatch conversion.

EA189 | Arrivalpoint «name» is analysis-only and cannot be
‘next’ on timeline.

Cause: The 'next’ property of a timeline must specify an ar-
rivalpoint that will result in the generation of a time-
point. This means that the specified arrivalpoint must
not be an analysis -only arrivalpoint.

Remedy: The 'next’ property should be changed to specify
an arrivalpoint that is not analysis only, or the specified
arrivalpoints should have non-analysis properties added
to them.

EA190 | No analyzable profiles found in
«objecttype» «objectname».

Cause: No analyzable profiles found for sensitivity exe-
cutable object.

Remedy: Check the profile name specified on the command
line and make sure it is present in a transaction.

284 Error Codes



Code | Description

EA191

In transaction «name», «name» is not a valid
activator.

Cause: Invalid activator name.

Remedy: Check that the activator has been declared.

EA192

A stopwatch tick may not be smaller than a
stopwatch cycle.

Cause: Stopwatch cycle unit is declared such that a cycle is
longer than a tick.

Remedy: Stopwatch cycles must be defined no greater than
stopwatch ticks.

EA193

Profile «name» is used in transaction «name» but
has undefined timing values.

Cause: Attempted analysis of a profile which has a time
value declared as undefined.

Remedy: Specify the correct time value.

EA194

System timings must be defined for analysis.

Cause: Attempted analysis with system timings declared as
undefined.

Remedy: Specify correct system timings values.

EA195

Interrupt recognition time must be defined for
analysis.

Cause: Attempted analysis with interrupt recognition time
declared as undefined.

Remedy: Specify a correct interrupt recognition time.

Error Codes

285



Code | Description

EA196 | Cannot find a task, interrupt or profile called
«name» to ignore.

Cause: The task, interrupt or profile specified to be ignored
in the analysis could not be found.

Remedy: Make sure the identifier specified has been de-
clared.

EA197 | Initial arrival point «name» for activator
«name» may not be analysis-only.

Cause: The arrival point must have some non analysis-only
data in it, otherwise the arrival point gets optimized
away when the system is built.

Remedy: Make sure the activator’s start point is on an ar-
rival point that will be converted in to a timepoint in the
target. warnings

12.3  Warning Messages

Code Description

WO0015 | «Message text defined by user»

Cause: A (warn...) preprocessor command was used in the
configuration file.

Remedy: This message was created as a result of preproces-
sor directives added by the user.

WO0018 | Redefinition of macro «name».

Cause: The macro named was already defined and has been
redefined. The redefinition takes place overriding per-
manently the older definition. The redefinition may be
deliberate.

Remedy: If the redefinition was deliberate then this warning
can be ignored. If it wasn't deliberate then either the
first or second definition may be in error and both should
be checked.

286 Error Codes



Code Description

Wo0019

Comment embedded in a comment.

Cause: The symbols to start a comment were found inside
a comment. This might be a mistake causing input not
to be commented out that should be. For example, the
following input:

/* some text /* more text */ no longer in a
comment now */

is probably incorrect.

Remedy: Examine the comments to ensure that an attempt
has not been made to nest comments in this way.

w0023

Attempt to undefine non-existent macro called
“«name of macro»”

Cause: An attempt has been made to undefine a macro that
is not defined.

Remedy: Ensure that the name in the undefine command
refers to a defined macro. If the name is generated via a
macro expansion or other preprocessor command then
use an info command to print the name.

Wo0403

Meaningless combination of command line options,
some ignored.

Cause: The combination of command line options supplied
meant that some of them are not acted upon.

Remedy: Formulate a correct command line by reference to
Chapter 11.

Error Codes

287



Code Description

W1601 | Conversion of «floating value» to integer causes
loss of precision. Converted value is «integer
value»; error is «floating value» %.

Cause: The number of ticks specified, either directly, or
when a delay is given in terms of some user defined
units , is converted to a whole number of ticks. If the
loss of precision due to rounding amounts to more than
1% of the specified value, then this error is produced.

Remedy: Modify the value specified so that it evaluates to
close to whole number of ticks, or reduce the size of
each tick, to increase precision.

W2005 | Multiple locks clauses for “«resourcename»” by
“«taskname»".

Cause: It is unnecessary to state more than once that a par-
ticular resource may be locked by a particular task. In-
cluding the same locks clause more than once in a task
declaration is equivalent to including it once only. How-
ever, the presence of this warning indicates that a mis-
take may have been made in the declaration of the task
(such as a cut and paste error).

Remedy: Ensure that the resources are named correctly or
remove the duplicate locks clause.

W3001 | Resource «resourcename» is not locked by any task.

Cause: A resource has been declared which is not specified
as being locked by any task. To use the resource in the
application program would be an error, it is therefore
useless and just consumes memory.

Remedy: Ensure that this warning is not due to missing locks
clauses in task declarations. If not, delete the resource
declaration.

288 Error Codes



Code Description

W3002

Resource «resourcename» is locked by only one task.

Cause: There is only one task which is specified as locking
the resource. A resource that is only ever locked by one
task is redundant. It adds to the memory usage, and
if the dynamic resource locking calls are used, then it
adds to the total code size and to the execution time of
the task.

Remedy: Ensure that this warning is not due to missing locks
clauses in task declarations. If not, delete the resource
declaration.

W4301

First entry in timeline is anonymous and therefore
cannot be accessed.

Cause: A timeline has been specified and the first entry in
it has not been named. This means that the first (and
any other entries before the first named entry) cannot
be used as the initial or repeat entries of an activator,
and are hence unreachable.

Remedy: Name the first arrivalpoint in the timeline.

WA801

In transaction «name» bursting rate of
«value» times in «value» is overridden by bursting
rate of «value» times in «value».

Cause: Redundant burst description.

Remedy: Make sure the particular bursting rate is not redun-
dant by accident. See rules on specifying bursting rates
in Section 5.9.1.

WAS802

Finish requested by user interrupt.

Cause: Finish requested by user interrupt. This is achieved
by pressing the keys ESC ‘F’ ‘Y’ in that order.

Remedy: N/A.

Error Codes

289



Code Description

WAB803 | No transaction uses execution profile «name».

Cause: An execution profile does not appear in any transac-
tion.

Remedy: Add the execution profile to either an existing or a
new transaction.

WA804 | No transaction uses «objecttype» «objectname».

Cause: An executable object (other than the idle task) does
not appear in any transaction.

Remedy: Add the executable object to either an existing or
a new transaction.

WAS805 | In transaction «name» coarse activator driver
execution profile «name» should appear in a
transaction.

Cause: A coarse activator profile does not appear in any
transaction..

Remedy: Add the driver’'s execution profile to either an ex-
isting or a new transaction.

WAB807 | Unable to analyze «name» because busy period
exceeds analysis limit.

Cause: The maximum value of (release delay+jitter+busy
period) exceeds the maximum value.

Remedy: Check tasks timing values and use sensitivity anal-
ysis to review the timing behavior of each task.

WAB808 | Too many filenames specified.

Cause: More than two non-option parameters supplied on
Analysis Visualizer command line.

Remedy: Ensure that only a single input file is passed to the
Analysis Visualizer

290 Error Codes



Code Description

WAS809

Transactions «name» and «name» have different
release delays but are related through driver
«name».

Cause: Coarse activator driven transactions have different
release delay.

Remedy: Make sure both transactions have the same re-
lease delay specified.

WA810

Transactions «name» and «name» have different
jitters but are related through driver «name».

Cause: Coarse activator driven transactions have different
jitters.

Remedy: Make sure both transactions have the same jitter
specified.

WAS811

In profile «name», deadline of «value» cycles for
critical time of «value» cycles does not exceed
deadline «value» cycles for shorter critical time
of «value» cycles.

Cause: Suspicious deadline specification.

Remedy: Check that all specified deadlines are correct and
the shorter critical execution time really needs to have
a longer deadline assigned to.

WAS812

Next non-analysis arrivalpoint unreachable for
analysis from arrivalpoint «name».

Cause: A non-analysis arrivalpoint can not be reached by fol-
lowing the analysis ‘next’ clauses. This was detected at
the arrivalpoint specified in the message.

Remedy: Make sure there is a reason for leaving out the non-
analysis arrivalpoint. Otherwise, it needs to be added to
the analysis route, e.g. add the non-analysis arrivalpoint
to the analysis next clause of the reported arrivalpoint.

Error Codes

291



Code Description

WAB813 | Next non-analysis arrivalpoint unreachable for
analysis from arrivalpoint «name» because loop
detected.

Cause: A non-analysis arrivalpoint can not be reached by fol-
lowing the analysis ‘next’ clauses because of a ‘loop’
condition. This was detected at the arrivalpoint speci-
fied in the message.

Remedy: Make sure there is a reason for leaving out the non-
analysis arrivalpoint. Otherwise, it needs to be added to
the analysis route, e.g. break the existing analysis-loop
by adding the non- analysis arrivalpoint to the analysis-
next clauses of the last arrivalpoint of the loop.

WA814 | For arrivalpoint «name», cumulative analysis
delay to next non- analysis arrivalpoint of
«value» cycles exceeds actual delay to next
non-analysis arrivalpoint of «value» cycles.

Cause: The cumulated delay of the analysis route is longer
than the actual non-analysis delay.

Remedy: Make sure there is a reason for a longer cumulated
analysis delay. Otherwise, reduce the cumulated analy-
sis delay or increase the main non-analysis delay value
of the arrivalpoint.

WAS815 | First non-analysis-only arrivalpoint on timeline is
anonymous and therefore cannot be accessed on the
target.

Cause: First non-analysis arrivalpoint in timeline has not
been named.

Remedy: Assign a unique identifier to the first arrivalpoint
on the timeline which is not non-analysis.

292 Error Codes



12.4

Code

Description

WAB816 | Analysis-only arrivalpoint declared (before first
named arrival point on a timeline | later than
arrivalpoint «name») is unreachable.

Cause: A specified analysis -only arrivalpoint in a timeline is
unreachable.

Remedy: Make sure the arrivalpoint can be reached by “fol-
lowing” the ‘next’ clause of each arrivalpoint.

WAB817 | In transaction «name», «name» 1is activated and it

does not have ‘simple’ behavior.

Cause: An executable object which is not analysis-only and
has not been declared as simple is released in an
activator-driven timeline.

Remedy: Check that the executable object has the desired
behavior and the declaration is correct. WB100 Cannot
delete file “<name>".

Information Messages

Code Description

10012 | «<Message text defined by user»
Cause: An (info ..) preprocessor command was used in the
configuration file.
Remedy: N/A
10405 | Errors detected during parsing. No output files

will be generated.

Cause: Errors were detected in the input language or in ini-
tial processing of data derived from this. Check the error
output of the Analysis Visualizer for more details on the
errors that were found.

Remedy: N/A

Error Codes

293



Code | Description

10406 | Errors detected during processing. No output files
will be generated.

Cause: Errors were detected in one of the Analysis Visual-
izer’'s internal phases. Check the output of the Analysis
Visualizer for more details on the errors that were found.

Remedy: N/A

10407 | Errors detected during consistency checking. No
output files will be generated.

Cause: Errors were detected in the consistency checking
phase where global integrity is checked. Check the error
output of the Analysis Visualizer for more details on the
errors that were found.

Remedy: N/A

10408 | Warnings were generated.

Cause: Warnings were generated during processing of the
configuration file. This is merely a summary.

Remedy: N/A

14106 | Modulus for timebase “«name»” evaluates to
«length» ticks.

Cause: As the timebase modulus can be specified in terms
of arbitrary units this message provides confirmation of
the resolved value.

Remedy: N/A

294 Error Codes



13

Finding out more

Your RTA-OS3.x distribution includes the following manuals:

<install dir>\Documents

Getting Started Guide. This guide explains how to install the product and
describes the underlying principles of the operating system.

Release Note. This document provides information about the release, in-
cluding a list of changes from previous releases and a list of known
issues.

User Guide. This guide explains the concepts behind AUTOSAR OS R3.x and
shows you how to use RTA-0S3.x to configure the OS and integrate it
into your application

Reference Guide. This guide provides a complete reference to the API and
programming conventions for RTA-OS3.x.

<install dir>\Targets\VRTA_n.n.n

VRTA Port Guide. This guide explains implementation-specific details for
the VRTA port plug-in.

VRTA Release Note. This document provides information about the VRTA
port plug-in release, including a list of changes from previous releases
and a list of known issues.

Virtual ECU User Guide. This guide explains how to use the Virtual ECU
environment included with the VRTA port plug-in.

<install dir>\Targets\<TargetCompiler>_n.n.n

Target/Compiler Port Guide. Each port of RTA-OS3.x is supplied with a
Port Guide. The Port Guide tells you specific information about the in-
teraction between RTA-OS3.x, your toolchain and your target hardware.
For example, valid compiler options, register settings, interrupt han-
dling etc. The Port Guide also gives performance and resource usage
information for the OS.

Target/Compiler Release Note. This document provides information
about the port plug-in release, including a list of changes from previous
releases and a list of known issues.

Finding out more

295



14

296

Glossary

activate To make a task or a taskset ready to execute.

activator An object which processes arrivalpoints. When an activator pro-
cesses an arrivalpoint, it activates all the tasks associated with that ar-
rivalpoint. The next and delay properties of the processed arrivalpoint
indicate to the activator which arrivalpoint to process next and after
what delay

active priority The current priority of a task which is set and updated by
RTA-OS3.x. A task can only be preempted by tasks that have a base
priority which is higher than its active priority. See also dispatch priority.

analysis-only arrivalpoint An arrivalpoint that contains only analysis prop-
erties. The Analysis Visualizer may use it for analysis.

arrivalpoint An arrivalpoint is used to model the arrival of tasks and is ref-
erenced by a transaction. When used for analysis, an arrivalpoint in-
dicates the arrival time of specific execution profiles. The arrivalpoint
also indicates the next arrivalpoint in the transaction and the time until
that arrivalpoint. A variation also exists that is suitable only for analysis
purposes (an analysis only arrivalpoint).

arrival time The arrival time describes the occurrence of a real-world event.
This event is typically one that results in the release of an executable
object. Examples of such events include switch closure or expiry of a
time interval.

autoactivate tasks A collection of tasks which are made ready to execute
when RTA-OS3.x is started.

autostart at The absolute counter value at which a coarse activator pro-
cesses its first arrivalpoint.

base priority The priority at which a task, that has not yet started execut-
ing, competes for the processor. See also active priority, dispatch prior-

ity.

behavior An executable object is defined as having simple , looping or re-
triggering behavior. This defines what happens if an object is released
before it has completed the execution arising from a previous release. If
an executable object is looping or re-triggering, it can also be declared
as fifo.

blocking Blocking occurs when an executable object is delayed from exe-
cuting by another executable object with lower base priority. This can
occur for a variety of reasons. Instances of blocking can occur when
a lower priority executable object raises its active priority by locking a

Glossary



resource , or if it explicitly raises the interrupt priority. It can also oc-
cur when one of the lower priority tasks in a non-preemption group is
executing (higher priority tasks within that group are blocked).

build level There are three build levels of RTA-OS3.x: standard, timing and
extended.

bursting The arrival times of executable objects may be described as burst-
ing within a transaction. This allows sporadic arrival times to be mod-
eled for analysis.

coarse activator A coarse activator has a counter embedded in it and re-
quires a driver that tells it when each tick occurs. The activator updates
the counter itself. The counter always counts ticks from 0 to 65535, so
the activator must be bound to a timebase that has a modulus of 65536.

configuration file An input file to the Analysis Visualizer that defines the
RTA-OS3.x objects contained within the application system. It also de-
scribes the behavior of the system to allow schedulability analysis.

controlled interrupt An interrupt that is handled by RTA-OS3.x, which then
calls the associated ISR entry function.

critical event Critical events are points in the processing of an executable
object that must be performed within a specific time (given by a dead-
line ) after arrival. For an executable object with simple behavior, the
termination of that object is (implicitly) considered by the analysis to be
a critical event.

critical execution time Critical execution time starts at the entry point of
an executable object and ends when that executable object executes
a critical event. Critical execution time considers only the time spent
executing by the given executable object (i.e. excluding any time taken
up by interruption or preemption).

deadline The deadline is the maximum allowable amount of time between
the arrival time and the execution of the associated critical event.

deadlock Deadlock occurs when two or more tasks require a set of re-
sources, each task acquires one or more resources but none can ac-
quire all the resources it needs because some are held by other tasks.
In this situation, no task can proceed. The priority ceiling protocol used
by RTA-OS3.x ensures that no use of resources can result in deadlock.

delay This is a property of an arrivalpoint. The delay specifies the time until
the next arrivalpoint within a given transaction. The units must be in
ticks or a unit defined within the associated timebase.

Glossary

297



298

dispatch priority The priority of a task when it starts executing. This value
will always be greater than or equal to its base priority. See also active
priority.

driver callbacks User supplied functions that enable a fine activator to ac-
cess its supporting hardware (typically a timer/counter).

error messages the Analysis Visualizer outputs these messages when it de-
tects conflicts in the configuration file that make it impossible for any
resulting application program to link and run correctly or for schedu-
lability analysis to be performed. the Analysis Visualizer attempts to
report all the errors it can find and then exits. All errors should be re-
moved and the activity repeated before continuing.

executable object An executable object is a task, ISR or uncontrolled inter-
rupt handler whose characteristics are described in the configuration
file. Although tasks, ISRs and uncontrolled interrupts have their own
distinct behaviors and restrictions, it is possible to distill the features
of all of these into a single ‘executable object’ so that the analysis can
treat them all equivalently.

execution budget Used by the timing build to define a maximum execution
time for a task or interrupt service task (ISR). If exceeded, the overrun
hook is called.

execution profile An execution profile contains the timing characteristics
of an executable object. An executable object can have more than one
execution profile, so it is possible to analyze tasks or interrupts that
execute different sections of code on different invocations.

execution time The execution time of a task or ISR is the amount of time
from the start of the first instruction in the entry function (the entry
point) to the end of the ‘return’ instruction. The execution time of an
uncontrolled interrupt handler, is the amount of time from the start of
the first instruction in the interrupt handler function to the end of the
‘return from interrupt’ instruction. Execution time is measured exclud-
ing any time taken up by interruption or preemption.

fatal messages the Analysis Visualizer outputs these messages when it de-
tects a condition in the configuration file from which recovery is not
possible.

fifo Executable objects with re-triggering or looping behavior can be de-
clared as fifo (first-in-firstout), in which case their arrivals are processed
in the order in which they occur. If the object is not declared as fifo, ar-
rivals are processed in a priority order.

Glossary



fine activator A fine activator makes use of an external, typically hardware,
counter and requires a driver that tells the activator when a requested
number of ticks have occurred. The activator uses special callback func-
tions provided by the user to access and control the counter hardware.

idle task The lowest priority task in an RTA-OS3.x application. The idle task
has a base and dispatch priority of 0 and is always present.

indeterminate schedulability An executable object’s schedulability is in-
determinate if the analysis can not decide whether the object is schedu-
lable or unschedulable. This can occur for example if a lower priority
looping executable object is unschedulable, so a correct blocking time
cannot be calculated.

information messages the Analysis Visualizer outputs these messages
which report useful information such as the amount of memory used,
or the size of a data structure.

interference Interference occurs when an executable object is delayed from
executing by a higher priority executable object.

interrupt priority This specifies the processor interrupt priority level at
which an executable object will execute. Interrupt priority 0 is reserved
for tasks and corresponds to all interrupts enabled. Higher numbers are
assigned to controlled and uncontrolled interrupts and correspond to
higher priorities up to some target dependent limit. The priority of any
uncontrolled interrupt must not be lower than that of any controlled in-
terrupt.

ISR (interrupt service routine) With controlled interrupts, the vector
points to internal RTA-OS3.x code. RTA-OS3.x then treats the interrupt
as an invocation of an interrupt service task (or ISR) bound to the inter-
rupt. Just as for a normal task, execution starts at the specified entry
point of the ISR and continues until the entry function returns.

jitter The jitter of an executable object is the difference between the mini-
mum and the maximum delay between its arrival time and its release
time. Jitter is used for schedulability analysis.

LCM The Lowest Common Multiple of the periods of a set of tasks.

looping An executable object with looping behavior is able to cope with be-
ing released again before it completes by looping within its entry func-
tion. A task cannot be declared with looping behavior

modulus The modulus of the counter represented by a timebase. The mod-
ulus must evaluate to an integer in the range 2 to 65536 ticks. The
modulus is one more than the maximum value which the counter may
take.

Glossary

299



300

namespace RTA-0S3.x internal names comply with a simple naming con-
vention. If you avoid names which begin with os or OS, then there will
be no conflicts with the RTA-OS3.x namespace.

non-preemption group A collection of tasks that execute in mutual exclu-
sion (will not preempt each other). The stack usage of such tasks is
effectively overlaid.

notional release time The notional release time of an executable object is
the earliest time at which it can be considered to have been released.
This may be prior to the actual release time for the object if higher
priority executable objects always occupy the period between notional
and actual release time.

not-schedulable An analysis item is not schedulable if it is unschedulable,
or if its schedulability is indeterminate or unknown.

offset In a periodic timeline , the activation of a task may be specified at an
offset into its period.

one-shot Tasks provided by RTA-OS3.x are one-shot tasks: a task is made
ready at some point, it starts executing from its entry point, perhaps
being preempted by other higher priority tasks or interrupts during its
execution, and then terminates. The task can be made ready again
later, and the task can execute again.

OS level The highest interrupt priority level of any controlled interrupt. OS
level is the processor interrupt priority level necessary to ensure mutual
exclusion with any RTA-OS3.x operation.

overrun hook A user provided function that the timing build of RTA-OS3.x
calls when it detects that tasks or ISRs have exceeded their execution
budget.

periodic timeline A periodic timeline is declared by specifying a number
of tasks with fixed periods and offsets. the Analysis Visualizer works
out the minimum length of sequential timeline required to form a cyclic
timeline that can be used to activate the tasks with the periods and
offsets specified.

preemptive RTA-OS3.x is a preemptive operating system because it will
stop executing the current task (i.e. preempt it) and run a new, higher
priority task, returning later to the original task at the point of preemp-
tion.

preprocessor Part of the Analysis Visualizer that does a similar job to the C
preprocessor. It lets you define symbols and include files inside other
files.

Glossary



priority Task priority governs the order in which tasks are executed when
they become ready to execute at the same time. The highest priority
task is the one that will be run first. Task priority is determined from the
task priority order specified in the configuration file. Not to be confused
with interrupt priority.

priority ceiling protocol The resource locking protocol used by RTA-OS3.x.

priority inversion Priority inversion describes the situation where a high
priority task is ready to execute, but for some reason is unable to run.
A lower priority task executes instead, in an inverse of the desired be-
havior.

readonly A property of an RTA-OS3.x object that indicates that it may not
be modified by API calls and is therefore placed in ROM.

ready The state of a task that wants access to the processor but is not cur-
rently running.

release An executable object is released when it is first made ready to run.
In the case of a task, it is released when it enters the ready state. In
the case of an interrupt service task, it is released when the CPU has
recognized the interrupt that causes it.

release delay The release delay of an executable object is the minimum
delay between its arrival time and its release time.

release time The time at which an executable object is released. This oc-
curs at or after the object’s arrival time. The duration between arrival
time and release time ranges between release delay and release delay
+ jitter.

resource Resources are the RTA-OS3.x objects used to guard access to data
or devices shared between tasks, access to which must be in mutual
exclusion. response time For an executable object, this is the actual
amount of time between the arrival point and execution of some critical
event. See also worst case response time.

re-triggering An executable object with re-triggering behavior copes with
being released again before completion by ensuring that it gets run
again when it completes. In the case of a task, it can chain back to
itself on completion. A re-triggering interrupt handler can ensure that
the interrupt stays pending.

schedulability analysis Mathematical analysis of task and interrupt timing
behavior that can be used to predict the worst case time from an exe-
cutable object being released until it terminates. For each executable
object, schedulability analysis determines whether the executable ob-
ject is schedulable , unschedulable or of indeterminate schedulability.

Glossary

301



302

schedulable An executable object is termed schedulable if the worst case
response time for each of its critical events is no greater than the corre-
sponding deadline. Objects with simple behavior must always complete
execution before their next release. Looping or re-triggering objects
must not exceed their buffer limits.

sequential timeline An ordered collection of arrivalpoints declared in the
configuration file. These are processed in order by an activator. Once
these arrivalpoints have been processed, the activator may be stopped
(if the time line is 'single shot’) or it may continue running and process
another timeline.

serially reentrant A serially reentrant function is one where it is OK to
switch from a thread of control currently executing the function to a
thread of control that is not yet executing the function but will do so
later.

simple A simple executable object must complete its execution before it is
next released. A simple executable object is unschedulable if it does
not always complete before its next release.

static interface Some RTA-OS3.x API calls have static and dynamic inter-
face versions. The static interface calls can be faster as they take ad-
vantage of some static property to optimize the operation. However,
to use the static interface , the RTA-OS3.x object that forms the target
of the call and the task or ISR that makes the call must be known at
compile time.

stopwatch Refers to the timebase which is used to provide execution time
measurement.

suspended The state of a task which is not ready to execute.
task An independent thread of control. (See also one-shot).

terminate A running task returns to the suspended state by terminating. It
simply returns from its entry function.

tick A single increment of the counter represented by a timebase.

timebase An RTA-OS3.x object that defines the units, granularity and range
of a counter. A timebase may correspond to a regular counter that
marks the passing of time (for example, a millisecond timer), or to some
other kind of application-specific counter (for example a count of the
number of times a tooth on a toothed wheel passes in front of a sen-
sor). A counter increment is referred to as a tick.

Glossary



timeline A collection of arrivalpoints that are used to represent a transac-
tion that will be processed in order by an activator. A timeline may be
periodic or sequential.

transaction A transaction specifies the timing relationships between exe-
cutable objects using a timeline or bursting clause. These executable
objects inherit the same jitter and release delay specified in the trans-
action.

uncontrolled interrupt An uncontrolled interrupt is outside of the domain
of RTA-OS3.x and must be handled directly by application code.

units User defined timebase units that are equivalent to some number of
ticks. unknown schedulability An executable object’'s schedulability is
unknown if no analysis has been done.

unschedulable The term unschedulable is used to describe an executable
object that has been analyzed and found to exceed constraints on a
deadline, inter-arrival time or buffer limit.

user level The processor interrupt priority level corresponding to all inter-
rupts enabled. All tasks begin executing at user level.

vector The address that the program counter is set to when the associated
interrupt is taken.

version The version humber of RTA-OS3.x is used to patrol compatibility be-
tween the Analysis Visualizer, configuration file and RTA-OS3.x library.

warning messages the Analysis Visualizer outputs these messages when
the configuration file specifies something that is redundant or a value
that cannot be represented precisely and is therefore subject to round-
ing error. When warnings have been produced the output files are cre-
ated and the application can be built. However, as the Analysis Visual-
izer has changed some values, the application may not behave exactly
as expected.

worst case response time Worst case response time (WCRT) is the
longest possible time between the arrival point and execution of some
critical event.

Glossary

303



15

15.1

15.2
15.2.1

15.2.2

304

Contacting ETAS

Technical Support

Technical support is available to all users with a valid support contract. If you
do not have a valid support contract, please contact your regional sales office
(see Section 15.2.2).

The best way to get technical support is by email. Any problems or questions
about the use of the product should be sent to:

rta.hotline.uk@etas.com

If you prefer to discuss your problem with the technical support team, you
call the support hotline on:

+44 (0)1904 562624.
The hotline is available during normal office hours (0900-1730 GMT/BST).

In either case, it is helpful if you can provide technical support with the fol-
lowing information:

e your support contract number;

e your .xml and/or . rtaos configuration files;

e the command line which caused the error;

e the version of the ETAS tools you are using;

e the version of the compiler tool chain you are using;
e the error message you received (if any); and

e the file Diagnostic.dmp if it was generated.

General Enquiries

ETAS Global Headquarters

ETAS GmbH

Borsigstrasse 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-300
Germany WWW: www .etas.com

ETAS Local Sales & Support Offices

Contact details for your local sales office and local technical support team
(where available) can be found on the ETAS web site:

ETAS subsidiaries www .etas.com/en/contact.php
ETAS technical support www.etas.com/en/hotlines.php

Contacting ETAS


www.etas.com
www.etas.com/en/contact.php
www.etas.com/en/hotlines.php

Index

A
Activator
Configuration, 212
Activators, 61
Coarse, 61
Fine, 61
Alarms, 69
Arbitration Order, 216
Arrivalpoint, 55
Analysis Overrides, 57
Auto-started Tasks, 79

B
Blocking, 21, 48
Standard Resources, 48
Buffering, 88
Exceeding Limits, 118
Looping, 92
Re-triggering, 92
Buffering by profile, 91
Bursting Transactions, 65
Busy Period, 122

C
Clock Optimization, 11, 136
Command Line, 233
Options, 233
Configuration
Pre-processor, 221
Configuration Language, 190
Critical Execution, 83
Critical Execution Time, 126

D
Deadlines, 14
Arbitrary, 83
Difficulties in testing, 14
Implicit, 81
Not able to be met, 115
E
Error Codes, 236
Errors, 249
Fatal, 237

Information, 293

Warnings, 286
Execution Time, 18
Extended Tasks, 98

|
Idle Mechanism, 47, 80

Execution Time Sensitivity, 131
Implicit Deadlines, 81
Indeterminate Schedulability, 122
Interference, 18
Interrupts, 46

Configuration, 205

Masking, 50

Recognition time, 218

J
Jitter, 100

K
Kernel, 34, 194
Kernel Declaration, 27

M

Modeling Process, 12

Multiple Profiles
Interrupts, 93
When to use, 85

N
Non-preemption Group
Configuration, 204

(o)

Offsets, 58

Operating System Constraints, 22
Optimism, 24

0S, 34

OS Overheads, 103

P

Period, 17

Periodic Timeline, 210

Periodic Timelines
Multiple Offsets, 58

Index

305



306

Periodic timelines, 57

Pessimism, 24

Pre-processor, 221
Compatibility with C, 224

Priority Allocation, see Priority Opti-

mization

Priority Constraints
Configuration, 203

Priority Optimization, 11, 133
Constraints, 135, 136

Profiles
Configuration, 193
Multiple, 85
Restrictions on, 88

Q

Queueing, 88

R

Real-Time Systems, 14
Release Delay, 100
Reserved Words, 219
Resource
Configuration, 195
Resources, 87
Internal, 50
Standard, 48
Response Delay, 102
Response Time, 18

S

Schedulability Analysis, 11, 15, 111
Deadline Monotonic Analysis, 16
Limitations, 22
Rate Monotonic Analysis, 16
Utilization Tests, 15

Schedule Tables, 74

Sensitivity
Clock Speed, 131
Critical Execution Time, 126
Execution Time, 128
Lock Time, 128

Sensitivity Analysis, 11, 125

Single Shot Timelines, 59

Index

STC file, 12
Stopwatch, 36
System Timings, 217

T
Tasks
Activation, 44
Co-operative, 95
Configuration, 199
Extended, 98
Priority Order, 44, 219
Queued Activation, 89
Specifying an activation, 136
Timebases, 35
Configuration, 196
Conversion, 198
Non-periodic, 108
Non-time-based, 38
Stopwatch, 36
Stopwatch conversions, 38
Timeline
Configuration, 208
Transactions, 62
Timelines, 55
Periodic, 57
Single Shot, 59
Transactions, 51
Analysis Only, 105
Bursting, 65
Configuration, 213
Restrictions on, 88
Timeline, 62
Tutorials, 140

)
Units, 192
Unschedulable Objects, 113
Utilization, 15
More that 100%, 120

wW
Worst case execution time, see Exe-
cution Time



	Welcome
	About You
	Document Conventions
	References

	Introduction
	Working with the Analysis Visualizer

	Introduction to Schedulability Analysis
	What is ``real-time'' anyway?
	Testing for Real-Time
	Analyzing for Real-Time
	Utilization-Based Schedulability Analysis

	Deadline Monotonic Analysis
	Terminology
	Calculating Response Times
	Blocking

	Practical Considerations
	Operating System Constraints for Analysis
	Optimism & Pessimism

	Summary

	Getting Started
	Summary

	Basic Modeling
	Defining the Kernel
	Timebases
	The Stopwatch Timebase
	Non-Time Timebases
	Stopwatch Conversions
	Hints for using timebases

	Modeling Executable Objects
	Tasks
	ISRs
	The Idle Mechanism

	Accounting for Blocking
	Standard Resources
	Internal Resources
	Interrupt Masking

	Modeling Timing Relationships with Transactions
	How transactions are used
	What transactions are required?

	Timelines
	Arrivalpoint Analysis Clauses
	Periodic Timelines
	Single-Shot Timelines

	Activators
	Activator declaration

	Timeline Transactions
	Bursting Transactions
	Multiple Arrival Rules
	Specifying that something happens just once

	Modeling Alarms
	Reducing Pessimism for a single alarm
	Reducing pessimism for multiple alarms
	Alarms that occur once

	Modeling Schedule Tables
	Using Sequential Timelines
	Using Periodic Timelines
	Synchronized Schedule Tables
	Schedule Table Transactions

	Auto-started Tasks
	The Idle Mechanism
	A Note on Deadlines
	Summary

	Advanced Modeling
	Arbitrary Deadlines and Critical Execution Time
	Multiple Profiles
	Identifying and Referencing Multiple Profiles
	Resource Considerations
	Restrictions on Profiles and Transactions

	Handling Queuing and Buffering
	Queued Task Activation
	Buffered Interrupts

	Co-operative Tasks
	Modeling Extended Tasks
	Re-factoring the application
	Partial analysis

	Release Delay & Jitter
	Response Delay
	Accounting for the OS Overheads
	Interrupt Recognition
	OS Latencies

	Telling the Analysis Visualizer more
	Analysis Only Transactions
	Removing interrupt pessimism
	Non-periodic timebases

	Summary

	Performing Analysis
	Schedulability Analysis
	Running the Analysis
	Schedulability Analysis Reports
	Unschedulable Objects
	Utilization Greater Than 100%
	Indeterminate Objects

	Sensitivity Analysis
	Performing Sensitivity Analysis
	Schedulability Analysis Reports
	Sensitivity of the Idle Mechanism

	Priority Optimization
	Running Priority Optimization
	Priority Optimization Reports
	Controlling the Priority Optimization Algorithm

	Clock Optimization
	Running Clock Optimization
	Clock Optimization Report

	Summary

	Tutorials
	Critical execution times and deadlines
	Example
	Accounting for Overheads

	Execution profiles
	Example

	Shared Resources and Blocking
	Example
	Exercise

	Periodic timelines and bursting transactions
	Example 1
	Example 2

	Looping and re-triggering behavior
	Example 1
	Example 2
	Exercise

	Allocating priorities
	Example

	Changing processor frequency
	Example


	Configuration Language Reference
	Overview of syntax
	Notation
	Declaration rules

	Base definitions
	Time definitions
	Executable object profiles

	Operating system environment definitions
	Resource declaration
	Timebase declarations
	Timebase conversion
	Task declarations
	Task execution profile

	Priority constraints
	Non-preemption group declarations
	Interrupt declarations
	Interrupt execution profile

	Timeline declarations
	Sequential timelines
	Periodic timelines

	Activator declarations
	Transaction declarations
	Timeline transaction
	Bursting transaction

	Arbitration order
	System timing values
	Interrupt recognition
	Task priority order
	Reserved words

	Configuration Language Pre-processor Reference
	Preprocessor syntax
	File inclusion
	Macro definition
	Macro undefine
	Macro expansion
	Info
	Warn
	Error
	Fatal
	ifdef
	ifndef
	Compatibility with the C preprocessor

	Examples of Common Usage
	Common usage
	Nesting
	Precedence order
	Order of evaluation
	Macro indirection
	String concatenation
	Compatibility with the C preprocessor


	Command Line
	Options
	Examples

	Error Codes
	Fatal Messages
	Error Messages
	Warning Messages
	Information Messages

	Finding out more
	Glossary
	Contacting ETAS
	Technical Support
	General Enquiries
	ETAS Global Headquarters
	ETAS Local Sales & Support Offices



