RTA-OS3.0

User Guide

2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used
if the customer is in possession of a general license agreement or single li-
cense. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval system or
translated into another language without the express written permission of
ETAS GmbH.

©Copyright 2008 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document: 10384-UG-1.0.0

Copyright

Contents

1 Welcome to RTA-0S3.0! 13
1.1 Related Documents 13

1.2 AboutYou 13

1.3 Document Conventions 14

1.4 References 14

2 Introduction 15
2.1 Features of the RTA-OS3.0Kernel 17
2.1.1 OSEK 17

2.1.2 AUTOSAR 20

2.1.3 Unique RTA-OS3.0 Features 22

2.2 SUMMAIY . . e e e e e e e e e e e e e e e e e e 23

3 Development Process 24
3.1 Configuration 24
3.1.1 OS Configuration 25

3.1.2 RTA-TRACE Configuration. 28

3.1.3 Build 28

3.1.4 ProjectFiles 29

3.1.5 Error Checking 31

3.1.6 GeneratingReports. 32

3.2 Library Generation 0. 32
3.2.1 Preparing the Tool Chain 34

3.2.2 Understanding AUTOSAR Dependencies 34

3.2.3 Runningrtaosgen 37

3.2.4 Building the library 37

Contents

3.3

3.4

3.5

4 Tasks

4.1

4.2

4.3

4.4

4.5

4.6

Contents

3.2.5 Generated Files 38

Integration 39
3.3.1 Accessing the OS in your Source Code 39
3.3.2 Implementing TasksandISRs 40
3.3.3 StartingtheOS 40
3.3.4 Interacting with the RTA-OS3.0 41
3.3.5 Compiling and Linking 41
Memory Images and Linker Files 41
3.4.1 Sections oo 41
3.4.2 The Linker Control File 43
SUMMaAry e e e e e e 44

45
Scheduling 45
Basicand Extended Tasks 47
4.2.1 Task States 48
4.2.2 Task Priorities oo 50
4.2.3 Queued Task Activation 51
ConformanceClasses 51
Maximizing Performance and Minimizing Memory 52
Task Configuration 53
4.5.1 Scheduling Policy 55
4.5.2 Queued Activation oL 55
4.5.3 Auto-startingTasks 56
Stack Management o 57
4.6.1 Working with Extended Tasks 58

4.6.2 Specifying Stack Allocation 60

4.6.3 Optimizing the Extended Task context save . . . 63

4.6.4 Additional Stack Information. 64

4.6.5 Handling Stack Overrun 64

4.7 Implementing Tasks 66
4.8 ActivatingTasks oL 67
4.8.1 Direct Activation 68

4.8.2 Indirect Activation 69

4.9 Controlling Task Execution Ordering 69
49.1 Direct Activation Chains 69

4.9.2 Using Priority Levels 70

4.10 Co-operative Scheduling in RTA-OS3.0 72
4.10.1 Optimizing out the Schedule() APl 72

4.11 Terminating Tasks 73
4.11.1 Optimizing Termination in RTA-0OS3.0 73

4.12 The ldle Mechanism 74
4.13 Pre and Post Task Hooks 76
4.14 Saving Hardware Registers across Preemption 78
4.15 SUMmMary e e e e e e 81
5 Interrupts 83
5.1 Single-Level and Multi-Level Platforms 83
5.2 Interrupt Service Routines 83
5.3 Category 1 and Category 2 Interrupts 84
5.3.1 Category 1 Interrupts 84

5.3.2 Category 2 Interrupts 84

Contents

5.4 Interrupt Prioritieso oo 84
54.1 Userlevel 87

5.4.2 OSlLevel 87

5.5 Interrupt Configuration 88
55.1 Vector Table Generation 89

5.6 Implementing Interrupt Handlers 90
5.6.1 Category 1 Interrupt Handlers 90

5.6.2 Category 2 Interrupt Handlers 91

5.6.3 Dismissing Interrupts 91

5.6.4 Writing Efficient Interrupt Handlers 92

5.7 Enabling and Disabling Interrupts 93
5.8 Saving RegisterSets oo L 94
5.9 The Default Interrupt 94
5.10 SUMMAIY . o v o e e e e e e e e e e e e e e e e e 96
6 Resources 98
6.1 Resource Configuration 100
6.2 Resources on Interrupt Level 100
6.3 Using Resources v v v v v v v i i it 101
6.3.1 Nesting ResourceCalls 102

6.4 Linked Resources o e 103
6.5 Internal Resources oo 105
6.6 Using Resources to Minimize Stack Usage 108
6.6.1 Internal Resources 109

6.6.2 Standard Resources 109

6.7 The SchedulerasaResource 110

Contents

6.8

6.9

6.10

7 Events

7.1

7.2

7.3

7.4

7.5

7.6

8 Counters

8.1

8.2

8.3

8.4

8.5

Choosing a Preemption Control Mechanism 110
Avoiding Race Conditions 112
SUMMAIY . . . o e e e e e e e e e e e e e e e e 113

114
ConfiguringEvents 0. 114
7.1.1 Defining WaitingTasks 115
WaitingonEvents oL, 115
7.2.1 SingleEvents 117
7.2.2 MultipleEvents 117
7.2.3 Deadlock with Extended Tasks 118
SettingEvents L o o 119
7.3.1 Setting Events with an Alarm 120

7.3.2 Setting Events with a Schedule Table Expiry Point 120

ClearingEvents. 120
Simulating Extended Tasks with Basic Tasks 121
SUMMaArY . . . e e e e e e e e e e e e e e e e 122

123
Configuring Counters 123
Counter Drivers e 124
8.2.1 Software Counter Drivers 125
8.2.2 Hardware Counter Drivers 129
Accessing Counter Attributes at Runtime 132
8.3.1 Special Counter Names 133
Reading CounterValues 133
Tick to Time Conversions 134

Contents

7

8.6

9 Alarms

9.1

9.2

9.3

9.4

9.5

9.6

9.7

10Schedule

10.1

10.2

10.3

10.4

10.5

10.6

Contents

SUMMArY o e e e e e e e 136

137
Configuring Alarms o 137
9.1.1 ActivatingaTask 138
9.1.2 SettinganEvent, 138
9.1.3 Alarm Callbacks 138
9.14 Incrementing a Counter 140
Setting Alarms 142
9.2.1 Absolute Alarms o oL 142
9.2.2 Relative Alarms 145
Auto-starting Alarmso oo 146
CancelingAlarmso oo 147
Working out when an Alarm will occur 148
Non-cyclic (aperiodic) Alarms 149
SUMMaAry e e e e e e 150
Tables 151
Configuring a ScheduleTable 152
10.1.1 Configuring Expiry Points 153
Starting Schedule Tables 154
10.2.1 AbsoluteStart. 154
10.2.2 RelativeStart 156
Stopping ScheduleTables 157
Switching Schedule Tables 157
Schedule Table Status 159
SUMMAIY . o . o e e e e e e e e e e e e e e e e 159

11 Writing Hardware Counter Drivers 160

11.1 The Hardware Counter Driver Model 160
11.1.1 Interrupt Service Routine 161
11.1.2 Callbacks 162
11.2 Using Output Compare Hardware. 163
11.2.1 Callbacks 164
11.2.2 Interrupt Handlers 168

11.2.3 Handling a Hardware modulus not equal to
TickType e 172
11.3 Free Running Counter and Interval Timer 177
11.3.1 Callbacks 178
11.3.2 ISR . . o o 179
11.4 Using Match on Zero Down Counters 180
11.4.1 Callbacks 181
11.4.2 InterruptHandler 182
11.5 Software Counters Driven by an Interval Timer 184
11.6 SUMMaAry o e e e e e e 184
12 Startup and Shutdown 185
12.1 From System Reset to Start0S() 185
12.1.1 Power-onorReset 185
12.1.2 Clanguage Start-upCode 186
12.1.3 Runningmain() 187
12.2 Starting RTA-OS3.0. v v ittt 189
12.2.1 StartupHook 190
12.2.2 ApplicationModes 191
12.3 Shutting Down RTA-OS3.0 196

Contents

9

10

12.3.1 ShutdownHook 196

12.4 Restarting RTA-OS3.0, 196

12.5 SUMMAIY . . o e e e e e e e e e e e e e e e e e 198

13Error Handling 199

13.1 Centralized Error Handling - the ErrorHook () 200

13.1.1 Configuring Advanced Error Logging 202

13.1.2 Working out which Task is Running 204

13.1.3 Working out which ISR is Running 204

13.1.4 Generating a Skeleton ErrorHook() 205

13.2 Inline ErrorHandling 205

13.3 Conditional Inclusion of Error Checking Code 206

134 SUMMaAry o o e e e e e e 206

14 Measuring and Monitoring Stack Usage 207

14.1 Stack Monitoring L oo 207

14.1.1 SettingDefaults 208

14.1.2 Configuring Stack Allocation per Task/ISR 208

14.2 Using the 0s_Cbk_StackOverrunHook() 210

14.3 Measuring Stack Usage 212

14.3.1 Marking the Worst Case for Function Calls 213

14.4 SUMMAIY . . o e s e e e e e e e e e e e e e e e 216

15Measuring and Monitoring Execution Time 217

15.1 Enabling Timing Measurement 217

15.1.1 Providing a Stopwatch 217

15.1.2 Scaling the Stopwatch 219

15.2 Automatic Measurement of Task and ISR Execution Times . 219
Contents

15.3 Manual Time Measurement 221

154 Imprecise Computation 222
15.5 Monitoring Execution Times against Budgets 223
15.6 SUMMaAry e e e e e 225

16 Using an ORTI-Compatible Debugger 226
16.1 DevelopmentProcess 226
16.2 Intrusivenesso 227
16.3 Validity 228
16.4 Interactions Lo 228
16.5 SUMMAIY . . e e e e e e e e e e e e e e e e 228

17 RTA-TRACE Integration 230
17.1 Basic Configuration 230
17.2 Controlling RTA-TRACE o v v v i 232
17.2.1 Controlling with Objects are Traced 233

17.3 User-Defined Trace Objects 236
17.3.1 Tracepoints, 236

17.3.2 TaskTracepoints 237

17.3.3 Intervals 237

17.3.4 Controlling which User-Defined Objects are Traced239

17.3.5 Format Strings 241

17.4 ECULINKkS o o o e 244
17.4.1 DebuggerlLinks 244

17.4.2 Serial Links oo oL 245

17.5 SUMMAIY . . . e e e e e e e e e e e e e e e e e e 251

18 Contacting ETAS 252

Contents 11

12

18.1

18.2

Contents

Technical Support

General Enquiries

1.1

1.2

Welcome to RTA-0S3.0!

This user guide tells you how to use RTA-OS3.0 to build AUTOSAR OS-based
applications and is structured as follows:

Chapter 2 introduces you to RTA-0S3.0, covering what tools are provided,
which standards are supported by the kernel and gives a brief overview
of kernel features.

Chapter 3 takes you through the stages of development with RTA-OS3.0,
including how to use the tools supplied to configure and build a kernel
library and how to integrate it with your application.

Chapters 4-12 explainin detail how to configure the OS for each major class
of OS object and how to use the kernel APIs that manipulate those ob-
jects at runtime.

Chapters 13-17 explain what to do when things go wrong. They cover how
to detect erroneous use of the kernel API during development, how to
check for stack overruns and timing faults and how to integrate with
external debugging and profiling tools to get additional insight into how
the OS is behaving at runtime..

Related Documents

A complete technical reference to RTA-0S3.0 can be found in the RTA-053.0
Reference Guide in the same directory as this user guide. Specific technical
details about the implementation of RTA-OS3.0 for your choice of compiler
and target hardware (what we call a “port”) is contained in the RTA-OS3.0
Target/Compiler Port Guide. There is one RTA-OS3.0 Target/Compiler Port
Guide for each installed RTA-OS3.0 port that can be found in the root of the
port’s installation directory.

About You

You are a trained embedded systems developer who wants to build real-time
applications using a pre-emptive operating system. You should have knowl-
edge of the C programming language, including the compilation, assembling
and linking of C code for embedded applications with your chosen tool chain.
Elementary knowledge about your target microcontroller, such as the start
address, memory layout, location of peripherals as so on, is essential.

You should also be familiar with common use of the Microsoft Windows®2000,
Windows® XP or Windows® Vista operating systems, including installing soft-
ware, selecting menu items, clicking buttons, navigating files and directories.

Welcome to RTA-0S3.0!

13

1.3

1.4

14

Document Conventions

The following conventions are used in this guide:

Choose File > Open. Menu options are printed in bold,
blue characters.

Click OK. Button labels are printed in bold
characters

Press <Enter>. Key commands are enclosed in an-

gle brackets.

The “Open file” dialog box appears The names of program windows,
dialog boxes, fields, etc. are en-
closed in double quotes.

Activate(Taskl) Program code, header file names,
C type names, C functions and
RTA-0S3.0. Component API call
names all appear in the courier
typeface.

See Section 1.3. Hyperlinks through the document
are shown in red letters.

— — — Functionality that is provided in

:: i /‘\:. RTA-0S3.0 but it may not be
portable to another AUTOSAR 0OS
implementation is marked with the
ETAS logo.

Caution! Notes like this contain im-

A portant instructions that you must
follow carefully in order for things

to work correctly.

References

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. For details of the OSEK standards,
please refer to:

http://www.osek-vdx.org

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers. For details of the AUTOSAR stan-
dards, please refer to:

http://www.autosar.org

Welcome to RTA-0S3.0!

http://www.osek-vdx.org
http://www.autosar.org

Introduction

RTA-0S3.0 is a statically configurable, preemptive, real-time operating sys-
tem (RTOS) for use in high-performance, resource-constrained applications.
RTA-0S3.0 is a full implementation of the open-standard AUTOSAR OS R3.0
(Scalability Class 1) and includes functionality that is fully compliant to Ver-
sion 2.2.3 of the OSEK/VDX OS Standard.

The RTA-0S3.0 kernel has been designed to be:

high performance - the kernel is very small and very fast. The memory
footprint of the kernel and its run-time performance are class leading,
making RTA-0S3.0 particularly suitable for systems manufactured in
large quantities, where it is necessary to meet very tight constraints
on hardware costs and where any final product must function correctly.

RTA-0S3.0 provides a number of unique optimizations that contribute to
reductions in unit cost of systems. The kernel uses a single-stack archi-
tecture for all types of task. This provides significant RAM savings over
a traditional stack-per-task model. Furthermore, careful application de-
sign can exploit the single-stack architecture to offer significant stack
RAM savings.

The offline tools analyze your OS configuration and use this information
to build the smallest and fastest kernel possible. Code that you are not
going to use is excluded from the kernel, to avoid wasting execution
time and memory space.

real-time - conventional RTOS designs normally have unpredictable over-
heads, usually dependent on the number of tasks and the state of the
system at each point in time. This makes it difficult to guarantee real-
time predictability - no matter how “fast” the kernel is. In RTA-0S3.0
the kernel is fast and all runtime overheads, such as switching to and
from tasks, handling interrupts and waking up tasks, have low worst-
case bounds and little (or even no) variability within execution times.
In many cases, context switching happens in constant execution time.
This means RTA-OS3.0 can be used for the development of hard real-
time systems where responses must be made within specific timing
deadlines. Meeting hard deadlines involves calculating the worst-case
response time of each task and Interrupt Service Routine (ISR) and en-
suring that everything runs on time, every time. RTA-0S3.0 is a real
RTOS because it meets the assumptions of fixed priority schedulability
analysis.

portable - RTA-0S3.0 is available for a wide variety of microcontroller/com-
piler combinations (called a ‘port’). All ports share the same common

Introduction

15

RTA-OS3.0 Offline Tools

A
RTA-0S3.0 RTA-0S3.0

rtaoscfg rtaosgen

RTA-OS3.0Ports : ~ RTA-OS3.0 Ports
[Supplied with Offline Tools] : [Optional]

RTA-0S3.0

VRTA port

BN RTA0S30 [HEN RTA-0S3.0
f: Virtual ECU = Embedded ports

ECU

Figure 2.1: RTA-0S3.0 Product Architecture

RTA-0S3.0 code, which comprises about 97% of the total kernel func-
tionality. The kernel is written in ANSI C that is MISRA-C 2004 compliant.
A MISRA report for RTA-0S3.0 can be generated by the offline tools.

RTA-0S3.0 does not impose on hardware, where possible. Generally,
there is no need to ‘hand over’ control of hardware, such as the cache,
watchdog timers and I/O ports. As a result of this, hardware can be used
freely, allowing ‘legacy software’ to be integrated into the system.

The RTA-0S3.0 product architecture is shown in Figure 2.1 and consists of:

* rtaoscfg a graphical configuration tool that reads and writes configu-
rations in the AUTOSAR XML configuration language.

16 Introduction

2.1

2.1.1

* rtaosgen a command-line tool for generating a RTA-OS3.0 kernel li-
brary from your input configuration.

e Port plug-ins, one for each target/compiler combination on which you
use RTA-0S3.0. You can install multiple ports at the same time and
switch between them with the offline tooling. You can also install multi-
ple versions of the same port concurrently, allowing your to easily man-
age projects that use legacy compilers and/or microcontrollers.

¢ VRTA, a special port plug-in that provides the functionality of RTA-0S3.0
on a standard Windows PC. This allows you to design and test applica-
tion behavior without needing real target hardware. VRTA comes with a
development kit that allows you to build Virtual ECUs that can simulate
interrupts, 1/0 etc.

Features of the RTA-OS3.0 Kernel

RTA-0S3.0 builds on the proven technology of earlier ETAS operating systems
which, to date, have been used in over 350 million ECUs worldwide. The
kernel provides an implementation of the AUTOSAR OS R3.0 open standard,
a standard which subsumes features from the earlier OSEK OS standard!. The
kernel also provides a number of additional features that are unique to RTA-
0S53.0. The following sections provide a short introduction to the standards
and their features.

OSEK

OSEK is a European automotive industry standards effort to produce open
systems interfaces for vehicle electronics. The full name of the project is OS-
EK/VDX. OSEK is an acronym formed from a phrase in German, which trans-
lates as “Open Systems and Corresponding Interfaces for Automotive Elec-
tronics”. VDX is based on a French standard (Vehicle Distributed eXecutive),
which has now been merged with OSEK. OSEK/VDX is referred to as OSEK in
this guide.

The goals of OSEK are to support portability and reusability of software com-
ponents across a number of projects. This will allow vendors to specialize in
“Automotive Intellectual Property”, whereby a vendor can develop a purely-
software solution and run software in any OSEK-compliant ECU.

To reach this goal, however, detailed specifications of the interfaces to each
non application-specific component are required. OSEK standards, therefore,
include an Application Programming Interface (API) that abstracts away from

LFor the sake of brevity, the term “AUTOSAR 0S” is used throughout this document to refer
to the combined AUTOSAR and OSEK OS standard.

Introduction

17

18

the specific details of the underlying hardware and the configuration of the
in-vehicle networks.

For further information see http://www.osek-vdx.org.

OSEK OS

OSEK OS is the most mature and most widely used of the OSEK standards.
OSEK OS has been adopted in all types of automotive ECUs, from power train,
through chassis and body to multi-media devices.

The most recent version of OSEK OS is 2.2.3, the third minor revision of the
2.2 standard originally introduced in September 2001. This version of OSEK
0OS is also part of the ISO17356 standard.

OSEK OS is entirely statically defined using an offline configuration language
called OIL (OSEK Implementation Language). All objects are known at system
generation time. This means that implementations can be extremely small
and efficient.

OSEK OS provides the following OS features:

Tasks are the main building block of OSEK OS systems. Unlike some other
OS’s, tasks in OSEK are not required to be “self-scheduling” - it is not
necessary to place the body of the task inside an infinite loop?. There
are four types of task in OSEK OS:

1.

Basic tasks with unique priority and non-queued activation. These
are the simplest form of task and ideally suited for hard real-time
systems. Tasks are activated and must run and terminate before
they can be activated again. This type of task cannot suspend
itself mid-way through execution to wait for an event. In RTA-
0S53.0 these are called BCC1 tasks because they correspond to
OSEK 0S’s BCC1 conformance class (see Section 4.3 for more de-
tails about OSEK’s Conformance Classes).

. Basic tasks with shared priority and queued activation. These tasks

can share priorities with other tasks in the system and do not need
to terminate before being activated again. The OS queues pend-
ing task activations and runs the next activation when the current
one has terminated. Like BCC1 tasks, this type of task cannot sus-
pend itself mid-way through execution to wait for an event. In RTA-
0S53.0 these are called BCC2 tasks because they correspond to
OSEK OS’s BCC2 conformance class.

Extended tasks with unique priority. An extended task is allowed to
wait for events during execution (i.e. the task can “self suspend”).

2Though you can do this for the class of tasks called “extended tasks”.

Introduction

http://www.osek-vdx.org

However, activations cannot be queued and the tasks must have
unique priorities. In RTA-OS3.0 these are called ECC1 tasks be-
cause they correspond to OSEK OS’s ECC1 conformance class.

4. Extended tasks with shared priority. These are like ECC1 tasks but
can share priorities with other tasks in the system. In this regard
they are similar to BCC2 taks. However, unlike BCC2 tasks, ex-
tended tasks cannot have queued activations. In RTA-OS3.0 these
tasks are called ECC2 tasks.

You can mix all of these task types together in the same system.

Scheduling Tasks can be scheduled either preemptively or non-
preemptively and co-operative schedulers can be constructed easily.

Interrupts allow for the interaction of the OS with asynchronous external
triggers. There are two types of interrupt in OSEK OS:

1. Category 1 interrupts are not handled by the OS

2. Category 2 interrupts are handled by, and can interact with, the
oS

Resources are simple binary semaphores that allow you to provide mutual
exclusion over critical sections shared between tasks and interrupts.
Resources are managed by the OS using the priority ceiling protocol
which guarantees freedom from deadlock and minimizes priority inver-
sion at runtime3.

Counters and alarms are used to provide periodic (and aperiodic) schedul-
ing of tasks. Counters, as the name suggests, count the occurrence of
(domain specific) events and register values as ‘ticks’. Alarms can be
set to expire at run-time configurable count values, either at absolute
count value or relative to the ‘tick’ value of the counter when the alarm
is set.

Debugging Support is provided natively in the OS through the use of build
levels. The OS also provides two build levels:

1. Standard is “lean and mean” and provides minimum error han-
dling.

2. Extended is the “debugging” build that provides extensive error
detection facilities to check if you are using the OS correctly.

3priority inversion is the situation where a low priority task is running in preference to a
higher priority task. With priority ceiling protocol this situation can occur at most once each
time a higher priority task is activated (and it is always at the start of execution) and is called
the blocking time for the higher priority task. The blocking time is bounded by the longest time
any single task shares data with the higher priority object - there is no cumulative blocking
due to the interaction of lower priority tasks.

Introduction

19

2.1.2

20

Debugging is also provided through the OSEK ORTI (OSEK Run-Time In-
terface) standard. This provides a common way for OS implementa-
tions, like RTA-OS3,0, to export symbol details to third-party debuggers
so that the debugger can display information about the internal state of
the OS at runtime (e.g. which task is running, which tasks are ready to
run etc.).

AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standard-
ized automotive software architecture, jointly developed by automobile man-
ufacturers, suppliers and tool developers worldwide.

AUTOSAR provides specifications for “Basic Software Modules” (BSW) such as
operating systems, communication drivers, memory drivers and other micro-
controller abstractions. The AUTOSAR standard also defines a component-
based architectures model. This model defines a “Virtual Function Bus” (VFB)
that defines an abstraction for communication application software compo-
nents (SW-Cs). The VFB allows SW-Cs to be independent of the underlying
hardware, making them portable between different ECUs and reusable across
multiple automotive projects. The VFB abstraction is encapsulated by the
AUTOSAR Run-Time Environment (RTE). The RTE provides the “glue” between
SW-Cs and the BSW.

For further information see http://www.autosar.org.

AUTOSAR OS

AUTOSAR OS is an extension to the OSEK OS specification. An AUTOSAR OS
includes all the features of OSEK OS and adds some new functionality which
is divided into four “Scalability Classes” as follows:

Scalability Class 1 includes OSEK OS plus:

Schedule Tables provide an easier and alternative way to program re-
peating activities than OSEK OS’s alarms. Each schedule table can
be managed as a single unit and you can switch between tables at
runtime, allowing you to build ‘modal’ systems easily.

Software Counter Interface standardizes the interaction between
the OS and counters (in OSEK this was vendor specific).

Stack Monitoring provides additional debugging support so that you
can trap stack faults.

Scalability Class 2 includes Scalability Class 1 plus:
Schedule Table Synchronization to a global time source (though

this is trivially possible in Scalability Class 1).

Introduction

http://www.autosar.org

Timing Protection provides protection against tasks and interrupts
executing for too long or too often. The protection scheme allows
you to constrain at runtime those aspects of system timing that
control whether your system meets its deadlines or not.

Scalability Class 3 includes Scalability Class 1 plus:

Memory Protection allows you to partition your system into OS-
Applications. OS-Applications can be configured to be “trusted”,
i.e. they run in what is typically called “supervisor mode”, or “non-
trusted”, i.e. they run in what is typically called “user mode”.
Memory access constraints can be programmed for non-trusted
OS-Applications and the OS manages the target microcontroller’s
memory management features at runtime to provide protection.

API Call Protection allows you to grant or deny access to the OS API
for configured tasks/ISRs. For example you can forbid a task in one
OS-Application from activating tasks in another OS-Application. API
call protection also provides a mechanism for extending the API by
adding “trusted functions” and granting or denying access to these
functions as you would for the OS API.

Scalability Class 4 includes Scalability Classes 2 and 3

RTA-0S3.0 1.0.0 does not support the AUTOSAR OS R3.0 features from
Scalability Classes 2, 3 and 4.

As AUTOSAR OS is based on OSEK OS, it is backwards compatible to exist-
ing OSEK OS-based applications - i.e. applications written for OSEK OS will
largely run on AUTOSAR OS without modification. However, the AUTOSAR OS
standard also clarifies some of the ambiguities in the OSEK OS specification
that arise when the behavior of OSEK OS is undefined or vendor specific be-
cause these represent a barrier to portability. Users who are migrating from
an OSEK OS and relied on a particular implementation of an OSEK OS feature
should be aware that AUTOSAR OS defines the required OSEK OS behavior in
the following cases:

OSEK OS AUTOSAR 0OS ‘

Behavior of relative alarms started
at an offset of zero is undefined

Relative alarms cannot be started at
a relative time of zero

The Start0S() API call may or may
not return depending on the vendor
implementation

Start0S() must not return

The behavior of ShutdownO0S() is
not defined if the ShutdownHook ()
returns.

Shutdown0S() disables all inter-
rupts and enters an infinite loop.

Introduction

21

2.1.3

22

The RTA-0S3.0 Reference Guide provides an API call compatibility listing be-
tween OSEK OS and AUTOSAR OS R3.0.

AUTOSAR OS replaces OSEK's OIL configuration format with an XML-based
configuration language. AUTOSAR XML adopts the same configuration ob-
jects and concepts found in OIL, but uses a different syntax.

Unique RTA-0S3.0 Features

RTA-0S3.0 is much more than an AUTOSAR OS. The kernel is designed to
support software engineers building and integrating real-time systems.

=T/\= RTA-0S3.0-specific features are not guaranteed to portable to other
- ~ implementations of OSEK OS or AUTOSAR OS.

The additional features include:

Time Monitoring to measure the execution time of tasks and Category 2
ISRs at runtime and optionally check times against pre-configured bud-
gets.

Enhanced Stack Monitoring provides additional possibilities to help you
debug stack problems

RTA-TRACE Integration provides automatic instrumentation of the OS ker-
nel to support the ETAS RTA-TRACE real-time OS profiling and visualiza-
tion tool so you can view exactly what the OS is doing in real-time.

User control of hardware so there is no need to ‘hand over’ control of
hardware, such as peripheral timers, the cache and I/O ports etc. to the
0OS. All hardware interaction occurs through RTA-0S3.0’s well-defined
hardware interface.

Predictable run-time overheads all runtime overheads such as switching
to and from tasks, handling interrupts and waking up tasks, have low
worst-case bounds and little variability within execution times.

Graphical offline configuration editor supports AUTOSAR XML configu-
ration of the OS.

Easy integration into your build process as RTA-0S3.0 code generation
requires just one command-line tool that can be driven from any build
environment.

Highly scalable kernel architecture using offline tools that automatically
to optimize the kernel for your application.

Introduction

2.2 Summary

¢ RTA-0S3.0 is a pre-emptive RTOS for embedded systems

* The kernel provides the features specified in the AUTOSAR OS R3.0
(SC1) standard, including support for the legacy OSEK OS.

* RTA-0S3.0 provides additional features that make it easier to integrate
AUTOSAR OS into your build process.

Introduction

23

3

3.1

24

Development Process

This chapter provides a short overview of how to use RTA-OS3.0 in your ap-
plications. The process involves the following steps:
1. Configure the features of the OS you want to use
Generate a customized RTA-0S3.0 kernel library
Write application code that uses the OS

Compile your application code and linking with the RTA-0S3.0 library

A

Run your application on your target

The following sections cover each of these steps.

Configuration

RTA-0OS3.0 is statically configured, which means that every task and interrupt
you need must be declared at configuration time, together with any critical
sections, synchronization points, counters etc.

All configuration is held in XML files that conform to the AUTOSAR standard.
This means that you are free to use other 3rd party tools to provide the XML
configuration files for the OS. If you look at one of these files in the examples
provided by the target plug-ins then you will realize that the configuration
language is not that easy to read.

To help you with configuration, RTA-OS3.0 includes rtaoscfg, a graphical con-
figuration editor for configuring your RTA-OS3.0 application. rtaoscfg ac-
cepts any AUTOSAR XML file as input and allows you to edit the OS-specific
parts of configuration. If the input file contains both OS and non-0S specific
configuration then only the OS configuration will be modified.

The nature of XML parsers means that the ordering of configuration ob-
jects in the files may not be preserved when edited with different tools.

rtaoscfg has five main areas panes as shown in Figure 3.1.

1. Menu/Toolbar

2. Project Navigator.
See an overview of the top-level objects in your configuration, switch
between configuration workspaces and manage the files in the project.
3. Configuration Workspace.

This is where you do most of your configuration. RTA-OS3.0 provides
the following workspaces:

Development Process

3.1.1

RTA-053.0 05 Configuration Tool =10l

Eile Yew Project Reports Help € Mehu
Ph B | B | working File - < Toolbar

15 05 Configuration
:_3; RTA-TRACE Configuration
s Builder

% Project Files
Workspace

Project Navigator

Check Mow | Clear all | Clear Selected | Copy Selected to Clipboard

| Source | Description

Error Window

‘Working File; Status Bar Build Status:

Figure 3.1: The rtaoscfg configuration tool

(a) OS Configuration

(b) RTA-TRACE Configuration
(c) Builder

(d) Project Files

4. Error Viewer.

This displays a list of errors in the currently loaded configuration.

5. Status Bar

0OS Configuration

The OS configuration navigator displays the logical structure of your OS con-
figuration in the left hand window, ordered by OS object. You can expand
each object to see the instances you have created. Clicking on an instance
of an object displays the configuration panel in the right hand window. Indi-
vidual items are configured in the workspace on the right hand side of the
navigator.

To create a new configuration, select File > New project from the menu or
use the keyboard shortcut <Ctrl+N>. Each new configuration requires you to

Development Process

25

26

New Project... K =10} x| New Project... K i [=] X
PFroject Settings Project Settings
AR-PACKAGE Mame |itk_cpu AR-PACKAGE Name |Platform
ECU Configuration Mame | Configuration ECU Configuration Mame |Enginet anagementE CLI
05 ConfgustionName [osmTal 05 Configuration Neme. [R7a05
Mate that these names cannat be modified later Mote that these names cannot be madified later
(a) Default Settings (b) Customized Values

Figure 3.2: Defining project-wide settings

specify the “administrative” parts of an AUTOSAR XML configuration. This is
required because parts of the OS configuration need to reference other parts
(for example, tasks need to reference which resources they use) and these
references are formed as an absolute path to an item in the AUTOSAR XML
configuration. The items required are:

AR-PACKAGE Name defines the name of the AUTOSAR package. All AU-
TOSAR configuration items live in an AR-PACKAGE and a system may
contain multiple packages. The OS configuration for a single ECU must
live in a single package - it is not possible to split an OS configuration
over multiple packages.

ECU Configuration Name defines the name of the ECU-CONFIGURATION of
which this OS configuration will be a part. An ECU-CONFIGURATION con-
tains all the configuration elements for all of the basic software for one
ECU.

OS Configuration Name defines the name of the OS configuration
MODULE - CONFIGURATION. This is the name that will be used to refer to
the OS from the ECU- CONFIGURATION.

Figure 3.2 shows the default settings for a new project and example of how
these might be customized for a particular project, in this case the ECU “En-
gineManagementECU” for the vehicle platform “PlatformX”.

Project settings are set once at the creation of a new project. It is not
possible to change them later using rtaoscfg.

Clicking on a ‘root’ object like “Tasks”, “ISRs”, “Resources” etc. in the project
navigator takes you to the configuration workspace for that type of object.
Clicking on individual objects takes you to the configuration workspace for the
selected object. Figure 3.3 shows an OS configuration where configuration for
TaskB has been selected.

OS configuration is split into three main parts:

Development Process

ETAS.rtaos* - RTA-053.0 05 Configuration Tool

Ca ._f: {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

- General

General |F\Esuurcss Reqister Setsl Application MD\:IESI Evenlsl

=10l

- Application modes

B
Bl Alaims i) Priority |2
[
E

(=

- Caunters Activations |2

MillisecondCaunter
- GecondCounter

=

Task Preemptability IFULL

[#- Events

Stack Size [bytes] ‘
E-1SRs

(=

<undefined> |

W ait-Stack size [bytes) ‘

(=

- CatlISR

<undefineds |

- Cat2ISR

Execution Budoet |3DDD

(=

Register sets

Resources

Schedule tables

(= Tasks

- Taskd,

- TaskB

- Taskl

- TaskD
TaskE

-
Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

milliseconds _'J

| Gource | Desoription

[& RTA-TRACE Configuration
4 Builder

) Project Files

wWorking File: configuration. <l

Build Status: idle

Figure 3.3: OS configuration in rtaoscfg

1. System-wide configuration for target-neutral general settings such as

the level is debugging information you wa

nt to record, whether you

monitor the stack at runtime, which hooks (callbacks) you are going

to use, etc.
2. Target-specific settings including:

* the target device you are using. You

can use rtaoscfg to con-

figure any target device for which you have installed a licensed

RTA-OS3.0 port.

¢ the variant of the target device if the port supports multiple vari-

ants of the target.

¢ the version of the target to use if you have more than one version

of a specific RTA-OS3.0 port installed

* “Target Specific” aspects of configuration.

3. Object configuration for each of the OS objects you want to use. This
includes task and interrupt configuration, resources, events, alarms,

counters and schedule tables.

Specific aspects of configuration are covered in the later chapters of this user

guide.

Development Process

27

3.1.2

3.1.3

28

ETAS.rtaos - RTA-053.0 05 Configuration Tool =10l]
Ch B 9 5 | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

SN -

Enable Tracin TRUE o7
[ATA-TRACE Configurstion = I =l
i) Use Compact IDs |FaLsE =l
Configuration
- Classes i) Use Compact Time IFALSE j
-~ Counts .
Wevs e i) Enable Stack Aecording [FaLsE =l
- Categories i) Run-Time Target Triggering IFALSE j
- Enums
Intervals i) Autodnitialse Comms |THUE j
TaskTracepoints -
Tracepoints i) Set Trace Auto-repeat ITHUE j
i) Bulfer Size (Trace Records] 2000
i) Aulostart Type |FREE_RUNNING =l

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Desoription

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 3.4: RTA-TRACE configuration in rtaoscfg

RTA-TRACE Configuration

The RTA-TRACE configuration editor, shown in Figure 3.4, allows you to con-
figure RTA-OS3.0 to support ETAS’ RTA-TRACE runtime profile and monitoring
tool’. Like the OS configuration, an overview of the RTA-TRACE configuration
is displayed in the project navigator and configuration windows are shown in
the workspace. You can expand each object to see the instances you have
created. Clicking on an instance of an object displays the configuration panel
in the right hand window.

Configuring RTA-TRACE tells RTA-OS3.0 to include all the necessary OS instru-
mentation that allows RTA-TRACE to gather runtime data for your application.
There is no harm configuring RTA-TRACE instrumentation if you do not have
the RTA-TRACE to view the trace data, but this will make your RTA-OS3.0 con-
figuration larger and slower that it would be without instrumentation.

Build

The RTA-0OS3.0 library is built using the command-line rtaosgen tool. If you
prefer to configure and build within the same tool then you can do so from
the build workspace shown Figure 3.5. The builder allows you to configure

IRTA-TRACE is not supplied with RTA-053.0. For further information about RTA-TRACE con-
tact your ETAS sales office.

Development Process

3.14

ETAS.rtaos* - RTA-053.0 05 Configuration Tool) [m] ﬂ

Ca ._f: {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

DOutput Lucalmnsl Samp\esl Inclhude: Falhsl Hepurtsl
[@JRTA-TRACE Configuration

Build type Werbozity level Output contral
i Builder £+ Mormal ' Quiet I” Keep assembler
e € Check only & Nomal fstino Hes
L. Buld " Clean rebuild ' Verbose ™ Keep source files

RTA-0S Code Generator Command-ine:

-—-output: C:hworkingrtaos -samples:[Includes] -samples:[EnaHook] -samples: [Link] --include: C:\workingrtaos?.
“Sampleshincludes

iheck Mowe | Clear All | Clear Selected | Copy Selected to Clipboard

| Source | Desciiption

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 3.5: Running rtaosgen from rtaoscfg

the build process and run rtaosgen from inside rtaoscfg. Further details on
rtaosgen are in Section 3.2.

Project Files

When you are working on an RTA-0S3.0 configuration, rtaoscfg calls the
working configuration a project. A project is simply one or more XML files
that define your OS configuration. By default, a project contains a single
AUTOSAR XML file.

The AUTOSAR XML language allows you to partition your OS configuration
across multiple files according to the demands of your build and/or version
control process. This is essential if you are working with other tools that gen-
erate fragments of OS configuration that need to be integrated into your main
configuration. This is also useful if you want to maintain a ‘core’ configura-
tion and then have multiple customizations of that core for different target
hardware.

The project viewer allows you to manage these complex projects. You can
add/remove XML files to/from the project with ease. When you are working
with a multi-file XML project, rtaoscfg internally merges all configuration
data, allowing you to work with multiple configuration files simultaneously
as if they are a single OS configuration. That way you can see the entire

Development Process

29

30

@& File2.arxml

Project.rtaos

Figure 3.6: Relationship between Project File and AUTOSAR XML Files

model and check for consistency even though configuration data is physically
separated.

When the project is saved, rtaosgen remembers which parts of configuration
came from which XML files so that when you save your configuration each
element of configuration data is written back to the correct file.

RTA-0S3.0 also writes out a project file with a . rtaos extension. A project file
is a special RTA-0S3.0 file that lists all the AUTOSAR XML files in your project.
Figure 3.6 shows the basic concept.

ET/' \5 Project files are specific to RTA-0S3.0

The Working File

When you create a new OS object (e.g. a task) or an attribute (e.g. a task’s
priority) in your configuration, rtaoscfg writes it to the working file. The
project viewer shows you the current working file and allows you to switch
the working file to be any one in your project.

If you create an object or attribute and realize that you added it to the wrong
file, then you can simply move it to another file in you project by deleting
it from the current working file, changing to a new working file and then re-
creating the object or attribute.

If you work with many XML file fragments as part of your OS configuration
then it would be tiresome to open each in turn when you want to make modi-

Development Process

3.1.5

- RTA-053.0 05 Configuration Tool 24 e ﬂ
i B 9 [| Working: configuration xml =
Eile Miew Project Reports Help
458 05 Configuration %
W General | Defaulk Stack Values [byles]l Huuksl Error HUUkI
B Alams L) Scalsbilty Class I<undefined> j =
- Application modes
E- Counters i) Status I(undefinad) j
MilisecondCounter =
- SecondCounter L i) Enable Stack Monitoring ITHUE ﬂ
- Ewent:
g__ ‘5\;:? ¢ i) Enable Time Monitoring |<undefined> j e
- Cat1IsR
- Cal2I5R |
Register sets
Resources iheck Mow | Clear All | Clear Selected | Copy Selected to Clipboard
Schedule tables
- Tasks | Sowce | Description
®
@ Check The parameter called [Priarity] for [/0s/0¢lsr] Tat2ISA' must have a value specified.
a Check The parameter called [Categary] for [/0s/0slsr] Tat2ISA' must have a value specified
@ Check The parameter called [#ddress] for [/0s/0slsr] 'Cat2I5A' must have a value specified.
a Check The parameter called [Priarity] far [/0s/0slsr] 'Tatl1SR' must have a value specified.
@ Check The parameter called [Category] for [/0/0%lsi] 'Tat115R' must have a value specified,
a Check The parameter called [&ddress] for [/0s/0slsr] Tat1I5R' must have a value specified.
Q Check The Hooks container within [/05/0s05] '0slnfa’ is miszing but is mandatam.
@ Check The parameter called [Statuz] for [/0s/0505] 'Oslnfo’ must have a3 value specified.
[&IRTATRACE Configuration @ Check The parameter called [UseGetS erviceld] for [05/0s05] 'Oslnfa’ must have a value specified
o \;3 Check The parameter called [UseParameterticoess] for [/0s/0s05] 'Dsinfo’ must have a value specified.
il @ Check The parameter called [UseResScheduler] for [/0s/0505] '0slnfa’ must have a value specified.
ﬁ-ﬁ Project Files i) Check Skipping Pre-Build checks due to previous errars.
wWorking File: configuration. <l Build Status: idle

Figure 3.7: Viewing configuration errors

fications. rtaosgen allows you to open the project file itself. This loads every
XML file referenced by the project file automatically.

Error Checking

When you add or remove configuration items rtaoscfg reports configuration
errors in the Error Viewer.

Three types of errors are reported:
Information tells you summary information about the configuration, such
as how many objects of a type you have configured.

Warnings tell you that your configuration might not behave as expected
because you might be missing something in your configuration.

Errors tell you that parts of your configuration are incorrect.

You can check your configuration for consistency by clicking on the Check
Now button. Any errors that are found are reported in the error window.
Figure 3.7 shows how errors are reported .

Development Process

31

3.1.6

3.2

32

Generating Reports

You can generate reports about your configuration from the menu/toolbar.
Reports present summary information about your configuration that can be
used for Quality Assurance audits, internal communication between depart-
ments, etc. The reports provided include:

Configuration Summary - an overview of the OS configuration.

OS API Reference - a customized reference guide for the configured OS.
This may include documentation for target-specific features such as ad-
ditional API calls and types that are not part of the standard RTA-OS3.0
Reference Guide.

Stack Usage - worst-case stack usage for the configured OS. This requires
that stack allocations have been provided for each tasks and ISR.

MISRA Deviations - provides the MISRA-C 20042 deviations for the config-
ured OS. This includes which deviations apply, why the deviation has
been made and how many times it occurs.

All reports are generated in HTML and displayed in your default web-browser.

Generation of reports is actually done by rtaosgen so you can produce these
at the same time as your build process runs, for example you may generate
the MISRA Deviation report to provide evidence for your QA process. Build-
time generation of reports allows the format for the report to be selected.
Reports are provided as plain text, XML and HTML.

A full list of the reports available for your target can be obtained using the
following command line:

rtaosgen --target:YourTarget --report:?

Library Generation

Before you can use RTA-0S3.0 in your application, you need to generate an
RTA-OS3.0 kernel library and associated header files. rtaosgen generates a
customized RTA-OS3.0 kernel library that is optimized for your OS configura-
tion by:

* Analyzing your XML configuration and automatically optimizing the RTA-
0S3.0 kernel so that it contains only those features that you will use.
This makes RTA-OS3.0 as small and efficient as possible.

2Motor Industry Standards and Reliability Association

Development Process

RTA-0S53.0 Common Kernel RTA-053.0 Targets 3rd Party

Colossus 1BM/360 Yool Chain
m m Compiler
[@) (@)
Assembler
EDSAC VRTA
@O Linker
| @
“ Librarian

<~

RTA-0S3.0 Tools

rtaosgen Os.arxml

b

RTA-0S53.0 Customized
EDSAC Kernel Library

Os.arxml

ALUTOSAR
XML File

Figure 3.8: Building an RTA-OS3.0 Kernel Library

¢ Customizing the optimized kernel to your chosen target using informa-
tion provided by the target plug-in.

* Building a kernel library using the same 3rd party tool chain that you
are using for your application. This guarantees tool chain compatibility
between RTA-0S3.0 and your own code.

The tool integrates the core OS kernel, enables optional kernel features you
have selected and customizes this with the information about the target sup-
plied by the port plug-in. Figure 3.8 illustrates the basic process by showing
how a kernel would be generated for the EDSAC target.

Development Process

33

3.2.1

3.2.2

34

Preparing the Tool Chain

To generate a kernel library, rtaosgen needs access to the compiler tool
chain for your target. rtaosgen knows how to run the compiler, assembler
and librarian for your target and what options to use. You need only be con-
cerned with two things:

1. Your compiler tool chain must be accessible on your PATH.
2. Your compiler tool chain must be compatible with RTA-OS3.0.
You can find out if your compiler is on your PATH by opening a Windows Com-

mand Prompt using Start = Run and running cmd.

Typing C:\>set at the command prompt will list every Windows environment
variable. You should see your compiler’s executable directory on the path. If
you do not, then you can add your compiler to the path by typing:

C:\> set PATH=PATH;<Path to your compiler executable>

To check whether you are using a compatible version of the compiler tool
chain you should consult the RTA-OS3.0 Target/Compiler Port Guide for your
port which will tell you which version (or versions) are compatible.

Understanding AUTOSAR Dependencies

RTA-0S3.0 is an AUTOSAR basic software module® and as such it must con-
form to the AUTOSAR basic software module build concept. If you know how
this works already then skip ahead to Section 3.2.4.

In AUTOSAR, all basic software modules provide a single include file called
<BSW Short name>.h. For the OS this is 0s.h. Each of these header files has
dependencies on two other AUTOSAR include files:

Std_Types.h provides all the portable (i.e. target hardware invariant type
definitions for AUTOSAR). Std_Types.h includes a further two AUTOSAR
header files:

Platform_Types.h defines the AUTOSAR standard types (uints8,
uintle, boolean, float32 etc.) for the target hardware.

Compiler.h defines a set of macros that abstract compiler addressing
models (e.g. banked and non-banked access, near and far pointer
access, etc.). These macros are used internally by basic software

30ne of many - there are other modules for communication stacks (CAN, LIN, FlexRay etc.),
non-volatile memory handling, peripherals drivers, etc. that are available from third-parties.

Development Process

modules to mark functions, data and pointers according to the
mode by which they can be addressed.

Each basic software module defines a series of macros defining the
classes and their mapping onto a specific compiler’s primitives in
a file a called Compiler_Cfg.h. The system integrator must merge
the Compiler_Cfg.h files from all basic software modules to create
a “master” Compiler_Cfg.h before the system is compiled.

In RTA-0S3.0, the OS module’'s Compiler_Cfg.h is called
O0s_Compiler_Cfg.h so it can be #included in Compiler_Cfg.h.
You can view what virtual sections are defined by RTA-0S3.0 by
looking at the contents of Os_Compiler_Cfg.h.

You should take particular note of the RTA-OS3.0 section called
OS_APPL_CODE. This should be used to place all application code
that is required by the kernel, i.e. all your hooks and callback
routines. Code can be placed in this section using the directive
FUNC(<typename>, OS_APPL_CODE). For example the following
code shows how to place the ErrorHook() into 0S_APPL_CODE:

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType Error){
/* Handle error x/

}

The RTA-0S3.0 documentation always uses this form when defining
callbacks and hook routines.

MemMap.h defines how data and code is mapped to memory sections and
uses the compiler’s primitives for placing code and data into different
types of memory section according to the following process:

1. each basic software module defines a series of section names us-
ing macros (a minimum set of which are defined by the AUTOSAR
standard). For the OS, all section name macros start with 0S_.
These names are the ones you can find in Os_Compiler_Cfg.h.

2. the vendor of the basic software module uses these macros to
place code in the virtual sections during implementation, for ex-
ample

#define OS_START_SEC_CODE
#include "MemMap.h"

/* Some 0S code here */
#define 0S_STOP_SEC_CODE
#include "MemMap.h"

3. the system integrator develops a MemMap . h file that maps the basic
software’s virtual section names onto system-wide section hames
and from there onto primitives of the compiler for section place-
ment, for example:

Development Process

36

Provided by the system integrator

Compiler_Cfg.h

[Os_Compiler_Cfg.h i—includes Compiler.h Platform_Types.h
in RTA-OS3.0] :

Memmap.h H
[Os_Memmap.h in includes Memmap.h
RTA-0S3.0] :

=

includes

includes

»
»

includes

#include <Os.h>

User Code

Figure 3.9: AUTOSAR Header File Hierarchy

/* Map 0S code into the section containing all BSW
code */

#ifdef OS_START_SEC_CODE
#undef OS_START_SEC_CODE
#define START_SECTION_BSW_CODE

#endif

/* Name the system section with a compiler
primitive x/
#ifdef START_SECTION_BSW_CODE
#pragma section code "bsw_code_section”
#endif

As with Compiler_Cfg.h, each basic software module must also provide
a MemMap . h that the system integrator can merge together to create a
“master” MemMap . h before the system is compiled.

The include hierarchy is shown in Figure 3.9

To build an RTA-OS3.0 library it follows that all the standard AUTOSAR header

files are required as inputs to the build process and these are outside the

Development Process

3.2.3

3.2.4

scope of the OS. However, RTA-0S3.0 can generate sample versions of the
AUTOSAR standard header files if required.

You must enhance or replace the sample AUTOSAR standard header
files generated by rtaosgen for use in production software.

Running rtaosgen

rtaosgen is a command line tool. You can invoke it from the Windows com-
mand prompt, from a make script, Ant script, in fact from anywhere where
you can call a Windows application. The rtaosgen tool can be run from the
rtaoscfg Builder if you prefer to use a graphical environment.

rtaosgen takes one or more configuration files as input. Configuration files
can be:

* AUTOSAR XML

¢ RTA-0S3.0 project files

* A mixture of both
Like rtaoscfg, rtaosgen will merge the contents of all files passed on the

command line into an in-memory OS configuration before generating the ker-
nel.

Building the library

To build an RTA-0S3.0 library it follows that all the standard AUTOSAR header
files are required as inputs to the build process. You must include the path to
the location of the AUTOSAR standard headers files when invoking rtaosgen.
For example, to build a library for the “Hello World” example application for
an RTA-0S3.0 target you can type:

C:\>rtaosgen --include:PathToAutosarHeaderFiles HelloWorld.
rtaos

If you do not have access to AUTOSAR include files (for example, if you are
using RTA-OS3.0 outside of a full AUTOSAR system), then rtaosgen can gen-
erate them automatically for you.

C:\>rtaosgen --samples:[Includes] --include:Samples\Includes
HelloWorld. rtaos

Note that rtaosgen does not force you to use a specific extension - you can
use any extension you like.

rtaosgen generates four classes of messages during execution:

Development Process

37

3.2.5

38

Information. These messages tell you useful things about the configura-
tion, for example how many tasks you have configured. rtaosgen will
generate output files.

Warning. These messages warn you that your configuration will result in an
OS that might not behave as you expect. Rtaosgen will generate output
files.

Error. These messages tell you that there is something wrong with your con-
figuration. rtaosgen will stop processing your configuration at a con-
venient point and no output files will be generated.

Fatal. You will get at most one fatal message. It tells you that there is some-
thing fundamentally wrong with either your configuration or rtaosgen.
rtaosgen stops immediately.

You can do other things from the command line like change the output direc-
tory for generated files, suppress messages, etc. For more details, see the
RTA-0OS3.0 Reference Guide.

Building from rtaoscfg

It is also possible to build RTA-OS3.0 from within rtaoscfg in the “Builder”
workspace. This allows you to run rtaosgen with command line you sepcify
rtaoscfg. If you specify a command line, then it will be saved in the RTA-
0S3.0 project file.

The same tool, rtaosgen is used to build the kernel irrespective of whether
it is called directly from the command line or internally from rtaoscfg.

Note that if you build from within rtaoscfg then you still need to ensure that
your compiler tool chain is on your Windows path.

Any settings that you configure in the “Builder” are stored in your RTA-0S3.0
project file.

Generated Files

When rtaosgen runs and terminates without reporting any errors or fatal
messages then it will have generated the following files:

Development Process

3.3
3.3.1

Filename ' Contents |

0s.h The main include file for the OS.

0s_Cfg.h Declarations of the objects you have configured. This
is included by 0s.h.

0s_MemMap.h AUTOSAR memory mapping configuration used by
RTA-0S3.0 to merge with the system-wide MemMap.h
file.

RTAOS.<lib> The RTA-0S3.0 library for your application. The exten-
sion <lib> depends on your target.

RTAO0S.<lib>.sig | Asignature file for the library for your application. The
extension <lib> depends on your target.

Generating sample code

The rtaosgen code generator can generate sample code that can be used
as a basis for your application. You have already seen one case of this in
Section 3.2.4 when --samples[Includes] was use to generate sample AU-
TOSAR standard header files.

The set of samples provided is port-dependant, but you can get a list of pro-
vided samples using the following command line:

C:\>rtaosgen --target:YourTarget --samples:?

Most ports will provide samples that show how to write AUTOSAR OS hook
functions like the ErrorHook (), StartupHook() etc. For example, to gener-
ate a default ErrorHook () you could use the following command line:

C:\>rtaosgen --samples:[ErrorHook] --include:
PathToAutosarHeaderFiles HelloWorld. rtaos

Integration

Accessing the OS in your Source Code

To access RTA-0S3.0 in your source code you simply include
#include <0s.h> in every C compilation unit (i.e. every C source code
file) where you need to access RTA-0S3.0. The header file is protected
against multiple-inclusion. RTA-OS3.0 does not place any restrictions on how
you organize your source code - you can put all of your code into a single
source file or place put each task and interrupt implementation into its own
source file as you (or your configuration control process) requires.

Development Process

39

3.3.2

3.3.3

40

Implementing Tasks and ISRs

Tasks

For each task that you declare at configuration time you must provide an
implementation of the task. Each task needs to be marked using the TASK(x)
macro. Tasks typically have the following structure:

#include <0s.h>
TASK(MyTask) {
/* Do something */
TerminateTask();

}

Category 2 ISRs

Each Category 2 ISR that you declare needs to be implemented. This is also
marked, this time by ISR(x):

#include <0s.h>
ISR(MyISR){
/*x Do something x/

}

A Category 2 ISR handler does not need a return from interrupt call -
RTA-OS3.0 does this automatically. Depending on the behavior of inter-
rupt sources on your target hardware, you may need to clear the inter-
rupt pending flag. Please consult the hardware documentation provided
by your silicon vendor for further details.

Category 1 ISRs

Each Category 1 ISR that you declared also needs to be implemented. Your
compiler will use a special convention for marking a C function as an interrupt.
RTA-0S3.0 provides a macro that expands to the correct directive for your
compiler. Your Category 1 handler will therefore look something this:

CAT1_ISR(MyCatlISR) {
/* Do something =/

}

Starting the OS

RTA-0S3.0 does not take control of your hardware so you need to start the OS
manually using the StartOS() API call, usually in your main() program. RTA-
0S3.0 provides a macro called 0S_MAIN() which expands to the correct type
of main() definition for your compiler toolchain®.

40n many compilers this will be void main(void), but there are compilers that insist upon
the main() program returning an integer or other (non void) type.

Development Process

3.34

3.3.5

3.4

3.4.1

#include <0s.h>
0S_MAIN() {
/* Initialize target hardware x/
/*x Do any mode management, pre-0S functions etc. */
Start0S();
/* Call does not return so you never reach here x/

}

Interacting with the RTA-0S3.0

You interact with RTA-OS3.0 by making kernel API calls. You can find a com-
plete list of calls in the RTA-OS3.0 Reference Guide.

Compiling and Linking

When you compile your code you must make sure that 0s.h and 0s_Cfg.h
are reachable on your compiler include path. When you link your application
you must link against RTAOS.<1lib>, and the library must be on your linker’s
library path.

Memory Images and Linker Files

When you build your application, the various pieces of code, data, ROM and
RAM that were placed into the sections defined in MemMap.h need to be lo-
cated at the right place in memory. This is typically done by your linker®
which resolves references made by user-supplied code to the RTA-OS3.0 li-
brary, binds together the relevant object modules and allocates the resultant
code and data to addresses in memory before producing an image that can
be loaded onto the target.

The linker needs to know what parts of the program to place in which types of
memory, where the ROM and RAM are on the microcontroller, and how map
the parts of the program to the correct sort of memory.

Sections

Code and data output by compilers and assemblers is typically organized into
“sections”. Some sections will contain just code, some code and data and
some will contain data only. You might see a piece of assembler that says
something like that shown in Code Example 3.1.

.section CODE
.public MYPROC
mov rl, FRED

>An historical note: Technically this job is that of the locator which locates sections into
memory by mapping virtual to physical addresses and these tools used to be called linker/lo-
cators. In modern times the locator part has dropped out of common usage and the tools are
commonly referred to as ‘linkers’.

Development Process

41

42

add rl, rl
ret

.end CODE
.section DATA
.public FRED
.word 100, 200, 300, 400
.end DATA
.section BSS
.public WORKSPACE
.space 200

.end BSS

Code Example 3.1: Example Assembler Output Showing Sections

This means that the code for MYPROC should be assembled and the object
code should assume that it will be located in a section of memory called CODE
whose location we will specify later in the linker control file. Similarly, the
data labeled FRED will be placed in a section called DATA, and a space of 200
bytes labeled WORKSPACE will be allocated in section BSS.

C compilers typically output your code into a section called code or text,
constants that must go into ROM in a section called something like const,
and variables into data. There will usually be more - consult the reference
manual for your toolchain for more details on what the sections are called
and familiarize yourself with where they need to go.

Under AUTOSAR, your MemMap . h will define the actual names of the sections
that need to be located. for example So far we have yet to map these onto
addresses in “real” memory. We must therefore look at how these sections
are mapped into a memory image.

“Near” and “Far” space

On some processors there exist regions of memory space that can be ad-
dressed economically (typically with shorter, smaller instructions that have
simpler effective-address calculations), are located on-chip rather than off-
chip, or that are fabricated in a technology such that they are more cycle-
efficient to access. RTA-0S3.0 terms this memory “near” space and on these
processors places some key data in these areas. On such platforms you will
be supplied with information on where you must locate “near” space in ROM
and/or RAM, and told in the RTA-053.0 Target/Compiler Port Guide what data
is placed in it. “Far” space refers to the whole of memory.

Program and Data Space on Harvard Architectures

Most of the discussion about memory so far has assumed the conventional
“von Neumann” architecture, in which data and code occupy one address

Development Process

3.4.2

space with ROM and RAM located at different offsets inside this. Some pro-
cessors (typically very small microcontrollers like PICs, or high-performance
Digital Signal Processors) adopt a “Harvard” architecture, in which there are
distinct address spaces for code and data (there are some performance ad-
vantages to this that offset the programming disadvantages). On a Harvard-
architecture processor, RTA-OS3.0 may use data space (typically RAM) to
store data that would normally be ROM constants on a von Neumann archi-
tecture processor, and the startup code will typically contain code to fetch
a copy of the constant data into data space. If you are using a Harvard ar-
chitecture processor, the RTA-0S3.0 Target/Compiler Port Guide will contain
information on any use of RAM used to store copies of constants.

The Linker Control File

The linker control file governs the placement of code, data and reserved
space in the image that is downloaded to the target microcontroller. Linker
files vary considerably between platforms and targets, but typically include
at least the following:

» declarations of where ROM and RAM are located on chip - these may
vary across different variants in a CPU family.
¢ Lists of sections that can be placed into each memory space

* Initialization of the stack pointer, reset address, interrupt vectors etc.

Code Example 3.2 shows a hypothetical linker control file:

ONCHIPRAM start 0x0000 {
Section .stack size 0x200 align 16 # system stack

Section .sdata align 16 # small data
Section bsw_near align 16 # near data
}
def __SP = start stack # initialize stack ptr

RAM start 0x4000 {

Section .data align 16 # compiler data

Section .bss align 16 # compiler BSS

Section bsw_zero_init align 16 # Basic Software zeroed
RAM

Section bsw_startup_init align 16 # Basic Software
initialized RAM

Section swc_startup_init align 16 # Application initialized
RAM

Development Process

43

ROM start 0x8000 {

Section .text # compiler code
Section .const # compiler constants
Section swc_data align 16 # Application static data
Section swc_init align 16 # Application initial data
Section bsw_init align 16 # Basic Software initial
data

}

VECTBL start OxFFOO {
Section OsVectorTable # RTA-0S’s vector table

}

def __RESET = __main # reset to __main

Code Example 3.2: A Linker Control File

The file above defines four separate parts of memory - ONCHIPRAM, RAM, ROM,
and VECTBL. Into each section are placed the appropriate data, as described
by the comments.

The example applications supplied with RTA-OS3.0 embedded ports will con-
tain a fully-commented linker control file; consult this and the RTA-0S3.0 Tar-
get/Compiler Port Guide for details of how to locate the sections correctly for
your target platform.

3.5 Summary

e There are 5 steps to integrate RTA-0S3.0 with your application:

Ll

5.

Configure the features of the OS you want to use
Generate a customized RTA-0S3.0 kernel library
Write application code that uses the OS

Compile your application code and linking with the RTA-0S3.0 li-
brary

Run your application on your target

* There are two offline tools: rtaoscfg to configure RTA-0S3.0 and rtaos-
gen to generate and build the kernel library

¢ RTA-0S3.0 is an AUTOSAR Basic Software module and has dependen-
cies to AUTOSAR header files. These can be generated by rtaosgen if
required.

e Linking and locating of RTA-OS3.0 depends on the content of the
MemMap. h file with which rtaosgen builds the kernel library.

44 Development Process

4.1

Tasks

A system that has to perform a number of different activities at the same
time is known as concurrent. These activities may have some software part,
so the programs that provide them must execute concurrently. The programs
will have to cooperate whenever necessary, for example, when they need to
share data.

Each concurrent activity in a real-time system is represented by a task. The
majority of the application code exists within tasks. If you have a number
of tasks that must be executed at the same time, you will need to provide a
means to allow concurrency. One way for you to do this is to have a separate
processor for each task. You could use a parallel computer, but this solution
is too expensive for many applications.

A much more cost effective way for you to achieve concurrent behavior is to
run one task at a time on a single processor. You can then switch between
tasks, so that they appear to be executing at the same time.

Scheduling

RTA-OS3.0 provides a scheduler that switches between tasks according to
a fixed priority which is assigned at configuration time. A priority is just a
reflection of the relative urgency of tasks. There are many schemes that you
can use to assign priorities to tasks, but common ones you may have heard
of are:

Deadline Monotonic Assignment where you allocate higher priorities to
tasks with shorter deadlines.

Rate Monotonic Assignment where you allocate higher priorities to tasks
that you need to run the most frequently.

However you choose to assign priorities, the sequence in which your tasks ex-
ecute is determined by a scheduling policy. The scheduling policy determines
when tasks actually run.

AUTOSAR OS supports two scheduling policies:

1. Preemptive Scheduling.

The fixed priority preemptive scheduling algorithm is simple: run the
highest priority task that is ready to run. If a task is running and a
higher priority task becomes ready to run, then the higher priority task
preempts the running task. This is called a task switch. When the higher
priority task has finished then the preempted task resumes.

Tasks

45

46

Context
Switch
A 4

Task2
Task2 terminates
Task1 resumes

Task2 activated
Task1 preempted

Increasing Priority

Task1 in Ready state

v

Time

Figure 4.1: Preemptive scheduling of tasks

For a system where all tasks need to meet their deadlines at runtime,
preemptive scheduling is the most efficient scheduling policy and will
guarantee the shortest time between a task being activated (made
ready to run) and terminating. This time is called the response time for
the task. Preemptively scheduled systems need to consider the effect
of preemption on shared data and may need to introduce mechanisms
for concurrency control (see Chapter 6).

2. Non-Preemptive scheduling.

The OS runs the highest priority task that is ready to run, as with pre-
emptive scheduling. However, unlike preemptive scheduling, if a higher
priority task becomes ready, then it remains ready to run until the run-
ning task terminates - it does not preempt. What this means is that a
non-preemptive task that starts running will always run to completion
and then terminate.

Non-preemptive scheduling results in a less responsive system than preemp-
tive scheduling (i.e. tasks will usually have longer response times), but the
system does not need to worry about concurrency problems that arise for ac-
cessing shared data because the scheduling model doesn’t allow concurrent
access to shared data.

Actually, AUTOSAR OS provides support for a third type of scheduling called
cooperative scheduling because it allows a non-preemptive task to tell the
OS when it could be preempted. The reason we said AUTOSAR OS supports 2
policies is that there is only configuration for two - the third you have to build
yourself.

Tasks

4.2

Context
Switch

A

Task2 terminates

Task2 activated Task in Repdy state Task2

Task1 terminates
Task2 not preempted

Increasing Priority

v

Time

Figure 4.2: Non-preemptive scheduling of tasks

3. Cooperative scheduling.

The OS runs the highest priority task that is ready to run. If a higher
priority task becomes ready, then it remains ready to run until either:
the running task terminates (just like non-preemptive scheduling); or
the running tasks makes a Schedule() API call to tell the OS it can be
preempted. When the Schedule() call is made then the higher priority
task preempts the running task and a task switch is said to have oc-
curred (just like preemptive scheduling). When the higher priority task
has finished then the preempted task resumes.

With careful design, the co-operative model provide can provide sys-
tems that, while not as responsive as fully preemptive systems, do not
suffer the lack of responsiveness found with non-preemptive schedul-
ing.

With all these types of scheduling it is important to realize that any task,
whether preemptive or not, can be interrupted (preempted) by an interrupt
service routine. Chapter 5 provides more information about how RTA-0S3.0
deals with interrupts.

Basic and Extended Tasks

RTA-0S3.0 OS supports two types of task:

1. Basic tasks.

Basic tasks start, execute and terminate (this is often called a single-
shot tasking model). A basic task only releases the processor if it ter-
minates, or if it is preempted by a higher priority task. This behavior

Tasks

47

Context
Switch
A

Task2 activated Taskzin Ready state Task2

Task2 terminates
Task1 resumes

Task1 calls Schedule() and is
preempted

Increasing Priority

Task1 in Ready state

v

Time

Figure 4.3: Co-operative scheduling of tasks

makes them highly suitable for embedded control functionality. Basic
tasks are fast and efficient.

2. Extended tasks.

Extended tasks start, execute, wait for events and (optionally) termi-
nate. The ability for an extended task to voluntarily suspend itself
during execution provides a way for the task to have synchronization
points. This feature makes extended tasks more suitable for function-
ality requiring mid-execution synchronization (for example, waiting for
user interaction) than basic tasks.

4.2.1 Task States

Basic tasks operate on a 3-state model. A basic task can exist in the following
states:

1. Suspended.
2. Ready.

3. Running.

Extended tasks can have an extra state which they enter when waiting for
events:

4. Waiting.

Figure 4.4 shows the 3 and 4 state task models.

48 Tasks

/—Terminate

Start Preempt

LActivate

Figure 4.4: Task State Model

— Wait

___Release

Tasks

49

4.2.2

50

The default state for all tasks is suspended. A task is moved into the ready
state by the process of activation. It is important to understand that activa-
tion does not cause the task to run - it makes it ready to run. Activation can
happen a number of ways, for example by calling the ActivateTask() APl in
your code or as a result of some trigger, such as the expiry of an alarm (see
Chapter 9) or a schedule table expiry point (see Chapter 10).

When a task becomes the highest priority task in the system, RTA-OS3.0
moves the task into the running state and starts task execution at the first
statement in the task. This is often referred to as dispatching the task. A
task may be preempted during execution by other higher priority tasks that
become ready.

If a higher priority task becomes ready to run, the currently executing task
is preempted and is moved from the running state into the ready state. This
means that only one task can be in the running state at any one time.

A task returns to the suspended state by terminating. A task can be made
ready again later and the whole process can repeat.

Basic and extended tasks behave identically with respect to the ready, run-
ning and suspended states. Extended tasks, however, can also enter the
waiting state. An extended task moves from the running to the waiting state
when it voluntarily suspends itself by waiting on an event.

An event is simply an OS object that is used to provide an indicator for a
system event. Examples of events include data becoming ready for use or
sensor values being read. You can find out more about events in Chapter 7.

When an extended task enters the waiting state, then the OS will dispatch
the highest priority task that is ready to run. When an event is set, the task is
moved from the waiting to the ready state. Note that extended tasks return
to the ready state and not the running state. This is because, during the time
that the extended task was in the waiting state, some other higher priority
task may have been activate and then dispatched.

Task Priorities

AUTOSAR OS allows tasks to share priorities. When tasks have the same
priority, each task at the shared priority will run in mutual exclusion from
each other. This means that if one task is running, then its execution will be
serialized with all other tasks that share the same priority.

When tasks share priorities they are released from the ready state in first-in,
first-out (FIFO) order.

Tasks

4.2.3

4.3

When shared priorities and queued task activation are used together,
RTA-0S3.0 maintains an internal queue at the priority level. You should
avoid this type of configuration if you want a fast and efficient OS.

If you need to serialize the execution of a set of tasks, then this is best
achieved using unique priorities and AUTOSAR OS’s internal resources (see
Section 6.5) rather than sharing task priorities. Using internal resources guar-
antees serialization, just like sharing priorities, and the unigueness of task
priorities means that when multiple tasks become ready at the same time
the OS has a statically defined dispatch ordering

Sharing priorities between tasks is bad real-time programming practice
because it prevents you from performing schedulability analysis on your

A system. This is because, in the general case, sharing priorities makes
the release point for a task (i.e. the point from where a response time is
measured) computationally impossible to calculate. If it is impossible to
work out when the release occurs then it is impossible to decide if the
task will meet its deadline!

Queued Task Activation

Under most circumstances you will only activate a task when it is in the sus-
pended state. In fact AUTOSAR OS treats the activation of a task while it is in
the ready, running or waiting states as an error case.

However, there are some situations where you may need to implement a sys-
tem where the same task must be activated a number of times but the short-
est time between successive activations can be less than the time needed to
run the task. For example, you might be unpacking CAN bus frames in a task
and need to handle transient bursting of frames on the network.

This means you need to queue task activations at run time. AUTOSAR OS
allows you to queue the activation of basic tasks to help you build this kind
of application. Like other things in AUTOSAR OS the size of the task queue is
statically configured. You must specify the maximum number of activations
that can be pending for the task.

If the queue is already full when you try and activate the task then this will
be handled as an error and the activation will be ignored.

Of course, you might have tasks that share priorities and use queued activa-
tion. In this case, tasks are queued in FIFO order in a queue with a length
equal to the sum of the queue lengths for each task that shares the same
priority. However, each task can only use up to its own number of entries.

Conformance Classes

You know now that tasks can:

Tasks

51

4.4

52

* Be basic or extended

¢ Can share priorities

¢ Can queue activations.
However, AUTOSAR OS places some restrictions on what kind of features be
used together. These are called Conformance Classes and are used to group

task features for ease of understanding, enable partial implementations of
the standard and provided scalability for different classes of application.

AUTOSAR OS has four conformance classes:

BCC1 - Basic tasks, unique priority and no queued activation.
BCC2 - Basic tasks, shared priorities and/or queued activation.

ECC1 - Extended tasks, unique priority and no queued activation. An ECC1
task is like a BCC1 task, but it can wait on events.

ECC2 - Extended tasks, shared priorities and no queued activation. Note
that, unlike BCC2 tasks, ECC2 tasks cannot queue activations.

The following table gives a quick summary of the types tasks that can be
used in different classes of AUTOSAR OS system:

System Class Basic Extended Shared Queued
Tasks Tasks Task Prior- Task Acti-
ities vation
BCC1 v X X X
BCC2 v X v v
ECC1 v v X X
ECC2 v v v vl

Each conformance class requires more resources - a system that is BCC1 will
be much faster and smaller than a system which is ECC2. You do not need to
be concerned about which conformance class to use - RTA-0S3.0 supports all
conformance classes and will calculate the conformance class from your OS
configuration.

Maximizing Performance and Minimizing Memory

RTA-0S3.0 is designed to be very aggressive at minimizing code and data us-
age on the target application. It will analyze the characteristics of the appli-
cation and generate a system containing only the features that are required.

1But only for basic tasks within the ECC2 system. Activations of extended tasks cannot be
queued.

Tasks

4.5

Your choice of task characteristics has a major influence on the final applica-
tion size and speed. There is “no such thing as a free lunch”, so as you add
tasks to your application that use more advanced types of tasks, the system
will inevitably become slightly larger and slower.

A system with one or more BCC2 tasks has a greater overhead than one
with only BCC1 tasks. A system without shared priorities, even if multiple
activations are allowed, will be more efficient than one with shared priorities.

A system with ECC1 tasks has an even greater overhead still and a system
with one or more ECC2 tasks has the largest overhead of all.

To make RTA-0S3.0 as efficient as possible you should use basic tasks only
and not share priorities.

Task Configuration

Unlike other real-time operating systems that you might have seen, the tasks
in AUTOSAR OS (and, therefore, RTA-0S3.0) are defined statically. This tech-
nique is used because it saves RAM and execution time.

Tasks cannot be created or destroyed dynamically. Most of the information
about a task can be calculated offline, allowing it to be stored in ROM.

The maximum number of tasks supported by RTA-0S3.0 depends upon your
port and you should consult the RTA-0S53.0 Target/Compiler Port Guide for fur-
ther details. For all ports, RTA-OS3.0 can provide a highly optimized system if
you limit your number of tasks to the native word size of your microcontroller.

Device Type MaX|mum Optimal

8-bit 16 or fewer
16-bit 256 16 or fewer
32-bit 1024 32 or fewer

When you configure your task properties, you will most likely use the
rtaoscfg configuration tool. Figure 4.5 shows the task configuration entry.

An AUTOSAR task has 5 attributes:

Name. The name is used to refer to, or provide a handle to, C code that you
will write to implement the task functionality.

Priority. The priority is used by the scheduler to determine when the task
runs. Priorities cannot be changed dynamically. Zero is the lowest pos-
sible task priority in RTA-OS3.0. Higher task priorities are represented
by larger integers. Tasks can share priorities, but if you are building
a real-time system, then you should not do this because it cannot be

Tasks

53

54

ETAS.rtaos* - RTA-053.0 05 Configuration Tool

Ch B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

[l General

Gereral |F\ssuurces Reqister Selsl Application MD\:IESI Evenlsl

=10l

- Target i) Priarity |1
- Oplimizations

- Alarms i) Activations [fl

= Application modes

- LimpHomeMode i) Task Preemptability | FULL

- NomaldperatingMade i) Stack Size [bytes)

|<undshned>
-~ OSDEFAULTAPPMODE

- ServiceMode i) WaitGtack size [bytes] [<undefined>

- Counters
7l Events

E |<undehned>
E

E-15Rs

E

E

i) Execution Budget

o Register sets

+|- Fesources

- Schedule tables
Bl Tasks

- TaskA

miliseconds _'J

- TaskB

Taskl
TaskD

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

o TaskE | Source | Desoription

[RTA-TRACE Configuration
454 Builder

4] Project Files

wWorking File: configuration. <ml

Build Status: idle

Figure 4.5: Task Configuration

analyzed.

Scheduling. A task can run fully preemptively or non-preemptively.

general, fully preemptive scheduling should be selected over non-

preemptive scheduling for best application performance.

Activations. The maximum number of task activations that can be queued
in the ready state. For a BCC1, ECC1 and ECC2 tasks the number of
activations is always one. This means that these types of task can only
be activated if they are in the suspended state. Any attempt to acti-
vate a such a task when it is not suspended will result in an error. A
value greater than one indicates that the OS will queue activations (for

example to smooth out transient peak loads in your application).

Autostart. This controls whether the task is started automatically when you

start the OS.

The number of tasks that can be defined is fixed for each target (it
is usually 256 or 1024, depending on the target processor). The RTA-
0S3.0 Target/Compiler Port Guide for your target will contain further

information.

Tasks

4.5.1

4.5.2

Scheduling Policy

A fully preemptable task can be preempted by a task of higher priority. That
means that when a higher priority task is made ready to run, it will run in
preference.

You can prevent a task from being preempted by declaring it to be
non-preemptable at configuration time. Tasks that are declared as non-
preemptive cannot be preempted by other tasks. When a non-preemptive
task moves to the running state it will run to completion and then terminate
(unless it makes a Schedule() call, as explained in Section 4.10). Making
tasks non-preemptive therefore means that if a lower priority task is started
before a higher priority task, then the higher priority task will be prevented
from executing for the time that the lower priority task runs. This is called
blocking. Systems that use non-preemptive tasks will, in general, be less
responsive than systems that run preemptively.

Even if a task is non-preemptive, it can still be interrupted by ISRs.

You will often find that it is unnecessary to use non-preemptable tasks be-
cause there are other, more suitable methods, which you can use to achieve
the same effect. If you use these other techniques, it will usually result in a
more responsive system. You will find out more about these techniques later,
but they include:

* Using standard resources to serialize access to data or devices.

¢ Using internal resources to specify exactly which other tasks cannot
cause preemption.

Queued Activation

Under most circumstances you will only activate a task when it is in the sus-
pended state. However, you may need to implement a system where the
same task must be activated a number of times and where the shortest time
between successive activations is less than the time needed to run the task.

If this happens you will be activating the task while it is in the ready state or
the running state. This means that activations will be lost.

To prevent loss of activations, you must specify the maximum number of
multiple activations required for the task.

In accordance with the AUTOSAR OS standard, this feature is only avail-
able for basic tasks. You cannot specify multiple activations for ex-
tended tasks.

Tasks

55

4.5.3

56

ETAS.rtaos* - RTA-053.0 05 Configuration Tool = = ;IEIEI
i & | 7] [| Working: configuration.xml

Eile Miew Project Reports Help

488 0 Configuration

Gereral |F\ssuurces Reqister Selsl Application MD\:IESI Evenlsl

[l General

=T arget i) Priority |2

- Oplimizations
- Alarms i) Activations |zn
i A??t?;ﬂi‘”ﬂ::afda i) TeskPresmptabiiy [FULL 5|

: NomalOperatinghode i) StackSizefbytes] [<undefined

- OSDEFAULTAPPMODE

- ServiceMode i) WaitGtack size [bytes] [<undefined>
- Counters - o
- Events i) Execution Budget |<undehned> miliseconds _J
- 15Rs
[+~ Register sets
[Resources
- Schedule tables
Bl Tasks

- TaskA

- TaskB

TaskC Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard
TaskD
- TaskE | Source | Desoription

E RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 4.6: Specifying the number of queued activations

You will use rtaoscfg to specify the maximum number of simultaneous task
activations. Figure 4.6 shows that, for the task in this example, the maximum
number of activations has been set to ten.

When multiple activations are specified, RTA-0S3.0 automatically identifies
that the task is BCC2. When you build your application, RTA-OS3.0 will cal-
culate the maximum size of the multiple activation queue needed for each
BCC2 task.

When BCC2 tasks share priorities, RTA-0S3.0 uses a FIFO queue to hold pend-
ing activations. If a BCC2 task has a unique priority in your AUTOSAR 0OS
application then RTA-OS3.0 automatically optimizes the queuing strategy to
counted activation. Counted activation is significantly more efficient than
FIFO activation and should be used wherever possible.

Auto-starting Tasks

Tasks can be auto-started, which means that when the operating system
starts, they are activated automatically during Start0S().

For basic tasks, which start, run and then terminate, auto-starting a task will
make it run exactly once before it will return to the suspended state (from
where it can be activated again). Auto-starting is mainly useful for starting
extended tasks that wait on events because it removes the need to write

Tasks

4.6

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
Gl B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

Autostarted Tasks | Autostarted Alarms | Autostaited Scheduls Tables

El- General
- Target
- Optimizations The following Tasks are autostarted in Application Mode '0SDEFALLTAPPMODE
G- Alaims
=~ Application modes
- LimpHomeMode Avvailable: 5] 5 I Inlse ‘
- Narmallperatingtd ade Taskay
- OSDEFAULTAPPMODE TaskC ;I
- ServiceMode ToekE <
- Counters
B Events 2%
B 15Rs
[#- Register sets
[Resources
- Schedule tables
Bl Tasks
e Taskd,
- TaskB
TaskC Check Now | Clear All | Clear Selected | Copy Selected ko Clipboard
TaskD
e TaskE | Source | Description

[& RTA-TRACE Configuration

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 4.7: Configuring auto-started tasks

code to activate the tasks.

rtaoscfg can be used to specify that a task is only auto-activated in specific
application modes, choose the application mode in question and select the
tasks that you want to auto activate.

In Figure 4.7, TaskA and TaskD are auto-started in the OSDEFAULTAPPMODE
application mode but tasks TaskB, TaskC and TaskE are not.

Stack Management

RTA-0S3.0 uses a single-stack model which means that all tasks and ISRs run
on a single stack. The single stack is simply the C stack for the application.

As a task runs, its stack usage grows and shrinks as normal. When a task
is preempted, the higher priority task’s stack usage continues on the same
stack (just like a standard function call). When a task terminates, the stack
space it was using is reclaimed and then re-used for the next highest priority
task to run (again, just as it would be for a standard function call). Figure 4.8
shows how the single stack behaves as tasks are stated, preempted and ter-
minate.

In the single stack model, the stack size is proportional to the number of
priority levels in the system, not the number of tasks/ISRs. This means that

Tasks

57

4.6.1

58

2 ticks A 3iicks

} 3 ticks A siicks 4 ticks
= (-

Priority

7 ticks

10 ticks | 16 ticks -

| 40 ticks |

Time

Stack

Time

Figure 4.8: Single-stack behavior

tasks which share priorities, either directly, or by sharing internal resources,
or through being configured as non-preemptive, can never be on the stack at
the same time. The same is true of ISRs that share priorities in hardware. This
means that you can trade system responsiveness, i.e. how long it takes for a
task or ISR to complete, for stack space by simple changes to configuration.

Figure 4.9 shows the execution of the same task set, with the same arrival
pattern as Figure 4.8 but this time the tasks are scheduled non-preemptively.
You can see that the response times for the higher priority tasks are much
longer than when they were preemptively scheduled but the overall stack
consumption is much lower.

The single stack model also significantly simplifies the allocation of stack
space at link time as you need only allocate a single memory section for
the entire system stack, in exactly the same way as if you were not using an
0OS at all.

Working with Extended Tasks

RTA-0S3.0 uniquely extends the single stack model to provide support for
extended tasks without any impact on the performance of basic tasks.

In RTA-0S3.0, the lifecycle of an extended task is as follows:

Tasks

7 ticks ‘

Priority

| 13 ticks | | 10 ticks |

\ L 20 ticks |

_ Task 2 now becomes ready again while it is running.
7

| 11 ticks | he task would have to be queued

\4

Time

Stack

e || B O/ BE B

Time

Figure 4.9: Single-stack behavior with non-preemptive tasks

Suspended = Ready The task is added to the ready queue.

Ready 2 Running The task is dispatched but, unlike a basic task where the
context is placed in the top of the stack, the context is placed in the
stack space at the pre-calculated worst case preemption depth of all
lower priority tasks.

Running 2 Ready The extended task is preempted. If the preempting task
is a basic task, then it is dispatched on the top of the stack as normal.
If the preempting task is an extended task, then it is dispatched at the
pre-calculated worst case preemption depth of all lower priority tasks.

Running = Waiting The task’s “Wait Event Stack” context, comprising the
OS context, local data, stack frames for function calls, etc, is saved to
an internal OS buffer

Waiting 2 Ready The task is added to the ready queue.

Running = Suspended The task’s “Wait Event Stack” context is copied
from the internal OS buffer back onto the stack at the pre-calculated
worst case preemption depth of all lower priority tasks.

This process allows the additional cost of managing extended tasks to apply
only to extended task themselves. Basic tasks in system including extended

Tasks

59

4.6.2

60

Task E
[Priority 5]

Worst Case Stack Usage for all tasks lower priority than Task D 0S context D

0S context E
— s Task C Task C
as| as| Priority 3 Priority 3]
[Priority 3] [Priority 3] izl Frnzel
0S context C 0S context C

0S8 context C 0S context C

0OS context D

Stack

Task B
IPT::r;yBZ] [Priority 2]

Task B Task B Task B Task B
[Priority 2] [Priority 2] [Priority 2] [Priority 2]

Task B
[Priority 2]

OS context B OS context B OS context B OS context B 0OS context B OS context B OS context B

Task A
[Priority 1]

Task A Task A
[Priority 1] [Priority 1]

Task A Task A Task A

Task A

[Priority 1] [Priority 1] [Priority 1] [Priority 1]

0S context A
Startos()

OS context A 0S context A
StartOS() StartOS()

0S context A 0S context A 0OS context A
Startos() Startos() Start0S()

0S context A
Start0S()

Time

Task E
Task Dis Task D executes Task C activated Task C terminates. Task
activated. The WaitEvent() and and preempts. preempted by
OS context is context is saved. Task B Task E.
stored on the top Task B resumes
of the stack but and consumes placed on top of
the task’s context more stack (e.g stack. User
starts at the by calling a context
calculated worst function)
case offset

Task C executes
SetEvent()/
Task D resumes.
OS context

C resumed and
continues to
consume stack.

preempted Task
A which itself
preempted the

Task B has
idle mechanism

Figure 4.10: Single-stack management with Extended Tasks

tasks have the same performance as they would have in a basic task only
system.

The key parts of this lifecycle are the dispatch/resume at the worst case pre-
emption depth and the copy on and off the stack. The dispatch at the worst
case preemption point guarantees that whenever an extended task resumes
after waiting, it can resume with its local variables at exactly the same lo-
cation in memory. It is guaranteed that every possible preemption pattern
of lower priority tasks will never exceed the dispatch point of the extended
task. The dispatch-wait-resume cycle for an extended task D is illustrated in
Figure 4.10.

The copy off and on allows the extended tasks stack context to be restored.
This is necessary because higher priority tasks and/or ISRs may occur while
the extended task is waiting. These may consume stack space greater than
the worst case preemption point (remember that the worst case point is
for lower priority objects only), thereby overwriting the context of the ex-
tended task. However, fixed priority preemptive scheduling guarantees that
no higher priority task can be ready to run at the point the extended task is
resumed (it could not be resumed if this was the case).

Specifying Stack Allocation

In systems that contain only basic tasks it is not necessary to tell RTA-OS3.0
any stack allocation unless you are doing stack monitoring (see Section 14.1).
You simply need to allocate a stack section large enough for your application

Tasks

in your linker/locator. This is one of the benefits of the single stack architec-
ture.

For applications that use extended tasks, you allocate your linker section as
before, but you must also tell RTA-OS3.0 the stack allocation for every task
in your configuration that is lower priority than the highest priority extended
task, even if they are basic tasks. RTA-0S3.0 uses the stack allocation infor-
mation to calculate the worst case preemption point for each extended task
off-line.

The stack allocation you specify is the entire stack used for the task and
includes:

¢ the OS context
* space for local variables in the task body

* the space required for any functions called from the task body (and their
locals)

You can use RTA-0S3.0’s stack measurement feature to obtain accurate val-
ues for the stack allocation. See Section 14.1 for further details.

RTA-OS3.0 only uses the stack information you provide to calculate the
worst case preemption point. RTA-0S3.0 does not reserve any stack
space. You must still specify the stack application stack space in the
same way you would do for a normal application.

Figure 4.11 shows how stack allocation is configured.

While RTA-0S3.0 uses a single-stack model, on some ports this does not nec-
essarily mean that just one physical stack is used. It may be the case that
either the compiler or the hardware forces data onto different stacks auto-
matically. For example, some devices place interrupts on to a dedicated in-
terrupt stack.

Even with multiple physical stacks, RTA-OS3.0 still provides the benefits of the
single-stack architecture - the stack space required on every physical stack
can be overlaid when tasks and/or ISRs share a priority level. However, for the
stack allocation to work correctly you will need to specify the space needed
on each stack. RTA-0S3.0 will automatically ask you for multiple stack values
if you configure a target for which this information is required. Figure 4.12
shows a dialogue box from such a configuration where there are two stacks:
‘Supervisor’ and ‘Context’.

Tasks

61

62

Eile Miew Project Reports

53.0 05 Configuration Tool
O 7 |7 122 | working: configuration. sl = |

1
Help

45# 05 Configuration

El- General
- Target
-~ Optimizations

Alarrres

=~ Application modes

LimpHomet ode:

- Warmallperatingtd ade
-~ OSDEFAULTAPPMODE
- ServiceMode

Register sets
Resources
- Schedule tables
Bl Tasks
- TaskA
- TaskB
TaskC
TaskD
TaskE

[t RTA-TRACE Configuration
454 Builder

4] Project Files

Gereral |F\ssuurces Reqister Selsl Application MD\:IESI Evenlsl

(i) Friority |3

(i) Activations |1

(i) Task Preemptabiity [FULL =l
(i) Stack Size (hytes] Z]

1i) WwaitStack size (bytes] |<undafmed>

i) Erecution Budget |<undehned> millizeconds ﬂ

=10l

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Description

wWorking File: configuration. xml

Build Status: idle

Figure 4.11: Stack Allocation Configuration

Enter Stack Yalue i

Supervizor |E4 bytes
Corbext Idl bytes

0k I Cancel

Figure 4.12: Stack Allocation Configuration for multiple stacks

Tasks

4.6.3

Optimizing the Extended Task context save

Recall from Section 4.6.1 that each time an extended task enters the waiting
state, RTA-OS3.0 saves the task’s “Wait Event Stack” context and that the
context is restored when the task re-enters the running state.

RTA-0S3.0 saves the ‘Wait Event Stack” context in an internal buffer. By de-
fault, RTA-OS3.0 allocates a buffer equal to the worst case stack allocation
you specify for the task. Assuming that your stack allocation is correct, this
should always be enough to hold the worst case stack usage when you call
WaitEvrent().

This sounds expensive because it appears that RTA-OS3.0 needs to allocate
twice the RAM you would expect for each extended task: once on the stack
and once for the task’s save/restore buffer! However, RTA-OS3.0 needs to
save the context only when WaitEvent() is called. This means that you can
significantly optimize the RAM size required by RTA-OS3.0 when using ex-
tended tasks by allocating only enough buffer space to save the worst case
“Wait Event Stack” context, rather than the absolute worst case space re-
quired by the task.

Typically, most applications that use extended tasks only call WaitEvent()
from the task’s entry function where only a small amount of local data is on
the stack so this optimization can be applied in most extended task systems.

You can control exactly how many bytes of stack are saved by RTA-OS3.0 by
specifying the worst case stack depth at the point you call WaitEvent() as
shown in Figure 4.13.

If you leave the WaitEvent () Stack allocation as ‘undefined’ then RTA-
0S3.0 will default to use the number of bytes you specified for the stack
allocation.

Using Default Values

While you should set a stack value for each task for memory efficiency, RTA-
0S3.0 allows you to set a global default value that is used by all tasks. This
can be found in General = Default Stack Values.

If a Stack Allocation is not configured for a task, then RTA-0S3.0 will use the
default value for:

¢ Calculating the worst case stack offset

¢ Configuring the WaitEvent () save/restore area

¢ Stack Monitoring (when configured)

Tasks

63

4.6.4

4.6.5

64

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

Gereral |F\ssuurces Reqister Selsl Application MD\:IESI Evenlsl

[l General

- Target i) Prinity |3

- Oplimizations
- Alarms i) Activations |1
B A??t?;gﬂ”ﬂ::afda i) TaskPreemptabity |FULL =]

- Warmallperatingtd ade i) Stack Size fhytes] |54

-~ OSDEFAULTAPPMODE

- ServiceMode i) WaitStack size (bytes) [8
[+~ Counters - =
B Everts i) Execution Budget |<undehned> miliseconds _J
E-15Rs
[+~ Register sets
[Resources
- Schedule tables
Bl Tasks

- TaskA

- TaskB

TaskC Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard
TaskD
o TaskE | Source | Desoription

[RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 4.13: Specifying a WaitEvent () Stack allocation

The specification of a task/ISR-specific stack allocation overrides the default
value.

Additional Stack Information

The calculated worst case dispatch points are relative to the base address of
the stack at the point the OS is started. These offsets are stored as ROM data
in the extended task control blocks and are added to the base stack pointer
at runtime.

RTA-0OS3.0 typically needs to know various port-specific stack measurements.
The exact details of how this is done are port-specific. You should consult the
RTA-0S53.0 Target/Compiler Port Guide for your port for additional guidance.

Handling Stack Overrun

If the stack allocation figures you provided to RTA-OS3.0 are wrong (i.e. they
are too small) then this is a potential source of errors at runtime. There are
three things that can go wrong:

1. the extended task cannot start because the current value of the stack
pointer is higher than the calculated worst case dispatch point when
RTA-0OS3.0 tries to dispatch an extended task. This means one (or more)

Tasks

FPETAS.rtaos* - RTA-D53.0 05 Configuration Tool =] 3]
i =7 A |7 [| working: configuration.ml -

File Wiew Project Reports Help

ﬁ 05 Configuration

Generall Default Stack Yalues [bptes] Hooks | Error Hoole

=+ General

o Target (i) Cal Startup Hook [Facse =l

“o Optimizations
- larms L) Cal Shutdawn Hook [FaLsE =l
[+ Application modes
- Counters i) Call Pre-Task Hook IFALSE j
[+ Events -

i) Call Post-Task Hook FALSE o
- 15Rs L I —I
5 Register sels () Cal Stackevermun Hook =
[Fesouces
[Scheduls tables Li) Call Protection Hook IFALSE j
[+ Taszks
Setal Clear Al |

Check Mow | Clear All | Clear Selected | Copy Selected bo Clipboard
!E RTA-TRALCE Configuration

‘ | Source | Description

4% Builder

&5 Project Files

Warking File: configuration.xml Build Skatus: idle

Figure 4.14: Enabling the 0s_Cbk_StackOverrunHook()

of the lower priority tasks that are on the stack has consumed too much
space (Stack monitoring, described in Section 14.1, can be used to iden-
tify which task is at fault).

2. the extended task cannot resume from the waiting state because the
stack pointer is higher it should be. This may occur when SetEvent()
has been called for an event on which the extended task was waiting
and the extended task is now the highest priority task in the system.

3. the extended task cannot enter the waiting state because the cur-
rent amount of stack the task is using is greater than the size of the
‘WaitEvent () stack’ that was configured.

When RTA-0S3.0 detects a problem with extended task stack management it
will call Shutdown0S () with the error code E_0S_STACKFAULT.

If you want to debug the problem then you can enable the stack fault hook as
shown in Figure 4.14.

When configured, RTA-0S3.0 will call the user-provided callback
0s_Cbk_StackOverrunHook() instead of Shutdown0S() when a stack
fault occurs. The callback is passed two parameters:

Tasks

65

4.7

66

1. Overrun tells you the number of bytes of the overrun

2. Reason tells you what caused the overrun

For an extended task system without stack monitoring enabled, the overrun
can be either:

* OS_ECC_START - the extended task could not start (or resume from wait-
ing) because the current stack pointer exceeds the worst case dispatch
point calculated at build time. The cause of this fault is that one (or
maybe more) of the lower priority tasks has exceeded the configured
stack allocation. To fix this problem you need to identify which task is
in error. Chapter 14 explains how to do this using RTA-0S3.0’s stack
monitoring feature.

e OS_ECC_WAIT - the extended task could not enter the waiting state be-
cause the amount of stack space it has consumed exceeds the config-
ured WaitEvent () stack size. To fix this problem, you should increase
the WaitEvent () stack size by at least the nhumber of bytes indicated
by the Overrun parameter.

Code Example 4.1 shows a simple example.

#ifdef 0S_STACKOVERRUNHOOK
FUNC (void, OS_APPL_CODE) 0s_Cbk_StackOverrunHook(
0s_StackSizeType Overrun, 0s_StackOverrunType Reason) {

{
/* Identify problem x/
for(;;) {
/* Do not return! x/
}
}

#endif /x 0S_STACKOVERRUNHOOK x/
Code Example 4.1: Minimum recommended Os_Cbk_StackOverrunHook()

Implementing Tasks

Tasks are similar to C functions that implement some form of system func-
tionality when they are called by RTA-OS3.0.

You do not need to provide any C function prototypes for task entry
functions. These are provided though the 0s.h header file generated
by RTA-0S3.0.

When a task starts running, execution begins at the task entry function. The
task entry function is written using the C syntax in Code Example 4.2.

Tasks

4.8

TASK(task_identifier)
{

/* Your code x/

Code Example 4.2: A Task Entry Function

Remember that basic tasks are single-shot. This means that they execute
from their fixed task entry point and terminate when completed.

Code Example 4.3 shows the code for a basic task called BCC_Task.

#include <0s.h>

TASK(BCC_Task) {
do_something();
/* Task must finish with TerminateTask() or equivalent. x/
TerminateTask();

}
Code Example 4.3: A Basic Task

Now, compare the example in Code Example 4.3 with Code Example 4.4.
Code Example 4.4 shows that extended tasks need not necessarily terminate
and can remain in a loop waiting for events.

#include <0s.h>
TASK(ECC_Task) {
InitializeTheTask();
while (WaitEvent(SomeEvent)==E_0K) {
do_something();
ClearEvent (SomeEvent);

}

/* Task never terminates. x/

Code Example 4.4: Extended Task Waiting for Events

Activating Tasks

A task can only run after it has been activated. Activation either moves a
task from the suspended state into the ready state or it adds another entry
to the queue of ready tasks (if the task supports multiple activation). The
task will run once for each of the activations. It is an error to exceed the
activation count and your application will generate E_OS_LIMIT errors when
this happens (even in the Standard build status).

Tasks can be activated from both tasks and (Category 2) ISRs.

Tasks

67

4.8.1

68

Activating a task does not cause the task to begin executing immediately,
it just makes it ready to run. However, RTA-OS3.0 needs to check whether
the activated task has a higher priority than the currently running task and,
if it does, cause a context switch to occur so the new task can preempt the
currently running task.

When you activate a task RTA-OS3.0 from another task, the exact behavior
depends upon the relative task priorities. If the activated task has higher
priority than the currently running task, then the newly activated task will
preempt the current task. Otherwise, the task will remain on the ready queue
until it becomes the highest priority ready task.

In a well-designed real-time system, it is unusual for a task to activate a
higher priority task. Normally ISRs capture system triggers and then acti-
vate the tasks to do any associated processing. In turn, these tasks may
activate lower priority tasks to implement trigger responses that have longer
deadlines.

Observing this fact leads to one of the major optimizations in RTA-0S3.0. If
you specify that your tasks never activate higher priority tasks, RTA-0S3.0
can eliminate a large amount of internal code because a test for context
switch on each activation is never required because it cannot happen. This is
configured by selecting the “Disable Upwards Activation” optimization.

This is similar to the behavior when activating a task from an ISR. All ISRs
have a priority that is strictly higher priority than the highest task priority.
When a task is activated from an ISR it can never enter the running state
immediately so it is never necessary to check for a context switch. Such a
check is only necessary when leaving the ISR.

Direct Activation

Tasks can be activated in a number of different ways. The basic mecha-
nism for task activation is the ActivateTask() API call, which directly ac-
tivates a task. The ActivateTask(TaskID) call places the named task into
the ready state. The ChainTask(TaskID) call terminates the calling task (see
Section 4.11) and places the named task into the ready state.

API Call Description

ActivateTask() | A task or ISR can make this call to activate the task
directly.

ChainTask() A task can make this call to terminate the currently run-
ning task and to activate the task indicated.

Tasks

4.8.2 Indirect Activation

Besides directly activating tasks, it is possible to use other AUTOSAR OS
mechanisms to indirectly activate a task. These methods are described in
more detail in later chapters of this user guide.

Activation by an Alarm. For each alarm in the system, you can specify a
task that is activated each time the alarm expires.

Activation by a Schedule Table. For each schedule table in the system,
you can specify a task that is activated on one or more expiry points on
the table.

4.9 Controlling Task Execution Ordering

In many cases, you will need to constrain the execution order of specific tasks.
This is particularly true in data flow based designs where one task needs to
perform some calculation before another task uses the calculated value. If
the execution order is not constrained, a race condition may occur and the
application behavior will be unpredictable. Task execution ordering can be
controlled in the following ways:

¢ Direct activation chains (see Section 4.9.1).
* Priority levels (see Section 4.9.2).

* Non-preemptable tasks (see Section 2).

49.1 Direct Activation Chains

When you use direct activation chains to control the execution order, tasks
make ActivateTask() calls on the task(s) that must execute following the
task making the call.

Consider the following; there are three tasks Taskl, Task2 and Task3 that
must execute in the order Taskl, then Task2, then Task3. Code Example 4.5
shows example task bodies.

#include <0s.h>

TASK(Taskl) {
/* Taskl functionality. x/
ActivateTask(Task2);
TerminateTask();

}

TASK(Task2) {

Tasks 69

4.9.2

70

Task1 activates Task2

Task2 activates Task3

Increasing Priority

Task3

Time
Figure 4.15: Direction activation to control task execution order

/* Task2 functionality. x/
ActivateTask(Task3);
TerminateTask();

}

TASK(Task3) {
/* Task3 functionality. x/
TerminateTask();

}
Code Example 4.5: Using Direct Activation Chains

Figure 4.15 shows how these tasks would execute assuming that Taskl has
the highest priority and Task 3 has the lowest priority.

Using Priority Levels

The priority level approach to constraining task execution ordering can be
used to exploit the nature of the preemptive scheduling policy to control ac-
tivation order.

Recall from Section 4.1 that, under fixed priority preemptive scheduling, the
scheduler always runs the highest priority task. If a number of tasks are
released onto the ready queue, they will execute in priority order. This means
that you can use task priorities to control execution order.

Tasks

Task1 terminates
Task2 starts

Task1 calls Activate(Task2)

Task2 terminates
Task3 starts

Task1 calls Activate(Task3) Task2

Task2 in Ready state

Increasing Priority

v

Time

Figure 4.16: Using priority to control task execution order

Following on from our previous example, in Code Example 4.5, let’s assume
that Taskl has the highest priority and Task3 has the lowest priority. This
means that the task bodies can be rewritten to exploit priority level controlled
activation. This can be seen in Code Example 4.6.

#include <0s.h>

TASK(Taskl) {
/* Taskl functionality. x/
ActivateTask(Task2); /x Runs when Taskl terminates. x/
/* More Taskl functionality. x/
ActivateTask(Task3); /* Runs when Task2 terminates. x/
TerminateTask();

TASK(Task2) {
/* Task2 functionality. x/
TerminateTask();

}

TASK(Task3) {
/* Task3 functionality. =/
TerminateTask();

}

Code Example 4.6: Using Priority Level Controlled Activation

/* Taskl functionality. */

Figure 4.16 shows how these tasks would execute.

Tasks

71

4.10

4.10.1

72

Co-operative Scheduling in RTA-OS3.0

When a task is running non-preemptively, it prevents any task (including
those of higher priority) from executing. Sometimes, however, it is useful
for non-preemptive tasks to offer explicit places where rescheduling can take
place. This is more efficient than simply running non-preemptively because
higher priority tasks can have shorter response times to system stimuli. A
system where tasks run non-preemptively and offer points for rescheduling
is known as a co-operatively scheduled system.

The Schedule() API call can be used to momentarily remove the preemption
constraints imposed by both the non-preemptive tasks and the tasks using
internal resources.

When Schedule() is called, any ready tasks that have a higher priority than
the calling task are allowed to run. Schedule() does not return until all higher
priority tasks have terminated.

In the following code example, the non-preemptive task Cooperative in-
cludes a series of function calls. Once started, each function runs to com-
pletion without preemption, but the task itself can be preempted between
each function call.

#include "Cooperative.h"
TASK(Cooperative){
Functionl();
Schedule();/* Allow preemption */
Function2();
Schedule();/* Allow preemption */
Function3();
Schedule();/* Allow preemption */
Function4();
TerminateTask();

}

Figure 4.17 shows how two tasks, Taskl and Task2, which are co-operative
would interact. The white sections represent non-preemptable sections of
code.

Optimizing out the Schedule() API

Schedule() is of no use in a fully preemptive system. If you do not in-
tend to use it, you can disallow calls to Schedule() in rtaoscfg using
the “Optimizations, RTA-OS, Disallow Schedule()”. If you disallow calls to
Schedule() then you will see that the worst-case stack requirement for the
system is reduced.

Tasks

4.11

4.11.1

‘ Task2 terminates.

‘ Task1 is resumed
Task2 activated but —
cannot start until Task1 Task2

offers a premption point y 4 4
A A y
h

Task1 offers a
preemption point using \ 4

the schedule () APl call
Taski m

Time

Increasing Priority

v

Figure 4.17: Co-operative tasks

Terminating Tasks

Tasks that terminate in AUTOSAR OS must make an API call to tell the OS that
this is happening. The AUTOSAR OS standard defines two API calls for task
termination. One of these must be used to terminate any task. These API
calls are:

e TerminateTask()
¢ ChainTask(TaskID)
When a task has finished, it must make one of these API calls. This ensures

that RTA-OS3.0 can correctly schedule the next task that is ready to run.

TerminateTask() forces the calling task into the suspended state. RTA-0S3.0
will then run the next highest priority task in the ready state.

ChainTask(TaskID) terminates the calling task and activates the task
TaskID. The API is therefore like executing a TerminateTask() followed im-
mediately by ActivateTask(TaskID). Chaining a task places the named task
into the ready state.

Optimizing Termination in RTA-OS3.0

The AUTOSAR OS standard allows task termination API calls to be called by a
task at any point, including within a deeply nested set of function calls.

In Code Example 4.7, the task entry function makes nested calls to other
functions.

/* Include Header file generated by \RTAOS =/
#include <0s.h>

void Functionl(void) {

Tasks

73

4.12

74

Function2();

void Function2(void)
if (SomeCondition)
TerminateTask();

{
{
}

TASK(Taskl) {
/* Make a nested function call. x/
Functionl();
/* Terminate the task in the entry functionx/
TerminateTask();

Code Example 4.7: Terminating a Task

Code Example 4.7 shows that when Taskl runs, it calls Functionl().
Functionl() then calls Function2(). Function2() contains codes that can
terminate the calling task (in this example, this is Task1l).

The example is valid in AUTOSAR OS but is bad programming practice - equiv-
alent to the use of goto. At runtime, RTA-OS3.0 must store information that
allows it to clear the stack when the task terminates somewhere other than
the entry function. This is normally done using a setjmp/longjmp pair.

However, one of the key benefits of the a single-stack architecture is
that a task which terminates in its entry function can simply return -
TerminateTask() does not need to do anything. If all your tasks either do
not terminate or only terminate in their entry function, then the context that
RTA-0S3.0 saves to allow a return from anywhere does not need to be stored.

RTA-0S3.0 allows you to exploit good application design using the fast ter-
mination optimization (Optimizations = Fast Terminate). You can en-
able this optimization when all tasks that execute the TerminateTask() or
ChainTask() APIs only do so in their entry function. The optimization tells
RTA-0S3.0 not to generate code to save unnecessary context and, as a re-
sult, save stack space.

The Idle Mechanism

Any preemptive operating system must have something to do when there are
no tasks or ISRs to run. In AUTOSAR OS this is achieved by an idle mechanism.

Tasks

In RTA-OS3.0 the OS will sit in a busy wait loop doing nothing when there are
no tasks or ISRs to run.

However, you can override the default behavior by providing your own imple-
mentation of the idle mechanism by declaring a callback called 0s_Cbk_Idle.

The 0s_Cbk_Idle behaves in the same way as a task except that:

it cannot be activated

* it cannot be terminated
* it cannot wait for events
* it cannot be chained

¢ it cannot use internal resources

The 0s_Cbk_Idle has the lowest priority of any task in the system, so it runs
only when there are no tasks (or ISRs) that are ready to run. The idle mech-
anhism therefore gives you an “extra task” that is almost entirely free from
system overheads.

Code Example 4.8 shows an implementation of 0s_Cbk_Idle that is used to
control RTA-TRACE (see Chapter 17).

#include <0s.h>
FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle() {
#ifdef OS_TRACE
CheckTraceOutput();
UploadTraceData();
#endif /* OS_TRACE =/
return TRUE;

0S_MAIN()
{

/* System hardware initialization. x*/
Start0S(OSDEFAULTAPPMODE) ;
/* The call never returns x/

Code Example 4.8: An Idle Mechanism

0s_Cbk_Idle returns a boolean on exit that tells RTA-OS3.0 whether or not
to call 0s_Cbk_Idle again. When TRUE is returned then RTA-OS3.0 immedi-
ately calls 0s_Cbk_Idle again. When FALSE is returned then RTA-0S3.0 stops

Tasks

75

4.13

76

4 Entire sequence runs at OS level
All Category 2 ISRs are diabled
PostTaskHook () called PreTaskHook () called

Task2

Increasing Priority

Task2 activated
RTA-0S3.0 context switch starts

v

Time
Figure 4.18: The PreTaskHook() and PostTaskHook() Relative to Task Pre-
emption
calling 0s_Cbk_Idle and enters the default behavior of sitting in a busy wait
loop.

Pre and Post Task Hooks

Suppose that you need to execute some code before each task starts and/or
after each task ends, for example to profile a trace of execution. You can do
this using the PreTask and PostTask hooks provided by AUTOSAR OS.

The PreTask Hook is called by RTA-OS3.0 whenever a task moves into the
running state. This means that the PreTask Hook will also be called whenever
a task is resumed after preemption.

The PostTask Hook is called by RTA-OS3.0 whenever a task moves out of the
running state. The PostTask Hook will be called when the task terminates and
each time a task is preempted.

Figure 4.18 shows where the PreTask and PostTask Hooks are called relative
to task preemption.

Both of these hooks are only called when configured. Figure 4.19 shows how
to enable the hooks.

Code Example 4.9 shows how the hooks should appear in your code.

FUNC (void, OS_APPL_CODE) PreTaskHook(void) {
/* PreTask hook code. x/

FUNC (void, OS_APPL_CODE) PostTaskHook(void) {
/* PostTask hook code. x/

Code Example 4.9: The PreTaskHook and PostTaskHook

Tasks

ETAS.rtaus"’ - RTA-053.0 05 Configuration Tool =] E‘Ill
T e |7 | working: configuration.sml =

Eile ¥iew Project Reporks Help

48 05 Configuration

Generall Diefault Stack Yalues [bytes] Hooks IEIIUI Hook

[General
i blamsy, i) Call Startup Hook |FaLsE =l
[l Application modes
& Counters i) Call Shutdown Hook: IFALSE j
[Events
- I5Rs i) CallPre-Task Hook ITHUE j
- Register et D) Cal PostTask Hook -
i Resources
i Schedule tables (i) Call Stack-Fault Hook IFALSE j
Bt Tasks

i) Call Protection Hook. IFALSE j

Set Al Clear All

Check Mow | Clear all | Clear Selected | Copy Selected to Clipboard

| Source | Description

!E RTA-TRACE Configuration

435 Builder

5] Project Files

Working File: configuration, xml Build Status: idle

Figure 4.19: Enabling the PreTaskHook () and PostTaskHook ()

The PreTask and PostTask Hooks are called on entry and exit of tasks and
for each preemption/resumption. This means that it is possible to use these
hooks to log an execution trace of your application. Since the same PreTask
and PostTask Hooks must be used for all of the tasks in the application, it is
necessary to use the GetTaskID() API call to work out which task has been
or will be running when the hook routine is entered.

RTA-0S3.0 defines a set of macros that are only defined if the corresponding
hook is enabled. These macros are called:

* OS_PRETASKHOOK

* OS_POSTTASKHOOK

This allows you write code where the hooks can be conditionally compiled as
shown in Code Example 4.10.

#ifdef OS_PRETASKHOOK
FUNC (void, OS_APPL_CODE) PreTaskHook (void)

{

/* Your code */

Tasks 77

4.14

78

#endif /x OS_PRETASKHOOK x/
Code Example 4.10: Conditional Compilation of PreTaskHook

Saving Hardware Registers across Preemption

RTA-0S3.0 saves as little context as necessary on a context switch - only the
context for the correct operation of the OS is saved. However, you may find
that you need to save and restore additional application-dependant context
at runtime. For example, you may have tasks that use floating-point registers
and therefore will require the floating-point context for your microcontroller
to be saved across context switches.

You could choose to implement this by hand using the PreTask and PostTask
hooks and an application-managed stack. However, it becomes difficult to
optimize this type of implementation without making it fragile to changes in
OS configuration. You can either:

* always save the context on every switch into a task and then restore on
every switch out.

This model means you might be making unnecessary saves and re-
stores (for example, saving a register set when switching into a task
that doesn’t use it); or

¢ calculate the saves required offline and then write a more complex pair
of hooks that use GetTaskID()/GetISID() to work out of a save/restore
is needed.

This model is fragile because changes to the configuration, for example
adding new tasks/ISRs or modifying priorities, will mean that re-work is
necessary.

To avoid these issues, RTA-OS3.0 provides a simple general-purpose mecha-
nism for saving user-specific context together with the OS context. RTA-OS3.0
is able to exploit its knowledge of the priority space to calculate exactly which
tasks need to save register sets at runtime so that unnecessary saves are op-
timized away automatically, saving both the time and stack required for the
context switch. For example:

« if you only have one task or ISR that saves a given register set then no
save or restore is needed.

e if multiple tasks use the same register set but cannot execute at the
same time (because they are non-preemptable, share an internal re-
source or share priority) then RTA-OS3.0 does not need to save the reg-
ister set.

Tasks

Task 5 saves register Task 5 restores register
set shared with Task 3 set shared with Task 3

Task 4 does not use
the register set so
save is not needed

Task 3 saves register Task 3 restores register Task 3 restores register
set shared with Task 1 set shared with Task 1 A set shared with Task 1

Priority

Task 2 does not use
the register set so
save is not needed

Task 3 saves register
set shared with Task 1

Task 1 does not need to save register
set as it has lowest priority

v

Figure 4.20: Register saving in action

¢ a context switch into the lowest priority task that uses a register set
does not need to do a save because it can be guaranteed that no other
task can be using the set (because the lowest priority task could not be
running if a higher priority task was using the register set).

e similarly, a context switch from the highest priority task that uses a
register set does not need to do a save because no higher priority task
uses the register set and therefore cannot corrupt the context.

Figure 4.20 shows a register set that is shared by tasks 1, 3 and 5. You can
see that when a save is not needed (when switching into a task that does not
use the register set) then no context save is made.

Each register set you need to save needs to be declared to RTA-0S3.0 at con-
figuration time. rtaosgen uses the declaration to define two callback func-
tions that you must provide to save and restore the register set. Figure 4.21
shows the definition of three register sets.

Each task that uses a register set needs to declare this at runtime so that
rtaosgen can calculate the maximum number of sets that need to be saved.
Figure 4.22 shows one how this is done for a task.

RTA-0S3.0 does not know how or where to save and restore the register sets
you declare - it just knows how many saves are necessary and when to save
and restore them. For each register set you define, RTA-0S3.0 generates a
macro called 0S_REGSET_<RegisterSetName>_SIZE that defines the worst-

Tasks

79

80

File ¥iew Project Reports

4 T I |) [| working: configuration xml |

|
Help

458 05 Configuration

=) General

- Target

Optimizations

Alarms
Application modes
Counters
Events
I5Hs

FloatingPointReqgisters
SpecialFunctionR egisters
VolatleRegisters
=l Resources
- InternalR esource
- LinkedR esource
- StandardResource
- Gchedule tables
B Tasks
Taskd
- TaskB
- TaskC
- TaskD
- TaskE

RTA-TRACE Configuration

%] Project Files

=] Add Hew | ¥ Remaove Selected

There are currently 3 register sets

=l

Narme

FloatingPointR egisters

SpecialFunctionFegisters

Check Mow | Clear All | Clear Selected | Copy Selected ta Clipboard

| Source | Description

“Waorking File: configuration. x|

Build Status: idle

Figure 4.21: Register Set Definition

53.0 05 Configuration Tool

13 H |3 Id | waorking: configuration.xml - |

File ¥iew Project Reports

I
Help

45§ 05 Configuration

- General
Target
- Oplimizations
Alarms
= Application mades
- LimpHomet ode
- Nomallperatinghd ode
OSDEFAULTAFPMODE
ServiceMode
Cournters
Events
I5As
Register sets
Resources
- Gchedule tables
B Tasks
Taskd
- TaskB
- TaskC
- TaskD
- TaskE

RT&-TRACE Configuration

s Builder

4] Project Files

Genara\l Resources Hedister Sets | Anplication Mndasl Eventsl

The following Register Sets are used by Task 'TaskD*

=10/

Available

WolatileRegisters

Checkbow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Description

‘Working File: configuration,ml

Build Status: idle

Figure 4.22: Using a register set in a task

Tasks

4.15

case number of resister set saves required. You should use this in your appli-
cation code to define an array of size 0S_REGSET_<RegisterSetName>_SIZE
where each element of the array holds the saved register set.

You will also need to provide callback functions for the save and restore oper-
ations:

¢ 0s_Cbk_RegSetSave_<Name>(0s_RegSetDepthType Depth) is called
by RTA-OS3.0 whenever it is necessary to save a register set.

¢ 0s_Cbk_RegSetRestore_<NAME>(0s_RegSetDepthType Depth) is
called by RTA-OS3.0 whenever it is necessary to restore a register set.

Both of the callbacks are passed a Depth value that indicates the register set
to save or restore. Code Example 4.11 shows how the callbacks might should
appear in your code.

typedef volatile uint32 RegType;
#define VOLATILEREGISTER (*(RegTypex)(OxXxFECAFECA))

uint32 VolatileRegisterSaveArea[0S_REGSET_VolatileRegister_SIZE
1;

FUNC(void, OS_APPL_CODE) 0Os_Cbk_RegSetSave_VolatileRegister(
0s_RegSetDepthType Depth) {
RegisterSaveStack[Depth] = VOLATILEREGISTER;

}

FUNC(void, OS_APPL_CODE) 0Os_Cbk_RegSetRestore_VolatileRegister(
0s_RegSetDepthType Depth) {
VOLATILEREGISTER = RegisterSaveStack[Depth];

}
Code Example 4.11: Register Set Save And Restore

Summary

¢ Atask is a concurrent activity.
¢ There are two classes of tasks: basic and extended.

* Tasks can share priorities, though it is recommended that you do not do
this.

Tasks

81

82

Tasks are scheduled according to priority. When a higher priority task
is made ready to run it will preempt lower priority tasks but it will not
preempt any task that has been configured as non-preemptive.

Tasks exist in states: ready, running, suspended or waiting (however,
only extended tasks can enter the waiting state).

If a task terminates, it must call TerminateTask() or
ChainTask(TaskID) to do so.

Systems where all tasks that terminate do so in their entry functions
can use the “fast termination” optimization to minimize stack usage
and context switching time.

Tasks can only be activated when they are in the suspended state unless
you specify multiple activations.

The PreTask and PostTask Hooks allow you to execute code before your
task starts and after it ends. This can be used to profile your application
at run-time.

Tasks

5.1

5.2

Interrupts

Interrupts provide the interface between your application and the things that
happen in the real-world. You could, for example, use an interrupt to capture
a button being pressed, to mark the passing of time or to capture some other
stimulus.

When an interrupt occurs, the processor usually looks at a predefined location
in memory called a vector. A vector usually contains the address of the as-
sociated interrupt handler. Your processor documentation and the RTA-0S3.0
Target/Compiler Port Guide for your target will give you further information
on this. The block of memory that contains all the vectors in your application
is known as the vector table.

Single-Level and Multi-Level Platforms

Target processors are categorized according to the number of interrupt prior-
ity levels that are supported . You should make sure that you fully understand
the interrupt mechanism on your target hardware.

There are two different types of target:
Single-level. On single-level platforms there is a single interrupt priority. If

an interrupt is being handled, all other pending interrupts must wait
until current processing has finished.

Multi-level. On multi-level platforms there are multiple interrupt levels. If
an interrupt is being handled, it can be preempted by any interrupt of
higher priority. This is sometimes called a “nested” interrupt model.

Interrupt Service Routines

AUTOSAR operating systems capture interrupts using Interrupt Service Rou-
tines (ISRs). ISRs are similar to tasks; however, ISRs differ because:

* They cannot be activated by RTA-OS3.0 API calls.

¢ They cannot make TerminateTask() and ChainTask() API calls.

They start executing from their entry point at the associated interrupt
priority level.

¢ Only a subset of the RTA-0S3.0 API calls can be made.

The RTA-0S3.0 Reference Guide tells you the permitted calling context for
every API call. You can refer to this to see whether or not you can use an API
call in an ISR.

Interrupts

83

5.3

5.3.1

5.3.2

5.4

84

Category 1 and Category 2 Interrupts

AUTOSAR operating systems classify interrupts into two categories called
Category 1 and Category 2. The category indicates whether or not the OS
is involved with handling the interrupt.

Category 1 Interrupts

Category 1 interrupts do not interact with RTA-0S3.0. They should always be
the highest priority interrupts in your application. It is up to you to configure
the hardware correctly, to write the handler and to return from the interrupt.

You can find out more about Category 1 interrupt handlers in Section 5.6.1.

The handler executes at or above the priority level of RTA-OS3.0. However,
you can make RTA-OS3.0 API calls for enabling/disabling and resuming/sus-
pending interrupts.

Category 2 Interrupts

With Category 2 interrupts, the interrupt vector points to internal RTA-0S3.0
code. When the interrupt is raised, RTA-OS3.0 executes the internal code and
then calls the handler that you have supplied.

The handler is provided as an ISR bound to the interrupt (which you can think
of as a very high priority task). Execution starts at the specified entry point
of the ISR and continues until the entry function returns. When the entry
function returns, RTA-OS3.0 executes another small section of internal code
and then returns from the interrupt.

Figure 5.1 shows the state diagram for a Category 2 interrupt handler.

Figure 5.2 shows how the internal RTA-OS3.0 code wrappers can be visual-
ized.

Interrupt Priorities

Interrupts execute at an interrupt priority level (IPL). RTA-OS3.0 standardizes
IPLs across all target microcontrollers, with IPL 0 indicating user level, where
all tasks execute, and an IPL of 1 or more indicating interrupt level. It is
important that you do not confuse IPLs with task priorities. An IPL of 1 is
higher than the highest task priority used in your application.

The IPL is a processor-independent description of the interrupt priority on your
target hardware. The RTA-0S3.0 Target/Compiler Port Guide for your port
will tell you more about how IPLs are mapped onto target hardware interrupt
priorities.

On a single-level platform there are two IPLs, 0 and 1. IPL 0 means that the

Interrupts

Hardware

Interrupt Occurs Interrupt Vector Loaded

Jump to RTA-OS3.0 wrapper

OS Context Saved IfSR.entry function called
Normal ISR(Handler)
Execution : N executes

T

Return from interrupt-

ISR handler returns

OS Context Restored

RTA-OS3.0

Figure 5.1: Category 2 Interrupt Handling State Diagram

Interrupts

86

RTA-OS3.0 RTA-OS3.0

A [ISR entry latency] [ISR exit latency]
A A
- v
S Category 2 User
j -
o Interrupt Handler
\

[
»

F _ , Time
First instruction of user

Interrupt occuﬂ | Category2 ISR interrupt Interrupted thread resumes execution
handler
Last instruction of user
Category2 ISR interrupt
handler

285

Figure 5.2: Visualizing RTA-0S3.0 Category 2 Wrappers

target is not interrupted and tasks run in priority order. IPL 1 means that
the target is servicing an interrupt. As there is only one non-zero IPL, all
interrupts, both Categoryl and Category 2, run at the same priority. This
means that all interrupts are serialized.

On multi-level platforms, higher priority interrupts can preempt lower priority
interrupts and, therefore, the ISR handlers can be nested. So, for example, a
higher priority ISR can interrupt the execution of a low priority ISR. However,
an ISR can never be preempted by a task.

A Category 1 ISR must never be interrupted by a Category 2 ISR. This is be-
cause itis possible for a Category 2 ISR to activate a task and the OS therefore
needs to check for a context switch when leaving the ISR - this is what the
OS is doing in the second part of the “wrapper” function shown in Figure 5.2.
As ISRs can nest on a multi-level platform, this check must happen as each
interrupt exit. Now, if a Category 1 ISR could be preempted by a Category 2
ISR, on exit from the Category 1 ISR no checking for a context switch would
occur and the originally preempted task would resume instead of the acti-
vated higher priority task. This is priority inversion and can cause unknown
side-effects in your system.

This issue means that all Category 2 ISRs must have an IPL that is no higher

Interrupts

5.4.1

5.4.2

IPL Max

Category 1 ISRs

IPL i+1
OS Level

IPLi

IPL 1

Increasing Interrupt Priority Level (IPL)

IPL O [User Level]

IPL 0 [User Level]

Increasing Interrupt Priority Level (IPL)

(a) Single-level (b) Multi-level

Figure 5.3: Interrupt Priority Hierarchies

than the lowest priority Category 1 ISR. The RTA-OS3.0 automatically checks
this at build time and will generate an error if this is the case.

The interrupt priority hierarchies for single and multi-level platforms are
shown in Figure 5.3.

User Level

User level is the lowest interrupt priority level that allows all interrupts to be
handled. All tasks start executing at user level from their entry point.

A task will sometimes need to run above user level, for example it may need
to access data shared with an ISR. While the data is being accessed it must
prevent the interrupt being serviced. The simplest way to do this is for the
task to disable interrupts while the data is being accessed. This is discussed
in Section 5.7. An alternative mechanism is to use AUTOSAR OS’s resource
mechanism. This is discussed in Chapter 6.

An ISR may preempt a task even when the task is running with interrupt
priority level above user level. It can only do this, however, if the ISR has a
higher interrupt priority level than the current level.

OS Level

The priority of the highest priority Category 2 ISR defines OS level. If exe-
cution occurs at OS level, or higher, then no other Category 2 interrupts can
occur.

RTA-0S3.0 uses OS level to guard against concurrent access to internal OS
data structures. Any RTA-OS3.0 API that manipulates the internal state of the

Interrupts

87

5.5

88

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

ﬁDS Configuation 05 Configuration > [SAs > Cat2ISA
General
&) Gonerdl | F\ssuurcesl Register Selsl
- Target (i) Categomy [caTEGORY_2 |
- Oplimizations 1)
& Alarms i) Pricrity IE _'J
B Application modes Li) Address / Vectar
(- Counters
[Events i) Stack Allocation [bytes) | <undefined>
E-15Rs
- Cat1ISR Li) Erecution Budget |<undehned> milliseconds ﬂ
- Catz1SR
Register sets

Resources
Schedule tables
[Tasks

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Desoription

[RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 5.4: Configuring an Interrupt using in rtaoscfg

OS will perform some (if not all) of its execution time at OS level. OS hooks
(for example the Error Hook, PreTask and PostTaskHook and OS callbacks also
run at OS level. If a task executes at OS level, then no RTA-0S3.0 operations
will take place (except for calls made by the task).

Interrupt Configuration

In RTA-0S3.0, interrupts are configured statically using rtaoscfg. Figure 5.4
shows how an interrupt has been constructed.

At the simplest level, an interrupt has the following attributes:

An interrupt name. The name is used to refer to C code that you will write
to implement the handler functionality (you will learn how to do this in
Section 5.6).

An interrupt category. This is either Category 1 if the handler does not
need to execute RTA-OS3.0 API calls and Category 2 otherwise.

An interrupt priority. The priority is used by the scheduler to determine
when the interrupt runs (in a similar way to a task priority being used
for tasks). Priority is a microcontroller specific parameter so an RTA-
0S3.0 target must be selected before you can set a priority. Note that
some targets only support a single interrupt priority.

Interrupts

5.5.1

On microcontrollers where the IPL is user-programmable then it is
your responsibility to ensure that the programmed priority level of
an interrupting device matches the level you have configured for
RTA-0S3.0. RTA-0S3.0 is not able to do this for you as this must
occur before the OS is started because there may be Category 1
ISRs that need to execute. RTA-OS3.0 may generate appropriate
configuration data for you to use. You should consult your RTA-
0S3.0 Target/Compiler Port Guide for specific instructions.

An interrupt vector. RTA-OS3.0 uses the specified vector to generate the
vector table entry for the interrupt. Like the interrupt priority, inter-
rupt vector configuration is microcontroller specific so a target must be
selected before the interrupt vector can be configured.

In RTA-OS3.0 it is possible to swap between different targets, for exam-
ple allow you to quickly migrate one OS configuration to a new micro-

A controller. When the target is changed, all target-specifc configuration
is removed, including the interrupt priority and interrupt vector settings.
New configuration, appropriate to the new target, will need to be pro-
vided.

Vector Table Generation

In most cases, RTA-OS3.0 can generate the vector table automatically?.
rtaosgen will create a vector table with the correct vectors pointing to the
internal wrapper code and place this in the generated library.

If you want to write your own vector table then you must make sure that RTA-
0S3.0 does not generate a vector table. You can prevent a vector table being
generated by disabling vector table generation (Target = Disable Vector
Table Generation) as shown in Figure 5.5.

When you write your own vector table you will nheed to make sure that all
interrupt vectors that are associated with Category 2 ISRs branch to the RTA-
0S3.0 interrupt wrapper that sets up the context in which the ISR executes.

You must not branch directly to your interrupt handler implementation.
Doing so will bypass RTA-OS3.0 and any interaction you try to make with
the kernel in the context of the handler is likely to result in unrecover-
able corruption of the kernel state.

Typically your own vector table will need to branch to labels of the form
0s_Wrapper_VECTOR where VECTOR is the hexadecimal address of the vec-
tor. However, the exact details are port-specific. You should consult the RTA-
0S3.0 Target/Compiler Port Guide for your port to obtain specific details of
how to provide your own vector table.

L1t may be the case that the compiler for your port generates the vector table. You should
consult the RTA-0S3.0 Target/Compiler Port Guide for your port to obtain specific details.

Interrupts

89

5.6

5.6.1

20

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

ﬁﬂg Configuration 05 Configuration > General > Target
- General Taiget Selection “ectors | Clock Speedsl TargstSDsclhcl
- Target (i) Suppress Vector Table Generation
- Oplimizations
- Alarms 1) Default Interrupt Mame |<undehned>
- Application modes
(- Counters
[+~ Events
E-1SRs
- Cat1I5R
- CatzISR
[=I- Register sets
FloatingPointReqgisters
SpecialFunctionR egisters
-~ Resources
- Schedule tables
Bl Tasks
- TaskA
- TaskB
TaskC Check Mow | Clear All | Clear Selected | Copy Selected ko Clipboard

TaskD
o TaskE | Source | Desoription

[RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 5.5: Preventing RTA-0S3.0 from Automatically Generating a Vector Ta-
ble

Implementing Interrupt Handlers

You will now learn about interrupt handlers for Category 1 and Category 2
interrupts.

Category 1 Interrupt Handlers

The format for writing a Category 1 ISR is non-portable. The compiler for
the microcontroller typically defines a compiler-specific extension to ANSI C
that allows a function to be marked as an interrupt. Some compilers, how-
ever, cannot do this. When this happens you will need to write an assembly
language handler.

You must make sure that the name of a Category 1 ISR entry function is the
same as the name that you specified for the ISR during configuration.

For Category 1 ISRs, there is usually a compiler-specific keyword (sometimes
called a “pragma” or a “directive”) that has to be used when defining entry
functions. RTA-OS3.0 provides a macro called CAT1_ISR that expands to the
correct directive for your compiler toolchain which you should use to mark
your function as a Category 1 ISR.

An entry function for a Category 1 ISR is shown in Code Example 5.1.

Interrupts

5.6.2

5.6.3

CAT1_ISR(Interruptl) {
/* Handler body. x/
/* Return from interrupt. x/

}
Code Example 5.1: Entry Function for a Category 1 ISR

Category 2 Interrupt Handlers

You saw earlier that Category 2 interrupts are handled under the control of
RTA-0S3.0. A Category 2 ISR is similar to a task. It has an entry function that
is called by RTA-0S3.0 when the interrupt handler needs to run. A Category
2 interrupt handler is written using the C syntax in Code Example 5.2.

#include <0s.h>
ISR(isr_identifier){

/* Handler body. x/
}

Code Example 5.2: Entry Function for a Category 2 ISR

You do not need to provide any C function prototypes for Category 2 ISR entry
functions. These are provided in the 0s.h header file that is generated by
rtaosgen.

You must not place a “return from interrupt” command in your Category
2 ISR. Returning from the interrupt is handled by RTA-0S3.0.

Dismissing Interrupts

When the hardware detects an interrupt, it will typically set a pending bit
which tells the interrupt controller that an interrupt has occurred. The inter-
rupt controller will then branch to the handler through the interrupt vector
table.

The handling of the pending bit is target dependent but there are two basic
models:

1. the pending bit is cleared automatically after the interrupt is handled
(i.e. when the branch to the interrupt handler occurs). When the han-
dler exits it will be automatically re-triggered if an interrupt has become
pending while the current interrupt was being handled;

2. the pending bit must be cleared manually by user code in the interrupt
handler. The body of the interrupt handler, whether Category 1 or Cate-
gory 2, will need to include the code to clear the pending bit and signal
to the hardware that the interrupt has been handled.

Interrupts

91

5.6.4

92

If you need to clear the pending bit, it is good practice to do this immediately
on entry to the handler because this minimizes the time between the pending
bit being set by a second instance of the interrupt occurring and then subse-
quently cleared. This helps to prevent issues where the interrupt becomes
pending multiple times but this cannot be recognized by the hardware. Code
example 5.3 shows how the recommended structure of a Category 2 ISR han-
dler.

#include <0s.h>

ISR(Interruptl) {
/* Dismiss the interrupt where required x*/
/* Rest of the handler x/

Code Example 5.3: Dismissing the interrupt

You will need to consult your hardware reference manual to find out what you
need to do on your target hardware.

Writing Efficient Interrupt Handlers

Each interrupt handler you write will block all interrupts of equal or lower
priority for the time that it takes your code to execute. When you write an
interrupt handler it is good practice to make the handler as short as possible.
A long running handler will add additional latency to the servicing of lower
priority interrupts.

By minimizing the execution time of your interrupt handlers you can maxi-
mize overall system responsiveness.

If you need to execute a long-running piece of code in response to the inter-
rupt occurring, then you can put that code into a task and then activate the
task from a Category 2 ISR. Code Example 5.4 and Code Example 5.5 show
how these techniques differ.

With Category 2 handlers you can move the required functionality to a task,
a simply use the interrupt handler to activate the task and then terminate.

#include <0s.h>
ISR(InefficientHandler) {
/* Long handler code. */

}

Code Example 5.4: Inefficient interrupt handler
#include <0s.h>

ISR(EfficientHandler) {
ActivateTask(Taskl);

Interrupts

5.7

TASK(Taskl) {

}

/* Long handler code. */
TerminateTask();

Code Example 5.5: More efficient interrupt handler

Enabling and Disabling Interrupts

Interrupts will only occur if they are enabled. By default, RTA-OS3.0 ensures
that all interrupts are enabled when Start0S() returns.

A

AUTOSAR OS uses the term Disable to mean masking interrupts and En-
able to mean unmasking interrupts. The enable and disable API calls do
not therefore enable or disable the interrupt source; they simply pre-
vent the processor from recognizing the interrupt (usually by modifying
the processor’s interrupt mask).

You will often need to disable interrupts for a short amount of time to prevent
interrupts occurring in a critical section of code in either tasks or ISRs. A
critical section is a sequence of statements that accesses shared data.

You can enable and disable interrupts using a number of different API calls:

e DisableAllInterrupts() and EnableAllInterrupts()

Disable and enable all interrupts that can be disabled on the hardware
(usually all those interrupts that can be masked).

These calls cannot be nested.

SuspendAllInterrupts() and ResumeAllInterrupts()

Suspend and resume all interrupts that can be disabled on the hardware
(usually all those interrupts that can be masked).

These calls can be nested.

Suspend0SInterrupts() and ResumeOSInterrupts()
Suspend and resume all Category 2 interrupts on the hardware.

These calls can be nested.

You must make sure that there are never more ‘Resume’ calls than ‘Sus-
pend’ calls. If there are, it can cause serious errors and the behavior is
undefined. Subsequent ‘Suspend’ calls may not work. This will result in
unprotected critical sections.

Code Example 5.6 shows you how the interrupt control API calls are used and
nested correctly.

Interrupts

93

5.8

5.9

924

#include <0s.h>
TASK(Taskl) {
DisableAllInterrupts();
/* First critical section x/
/* Nesting not allowed */
EnableAllInterrupts();
Suspend0SInterrupts();
/* Second critical section */
/* Nesting allowed. */
SuspendAllInterrupts();
/* Third critical section x/
/* Nested inside second */
ResumeAllInterrupts();
ResumeOSInterrupts();
TerminateTask();

Code Example 5.6: Nesting Interrupt Control API Calls

In the case of Category 1 ISRs, you must make sure that no RTA-OS3.0 API
calls are made (except for other Suspend/Resume calls) for the entire time
that the interrupts are disabled.

If a Category 2 ISR raises the interrupt level above OS level be calling
DisableAllInterrupts() then it may not make any other RTA-OS3.0 API
calls, except for the EnableAllInterrupts() call to restore the interrupt
priority. When executing an ISR, you are not allowed to lower the interrupt
priority level below the initial level.

Saving Register Sets

Recall from Section 4.14 that RTA-OS3.0 provides a mechanism for saving
register sets across context switches and that rtaosgen can optimize the
amount of saving that is required to improve runtime performance.

The same mechanism can also be used by Category 2 ISRs by simply select-
ing which ISRs use the configured register set as shown in Figure 5.6.

The Default Interrupt

If you are using RTA-0S3.0 to generate a vector table, then you may want to
fill unused vector locations with a default interrupt.

Figure 5.7 shows how the default interrupt is defined.

A The default interrupt is not supported by all ports.

Interrupts

* - RTA-053.0 05 Configuration Tool =10 ﬂ
S 7 I | Y 12 | working: configuration xml =

File ¥iew Project Reports Help

458 05 Configuration

General I Resources Register Sats

[l General

- Target . ‘ :
(Optimizations The following Register Sets are used by ISR 'Cat1ISA!

Alarms
- Application modes

- Caunters Available A 5 In Use |

&
)
B
-

- CatllSR €

H Cat2i5R
= Register sets LI
FloatingPointRegisters
- SpecialFunctionR egisters

-~ Resources
- Schedule tables
- Tasks
- Taskd,

TaskB

TaskC Check Now | Clear All | Clear Selected | Copy Selected ko Clipboard
- TaskD ¥
- TaskE | Source | Description

HTA-THAEE Configuration
s Builder

] Project Files

“Warking File: configuration. x| Build Status: idle

Figure 5.6: Using a register set in a Category 2 ISR

TAS.rtaos - R 53.0 DS Configuration Tool 1ol x|
=

= b |) [| working: configuration, cml =|

File ¥iew Project Reports Help

4 05 Configuration

Target Selection Wectars E\ﬂckSpeedslTargalSpa:ific

El- General

i) Suppress Vector Table Generation IFALSE j

i) Default Intemupt Name ID efaulinterruptH andler

Register sete
Resources
chedule tables
asks

Check Maw | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Description

[{@] RTA-TRACE Configuration
s Builder

4 Project Files

‘Working File: configuration.ml Build Status: idle

Figure 5.7: Placing a Default Interrupt in the Vector Table

Interrupts 95

5.10

96

The name allocated to the default interrupt at configuration time is the name
that must be used in your application code when you write the handler. Code
Example 5.7 shows a default handler that would work with the configuration
shown in Figure 5.7.

The default interrupt is slightly different to other interrupts. It is used to fill
every location in the vector table for which you have not defined an inter-
rupt. This feature has been provided as a debugging aid and as a means
of providing a “fail-stop” in the event of erroneous generation of interrupts
in production systems. If you actually want to attach interrupt handlers to
vectors to do useful work, you should explicitly create them as ISRs.

There are limitations on the use of the default interrupt handler. It cannot
make any OS calls, and system behavior is undefined if it ever returns.

A Do not make any RTA-OS3.0 API calls from the default interrupt and you
must not return from the handler.

The default interrupt is implemented like an OSEK Category 1 interrupt and
must therefore be marked as an interrupt with the CAT1_ISR macro. The last
statement in your default interrupt handler should be an infinite loop. Code
Example 5.7 shows how this can be done.

CAT1_ISR(DefaultInterruptHandler) {
/* invoke target-specific code to lock interrupts x/
asm(‘di’); /x or whatever on your platform x/
for (;;) {
/* Loop forever x*/

}
/* Do NOT return from default handler. */
}
Code Example 5.7: The Default Interrupt Handler
Summary

¢ RTA-0S3.0 supports two categories of interrupts: Category 1 and Cate-
gory 2.

e Category 1 ISRs are normal embedded system interrupts that bypass
RTA-0S3.0. As a result they cannot interact with the OS and are forbid-
den from making (most) RTA-OS3.0 API calls. They should be marked
using the CAT1_ISR macro.

e Category 2 ISRs are OS managed interrupts that run in a wrapper pro-
vided by RTA-0S3.0. These interrupts can make RTA-OS3.0 API calls.
They must be marked using the ISR macro.

Interrupts

e All interrupts run at an Interrupt Priority Level (IPL) which is always
strictly higher then the highest task priority.

* |PLs standardize the interrupt priority model across all hardware devices
- higher IPLs mean higher priority.

¢ RTA-0S3,0 can generate an interrupt vector table or you can choose to
write your own. When generating a vector table, RTA-0S3.0 can plug
unused locations with a user-configured default interrupt.

Interrupts 97

928

Resources

Access to hardware or data that needs to be shared between tasks and ISRs
can be unreliable and unsafe. This is because task or ISR preemption can
occur whilst a lower priority task or ISR is part way through updating the
shared data. This situation is known as a race condition and is extremely
difficult to test for.

A sequence of statements that accesses shared data is known as a critical
section. To provide safe access to code and data referenced in the critical
section you need to enforce mutual exclusion. In other words, you must make
sure that no other task or Category 2 ISR in the system is able to preempt the
executing task during the critical section.

In Chapter 4 you saw that you can declare tasks to be non-preemptive and
that this prevents problems with mutual exclusion. However, this method
is ‘brute-force’ because it prevents preemption problems by preventing pre-
emption - rather like preventing car accidents by getting rid of cars!

The OS provide alternative mutual exclusion mechanisms based on re-
sources. A resource is just a binary semaphore. When a task or Category
2 ISR gets a resource, no other task or ISR can get the resource. This pre-
vents any other task or ISR entering the same critical section at the same
time. When the critical section is finished, the task or ISR releases the re-
source and the critical section can be entered by another task/ISR.

When a high priority task is being prevented from executing by a lower prior-
ity task this is called priority inversion because the higher priority task takes
longer to complete its execution than the lower priority task. The lower pri-
ority task appears to be running in precedence to the higher priority task,
contrary to what would be expected from their actual priority assignment.
The high priority task is said to be blocked by the low priority task.

Binary semaphores in traditional operating systems often get a bad name be-
cause priority inversion can introduce unbounded blocking in the system. For
example, if the low priority task is preventing the high priority task from ex-
ecuting but is itself preempted by a medium priority task that does not need
access to the shared resource then the high priority task will be blocked by
execution of the medium priority task as well. As the low priority task might
be preempted multiple times while it holds the shared resource, the block-
ing suffered by the high priority task can be unbounded, posing a significant
problem if you need to determine the longest time it takes a task to respond?.
In extreme cases, tasks can reach a state called ‘deadlock’ where each task
is waiting to enter a critical section that is being used by some other task.

!Because the response time of the task depends on a factor that you cannot calculate.

Resources

Task1 calls
ReleaseResource (Resourcel)
Priority is returned to 3

Task1 calls
GetResource (Resourcel)
Priority is boosted to 7

Increasing Priority

Time
Figure 6.1: Raising to ceiling priority

In AUTOSAR OS, the problems typically associated with priority inversion and
deadlock are avoided because resources are locked according to a locking
protocol. This locking protocol is called priority ceiling protocol, in particular a
version called immediate inheritance priority ceiling protocol (or alternatively
stack resource protocol).

Priority ceiling protocol uses the concept of a ceiling priority. Each resource
in the system is allocated a ceiling priority that is equal to the highest priority
of any task or ISR that needs access to the resource. When a task or ISR
gets a resource, the running priority of the task/ISR is increased to the ceiling
priority of the resource (if and only if this is higher than the task/ISR’s current
running priority). When the resource is released, the priority of the task or
reverts to the priority immediately prior to the task or ISR making the call.
This is shown in Figure 6.1.

Immediate inheritance priority ceiling protocol provides two major benefits:

1. Priority inversion is minimized.

Each time a high priority task or ISR becomes ready, its execution can
only be delayed at most once by a single lower priority task or ISR that
already holds the a resource. This means there is no cumulative block-
ing so it is possible to place an upper bound on the blocking that a task
suffers - the maximum blocking time is the longest time that a lower
priority task/ISR holds the shared resource. Furthermore, this blocking
always occurs at the start of execution. A consequence of this is that a
resource is always free at the point it needs to be locked. There is no

Resources

929

6.1

6.2

100

need in AUTOSAR OS to wait for a resource to be released.

2. Itis guaranteed to be deadlock free.

A task or ISR must be executing in order to make the lock. This can
be proved by contradiction. Assume that a task (or ISR) tries to get a
resource. If another task or ISR already had the resource then, because
that task or ISR must be running at the ceiling priority, the task making
the request not be executing (it would not be the highest priority task
or ISR in the system) and, therefore, could not be attempting to lock the
resource.

Resource Configuration

At the most basic level, resources only need to be named and assigned a
type. There are three types of resource in AUTOSAR OS:

1. Standard resources are normal OS semaphores. Configuring a standard
resource creates a resource with the specified name.

2. Linked resources allow you to alias a standard (or another linked) re-
source so that nested locking of the same resource is possible. These
are discussed in more detail in Section 6.4.

3. Internal resources are resources that are locked automatically on entry
to a task and released automatically on termination. These are dis-
cussed in more detail in Section 6.5.

Figure 6.2 shows how a standard resource is configured in the rtaoscfg.

RTA-0S3.0 needs to know which tasks and ISRs use which resources. It can
then calculate the ceiling priorities used by the priority ceiling protocol.

Additional resource usage information for each task or ISR can be configured
during task or ISR configuration.

Figure 6.2 shows that a resource called Resourcel has been declared. When
you refer to this resource in your program you must use the same name.

Resources on Interrupt Level

Resources that are shared between tasks and interrupts are optional in OSEK.
This optional feature is supported by RTA-0S3.0.

RTA-0S3.0 will automatically identify the resources that are combined re-
sources, so you don’t need to do any special configuration.

Resources

6.3

ETAS.rtaos* - RTA-053.0 05 Configuration Tool) [m] ﬂ

Ca ._f: {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration i
General | Tasks | 15Fs |

Bl General
- Target i) Resource Type |sTaNDARD

- Optimizations : . :
- Alarms i) Linked Resource |<undehned>

Ll L

&

- Application modes
[#- Counters
[#- Events
- 1SRs
- Register sets

=l Resources
InternalR esource
LinkedR esource

- Schedule tables
[Tasks

Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

| Gource | Desoription

[& RTA-TRACE Configuration

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 6.2: Configuring Resources using the rtaoscfg

When a task gets a resource shared with an ISR, RTA-OS3.0 will mask all inter-
rupts with interrupt priority less than or equal to the highest priority interrupt
that shares the resource.

This is simply an extension of priority ceiling protocol.

Sharing resources between tasks and ISRs means provides greater control
over interrupt masking than the Enable/Disable and Suspend/Resume API
calls because they make it possible to mask a subset of interrupts up to a
particular priority level. Resources on interrupt level are therefore especially
useful when using an RTA-OS3.0 port that supports nested interrupts.

Using Resources

You can get a resource using the GetResource() API call. You can then re-
lease a resource using the ReleaseResource() call. A task or ISR must not
terminate until it has released all resources that it locked.

A task or ISR can only use the resources that you specify during RTA-0S3.0
configuration. Code Example 6.1 shows you how resources are used in Task1.

#include <0s.h>
TASK(Taskl) {

Resources

101

6.3.1

102

GetResource(Resourcel);
/* Critical section. x/
ReleaseResource(Resourcel);

TerminateTask();
}

Code Example 6.1: Using Resources

Calls to GetResource() and ReleaseResource() must be matched. You can-
not get a resource that is already locked. You cannot release a resource you
have not already locked.

When a GetResource() is made, it boosts the priority of the calling task or
ISR to the ceiling priority of the resource. The resource’s ceiling priority is
the highest priority of any task or ISR that shares the resource and is auto-
matically calculated by RTA-OS3.0. If any task with a priority less than the
ceiling priority is made ready to run, then it is prevented from executing (it is
blocked) until the priority of the running task returns to normal.

Figure 6.3 shows this effect with the following configuration:

Task | Priority Locks Resource R1 Locks ResourceR2

3 High v X
2 Medium X Ve
1 Low v Ve

The first activation of Task 2 is blocked because Task 1 has locked R1. The
second activation of Task 2 is also blocked, but this time because Task 1 has
locked R1. The first activation of Task 3 is similarly blocked because of Task 1
holding R1. When Task 1 releases R1, the OS runs the highest priority ready
task which is Task 3. On termination of Task 3, Task 2 executes and finally,
when Task 2 terminates and Task 1 resumes.

Nesting Resource Calls

You can get more than one resource concurrently, but the API calls must be
strictly nested. Let’s look at two examples; one showing incorrectly nested
calls and the other showing the API calls nested correctly. Code Example 6.2
shows Resourcel and Resource2 being released in the wrong order.

GetResource(Resourcel);
GetResource(Resource?);
ReleaseResource(Resourcel); /* Illegal! x/
/* You must release Resource? before Resourcel x*/
ReleaseResource(Resource?);

Code Example 6.2: lllegal Nesting of Resource Calls

Resources

6.4

A
Task3 activated Task3 terminates
2 Blocked by Task1 Task2 runs
=
S Task2 activated
o Blocked by Task1 Task2 activated A Task2 terminates
g’ Blocked by Task1 Task1 resumed
‘»
©
o
3]
E=3 R ? Sy I B — == Task1 terminates
>
- >
Time
Task1 calls GetResource(R2) Task1 calls GetResource(R1)
Runs at priority level of Task2 Runs at priority level of Task1

Task1 calls ReleaseResource(R2) Task1 calls ReleaseResource(R1)
Returns to priority 1 Returns to priority 1

Taskz is now the highest priority task Task3 is now the highest priority task
and preempts Task1 and preempts Task1

Figure 6.3: Execution of tasks with resource locks

A correctly nested example is shown in Code Example 6.3. All of the resources
are held and then released in the correct order.

GetResource(Resourcel);
GetResource(Resource?);
GetResource(Resource3);
ReleaseResource(Resource3);
ReleaseResource(Resource?);
ReleaseResource(Resourcel);

Code Example 6.3: Correctly Nested Resource Calls

Linked Resources

In AUTOSAR OS, GetResource() API calls for the same resource cannot be
nested. However sometimes, there are cases where you may need make
nested resource locks.

Your application may, for instance, use a function shared amongst a number
of tasks. What happens if the shared function needs to get a resource used
by one of the tasks, but not by the others? Have a look at Code Example 6.4.

#include <0s.h>
void SomeFunction(void) {
GetResource(Resourcel); /* 11l Not allowed if caller is
Taskl !!! %/

ReleaseResource(Resourcel); /x !!l Not allowed if caller is
Taskl 11! x/

TASK(Taskl) {
GetResource(Resourcel);

Resources

103

104

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘

.i__l ._': {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

0scC ation > £ » Linked

488 0 Configuration 2
General | Tasks | 15Fs |

[=- General
- Target i) Resource Type LINKED |

-~ Optimizations z .
- Alarms i) Linked Resource

- Application modes
(- Counters
[+~ Events
- 1SRs
- Register sets
=l Resources
InternalR esource
LinkedR esource
StandardResource
- Schedule tables
= Tasks
- TaskA
- TaskB
- TaskC
TaskD Check Mow | Clear All | Clear Selected | Copy Selected ko Clipboard
TaskE

| Source | Desoription

[RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 6.4: Configuring a Linked Resource

/* Critical section. x/
SomeFunction();
ReleaseResource(Resourcel);

TASK(Task2) {
SomeFunction();

Code Example 6.4: lllegal locking of previously locked resource

In these cases, the nesting of a (potentially) held resource must use linked
resources. A linked resource is an alias for an existing resource and protects
the same, shared, object.

Figure 6.4 shows how linked resources are declared using rtaoscfg.

With the linked resource, Code Example 6.4 would be re-written as shown in
Code Example 6.5.

#include <0s.h>
void SomeFunction(void) {
GetResource(LinkedToResourcel); /* Okay */

Resources

6.5

ReleaseResource(LinkedToResourcel); /* Okay x/

}

TASK(Taskl) {
GetResource(Resourcel);
/* Critical section. x*/
SomeFunction();
ReleaseResource(Resourcel);

TASK(Task2) {
SomeFunction();

Code Example 6.5: Using Linked Resources

Linked resources are held and released using the same API calls for standard
resources (these are explained in Section 6.3). You can also create linked
resources to existing linked resources.

Internal Resources

If a set of tasks share data very closely, then it may be too expensive, in terms
of runtime cost, to use standard resources to guard each access to each item
of data. You may not even be able to identify all the places where resources
need to be held.

You can prevent concurrent access to shared data by using internal resources.
Internal resources are resources that are allocated for the lifecycle of a task.

Internal resources are configured offline using rtaoscfg. Unlike normal re-
sources, however, you cannot get and release them. Conceptually, RTA-
0S3.0 locks the internal resource immediately before starting the task and
releases the resource immediately after the task terminates.

In AUTOSAR OS R3.0 internal resources are only available to tasks.
However, there is no reason why internal resources cannot be shared
____ _ by Category 1 and 2 ISRs as well. RTA-OS3.0 provides an exten-
ET/7\Ssion to AUTOSAR 0S R3.0 that allows ISRs to use internal resources.
When the a task locks an internal resource that is shared with an ISR,
then the task executes at the IPL of the interrupt and all interrupts
of equal or lower priority will be blocked for the duration of the task.

The implementation of internal resources in RTA-0S3.0 does not incur a run-
time cost when the task enters the running state because rtaosgen calcu-
lates the priority at which the task will run offline and simple dispatches the
task at this priority. The set of tasks that share an internal resource is stati-

Resources

105

106

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘

i = {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration 0st e &

General | Tasks | 15Fs |

[l General
Tagel D) Fesaurce Type
- Oplimizations 4
- Mlarms i) Linked Resource |<undef\neds ﬂ
- Application modes
(- Counters
[+~ Events
- 1SRs
- Register sets
=l Resources
InternalR esource
LinkedR esource
StandardResource
- Schedule tables
= Tasks
- TaskA
- TaskB
- TaskC
TaskD Check Mow | Clear All | Clear Selected | Copy Selected ko Clipboard
TaskE
| Source | Desoription

E RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 6.5: Declaring an Internal Resource using rtaoscfg

cally defined at configuration time using rtaoscfg.

Figure 6.5 shows the declaration of an internal resource, called IntResourcel,
which is shared between two tasks called t1 and t3.

If a task uses an internal resource, RTA-OS3.0 will automatically get the inter-
nal resource before calling the task’s entry function. The resource will then
be automatically released after the task terminates, makes a Schedule() or
aWaitEvent() call.

During task execution, all other tasks sharing the internal resource will be
prevented from running until the internal resource is released. Figure 6.6
shows the execution of three tasks that share the same internal resource.

It is important to note that the OS makes a scheduling decision based on
the normal (base) priority of the ready tasks when a task that holds an in-
ternal resource terminates. If a task is running and multiple tasks that share
the same internal resource have become active then, on termination of the
running task, the highest priority ready tasks is selected to run and then is
dispatched at the ceiling priority of the internal resource.

When tasks share internal resources, preemption is still possible by all higher
priority tasks that do not share the internal resource. However, any tasks

Resources

Task3 activated Task3 activated
Blocked by Task1 Now blocked by Task2

Task2 activate|
Blocked by Task1

Task2 terminates
Task3 runs

Increasing Priority

Task1 terminates
Task1 Task3 runs because is the the
highest priority ready task

Time

Figure 6.6: Execution with internal resources

with a priority lower than the ceiling priority of the internal resource, includ-
ing those that do not share the internal resource, will be blocked if a task
sharing the internal resource is executing. You can see an illustration of this
in Figure 6.7 where Taskl with Priority 1 shares an internal resource with a
Task that has Priority 3.

Figure 6.6 shows that initially Task 1 is running at priority 3 because it shares
an internal resource with a task of priority 3. While Task 1 is running, Task
2 becomes ready to run. Task 2 is lower priority than the active priority of
Taskl so it cannot preempt. When Task4 is activated, it can preempt Taskl
because its priority is 4 i.e. it is higher priority than the active priority of task
1. Task 2 can only run when Task 1 terminates.

From this behavior it should be clear that a task which locks an internal re-
source will prevent any task with a higher priority than itself but lower priority
than the ceiling priority of the internal resource from running for the entire
duration of the task. When a lower priority task prevents a higher priority
task from executing this is called blocking.

Tasks that share an internal resource run non-preemptively with respect to
each other. Once a task in the set sharing the internal resource gets access
to the CPU, it will run without being preempted by any other task in the set.
The consequence of this is that it may take longer for higher priority tasks to
get access to the CPU than would be the case in a fully preemptive system.

Resources

107

6.6

108

>
=
—
ke,
—
o Task2 ready to run but
=2 is blocked by Task1
C ; ! n
B | running with the internal
g locked
8 | resource locke Task?2
bt :
O |— i
=
. >
Time

Task1 terminates
Task4 preempts Task1 Task2 runs
Task1 resumes

Figure 6.7: Internal resources blocking tasks that do not share the resource

Using Resources to Minimize Stack Usage

The primary role of resources in an application is to provide mutual exclu-
sion over critical sections. However, the single-stack model of RTA-0S3.0
means that resources have a useful secondary role - minimizing stack usage.
Recall that tasks which share resources do not preempt each other. In the
single-stack model used by RTA-0S3.0 this means that their stack usage is
effectively overlaid.

It is possible to exploit this feature to trade off time in the system against
stack usage. The following sections describe how simple modifications to an
application can reduce stack usage. All of these modifications will introduce
additional blocking factors into the system.

The impact of these blocking factors depends on the system. Recall that the
priority ceiling protocol ensures that a task or ISR is blocked at most once
during execution. The worst-case blocking time is the maximum time that
any lower priority task or ISR can hold the same resource.

This means that if the additional blocking factors are less than or equal to
the current worst-case blocking suffered by a task/ISR, then there will be no
impact on response times and the reduced stack usage will be free. If the
additional blocking factors are longer than current worst-case blocking then
response times will be longer. Providing that response times remain inside
the required deadlines for tasks/ISRs, the system will still behave correctly.

Resources

6.6.1

6.6.2

Stack saving

Worst case stack usage without internal resources

Task C

Worst case stack usage with internal resources

Task A

Figure 6.8: Saving Stack Space Using Internal Resources

Internal Resources

Given a set of tasks that share an internal resource, the worst case stack used
by RTA-0S3.0 is equal to the maximum stack space required by the task that
uses the most stack. In conventional operating systems, the maximum stack
space would be equal to the sum of the task’s stacks, not their maximum.

If you need to minimize stack space then you can exploit this benefit of
RTA-0S3.0’s single-stack architecture by sharing internal resources between
tasks which consume lots of stack. The first stack in Figure 6.8 shows the
worst-case stack consumption for 5 preemptive tasks, A, B, C, D and E. By
sharing an internal resource between tasks B and C, and between tasks D
and E a significant saving of stack space can be made. The other four stacks
in Figure 6.8 show the cases that can now occur - the worst case is A pre-
empted by the worst of B or C preempted by the worst of D and E. You can
see from the figure that A preempted by C preempted by D gives the worst
case and that this is significantly less stack than when internal resources were
not used.

Standard Resources

If a task calls a function that uses a lot of stack then you could consider
locking a resource around the function call and sharing the resource with the
tasks of higher priority. The tasks do not need to lock the resource in code
or call the function - the sharing is simply to force the execution of the task
to run at a higher priority. This will prevent higher priority tasks preempting

Resources

109

6.7

6.8

110

the task while it is using lots of stack and will therefore reduce the total stack
requirement.

Disabling interrupts around the function call has a similar effect - effectively
overlaying the function call’s stack usage with the ISRs that are temporarily
masked.

The Scheduler as a Resource

A task can hold the scheduler if it has a critical section that must be exe-
cuted without preemption from any other task in the system (recall that the
scheduler is used to perform task switching). A predefined resource called
RES_SCHEDULER is available to all tasks for this purpose. RES_SCHEDULER is
a convenient way for tasks to share data without you needing to declare a
resource that is shared between all tasks manually.

When a task gets RES_SCHEDULER, all other tasks will be prevented from pre-
empting until the task has released RES_SCHEDULER. This effectively means
that the task becomes non-preemptive for the time that RES_SCHEDULER is
held. This is better than making the entire task non-preemptive, particularly
when a task only needs to prevent preemption for a short part of its total
execution time.

You must specify whether your application uses RES_SCHEUDLER or not. This
is configured in General = Optimizations. If you configure RES_SCHEDULER
then RTA-0S3.0 will automatically generate a standard resource called
RES_SCHEDULER and share it between every task in your configuration. As
RES_SCHEDULER behaves like a standard resource, you can create linked re-
sources that link to RES_SCHEUDLER as shown in Figure 6.9.

Using RES_SCHEDULER can improve response times of low priority tasks that
might otherwise suffer multiple preemptions by other tasks in the application,
but at the cost of longer response times for higher priority tasks.

If you have no need to use RES_SCHEDULER in your application then you can
save ROM and RAM space by disabling its generation as shown in Figure 6.10.

Choosing a Preemption Control Mechanism

If code that does not require locks appears between a pair of GetResource()
and ReleaseResource() calls, the system responsiveness can potentially be
reduced.

With this in mind, when you use resources in your application, you should
place GetResource() calls as closely as possible around the section of code
you are protecting with the resource.

Resources

TAS.rtaos - RTA-053.0 05 Configuration Tool =10 ﬂ
P C B e | 7Y 1 | working: configuration, xml |

File ¥iew Project Reports Help

458 05 Configuration

General | Taske | 15z |

= General
- Targst i) Resource Type |LINKED: =l
¥

Optimizations

Alatne (i) Linked Resource IStandardHesource

|
- pplication modes StandardResource
- Counters <undefined:>
- Events
-I5Rs
- Register sets
Resources
IntemalF esource
LinkedR esource
- StandardResource
- Schedule tables
- Tasks

[T] ([3] -

|

Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

| Gource | Desoription

[& RTA-TRACE Configuration
s Builder

] Project Files

“Warking File: configuration. x| Build Status: idle

Figure 6.9: Linking to RES_SCHEDULER

=10l x|

File ¥iew Project Reports Help

4 05 Configuration

B General s | Gl I

Targst 1i) Use RES_SCHEDULER
- Dplimizations
[Alams
[+ Application mades
- Counters
- Events
B
B
E

#-15Fs
£ Register sets
= Resources
- InternalR ezource
LinkedR ezource
- StandardResource
- Schedule tables
B- Tasks

Taskd

TaskB
- TaskC
TaskD Check Mow | Clear All | Clear Selected | Copy Selected ko Clipboard
- TaskE ¥
| Source | Description

[{@] RTA-TRACE Configuration

s Builder

4 Project Files

‘Working File: configuration.ml Build Status: idle

Figure 6.10: Disabling RES_SCHEDULER

Resources 111

6.9

112

However, there is an exception to this rule. This exception occurs when
you have a short running task or ISR that makes many GetResource() and
ReleaseResource() calls to the same resource. The cost of the API calls
may then make up a significant part of the overall task execution time and,
therefore, potentially the response time.

You may find that placing the entire task or ISR body between GetResource()
and ReleaseResource() calls actually shortens the worst-case response
time.

You should avoid using non-preemptive tasks and getting RES_SCHEDULER
wherever possible. System responsiveness and schedulability is improved
when resources are held for the minimum amount of time and when this af-
fects the smallest number of tasks.

Avoiding Race Conditions

The AUTOSAR OS standard specifies that resources must be released before
a TerminateTask() call is made. In some circumstances, this can introduce
a race condition into your application. This can cause task activations to be
missed (you learnt about race conditions at the beginning of this chapter).

Code Example 6.6 shows the type of system where race conditions can be-
come a problem. Assume that two BCC1 tasks exchange data over a bounded
buffer.

#include <0s.h>

TASK(Write)
/* Highest priority .x*/
WriteBuffer();
GetResource(Guard);
BufferNotEmpty = True;
ReleaseResource(Guard);
ChainTask(Read);

TASK(Read)

/* Lowest priority. x/

ReadBuffer();

GetResource(Guard);

if(BufferNotEmpty) {
ReleaseResource(Guard);
/x 11l Race condition occurs here !!! x/
ChainTask(Read);

} else {
ReleaseResource(Guard);

Resources

6.10

}

/x I'l'l Race condition occurs here !!! x/
TerminateTask();

Code Example 6.6: A System where a Race Condition can Occur

In Code Example 6.6, between the resource being released and the task ter-
minating, Read can be preempted by Write. When task Write chains task
Read, the activation will be lost. This is because Read is still running. In other
words a task is being activated, but it is not in the suspended state.

To solve this problem, you can allow queued activations of the Read task.

This
deta

means that you should make the task BCC2. See Section 4.5.2 for more
ils.

Summary

Resources are used to provide mutual exclusion over access to shared
data or hardware resources.

Tasks and ISRs can share any number of resources.

All GetResource() and ReleaseResource() calls must be properly
nested.

All resources must be released before the task or ISR terminates.

The scheduler can be used as a resource, but internal resources should
be used in preference, if possible.

Internal resources provide a cost free mechanism for controlling pre-
emption between a group of tasks and ISRs

Resources

113

7.1

114

Events

In an AUTOSAR OS system, events are used to send signal information to
tasks. This chapter explains what events are, how to configure them and how
to use them at runtime.

Events can be used to provide multiple synchronization points for extended
tasks. A visualization of synchronization is shown in Figure 7.1.

An extended task can wait on an event, causing the task to move into the
waiting state. When an event is set by a task or ISR in the system, the waiting
task is transferred into the ready state. When it becomes the highest priority
ready task it will be selected to run by RTA-O0S3.0.

Events are owned by the extended task with which they are associated. Usu-
ally, an extended task will be an infinite loop that contains a series of guarded
wait calls for the events it owns. The event mechanism therefore allows you
to build event driven state machines using OSEK.

If timing behavior is important in your system, all of your extended tasks (in
other words, any task that waits for an event) must be lower priority than the
basic tasks.

Configuring Events

Events are configured using rtaoscfg. The maximum number of events that
can exist in your application is determined by your target hardware. You
should consult the RTA-OS3.0 Target/Compiler Port Guide for your port to find
out how many events you can have per task.

When an event is declared it must have:

¢ A name.

Names are used only to indicate the purpose of an event at configura-
tion time.

¢ At least one task that uses it.

* An event mask.
The event name that is specified in rtaoscfg is used as a symbolic name for
the event mask at run-time. A mask is an N-bit vector with a single bit set,

where N is the maximum number of events on which a task can wait. The set
bit identifies a particular event.

The event name is used at run-time as a symbolic name for the mask. The
mask is configured by selecting the bit which indicates the event. Figure 7.2

Events

7.1.1

7.2

Task2 waits for an
event

Task2 resumes when
Task3 terminates

>
=
—
RS
j—
p= Task2 Task2
o | Tas . : ~ Tas
< Waiting v Ready] Task1 resumes when
g Task2 terminates
o Task3 sets the event for
8 which Task2 is waiting A
Ready
|-
>
Time

Figure 7.1: Visualizing Synchronization

shows that an event called Eventl has been declared which will be using bit
nine in the event mask.

If an event is used by more than one task, each task has its own individual
copy. When an event is set, a task must be specified at the same time. So,
for example, if you set an event called Event2 for a task called t3, this has no
effect on Event2 for the task t4.

Defining Waiting Tasks

Waiting tasks are selected using rtaoscfg. If you declare a task that waits on
an event, it automatically means that it will be treated as an extended task.

Figure 7.3 shows that an event Eventl has been declared and that the tasks
tl and t2 have been configured to wait on the event.

An extended task that waits on an event will usually be auto-started and the
task will never terminate. When the task starts executing, all the events it
owns are cleared by RTA-0S3.0.

Waiting on Events

A task waits for an event using the WaitEvent(EventMask) API call. The
EventMask must correspond to the one that is declared in rtaoscfg.

The WaitEvent () takes an event as its sole parameter. When the call exe-

cutes there are two possibilities:

1. The event has not occurred

In this case the task will enter the waiting state and RTA-OS3.0 will run
the highest priority task in the ready state.

Events

115

116

TAS.rtaos’

File ¥iew Project Reports

RTA-053.0 05 Configuration Tool
7 2 |Gy 05| S B m
: Gl &= H {1 |2 | working: configuration, xml |

Help

48 0 Configuration

- General
- Alarmg
Application modes
Counters
- Events
- \Wakellp
-1SRs
- Register sets
-~ Resources
Schedule tables
Tasks

mEE

RTA-TRACE Configuration

&) Project Files

General | Tasks |

=100

Bit nurnber

(i) Mask 1 =l
F] e
5
E
¢ o
3
10
1 x

Check Mow | Clear All | Clear Selected | Copy Selected to Clipboard

| Source | Desoription

“Waorking File: configuration. x|

Build Status: idle

Figure 7.2: Configuring an Event mask in rtaoscfg

TA-053.0 05 Configuration Tool

File ¥iew Project Reports

7 I | 7Y 12 | working: configuration xml -

Help

4§ 05 Configuration

Tasks

General

General
Alarms
Application modes
- Counters
- Events
-\ akellp
- 15Rs
- Register sets
Resources
Schedule tables
[Tasks

[RTA-TRACE Configuration
5% Builder

4] Project Files

Event "wakelp' is used by the following Tasks:

=100 x|

Ayailable Al > | | InUse i
TaskC

<

TaskB —I

TaskE €
>3

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
| Source | Description

‘Working File: configuration,ml

Build Status; idle

Figure 7.3: Selecting the Task to Wait on an Event

Events

7.2.1

7.2.2

2. The event has occurred

In this case the task remains in the running state and will continue to
execute at the statement immediately following the WaitEvent () call.

Single Events

To wait on a single event you simple pass in the event mask name to the API
call. Code Example 7.1 shows how a task can wait for events.

#include <0s.h>
TASK(ExtendedTask) {

WaitEvent(Eventl); /*x Task enters waiting state in API call
if Eventl has not happened x/
/* When Eventl is set, ExtendedTask resumes here x/

Code Example 7.1: Waiting on an Event

In AUTOSATR OS it is illegal to set events for a task that is in the suspended
state. In practice this means that the structure of a task that waits on events
is typically an infinite loop that waits on events as shown in Code Example 7.2.

#include <0s.h>
TASK(ExtendedTask) {
/* Entry state x/
while(true){
WaitEvent (Eventl);
/x State 1 x/
WaitEvent (Event2);
/x State 2 x/
WaitEvent (Event3);
/* State 3 x/
}

/* Task never terminates x/

Code Example 7.2: Simple 3-state State Machine with Events

Multiple Events

Because an AUTOSAR OS event is just a bit mask, you can wait on multiple
events at the same time by bit-wise ‘OR’ing a set of bit masks.

When your task waits on multiple events it will be resumed when any one
of the events upon which you are waiting occurs. When you resume from

Events

117

7.2.3

118

waiting on multiple events, then you will need to work out which event (or
events) has occurred.

OSEK provides the GetEvent() API call so that allows you to get the current
set of events that are set for the task.

Code Example 7.3 shows how a task can wait on multiple events simultane-
ously and then identify which of the events has been set when it resumes.

#include <0s.h>
TASK(ExtendedTask) {
EventMaskType WhatHappened;
while(true){
WaitEvent(Eventl|Event2|Event3);
GetEvent(Taskl, &WhatHappened);
if(WhatHappened & Eventl) {
/* Take action on Eventl x/

} else if(WhatHappened & Event2) {
/* Take action on Event2 x/

} else if(WhatHappened & Event3) {
/* Take action on Event3 x/

Code Example 7.3: Waiting on Multiple Events

Deadlock with Extended Tasks

While AUTOSAR OS provides freedom from deadlock in mutual exclusion over
a critical section (see Chapter 6) you are not protected from building systems
with events that can deadlock. If you have extended tasks that mutually set
and wait on events sets, then it is possible that two (or more) tasks will be
waiting on events that are only set by other tasks that are waiting. It is, of
course, impossible for basic tasks in the system to deadlock, even if there are
deadlocking extended tasks present.

Code Example 7.4 shows two tasks that will deadlock if there no other task
set either Ev1 or Ev2.

#include <0s.h>
TASK(Taskl) {
while (1) {
WaitEvent(Evl);

Events

7.3

/* Never reach here - DEADLOCKED with Task2! x/
SetEvent(Task2,Ev2)

}
TASK(Task2) {
while (1) {
WaitEvent(Ev2);
/* Never reach here - DEADLOCKED with Taskl! x/
SetEvent(Taskl,Evl)

Code Example 7.4: Deadlock with Extended Tasks

OS configuration does not capture which tasks/ISRs set events, only which
tasks can wait on events. It is therefore impossible for RTA-0S3.0 to statically
determine whether your extended tasks will deadlock or not. However, the
following design approaches may help:

* use basic tasks only;

* analyze your code to show that there is no circular waiting of events on
the transitive closure of all SetEvent()/WaitEvent () pairs.

Setting Events

Events are set using the SetEvent () API call.

The SetEvent () call has two parameters, a task and an event mask. For the
specified task, the SetEvent() call sets the events that are specified in the
event mask. The call does not set the events for any other tasks that share
the events.

You can bit-wise ‘OR’" multiple event masks in a call to SetEvent() to set
multiple events for a task at the same time

Events cannot be set for tasks that are in the suspended state. So, before
setting the event, you must be sure that the task is not suspended. You can
do this using the GetTaskState() API call, but note that there is a potential
race-condition when this is called for tasks of higher priority than the caller.
The caller may be preempted between the call to the API and the evaluation
of the result and the state of the task that was requested may have changed
in the intervening time.

An extended task is moved from the waiting state into the ready state when
any one of the events that it is waiting on is set.

Events

119

7.3.1

7.3.2

7.4

120

Code Example 7.5 shows you how a task can set events.

#include <0s.h>
TASK(Taskl) {
TaskStateType TaskState;

/* Set a single event x/
SetEvent(Task2, Eventl);

/* Set multiple events x/
SetEvent(Task3, Eventl | Event2 | Event3);

/* Checking for the suspended state */

GetTaskState(Task2,&TaskState);

if (TaskState '= SUSPENDED) {
SetEvent(Task2, Eventl);

}

TerminateTask();
Code Example 7.5: Setting Events

A number of tasks can wait on a single event. However, you can see from
Code Example 7.5 that there is no broadcast mechanism for events. In other
words, you cannot signal the occurrence of an event to all tasks waiting on
the event with a single API call.

Events can also be set by alarms and schedule tables.

Setting Events with an Alarm

Alarms can be used to periodically activate extended tasks that don’t termi-
nate. Each time the alarm expires, the event is set. The task waiting on the
event is then made ready to run.

Setting Events with a Schedule Table Expiry Point

Expiry points on schedule tables can be used to program (a)periodic activa-
tions of extended tasks that do not terminate. Each time the expiry point is
processed, the event is set. The task waiting on the event is then made ready
to run.

Clearing Events

An event can be set by any task or ISR, but it can only be cleared by the
owner of the event.

Events

7.5

When a task waits on an event, and the event occurs, then a subsequent
call to WaitEvent () for the same event will return immediately because the
event is still set.

Before waiting for the event occurring again the last event occurrence of the
event must be cleared.

Events are cleared using the ClearEvent(EventMask) API call. The EventMask
must correspond to the one that is declared.

Code Example 7.6 shows how a task typically uses ClearEvent().

#include <0s.h>
TASK(ExtendedTask) {
EventMaskType WhatHappened;

while(WaitEvent(Eventl|Event2|Event3)==E_0K) {
GetEvent(Taskl, & WhatHappened);
if (WhatHappened & Eventl) {
ClearEvent(Eventl);
/* Take action on Eventl x/

} else if(WhatHappened & (Event2 | Event3) {

ClearEvent(Event2 | Event3);
/*x Take action on Event2 or Event3x/

Code Example 7.6: Clearing Events

When a task terminates all the events that it owns are cleared automatically.

Simulating Extended Tasks with Basic Tasks

Basic tasks can only synchronize at the start or end of task execution.

If other synchronization points are required then the event mechanism pro-
vides one way to do this. However, extended tasks typically have greater
overheads than basic tasks. On resource-constrained systems, synchroniza-
tion can be built using basic tasks only.

For example, if a task is built as a state machine (using a C switch statement,
for instance) then you can set a state variable, issue a TerminateTask() call
and wait for re-activation. Code Example 7.7 shows how this can be achieved.

#include <0s.h>

Events

121

/* Create a "State" variable that
activations x/
uint8 State;
TASK(Taskl) {
switch (State) {
case 0:
/* Synchronization point 0.
State = 1;
break;
case 1:
/* Synchronization point 1.
State = 2;
break;
case 2:
/* Synchronization point 2.
State = 0;
break;
}

TerminateTask();

}

remains in scope between task

Code Example 7.7: Multiple Synchronization Points in a Basic Task

7.6 Summary

¢ Events are synchronization objects that can be waited on by extended

tasks.

¢ An event can be used by multiple tasks.

* Setting an event is not a broadcast mechanism to signal all tasks that

are waiting.

e Tasks, ISRs, alarms and schedule tables can set events.

122 Events

8.1

Counters

Counters register how many “things” have happened in the OS in terms of
ticks. A tick is an abstract unit. It is up to you to decide what you want a tick
to mean and, therefore, what are the “things” the counter is counting.

You might define a tick to be:
* Time, for example a millisecond, microsecond, minute etc and the
counter then tells you how much time has elapsed.

* Rotation, for example in degrees or minutes, in which case the counter
would tell you by how much something has rotated.

e Button Presses, in which case the counter would tell you how many
times the button has been pressed.

e Errors, in which case the counter is counting how often an error has

occurred.

An ISR (or sometimes a task) is used to drive a counter. The driver is respon-
sible for making the correct RTA-OS3.0 API call to “tick” the counter or to tell
RTA-0S3.0 that the counter has “ticked” to a required value.

Configuring Counters

Each counter has 4 mandatory attributes:

Name is the name of the counter. RTA-OS3.0 creates a handle for each
counter using an identifier of the same name as the counter.

Type defines the counter model. AUTOSAR provides two models

Software counters are those where the count value is maintained in-
ternally by the OS. You will need to provide a counter driver that
tells the RTA-0S3.0 to increment the counter by one tick. Further
details are provided in Section 8.2.1.

Hardware counters are those where a peripheral maintains the count
value. You will need to provide a counter driver that tells the OS
when a requested number of ticks have elapsed. The OS will also
require your driver to provide implementations of callback routines
that RTA-O0S3.0 uses to manage the peripheral at runtime. Further
details are provided in Section 8.2.2.

A software counter is sufficient when you need a relatively low reso-
lution, for example one millisecond or greater. You should use a hard-
ware counter when you need very high resolution for example in the mi-

Counters

123

8.2

124

crosecond range, or where you need to accurately synchronize schedul-
ing of tasks in RTA-O0S3.0 to an external source, for example a TPU or a
global (network) time source.

Maximum Value defines the maximum count value for the counter. All
counters wrap around to zero on the tick after the maximum allowed
value has been reached?!. In many cases, you will simply use a full mod-
ulus wrap for the counter, so this will be 65535 (216 — 1) for a 16-bit
counter and 4294967295 (232 — 1) for a 32-bit counter. The maximum
counter value for your port can be found in your RTA-0S3.0 Target/Com-
piler Port Guide. This corresponds to the AUTOSAR OS counter attribute
MAXALLOWEDVALUE.

For hardware counter you must ensure that MAXALLOWED-
VALUE+1 is equal to the modulus of the peripheral.

Minimum Cycle defines the shortest number of ticks allowed when setting
a cycle value for an alarm or a schedule table offset. In most cases, you
will want this to be 1 tick. However, if you want to build systems where
you enforce a minimum separation between alarms on the counter,
then you may choose a larger value. This corresponds to the AUTOSAR
OS counter attribute MINCYCLE.

Ticks per base is a legacy attribute from AUTOSAR OS that defined the
number of underlying counter driver ticks required for each tick on the
counter. You can assign any value to this attribute because it is not used
by RTA-0S3.0. This corresponds to the AUTOSAR OS attribute TICKSPER-
BASE.

There is an additional optional attribute:

Seconds Per Tick defines the duration of a tick of the counter in seconds.
This should be defined if you want to use the tick/time conversion fea-
tures provided by AUTOSAR OS. Further details are given in Section 8.5.

Figure 8.1 shows how a counter called MillisecondCounter is declared.

Counter Drivers

RTA-0S3.0 does not take control of any of your hardware to provide counter
drivers. This makes RTA-0S3.0 very easy to integrate with any tick source
for example timer ticks, error counts, button presses, TPU peripherals, etc.
This means that you need to provide a driver for every counter you declare
in RTA-OS3.0 and interface this to the OS.

1This means that the maximum allowed value is equal to the modulus-1 of the counter.

Counters

8.2.1

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
Gl B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

ﬁDS Configuation 05 Configuration > Counters > Millisec
[General Eebb I
- Alaims . i
1
- Application modes) Ll I
- Counters (i) Maximum Value |6E535
MillisecondCaunter _
- GecondCaunter i) Ticks PerBass 1
- Ewent:
ﬂ..‘g‘{i” * i) Seconds Per Tick [0oo1
- Register sets i) Type
- Resources
Schedule tables
G- Tasks

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
!E RTA-TRACE Configuration

| Sowrce | Description

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 8.1: Declaring a Counter

The interface between the driver and the counter depends on the counter’s
type:

Software Counters are incremented by an API call.

Hardware Counters The count value is held in an external hardware pe-
ripheral. Your application must provide a more complex driver that tells
RTA-0S3.0 when a requested number of ticks have elapsed. RTA-0S3.0
uses special callbacks to set a requested number of ticks, cancel a re-
quest, get the current count value and get the status of the counter.

Software Counter Drivers

For each of your software counters, you need to provide the driver that pro-
vides the tick. All software counters are initialized to zero by RTA-0OS3.0 dur-
ing Start0S() and count upwards.

The software counter driver model is standardized in AUTOSAR OS and is
shown in Figure 8.2.

Incrementing Software Counters

You use the API call IncrementCounter(CounterID) toincrement the counter
value held in RTA-OS3.0. The software counter wraps around to zero when

Counters

125

Normal Execution

| 4

Interrupt Return

v |

Call IncrementCounter(<CounterlD>)

No now := now + 1

now = match?

Yes

Expire alarms and expiry
points

match := match + delay

Figure 8.2: Ticked Counter Driver Model

126 Counters

one is added to MAXALLOWEDVALUE.

You can make the call to IncrementCounter(CounterID) from most places
in your application code. One of the most common uses of a counter is to
provide a time-base to RTA-0S3.0 for activating tasks based on alarms (see
Chapter 9) or schedule tables (see Chapter 10). In this case, you will need to
provide a periodic timer interrupt that calls IncrementCounter(CounterID)
on each expiry.

Code Example 8.1 shows how a millisecond interrupt would driver a counter
called TimeCounter.

#include <0s.h>

ISR(HandleTimerInterrupt) {
DismissTimerInterrupt();
IncrementCounter(TimeCounter);

Code Example 8.1: Using a periodic interrupt to tick a software counter

Another common use of software counters is as part of a fault-tolerant system
where you take some action when an error threshold is exceeded. A software
counter can be used to register the number of errors and you can then use
an alarm to trigger a recovery action (for example, activate an error recovery
task).

Code Example 8.2 shows how a task called Critical might log errors on a
counter called ErrorCounter.

#include <0s.h>
TASK(Critical){

if (Error) {

IncrementCounter(ErrorCounter);

}

TerminateTask();
Code Example 8.2: Using a periodic interrupt too tick a software counter

Static Counter Interface

As the AUTOSAR API call takes the name of a counter as a parameter, this
means that RTA-OS3.0 must internally de-reference the parameter before up-
dating the OS data structures. It also means that the compiler needs to push
a parameter on the stack on entry.

Counters

127

Typically however, you know at build time which counter you will be ticking
from where. You will also probably be driving the counter from an interrupt
handler - the last place where you need to waste time unnecessarily.

RTA-OS3.0 recognizes this and generates a dedicated API call called
Os_IncrementCounter_<CounterID>() for each counter that has been de-
clared in the configuration file (where CounterID is the name of the counter).

The API call 0s_IncrementCounter_<CounterID>() is not necessarily

portable to other AUTOSAR OS implementations.
As an example, consider an application containing two counters, one called

TimeCounter and one called AngularCounter. rtaosgen will generate the
two API calls shown in Code Example 8.3.

Os_IncrementCounter_TimeCounter();
0s_IncrementCounter_AngularCounter();

Code Example 8.3: Static Software Counter Interface

The interrupt handlers that you supply to service the timer and angular inter-
rupts must call these API calls.

Code Example 8.4 shows how these interrupt handlers might look.

#include <0s.h>

ISR(HandleTimerInterrupt) {
ServiceTimerInterrupt();
Os_IncrementCounter_TimeCounter();

}

ISR(HandleAngularInterrupt) {
ServiceAngularInterrupt();
Os_IncrementCounter_AngularCounter();

}
Code Example 8.4: Interrupt Handlers for Code Example 8.3

If you have multiple software counters that you need to tick at the same
rate, then you can make multiple 0s_IncrementCounter_<CounterID>()
calls within your handler as shown in Code Example 8.5

#include <0s.h>

ISR(MillisecondInterrupt) {
ServiceTimerInterrupt();
Os_IncrementCounter_Counterl();
0s_IncrementCounter_Counter2();

Os_IncrementCounter_CounterN();

128 Counters

8.2.2

}

Code Example 8.5: Making multiple calls to the static software counter
interface

There is an 0s_IncrementCounter_<CounterID>() API call available for
each counter you declare. These ‘static’ APl calls are faster and use
less RAM than the AUTOSAR IncrementCounter(<CounterID>) API call
because the calls do not require a parameter and do not need to work
out which counter is being ticked. You should decide which version is
appropriate for your application and choose accordingly.

Hardware Counter Drivers

For each of your hardware counters, you need to provide the hardware
counter driver that calls RTA-0S3.0 and a set of callbacks that are used by
RTA-0S3.0. As with software counters, RTA-0S3.0 provides a well-defined in-
terface for connecting the advanced counter driver to the OS.

The AUTOSAR OS standard does not specify a standard API call for deal-
ing with hardware counters. If you are porting your application from
another OS to RTA-0S3.0, then you may need to change the hardware
counter driver API calls.

For each hardware counter, RTA-0S3.0 knows what the next action driven by
the counter is, whether that is to expire an alarm or process an expiry point
on a schedule table or both. RTA-0S3.0 also knows how many ticks need to
elapse before this happens. This is called the match value.

When you use a software counter, the driver tells RTA-OS3.0 each time a tick
has elapsed. RTA-0S3.0 counts ticks internally and, when the match value is
reached, the action is taken. RTA-OS then calculates the next match value
and the process repeats.

By contrast, when you use an hardware counter, RTA-OS3.0 tells the driver,
through a callback function, when the next action is needed. Your periph-
eral counts the requested number of ticks and generates an interrupt when
the correct number have elapsed. In the interrupt handler you make the
0s_AdvanceCounter_CounterID() API call to tell RTA-OS3.0 to process the
next action due on CounterID. RTA-0S3.0 does this and the process repeats.

The driver model is shown in Figure 8.3.

Normally, you will use an interrupt to drive both software and hardware coun-
ters. With a software counter, an interrupt occurs for each counter tick,
whether of not there is anything for RTA-0OS3.0 to do. With a hardware
counter, an interrupt occurs only when RTA-0S3.0 needs to do something.
This means that hardware counters reduce interrupt interference to the ab-

Counters

129

Normal Execution

Return Interrupt

ISR calls Os_AdvanceCounter(<Counter|D>)

Expire alarms and
expiry points

Calculate next match

Return from API call

Os_Cbk_Set_<CounterlD> - :..Os_AdvanceCounter(<CounterID>)_.:

Figure 8.3: Advanced Counter Driver Model

130 Counters

solute minimum required.

Advancing Hardware Counters

You use the API call 0s_AdvanceCounter_<CounterID>() to tell RTA-OS3.0
that the match value has been reached.

You are responsible for writing the driver that calls
Os_AdvanceCounter_<CounterID>() and ensuring that the next
action is taken at the correct time.

The 0s_AdvanceCounter_<CounterID>() APl call cause the next alarm
and/or expiry point to be processed and will set up the next match value by
calling a callback you provide or, if there are no actions left to do (i.e. there
are no active alarms or schedule tables on the counter), cancel interrupts
from the driver. More detailed information about writing hardware counter
drivers can be found in Chapter 11.

Callback Functions

For a software counter communication is one way - the driver tells RTA-OS3.0
when a single tick has happened. For hardware counters the driver has to
tell RTA-0S3.0 when multiple ticks have happened. However, RTA-0S3.0 also
needs to tell the driver to driver do things. This is done using a set of call-
back functions that provide an abstraction between RTA-0S3.0 and any type
of peripheral you want to use as the driver. The exact functionality of the
callbacks depends on the peripheral you are using as your hardware counter
driver. Further information on writing callbacks can be found in Chapter 11.

However, by way of a short overview, four callbacks are required:

0s_Chk_Set_<CounterID>

This callback sets up the state for an interrupt to occur when the next action
is due. The callback is passed the absolute value of the counter at which an
action should take place. For counters, this callback is used in two distinct
cases:

1. Starting

Setting the initial interrupt source when a schedule table or an alarm is
started on the counter.

2. Resetting

Shortening the time to the next counter expiry.

The second case is needed because you can, for example, make a
SetRelAlarm(WakeUp, 100) call when the next interrupt is due in more than
100 ticks.

Counters

131

8.3

132

0s_Cbk_State_<CounterID>

This callback returns whether the next action on the counter is pending or
not and, if the action is not pending, the number of ticks remaining until the
match value is reached.

0s_Cbhk_Now_<CounterID>

This callback needs to return the current value of the external counter. This
is used for the GetCounterValue() API call. See Section 8.4.
0s_Cbk_Cancel_<CounterID>

This callback must clear any pending interrupt for your counter
and ensure that the interrupt cannot become pending until a
0s_Cbk_Set_<CounterID>() call is made. If you do not cancel all the
alarms on the counter and/or stop schedule tables driven by the counter,
then this call is not needed.

Accessing Counter Attributes at Runtime

The RTA-0S3.0 API call GetAlarmBase() always returns the configured
counter values. The structure of GetAlarmBase() is shown in Code Exam-
ple 8.6.

AlarmBaseType Info;
GetAlarmBase(Alarm2, &Info);

MaxValue = Info.maxallowedvalue;
BaseTicks = Info.ticksperbase;
MinCycle = Info.mincycle;

Code Example 8.6: Using GetAlarmBase() to read static counter attributes

The configured values are can also be accessed as symbolic constants in the
form shown below.

e OSMAXALLOWEDVALUE_<CounterID>

e OSTICKSPERBASE_<CounterID>

e OSMINCYCLE_<CounterID>

So Code Example 8.6 above could also have been written as shown in Code
Example 8.7:

MaxValue = OSMAXALLOWEVALUE_Alarm2;
BaseTicks = OSTICKSPERBASE_Alarm2;
MinCycle = OSMINCYCLE_Alarm2;

Code Example 8.7: Using macros to read static counter attributes

Counters

8.3.1

8.4

Special Counter Names

If a counter with the name SystemCounter is created, then it is possible in
AUTOSAR OS to access the associated counter attributes with a short form of
the macros by omitting the trailing _CounterID:

OSMAXALLOWEDVALUE_SystemCounter = OSMAXALLOWEDVALUE
OSTICKSPERBASE_SystemCounter -> OSTICKSPERBASE
OSMINCYCLE_SystemCounter -> OSMINCYCLE

RTA-0S3.0 generates both forms of the macros for SystemCounter and you
can use either version.

The SystemCounter also provides an additional macro to get the duration
of a tick of the counter in nanoseconds called 0STICKDURATION. This macro
requires the counter attribute “Seconds Per Tick” to be configured.

Reading Counter Values

You may find that your application has the need to be able to read the current
value of a counter at runtime. For example, you might want to know how
many errors an error counter has logged, how many times a button has been
pressed or how much time has elapsed.

The current value of a counter can be read at runtime by calling the
GetCounterValue() API as show in Code Example 8.8.

TickType HowMany;
GetCounterValue(ButtonPresses,&HowMany) ;
Code Example 8.8: Using GetCounterValue()

When you use GetCounterValue() you should be aware that:

e counters wrap around from MAXALLOWEDVALUE to zero, so the calcula-
tion needs to compensate for the wrap

e preemption can occur at the point the call returns meaning that when
you resume the value of ‘Now’ will be old.

* when using a hardware counter, the counter driver will still be incre-
menting when the call returns. Even when preemption does not occur,
the calculation performed immediately will be based on old data.

If you need to perform a simple calculation to work out how many ticks of the
counter have elapsed since a previously read value, then you can avoid this
potential race-condition by using the GetElapsedCounterValue() API call.
The call takes a previously read counter value as input and calculates the

Counters

133

8.5

134

ticks that have elapsed, including compensation for the counter wrapping.
The calculation occurs at OS level (i.e. with interrupts disabled) so does not
suffer from preemption effects.

Code Example 8.9 shows how you might use this feature to measure the end-
to-end (response) time of a task.

#include <0s.h>

TickType Start;

ISR(CaptureTrigger){
/* Dismiss interrupt x/
GetCounterValue(TimeCounter,&Start);

ActivateTask(GenerateResponse);
}
TASK(GenerateResponse) {
TickType Finish;
CalculateValue();
WriteToDevice();
GetElapsedCounterValue(TimeCounter,&Start,&Finish);

TerminateTask();
Code Example 8.9: Using GetElapsedCounterValue()

If your counter is counting time ticks (as in Code Example 8.9), then this
is referred to in AUTOSAR OS as a “free running timer”. There is nothing
special about this type of counter - it is identical to any other type of counter
- the only distinction is that the counter is one which is driven by a timer tick
source.

The intended use of the free running timer functionality is to measure short,
high accuracy, durations at runtime. If you need to do this, then you will prob-
ably need to use a hardware counter to get the required counter resolution.

Tick to Time Conversions

It is common for counters to be used as a time-base reference for the OS.
For most of the applications that you write, the relative timing of events will
be the real-time values determined by your system requirements. You will
most likely think about system configuration in terms of real-time values,
nanoseconds, milliseconds etc, rather than in the more abstract notion of
ticks.

If a counter configuration parameter ‘Seconds Per Tick’ has been configured,
then RTA-OS3.0 generates macros for you to use to convert between ticks

Counters

and real-time units.

AUTOSAR OS states that tick to time conversion is for hardware
counters only. However, the feature is generally useful for both soft-
ware and hardware counters and the AUTOSAR XML configuration

ET/.\SIanguage supports configuration for both types of counter. In RTA-
0S53.0 this anomaly is resolved by providing tick to time conversion
for both software and hardware counters. However, you should note
that the provision of these macros for software counters is not nec-
essarily supported by other AUTOSAR OS implementations.

The following macros are provided:

0S_TICKS2NS_CounterID(ticks) converts ticks to nanoseconds

0S_TICKS2US_CounterID(ticks) converts ticks to microseconds

OS_TICKS2MS_CounterID(ticks) converts ticks to milliseconds

OS_TICKS2SEC_CounterID(ticks) converts ticks to seconds

The values returned by these macros are of PhysicalTimeType rather than
TickTypes that are used by the API calls that you might use the macros with,
so you will need to cast them to an appropriate type.

Code Example 8.10 shows how these macros might be used in your applica-
tion code to program a timeout using a statically defined “timeout” value.

#define TIMEOUT_MS 100 /* Set a timeout to be 100ms =/

TickType TimeoutInTicks;

TimeoutInTicks = (TickType) ((PhysicalTimeType) TIMEOUT_MS/
0S_TICKS2MS_TimeCounter(1));

SetRelAlarm(TimeoutAlarm, TimeoutInTicks, 0);

Code Example 8.10: Programming an alarm with time rather than ticks (1)

In addition to these macros RTA-OS3.0, generates a macro called
OSTICKDURATION_<CounterID> that returns the duration of a counter tick
in nanoseconds so this makes it extremely useful if you want to program
alarms of a fixed time, even if you change the underlying counter tick rate.
Code Example 8.11 shows how Code Example 8.10 can be reworked using the
OSTICKDURATION_<CounterID> macro. This version offers slightly better per-
formance because the duration of a single tick does not need to be calculated
at runtime.

#define TIMEOUT_NS 100000000 /+ Set a timeout to be 100ms x/
TickType TimeoutInTicks;

Counters

135

8.6

136

TimeoutInTicks = (TickType) (TIMEOUT_NS/
OSTICKDURATION_TimeCounter);
SetRelAlarm(TimeoutAlarm, TimeoutInTicks, 0);

Code Example 8.11: Programming an alarm with time rather than ticks (2)

___ . _The OSTICKDURATION_<CounterID> macros are provided by RTA-
= i/’\': 0S3.0 and are not part of the AUTOSAR OS standard. Use of the
macros is not portable to other implementations.

Summary

¢ Counters are used to register a count of some tick source.

¢ Counters are either software or hardware counters. You need to provide
the appropriate driver for the type of the counter you configure.

Counters

9.1

Alarms

It is possible to construct systems that activate tasks at different rates us-
ing ISRs. However, for complex systems, this can become inefficient and
impractical. Alarms provide a more convenient, and more portable, way of
scheduling systems.

The alarm mechanism consists of two parts:

1. A counter.

These were covered in Chapter 8.

2. One or more alarms attached to the counter.

The alarm part specifies an action to perform when a particular counter value
is reached. Each counter in your system can have any number of alarms
attached.

An alarm is said to have expired when the value of a counter equals the value
of an alarm attached to the counter. On expiry, RTA-OS3.0 will perform the
action associated with the alarm. The action could be to activate a task, to
execute an alarm callback routine, set an event or tick a software counter.

The alarm expiry value can be defined relative to the actual counter value or
as an absolute value. If the alarm expiry is defined as relative to the actual
counter, it is known as a relative alarm. If it is defined as an absolute value,
it is known as an absolute alarm.

Alarms can be configured to expire once. An alarm that expires once is called
a single-shot alarm.

An alarm can also be specified to expire on a periodic basis. This type of
alarm is called a cyclic alarm. You can find out more about cyclic alarms in
Section 9.2.

Configuring Alarms

There are three parts to alarm configuration:

1. Naming - Each alarm in your system needs to be allocated a unique
name. As for other OS objects, this is the name that you will use in your
code to refer to the alarm at runtime.

2. Association of a counter - An alarm is statically bound to a counter at
configuration time. Any setting of the alarm is done in terms of ticks of
the associated counter.

Alarms

137

9.1.1

9.1.2

9.1.3

138

3. Specification of the alarm’s action.

Each alarm that you create is associated with up to 4 actions:

1. Activate a task.

2. Raise an event.

3. Execute a callback function.

4. Increment a (software) counter.
If you need to activate multiple tasks, set multiple events, make multiple call-
backs or increment multiple counters on expiry, you will need multiple alarms
with the same expiry value. (Schedule Tables provide an alternative mech-

anism that allows you to activate multiple tasks and/or set multiple events
simultaneously. You can read about Schedule Tables in Chapter 10).

Activating a Task

The most common action for an alarm is to activate a task. This is the basis
for building systems with periodically activated tasks - you create an alarm
for each task and then program the alarm to occur at the required period.
Figure 9.1 shows how to configure an alarm to activate a task.

In AUTOSAR OS, you may only activate a single task for each alarm. If you
need multiple tasks to run when an alarm expires, then you can do this ei-
ther by creating multiple alarms or by using task activation chains (see Sec-
tion 4.9.1).

Setting an Event

An alarm can set an event for a specified task. When an event is set with
an alarm, it has the same properties as it would if it were set using the
SetEvent() API call. This means you need to specify both the event and
the task for which the event is to be set. Figure 9.2 shows you how to set an
event action for an alarm.

Alarm Callbacks

Each alarm can have an associated callback function. The callback is simply
a C function that is called when the alarm expires.

Figure 9.3 shows how to configure a callback routine for an alarm.
Each callback routine must be written using the ALARMCALLBACK() macro,

shown in Code Example 9.1.

Alarms

TAS.rtaos - RTA-053.0 05 Configuration Tool =10 ﬂ
S T | Y 124 | working: configuration xml =

File ¥iew Project Reports Help

458 05 Configuration

General Action I Autostart |

(i) Activate Task ITaskA

AlarmiakesCallback (i) SetEwent |<undelinad> j for Task | <undefined:
- BlarmSetsEvent :
. OneThousandMiliseconds Li) Inciement Counter |<undehnsd>

¢ Application modes (i) Calback |<undefined>
- Counters
3l
H

Ll Lef L

- Events

ISR
Register sete
Resources

- Schedule tables

= Tasks

- Taskd,

- TaskB

- TaskC
TaskD
TaskE

-E- -

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
RTA-TRACE Configuration !

| Source | Description

s Builder

] Project Files

“Warking File: configuration. x| Build Status: idle

Figure 9.1: Activating a Task with an Alarm

53.0 05 Configuration Tool 1ol x|
7 I | 7Y (2 | working: configuration xml =|

File ¥iew Project Reports Help

4 05 Configuration

General Action I Autostart |

General

E- Alarms i) Activate Task |<undehnsd> j
- BlarméctivatesT ask
- BarmiMakesCallback Li) SetEvent I\N"akeUp 7| forTask [GEMGE—_—_—_—
- BlarmSetsEvent

- OneThouzandMilliseconds
|- Application modes (i) Calback |<undefined>
Counters

- Events
Wakellp
- 15Rs

eqgister sets
esouces
chedule tables
B Tasks

i) Increment Counter |<undelinad> j

-3

_ iheck Mow | Clear All | Clear Selected | Copy Selected to Clipboard
RTA-TRACE Configuration |

| Source | Description

s Builder

4 Project Files

‘Working File: configuration.ml Build Status: idle

Figure 9.2: Setting an Event for a Task with an Alarm

Alarms 139

9.14

140

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

General Autostart I

- General

AlarmSetsEvent
- OneThousandMilliseconds

E- Alarms i) Activate Task I<undelined> j
- AlamdictivatesT ask

AlarmiakesCallback (i) SetEwent |<undelinad> j for Task | <undefined> j

=]

Li) Increment Counter |<undehnsd>

[+- Application modes \i) Callback IMyEaHhackFunctmn

[Counters

- Events

- 15Rs

Register sets

Resources

Schedule tables

= Tasks

- Taskd

- TaskB

- Taskl

- TaskD
TaskE

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
!E RTA-TRACE Configuration

| Sowrce | Description

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 9.3: Configuring a Callback Routine for an Alarm

ALARMCALLBACK(UserProvidedAlarmCallback) {

/* Callback code. x/

Code Example 9.1: An Alarm Callback

Callback routines run at OS level, which means Category 2 interrupts
are disabled. You should therefore aim to keep your callback routines
as short as possible to minimize the amount of blocking that your tasks
and ISRs suffer at runtime.

The only RTA-OS3.0 API calls that you can make inside the callback are the
SuspendAllInterrupts() and ResumeAllInterrupts() calls.

Incrementing a Counter

Incrementing a software counter from an alarm allows you to cascade mul-
tiple counters from a single ISR. A counter ticked from an alarm inherits the
period of the alarm. So, if you have an alarm that occurs every 5 millisec-
onds, you can use the alarm to drive a second ticked counter that ticks every
5 milliseconds. Figure 9.4 shows you how this is configured in RTA-OS3.0.

Code Example 9.2 shows how you would drive Counterlms from an interrupt.

Alarms

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
i B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

General Autostart I

- General
E- Alaims i) Activate Task I<undelined>
- AlarméictivatesT ask
AlarmiakesCallback (i) SetEvent |<undelinad> j for Task | <undefined:
AlarmSetsEvent
- OneThousandilliseconds
¢ Application modes Li) Calback |<undefined>
- Counters
- Events
#- ISRz
Register sets
Resources
Schedule tables
(= Tasks
- Taskd,
- TaskB
- Taskl
- TaskD
TaskE

Ll Lol e

Li) Increment Counter ISschdEDunlel

w-E-EE

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
E RTA-TRACE Configuration

| Sowrce | Description

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 9.4: Cascading counter increments from an alarm

Every fifth interrupt registered on Counterlms would cause the alarm to ex-
pire and increment the cascaded Counterb5s :

#include <0s.h>
ISR(MillisecondInterrupt){
CLEAR_PENDING_INTERRUPT();
0s_IncrementCounter(Counterlms);
/* Every 5th call internally performs 0Os_IncrementCounter(
Counterbms) =/

Code Example 9.2: Cascading Counters

Cascaded counters must have a tick rate that is an integer multiple of the
counter driving the alarm. You can configure systems with multiple levels of
cascading. However, RTA-OS3.0 will generate an error if you try and configure
a system with a cycle in the cascade or you try and increment a hardware
counter.

Alarms

141

9.2

9.2.1

142

The timing properties of a cascaded counter are defined relative to tim-
ing properties of the first counter in the cascade. The earliest counter
in the cascade therefore determines the base tick rate from which all
other counters are defined. If you change the tick rate of the earliest
counter, then the entire timing behavior of the application will be scaled
accordingly.

Setting Alarms

Two API calls are provided for setting alarms:

e SetAbsAlarm(AlarmID, start, cycle);

Sets the alarm to expire when the counter value next reaches the value
start. You should be aware that if the underlying counter already has
value start when the call is made, then the alarm will not occur until
the counter has ‘wrapped around’.

¢ SetRelAlarm(AlarmID, increment, cycle);

Sets the alarm to expire increment ticks from the current count value
when you make the call. This means that increment is a tick offset from
the current counter tick value.

In these two API calls, a cycle value of zero ticks indicates that the alarm is
a single-shot alarm, which means that it will expire only once before being
canceled. A cycle value greater than zero defines a cyclic alarm. This means
that it will continue expiring every cycle ticks after the first expiry has oc-
curred. Setting a non-zero cycle value gives you an easy way to configure
periodic alarms that occur with a periodicity of cycle ticks.

Selecting Parameters

If the activated task is BCC1 or ECC1/2 there will be no queued activation.
This means that if the start or increment value is very short, or the start
value is very close to the current counter value, then this may cause un-
desired side effects. The alarm will try to activate the task while a previ-
ously activated instance is still executing. The activation would be lost and
an E_OS_LIMIT error would be raised (see Chapter 13 for more information
about error codes and how to debug use of RTA-0S3.0 at runtime). You must
make sure that enough time is allowed for the task to complete before the
next alarm which results in a re-trigger of the task occurs.

Absolute Alarms

Single Shot

An absolute alarm specifies the absolute value of the underlying counter at
which the alarm expires. Single shot absolute alarms are useful for monitor-

Alarms

24 ticks

A
v

Alarm1 expires

Counter ticks

| >

18 42

StartAbsAlarm(Alarm1,42,0);

Alarm expires at counter tick value 42

Figure 9.5: lllustration of an Absolute Single Shot Alarm

ing things against a pre-defined threshold value - the alarm can be configured
to expire when the threshold is exceeded. You might want to count the num-
ber of errors that occur in data samples taken at runtime and then trigger a
recovery action when the number of errors reaches a dangerous level. This
is shown in Code Example 9.3.

/* Expire when counter value reaches 42. x/
SetAbsAlarm(DangerLevelReached, 42, 0);

Code Example 9.3: Absolute single shot alarm
Code Example 9.3 is illustrated in Figure 9.5.

A single shot alarm is useful when you need to program a timeout that waits
for a fixed amount of time and then takes an action if the timeout occurs.

Cyclic

If an absolute alarm specifies a non-zero cycle value then it will first expire at
the specified start tick and then every cycle ticks thereafter. This is shown
in Code Example 9.4.

/* Expire when counter value reaches 10 and then every 20 ticks
thereafter x/
SetAbsAlarm(Alarml, 10, 20);

Code Example 9.4: Absolute cyclic alarm

Alarms

143

144

6 ticks 20 ticks 20 ticks

Alarm1 expires Alarm1 expires Alarm1 expires

Counter ticks
| -

| | | g

4 10 30 50

L StartAbsAlarm(Alarm1,10,20);

Alarm expires at tick 10 and every 20 ticks thereafter

Figure 9.6: lllustration of the Absolute Cyclic Alarm

The behavior of the code example is illustrated in Figure 9.6.

For absolute alarms, an absolute start value of zero ticks is treated in the
same way as any other value - it means expire the alarm when the counter
reaches the value zero.

For example, if the current counter value was zero then you would not see
your alarm expire until the MAXALLOWEDVALUE+1 number of counter value
ticks had happened. On the other hand, if the counter value was already
at MAXALLOWEDVALUE, then you would see the alarm expire on the next tick of
the counter.

Setting Alarms in the past

With an absolute alarm it is possible to set the start time to be a value that is
already in the past. This does not mean that the alarm will not happen. Recall
that counters wrap around when they reach MAXALLOWEDVALUE. So, when you
set an alarm in the past you might have to wait up to MAXALLOWEDVALUE+1
(i.e. the counter modulus) ticks until the alarm occurs.

If you set an alarm to start at tick T' and the value of the counter is
already T then the alarm will not expire immediately. This is because T
is already in the past when the alarm is set.

A common error is to set an absolute alarm to occur at zero when the OS
starts and then wonder why it does not occur when expected. This is because
zero is already in the past! The effect is shown in Figure 9.7.

Synchronizing Absolute Cyclic Alarms to a Counter Wrap

Setting an alarm to occur periodically at a known synchronization point is ex-
tremely important for real-time systems. However, in AUTOSAR OS, it is not
possible to set an absolute alarm to occur periodically each time the underly-

Alarms

9.2.2

}< MAXALLOWEDVALUE+1 ticks ‘
>

Alarm1 expires
Counter ticks
>

[‘ e | ‘ >

MAXALLOWEDVALUE 0 1 2 MAXALLOWEDVALUE-2 MAXALLOWEDVALUE 0 b
MAXALLOWEDVALUE-1

L StartAbsAlarm(InThePast1,0,0);

Alarm expires at tick 0 but MAXALLOWEDVALUE+1 ticks must elapse Counter wraps

Counter wraps

Figure 9.7: Setting an alarm in the past

ing counter wraps around.

For example, assume you have a counter that counts in degrees with a reso-
lution of one degree and you want to activate a task at “top dead center’, i.e.
on each revolution of the crankshaft.

For example, assume that the counter has a modulus of 360 ticks. What
you need to say is SetAbsAlarm(Alarml, 0, 360). This is forbidden by the
AUTOSAR OS standard because the cycle parameter cannot be greater than
MAXALLOWEDVALUE, which is always the modulus-1 (in this case 359).

If you need this type of functionality, you must provide code that resets an
absolute single-shot alarm each time the alarm expires.

For example, if Task1l is attached to Alarm1, then the body of Taskl will need
to reset the alarm when the task is activated as shown in Code Example 9.5.

TASK(Taskl) {
/* Single-shot alarm reset at top dead center = 0 = 360
degrees. x/
SetAbsAlarm(Alarml, 0, 0);
/* User code. */
TerminateTask();

Code Example 9.5: Resetting an Alarm when a Task is Activated

Relative Alarms

Single-Shot

A relative alarm specifies the absolute value of the underlying counter at
which the alarm expires. Single shot relative alarms are useful when you
want to timeout some activity at runtime. For example, you might want to
wait for an external event and then activate a task if the event does not
occur.

Alarms

145

9.3

146

42 ticks

A
i A

Timeout expires

Counter ticks

>
| | | |

18 26 38 46 60

L StartRelAlarm(Timeout,42,0);

Alarm expires 42 ticks from now

Figure 9.8: Illustration of a Relative Single Shot Alarm

Code Example 9.6 shows how an absolute single shot alarm can be set.

/* Timeout 42 ticks from now x/
SetRelAlarm(Timeout, 42, 0);

Code Example 9.6: Relative single shot alarm
Code Example 9.6 is illustrated in Figure 9.8

A single shot alarm us useful when you need to program a timeout that waits
for a fixed amount of time and then takes an action if the timeout occurs.

In AUTOSAR OS, the use of zero for increment in SetRelAlarm() is forbidden.
If you use zero for increment, then an E_0S_VALUE error will be returned.

Cyclic

Code Example 9.7 shows a relative alarm that expires after 10 ticks and then
every 20 ticks thereafter.

/* Expire after 10 ticks, then every 20 ticks. */
SetRelAlarm(Alarml, 10, 20);

Code Example 9.7: Relative cyclic alarm

In Figure 9.9, you can see how this alarm can be visualized.

Auto-starting Alarms

It is possible to start alarms by calling SetRelAlarm() or SetAbsAlarm() in
the main program. However, the easiest way to set cyclic alarms is to make
them auto-started. Auto-started alarms are started during Start0S().

Alarms

9.4

6 ticks 14 ticks 14 ticks 14 ticks

Alarm1 expires Alarm1 expires Alarm1 expires Alarm1 expires

Counter ticks
| -

22 28 42 56 70

L StartRelAlarm(Alarm1,6,14);

Alarm expires 6 ticks from now and every 14 ticks thereafter

Figure 9.9: lllustration of a Relative Cyclic Alarm

Auto-started alarms can be set on a per application mode basis so you can
choose in which application modes the alarm is auto-started. Each auto-
started alarm must also specify whether it is started at an absolute or a rela-
tive counter value and the associated increment/start and cycle parameters
must be configured.

Even though alarms may be started in different application modes it is
not possible to assign different auto-start parameters for each mode.

Figure 9.10 shows how alarms can be set to auto-start from the Startup Modes
pane.

RTA-0S3.0 ensures that software counters are initialized to zero during
Start0S() (hardware counters will be set to the value configured by your
own application initialization code). As a result of this, you must take care if
you use the a start time of zero ticks for an absolute alarm because the ze-
roth tick has already happened when the alarm is are started. The alarm will
be started but will not expire occur until the associated counter has wrapped
around. On a 16-bit counter ticked every millisecond you would need to wait
just over 65 seconds for this to happen, and on a 32-bit counter just under 48
days. Specifying that the alarm starts on the first (or later) tick means that
the initial expiry will occur on the next tick of the counter.

Auto-started absolute alarms are useful if you require alarms to be synchro-
nized to each other (i.e. the relative expiries between alarms have to occur a
pre-configured number of ticks apart).

Canceling Alarms

You can cancel an alarm using the CancelAlarm() API call.

Alarms

147

9.5

148

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

General I Action |

- General
- Alarms
- AlammctivatesT ask Alarm BlarméctivatesT ask’ is Autostarted in the following Application Modes:
Alarmid akesCallback
AlarmSetsEvent [] OSDEFAULTAPPMODE
- OneThousandMiliseconds [wl LimpHomeMode
- Application mades] Mormald peratingtade i) lam Time 1
- Counters vl ServiceMode
=
=

i) Type |4BSOLUTE =l

- Events 1i) Cycle Time |WD
+- 15Rs

Register sets
Resources
Schedule tables
= Tasks

- Taskd

- TaskB

- Taskl

- TaskD
TaskE

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
!E RTA-TRACE Configuration

| Sowrce | Description

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 9.10: Auto-starting Alarms

An alarm may, for example, need to be canceled to stop a particular task
being executed. An alarm can be restarted using the SetAbsAlarm() or the
SetRelAlarm() API call.

Working out when an Alarm will occur

If you need to work out when an alarm will occur, for example, to avoid setting
an absolute alarm when the absolute value has already been reached, then
you can use the GetAlarm() API call.

The call returns the number of ticks remaining before the specified alarm ex-
pires. If the alarm is not set, then the API call returns the value E_0S_NOFUNC
and the number of ticks to expiry is undefined. It is recommended that the
return value of the call is checked before using the result. Code Example 9.8
shows the use of the API call.

TickType TimeToExpiry;
TickType SafetyMargin = 100;
StatusType IsValid;
IsValid = GetAlarm(Alarml, &TimeToExpiry);
if (IsValid != E_0S_NOFUNC) {
if (TimeToExpiry <= SafetyMargin) {
Log(InsideSafetyMargin);

Alarms

9.6

Code Example 9.8: Getting the time to expiry

You should exercise caution when making runtime decisions based on the
number of ticks returned by the call, especially if the underlying counter has
a high resolution. As with reading counter values with GetCounterValue(),
preemption can occur between getting the value and using it for calculation.
This means that you may read a (long) time to expiry but then be preempted
to resume shortly before the alarm expires (or even after it has expired).

Non-cyclic (aperiodic) Alarms

Cyclic alarms are only useful for programming cyclic behavior. In many sys-
tems, for example those that need to execute tasks periodically to poll data
sources, this is ideal. However, you may need to program systems where the
time between successive expiries of an alarm needs to change at runtime.
For example, you might be calculating an engine shaft speed and using this
to program the duration of spark or injection timing.

Aperiodic behavior with alarms need to be programmed using single-shot
alarms that are set to the next expiry value by the activated task.

In Code Example 9.9, a task runs every millisecond and polls a counter that
registers degrees of rotation of a crankshaft. The task calculates the posi-
tion and speed of the crank. The speed is used to determine the duration
of the spark timing. The spark is started and an alarm is set to expire after
SparkTiming ticks.

TASK(MillisecondTask) {

GetElapsedCounterValue(ShaftEncoder,&Position, &
DegreesRotation);
RevsPerMinute = (DegreesRotation/360) * 1000 * 60;
SparkTiming = Lookup(RevsPerMinute);
if (Position = 90) {
StartSpark();
SetRelAlarm(TimeCounter, SparkTiming, 0); /* Activates
SparkOff on expiry */ '}
}

TerminateTask()
}
TASK (Spark0ff){
StopSpark();
TerminateTask();

Alarms

149

Code Example 9.9: Aperiodic Alarm Example

9.7 Summary

* Alarms are set on an underlying counter.
* You can set multiple alarms on each counter.

¢ Each alarm specifies an action, either:

activation of a task,

setting an event,

execution of a callback, or

ticking a ticked counter.

¢ Alarms can be set to expire at an absolute or relative (to now) counter
value.

¢ Alarms can be auto-started.

150 Alarms

10

Schedule Tables

In Chapter 9 you saw that you can build systems requiring periodic and ape-
riodic behavior relatively easily. However, one of the limitations of alarms is
that you can only perform one action per alarm. If you need to build a system
where you have a phased sequence of task activations and guarantee some
separation in time (temporal separation) then you need to be quite careful
how you start and stop the alarms.

While it is possible to build such a system with alarms, there is nothing, other
than code review, that prevents the timing properties of the application being
accidentally modified at runtime. Furthermore, you saw that if you wanted to
define multiple task activations at a single point in time, you were forced to
create multiple alarms when what you really want to do is to activate multiple
tasks from a single alarm.

AUTOSAR OS addresses the limitations of alarms by providing an OS object
called a schedule table.

A schedule table comprises a set of expiry points that occur on statically con-
figured offsets from a notional zero. The offsets are specified in ticks of a
statically bound counter - just like the expiry of alarms. The key difference
between schedule tables and alarms is that the expiry points on a schedule
table always maintain their relative separation (to each other). The sched-
ule table can be started and stopped as a composite unit and, whenever it is
restarted, the expiry points always have the same relative execution behav-
ior.

Schedule tables adopt the following terminology:

Initial Offset is the offset to the first expiry point on the schedule table. It
is therefore the smallest offset configured.

Duration is the number of ticks from zero before the schedule table stops.

Final Delay is the difference between the offset to the final expiry point and
the duration. It is therefore equal to the value of duration minus the
longest offset.

Delay is the number of ticks between adjacent expiry points and is equal to
the longer offset minus the shorter offset. If the schedule table repeats,
then the delay between the last and the first expiry point is equal to the
Final Delay plus the Initial Offset.

An expiry point is similar to an alarm in that it indicates a point in time at
which RTA-0S3.0 needs to take some action. The difference between expiry

Schedule Tables

151

10.1

152

// D
Expiry Point 2 Expiry Point 3 Expiry Point 4 Expiry Point 5

Initial Expiry Pom :
H Task Activations Task Activations
<none> TaskA
TaskE

Task Activations Task Activations

Wel Expiry Point

TaskB

TaskF
Event Settings Event Settings Event Settings - :
E EventQ:TaskC EventP:TaskC Duration=50
| EventQ:TaskE :

A 4

Offset=4 [t e

Offset=12

Offset=20

Offset=32

Offset=40 Final Delay = 50-40=10

Figure 10.1: Visualizing a Schedule Table

points and alarms lies in what actions can be taken and is shown in the fol-
lowing table.

Action Expiry Point
ActivateTask() Yes - one task Yes - multiple tasks
SetEvent() Yes - one event Yes - multiple events
Callback Yes No
IncrementCounter() | Yes No

Figure 10.1 shows the anatomy of a schedule tables with 5 expiry points and
a duration of 50 counter ticks. When the schedule table was started!, each
expiry point would occur every 50 ticks with offset ticks from the notional
zero point.

We use the term notional zero to mean reference starting point on the
A schedule table from which offsets are measured. It is important to un-
derstand that this is nothing to do with values on the underlying counter.
When a schedule table is started (see Section 10.2) the notional zero will
is mapped onto the appropriate “now” value of the underlying counter.

Configuring a Schedule Table

Each schedule table is driven by a counter. The counter provides the schedule
table with a tick source. You can use the same counter to drive multiple
schedule tables. However, at runtime you can only have one schedule table
per counter in the running state at any point in time. You can also share a
counter between schedule tables and any number of alarms.

Each schedule table must define a duration in ticks of the underlying counter.
The duration must be in the range MINCYCLE to MAXALLOWEDVALUE of the
counter.

A schedule table is ‘single shot’ so it stops automatically when duration ticks
on the counter have elapsed from when the schedule table starts. Single-

1And assuming it was configured as repeating

Schedule Tables

10.1.1

Expiry Point 2 50 ticks

. q

50 ticks
Expiry Point 3 < >
50 ticks
Expiry Point 4 [»l
50 ticks

Started at counter
value 0 - I:l - - - D

IRl
§
0

Counter ticks

70
Started at counter

12 8

Counter ticks

62 74 82 92 9 104 12 124 132

s
S
a
3
@
{

Figure 10.2: Visualizing a Schedule Table

shot schedule tables are useful when you want to start a phased sequence of
actions, for example when building closed-loop control systems. However, a
schedule table can be configured as repeating so that it repeats on a period
of duration ticks. When a schedule table is repeating, every expiry point will
occur with a period of duration ticks.

Figure 10.2 shows how the schedule table in Figure 10.1 would run when
started on a underlying counter value of 0 ticks and on underlying counter
value of 42 ticks.

Figure 10.3 shows the configuration of a schedule table called MasterPlan.

Configuring Expiry Points

Each schedule table contains one or more expiry points. An expiry point
marks the place on the table where an action has to take occur. Each expiry
point has the following attributes:

* Zero or more tasks to activate

e Zero of more events to set for a specified task

¢ An offset from the notional zero
It is not possible to have an expiry point with no action - you must activate at

least one task or set one event.

The offset sets the number of ticks on the schedule table from a notional zero
at which the expiry point needs to be processed. Thus, the offset specifies
when expiry point actions happen on the schedule table. An offset on the

Schedule Tables

153

10.2
10.2.1

154

ETAS.rtaos* - RTA-053.0 05 Configuration Tool

ol x|
Chi B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration Corfiguration > 5chedule b
General |Aulustart| Erpiry Pmnlsl

- General

- Alarms

- Application modes
- Counters ITF!LIE
E__ ‘ES\:QM Li) Duration ISU
[Register sets
- Resources

[Schedule tables

i) Counter IMiI\isecondCDunler

Lel L

i) Repeating

iheck Mowe | Clear All | Clear Selected | Copy Selected to Clipboard

!EF\TA-THAEE Configuration | Source | Desciption

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 10.3: Schedule Table Configuration

schedule table can be zero or in the range MINCYCLE to the duration of the
schedule table. Similarly, the delays between adjacent expiry points must
also lie in this range. Values less than MINCYCLE are not allowed because they
cannot be programmed on the counter. (e.g. if the counter has a MINCYCLE
of 10 then a value of 5 cannot be set).

Figure 10.4 shows how to specify expiry points.

The upper part of the workspace shows the expiry points and their associated
offsets. The lower part of the workspace shows the actions for the selected
expiry point and the control for adding and removing expiry points.

Starting Schedule Tables

Absolute Start

The StartScheduleTableAbs (ScheduleTableID, Start) API call is used to
start a schedule table at an absolute counter value as shown in Code Exam-
ple 10.1/

/* Start Schedule Table Tbl 6when the counter reaches tick 6x/
StartScheduleTableAbs(Tbl, 6);

Code Example 10.1: Using StartScheduleTableAbs ()

Schedule Tables

TAS.rtaos* - RTA-053.0 05 Configuration Tool

File ¥iew Project Reports

D L e | 1| working: configuration, sl M

Help

45§ 05 Configuration

Application modes
Counters

chedule tables
: M asterPlar
Tasks

s Builder

4 Project Files

RTA-TRACE Configuration

Gsnsrall Autostart Expiry Points I

=180

Expiry Points
(i) Offset I Name:
Add New Expiry Point | Remove Selected Expiry Point |

Ewxpiry Offsat /| Expiry Point Mame | Astian Count
12 EPZ2 1
20 EP3 1
3z EP4 1
40 EPS 1

Expiry Point Actions

Action2

Action: |<undelined> ‘I Narne:
Add Hew &ction Remove Selected Action
Action Name 4 | Aclion Type Task Mame Ewent Name
Action] Activate Task Tasks j
Action2 Activate Task TaskB j
Set Event TaskC j EventP j

CheckMow | Clear All | Clear Selected | Copy Selected ko Clipboard

| Source | Description

Working File: configuration,ml

Build Status:

idle

Figure 10.4: Specifying Expiry Points

Schedule Tables

155

10.2.2

156

STOPPED RUNNING

mEm sm mEm

4 8 8 12 T s 14 T s s |

Counter ticks
>

‘ ‘ ‘ g

65534 0 6 10 18 26 38 46 60 68 76

4
Iﬁ StartScheduleTableAbs(Tbl,6);

Process Initial Expiry Point when the Counter = 6 + Initial Offset = 10

Figure 10.5: Starting a schedule table at an absolute count value

STOPPED RUNNING

mEm sm msm

4 8 s | 12 8 14 s | s

Counter ticks

>
‘ ‘ ‘ g

65534 0 6 10 14 22 30 42 50 64 72 80

4
I StartScheduleTableRel(Tbl,6);

Process Initial Expiry Point when the Counter = Now + 6 + Initial Offset = 4+6+4 = 14

Figure 10.6: Starting a schedule table at a relative count value

The schedule table is in the SCHEDULETABLE_RUNNING state when the call re-
turns. The first expiry point will be processed after Start plus initial offset
ticks have elapsed. Figure 10.5 shows the schedule table from Figure 10.1
when started according to Code Example 10.2.

This is extremely useful for building schedule tables that are synchronized to
specific values of an external (hardware) counter.

Relative Start

The StartScheduleTableRel(ScheduleTableID, Offset) API call is used
to start a schedule table at a relative number of ticks from now.

The offset parameter of the StartScheduleTableRel() call specifies the
relative number of ticks from now at which RTA-OS3.0 will process the first
expiry point and can be zero. This is the same concept as the increment
parameter that you use to set a relative alarm (see Section 9.2.2).

/* Start Schedule Table Tbl 6 ticks from now x/
StartScheduleTableRel (Tbl, 6);
Code Example 10.2: Using StartScheduleTableRel()

The schedule table is in the SCHEDULETABLE_RUNNING state when the call re-
turns. The first expiry point will be processed after Start plus initial offset
ticks after the current count value has elapsed. Figure 10.6 shows the sched-
ule table from Figure 10.1 when started according to Code Example 10.2.

Schedule Tables

10.3

10.4

| 50 ticks |

STOPPED RUNNING STOPPED

HE .
¢ 4 T 8 8 T 12 s T "] Counter ticks

56

~ —]
o —|
o
®
)
)
w
®
N
)

65534 0

L StartScheduleTableAbs(Tbl,6); L :Sthoi‘::t'i‘i;ib'e stops

Figure 10.7: Non-repeating schedule tables stop automatically

You must make sure that the Offset value that is passed to
StartScheduleTableRel () is sufficiently long, so that it has not al-

A ready expired before the call returns. This is only an issue for sched-
ule tables driven by a hardware counter. For schedule tables that are
driven by a software counter, the counter cannot be incremented while
the StartScheduleTableRel () is executing because both API calls ex-
ecute at OS level thus are serialized.

Stopping Schedule Tables

A schedule table can be stopped at any point by calling the
StopScheduleTable(SchedulelID). A call to stop a schedule table stops the
processing of any remaining expiry points.

A schedule table that is not configured as repeating will stop automatically
final delay ticks after RTA-OS3.0 has processed the final expiry point as shown
in Figure 10.7.

A repeating schedule table will run wuntil it is stopped by call-
ing StopScheduleTable() or the table is switched by calling
NextScheduleTable() (see Section 10.4).

You can re-start a schedule table that has been stopped by calling
StartScheduleTable[Abs|Rel] (). The schedule table does not restart im-
mediately - it will start at the start or offset passed into the API call - and
the table will re-commence at its notional zero as shown in Figure 10.8. There
is no mechanism for starting a schedule table part-way through.

Switching Schedule Tables

You can switch from one schedule table to another at runtime using the
NextScheduleTable() API call. The switch between schedule tables always
occurs at the end of the table - i.e. final delay ticks after the final expiry point
is processed. Code Example 10.3 shows how the API call is made.

Schedule Tables

157

158

. . . >
STOPPED RUNNING STOPPED RUNNING

This section of Tbl is not executed

6 8 10

! -
! ¢ ¢ ¢ IR 8 12 [8 14 i
Counter ticks
! T T i >
0 4 6 10 18 26 32 40 56 60 68 76 88 96 110
.
I StartScheduleTableRel(Tbl,2); StartScheduleTableRel(Tbl4);

A new instance of the schedule table is started

StopScheduleStop(Tbl);

Figure 10.8: Schedule tables always start at their notional zero

50 ticks | 30 ticks

STOPPED RUNNING

STOPPED RUNNING STOPPED

mEm TE EEmE-

4] 8 | 8 12 s | 10 26 | 8 | 8 | 8 6
\

Counter ticks

65531 0 4 6 10 18 26 38 46 56 58 68 76 88 94 96
4 N

L StartScheduleTableAbs(Tbl,6); NextTbl enters second iteration —

Tbl stops running

NextTbl starts running
NextScheduleStop(Tbl,NextTbl);

Figure 10.9: Switching a schedule table

/* Start NextTbl after Tbl has finished %/
NextScheduleTable(Tbl, NextTbl);

Code Example 10.3: Switching a schedule table

The only restriction for switching schedule tables is that both the current and
the next table must use the same underlying counter. There are no require-
ments that the schedule tables have the same number of expiry points, the
same duration, the same initial offset, etc.

When a call to NextScheduleTable() is made, the delay between the final
expiry point on Tbl and the first expiry point on NextTbl is given by:

Delay = Current.FinalDelay + Next.InitialOffset

Figure 10.9 shows the process of switching from one schedule table (with
duration 50 ticks) to another schedule table (with duration 30 ticks).

If the Current schedule table has a final delay of zero ticks and the Next
schedule table has an initial offset zero, then the delay between expiry
points will be zero ticks.

Schedule Tables

10.5

10.6

If you make multiple calls to NextScheduleTable() while Current is running
then the Next table that runs will be the one you specified in your most recent
call.

Schedule Table Status

You <can query the state of a schedule table using the
GetScheduleTableStatus() API call. The call returns the status through an
out parameter. Code example 10.4 shows how to get the status.

ScheduleTableStatusType State;
GetScheduleTableStatus(Table, &State);

Code Example 10.4: Getting the status of a schedule table

The status will be either:

SCHEDULETABLE_STOPPED if the table is not started.
SCHEDULETABLE_RUNNING if the schedule table is started.

SCHEDULETABLE_NEXT if the schedule table has been started by a call to
ScheduleTableNext () but is not yet running (because another sched-
ule table on the same counter has not yet finished).

Summary

¢ Schedule tables provide a way of planning a series of actions statically
at configuration time.

* A schedule table is associated with exactly one OSEK counter, may
specify a duration, and contains one or more expiry points.

e Expiry points in RTA-OS3.0 are created implicitly by specifying offsets
for stimuli implemented on a schedule table.

* You can switch between schedule tables, but only at the notional end of
the table.

Schedule Tables

159

11

11.1

160

Writing Hardware Counter Drivers

You have seen that RTA-OS3.0 provides a simple, elegant and powerful inter-
face for driving counters. The hardware counter driver mechanism provides
great flexibility by placing the software/hardware interaction in the domain of
user-supplied code. This allows easy integration of drivers for novel hardware
and application requirements, and the ability to “piggyback” driver operation
on hardware that is also used for other functions.

As the owner of your hardware you know how you want to use it in your appli-
cation and therefore you are responsible for providing the hardware counter
driver functions.

This chapter offers some guidelines to help you in the construction of hard-
ware counter drivers. Much of this knowledge has been gained while con-
structing drivers for assorted peripheral timers, but it should be applicable to
other peripherals which increment in response to some external event (e.g.
interrupts generated by the rotation of a toothed wheel).

The example code is structured for ease of explanation and understanding.
Different control structures may result in small improvements in the quality
of generated code on some targets (e.g. replacing a while(1) loop using
if . break exits with a do . while loop with appropriately modified condi-
tions). If you choose to make this type of optimization, then you should take
care to ensure that the required semantics and orderings of operations are
maintained (e.g. note that the “&&” logical and operator in C imposes both
ordering and lazy evaluation).

The Hardware Counter Driver Model

The hardware driver concept assumes an underlying free-running peripheral
counter. The counter has an initial value established by the user, counts up
from zero and wraps back to zero as it reaches its modulus.

These are the assumptions of the model. In later sections of this chapter
you will see how to implement this model with hardware which does not
require these constraints.

A hardware counter driver uses the 0s_AdvanceCounter_<CounterID> API
call to tells RTA-OS3.0 to expire an alarms and/or the schedule table expiry
points associated with a counter as soon as possible after it/they become due
and to program the next alarm or expiry point.

In this chapter we use the terms:

now is the counter’s current (continuously increasing) value.

old is the previously programmed compare value.

Writing Hardware Counter Drivers

11.1.1

match is the (absolute value of the) count at which the next alarm or sched-
ule table expiry point is due.

- is a binary subtraction modulo the counter’s modulus.

The code examples in this chapter make use of the functions:

clear_pending_interrupt()
set_pending_interrupt()
enable_interrupt_source()
disable_interrupt_source()

These functions refer to operations performed on the status/control registers
of the counter peripheral used to provide the hardware counter functionality.
You are responsible for providing these functions (or equivalent code) in your
hardware drivers.

Interrupt Service Routine

Typically you will call RTA-OS3.0’s hardware driver interface from a user-
supplied Category 2 ISR..

The ISR is triggered by each match and will call
Os_AdvanceCounter_<CounterID>() to tell RTA-OS3.0 that a match
has occurred. RTA-OS3.0 will then setup the delay until the next match. In
general, there are three classes of behavior the ISR. These are described
here, along with their implications for system behavior and schedulability
analysis, in order that appropriate choices can be made when implementing
the ISR component of hardware counter drivers.

Simple handlers can deal with a single match value being processed per
ISR. This class of handler must complete before the next interrupt be-
comes due.

Re-triggering handlers can deal with one or more matches becoming due
before it completes handling of the interrupt by which it was first trig-
gered. Such a handler processes one match per invocation, and exits
with the invoking interrupt still pending if another match is already due.

Looping handlers can deal with one or more matches becoming due before
it completes handling of the interrupt which first triggers it. Such a
handler is able to process multiple expiries in turn, and only exits when
either no match is due or when an interrupt is pending. Any interrupt
handler which is capable of looping is a looping handler.

When it can be guaranteed the handler can complete before the next match
becomes due then a simple handler is the best choice because they typi-

Writing Hardware Counter Drivers

161

11.1.2

162

cally have a smaller worst-case execution time than re-triggering or looping
handlers. The choice between re-triggering and looping is influenced by the
following factors:

1.

2.

3.

Some hardware will not support re-triggering behavior, so a looping
handler must be used.

When the interrupt that invokes the handler is at the same level as an-
other interrupt in the system, and that other interrupt has a higher ar-
bitration precedence (i.e. will be handled first if both are pending) then
a re-triggering handler is preferred because it reduces latency for the
other interrupt. In practice, this is of particular concern for architectures
with a single interrupt priority level.

A re-triggering handler typically has smaller execution time than a loop-
ing handler when a single match is processed. Note that it is not nor-
mally relevant that a looping handler may be “more efficient” when sev-
eral expiries are handled in one invocation. Worst case behavior occurs
when each match is handled by a separate invocation.

A simple handler is recommended if the handler’s worst case response time
(i.e. the time between the interrupt becoming ready and the handler termi-
nating) is known to be smaller than the minimum interval between interrupts.
If this cannot be guaranteed, then a re-triggering handler should be used un-
less the hardware characteristics prohibit it.

Callbacks

Recall from 8.2.2 that four callbacks are also required as part of the hardware
counter driver:

1.

0s_Cbk_Now_<CounterID> which must return the now value of the pe-
ripheral counter.

. 0s_Cbk_Cancel_<CounterID> which clears any pending interrupt for

the counter and ensures that the interrupt will not become pending until
after a 0s_Cbk_Set_<CounterID>() call has been made. This behavior
is required if any of the following conditions apply to your application:

(a) the alarms driven by the counter are never stopped directly by the
application calling CancelAlarm();

(b) the schedule tables driven by the counter are stopped directly by
the application calling StopScheduleTable();

(c) you have a schedule table that does not repeat (in this case RTA-
0S3.0 may need to cancel the interrupt when the schedule table
stops).

Writing Hardware Counter Drivers

11.2

If none of these conditions apply, then you can simply provide a ‘stub’
call to implement 0s_Cbk_Cancel_<CounterID>.

3. 0s_Cbk_State_<CounterID> is called by RTA-OS3.0 when GetAlarm()
or GetScheduleTableStatus() is called by your application code and
the relevant alarm or schedule table is running. The call returns an
Os_CounterStatusType which is a C struct of the form:

struct {
TickType Delay;
boolean Pending;
boolean Running;

}

The Delay field, when defined, gives the number of ticks from the pre-
vious match at which the next match is due, i.e. Delay is the rela-
tive time between matches. The Pending field is set to true if the next
match is already pending. When the Pending field is false, then the
Delay holds the relative number of ticks from now that remain until the
next match becomes due. This behavior is required if the application
interrogates the status.

4. 0s_Cbk_Set_<CounterID> establishes a state in which an interrupt will
become due the next time the counter matches the supplied value. The
callback is passed the absolute match value at which the next match
is due. The callback is used to start the counter and also to shorten the
time to the next match. This secondary behavior is needed because
you can set alarms (or start schedule tables) that need to begin at an
match closer to now then the currently programmed match value.

All of the hardware driver callbacks run at OS level. This means that they
will not be preempted by Category 2 ISRs and do not, therefore, need to be
reentrant.

Using Output Compare Hardware

This section considers the construction of drivers for output compare (some-
times known as compare/match) counter hardware. Such hardware has the
property that an interrupt is raised when a counter value (advanced by some
outside process such as a clock frequency or events detected by some sen-
sor) matches a compare value set by software. It is assumed that both the
counter value and the current compare value can be read by software. In this
section, it is assumed that the registers of the counter hardware are mapped
to the variables OUTPUT_COMPARE and COUNTER.

Writing Hardware Counter Drivers

163

11.2.1

164

The section outlines appropriate call back functions, followed by several in-
terrupt handlers making different assumptions about required behavior and
hardware facilities.

Initially, a counter with the same modulus as TickType is considered. TickType
usually has a modulus of 21 on 16-bit targets and 232 on 32-bit targets.

With full modulus arithmetic, the number of ticks in a delay can be deter-
mined by subtracting the start value from the end value. When the cur-
rent counter value (COUNTER) is subtracted from the next compare value
(OUTPUT_COMPARE), the result is the number of ticks before the match is
reached. If this value is read after the next match is set, and found to be
greater than the currently required delay, then the counter has passed the
next match and there will be an extra modulus wrap (i.e. TickType ticks)
before the compare occurs. This can happen if the delay before the next
match is very short (for instance, one tick), in which case there is a race
condition between the counter passing the intended match and the setting
of the match.

Callbacks

Cancel

The 0s_Cbk_Cancel_<CounterID>() call must ensure that no further inter-
rupts will be taken. This is a hardware dependent operation that would typi-
cally be achieved by disabling interrupt generation by the counter device.

FUNC (void, OS_APPL_CODE) 0Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The 0s_Cbk_Now_<CounterID>() call reads the free-running counter to pro-
vide the current now value.

FUNC(TickType, OS_APPL_CODE) 0s_Cbk_Now_<CounterID>(void){
return (TickType)COUNTER;
}

Special care may be required when reading the counter on 8-bit de-

A vices to ensure that a consistent value is obtained: in some cases, the
high and low bytes must be read in a particular order in order to latch
then release the counter. Similar considerations may apply when writ-
ing compare values.

Writing Hardware Counter Drivers

Set

The 0s_Cbk_Set_<CounterID>() call causes the interrupt to become pend-
ing when the counter value next matches the supplied parameter value. This
is achieved by disabling compare matching, clearing any pending interrupt,
setting the compare value, and ensuring that the interrupt is enabled. If
the hardware does not provide the ability to disable compare matching, this
can be simulated by setting the compare value to one less than the current
counter value (thus ensuring that a match will not occur before the next time
that the compare value is set).

Note that it may not be necessary to disable compare matching. If it can
be guaranteed that a match will not occur between system start up and
the match at which the hardware counter is started, then disabling compare
matching is not necessary. In the example below, this is achieved by setting
the compare register to the previous value of the counter, thus ensuring that
a “match” interrupt will not be generated until ticks equal to the modulus of
the counter have occurred. This will be long enough to perform the rest of
the 0s_Cbk_Set_<CounterID>() function. (Note that this approach can only
be used if the compare register is not shared with anything else).

FUNC(void, OS_APPL_CODE) 0Os_Cbk_Set_<CounterID>(TickType Match)
{
/* prevent match interrupts for modulus ticksx/
OUTPUT_COMPARE = COUNTER - 1;
clear_pending_interrupt();
OUTPUT_COMPARE = Match;
enable_interrupt_source();

The code is carefully structured to avoid two potential race conditions that
can arise from dismissing the interrupt in a way that can result in unexpected
interrupts being generated or expected interrupts being lost. These race con-
ditions are as follows:

1. Pre-existing values of the compare and counter values may lead to an
interrupt being raised before the compare register is set, which results
in a situation where the interrupt appears to have been caused by the
action of 0s_Cbk_Set_<CounterID>() (rather than previous compare/-
counter values).

2. Using the clear_pending_interrupt() call after the compare register
is set avoids the first race condition (without the need to disable the
match interrupt), but may result in the situation where a very short de-
lay (for instance, one tick after the value of the counter register when

Writing Hardware Counter Drivers

165

166

0s_Cbk_Set_<CounterID>() is called) is ignored. In some cases, a full
counter wrap will occur before the compare causes an interrupt. De-
pending on the hardware, this may result in no interrupt occurring (even
after a counter wrap).

In all situations, careful consideration should be given to the use of very short
delays, as the counter may reach the next match even before it has been set,
particularly if the execution path between user code which reads the current
value of now, calculates the next match and sets the match is long. If this
occurs, a full counter wrap will need to occur before the match occurs.

In the above example, match interrupts are prevented by means of chang-
ing the output compare register. In subsequent examples, the way in which
this is achieved is not specified. Rather, it is assumed that a function
disable_compare() is provided to prevent the hardware from generating
match interrupts.

If the counter is used for some other purpose (in addition to its function
as the driver for the hardware counter), the disable_compare() func-

A tion must not halt the counter as this will lead to counter drift for other
users. The re-enabling of compare matching needs to be done atomi-
cally with the assignment of the compare register. If this is not done,
another race condition may exist if a short delay is set into the output
compare register.

The callback shown above only works for alarms/schedule tables that
you do not adjust once they have been started. If you plan to make
Set[Abs|Rel]Alarm() calls or to NextScheduleTable() calls, then you need
a different 0s_Cbk_Set_<CounterID>() callback. The callback needs to be
able to reset a currently programmed match value for a new match that is
due to occur means it is fewer ticks from now than the old match value.

We also assume that delays due to higher priority interrupts are relatively
small compared with an entire wrap of the counter modulus.

A naive implementation would (atomically) reprogram the compare value
with match. This is wrong because a higher priority interrupt (e.g. Category
1) could delay the write to the hardware register, so that by the time you
write match to the compare register, now is already greater than match.
This would cause all processing of the whole schedule to cease for 21° (or 232
or modulus) ticks. In fact, it is perfectly possible that, by the time we are
ready to write match to the compare register, now is already greater than
both match and old.

Your implementation of 0s_Cbk_Set_<CounterID>() must distinguish be-
tween the starting case (where interrupts are stopped) and the resetting case

Writing Hardware Counter Drivers

(where the schedule is running and it is being used to shorten the delay to an
existing OLD compare value).

In this second case, your implementation of 0s_Cbk_Set_<CounterID>()
must return with the compare register containing the new match value and
either;

* now has not exceeded match; or

* the compare interrupt flag is already pending. Note that if the interrupt
flag is pending, it does not matter if match or even old has been passed
by now as the hardware counter driver code you write that deals with
0s_AdvanceCounter_<CounterID> will (eventually) catch up to the cor-
rect time.

First you must write the new match to the compare register:

* If now is between match and old, i.e. old - match >now - match,
then now has already passed match. You must ensure that the inter-
rupt flag is pending before returning.

* If now is not between match and old then either you can return with no
flag pending or both match and old have been passed and you must
ensure the pending flag is set before returning. You can test for both
values having been passed using now - old <old - now .

FUNC(void, OS_APPL_CODE)Os_Cbk_Set_<CounterID>(TickType Match){
TickType 0ld = (TickType)COMPARE;
TickType Now = (TickType)COUNT;
/* Update COMPARE with new Match x/
COMPARE = Match;
if ((0ld-Match > Now-Match) || (Now-0ld < 0ld-Now)){
set_pending_interrupt();
}
}

State

The 0s_Cbk_State_<CounterID>() call is only made when the alarm or
schedule table is running and must first check whether the next match has
already occurred (i.e. the interrupt is pending, this can occur because all of
the callbacks are executed at OS level, which will prevent the resulting ISR
from preempting the currently executing task). If this is not the case, then
the remaining time to the next match is also required.

Writing Hardware Counter Drivers

167

11.2.2

168

FUNC(void, OS_APPL_CODE) 0Os_Cbk_State_<CounterID>(
Os_CounterStatusRefType State){
State.Delay = OUTPUT_COMPARE - COUNTER;
State.Running = True
if (interrupt_pending()) {
State.Pending = True;
} else {
State.Pending = False;
}
}

The Delay value is calculated before checking whether the interrupt
is pending. This is necessary to avoid a race condition in which the
interrupt becomes pending after checking but before calculating Delay,
which would result in an invalid value.

Interrupt Handlers

Simple

In the simplest case, it is only necessary to clear the interrupt and make the
required 0s_AdvanceCounter() call. 0s_AdvanceCounter() calls the call-
back 0s_Cbk_Set_<CounterID>() to program the next match. This assumes
that the latency of the handler to the statement at which it has set the next
match value - i.e. after the call to 0s_AdvanceCounter() on the compare
value) is known to be less than the shortest time between two matches driven
by the counter, so the match will be ahead of now.

#include <0s.h>
ISR(Advanced_Driver)
{
clear_pending_interrupt();
Os_AdvanceCounter_<CounterID>();

It is essential that the match is always advanced to be ahead of now. If the
match-now is shorter than the handler response time, then this will not be
the case and an additional full wrap of the peripheral counter will be intro-
duced before the next match occurs. In order to verify that a simple handler
may be used safely, you should use schedulability analysis to verify that the
simple handler can complete before its next invocation.

Re-Triggering

When matches may be too close together for the handler to advance the
compare value before the next match is due, the handler must account for
the situation in which the next match is already due.

Writing Hardware Counter Drivers

This example considers the use of an output compare timer with hardware
interlocking to prevent the accidental clearing of an interrupt which is raised
during the clearing sequence. It is assumed that for this type of interlock,
clearing the interrupt is achieved by reading the status register, then writing
the status register (with a bit pattern that clears the interrupt bit). In this
example, the interlock consists of two functions:

1. prepare_interrupt_clear()

2. commit_interrupt_clear()

While the driver is still running, the match is advanced (in the case of a full
wrap, advancing by 0 is correct) and the first part of the interrupt clearing
sequence is performed (reading the status register). Then a check is made
that the new match is ahead of now. If this check shows that an interrupt will
not be raised when the counter advances to the compare value (i.e. the next
match is not yet due), then the interrupt clearing sequence is completed (by
writing to the status register with the flag bit clear). If the check fails (i.e. the
new expire is already due) then the interrupt is left pending and the handler
will be re-triggered to deal with the match.

The two-stage interrupt clearing sequence is required to avoid a race
condition in which the counter reaches the next match between being
tested and the interrupt being cleared. This would otherwise result in
the interrupt for the next match being cleared. The required hardware
behavior is that if the interrupt is raised again after the first stage of the
sequence, then the second stage will not clear the interrupt.

A similar approach can be taken with devices where the interrupt can be re-
asserted by software. In these case, the interrupt can be cleared on entry to
the handler, then re-asserted if the next match is due. In this case no race
condition can occur (assuming there is no problem associated with software
asserting an interrupt which the hardware is already asserting).

ISR(OutputComparelnterrupt){
Os_CounterStatusType State;
TickType remaining_ticks;
Uintl6 clear_tmp;

Os_AdvanceCounter_<CounterID>();
0s_Cbk_State_<CounterID>(&State);
if (State.Running == True) {

OUTPUT_COMPARE += State.Delay;
clear_tmp = prepare_interrupt_clear();

Writing Hardware Counter Drivers

169

170

remaining_ticks = OUTPUT_COMPARE - COUNTER;
if ((State.Delay == 0)
|| ((remaining_ticks != 0)
&& (remaining_ticks <= State.Delay))) {
commit_interrupt_clear(clear_tmp);
}
}

Some output compare hardware requires that the compare register be
written to arm each interrupt. In such cases it is necessary to structure
the code (as is the case above) so that the compare register is written
to its previous value in the case of a Delay value of zero.

Looping

This section considers a generic looping ISR structure TickType modulus
counter with programmable output compare.

#include <0s.h>

ISR(Advanced_Driver){
Os_CounterStatusType State;
TickType remaining_ticks;

clear_pending_interrupt();
while(1l) {
0s_AdvanceCounter_<CounterID>();
0s_Cbk_State<CounterID>(&State)
if (State.Running == False) {
/* Exit 1: all alarms/schedule tables stopped */
return;
OUTPUT_COMPARE += State.Delay;
if (State.Delay == 0u) {
/*x Exit 2: full wrap */
return;

remaining_ticks = OUTPUT_COMPARE - COUNTER;

if ((remaining_ticks != Qu) &&

Writing Hardware Counter Drivers

(remaining_ticks <= State.Delay)) {
/* Exit 3: match is in the future x/
return;

if (interrupt_pending()) {
/x Exit 4: interrupt pending */
return;

This interrupt handler first dismisses the invoking interrupt, then enters a
loop which processes the match and checks whether any further matches
need to be processed by this invocation. This check has four exit conditions,
which must be evaluated in the order shown.

Exit 1 is taken if the counter/schedule has stopped, so no further action is
necessary. If the counter has not stopped, then the next match is set
to the required number of ticks (which will be zero in the case of a full
wrap). Checks must then be made to determine whether an interrupt
will be raised when the next match is due.

Exit 2 is taken if the Delay value indicates that a full wrap of the timer is
required before the next match is due. Therefore, no change to the
match value is necessary. A Delay value of 0 ensures that the new
match is ahead of now (and consequently that the interrupt will be
asserted when it is reached). Exiting here ensures that the following
checks will not immediately identify a match between now and the
match when a full wrap has been requested and the counter has not
yet moved on?.

Exit 3 is taken if the current timer value has not yet reached the next match.
This check is done by determining if the time until the next interrupt
(i.e. OUTPUT_COMPARE - COUNTER) is less than the Delay until the next
match. Note that the cast to TickType is necessary to ensure that the
counter modulo behavior is accounted for. The counter modulus must
be the same TickType for this to work correctly (Section 11.2.3 explains
how to cope with a hardware modulus not equal to TickType). If the
counter has moved on by less than Delay ticks, then an interrupt will be
raised at the correct time and the handler can exit, otherwise, the new
match may be missed.

Lt is assumed that the interrupt will not be re-asserted while the counter and match con-
tinue to match, only when the match first occurs. If this is not the case, it must be ensured
that the handler never exits in that state, perhaps by avoiding Delay values of zero.

Writing Hardware Counter Drivers

171

11.2.3

172

Exit 4 accounts for a race-condition between setting the next match and
checking that it is ahead of the counter, since the counter can advance
before the Exit 3 check is made. If Exit 3 is not taken, the next match
is due now. If the interrupt is pending, Delay has already been recog-
nized by the hardware, so the handler can exit and be re-invoked by the
pending interrupt (it would not be acceptable to exit with an interrupt
pending with no match due). Note that this construction means that
it does not matter whether the interrupt is pending or not when Exit 3
is not taken because the counter has advanced by exactly the Delay
value: either the pending interrupt or looping results in the next match
being processed.

If no exit is taken, then the next match is due (or overdue) and another call
to 0s_AdvanceCounter () is made. The next match is processed and the exit
checking is repeated.

Note that the typical behavior of this handler is expected to be a single
0s_AdvanceCounter() call, because the next match will be in the future (i.e.
is behaves just like a simple handler). Consequently, the handler should be
as fast as possible for that case (since the worst-case behavior occurs when
each match is triggered by a separate interrupt).

It is important that you understand the interrupt behavior of the coun-
ter/compare hardware in use. When the match is set equal to the
counter, there are three possible behaviors: the interrupt becomes
pending as the match is set, the interrupt becomes pending as the
counter moves beyond the match, or the counter needs to completely
wrap around before the interrupt becomes pending again.

In the example above, the test for Exit 3 assumes the counter hardware ex-
hibits the first or third behavior. With the second behavior, it is necessary
to exit if remaining_ticks is zero, as the interrupt will be asserted after the
counter and match value have been observed as equal.

Handling a Hardware modulus not equal to TickType

The driver outlines presented in Section 11.2 so far have assumed that the
counters and compare registers are the same width as TickType and arith-
metic is unsigned modulo TickType. Some hardware may not have this prop-
erty.

There are two cases:

1. the modulus of the hardware is less than the TickType

2. the modulus of the hardware is greater than the TickType

Writing Hardware Counter Drivers

Both cases can be handled by changing aspects of the driver. The following
sections discuss the changes in more detail.

Modulus less than TickType

In this case, we assume that the counter itself wraps to zero after some value
(m - 1) (i.e. the counter has modulus m, where m is smaller than TickType).
This increases the complexity of the drivers, but might be imposed by hard-
ware behavior or may be necessary to support some other system require-
ment. For example, a timer set up with a modulus of 50000 and tick of 1ms
could provide a 50ms interrupt via overflow used to drive a software counter
and output compare interrupts used to provide drive a hardware counter.

Such a modulus requires modification to calculations which derive new com-
pare values and which check the relationship between compare and counter
values. The following example assumes that TickType has modulus 216.

If mis 2%, (where x <16), then it is simple to apply explicit modulus adjust-
ments to arithmetic results by ANDing with 2x-1. For 8 bit modulus, this would
allow a compare value to be advanced by:

new_match = (old_match + Status.Delay) & OxFF;

A similar operation can be applied to the result of calculating the ticks re-
maining to the match.

The calculations become more complex if the modulus value is not a power
of two. Possible techniques are presented below.

Calculating of the new compare value must account for four possible results
when the new Delay value is added to the old compare value is calculated
using the TickType modulus of 216:

1. The Delay is zero. A full modulus wrap leaves the compare value un-
changed.

2. The result is greater than the old compare value, but less than m. The
result is the desired result.

3. The result is greater than m. The result of the addition needs to be
wrapped at m. This can be achieved by subtracting m, avoiding the
(often costly) modulus operator.

4. Theresultis less than the old compare value. The result of the addition
wrapped at 2!°, so the result must have (2'°-m) added to it to give the
result of wrapping at m.

Writing Hardware Counter Drivers

173

174

Note that if m is less than or equal to half the arithmetic modulus (i.e. less
than or equal to half of 2!°), then the fourth case can never occur.

When checking whether the new output compare value has been set ahead
of the counter, we consider three circumstances. No subtraction underflows
the 216 arithmetic modulus.

1. The Delay is zero, so the next match is known to be in the future. The
handler is required to complete in less than the counter modulus.

2. The next match is greater than or equal to the counter so we can sub-
tract counter from compare to give the interval until the next match
then check whether this is less than or equal to the required Delay (oth-
erwise, the next match has already occurred).

3. The next match is less than the counter value. Subtracting the match
from counter gives the interval that remains when the interval to next
match is subtracted from the modulus. Thus, we can calculate the
interval to next match as m- (COUNTER - OUTPUT_COMPARE) and then
check this result against the required Delay.

The same approach can be applied to the calculation of remaining time to
match in the 0s_Cbk_State_<CounterID>() call back.

Adding the mechanisms described above to conditions to the
ISR(OutputComparelnterrupt) driver gives the following:

#include <0s.h>

/* The next line should result in a constant being substituted.
We assume that the expression will be evaluated at compile
time, avoiding modulus overflow at run time. m is the
timebase modulus */

#define CMP_ADJUST ((TickType)65536u - m)
ISR(OutputCompare_SmallModulus){
Os_CounterStatusType State;
TickType counter_cache, remaining_ticks, new_match;
clear_pending_interrupt();

while(1l) {

Os_AdvanceCounter_<CounterID>();
0Os_Cbk_State_<CounterID>(&State);

Writing Hardware Counter Drivers

if (State.Running == False) {
/* Exit 1: alarms/schedule tables stopped */
return;

if (State.Delay == 0u) {
/* OUTPUT_COMPARE = OUTPUT_COMPARE if
* needed to arm next interrupt x/
/*x Exit 2: full wrap */
return;

new_match = OUTPUT_COMPARE + State.Delay;

if (new_match > OUTPUT_COMPARE) {
if (new_match >=m) {

new_match -= m;
}
} else {
new_match += (CMP_ADJUST);
}
OUTPUT_COMPARE = new_match;
counter_cache = COUNTER;

if (new_match >= counter_cache) {
remaining_ticks = new_match - counter_cache;
} else {
remaining_ticks =
m - (counter_cache - new_match);

if ((remaining_ticks != Qu)
&& (remaining_ticks <= State.Delay)) {
/* Exit 3: match in the future x/
return;

if (interrupt_pending()) {
/*x Exit 4: interrupt pending */
return;

Writing Hardware Counter Drivers

175

Modulus greater than TickType

The alternative case is where a hardware counter has a modulus that ex-
ceeds TickType. With a little care, such counters can be used to provide the
behavior required for a TickType with a modulus of 2!°. We restrict our con-
sideration to modulus values that are a power of two (e.g. a 32 bit counter).
In these cases, the low 16 bits of the counter have the desired behavior, but
overflow effects must be taken into account.

When the compare value is advanced in the interrupt handler, overflow from
the bottom 16 bits must be propagated through the rest of the compare regis-
ter. In addition, a Delay of 0 indicates that 216 must be added to the compare
value. Since the match can never be advanced by more than this, checks for
the timer having passed the match can be carried out using the low 16 bits
of the counter and compare registers.

When the 0s_Cbk_Set_<CounterID>() call back is used, the match
must be set so that it matches the counter when the low 16 bits of
the counter next have the same value as the parameter passed to
0s_Cbk_Set_<CounterID>(). This can be achieved as follows (assuming that
counter and compare are 32 bit unsigned values):

FUNC(void, OS_APPL_CODE) Os_Cbk_Set_<CounterID>(TickType Match)
{

uint32 to_compare;

disable_interrupt_source();
disable_compare();
clear_pending_interrupt();

OUTPUT_COMPARE
to_compare

(COUNTER & OxFFFFOOOQuUl) | Match;
OUTPUT_COMPARE - COUNTER;

if ((to_compare == Qul) || (to_compare >= 0x10000ul) {
if(!(interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;
to_compare OUTPUT_COMPARE - COUNTER;
if ((to_compare == 0Qul) || (to_compare >= 0x10000ul)){
if(!(interrupt_pending())) {
OUTPUT_COMPARE += 0x10000ul;
}
}

}
}

enable_interrupt_source();

}

176 Writing Hardware Counter Drivers

11.3

The operations are carried out with interrupts from the hardware device dis-
abled, in order to make them atomic with respect to the handler. First any
pending interrupts are cleared. This must be done after disabling comparison
(for instance, setting the match to ensure that a pending interrupt can only
be due to a match with the new match). Then, the compare register is set
to the counter value with its lower 16 bits replaced by the Match parameter.

If the match lies in the future by less than 21° ticks, then it has been set cor-
rectly. If there is a pending interrupt then the match must have been reached
so the interrupt should be handled. Otherwise, the match is advanced by 21°.
The check must then be repeated to account for a race in which the counter
could overtake the next match before it has been set. Checking twice is suf-
ficient, assuming that the 0s_Cbk_Set_<CounterID>() call completes in less
than 21° timer ticks.

This code assumes that the interrupt may or may not be pending if the match
is set equal to the counter. If the interrupt is known to become pending when
(or after) the two match, then the check for to_compare being zero should be
removed.

Note that this function can be much simplified based on knowledge of ap-
plication behavior. For example, if the counter is zeroed at startup and is
started only once less than Match ticks after startup, then it is sufficient to
set the compare value to Match.

Modulus 2® behavior is not exhibited by the low 16 bits of a counter
which has a modulus that is not a power of two: the last interval before
the timer wraps consist of (counter modulus MOD 21°) ticks.

Free Running Counter and Interval Timer

The counter compare handlers described in Section 11.2 allow the implemen-
tation of drift-free hardware counter drivers. However, not all target plat-
forms provide such counter facilities.

Drift can be avoided when using a down counter if a separate free running
counter is also available. The free running counter is used to provide a drift-
free time reference, and the down counter is set up to interrupt when the next
match becomes due. Some jitter (delay) may be introduced to individual
matches due to delays in setting the interval for the down counter, but these
do not accumulate (such jitter can be accounted for in the same way as jitter
introduced in the handling of the interrupt). In this section, the down counter
is considered to provide registers COUNTER and DOWN_COUNTER that can be
used as variables. As in the previous example, both registers are taken to be
TickType wide registers, and the values they use are taken to be unsigned
TickType size integers.

Writing Hardware Counter Drivers

177

11.3.1 Callbacks

178

All of the callbacks in this section assumed that the next match value is
maintained in software and used in calculation of the down count value to
the next interrupt. This can be declared as follows:

TickType next_match;

Cancel

The 0s_Cbk_Cancel_<CounterID>() callback function only needs to disable
the interrupt so the implementation is the same as before.

FUNC(void, OS_APPL_CODE) Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The 0s_Cbk_Now_<CounterID>() callback function needs to return the value
of the free-running counter.

FUNC(TickType, OS_APPL_CODE) 0s_Cbk_Now_<CounterID>(void){
return (TickType)COUNTER;
}

Set

Things start to change with the 0s_Cbk_Set_<CounterID>(). The callback
needs to set the DOWN_COUNTER so that it reaches zero (and interrupts) at a
relative number of ticks from now. This is done by subtracting the COUNTER
value from the Match value.

A This relies on all three counters having the same modulus.

The callback must also log the next match value from the absolute Match
parameter value passed into the call by RTA-0S3.0 (this will be used by the
0s_Cbk_State_<CounterID>() callback later).

FUNC(void, OS_APPL_CODE) 0Os_Cbk_Set_<CounterID>(TickType Match)
{

/* Record value at which expire is due */
next_match = Match;

disable_compare();
clear_pending_interrupt();

/* set up interrupt when counter reaches match value */

Writing Hardware Counter Drivers

11.3.2

DOWN_COUNTER = next_match - COUNTER;
enable_interrupt_source();

}

State

Note that the 0s_Cbk_State_<CounterID>() call, below, could return
DOWN_COUNTER as the Status.Delay value. If there is any jitter introduced by
setting the down counter, this will reflect in the time at which the next match
will be signaled, rather than when it is due. However, particularly with a non-
TickType modulus where more calculation is avoided, the following may be
acceptable.

FUNC(void, OS_APPL_CODE) 0Os_Cbk_State_<CounterID>(
Os_CounterStatusRefType State){
State.Delay = next_match - COUNTER;
State.Running = True;

if (interrupt_pending()) {
State.Pending = True;

} else
State.Pending = False;

}

return;

ISR

This demonstrates a looping form of ISR: it loops until no due matches remain,
rather than handling one match per invocation of the routine, as in a re-
triggering form of ISR.

#include <0s.h>
ISR(IntervalTimerInterrupt){
Os_CounterStatusType State;
TickType remaining_ticks;

clear_pending_interrupt();

while(1) {
0s_AdvanceCounter_<CounterID>();
0s_Cbk_State_<CounterID>(&State)
if (State.Running == True) {

/* Exit 1: all alarms/schedule tables stopped */
return;

Writing Hardware Counter Drivers

179

11.4

180

next_match += State.Delay;
/* Subtract adjustment for delay before COUNTER is set x/
remaining_ticks = next_match - COUNTER;

if (State.Delay == 0u) {
DOWN_COUNTER = remaining_ticks;
/*x Exit 2: full wrap */
return;

if ((remaining_ticks'!= 0Qu) &&
(remaining_ticks <= State.Delay)) {
DOWN_COUNTER = remaining_ticks;
/* Exit 3: counter set for next expire x/
return;

/* assume we only get an interrupt due to setting the
counter and we only set the counter when we are going to
exit so no need to test for pending interrupt */

Note that exit 2 assumes that setting the counter to zero will result in an
interrupt after one full wrap of ticks.

Using Match on Zero Down Counters

Some hardware might not provide a free running counter (or you might not
want to use this for your hardware driver).

In this case you will have to use just the interval timer. This example assumes
a 16-bit decrementing counter that raises an interrupt on reaching 0, and
continues to decrement. Because the counter continues to decrement, the
start point for the new countdown can be determined by adding the Delay
to the counter value (assuming modulo 2! arithmetic). It is desirable to
minimize drift during the counter update. Preventing interrupts during the
update, and adding an adjustment for the known time taken for update (to
both the counter and next_match), may be able to reduce this to one tick per
counter adjust (assuming the counter is asynchronous to the update, there
will always be some uncertainty). counter_adjust is introduced to allow
calculation of a now value: subtracting the counter value from next_match
gives this. Note that the counter update and counter_adjust update must

Writing Hardware Counter Drivers

11.4.1

be atomic with respect to any call to obtain now for this to give the correct
result.

When the driver is not running, the down counter is assumed to free-run.
From start-up it runs downwards from zero and the value of now is (0 -
counter). counter_adjust is used to hold the actual tick value that a free
running counter would have reached the next time the DOWN_COUNTER has
the value 0. this means that counter_adjust can be used to synthesize a
virtual free-running counter for the purposes of the hardware counter driver.

Callbacks

Cancel

Canceling the driver is achieved as before.

FUNC(void, OS_APPL_CODE) 0Os_Cbk_Cancel_<CounterID>(void){
clear_pending_periodic();
disable_interrupt_source();

}

Now

The 0s_Cbk_Now_<CounterID> callback cannot just return the vale of the
DOWN_COUNTER because the counter is not free running or monotonically
increasing. Instead, the now value is calculated by subtracting the
DOWN_COUNTER value from the counter_adjust to give the virtual free-
running value.

FUNC (void, OS_APPL_CODE) 0s_Cbk_Now_<CounterID>(void){
return (counter_adjust - DOWN_COUNTER);
/* counter_adjust is still correct adjustment
* as counter runs to and through 0 x/

Set

The race conditions discussed in Section 11.2.1 are still present in this model.
If the interrupt is dismissed before the DOWN_COUNTER is set, there is a risk that
an interrupt may occur between dismissing the interrupt and setting the down
counter. If the interrupt is set after the down counter is set, a small delay
could result in the expected interrupt being discarded. In the absence of spe-
cialized hardware protection, this can be avoided by the disable_compare()
function setting the counter to modulus - 1, then dismissing the interrupt
between determining the AdjustedMatch value and setting the counter (as
shown in the above example).

TickType counter_adjust = 0;

Writing Hardware Counter Drivers

181

11.4.2

182

FUNC(void, OS_APPL_CODE) 0s_Cbk_Set_<CounterID>(TickType Match)

{
TickType AdjustedMatch;
AdjustedMatch = Match - (counter_adjust - DOWN_COUNTER);

/* dismiss interrupt in a way that avoids race conditions */
disable_compare();
clear_pending_interrupt();

DOWN_COUNTER = AdjustedMatch;

counter_adjust += AdjustedMatch;
enable_interrupt_source();

State

0s_Cbk_State_<CounterID>() needs to set the Delay and can simply read
the value of the DOWN_COUNTER to get this. The rest of the callback is identica
to the others you have seen in this chapter.

FUNC(void, OS_APPL_CODE) Os_Cbk_State_<CounterID>(

Os_CounterStatusRefType State){

State.Delay = DOWN_COUNTER;

State.Running = True;

if (interrupt_pending()) {
State.Pending = True

} else {
State.Pending = False;

}

Interrupt Handler

The following example shows an appropriate interrupt handler.

#include <0s.h>

ISR(MatchOnZeroInterrupt){
Os_CounterStatusType State;
TickType counter_cache;

clear_pending_interrupt();
while(1l) {

Os_AdvanceCounter_<CounterID>();
0s_Cbk_State_<CounterID>(&State);

Writing Hardware Counter Drivers

if (State.Running == True) {
/* Exit 1: all alarms/schedule tables stopped */
return;

if (State.Delay == 0) {
/*x Exit 2: full wrap */
return;

counter_cache COUNTER + State.Delay;
COUNTER counter_cache;
counter_adjust += State.Delay;

if ((counter_cache !'= Qu) &&
(counter_cache <= State.Delay)) {
/x Exit 3: next match not yet been reached x/
return;

if (interrupt_pending()) {
/*x Exit 4: interrupt pending */
return;

The condition on Exit 3 assumes that the interrupt becomes pending when
(not after!) the counter reaches zero, but may not do so if it is set to zero (if
the counter is zero then the match is due and will be dealt with either by loop-
ing or re-entering via the pending interrupt). The same counter value must
be used for both parts of the test otherwise races can occur if the counter
changes between the two comparisons (hence the use of counter_cache).

If the behavior of the interrupt when the counter is set to zero is known, then
the code can be simplified by removing Exit 4 and the associated test (since
the interrupt status when counter_cache is zero will be known). If setting the
counter to zero never causes the interrupt to become pending then that is the
only change required. If setting the counter to zero always causes the inter-
rupt to become pending, then Exit 3 should only check for counter_cache
less than or equal to Delay. If the counter is zero, the interrupt will be pend-
ing and will cause the next event to be handled.

Writing Hardware Counter Drivers

183

11.5

11.6

184

In the case of a very fast running clock (where the clock speed is greater
than or equal to the processor speed), it will be necessary to add a correction
to the counter to offset the number of ticks that occur between reading the
counter and setting its new value. In any case, a drift of up to one tick cannot
be avoided whenever the down counter is set. On a multiple interrupt level
platform, it is desirable to disable all interrupts whilst reading/writing COUNTER
to avoid the possibility of interruption between these operations, resulting in
a large amount of drift.

Software Counters Driven by an Interval Timer

Using a periodic interval timer (or any per-event interrupt source) with an in-
terrupt on zero can be used to synthesize a free-running counter in software.
However, a handler of this form is of limited practical interest because there
is one interrupt per tick. This means it is identical to incrementing a software
counter. It is recommended that you use the software counter driver model
instead.

Summary

* You need to provide an hardware driver for every hardware counter and
advanced schedule.

e The driver interface comprises:

- A Category 2 interrupt handler that tells RTA-0S3.0 to take action;
and

- Four callback functions used by RTA-OS3.0 to control the coun-
ter/schedule.

 If possible, you should use a free running counter with associated com-
pare hardware and a simple interrupt handler.

¢ More advanced models can be supported though the interface if re-
quired.

e It is essential that you understand how your hardware generated the
counter tick source and what happens when an interrupt from the de-
vice occurs.

Writing Hardware Counter Drivers

12

12.1

12.1.1

Startup and Shutdown

Some operating systems that you might have used before will take control of
the hardware. RTA-0S3.0, however, is different.

Initially the operating system is not running, so you are free to use the hard-
ware as if no real-time operating system is being used. Until you explicitly
start the operating system with an API call, it is not running.

RTA-0S3.0 can be started in different application modes. A mode is a set
or subset of the complete application functionality that corresponds with a
specific function of the application. You will learn more about application
modes in Section 12.2.2.

From System Reset to Start0S()

This section looks at what has to be done between an embedded processor
“coming into life” when power is applied and the Start0S() API call being
made to start RTA-OS3.0 and your application. The details of what goes on in
this period are naturally dependent on the particular embedded processor in
use - the underlying principles are however the same. You should read this
section in conjunction with the reference manual for your target processor
and apply the concepts we describe to your own platform.

Power-on or Reset

When power is applied to an embedded processor, or the processor is reset,
the processor does one of two things (depending on the type of processor).

It may start executing code from a fixed location in memory, or it may read
an address from a fixed location in memory and then start executing from
this address. The fixed location in memory that contains the address of the
first instruction to execute is often called the “reset vector” and is sometimes
an entry in the interrupt vector table.

In a production environment, the reset vector and/or the first instruction to be
executed is usually in non-volatile memory of some variety. In a development
environment it is often in RAM to permit easy re-programming of the embed-
ded processor. Some evaluation boards (EVBs) have switches or jumpers that
permit the reset vector and/or the first instruction to be in EEPROM or RAM.

Going from power-on or reset to the first instruction being executed is often
referred to as “coming out of reset”. After a processor has come out of reset
it usually:

* has interrupts disabled,

¢ is in supervisor mode (if the processor supports it) - i.e. it can execute

Startup and Shutdown

185

Processor comes out of reset
and starts executing from a
fixed address in memory

Processor Processor is set up to run C RTA-0S3.0 is now running
initialization programs e.g. clearing memory User tasks and Category 2 ISRs
code executes locations, setting up the stack etc. execute under control of the OS

Max Level

Reset Processor C Runtime
Vector | Startup Code | Startup Code | 1nitialiseTarget () starcos(D

Category 11SRs

OS Level

User code must set up any processor
peripherals that you want to use

Category 2 1SRs

User Level

Processor Priority

Time

Figure 12.1: System Startup

all instructions and access all addresses without causing an exception
and has all forms of memory and I/O protection turned off.

¢ is in single-chip mode (if the processor supports it) - i.e. the chip is
in a “self-contained mode” where external memory is not usable and
external buses are disabled.

12.1.2 C Language Start-up Code

186

It is possible to have any code you would like executed when a processor
comes out of reset but it is normal if using a high-level language such as C
for this bootstrap code to be supplied with your compiler.

The compiler vendor supplies an object module or library that contains the
bootstrap code. The bootstrap code usually does two key things:

1. it carries out basic processor configuration, for example bus configura-
tion, enabling of access to internal RAM, etc.

2. it invokes the C language start-up code. Most of this is concerned
with initializing data structures, clearing memory, setting up the stack
pointer, etc.

Directives in the object module/library or in the linker configuration file are
used to ensure that the bootstrap code (and reset vector value if needed) are
placed in the correct location in memory.

The C language start-up code is usually supplied by the compiler vendor in
an object module with a name like crt0 or startup and the code can usually
be identified in a map file by looking for a symbol with a name something like
_start or __main. The source to this module is usually available to you.

Startup and Shutdown

12.1.3

For some target hardware, ETAS supplies a different version of the standard
startup code that should be used with RTA-OS3.0 applications. The RTA-OS3.0
Target/Compiler Port Guide and the example supplied with RTA-OS3.0 will tell
you how to use this.

The start-up code initializes the C language environment. For example, it sets
up the stack pointer, the heap used for malloc() and it initializes global vari-
ables by copying their default values from ROM into RAM. Finally, the start-up
code invokes the application start-up code.

Running main()

The application start-up code is typically in a function called frommain(). The
application start-up function has two things to do to work with RTA-OS3.0:

1. Initialize the target hardware into a state where RTA-0S3.0 and the ap-
plication can run

2. Call Start0S() to start RTA-0S3.0 running.

For example the application start-up code for an RTA-OS3.0 application may
look like:

0S_MAIN(){
InitializeTarget();
Start0S (0OSDEFAULTAPPMODE) ;
/* Never reach here x/

The macro 0S_MAIN() is provided for your convenience by RTA-0S3.0 to
mark the main function of your application - you do not have to use this
to work with RTA-0S3.0. The macro is used to handle the cases where using
void main(void) is forbidden by the compilers.

The InitializeTarget() function in the above example need to be writ-
ten by you to initialize the target hardware. The remainder of this section
describes the types of things that you may have to do to initialize target
hardware into a state where your application and RTA-OS3.0 can run. This
description is necessarily generic as every embedded processor is slightly
different. It is probably wise to read this section in conjunction with the RTA-
053.0 Target/Compiler Port Guide for your processor and the processor’s ref-
erence guide.

Setting up Memory

In general, memory configuration is carried out by the bootstrap code that
is run before the application start-up code is executed. In more complex

Startup and Shutdown

187

188

embedded processors. However, the memory configuration set-up by the
bootstrap code may not be what is required for the application. For example,
if the processor has internal RAM and an external memory bus then it is most
likely that the bootstrap code will have configured the processor to use the
internal RAM. If your application needs to use RAM on the external memory
bus, then you will need to configure the processor to use the external RAM.
Configuring access to RAM typically involves programming bank select and
mask registers - however the details depend on the embedded processor.

Setting up Peripherals

Most embedded applications make use of peripheral devices which may be
part of the embedded processor or attached through I/O or memory buses.
Examples are CAN controllers, Ethernet controllers and UARTs. It is generally
a good idea to set-up peripheral devices before RTA-OS3.0 is started since
at this point the application code cannot be preempted and has complete
control over interrupts.

Setting up Interrupts

Interrupt sources for Category 1 and 2 interrupts should be configured before
Start0S() is called. Typically, you should ensure that the IPL is set to OS level
and then both configure interrupt sources. You can also enable Category 1
interrupt sources here.

Do not enable Category 2 interrupts before calling Start0S() as
this can result ina race condition where the interrupt needs to be
handled before RTA-OS3.0 has been initialized. You should use the
StartupHook() to enable Category 2 interrupt sources. This model
means that Category 2 interrupts will not be generated until Start0S()
lowers the IPL just before it enters the idle mechanism.

On some microcontrollers it will be necessary to program priority registers
in the hardware that configure interrupt priorities. The values you program
must match the priority values that you told RTA-0S3.0 at configuration time,
otherwise your application will not work properly. On targets where this is the
case, RTA-0S3.0 will usually provide helper code so that you can do this job
correctly. You should check the RTA-OS3.0 Target/Compiler Port Guide for any
special instructions relating to target initialization.

Enabling Interrupts

Category 1 interrupts may also be enabled so that they generate interrupts
immediately as the handling of Category 1 interrupts is completely outside
the scope of RTA-0S3.0.

Category 2 interrupt sources must not actually generate interrupts until af-

Startup and Shutdown

12.2

ter Start0S() has completed initialization. You must not enable Category
2 interrupt sources before calling Start0S(). If you do this, then you can
get a race condition where the interrupt occurs before RTA-0S3.0 is correctly
initialized.

Enabling Category 2 interrupt sources before Start0S() will result in
undefined behavior.
RTA-0S3.0 provides a safe way to enable Category 2 interrupt sources using
the StartupHook() which is described in Section 12.2.1.

Setting up Timers

Most embedded applications use hardware timers. Timers are usually config-
ured to “tick” and generate interrupts at a fixed frequency. The ISR associ-
ated with the timer interrupts then either activates a task directly or ticks an
OSEK counter (i.e. calls IncrementCounter(CounterID)).

Setting up a hardware timer depends on the design of the timer but there are
two common forms:

1. a count register is set to zero and a match register is set to the maxi-
mum value for the count register. The count register is incremented by
the processor at a given frequency and, when it reaches the value in the
match register, it generates an interrupt and resets the count register
to 0.

2. a countregister is loaded with the number of ticks to occur before an in-
terrupt should be generated. The processor decrements the count reg-
ister at a given frequency. When the register reaches zero, an interrupt
is generated. Usually the ISR that handles the interrupt is responsible
for reloading the count register.

The frequency at which timers must run will depend on your application. It
is vital that all counters run at the frequency specified in their definition. If
you have told RTA-OS3.0 that a counter driven by a timer has a particular tick
rate, i.e. you have specified the “Seconds Per Tick” attribute, then you must
make sure that your timer hardware is configured to give a tick at the same
rate.

Starting RTA-0S3.0

Once your hardware is initialized, you can start RTA-0S3.0

RTA-0OS3.0 is started only once a Start0S() call is made. This call is usually
made from the main program. It is up to you to perform any hardware initial-

Startup and Shutdown

189

12.2.1

190

ization that is necessary for the application. The initial state of RTA-OS3.0 is
described in the RTA-OS3.0 Reference Guide.

Start0S (AppModeID) takes a single application mode parameter. This pa-
rameter is either the default mode OSDEFAULTAPPMODE or another mode
that has been configured in rtaoscfg.

Have a look at the example main function in Code Example 12.1, which starts
the operating system in the default application mode.

#include <0s.h>

0S_MAIN(){
InitializeTarget();
Start0S (OSDEFAULTAPPMODE) ;
/* Never reach here x/

Code Example 12.1: Example Main Function

The call to Start0S() does not return. Once the RTA-OS3.0 is initialized, all
interrupts are enabled and the 0s_Cbk_Idle() runs until a higher priority
task or ISR occurs.

Most RTA-OS3.0 API calls can be made from the idle mechanism. However,
you cannot use any calls that would require the idle mechanism to terminate
(for example, it is not possible to call TerminateTask() from the idle mecha-
nism).

You should not make RTA-OS3.0 API calls thhat manipulate OS objects
or enable Category 2 interrupts before calling Start0S().

RTA-0S3.0 can be suspended by disabling all Category 2 interrupts and en-
suring that they will not be raised on some future event, such as an output
compare match.

RTA-OS3.0 will be suspended when no Category 2 interrupts are raised and
the idle mechanism is running. You can resume RTA-OS3.0 by re-enabling
Category 2 interrupts and then resume making RTA-0S3.0 calls.

Startup Hook

The Startup Hook is called by RTA-OS3.0 during the Start0S() call after the
kernel has been initialized, but before the scheduler is running.

Start0S() raises the interrupt priority level (IPL) to OS level as soon as it is
called and lowers it to user level just before it returns. This means that the
startup hook runs with Category 2 ISRs masked. That means you can safely
enable interrupt generation in StartupHook() knowing that it will not actually

Startup and Shutdown

12.2.2

User Startup StartupHook () RTA-OSEK NEIERIEERERS
Code called Running running

Figure 12.2: Execution of the Startup Hook

result in an interrupt occurring until Start0S() has completed initialization
and RTA-0S3.0 is ready to run. At this point Start0S() unmasks Category 2
interrupts and the OS is running.

Figure 12.2 shows the execution of the Startup Hook relative to the initializa-
tion of RTA-0S3.0.

Code Example 12.2 shows how Startup Hook should appear in your code.

FUNC(void, OS_APPL_CODE) StartupHook(void) {
/* Startup hook code. */
EnableIOInterrupts();
EnableTimerInterrupts();

Code Example 12.2: Using the Startup Hook

The Startup Hook is often used for the initialization of target hardware (for
example the enabling of interrupts sources that have been configured in by
the code you executed before the call to Start0S()).

Application Modes

Applications can be started in different modes, which might represents part
of the complete functionality. These modes could correspond with specific
functions of the application. You could have, for example, an end-of-line pro-
gramming mode, a transport mode and a normal mode.

You can define as many application modes as you want. Figure 12.3 shows
how to declare different application modes in rtaoscfg.

A You must declare an application mode called OSDEFAULTAPPMODE.

Start0S (MyAppMode) will start RTA-OS3.0 in MyAppMode and you can use the
GetApplicationMode() API call to work out which more you are in. This
means that you can write application code that is mode-dependant. Code Ex-
ample 12.3 shows how a task can be written so that it has different behavior
in different modes.

TASK (Moded) {
AppModeType CurrentMode;

Startup and Shutdown

191

ETAS.rtaus"'- RTA-053.0 05 Configuration Tool =2] 5‘
Py T |7y 12| Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

Autostarted Tasks | Autostarted Alarms | Autostaited Scheduls Tables

- General

El- Alarms

- MarmbictivatesT ask. The following Tasks are autastarted in Application Mode ServiceMode':
Alarmid akesCallback
AlarmSetsEvent

-+ OneThausandMliseconds Available o 5 Inlse 2
= Application mades
- LimpHaometode TaskC ;I TaskD
- NomalOperatingtd ode TaskE I
-- OSDEFAULTAPPMODE
Sel] LI
[Counters
= Events
- Wwakellp
- 15Rs
- Register sets
- Resources
- Gchedule tables
- Tasks

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
E RTA-TRACE Configuration

| Sowrce | Deseription

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 12.3: Configuring Application Modes

GetApplicationMode (&CurrentMode) ;
switch (CurrentMode) {
case DiagnosticMode:
DoExtendedFunctionality();
break;
case LimpHome
DoBasicFUnctionality();
break;
default:
DoNormalFunctionality();
break;

Code Example 12.3: Adding moding to a task

Application modes can also be associated with a set of tasks, alarms and
schedule tables that are started automatically when the operating system
starts. This means you can customize what happens during Start0S() for
each of your declared modes.

192 Startup and Shutdown

ETAS.rtaus" - RTA-053.0 0S Configuration Tool B il v ﬂ
Gl 67 | {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

468 05 Configuration as D5SDEFAULTAPPMODE
e ere— Autostarted Tasks | Autostarted Alams I Autostarted Schedule Tables
- Target
- Optimizations The following Tasks are autostarted in Application Mode '0SDEFALLTAPPMODE
G- Alaims
=~ Application modes
- LimpHomeMode Avvailable: 5] 5 I Inlse ‘
- Narmallperatingtd ade Tasksy
- OSDEFAULTAPPMODE TaskC ;I
- ServiceMode ToekE <
- Counters
B Events b
B 15Rs
[#- Register sets
[Resources
- Schedule tables
Bl Tasks
-~ TaskA
- TaskB
TaskC Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard
TaskD
e TaskE | Source | Description

E RTA-TRACE Configuration

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 12.4: Declaring an Auto-started Task

Auto-starting Tasks

Any task can be auto-started in any application mode. When you auto-
start a task the OS activates the task during the call to Start0S() i.e. an
ActivateTask() API call is made internally. If you auto-start a basic task
then it will have run and terminated before you reach the 0s_Cbk_Idle. If
you auto-start an extended task then it will run and either reach its first
WaitEvent() API call for an event that has not yet been set or it will have
terminated before you reach the 0s_Cbk_Idle.

You do not need to auto-start tasks that you don’t need to run immedi-
ately on startup. Tasks that are not auto-started can still be activated
and run at a later stage through normal activation operations, expiry of
alarms, processing of schedule table expiry points, etc.

Figure 12.4 shows that Taskl has been auto-started in OSDEFAULTAPPMODE
and Production application modes.

Auto-starting tasks is typically useful for two cases:

1. Running an initialization task before other tasks in the system start to
execute.

If you need to do this, then you must ensure that the auto-started task
has a higher priority than any of the tasks that need to run after the

Startup and Shutdown

193

194

initialization task.

2. Starting extended tasks.

You will recall from Section 7.2 that you cannot set events for extended
tasks in the suspended state and that the structure of the task is typi-
cally an infinite loop and a series of WaitEvent () calls. By auto-starting
extended tasks you can avoid any potential errors that may occur by
setting events on auto-starting extended tasks.
Auto-started tasks execute in priority order, from the highest to
the lowest priority. If a higher priority tasks set events for a lower
priority task, then the events will be processed by the lower prior-
ity task when it executes.

Auto-starting Alarms

Alarms can also be auto-started in any application mode. When Start0S()
returns, all auto-started alarms will have been set.

Auto-started alarms can be started at either an absolute or relative tick value.
This has the same behavior as SetAbsAlarm() and SetRelAlarm() respec-
tively and configuration uses the same types of parameters. If an alarm is
auto-started, then you must specify an alarm time and a cycle time. The
same restrictions apply for these parameters as for the offset,start and
cycle parameters to the alarm API calls:

Alarm Time Cycle Time
Min Max Min Max
Relative 1 MAXALLOWEDVALUE | MINCYCLE | MAXALLOWEDVALUE
Absolute | 0 | MAXALLOWEDVALUE | MINCYCLE | MAXALLOWEDVALUE

If you auto-start an alarm in absolute mode with alarm time zero,
then the alarm will not expire until a full modulus wrap of the under-
lying counter has occurred (i.e. after MAXALLOWEDVALUE+1 ticks have
elapsed) because 0 is already in the past. For example, if you have an
alarm on a millisecond counter then it will not occur until 65536ms (65.5
seconds) have elapsed.

Figure 12.5 shows you how an alarm is configured for auto-starting.

Auto-started alarms are useful when you want to start a set of cyclic (peri-
odic) tasks when the OS starts. If you are using alarms to start multiple tasks
and you need the tasks to run at specific cyclic rates relative to each other,
then you must make sure that the alarms are auto-started. This is the only
way to guarantee alarm synchronization.

Startup and Shutdown

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
Py T |7y 2| Working: configuration. xml =

Eile Miew Project Reports Help

458 05 Configuration

General I Action i

- General
E- Alaims

- AlamctivatesT ask Alarm ‘BlarméctivatesT ask’ is Autostarted in the following Application Modes:
Alarmid akesCallback
AIarmSelsEvent” [] OSDEFAULTAPPMODE i) Tpe IAESDLLITE LI
- OneThouzandMiliseconds vl LimpHomeMode
- Application mades] MarmalO peratingtade i) Time 1
- Caunters [vl ServiceMode
- Events (i) Cycle Time |m
- 15Rs
Register sets
Resources
Schedule tables

(= Tasks
- Taskd,
- TaskB
- Taskl
- TaskD
TaskE

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
E RTA-TRACE Configuration

| Sowree | Deseription

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 12.5: Auto-starting an Alarm

Auto-starting Schedule Tables

Schedule tables can be auto-started in any application mode. When
Start0S() returns, all auto-started schedule tables will be running.

Like alarms, schedule tables can be started at either an absolute or relative
tick value. This has the same behavior as StartScheduleTableAbs() and
StartScheduleTableRel() respectively and configuration uses the same
types of parameters. If a schedule table is auto-started, then you must spec-
ify an absolute start value or a relative offset depending on the mode in which
you start the schedule table. The same restrictions apply for these param-
eters as for the offset, start and cycle parameters to the schedule table
start API calls:

Relative Offset Absolute Value
Min] Max Min] Max
Relative 1 MAXALLOWEDVALUE - -
Absolute - - 0 MAX

Schedule tables that are started with an absolute value zero will not
expire until a full modulus wrap of the underlying counter has occurred
(i.e. after MAXALLOWEDVALUE+1 ticks have elapsed) because the tick
value of zero is already in the past when the schedule table is started.

Startup and Shutdown

195

12.3

12.3.1

12.4

196

ShutdownHook () RTA-0S3.0
called Shutdown

Figure 12.6: Execution of the Shutdown Hook

Shutting Down RTA-0S3.0

The operating system can be shutdown at any point by making the
Shutdown0S() API call. When this happens, RTA-0S3.0 will immediately dis-
able interrupts and then enter an infinite loop. If you have configured the
ShutdownHook () it is called before the infinite loop is entered.

The ShutdownHook () is always passed a parameter that can be used to de-
termine the reason for shutdown and then take any necessary action.

Shutdown Hook

The Shutdown Hook is called during the execution of the Shutdown0S() API
call. Figure 12.6 shows the execution of the Shutdown Hook with respect to a
Shutdown0S () API call.

Code Example 12.4 shows how Shutdown Hook might appear in your code.

FUNC(void, OS_APPL_CODE) ShutdownHook(StatusType Error) {
/* Shutdown hook code. x/
switch (Error) {
case E_OK:
/* Normal shutdown x/
break;
default:
/* Abnormal shutdown x/
LogError();
break;

}

for(;;); /* Wait for reset x/

Code Example 12.4: Using the Shutdown Hook

You should not normally return from the ShutdownHook (). If you do then RTA-
0S3.0 will disable all interrupts and enter an infinite loop running at OS level.

Restarting RTA-OS3.0

AUTOSAR OS does not provide any mechanism for restarting the OS at run-
time other than though a watchdog reset. This is an unfortunate side-effect
of Start0S() not returning when a Shutdown0S () call is made. This is a sig-
nificant shortcoming in the AUTOSAR standard because it is an extremely

Startup and Shutdown

common requirement to be able to restart the OS in different modes during
runtime. For example, an ECU may have a power-saving mode or a “limp-
home” mode.

RTA-0S3.0 removes this limitation by providing two API calls that are used in
combination to restart the OS.

___ _ Restarting of the OS is unique to RTA-OS53.0 and is not part of the
ET/A\S 0SEK or AUTOSAR standards. Use of the features described in this
section are therefore not portable to other implementations.

The APl call Os_SetRestartPoint() places a marker in your code
to which the API call 0s_Restart() jumps when the call is made.
Os_SetRestartPoint() cannot be made once Start0S() has been called
and therefore must occur before the Start0S() call for restart to be possi-
ble.

It is only possible to restart RTA-OS3.0 once it has been shutdown. You
can only call 0s_Restart() from the ShutdownHook ().

Using this feature allows you to jump back to any arbitrary point in your pre-
Start0S() initialization, so you can place code to initialize other parts of the
system outside the OS.

Code Example 12.5 shows how you might use structure of the main program
when using 0s_SetRestartPoint () to place a marker.

AppModeType StartupAppMode;
0S_MAIN(){
InitializeTarget();
/* Set up normal application mode */
StartupAppMode = NormalOperation;
Os_SetRestartPoint(); /* We will return here on restart x/
switch (StartupAppMode) {
case NormalOperation:
/* Do mode-specific initialization x/
break;
case LimpHome:
/* Do mode-specific initialization */
break;

}
Start0S(StartupAppMode) ;

FUNC (void, 0S_APPL_CODE)ShutdownHook (StatusType Error){

Startup and Shutdown

197

if (FailureDetected == True) {
StartupAppMode = LimpHomeMode;
Os_Restart();
/* Never reach here x/

}

Code Example 12.5: Using Os_SetRestartPoint() and Os_Restart()

12.5 Summary

* RTA-0S3.0 will not work unless everything is located in the right place
in memory.

e The target hardware must be initialized before RTA-OS3.0 can run.
* RTA-0OS3.0 does not run until the Start0S() call is made.
¢ RTA-0S3.0 can be stopped at any time using the Shutdown0S () call.

¢ RTA-0S3.0 can be restarted by using the 0s_SetRestartPoint () call to
place a restart marker before Start0S(), using the 0s_Restart() call
to jump back to the marker and calling Start0S() to restart RTA-OS3.0.

* Tasks, alarms and schedule tables can be auto-started in different ap-
plication modes.

198 Startup and Shutdown

13

Error Handling

Many of the RTA-0S3.0 API calls return an error code at runtime which tells
you whether the OS detected an error during the execution of the API call or
not. The set of error codes that are returned depend on two things:

1. the build status of the OS

2. the API call itself

The OS provides two types of build status:

Standard status does a minimum amount of runtime error checking and is
intended for production builds of your application (i.e. the build that
you will send into series production after you have gained sufficient
confidence that your application is free from errors). Four classes of
error are detected:

1. E_OK - no error was detected. It is possible that this is because no
error checking was done. In this case the call will not have modified
the state of the OS (it will have silently failed).

2. E_OS_LIMIT - an internal limit of the OS was reached, for exam-
ple you tried to activate a task more often than your configuration
allows.

3. E_OS_NOFUNC - the call cannot be made

4. E_OS_STATE - the call cannot be made because the object is not in
a valid state

Extended status performs the checks as standard build, but adds a signif-
icant amount of extended error checking to check for all reasonable
violations of OS APl usage. There are too many errors to list here, but
they fall into 3 classes:

1. E_OK - no error was detected. It is possible that this is because no
error checking was done. In this case the call will not have modified
the state of the OS (it will have silently failed).

2. E_0S_<standard_code> - an error case defined by the AUTOSAR
(or OSEK) OS standard occurred.

3. E_L0S_SYS_<vendor_code> - an error case defined by
ETAS occurred, in addition to the cases identified by the
E_0S_<standard_code> codes occurred.

Error Handling

199

13.1

200

You are strongly encouraged to use extended status during in the early
stages of development so that you can debug any problems arising
from incorrect use of the RTA-OS3.0 API. When you are sure that you
are using the OS correctly, you can use standard status to check non-
functional properties of your application like production memory sizes
and performance.

Each API call that returns an error code will return a different set of values
depending on what type of errors can occur when the call is made.

Common (extended build) errors are:

Error Code Meaning

E_0S_ID You made an API call on the wrong type of object
E_0S_VALUE A parameter is outside a permitted range
E_OS_CALLEVEL | You made an API call from the wrong place

You can find out which API calls return which error codes, and what each code
means for the specific APl (and therefore what you might have to do to fix the
error) by referring to the RTA-0S3.0 Reference Guide.

Centralized Error Handling - the ErrorHook ()

The common way of checking errors from either standard or extended status
builds is to use the error hook which provides a “catch all” error handler. If
the ErrorHook is enabled, then it is called by RTA-0S3.0 when any API call
is about to return an error code that is not E_OK. The error code is passed
into the Error Hook routine and you can use it to work out which error has
occurred.

Figure 13.1 shows how the Error Hook is enabled.

If you enable the error hook then you must provide an implementation.
If you do not provide an implementation then your program will not link
correctly.

Depending on the severity of the error, you can decide whether to terminate
(by calling Shutdown0S()) or to resume (by handling or logging the error and
then returning from ErrorHook()). Code Example 13.1 shows you the usual
structure of the Error Hook.

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType status) {
switch (status) {
case E_0S_ACCESS:
/* Handle error then return. x/
break;
case E_OS_LIMIT:
/* Terminate. x/

Error Handling

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
Gl B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

ﬁDS il 05 Configuration > General

ErlGere General | Defaul Stack Values bytes] | Hooks Error Hook

= ;Z'“Dr:itzamns (i) CallEnar Hack [TRUE = |
E\ Blarrns i) PRecard Service ID IFALSE j
- Application modes E

& Counters \i) Record Parameters

- Events

&-15Rs Set Al | Clear All |

i Register sets

- Resources

+ Sehedule tables

G- Tasks

Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

| Gource | Desoription

[& RTA-TRACE Configuration
4 Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 13.1: Configuring the Error Hook

ShutdownOS(status);
default:
break;

Code Example 13.1: Suggested Structure of the Error Hook

As with the other hooks, RTA-0S3.0 defines the macros 0S_ERRORHOOK when
the error hook is configured, allowing you to conditionally compile the hook.

#ifdef 0S_ERRORHOOK
FUNC(void, OS_APPL_CODE) ErrorHook(StatusType status) {

}
#endif /x0S_ERRORHOOK*/

Code Example 13.2: Conditional compilation of the ErrorHook

The Error Hook is adequate for coarse debugging - it tells you that something
has gone wrong. For example, if you get E_OS_CALLEVEL, then you know that
you have made an API call from the wrong context somewhere in your code
but you have no indication where it might be. You really need to know more
about the error so that you can remove the bug. In this case, you need to

Error Handling

201

13.1.1

202

[ETAS.rtaos - RTA-053.0 05 Configuration Tool =l0lx
Chi B 9 5 | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

Gsnsrall Default Stack Values [bytes]l Hooks Error Hook

- General

B e, i) CallError Hook [TRUE |
- Application modes

- Counters i) FRecord Service ID ITF!LIE ﬂ
- Events E

- I5F \i) Record Parameters ITHUE ﬂ
-~ Register sets

W= Set Al | Clear Al |

- Schedule tables
- Tasks

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Desoription

[RTA-TRACE Configuration

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 13.2: Configuring Advanced Error Logging

know which API call resulted in the error being generated. You might find in
some cases that knowing which parameters were passed to an API call when
it failed helps you to debug a problem. This information is available at run-
time by configuring advanced error logging.

Configuring Advanced Error Logging

Three levels of detail are available:

1. Do not record the service details (default)
2. Record the APl name only.

3. Record the APl name and the associated parameters.

Figure 13.2 shows how the level of detail is defined in rtaoscfg.

If you choose not to record the service details, your application does not need
to pay the additional overheads associated with collecting this information.

Using Advanced Error Logging

When error logging is enabled, RTA-OS3.0 provides a set of macros for ac-
cessing the name and the associated parameters of the API call that caused
the error.

Error Handling

You can find out which APl call caused the error using the
O0SErrorGetServicelId() macro. This macro returns an 0SServiceldType
of the form 0SServiceld_<API name>. If, for instance, an
ActivateTask() call results in an error, 0SErrorGetServiceld will re-
turn 0SServiceld_ActivateTask

The parameters to the API call are available using macros in the form shown
in Code Example 13.3. A macro is defined for each parameter of each API
call.

OSError_<API Name>_<API Parameter Name>
Code Example 13.3: Advanced Error Logging

Using the ActivateTask() example again, OSError_ActivateTask TaskId
will return the TaskId parameter passed to ActivateTask(). This additional
error logging information can be usefully incorporated into the ErrorHook()
code. This is shown in Code Example 13.4.

FUNC(void, OS_APPL_CODE) ErrorHook(StatusType status) {
0SServiceldType callee;
switch (status) {
case E_0S_ID:
/* API call called with invalid handle. x/
callee = 0SErrorGetServiceld();
switch (callee) {
case 0SServicelId_ActivateTask:
/* Handle error. x/
break;
case 0SServiceld_ChainTask:
/* Handle error. x/
break;
case 0SServiceId_SetRelAlarm:
/* Handle error. x/
break;
default:
break;
}
break;
case E_OS_LIMIT:
/* Terminate. x/
Shutdown0S() ;
default:
break;

Error Handling

203

13.1.2

13.1.3

204

Code Example 13.4: Additional Error Logging Information

The macros for obtaining the APl name and the associated parameters should
only be used from within the Error Hook. The values they represent do not
persist outside the scope of the hook.

When you use extended error logging, the value returned by
OSErrorGetServiceld() may be misleading. This generally happens
when API calls have a side effect. For example if you activate a task from
a schedule table expiry point and that task activation results in an error,
then OSErrorGetServicelId() will return 0SServiceId_ActivateTask
even though the API call that you made was 0s_AdvanceCounter().

Working out which Task is Running

When debugging your RTA-0S3.0 applications, you will probably want to know
which task or Category 2 ISR is responsible for raising the error. OSEK OS
provides the GetTaskID() API call to tell you which task is running.

Code Example 13.5 shows you how to do this.

TaskType CurrentTaskID;
/* Pass a TaskRefType for the return value of GetTaskID) x/
GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Taskl) {

/* Code for task 1 x/
} else {

if (CurrentTaskID == Task2) {

/* Code for task 2 x/

Code Example 13.5: Using GetTaskID()

Working out which ISR is Running

AUTOSAR OS extends the OSEK scheme to Category 2 ISRs with the
GetISRID() API call.

Unlike GetTaskID(), GetISRID() returns the ID of the ISR through the re-
turn value of the function rather than as an out parameter to the function
call. If you call GetISRID() and a task is executing, then the function returns
INVALID_ISR.

The following code shows how to use GetISRID() together with GetTaskID().

Error Handling

13.1.4

13.2

ISRType CurrentISRID
TaskType CurrentTaskID;
/* Is an ISR running? x/
CurrentISRID = GetISRID();
if (CurrentISRID != INVALID_ISR) {
if (CurrentISRID == ISR1l) {
/* Work out which ISR x/
}
} else {
GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Taskl) {
/* Work out which task x/

Generating a Skeleton ErrorHook ()

Writing error hooks that trap the types of errors that your configure may gen-
erate can be time consuming and error-prone. RTA-0S3.0 can help this activ-
ity by generating the framework for the ErrorHook () that includes checking
for all types of error, for all API calls.

The framework ErrorHook () is generated using the following rtaosgen com-
mand line:

C:\>rtaosgen --samples:[ErrorHook] MyConfig.xml

This generates an error hook in Samples\Hooks\ErrorHook. c that you can
use in your application. If the file is already present, then rtaosgen will
generate a warning. If you want to overwrite an existing file, then you can
use:

C:\>rtaosgen --samples:[ErrorHook]overwrite MyConfig.xml

Inline Error Handling

An alternative to the ErrorHook() is to check the API return codes inline
with calling. This means that you can build some degree of run-time fault
tolerance into your application.

This may be useful if you want to check for error conditions that can occur in
the Standard status (such as ActivateTask() returning E_0S_LIMIT). Code
Example 13.6 shows you how this can be done.

TASK(FaultTolerant){
/* Do some work x/

Error Handling

205

13.3

13.4

206

if (ActivateTask(HelperTask) !'= E_OK) {
/* Handle error during task activation. x/

}

TerminateTask();

Code Example 13.6: Inline Error Checking

Conditional Inclusion of Error Checking Code

If you are adding code to check for runtime errors that only occur in extended
status, then you do not want to go through your application by hand to re-
move this code at when you change to standard status.

RTA-0S3.0 provides two macros that allow you conditionally include/exclude
code during development:

0S_STANDARD_STATUS is defined when standard status is configured
OS_EXTENDED_STATUS is defined when extended status is configured

___ . _The macros 0S_STANDARD_STATUS and 0S_EXTENDED_STATUS are
el | /\: provided by RTA-0S3.0 only and are not necessarily portable to other
implementations.

Summary

*« AUTOSAR OS provides facilities for debugging through the Error Hook
which provides a mechanism for trapping exceptional conditions at run-
time. It can provide a resumption model of exception handling.

¢ Further information on the source of an error is available through
macros accessible in the ErrorHook().

Error Handling

14

14.1

Measuring and Monitoring Stack Usage

RTA-0S3.0 provides stack monitoring features that can be used during devel-
opment to check whether you get any unexpected stack overruns.

When stack monitoring is configured, RTA-OS3.0 also provides features for
measuring the stack usage of each task and ISRs at runtime. This can be
used to identify which tasks consume what stack space and can help provide
information that might be useful for optimizations (for example, identifying
which tasks could share an internal resource to reduce the amount of stack
required).

You may also want to collect accurate stack usage information for each task
so that the stack allocations you specify are not pessimistic - i.e. you don’t
tell RTA-0S3.0 that tasks use more stack space than is really necessary.

Stack Monitoring

A common problem when building embedded systems is that of stack over-
run, i.e. tasks and or ISRs consuming too much stack space at runtime.

AUTOSAR OS allows you to monitor the stack for overruns. When stack moni-
toring is enabled, RTA-0S3.0 checks on each context switch whether the stack
has exceeded its pre-configured stack allocation value (see Section 4.6.2).

Category 1 ISRs in your system bypass RTA-OS3.0 completely and
therefore consume stack without OS knowledge. If your Category 1 ISRs.
result in stack problems then these will not be detected by RTA-0S3.0.

RTA-0S3.0 calls Shutdown0S (E_0S_STACKFAULT) when a stack fault is iden-
tified. This is the behavior required for AUTOSAR but this is not very useful
because it does not allow you to try and identify what has failed and by how
much the stack has been overrun?® In RTA-0S3.0 you can you can override this
behavior and trap problems with the 0s_Cbk_StackOverrunHook() instead.
Section 14.2 provides more details.

Stack monitoring impacts both the memory footprint and the run-time perfor-
mance of RTA-OS3.0 and is therefore disabled by default. Stack monitoring is
enabled in General = Stack Monitoring Enabled. Figure 14.1 shows how
to select your chosen option.

When you configure Stack Monitoring you need to define a stack allocation
budget for each task and Category 2 ISR. This figure must include the stack
required by your application and the stack required for the RTA-OS3.0 con-
text. Section 14.3 explains how to use RTA-OS3.0’s stack measurement fea-

Yin extreme cases, it may not be possible for you do anything, but one advantage of the
single stack model used by RTA-0S3.0 is that you can add a system-wide stack safety-margin
at link time and then use this ‘spare’ stack space for debugging if a stack fault occurs.

Measuring and Monitoring Stack Usage

207

14.1.1

14.1.2

208

ETAS.rtaos* - RTA-053.0 05 Configuration Tool =2] 5‘
'l {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration & 181l
E‘"m General | Defaulk Stack Valuss [bytes]l Huuksl Error HUUkI
- Alarrps . i) Scalsbiity Class I<undelined> ﬂ
- Application modes
- Counters i) Status |<undelinad> ﬂ
- Events =
B-ISRs Li) Enable Stack Monitoing ITHUE ﬂ
- Fiegister set
S i) Enable Time Manitaring |<undelined> j

-~ Resources
- Schedule tables
- Tasks

Check Maw | Clear All | Clear Selected | Copy Selected to Clipboard
E RTA-TRACE Configuration

| Sowrce | Description

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 14.1: Enabling Stack Monitoring

tures to get this data.

RTA-0S3.0 provides 2 ways to define the stack allocation:

1. Task/ISR defaults

2. Per task/ISR configuration

If a per task/ISR value is configured for a task/ISR, then this overrides the
default value.

Setting Defaults

Default settings set the stack allocation for all tasks, all Category 2 ISRs and
all Category 1 ISRs. You can see how to do this in Figure 14.2. If no other stack
allocation is specified elsewhere, then RTA-OS3.0 uses the default value.

Configuring Stack Allocation per Task/ISR

Each task and ISR can specify its own stack allocation as part of the task/ISR
configuration. Figure 14.3 shows how this is configured for tasks, ISRs have a
similar configuration element. Whenever you specify a stack allocation value
for a task/ISR the value configured overrides any default value that you might
have set.

Measuring and Monitoring Stack Usage

RTA-053.0 05 Configuration Tool

S 7 I | Y 12 | working: configuration xml =

File ¥iew Project Reports Help

458 05 Configuration

=) General
- Target
Optimizations
Alarms
- Application modes
- Counters

General Default Stack Values (bytes) | Huuksl Errar HUUkI

i) Tasks
(i) Categary115Rs

{i) Categoy 2 15Rs

=180

|64

[18

|22

- Events

-I5Rs

- Register sets

B Resources
IntemalF esource
LinkedR esource

- StandardResource
- Schedule tables
- Tasks

[T] ([3] -

m

[

Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

| Gource | Desoription

HTA-THAEE Configuration
s Builder

] Project Files

“Warking File: configuration. x| Build Status: idle

Figure 14.2: Setting default stack allocation

53.0 05 Configuration Tool 1ol x|
7 I | 7Y (2 | working: configuration xml =|

File ¥iew Project Reports Help

4 05 Configuration

General |F\Esnurcas Register Setsl Application Mndasl Eventsl

El- General
Target (i) Priority |1
- Oplimizations
lzims (i) Activations IWD
pplication modes
Task Py tabilit FULL -
it i) Task Presmptability I J
zonts (i) Gtack Size [bytes) (EC]
15Rs -
Fegister sets i) Waik-Stack size [bytes) |<undefmed>

Hesources Eveculion Budgst |<undsfined> millseconds =

Check Maw | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Description

RTA-TRACE Configuration

s Builder

4 Project Files

‘Working File: configuration.ml Build Status: idle

Figure 14.3: Setting Stack Allocation for Tasks

Measuring and Monitoring Stack Usage 209

14.2

210

ETAS.rtaus" - RTA-053.0 DS Configuration Tool
i =7 A | ¥ [| working: configuration.ml -

File Wiew Project

Reports

Help

‘ﬁ 05 Configuration

Generall Default Stack Yalues [bptes] Hooks | Error Hoole

=10l]

- General

o Target (i) Call Startup Hook [Facse |

“o Optimizations
B larms L) Cal Shutdawn Hook [FaLsE =l
B Application modes
- Counters i) Call Pre-Task Hook IFALSE j
B Events -

i) Call Post-Task Hook FALSE o
B 15Rs L I —I
- Register zets i) Call Stack-Overrun Hoaok x
- Fesouces
A Scheduls tables Li) Call Protection Hook IFALSE j
- Tasks
Setal Clear Al |

EHTA e et ; Check Now | Clear All | Clear Selected | Copy Selected o Clipboard
- onfiguration

| | Source | Description

45 Builder

&7 Project Files

Warking File: configuration.xml Build Status: idle

Figure 14.4: Configuring the stack overrun hook

Using the 0s_Cbk_StackOverrunHook()

Recall from Section 4.6.5 that RTA-OS3.0 can be configured to call the
0s_Cbk_StackOverrunHook() when problems with extended task manage-
ment are detected at runtime. The same hook is used by RTA-0S3.0 for re-
porting stack overruns detected by stack monitoring.

If you configure RTA-0S3.0 to use the 0s_Cbk_StackOverrunHook() as shown
in Figure 14.4 then RTA-0S3.0 will call the hook when a problem is detected
by stack monitoring.

___ _Calling 0s_Cbk_StackOverrunHook() when a problem is detected
=i /'\': by stack monitoring is an RTA-OS3.0 extension to AUTOSAR OS and
is not portable to other implementations.

The hook is passed a parameter indicating the number of bytes by which
the stack has overrun and a reason for the problem. Stack monitoring adds
another reason - 0S_BUDGET - to those presented in Section 4.6.5. 0S_BUDGET
indicates that a task has exceeded its stack allocation.

0S_BUDGET is similar to OS_ECC_START - it identifies a situation where
the stack has overrun. The difference between the two cases is that
0S_ECC_START only occurs when an extended task is started (basic tasks that

Measuring and Monitoring Stack Usage

exceed their configured stack allocation do not result in this error) whereas
0S_BUDGET problems are detected on every context switch for every type of
task and ISR.

As with the ErrorHook () you can make calls to GetTaskID() and GetISRID()
to identify what was executing at the point the problem occurred. Code Ex-
ample 14.1 shows an example 0s_Cbk_StackOverrunHook().

FUNC (void, OS_APPL_CODE) 0s_Cbk_StackOverrunHook(
0s_StackSizeType Overrun, Os_StackOverrunType Reason) {
ISRType CurrentISRID
TaskType CurrentTaskID;

/* Work out what has failed */
CurrentISRID = GetISRID();
if (CurrentISRID != INVALID_ISR) {
/* An ISR has overrun x/
if (CurrentISRID == ISR1l) {
/* Work out which ISR */
}
} else {
/* It must be a task that has overrun x/
GetTaskID(&CurrentTaskID);
if (CurrentTaskID == Taskl) {
/* Work out which task =/

/* Work out why x/
switch (Reason) {
case 0S_BUDGET:
/* Problem: The task/ISR exceeded its stack
allocation x/
/* Solution: Add Overrun to the stack allocation */
break;
case 0S_ECC_START:
/*x Problem: Some lower priority task on the stack
has used too much stack space */
/* Solution: Enable stack monitoring to find out
which task x/
break;
case 0S_ECC_WAIT:
/* Problem: The extended task had consumed too
much stack space then executing WaitEvent() =/
/* Solution: Add Overrun to the WaitEvent() stack

Measuring and Monitoring Stack Usage 211

14.3

212

allocation x/
break;

Code Example 14.1: The Stack Overrun Hook

When 0s_Cbk_StackOverrunHook() is entered this indicates that your

A system is not behaving as expected. You should not return from the
Os_Cbk_StackOverrunHook(). Entering the hook usually means that
your stack is corrupt. If you do return from the hook then the behavior
of your application is undefined.

Measuring Stack Usage

The figures that you supply for stack monitoring represent the worst-case
stack used by each task and should be the sum of the space required by
the task. This includes the context for RTA-O0S3.0 and the space required for
worst-case function call tree made by the task (where worst-case means the
tree that results in the most stack space being used by the task).

:T/.\: Stack measurement is a feature of RTA-OS3.0 and is not portable to
- = other implementations of the OSEK or AUTOSAR OS standards.

The 0s_GetStackUsage() API call is used for stack measurement in RTA-
0S3.0. On targets that have a single stack, 0s_GetStackUsage() returns
a scalar value indicating the number of bytes of stack space consumed by
the calling Task/Category 2 ISR. If your target has multiple stacks, how-
ever, 0s_GetStackUsage() returns a data structure containing the number
of bytes used on each stack. The RTA-0S3.0 Target/Compiler Port Guide for
your port will tell you how to extract stack space information from this data
structure.

RTA-0S3.0 also automatically logs the worst case stack usage seen at runtime
for each task and Category 2 ISR. The API calls 0s_GetTaskMaxStackUsage()
and 0s_GetISRMaxStackUsage() are provided to allow you to find out what
has been logged. Logging of worst-case (largest) values is only performed on
a context switch orin a call to 0s_GetStackUsage().

If your task or Category 2 ISR has not terminated (or entered the
waiting state) at least once or called GetStackUsage() at least
once then RTA-0S3.0 will not yet have logged a value and the
Os_Get[Task|ISR]MaxStackUsage() calls will return zero.

The values returned are measured from the initial value of the stack pointer
at the point RTA-OS3.0 starts the task/ISR. This means that measurements
include the stack context required by RTA-OS3.0. However, the stack values
returned do not include the stack space required for the calls themselves.

Measuring and Monitoring Stack Usage

14.3.1

Current Stac

>

0 = ©

O &
‘23 o 28
¥el User —

2 TaskHIGH = 0
532 ZEdwIE Stack ¥
o) g & Space = %
Q=

)

E%q
> b
v
O Tack Base OS Context

Stack Pointer

Initial Stack
Pointer

Figure 14.5: Stack Diagram

Figure 14.5 shows the size returned by 0s_GetStackUsage() when itis called
from task TaskHIGH.

Marking the Worst Case for Function Calls

To measure the worst-case stack usage for each task or ISR, you need to place
a call 0s_GetStackUsage () call at each leaf of your function call hierarchy.

If you have leaves that are library functions then you will need to make a
0s_GetStackUsage() call in the parent function and determine the worst-
case stack space of the library call. The worst-case stack space requirement
for the RTA-OS3.0 APl is provided in the RTA-OS3.0 Target/Compiler Port Guide
for your port. If you make calls to other libraries at the leaves of your call hi-
erarchy, you must contact the vendor to obtain the worst-case stack require-
ments for the library calls you make.

Measuring and Monitoring Stack Usage

213

214

Code Example 14.2 shows a task that makes a number of function calls.
It shows the placement of 0s_GetStackUsage() calls required to measure
stack usage.

#include <0s.h>

0s_StackSizeType Measurementl;
0s_StackSizeType Measurement2;
0s_StackSizeType Measurement3;

void Functionl(void) {

Measurementl = 0s_GetStackUsage();
ActivateTask(Higher);

void Function2(void) {

Function3();
Measurement2 = 0s_GetStackUsage();

void Function3(void) {

Measurement3 = 0s_GetStackUsage();

TASK(Low) {
Functionl();

Function2();
TerminateTask();

Code Example 14.2: Measuring Stack Usage

The worst-case stack usage (WCSU) for Code Example 14.2 will be the maxi-
mum value of Measurementl, Measurement2 and Measurement3. Figure 14.6
show Code Example 14.2 executing. In this case, the WCSU is when task Low
calls Functionl().

Measuring and Monitoring Stack Usage

Priority

Task Low Stack

Function1() called Enction'l () returns

EnctionZ() called EnctionZ() returns

[
|

Time

ActivateTask(Higher); Function3() calleE Enction:i() returns

3 Worst Case Stack Usage for Task Low

Time

Figure 14.6: Measuring the worst-case stack for the program call tree

Measuring and Monitoring Stack Usage 215

14.4

216

Summary

RTA-OS3.0 provides in-kernel features that allow you to measure and
monitor stack usage at runtime.

Each task and ISR must specify a stack allocation in bytes for each stack
used.

Arbitrary measurements of the current stack pointer value can be made
using the GetStackOffset () API call.

Stack faults can be handled by calling Shutdown0S() (as specified by
the AUTOSAR OS standard) or can alternatively be re-directed to RTA-
0S3.0’s 0s_Cbk_StackOverrunHook () for diagnosis.

Measuring and Monitoring Stack Usage

15

15.1

Measuring and Monitoring Execution Time

____ _Alltiming monitoring and measuring facilities provided by RTA-OS3.0
ET/\S are not part of the OSEK or AUTOSAR OS standards and are therefore
not portable to other implementations.

RTA-0S3.0 provides facilities for measuring the execution times of user code
at the kernel level.

Enabling Timing Measurement

Time monitoring can be used in both standard and extended builds and is en-
abled by setting General & Time Monitoring Enabled to true. The feature
needs access to a free running hardware timer, ideally one that runs at the
same speed as your CPU clock because this will allow RTA-O0S3.0 to carry out
cycle-accurate measurements.

Before you can use time monitoring you need to tell RTA-OS3.0 some details
about the timing of the target hardware. There are two values to provide:

1. the instruction cycle rate

This is the rate at which instructions are executed on your target hard-
ware (sometimes called the clock speed).

2. the stopwatch speed

This is the rate at which the stopwatch timer runs. Ideally, this will
be the same speed as the instruction cycle rate. However, it might be
slower than the CPU instruction rate because your timer module might
use some kind of pre-scaler.

RTA-OS3.0 generates a set of macros that encapsulate this information to
allow you to scale timing measurements:

Description

OSCYCLEDURATION The duration of a CPU instruction in nanoseconds.
OSCYCLESPERSECOND The number of CPU instructions in a second.
OSSWTICKDURATION The duration of a stopwatch tick in nanoseconds.

OSSWTICKSPERSECOND | The number of stopwatch instructions in a second.

15.1.1 Providing a Stopwatch

The free running timer you provide is called the “stopwatch” and is used by
RTA-0S3.0 to measure execution times. RTA-OS3.0 gets access to the stop-
watch using a callback function called 0s_Cbk_GetStopwatch().

Measuring and Monitoring Execution Time

218

Os_GetStopwatch();

Returns 1 even though almost two ticks have elapsed

Stopwatch Uncertainty is 1 tick

™
Stopwatch
| -

| | | | | | | g

0 1 t 2 3 4 6 d

CPU Instruction Rate
| -

T r T r e i

TTTT T 1T
01 2 3 4 5 6 7§8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 15.1: Uncertainty in stopwatch measurements

An implementation of 0s_Cbk_GetStopwatch() must be provided if you
are using RTA-053.0’s time monitoring functionality. Your program will
not link correctly if you do not provide this function.

Any code that your application uses to obtain execution times should be con-
ditionally compiled. RTA-0S3.0 provides the macro OS_TIME_MONITORING,
which allows you to do this. Code Example 15.3 shows an example of condi-
tional compilation when getting the time that a resource is held.

Code Example 15.1 shows a typical example.

#ifdef O0S_TIME_MONITORING

FUNC(0s_StopwatchTickType, OS_APPL_CODE) 0Os_Cbk_GetStopwatch(
void) {
return (0s_StopwatchTickType)TIMER_CHANNEL_O;

}
#endif /+ OS_TIME_MONITORING */

Code Example 15.1: Providing a stopwatch

The stopwatch returns ticks and any values reported by RTA-OS3.0 are in
terms of ticks on the stopwatch time base. You can use the macros provided
by RTA-OS3.0 to convert stopwatch measurements into ‘clock time’ units like
milliseconds, microseconds etc.

Uncertainty in Stopwatch Measurements

If the stopwatch runs slower than the CPU clock, then when RTA-0S3.0 reads
the stopwatch, there is a possibility that the time is less than the real amount
of time that has elapsed. This occurs because of the difference in resolution
of the CPU clock and the stopwatch. Figure 15.1 shows the basic issue - you
might read the lower resolution stopwatch just before it will be incremented
by the CPU clock.

Measuring and Monitoring Execution Time

15.1.2

15.2

This difference is called the uncertainty and you will need to compensate for
this in any calculations you do that use time measurement.

This does not occur for stopwatches that run at the same rate as the CPU
clock because you are already using the maximum possible resolution of
time. The stopwatch uncertainty is equal to zero if the instruction cycle rate
and the stopwatch speed are equal. In most other cases the uncertainty is
one (but see Section 15.1.2).

Scaling the Stopwatch

In most cases your, 0s_Cbk_GetStopwatch() will return a value read directly
from a hardware timer and you will convert timing measurements into ‘real’
time after measurement.

However, you may prefer to scale the stopwatch directly in the
0s_Cbk_GetStopwatch() callback so that all times reported by RTA-OS3.0
are already in the units you require. For example, Code Example 15.2 shows
how to scale the stopwatch from Code Example 15.1 so that the stopwatch
returns a value in nanoseconds.

FUNC(0s_StopwatchTickType, OS_APPL_CODE) Os_Cbk_GetStopwatch(
void) {
return (0s_StopwatchTickType) (TIMER_CHANNEL_0 =*
OSSWTICKDURATION) ;

Code Example 15.2: Providing a stopwatch

Scaling the stopwatch also has an impact on the stopwatch uncertainty as
shown in Figure 15.2.

An appropriate modification to the stopwatch uncertainty calculations you
make is to multiply the uncertainty by the scaling factor.

Automatic Measurement of Task and ISR Execution Times

When your application uses time monitoring, RTA-0S3.0 measures the exe-
cution times of each task and Category 2 ISR in your application.

RTA-O0S3.0 maintains a log of the longest observed execution time over all
executions for each task and Category 2 ISR. The execution time for tasks is
measured as follows:

Basic Tasks are measured from their first instruction to the completion of
the TerminateTask() API call.

Extended Tasks are measured from their first instruction to the first

Measuring and Monitoring Execution Time

219

220

Os_GetStopwatch();

Returns 10ns even though the time is almost 20ns

Stopwatch Uncertainty is 10 ticks

] i
Scaled Stopwatch
- »
| | B | | | | g
0 10 20 30 40 50 60
Stopwatctl
| | L | | | | g

0 1 P2 3 4 6 6
: CPU Instruction Rate
| -

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s~ — |
o —]

Figure 15.2: Uncertainty in scaled stopwatch measurements

WaitEvent(), between adjacent WaitEvent() calls and from
WaitEvent() to the TerminateTask() API call.

Pre- and post-task hooks, if configured, are not included in the execution time
measurement.

Execution times are measured using the stopwatch provided by
0s_Cbk_GetStopwatch(). RTA-OS3.0 automatically compensates for
preemption during measurement. When a task is preempted then the mea-
surement for the preempted task stops and measurement for the preempting
task starts as shown in Figure 15.3.

Measurements are taken on a context switch (or, in the case of extended
A tasks, the possibility for a context switch). This means that a switch
must occur for a time to be recorded. Therefore, a basic task must
terminate at least once for a timing measurement to be made and an
extended task must either terminate of make a WaitEvent() call.

The largest observed execution time for each task/ISR can be read using
Os_GetLargest[Task|ISR]ExecutionTime() API call. The call returns zero if
the task/ISR has not yet completed an execution.

The best place to record task and ISR execution times is in 0s_Cbk_Idle()
since, if the code here executes, you can be guaranteed that there are not
tasks or ISRs that are ready to run. Code Example 15.3 shows a typical ex-
ample.

FUNC(boolean, OS_APPL_CODE) Os_Cbk_Idle() {
#if defined(0S_TIME_MONITORING)
0s_StopwatchTickType TaskTime;

Measuring and Monitoring Execution Time

15.3

A
>
=
—
o Task2 Task2
Dt Os_Cbk_GetStopwatch() = 110 | Os_Cbk_GetStopwatch() = 210
o Os_GetExecutionTime() =0 Os_GetExecutionTime() =100
[e=
‘B Task2
©
()
—
[&]
£
\
Task1 Task1 in Ready state
»
- >
Time
Task1 Task1
Os_Cbk_GetStopwatch() = 50 Os_Cbk_GetStopwatch() = 210
Os_GetExecutionTime() = 0 Os_GetExecutionTime() =60

Task1 Task1
Os_Cbk_GetStopwatch() = 110 Os_Cbk_GetStopwatch() = 260
Os_GetExecutionTime() = 60 Os_GetExecutionTime() =110

Figure 15.3: Compensating for preemption in timing measurements

0s_StopwatchTickType ISRTime;
GetTaskMaxExecutionTime(MyTask,&TaskTime);
GetISRMaxExecutionTime(MyISR,&ISRTime);
#endif

return TRUE;

Code Example 15.3: Reading the longest observed execution times

You can reset a largest time using the 0s_ResetlLargest[Task|ISR]ExecutionTime ()

API call.

Manual Time Measurement

RTA-0S3.0’s time monitoring provides a API called 0s_GetExecutionTime()
that can be used to get the current stopwatch value. By placing this call
before and after any section of code, you can measure the execution time of
any fragment of your program. For example:

* you might want to profile the execution of some 3rd party library code

¢ you may want to debug exactly where time is being consumed by your
own applications

¢ you might want to measure the blocking due to resource locking or the
disabling of interrupts

Measuring and Monitoring Execution Time

221

15.4

222

Code Example 15.4 shows how you can measure blocking times. The same
principle applies to any code section that you need to measure.

TASK(Taskl) {
Os_StopwatchTickType start,finish,correction;

#if defined (0S_TIME_MONITORING)
/* Get time for Os_GetExecutionTime() call itself. x/
start = Os_GetExecutionTime();
finish = 0s_GetExecutionTime();
correction = finish - start -
0s_Cbk_GetStopwatchUncertainty();
/* Measure resource lock time. x/
start = Os_GetExecutionTime();
#endif
/* The section of code to measure */
GetResource(Resourcel);
/* Critical section. */
ReleaseResource(Resourcel);
#if defined (0S_TIME_MONITORING)
finish = 0s_GetExecutionTime();
/* Calculate amount of time used. x*/
used = finish - start - correction +
0s_Cbk_GetStopwatchUncertainty();
#endif

Code Example 15.4: Measuring Blocking Times

Imprecise Computation

Because the overheads imposed by time monitoring are small, it can be used
for production code. You can exploit this fact to perform imprecise computa-
tion.

Imprecise computation is useful in applications that interactively converge
on a result. For example, you might use Newton-Raphson to converge on a
value.

If a task has not traveled down the worst-case path, then it will not have
run in the worst-case execution time. If this is the case, any ‘spare’ CPU
cycles available to the task can be used to refine a result. This technique is
illustrated in Code Example 15.5.

TASK (NewtonRaphson) {
TickType Budget
TickType LoopTime

CONFIGURED_EXECUTION_BUDGET;
TIME_FOR_ONE_ITERATION;

Measuring and Monitoring Execution Time

15.5

ETAS.rtaus" - RTA-053.0 0S Configuration Tool) [m] ﬂ
Gl B {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

General |F\Esuurcss Reqister Setsl Application MD\:IESI Evenlsl

- General

-~ Target) Prinry |2

i e Oplimizations

B Alarms i) Activations (]

m Application modes - s -
E--Enuntars i) Task Preemptability IFULL J
B Events i) Stack Size (hytes) [¢undefined>

- 15Rs :

B- Register sets i) WaitGtack size [bytes] [<undefined>

- Resources
- Schedule tables
B Tasks
Taskd,
- TaskB
- TasklC
- TaskD
- TaskE

(=

Execution Budget |3DDE‘ stopwatchticks _'J

Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard

| Gource | Desoription

[& RTA-TRACE Configuration

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 15.4: Specifying the Execution Time Budgets

Result = ...;
while ((Budget - Os_GetExecutionTime()) > LoopTime) {
/* Perform iterative refinement of output. */
Result = Result - (Function(Result)/Derivative(Function
, Result));

Code Example 15.5: Imprecise Computation

Monitoring Execution Times against Budgets

Time monitoring also allows you to set budgets for execution times and let
RTA-O0S3.0 check for violations at runtime. The execution time budgets for
each task and Category 2 ISR can be set in your application. These values
are optional and do not have to be supplied. Configuration of an execution
budget is shown in Figure 15.4.

The type of the budget value can be set as ‘clock time’ or in terms of stop-
watch ticks or CPU cycles. RTA-0S3.0 uses the target timing characteristics
to perform any necessary conversions. Figure 15.5 shows how these values

Measuring and Monitoring Execution Time

223

ETAS.rtaos* - RTA-053.0 05 Configuration Tool

=10 x|
i = {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

488 0 Configuration

Gereral |F\ssuurces Reqister Selsl Application MD\:IESI Evenlsl

[l General

- Target i) Prinity |2
- Oplimizations
- Alarms i) Activations |zn
- Application modes f i =
- Courters i) Task Preemptability IFULL J
(- Events i) Stack Size bytes) [<undsfined>
(- ISRs
- Register sets i) WaitGtack size [bytes] [<undefined>
- Resources i) Esecution Budgst [a000 stopmalchlicks =

Schedule tables
B Tasks
Taskd,
- TaskB
- TaskC
- TaskD
- TaskE

Check Mow | Clear Al | Clear Selected | Copy Selected to Clipboard

| Source | Desoription

EF\TA-THAEE Configuration
s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 15.5: Specifying the Instruction Rate and Stopwatch Speed

are set.

When time monitoring is enabled, RTA-OS3.0 will check to see whether tasks
or Category 2 ISRs consume more time than is specified in the budget. If the
budget is exceeded, then RTA-0S3.0 will call the 0s_Cbk_TimeOverrunHook()
when the task terminates (or, in the case of an extended task, when it calls
WaitEvent()). This allows you to log the budget overrun. As budgets are
checked on a context switch there is the potential for a task or Category 2
ISR to overrun by a large margin before this is actually detected. Figure 15.6
shows what happens when a task overruns.

The 0s_Cbk_TimeOverrunHook() is mandatory if time monitoring is
configured in RTA-0S3.0. Your program will not link correctly if you do
not provide this function.

The prototype for 0s_Cbk_TimeOverrunHook() is shown in Code Exam-
ple 15.6.

#ifdef OS_TIME_MONITORING
FUNC (void, OS_APPL_CODE) Os_Cbk_TimeOverrunHook(void) {
/* Log budget overruns. x/

}
#endif

Code Example 15.6: The 0s_Cbk_TimeOverrunHook Prototype

224 Measuring and Monitoring Execution Time

15.6

RTA-0S3.0 context RTA-0S3.0 calls the overrun hook RTA-0S3.0 context
switch starts switch ends

Os_Cbk_TimeOverrunHook

Overrun hook returns

OS LEVEL

Task2

Increasing Priority

— Task2 terminates
Task2 exceeds ‘

configured budget ‘
Task1 in Ready state

Task1 starts/resumes

v

Time

Figure 15.6: Call of the 0s_Cbk_TimeOverrunHook()

You should be aware that, for extended tasks, the execution time is reset
to zero at the start of the task and when resuming from WaitEvent (). Nor-
mally the budget is used to check the execution time between consecutive
WaitEvent() calls.

You should also be aware that the execution time is only sampled by RTA-
0S3.0 when a task is preempted by another task or ISR or when the task/ISR
terminates.

In some unusual circumstances, it is possible for a budget overrun to
be missed. This could happen when the interval between preemp-
tions approaches the maximum interval that can be measured by a
Os_StopwatchTickType. The range of a Os_StopwatchTickType is tar-
get dependent, but is normally 216 or 232.

Summary

¢ RTA-0S3.0 provide in-kernel features that allow you to measure the ex-
ecution time of tasks and ISRs at runtime.

* You need to provide access to a free-running timer for RTA-0S3.0 to use
as a stopwatch. .

¢ The worst-case execution time of tasks and ISRs is logged automatically.

e Arbitrary measurements can be made using the
0s_GetExecutionTime() API.

* If an execution budget is specified for a task or ISR, then RTA-OS3.0 will
automatically monitor the task or ISR and generate an error at context
switch time if the budget is exceeded.

Measuring and Monitoring Execution Time

225

16

16.1

226

Using an ORTI-Compatible Debugger

ORTI is an acronym that stands for ‘OSEK Run Time Interface’. ORTI was de-
signed to provide a standardized and extensible way for an OSEK operating
system to provide internal details of its behavior to a debugger. The design
of the ORTI is sufficiently general that it can support operating systems other
than OSEK, and in RTA-OS3.0 ORTI support is provided for OSEK OS and AU-
TOSAR OS features.

ORTI provides a small language that captures two things:

1. how to find objects and variables within the running operating system;
and

2. how to interpret or display their values.

This means that ORTI is like a symbol table - telling the debugger which things
in memory mean which objects in the OS.

RTA-0S3.0 can generate an ORTI file for your debugger. This means that,
during execution of the application, you can observe values of key operating
system variables for applications based on RTA-0S3.0.

In this chapter you will learn how to configure the generation of ORTI infor-
mation for your debugger. A list of compatible ORTI debuggers is provided in
the RTA-0S3.0 Target/Compiler Port Guide for your port. You will also see the
information that RTA-0S3.0 provides about its applications.

For details of how to view ORTI information at runtime you should consult
your debugger documentation.

Development Process

The following steps describe how to use ORTI with your program.

Step 1 Use rtaoscfg to enable ORTI debugger support. As ORTI is target-
specific, the configuration is done in the “Target Specific” settings. Fig-
ure 16.1 shows how this is done.

Step 2 Build the RTA-0OS3.0 library. The kernel is instrumented with ORTI
support when generated. The ORTI file that you need for your debugger
is generated as a file called <projectname>.orti.

Step 3 Build the application.

Step 4 Start the debugger, load the application and then load the ORTI file.
For details of how to do this, please consult the documentation for your
debugger.

Using an ORTI-Compatible Debugger

16.2

i ETAS.rtaos* - RTA-053.0 05 Configuration Tool i 1 =[Ol x|
i & | {9 ¥ | Working: configuration xml =
Eile Miew Project Reports Help
ﬁDS Configuration asc ation > General » Target
- General TalgelSeIect\unI Veclursl Clock Speeds Target Specific
--Ta[.gs.[L) Stack used for C-startup l<UﬂdEf‘”Ed>
- Oplimizations
B Alarms i) Stack used whenidie |<undefined:-
1 Applistion mordes Li) Stack overheads for ISR activation i<undehned>
[#- Counters 2=
[Ewents i) Stack overheads for ECC tasks |cundefined:
E-15Rs :
- CatlISR i) Stack overheads for ISR |<undehned>
: —CazIsR (i) ORTILauterbach TRIE -
[=I- Register sets g -
FloatingPointRegisters) Link Type I(undefmad) j
SpecialFunctionR egisters I<undehned>
. Resources i) mopu overide
- Schedule tables
Bl Tasks
e Taskd,
- TaskB
TaskC Check Now | Clear Al | Clear Selected | Copy Selected to Clipboard
TaskD
e TaskE | Source | Description
EF\TA-THAEE Configuration
s Builder
) Project Files
wWorking File: configuration. <l Build Status: idle

Figure 16.1: Enabling ORTI Support

The debugger will then display the information shown by the ORTI file. The
format of this information depends upon the debugger.

Intrusiveness

ORTI relies upon reading values from the memory of the running application.
This means that the presence of ORTI can affect the operation of the appli-
cation. It is useful to know the extent to which this might happen. ORTI can
acquire data via four routes:

1. Constant values within the ORTI file. These are used for quantities that
will not change during the execution of an application. These have no
impact on the running application.

2. Values generated as part of the normal operation of the application.
Data is read from variables that would be present even if ORTI were
not. These have no additional impact on the application.

3. Values generated specifically for ORTI support. Such variables consti-
tute a very small extra overhead in the application.

4. Constants generated only for ORTI support. This data amounts to a
small overhead in the application. These constants are only generated
for debuggers that cannot obtain the information by other means. They

Using an ORTI-Compatible Debugger

227

16.3

16.4

16.5

228

are only present when you specify that you are using a debugger, so you
may wish to disable debugger support in your final production release.

Validity

Many of the values reported by ORTI are simply those contained in the appli-
cation’s memory. Using ORTI to inspect the system before it has been fully
initialized will lead to misleading results. RTA-0S3.0 is fully initialized when,
as a result of calling Start0S(), O0s_Cbk_Idle() the first task or Category 2
ISR is entered.

Care should be taken where a variable may be cached in a register for a signif-
icant portion of its lifetime, especially in the case of register-rich processors.
ORTI can only look at the data stored in the variable’s memory location. This
could be out of date if the register-based copy has been updated recently.

Interactions

The ORTI output will be correct when the program is stopped at a breakpoint
that is:

* In code executed by a task or Category 2 ISR that is outside of any
AUTOSAR OS API call.

The ORTI output may be misleading if the application is stopped at a break-
point that is:

* Within an AUTOSAR OS API call.

¢ In code executed by a Category 1 interrupt handler.

The output may be misleading because the OSEK data used by ORTI could be
in a partially updated state. Normally it is possible to tell if the program is
part way through an AUTOSAR OS call by the debugger reporting the name
of the function in which the processor stopped.

On a platform with more than two interrupt priority levels, however, a Cate-
gory 1 interrupt can occur part way through an OSEK call. If the program is
stopped at a breakpoint in a Category 1 interrupt handler, it is necessary to
use the debugger’s stack trace facility to determine the name of the function
that was interrupted. The ORTI output can be relied upon, provided that the
Category 1 interrupt did not occur within an AUTOSAR OS API call.

Summary

* RTA-0S3.0 can optionally generate ORTI information for use with a third-
party ORTI compatible debugger.

Using an ORTI-Compatible Debugger

* ORTI support is port-specific functionality. Additional details on the ex-
act nature of ORTI support for your port can be found in the relevant
RTA-0S3.0 Target/Compiler Port Guide.

Using an ORTI-Compatible Debugger 229

17

17.1

230

RTA-TRACE Integration

RTA-TRACE is a software logic analyzer for embedded systems that provides a
set of services to assist in debugging and testing a system including the abil-
ity to see exactly what is happening in a system at runtime with a production
build of the application software.

RTA-TRACE is a separate product to RTA-OS3.0 and is not supplied with
your RTA-OS3.0 installation. For further details about how to obtain RTA-
TRACE please contact your local ETAS Sales Office (see Section 18.2).

RTA-TRACE logs trace records in an on-target trace buffer. Each trace record
maintains information about what happened, and when, to which object. RTA-
TRACE relies on an instrumented OS to gather tracing data. Instrumentation
is possible by hand, however, rtaosgen can automatically add RTA-TRACE
instrumentation to the generated OS kernel. This chapter explains how to
use the RTA-TRACE configuration editor provided with the rtaoscfg tool to
enable this functionality. Section 17.1 describes the basic configuration. RTA-
TRACE also provides extensive control on which data is traced and allows you
to configure user-defined trace information.

Further details about RTA-TRACE are provided in the RTA-TRACE user docu-
mentation. However, you should note the following:

* the information presented in Sections 17.1 and 17.3 augments the in-
formation provided in your RTA-TRACE Configuration Guide for configu-
ration with RTA-0S3.0’s rtaoscfg tool.

¢ RTA-0S53.0 makes some changes to how the RTA-TRACE ECU link works.
The information presented in Section 17.4 augments the information
provided in your RTA-TRACE Configuration Guide.

» for RTA-OS3.0, all RTA-TRACE API calls, callbacks, macros and types and
adopt the AUTOSAR naming convention. The changes are as follows:

APl Feature | RTA-TRACE RTA-TRACE with RTA-0S3.0

Call <name> Os_<name>

Callback osTrace<name> 0s_Cbk_Trace<name>
Type osTrace<name> 0Os_Trace<name>
Macro OSTRACE_ENABLED | OS_TRACE

A complete reference for the modified RTA-TRACE API is provided in the
RTA-0OS3.0 Reference Guide.

Basic Configuration

The basic configuration parameters RTA-TRACE are shown in Figure 17.1.

RTA-TRACE Integration

ETAS.rtaos* - RTA-053.0 05 Configuration Tool) [m] ﬂ

: Ca ._': {9 ¥ | Working: configuration xml =

Eile Miew Project Reports Help

458 05 Configuration

= B

Enable Tracin TRUE 7
[@IRTATRACE Configuration = I =l
i) Use Compact IDs |FaLSE =
i) Use Compact Time IFALSE j
1 .
N i) Enable Stack Recording [FaLsE =
" Categories i) Run-Time Target Triggering IFALSE j
- Enums
- Intervals i) Autodnitiaise Comms |THUE j
i~ TaskTracepaints <
* Tracepoints i) SetTrace Autorepeat ITHUE j
i) Buffer Size (Trace Records) [2000
i) Aulostart Type |FREE_RUNHING =l

iheck Mowe | Clear All | Clear Selected | Copy Selected to Clipboard

| Source | Desciiption

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 17.1: Configuring RTA-TRACE
Enable selects whether RTA-TRACE instrumented is added to RTA-OS3.0 or
not. If this is not set, then no instrumentation is added to RTA-OS3.0.

Use Compact IDs selects compact trace format which reduces the size of a
trace record stored in the trace buffer.

Identifier Regular IDs Compact IDs

Task Tracepoint | 12-bit (max 4096 IDs) 4-bit (max 16 IDs)

Tracepoint 12-bit (max 4096 IDs) 8-bit (max 256 IDs)
Interval 12-bit (max 4096 IDs) 8-bit (max 256 IDs)
OS Objects 16-bit (max 65536 IDs) | 8-bit (max 256 IDs)

For most common applications it is safe to use compact identifiers.

Use Compact Time selects compact (16-bit) or extended (32-bit) time for-
mat. This option may not be available for every RTA-0S3.0 port.

Enable Stack Recording selects whether or not to record stack usage or
not. When enabled, this logs two trace records for each trace event:
one for the event itself and another for the stack size. Enabling this
option therefore doubles the amount of trace data that is recorded.

Run-Time Target Triggering selects whether or not runtime target trigger-
ing is available.

RTA-TRACE Integration

231

17.2

232

Auto-Initialize Comms selects whether the RTA-TRACE communications
link is initialized by automatically during Start0S(). Setting this con-
figuration item to TRUE means then RTA-0S3.0 will automatically call
Os_TraceCommInit() to initialize the communications link. If set too
FALSE then you will need to call Os_TraceCommInit() to initialize
the RTA-TRACE communication elsewhere in your application. “Auto-
Initialize Comms” should be set to FALSE when a debugger link is used
to upload trace data from the target to the host PC.

Buffer Size sets the size of the trace buffer reserved on the target for the
tracing information. The size is specified in trace records not bytes. A
trace buffer of 2000 records is recommended as a default setting.

Auto-start Type selects whether tracing is started automatically during
Start0S() and which tracing mode is used (Bursting, Free-Running or
Triggering). See Section 17.2.

Controlling RTA-TRACE
RTA-TRACE can be used in three different modes:

Bursting mode handles the buffer as a linear buffer and logs trace data
until the buffer is full. When the buffer is full tracing stops and the
buffer is made available for uploading to the RTA-TRACE host PC. This
useful for capturing a ‘one-shot’ log of data. RTA-TRACE is started in this
mode using Os_StartBurstingTrace(). Tracing can be automatically
re-started after the upload if the call 0s_SetTraceRepeat(TRUE) has
been made.

Free-running mode handles the buffer as a circular buffer and makes data
available for uploading to the RTA-TRACE host PC as soon as it has
been logged. If data can be uploaded sufficiently often that the buffer
is never full, then free-running trace provides a continuous stream of
trace data. If the buffer becomes full then tracing is suspended until
space becomes available again. RTA-TRACE is started in this mode us-
ing Os_StartFreerunningTrace().

Triggering mode handles the buffer as a circular buffer and logs contin-
uously. If the buffer overflows then old data is overwritten by new
data. Data is not made available for upload until one (or more) user-
specified triggers occur. When a trigger occurs the data buffer a user-
specified pre-trigger number of trace records is locked and tracing
continues until a user-specified post-trigger number of trace records
has been logged. When the post-trigger number of records has been
logged then tracing stops and the buffer is made available for upload-
ing to the RTA-TRACE host PC. RTA-TRACE is started in this mode using

RTA-TRACE Integration

17.2.1

Os_StartTriggeringTrace(). The pre and post-trigger windows are
set using 0s_SetTriggerWindow(pre,post). Tracing can be automat-
ically re-started after the upload if the call 0s_SetTraceRepeat (TRUE)
has been made.

If you have configured RTA-TRACE to auto-start then RTA-O0S3.0 will make the
correct RTA-TRACE Os_Start...() API automatically during Start0S(). If
RTA-TRACE is running and you make a Os_Start... () then the trace buffer
is clear and RTA-TRACE re-starts in the chosen mode.

If you need to stop RTA-TRACE then you need to make the 0s_StopTrace()
API call.

RTA-0S3.0 defines the macro 0S_TRACE when RTA-TRACE is enabled. You can
use this macro to conditionally compile RTA-TRACE code into your application
as shown in Code Example 17.1.

FUNC(void, OS_APPL_CODE) StartupHook(void)
#ifdef OS_TRACE
SetTraceRepeat (TRUE) ;

StartBurstingTrace();
#endif

Code Example 17.1: Using the 0S_TRACE macro

Controlling with Objects are Traced

RTA-TRACE defaults to tracing every type of OS object. Sometimes this might
not be appropriate to your application - you may be interested in just a set of
tasks or you may need to reduce the amount of data being logged because
your data-link has low bandwidth.

RTA-TRACE allows you control over data collection using classes and filters.

Classes

RTA-TRACE groups trace objects into classes. By default, all classes are traced
at runtime. However, to minimize the amount of trace data that is gathered
(and therefore minimize the amount of time spent uploading data) you might
choose to switch off some classes of tracing.

Each class can be configured as:

Always the class is always traced.

RTA-TRACE Integration

233

234

ETAS.rtaos* - RTA-053.0 05 Configuration Tool
Dy T e | 2| working: configuration.xml - |

Eile Miew Project Reports

Help

=10l

ﬁﬂg Configuration ACE Configuration >
Class | Filter Autostart
@F\TA-THAEE Configuration » ALWAYS ﬂ FALSE ﬂ
Tfenitin CaLeAMS Alwavs =] FALSE B
- Classes ERRORS ALWAYS x| FaLse =
. gﬁ:r":e’s EXPIRY_POINTS ALwiAYs = FaLSE =l
o INTERRUPT_LOCKS ALWEYS =l FaLsE =
- Enums INTERVALS ALWEYS =l FaLse =
‘T";Lvﬁlzmmms MESSAGE_DATA ALwEYS | FALSE =
Tracepoints OSEK_EVENTS ALWEYS = FaLSE =
RESOURCES ALWEYS = FaLSE |
SCHEDULETABLES ALWAYS > FaLsE =l
STARTUP_AND_SHUTDOWN ALWEYS = FaLse =l
SwITCHING_DVERHEADS ALWEYS = FaLse =l
TASK_TRACEPOINT ALWEYS = FaLsE |
TASKS_AND_ISRS ALWAYS = FaLSE |
TRACEPDINT ALWAYS x| FaLSE =l
iheck Mowe | Clear All | Clear Selected | Copy Selected to Clipboard
| Source | Desciption |
s Builder
4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 17.2: Configuring RTA-TRACE classes

Never the class is never traced.

class can be enabled/disabled at
calls 0Os_EnableTraceClasses() and

Runtime the tracing of the
runtime using the API
Os_DisableTraceClasses()..

Figure 17.2 shows how trace classes can be configured.

Any trace class configured as runtime is disabled when RTA-TRACE starts.
However, the runtime classes can be configured to be auto-started when RTA-
TRACE starts - TRUE enables runtime tracing of the class and FALSE disables
runtime training.

Filters

Filters allow individual tasks and ISRs to be excluded from tracing. As with
trace classes, all tasks and ISRs are traced by default, but can be configured
as:

Always the task/ISR is always traced.

Never the task/ISR is never traced.

Runtime the tracing of the task/ISR is controlled by the runtime state of the

OS_TRACE_TASKS_AND_ISRS_CLASS.

RTA-TRACE Integration

e ETAS.rtaos* - RTA-053.0 05 Configuration Tool = X
b fi | o
Py T |y 22| working: configuration xml =

Eile Miew Project Reports Help

45# 05 Configuration

Task/ASH Filter

[@JRTA-TRACE Configuration TaskA ALWEYS H

- Configuration TaskB ALWEYS =l

- Classes TaskC RUNTIME]

i Counters =

i Fiers Lo ALWAYS 5
F- Categories ¥ TaskE HEVER |
- Enums Cal2ISR ALWEYS =

Gear
o Interals CallISh HEVER =l

TaskTracepoints
% Tracepoints

CheckMow | Clear Al | Clear Selected | Copy Selected to Clipboard |

| Source | Description

s Builder

) Project Files

wWorking File: configuration. <l Build Status: idle

Figure 17.3: Configuring RTA-TRACE filters

Figure 17.3 shows how trace filters can be configured.

The setting of the 0S_TRACE_TASKS_AND_ISRS_CLASS is applied before a filter
is applied. This means that filter settings for a task/ISR interact with trace
classes in the following way:

Class Setting Filter ‘ Task/ISR Traced?
Never Never X
Never Runtime X
Never Always X
Runtime [Disabled] | Never X
Runtime [Disabled] | Runtime X
Runtime [Disabled] | Always X
Runtime [Enabled] | Never X
Runtime [Enabled] | Runtime v
Runtime [Enabled] | Always v
Always Never X
Always Runtime v
Always Always v

RTA-TRACE Integration

235

17.3

17.3.1

236

User-Defined Trace Objects

RTA-TRACE provides 3 different types of objects that you can configure to help
with debugging your application:

Tracepoints are used to log arbitrary data values (for example the value
of a variable or content of a data structure) in the trace buffer. Each
tracepoint is logged with a timestamp so you can see on the RTA-TRACE
visualization what value the data had at what time. A tracepoint can be
logged from anywhere in the application.

Task Tracepoints are similar to tracepoints but are displayed on the RTA-
TRACE visualization next to the task which logs them

Intervals are used to measure durations of time. An interval has a start and
an end marker that can be logged from anywhere in your application. In-
tervals are particularly useful for measuring end-to-end response times
over multiple tasks during program execution.

The following sections describe how to configure these user-defined objects
and how to control whether they are logged or not at runtime.

Tracepoints

Each tracepoint requires a unique identifier. This is an integer. The maximum
number of tracepoints that can be configured depends on the setting for “Use
Compact IDs” (see Section 17.1). If the ID is set to zero, then RTA-0S3.0
automatically allocates a unique ID for the tracepoint.

Each tracepoint can also be associated with a discrete data value or a block
of data. RTA-TRACE needs to know how to format the data value supplied
and this is configured by specifying a format-string (see Section 17.3.5 for
more information about format strings). The format string control how RTA-
TRACE will display the data value in the RTA-TRACE GUI. Figure 17.4 shows
the configuration of three tracepoints that log data as a signed integer, a
hexadecimal value and an unsigned integer respectively.

Any task in the application can log a tracepoint using the following API calls:

* Os_LogTracepoint() - log the tracepoint without any associated data

* Os_LogTracepointValue() - log the tracepoint with an associated
value

* Os_LogTracepointData() - log the tracepoint with an associated block
of data (specified using a base/bound scheme)

For further details, see the RTA-OS3.0 Reference Guide.

RTA-TRACE Integration

e ETAS.rtaos* - RTA-053.0 05 Configuration Tool = X
b fi | o
Py T |y 22| working: configuration xml =

Eile Miew Project Reports Help

45# 05 Configuration

RITATRACE Configuration =] Add New... | ¥ Remove Selected There are currently 3 Tracepoints
Configuration Mame 4D Format Sting
i~ Dlasses N AngularPosition 0 %d

- Counters
lers CANFramelD o e
ategories Debuggingt alue [t} #u

= Enums
: Gear
B Intervals
: EndToEndResponseT ime
- TaskTracepoints
=~ Tracepoints

- AngulaPosition

- CAMFramelD
- Debugging alue
CheckMow | Clear Al | Clear Selected | Copy Selected ko Clipboard |
| Source | Description
s Builder
) Project Files
wWorking File: configuration. <l Build Status: idle

Figure 17.4: Configuring RTA-TRACE tracepoints

17.3.2 Task Tracepoints

Task-tracepoints are configured just like normal tracepoints. See Sec-
tion 17.3.1 for further details.

Logging a task tracepoint uses a different set of API calls to normal trace
points:
¢ Os_LogTaskTracepoint() - log the tracepoint against the calling tasks

without any associated data

¢ 0Os_LogTaskTracepointValue() - log the tracepoint against the calling
tasks with an associated value

* Os_LogTaskTracepointData() - log the tracepoint against the calling
tasks with an associated block of data (specified using a base/bound
scheme)

For further details, see the RTA-OS3.0 Reference Guide.

17.3.3 Intervals

Intervals are used to measure arbitrary times in the application, for example
an end-to-end response time. Each interval you want to measure must be

RTA-TRACE Integration 237

ETAS.rtaos* - RTA-053.0 05 Configuration Tool = = ;IEIEI
i & | 7] [| Working: configuration.xml

Eile Miew Project Reports Help

488 0 Configuration

i) ID Jo

[RTA-TRACE Configuration

i) Fomat String Izd

Configuration
- Classes
- Counters
- Filkers
[#- Categories
El- Enums
Gear
- Intervals
EndToEndResponseTime
- TaskTracepaints
« Tracepaints

iheck Mowe | Clear All | Clear Selected | Copy Selected to Clipboard

| Source | Description

s Builder

4] Project Files

wWorking File: configuration. <ml Build Status: idle

Figure 17.5: Configuring RTA-TRACE intervals

named and allocated an unique identifier. As with tracepoints, an interval
identifier is an integer which is specified at configuration time. If a value of
zero is configured, then RTA-0S3.0 automatically allocates a unique identifier
to each interval.

Figure 17.5 shows how an interval is configured.

Each interval can also be associated with a discrete data value or a block of
data. RTA-TRACE needs to know how to format the data value supplied and
this is configured by specifying a format-string (see Section 17.3.5 for more
information about format strings).

Logging an internal requires you to mark the start and the end of the interval
using the follwoing API calls:
* Os_LogIntervalStart() - log the start of the interval without any as-

sociated data

* Os_LogIntervalStartValue() - log the start of the interval with an
associated value

* Os_LogIntervalStartData() - log the start of the interval with an as-
sociated block of data (specified using a base/bound scheme)

238 RTA-TRACE Integration

17.3.4

* Os_LogIntervalEnd() - log the end of the interval without any associ-
ated data

* Os_LogIntervalEndValue() - log the end of the interval with an asso-
ciated value

* Os_LogIntervalEndData() - log the end of the interval with an associ-
ated block of data (specified using a base/bound scheme)

Calls to log with and without data or values can be mixed, as showsn in Code
Example 17.2.

#include <0s.h>
#include "ThirdPartyLibrary.h"
TASK(A) {

Os_LogIntervalStart(LibraryCallMeasurement,
OS_TRACE_CATEGORY_ALWAYS) ;

x = CallToLibraryFunction(y,z);

Os_LogIntervalEndValue(LibraryCallMeasurement, X,
OS_TRACE_CATEGORY_ALWAYS) ;

Code Example 17.2: Mixing Os_LogInterval...()calls

For further details, see the RTA-OS3.0 Reference Guide.

Controlling which User-Defined Objects are Traced

User-defined objects are logged in the RTA-TRACE trace buffer at runtime.
Each API to log a user-specified object takes a parameter defining the trace
category for which is logged:

Os_Log[[Task]Tracepoint|Interval[Start|End]][Data|Value](...,
Os_TraceCategoriesType CategoryMask)

Trace categories are user-defined names that allow you control whether a
user-defined trace object is traced or not at runtime.

Each category has a category bit-mask. The mask is an integer that repre-
sents a unique identifier for the category in the trace buffer. The mask can be
set to a specific integer value, but it is recommended that you set the mask
to zero and let RTA-OS3.0 generate the category mask automatically.

If you choose to set your own mask values then you must ensure that
the integer representing the mask is a power of two i.e. 1,2,4,8,16 etc.

RTA-TRACE Integration

239

240

ETAS.rtaos* - RTA-053.0 05 Configuration Tool i =5 =] ﬂ
Dy T | 12 | working: configuration xml =
Eile Miew Project Reports Help

45# 05 Configuration

E RTATRACE Configuration @ Add Mew... | ¥ Remove Selected There are currently 4 Categaries
Configuration Mame 4| Mask Filter Autostart
- Classes "
e Everpthing a RUNTIME ﬂ TRUE - ..
- Filkers IntervalsOnly o ALWATS ﬂ TRUE =l -
=) Categories TaskTracepointsOnly 1] RUNTIME ﬂ F4LSE =|| .
- Everything 5
ntervakOrly » TracepointsOnly 1] MEVER j TRl ESa g ﬂ

TaskTracepointsOnly
TracepaintOnly

- Enums

- Intervals

- TaskTracepoints

« Tracepoints

CheckMow | Clear Al | Clear Selected | Copy Selected to Cliphoard |
| Source | Desoription
s Builder
4] Project Files
wWorking File: configuration. <ml Build Status: idle

Figure 17.6: Configuring RTA-TRACE categories

As with classes, each trace category can be filtered:

Always the category is always traced.

Never the category is never traced.

Runtime the tracing of the category can be enabled/disabled at runtime.
By default, runtime trace categories are disabled when RTA-TRACE starts. The

initial categories configuration allows you to control which of the run-time are
enabled when tracing starts.

Figure 17.6 shows how trace categories can be configured.

RTA-TRACE also defines two constant category masks:

1. OS_TRACE_CATEGORY_ALWAYS is always be traced.

2. OS_TRACE_CATEGORY_NEVER is never be traced.

Runtime control for categories is provided though the RTA-TRACE API
calls Os_EnableTraceCategories() and Os_DisableTraceCategories().
Each call takes a category mask (or a bit-wise OR of category

RTA-TRACE Integration

17.3.5

masks) as input. All user tracing can be disabled by calling
Os_DisableTraceCategories (0S_TRACE_CATEGORY_ALWAYS) and re-
enabled by calling 0s_EnableTraceCategories (0S_TRACE_CATEGORY_ALWAYS).

Format Strings

Format strings are used to tell RTA-TRACE how to display a user-defined trace
item’s data. Simple numeric data can be displayed using a single format
specifier. More complex data, e.g. a C struct, can be displayed by repeat-
edly moving a cursor around the data block and emitting data according to
more complex format specifiers.

If a format string is not supplied, data is displayed in the following manner:

* If the data size is no greater than the size of the target’s integer type,
data is decoded as if "\%d" had been specified.

¢ Otherwise the data is displayed in a hex dump, e.q.
0000 00 01 02 03 04 05 06 07 08 09 Ga Ob Oc 0d Oe Of
0010 10 11 12 13 14 15 16 17 18 19 1la 1b 1c 1d 1le 1f

The hex dump has a maximum size of 256 bytes.

When format specifiers are given, the target’s endian-ness is taken into
account. When a hex dump is shown, the target’s memory is dumped
byte-for-byte. In particular, you may not get the same output from a
hex dump as from the %x format specifier.

Rules

Format strings are similar to the first parameter to the C function printf():

¢ Format strings are surrounded by double-quote (") symbols.

¢ A format string may contain two types of object: ordinary characters,
which are copied to the output stream, and format elements, each of
which causes conversion and printing of data supplied with the event.

¢ A format element comprises a percent sign, zero or more digits and a
single non-digit character, with the exception of the %E element.

e The format element is decoded according to the rules in the table below,
and the resulting text is added to the output string.

* The special format element %% emits a %.

¢ In addition to ordinary characters and conversion specifications, certain
characters may be emitted by using a ‘backslash-escape sequence’. To

RTA-TRACE Integration

241

emit a double-quote " character, \" is used, and to emit a \ character,
\\ is used.

* The optional size parameter to integer format specifiers defines the
field’s width in bytes. Valid values are 1, 2, 4 or 8.

An important difference from printf() is that the cursor does not au-
tomatically move on from the current field when a field is emitted. This
is to facilitate multi-format output of a single field.

Format Element Meaning

%offset@ Moves the cursor offset bytes into the data. This can be
used to extract values from multiple fields in a structure.

%[sizeld Interpret the current item as a signed integer. Output the
value as signed decimal.

%l[sizelu Interpret the current item as an unsigned integer. Output
the value as unsigned decimal.

%[size]x Interpret the current item as unsigned integer. Output
the value as unsigned hexadecimal.

%[sizelb Interpret the current item as an unsigned integer. Output

the value as unsigned binary.

%enuml[:size]E | Interpret the current item as an index into the enumera-
tion class who's ID is enum. Emit the text in that enumer-
ation class that corresponds with the item’s value. The
enumeration class should be defined using ENUM direc-

tives.

%F Treat the current item as an IEEE ‘double’. Output the
value as a double, in exponent format if necessary.

%? Emit in the form of a hex dump.

%% No conversion is carried out; emit a %.

Enumerations

Sometime you may want RTA-TRACE to display symbolic data for a a given
trace value. This is possible in a number of ways with format strings, but one
possibility is to use a value to reference an enumeration of symbolic values.
Each enumeration you need must be configured before it can be referenced
from a format string.

An enumeration is given a name and contains a set of name/value pairs that
define the mapping between the value and the associated symbolic name.
Figure 17.7 shows how an enumeration of ‘Gear’ has been configured with
a simple mapping between an integer value and the symbolic hames of the
gears.

242 RTA-TRACE Integration

ETAS.rtaos* - RTA-053.0 05 Configuration Tool
Dy T e | 2| working: configuration xml =

Eile Miew Project

45# 05 Configuration

[@JRTA-TRACE Configuration

- Canfiguration
o Classes

- Counters

lters
ategores

= Enums

: Gear

- Intervals
TaskTracepoints
i Tracepoints

s Builder

) Project Files

Reports Help

Add New Parameter

Remove Selected Parameter

=10l

Name

Yalue

Neutral

First

Second

Third

Fourth

Fifth

- EIENEIIEIE

CheckMow | Clear Al | Clear Selected | Copy Selected ko Clipboard

| Source | Description

wWorking File: configuration. <l

Build Status: idle

Figure 17.7: Configuring RTA-TRACE enumerations

Example Format Strings

Description

A native integer dis-
played in decimal
and hexadecimal

A single unsigned
byte representing a
percentage.

nt x;int
y;structi; on a
32-bit processor.

A value of type
enum e_Rainbow,
(defined as the col-
ors of the rainbow!)

Format
“%d Ox%x"

“%1lu%%”

“(%d,%4@%d)"”

M%lEH

Example Notes

10 OxA

73%

(20,-15)

Yellow

R1

The “Ox” is not
emitted by the %x
format specifier but
is specified in literal
characters in the
string. Absence of
size specifier means
the target's integer
size is assumed.
This example is a
16-bit processor.
Use of size specifier
of 1 byte. Use of %%
to emit %.

Use of %offset@ to
move to byte-offset
within the structure.
The number 1 refers
to the ID of the enum
class in the ENUM di-
rectives, not to the

rAYHRACE that8gkhtion

243

17.4

17.4.1

244

ECU Links

RTA-TRACE provides two standard ways to get data from the ECU to the host
PC:

* Debugger Link - This is a passive data link - it does not require any
supporting code in your application. However, you will need to use your
debugger! to “pull” the contents of the trace buffer from the target to
the PC running the RTA-TRACE Server.

¢ Serial Link - This is an active link - you need to provide code in your ap-
plication to “push” the contents of the trace buffer to from the target to
the PC running the RTA-TRACE Server. Both polled and interrupt-driven
serial communication is possible.

Other data links may be available - please contact ETAS for details.

The following sections describe how to use the standard data-links in your
application.

Debugger Links

The debugger link only transfers data to the RTA-TRACE server once there is
a full buffer (or a full trigger window in the case of triggering mode) available
for transmission.

When the buffer is full, RTA-TRACE calls the function Os_TraceBreakLabel().
You should use your debugger to place a breakpoint on this function so that
each time the trace buffer is full, the target is paused and you can then up-
load the contents of the variable 0s_TraceBuffer[] to the debugger. Many
debuggers can be scripted to perform these steps automatically.

The RTA-TRACE server accepts data in two formats:

1. Lauterbach format

2. CrossView format

These formats are described in the RTA-TRACE ECU Link Guide.

Using the debugger link may impact interaction with the target. Each time
the trace buffer is full then the target is paused by the debugger and only
resumed once the trace buffer has been uploaded as shown in Figure 17.8.

A debugger is not supplied with RTA-0S3.0 or RTA-TRACE. A list of compatible debuggers
can be found in the RTA-OS3.0 Target/Compiler Port Guide for your port.

RTA-TRACE Integration

17.4.2

Os_TraceBreakLabel reached! Os_TraceBreakLabel reached!
Debugger pauses target to Debugger stops target to
upload data upload data

Program Execution
’ » »
» »

Debugger Upload Debugger Upload

Debugger resumes Debugger resumes
target execution target execution
Time
»

»

Figure 17.8: Impact of the debugger link with target execution

The debugger link is therefore best used when you need to capture a shap-
shot trace, such as those obtained using bursting or triggering mode.

Serial Links

The serial link needs your application code to actively transmit data to the
RTA-TRACE server over a serial connection. RTA-TRACE manages the empty-
ing of the trace buffer and the state of the serial connection and uses a set of
callbacks to control the serial hardware itself.

Initializing the Serial Device

Serial communication is initialized by called 0s_TraceCommInit. The call
must be made before RTA-TRACE is started. If “Auto-Initialize Comms”
has been configured then RTA-OS3.0 will automatically call this API during
Start0S().

Os_TraceCommInit requires you to provide the
0s_Cbk_TraceCommInitTarget callback that should initialize the serial
hardware for your target. The callback should return 0S_TRACE_STATUS_OK if
the initialization was successful and 0S_TRACE_STATUS_COMM_INIT_FAILURE
otherwise. Code Example 17.3 shows how the callback might look in your
code.

FUNC(Os_TraceStatusType, OS_APPL_CODE) Os_TraceCommInitTarget(
void)

/* Set baud rate x/
SERIAL_BAUD_REGISTER = 9600; /* baud */

/* Set transmit enable bit in control register 2 x/
SERIAL_CTRL_REGISTER |= TE_BIT;

return OS_TRACE_STATUS_OK;

RTA-TRACE Integration

245

246

Code Example 17.3: Initializing the serial hardware

Data Transmission

Data transmission is a two stage process:

1. Check if there is any data to transmit.

2. If data is available then transmit it.

RTA-TRACE will automatically detect when the buffer is full and use this infor-
mation to make the trace buffer available for transmission. This mechanism
is sufficient when using bursting or triggering mode.

If you are free-running mode then this behavior may result in you losing trace
records when the buffer becomes full because RTA-TRACE will suspend tracing
until the buffer is emptied. However, you can tell RTA-TRACE to check for
available data and make it ready for transmission before the trace buffer
becomes full by calling 0s_CheckTraceOutput().

To ensure that the trace buffer is uploaded as quickly as possible you should
call 0s_CheckTraceOutput() as often as you can. A good place to make the
call? is in the 0s_Cbk_Idle() callback as shown in Code Example 17.3 shows
how the callback might look in your code.

FUNC (boolean, OS_APPL_CODE) 0Os_Cbk_Idle(void)
{
#ifdef OS_TRACE
0s_CheckTraceOutput();
#endif
return TRUE;

Code Example 17.4: Checking if data is available for transmission

0s_CheckTraceOutput() has a short execution time so there is no signifi-
cant overhead on the application if it gets called more frequently than strictly
necessary.

When data is available for transmission RTA-TRACE signals this through the
callback Os_Cbk_TraceCommDataReady(). An implementation of this call-
back is provided in the RTA-OS3.0 library. However, when using a se-
rial link it is recommended that you provide your own implementation of
0s_Cbk_TraceCommDataReady () to start the communication process..

2Assuming that there is enough slack time available in your system that the callback runs.

RTA-TRACE Integration

RTA-TRACE provides two mechanisms to transmit data from the target:

1. Asynchronous Dump - transmit the available buffer in single operation.

2. Byte-wise - transmit the available buffer a byte at a time.

Asynchronous Dump

A trace buffer dump is made using the RTA-TRACE API 0s_TraceDumpAsync ().
The call takes a function name as a parameter. The function must be able to
transmit a byte of data over the serial line.

You should only call Os_TraceDumpAsync() when there is data
available which means the «call should be made from the
0s_Cbk_TraceCommDataReady() callback. This means you need to pro-
vide an implementation of 0s_Cbk _TraceCommDataReady() to override
the one provided in the RTA-OS3.0 library. Code Example 17.5 shows the
implementation of a trace buffer dump.

void TransmitByte(uint8 val) {
while(!tx_ready) {/* Wait for space in serial device */}
transmit(val) ;

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {
Os_TraceDumpAsync(TransmitByte);

}

Code Example 17.5: Implementing a Trace Buffer Dump

Byte-Wise Transmission

Byte-wise transmission feeds one byte of the trace buffer at a time to the se-
rial device. The RTA-TRACE API call Os_UploadTraceData() is made to trans-
fer a byte of the trace buffer to the serial device. You need to make the call
often enough to ensure that data is transmitted. The call can be made from
anywhere in you application code, but you need to be aware that if it is made
from a higher priority task then it will affect the responsiveness of lower pri-
ority tasks.

If there is data waiting then Os_UploadTraceData() attempts to queue the
byte for sending as follows:

1. The callback 0s_Cbk_TraceCommTxReady () is made to check if there is
space in the serial device’s buffer.

RTA-TRACE Integration

247

248

2. If space is available, then the callback 0s_Cbk_TraceCommTxStart () is
made to signal that transmission is about to start. If there is no space
then the call returns immediately.

3. The callback 0s_Cbk_TraceCommTxByte() is made to actually transmit
the byte

4. The callback 0s_Cbk_TraceCommTxEnd() is made to signal that trans-
mission has completed

The RTA-TRACE serial ECU link can operate in either interrupt or polling mode.
Interrupt mode prioritizes communication at the expense of the application’s
timing characteristics. Polling mode prioritizes the application’s timing be-
havior at the possible risk of some loss of trace data. In general it is rec-
ommended to use polling mode and if necessary set target-side triggers and
filters to generate a smaller volume of data (see Section 17.2.1).

Whichever transmission mode you choose, you always need to provide im-
plementations of the four callback functions:

1. 0s_Cbk_TraceCommTxReady ()
2. 0s_Cbk_TraceCommTxStart()
3. 0s_Cbk_TraceCommTxByte()

4. 0s_Cbk_TraceCommTxEnd ()

The following sections explain what these callbacks need to do and how to
construct the polled or interrupt mode driver.

Polling Mode

Polled mode requires that you make regular calls to 0s_CheckTraceOutput()
and Os_UploadTraceData() to ensure data in the trace buffer is made avail-
able to upload and then uploaded before the trace buffer becomes full. Typ-
ically, it is sufficient in most system to do this from RTA-OS3.0’s idle mecha-
nism, 0s_Cbk_Idle(), so that when you application has nothing else to do it
can be uploading the trace buffer as a ‘background’ activity.

If you are using RTA-TRACE in free-running mode then you must call
Os_CheckTraceOutput() regularly. If this is not called in a timely
fashion then Os_UploadTraceData() will not have any data to trans-
mit. Failing to call 0s_CheckTraceOutput() regularly will result in the
trace buffer becoming full. If this occurs then RTA-TRACE will sus-
pend tracing until the buffer has been emptied or partially emptied and
Os_CheckTraceOutput() has been called.

RTA-TRACE Integration

You need to provide implementations of the callbacks
0s_Cbk_TraceCommTxReady() and 0s_Cbk _TraceCommTxByte(). It is
not necessary to do anything for 0Os_Cbk_TraceCommTxStart() and
0s_Cbk_TraceCommTxEnd () callbacks, but ‘dummy’ implementations need
to be provided.

Code Example 17.6 shows a typical polled driver implementation.

FUNC (boolean, OS_APPL_CODE) 0s_Cbk_Idle(void)
{

#ifdef OS_TRACE
0s_CheckTraceOutput();
Os_UploardTraceData()

#endif

return TRUE;

’

FUNC (void, OS_APPL_CODE) 0s_Cbk_TraceCommTxStart(void){
/* Do nothing x/

FUNC (boolean, OS_APPL_CODE) 0Os_Cbk_TraceCommTxReady(void){
return (serial_device_has_space());

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 byte){
serial_device_transmit_byte(byte);

FUNC (void, OS_APPL_CODE) 0s_Cbk_TraceCommTxEnd(void){
/* Do nothing */

Code Example 17.6: Polled Transmission

Interrupt Mode

Trace data throughput can be optimized by using the serial module’s ‘Trans-
mit Complete’ interrupt and a user-supplied interrupt handler that calls
Os_UploadTraceData(). This means that data transmission takes prece-
dence over task execution. Interrupt mode is therefore best suited to bursting
and triggered modes where data transmission takes place after trace record-
ing has stopped.

It is not recommended to use interrupt transmission in free-running
mode because handing the transmit complete interrupt will affect the
timing behavior of the system.

RTA-TRACE Integration 249

250

When RTA-TRACE detects that the trace data buffer is ready for transmis-
sion in the callback 0s_Cbk_TraceCommDataReady () is called. You must call
Os_UploadTraceData() to start the transmission of the trace data.

You will need to configure an RTA-0S3.0 interrupt (either Category 1 or Cate-
gory 2) using rtaoscfg and provide an implementation of the handler.

As with polled mode, implementations of the callbacks
0s_Cbk_TraceCommTxReady() and O0s_Cbk_TraceCommTxByte() are re-
quired. The functionality of these caThese will be identical to the ones you
would write for a polled mode driver.

Interrupt mode uses the callbacks 0s_Cbk_TraceCommTxStart() and
0s_Cbk_TraceCommTxEnd () to enable and disable the transmit interrupt.

Code Example 17.7 shows a typical polled driver implementation.

ISR(SerialTxInterrupt){
0s_UploadTraceData();
dismiss_serial_tx_interrupt();

}

FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommDataReady(void) {
Os_UploadTraceData();
}

FUNC (void, OS_APPL_CODE) 0s_Cbk_TraceCommTxStart(void){
enable_serial_tx_interrupt();

}

FUNC (boolean, OS_APPL_CODE) 0s_Cbk_TraceCommTxReady(void){
return (serial_device_has_space());

}
FUNC(void, OS_APPL_CODE) Os_Cbk_TraceCommTxByte(uint8 byte){
serial_device_transmit_byte(byte);

}

FUNC (void, OS_APPL_CODE) 0Os_Cbk_TraceCommTxEnd(void){
disble_serial_tx_interrupt();

Code Example 17.7: Interrupt Transmission

RTA-TRACE Integration

17.5

Mode Summary

The following table gives a summary of what needs to be implemented for
polling and interrupt-driven modes of operation.

Callback Polled-Mode Interrupt Mode

0s_Cbk_TraceCommTxStart

empty

Enable Tx interrupt

0s_Cbk_TraceCommTxReady

Check for space in
serial device

Check for space in
serial device

0s_Cbk_TraceCommTxByte

Transmit a byte

Transmit a byte

0s_Cbk_TraceCommTxEnd

empty

Disable Tx interrupt

0s_Cbk_TraceCommDataReady

empty

Call
Os_UploadTraceDat

al();

Summary

¢ RTA-0S3.0 can automatically instrument the kernel library to generate

RTA-TRACE profiling information.

¢ The instrumented kernel logs trace data to an on-target memory buffer.

* The buffer can be emptied by ‘pulling’ the data out using a third-party

debugger or by ‘pushing’ the data out over a serial communication link.

e Further information about RTA-TRACE ships with your RTA-TRACE prod-

uct.

RTA-TRACE Integration

251

18

18.1

252

Contacting ETAS

Technical Support

Technical support is available to all RTA-OS3.0 users with a valid support con-
tract. If you do not have such a contract then please contact ETAS through
one of the addresses listed in Section 18.2.

The best way to get technical support is by email. Any problems or questions
should be sent to: rta.hotline.uk@etas.com

It is helpful if you can provide support with the following information:

e your support contract number.
* your .xml/.rtaos configuration files.

* the error message you received and the file Diagnostic.dmp if it was
generated.

¢ the command line that results in an error message.

¢ the version of the ETAS tools you are using.

¢ the version of your compiler tool chain you are using.
If you prefer to discuss your problem with the technical support team you can
contact them by telephone during normal office hours (0900-1730 GMT/BST).

The telephone number for the RTA-0S3.0 support hotline is: +44 (0)1904
562624.

Contacting ETAS

18.2

General Enquiries

Vetronix Corp. ETAS Inc. ETAS GmbH ETAS Automotive ETAS K.K.
Technology Co., Ltd.

Santa Barbara Ann Arbor Stuttgart Shanghai Yokohama

USA USA Germany China Japan

ETAS Ltd. ETAS S.AS. ETAS Automotive ETAS Korea Co., Ltd.
India Pvt. Ltd.
Burton-upon-Trent/York Rungis Bangalore Seoul
Great Britain France India Korea
Europe

Excluding France, Belgium, Luxembourg, United Kingdom and Scandinavia

ETAS GmbH

Borsigstrasse 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-300

Germany E-mail: sales.de@etas.com

WWW: www.etas.com

France, Belgium and Luxemburg

ETAS S.A.S.

1, place des Etats-Unis Phone: +33 156700050

SILIC 307 Fax: +33 156700051

94588 Rungis Cedex E-mail: sales.fr@etas.com

France WWW: www.etas.com
United Kingdom and Scandinavia

ETAS Ltd.

Studio 3, Waterside Court Phone: +44 1283 54 65 12

Third Avenue, Centrum 100 Fax: +44 1283 54 87 67

Burton-upon-Trent E-mail: sales.uk@etas.com

Staffordshire DE14 2WQ WWW: www.etas.com

United Kingdom

Contacting ETAS

253

www.etas.com
www.etas.com
www.etas.com

254

USA

ETAS Inc.

3021 Miller Road Phone: +1 888 ETAS INC

Ann Arbor Fax: +1 734 997-9449

MI 48103 E-mail: sales.us@etas.com

USA WWW: www.etas.com
Japan

ETAS K.K.

Queen's Tower C-17F Phone: +81 45 222-0900

2-3-5, Minatomirai, Nishi-ku Fax: +81 45 222-0956

Yokohama 220-6217 E-mail: sales.jp@etas.com

Japan WWW: www.etas.com
Korea

ETAS Korea Co. Ltd.

4F, 705 Bldg. 70-5 Phone: +8225747-016

Yangjae-dong, Seocho-gu Fax: +82 2 5747-120

Seoul 137-889 E-mail: sales.kr@etas.com

Korea WWW: www .etas.com
P.R.China

ETAS (Shanghai) Co., Ltd.

2404 Bank of China Tower Phone: +86 21 5037 2220

200 Yincheng Road Central Fax: +86 21 5037 2221

Shanghai 200120 E-mail: sales.cn@etas.com

P.R. China WWW: www.etas.com
India

ETAS Automotive India Pvt. Ltd.

No. 690, Gold Hill Square, 12F
Hosur Road, Bommanahalli
Bangalore, 560 068

India

Contacting ETAS

Phone:

Fax:

E-mail:
WWW:

+91 80 4191 2585
+91 80 4191 2586
sales.in@etas.com
www .etas.com

www.etas.com
www.etas.com
www.etas.com
www.etas.com
www.etas.com

Index

A
Alarms, 137
Absolute, 142
Action on expiry, 138
Activating Tasks, 138
Auto-starting, 146
Callbacks, 138
Canceling, 147
Cyclic, 143, 146
Incrementing Counters, 140
Periodic, see Cyclic
Relative, 142, 145
Setting Events, 138
Single-shot, 142, 145
Application Modes, 191
AUTOSAR, 20
Include file dependencies, 34
Operating System, 20
Scalability Class, 20
AUTOSAR includes
Compiler.h, 35
Compiler_Cfg.h, 35
MemMap.h, 35
Platform_Types.h, 34
Std_Types.h, 34
AUTOSAR OS includes
Os.h, 39
Os_Cfg.h, 39
Os MemMap.h, 39

C
C Startup Code, 186
Compilation, 41
Compiler, 34
Configuration Files, 29
Project Files, 30
XML, 29
Conformance Classes, 51
Context switch, 68
Counter
Getting the value, 133
Counter Attributes
Accessing at runtime, 132

MAXALLOWEDVALUE, 124
MINCYCLE, 124
TICKSPERBASE, 124
Counter Driver, 160
Counters, 123
Cascading, 140
Free running timers, 134
Hardware, 123
Hardware Driver, 129
Software, 123
Software Driver, 125
Ticks, 123
CPU Clock rate, see Instruction Rate
Critical Section, 98

D
Deadline Monotonic, 45
Deadlock
Freedom from, 100
Debugging
APl Usage, 199
ORTI, 226
RTA-TRACE, 230
Stack Monitoring, 207
Time Monitoring, 217
Development process, 24

E

ECU Link
Debugger, 244
Serial, 245

Asynchronous Dump, 247
Byte-wise, 247
Driver Callbacks, 248
Interrupt Driven, 249
Polling, 248
Error Codes, 199
Error Handling, 199
Events, 114
Clearing, 120
Multiple Waits, 117
Setting, 119
Waiting On, 115

Index

255

256

Extended Status, 199
Extended Tasks
Risk of deadlock, 118

Simulation using Basic Tasks, 121

F
Fixed Priority, 45
Free running timer, 134

G
Generated files, 38

H

Hooks
Error, 200
PostTask, 76
PreTask, 76

Shutdown, 196
Startup, 190

|
Idle Mechanism, 74
Limitations, 75
Imprecise Computation, 222
Instruction Cycle Rate, 224
Instruction Rate, 217
Internal Resources, 105
Shared with interrupts, 105
Stack Saving with, 109
Interrupts, 40, 83
Category 1, 84, 90
Category 2, 84, 91
Compiler Directives, 90
Default Interrupt, 94
Enabling and disabling, 93
Multi-level, 83
Nested, 83
Priority, 84
Register Sets, 94
Single-level, 83
ISR, 91

L
Library, 32

Name of, 39
Linked Resources, 103

Index

M
MISRA, 32
Mutual Exclusion, 98

(o)
Optimization
Fast Task Termination, 73
Omit Schedule() API, 72
Wait Event Stack, 63
Optimizations
Stack Reduction, 108
ORTI, 226
OS-level, 87
OSEK, 17
Operating System, 18

P
Priority Ceiling Protocol, 99
Priority Inversion, 99

R
Rate Monotonic, 45
Register Sets
Saving in ISRs, 94
Saving in Tasks, 78
Reports, 32
RES SCHEDULER, 110
Reset, 185
Resources, 98
Ceiling Priority, 99
Internal, 105
Linked, 103
Nesting locks, 102
Race Conditions, 112
Sharing with Interrupts, 100
Restarting, 196
RTA-TRACE, 230
Burst Mode, 232
Categories, 239
Classes, 233
Configuration, 230
ECU Links, 244
Enumerations, 242
Filters, 234
Format Strings, 241

Free-Running Mode, 232
Instrumentation, 230
Intervals, 237
Task Tracepoints, 237
Tracepoints, 236
Triggering Mode, 232
RTA-TRACE Configuration, 28
rtaoscfqg, 24
Builder, 38
rtaosgen, 37
Invoking from rtaoscfg, 28

S
Sample Code, 39
Samples, 39
Schedule Tables, 151
Absolute Start, 154
Expiry Points, 151, 153
Relative Start, 156
Switching, 157
Scheduler, 45
Scheduling
Cooperative, 47, 72
Non-Preemptive, 46
Preemptive, 45
Scheduling Policy, 45
Semaphore, see Resources
Shutdown, 196
Shutdown Hook, 196
Single-Stack, 57
Extended Tasks, 58
Stack, 57
Allocation, 61
Default Allocation, 63
Measurement of, 212
Optimization, 63
Reducing Size, 109
Stack Management
Overruns, 64
Stack Resource Protocol, 99
Standard Resources
Stack Saving with, 109
Standard Status, 199
Starting RTA-0S3.0, 40

StartOS, 189
Startup
Activating Tasks, 56
Alarms, 146, 194
Schedule Tables, 195
Tasks, 193
Startup Hook, 190
Static Interface
Software Counters, 127
Status
Extended, 199
Standard, 199
Stopwatch, 217
Uncertainty, 219
Stopwatch Speed, 224
SystemCounter, 133
SystemTimer, see SystemCounter

T
Tasks, 40, 45
Activation, 50
Basic, 47
Entry Function, 66
Extended, 48
Maximum supported, 53
Optimization, 53, 56, 58
Queuing Activations, 51
Register Sets, 78
Sharing Priorities, 50
States, 48
Synchronization, 48
Termination, 50
Tick/Time Conversion, 134
Time Measurement
Arbitrary Code, 221
ISR, 219
Tasks, 219
Time Monitoring, 217, 223
Budgets, 224
Resetting Budgets, 225
Time-base, 134
Toolchain, 34

U
User-level, 87

Index

257

\"/ Generation, 89
Vector Table Writing by hand, 89

258 Index

	Welcome to RTA-OS3.0!
	Related Documents
	About You
	Document Conventions
	References

	Introduction
	Features of the RTA-OS3.0 Kernel
	OSEK
	AUTOSAR
	Unique RTA-OS3.0 Features

	Summary

	Development Process
	Configuration
	OS Configuration
	RTA-TRACE Configuration
	Build
	Project Files
	Error Checking
	Generating Reports

	Library Generation
	Preparing the Tool Chain
	Understanding AUTOSAR Dependencies
	Running rtaosgen
	Building the library
	Generated Files

	Integration
	Accessing the OS in your Source Code
	Implementing Tasks and ISRs
	Starting the OS
	Interacting with the RTA-OS3.0
	Compiling and Linking

	Memory Images and Linker Files
	Sections
	The Linker Control File

	Summary

	Tasks
	Scheduling
	Basic and Extended Tasks
	Task States
	Task Priorities
	Queued Task Activation

	Conformance Classes
	Maximizing Performance and Minimizing Memory
	Task Configuration
	Scheduling Policy
	Queued Activation
	Auto-starting Tasks

	Stack Management
	Working with Extended Tasks
	Specifying Stack Allocation
	Optimizing the Extended Task context save
	Additional Stack Information
	Handling Stack Overrun

	Implementing Tasks
	Activating Tasks
	Direct Activation
	Indirect Activation

	Controlling Task Execution Ordering
	Direct Activation Chains
	Using Priority Levels

	Co-operative Scheduling in RTA-OS3.0
	Optimizing out the [language=C,basicstyle=]Schedule() API

	Terminating Tasks
	Optimizing Termination in RTA-OS3.0

	The Idle Mechanism
	Pre and Post Task Hooks
	Saving Hardware Registers across Preemption
	Summary

	Interrupts
	Single-Level and Multi-Level Platforms
	Interrupt Service Routines
	Category 1 and Category 2 Interrupts
	Category 1 Interrupts
	Category 2 Interrupts

	Interrupt Priorities
	User Level
	OS Level

	Interrupt Configuration
	Vector Table Generation

	Implementing Interrupt Handlers
	Category 1 Interrupt Handlers
	Category 2 Interrupt Handlers
	Dismissing Interrupts
	Writing Efficient Interrupt Handlers

	Enabling and Disabling Interrupts
	Saving Register Sets
	The Default Interrupt
	Summary

	Resources
	Resource Configuration
	Resources on Interrupt Level
	Using Resources
	Nesting Resource Calls

	Linked Resources
	Internal Resources
	Using Resources to Minimize Stack Usage
	Internal Resources
	Standard Resources

	The Scheduler as a Resource
	Choosing a Preemption Control Mechanism
	Avoiding Race Conditions
	Summary

	Events
	Configuring Events
	Defining Waiting Tasks

	Waiting on Events
	Single Events
	Multiple Events
	Deadlock with Extended Tasks

	Setting Events
	Setting Events with an Alarm
	Setting Events with a Schedule Table Expiry Point

	Clearing Events
	Simulating Extended Tasks with Basic Tasks
	Summary

	Counters
	Configuring Counters
	Counter Drivers
	Software Counter Drivers
	Hardware Counter Drivers

	Accessing Counter Attributes at Runtime
	Special Counter Names

	Reading Counter Values
	Tick to Time Conversions
	Summary

	Alarms
	Configuring Alarms
	Activating a Task
	Setting an Event
	Alarm Callbacks
	Incrementing a Counter

	Setting Alarms
	Absolute Alarms
	Relative Alarms

	Auto-starting Alarms
	Canceling Alarms
	Working out when an Alarm will occur
	Non-cyclic (aperiodic) Alarms
	Summary

	Schedule Tables
	Configuring a Schedule Table
	Configuring Expiry Points

	Starting Schedule Tables
	Absolute Start
	Relative Start

	Stopping Schedule Tables
	Switching Schedule Tables
	Schedule Table Status
	Summary

	Writing Hardware Counter Drivers
	The Hardware Counter Driver Model
	Interrupt Service Routine
	Callbacks

	Using Output Compare Hardware
	Callbacks
	Interrupt Handlers
	Handling a Hardware modulus not equal to [language=C,basicstyle=]TickType

	Free Running Counter and Interval Timer
	Callbacks
	ISR

	Using Match on Zero Down Counters
	Callbacks
	Interrupt Handler

	Software Counters Driven by an Interval Timer
	Summary

	Startup and Shutdown
	From System Reset to [language=C,basicstyle=]StartOS()
	Power-on or Reset
	C Language Start-up Code
	Running [language=C,basicstyle=]main()

	Starting RTA-OS3.0
	Startup Hook
	Application Modes

	Shutting Down RTA-OS3.0
	Shutdown Hook

	Restarting RTA-OS3.0
	Summary

	Error Handling
	Centralized Error Handling - the [language=C,basicstyle=]ErrorHook()
	Configuring Advanced Error Logging
	Working out which Task is Running
	Working out which ISR is Running
	Generating a Skeleton [language=C,basicstyle=]ErrorHook()

	Inline Error Handling
	Conditional Inclusion of Error Checking Code
	Summary

	Measuring and Monitoring Stack Usage
	Stack Monitoring
	Setting Defaults
	Configuring Stack Allocation per Task/ISR

	Using the [language=C,basicstyle=]OsCbkStackOverrunHook()
	Measuring Stack Usage
	Marking the Worst Case for Function Calls

	Summary

	Measuring and Monitoring Execution Time
	Enabling Timing Measurement
	Providing a Stopwatch
	Scaling the Stopwatch

	Automatic Measurement of Task and ISR Execution Times
	Manual Time Measurement
	Imprecise Computation
	Monitoring Execution Times against Budgets
	Summary

	Using an ORTI-Compatible Debugger
	Development Process
	Intrusiveness
	Validity
	Interactions
	Summary

	RTA-TRACE Integration
	Basic Configuration
	Controlling RTA-TRACE
	Controlling with Objects are Traced

	User-Defined Trace Objects
	Tracepoints
	Task Tracepoints
	Intervals
	Controlling which User-Defined Objects are Traced
	Format Strings

	ECU Links
	Debugger Links
	Serial Links

	Summary

	Contacting ETAS
	Technical Support
	General Enquiries

