RTA-OSEK

LiveDevices

ETAS Group

Renesas H8SX with the Renesas Compiler

Closed-Loop Development

e OSEKN/DX OS version 2.2 certified OS
e RTOS overhead: 24 bytes RAM, 153 bytes ROM
e Category 2 interrupt latency: 41 CPU cycles

e Applications include: Keyless entry, airbag, body control, electric power and hydraulic
steering, dashboard

RTA-OSEK

RTA-OSEK provides an application design environment that com-
bines the smallest and fastest OSEK RTOS with a unique timing
analysis tool.

This port data sheet discusses the Renesas H8SX family port of the
RTA-OSEK kernel alone and should be read in conjunction with
the Technical Product Overview “Developing Embedded Real-
Time Applications with RTA-OSEK" available from LiveDevices.

The kernel element of RTA-OSEK is a fixed priority, pre-emptive
real-time operating system that is compliant to the OSEK/VDX OS
standard version 2.2 for all four conformance classes (BCC1,
BCC2, ECC1 and ECC2) and intra processor communication us-
ing OSEK COM Conformance Classes A and B (CCCA and CCCB).

All CPU overheads of the kernel have low worst case bounds and
little variability in execution time. The kernel is particularly suited
to systems with very tight constraints on hardware costs and
where run-time performance must be guaranteed

The kernel is configured using an offline tool provided with RTA-
OSEK. Determining in advance which features are used allows
memory requirements to be minimized and API calls to be opti-

mized for greatest efficiency.

All tasks and ISRs in RTA-OSEK run on a single stack — even ex-
tended tasks. This allows dramatic reductions in application stack
space requirements.

The RTA-OSEK kernel is designed to be scalable. When a task
uses queued activation or waits on events, the additional RTOS
overhead required to support these features is paid by the task
rather than by the system. This means that a basic single activa-
tion task uses the same resources in a BCC1 system as it does in
an ECC2 system.

Software Environment

Compiler/Assembler/Linker

The libraries containing the code for the RTA-OSEK kernel have
been built using the following tools:

e Renesas C compiler Version 6.0.00.005
* Renesas Assembler Version 6.0.01.005

e Renesas Optimizing Linker Version 8.0.00.020
Memory Model

The Hitachi/H8SX port of RTA-OSEK supports the H8SX CPU "ad-

vanced" memory mode with 24-bit width addressing.
ORTI Debugger Support

ORTlis the OSEK Run-Time Interface. Currently there are no ORTI
compatible debuggers supported by RTA-OSEK for this target.

Hardware Environment

RTA-OSEK supports all variants of the Renesas H8SX family using
the H8SX core.

Interrupt Model
Eight levels of interrupts are supported.
Floating Point Support

The Renesas H8SX uses software floating point and therefore
there is no need to save and restore anything to get full floating-
point support. However, targets based on the H8SX core include
a MAC (multiply and accumulate) register, which is saved as part
of the FP context. The FP context is saved for a task if the task is
marked as "Uses floating point".

Evaluation Board Support

This port of RTA-OSEK can be used with any Renesas H85X eval-
uation board. An example application is provided to run on the
Renesas MS1527CP01 evaluation board. This application can be
adapted for other target boards by adjusting the linker command
file (eg, to alter the allocation of program sections) and one
source file (if alternative output pins are required).

Functionality

The below table outlines the restrictions on the maximum
number of operating system objects allowed by RTA-OSEK.

Note that OSEK specifies that queued activations in an ECC2 sys-

BCC1 BCC2 ECC1 ECC2
Max no of tasks 32 plus an idle task
Max tasks per priority 1 32 1 32
Max queued activations 1 255 1 255
Max events per task n/a n/a 16 16
Max nested resources 255
Max alarms not limited by RTA-OSEK
Max standard resources 255
Max internal resources not limited by RTA-OSEK

Max application modes 65535

tem are only possible for basic tasks. Where tasks share a priority
level, the maximum number of queued activations per priority lev-
el is 255.

The number of alarms, tasksets, schedules and schedule arrival-
points is only limited by available hardware resources.

Memory Usage

The memory overhead of RTA-OSEK is:

Memory type Overhead (bytes)
RAM 24
ROM/Flash 153

In addition to the RTOS overhead, each object used by an appli-
cation has the following memory requirements:

Object RAM Bytes ROM Bytes

BCC1 task 0 34
BCC2 task 8 48
ECC1 task 40 54
ECC2 task 42 62
Category 1 ISR 0 0
Category 2 ISR 0 58
Resource 0 20
Internal Resource 0 0
Event 0

Alarm 6 38
Counter 2 40
Taskset (RW) 4

Taskset (RO) 0

Schedule 10 32
Arrivalpoint (RW) 10 10
Arrivalpoint (RO) 0 10

In addition to these static memory requirements each task priority
and Category 2 interrupt has a stack overhead (in addition to ap-
plication stack usage). The single stack model means that this
overhead applies to each priority level rather than to each task.
Similarly, for Category 2 interrupts this overhead applies for each
unique interrupt priority. The below table shows stack usage for
these objects.

RTA-OSEK provides an optimization for task termination if the

Object Stack Bytes
Task priority level 48
Category 2 interrupt 24

user can guarantee that tasks only terminate from their entry
function. Tasks that terminate from elsewhere are not eligible for
this optimization and duly require 44 more stack bytes per priority
level than indicated in the table above.

Performance

The following table gives the key kernel timings for operating sys-
tem behavior in CPU cycles.

Task Type Basic Extended Ref
Category 1 ISR Latency 20 20 K

Category 2 ISR Latency 41 41 A

4 Y

TerminateTask() .

Task Type Basic Extended Ref
Normal Termination 71 161 D
ChainTask 152 308 J
Pre-emption 145 257 C
Triggered by alarm 217 329 F I RTA-OSEK activity
Schedule 124 232 Q
ReleaseResource 144 251 M
SetEvent n/a 420 S
Category 2 exit switch latency 116 224 E Frask 71
performance Tigures are for the non-optimized Mterface to

RTA-OSEK. Using the optimized interface will result in shorter ex-
ecution times for some operations. All tasks use lightweight ter-
mination and no pre or post task hooks were specified.

The execution time for every kernel API call is available on request
from LiveDevices.

InterruptAsserted

"ﬁi“

I RTA-OSEK activity

- i
DL
~

| Category 1 ISR

|Task

-

Figure 1 - Category 1 interrupt with return to interrupted task

!Task T2 [—

,7 [ActivateTask(T2)
|

Figure 4 - Task activates a higher priority task

l—é([F

I RTA-OSEK activity []
l TerminateTask() |-
ITask 72 '
{Alarmactivates T2
Irask 11 I

Figure 5 - Alarm activates task

I(—/{U

1A B -
F RTA-OSEK activity e
| RTA-OSEK activity Brask 12
Icategory 2 ISR Frask T1 i ;
T\terruptAsserteg |
I rask M 3
| 1 Figure 6 - Task chaining
Figure 2 - Category 2 interrupt with return to interrupted task
A E I‘—ﬂ[Q
I RTA-OSEK activity AdvareTaskmj [| T RTA-OSEK activity B .
T teTask(ActivateTask(T2) _(
Icategory ek s _erm\na eTas ITask 2 .
[schedule(] v
Task T2 readyto run|
I1ask 72 ook T2 eadrord o Frask T1 | l_l
e
|Interrupt Asserted i
D ask T1 I ,— Figure 7 - Schedule() call
as

Figure 3 - Category 2 interrupt activates a higher priority task

0 =
- (")
s 5 & =
= X
3 o 2 G Y 0 g
] - [7] () () (V) (9]
I — - - (") (-4 (] (-] w w
RTA-OSEK activity ISR 10 10 LT IPLT LT IPLT
ITaSk T WaitEvent(E1) ! A 10 10 8 8 8 8
v SetEvent(T2,E 1}— S B 20 20 7 7 7 7
Irask 11 T (B C 30 20 6 6 6 6
Figure 8 - Activation by SetEvent() D 40 30 5 5 5 5
E 50 50 4 4 4 4
F 60 80 3 3 3 3
G 70 100 2 2 2 2
I 4 [M H 80 150 1 1 1 2
I RTA-OSEK activity H Idle 10 - idle idle idle idle
2 The overhead figures give the ROM and RAM required for RTA-
B eleaseResource(R1) —|) o)) !
FTask T2 L OSEK in addition to that required by the application. The RAM
figure is shown split into RAM data and RAM stack.
[]
fTask T1
BCC1
Figure 9 - ReleaseResource() The BCC1 application uses 8 basic tasks with unique priorities.
Benchmarks This application has the following overheads:
)) Memory usage Bytes
The following sections shows benchmarks for RTA-OSEK memory 0S RO
usage for BCC1, BCC2, ECC1 and ECC2 conformant applica- ROM 7
tions. The applications have the following framework: OS RAM 498
ising RAM dat 74
e 8 tasks plus the idle task comprising ata
comprising RAM stack 424
e All basic tasks are lightweight tasks preing
e 1 Category 2 ISR with a 10ms minimum inter-arrival time BCC2

e 1 Counter o)]] o
The BCC2 application uses 8 basic tasks with unique priorities.
e 7 or 8 alarms, all attached to the same counter

Tasks A-G are attached to 7 alarms. Task H is activated multiple
times from Task A and has maximum queued activation count of
255.

e No resources or internal resources
¢ No hooks
¢ No schedules

This application has the following overheads:
e No tasksets

e Built using standard status Memory usage Bytes
The following table shows the task priority configuration for each 0s ROM 2009
benchmark application: OS RAM 506
comprising RAM data 74
comprising RAM stack 432

ECC1

The ECC1 application uses 7 basic tasks and 1 extended task with
unique priorities. Task H is the extended task and it waits on a sin-
gle event that is set by basic tasks A-G.

This application has the following overheads:

Memory usage Bytes
OS ROM 2505
OS RAM 614
comprising RAM data 114
comprising RAM stack 500

ECC2

The ECC2 application uses 6 basic tasks and 2 extended tasks.
Tasks G and H are the extended tasks and share a priority. The
extended tasks wait on a single event that is set by tasks A-F.

This application has the following overheads:

Memory usage Bytes

OS ROM 3345
OS RAM 748
comprising RAM data 164

comprising RAM stack 584

Stack Optimization

Using stack optimization with the benchmark example identifies
that the following tasks can share internal resources:

. Tasks A, B and C
. Tasks D, Eand F
. Tasks G and H

The benefit of this optimization is shown in the following table:

BCC1 BCC2 ECC1 ECC2
Non-optimized 804 812 880 964

Total Stack Space (bytes)

OS Overhead 424 432 500 584

Application Overhead 380 380 380 380

Optimized 364 372 440 444

OS Overhead 184 192 260 264

Application Overhead 180 180 180 180

Order Codes

Name Order Number

RTA-OSEK Development Seat F-00K-103-694

RTA-OSEK Support Contract F-00K-103-706

RTA-OSEK Add-on for Renesas
H8SX with Renesas Compiler

F-00K-103-718

LiveDevices
ETAS Group

Contact addresses:

LiveDevices Ltd.

Atlas House

Link Business Park
Osbaldwick Link Road
Osbaldwick

York YO10 3JB, Great Britain
Phone+44 (0) 1904-562580
Fax+44 (0) 1904-562581
info@livedevices.com
www.livedevices.com

ETAS GmbH

BorsigstraBe 14

70469 Stuttgart, Germany
Phone+49 (711) 89661-102
Fax+49 (711) 89661-106
sales@etas.de
www.etas.de

ETAS Inc.

3021 Miller Road

Ann Arbor, M| 48103, USA
Phone+1 (888) ETAS INC
Fax+1 (734) 997-9449
sales@etas.us
www.etas.us

ETAS K.K.

9-1, Ushikubo 3-chome
Tsuzuki-ku

Yokohama 224-0012, Japan
Phone+81 (45) 912-9550
Fax+81 (45) 912-9552
sales@etas.co.jp
www.etas.co.jp

ETAS S.A.S.

1, place des Etats-Unis

SILIC 307

94588 Rungis Cedex, France
Phone+33 (1) 56700050
Fax+33 (1) 56700051
sales@etas.fr

www.etas.fr

ETAS Korea Co., Ltd.

3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul, Korea

Phone+82 (2) 57 47-016
Fax+82 (2) 57 47-120
sales@etas.co.kr
www.etas.co.kr

