
RTA-TRACE
Report Mark-up Language Reference Guide

Contact Details

ETAS Group
www.etasgroup.com

Germany
ETAS GmbH
Borsigstraße 14
70469 Stuttgart
Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106
www.etas.de

USA
ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103
Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49
www.etasinc.com

Japan
ETAS K.K.
Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan
Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956
www.etas.co.jp

France
ETAS S.A.S.
1, place des États-Unis
SILIC 307
94588 Rungis Cedex
Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51
www.etas.fr

Korea
ETAS Korea Co. Ltd.
3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul
Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120
www.etas.co.kr

Great Britain
ETAS UK Ltd.
Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ
Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67
www.etas-uk.net

 3

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2004 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TD000010-002

RTA-TRACE 5

Contents

1 About this Manual ... 9
1.1 Who Should Read this Manual? .. 9
1.2 Document Conventions .. 9

2 Usage... 11
2.1 Generating a customised report .. 11

2.1.1 Creating a report template ... 11
2.1.2 Using a report template.. 12
2.1.3 Viewing a report... 13
2.1.4 Example 1 (HTML) .. 13
2.1.5 Example 2 (HTML) .. 14
2.1.6 Example 3 (CSV) ... 14

2.2 Errors .. 15

3 Reference... 17
3.1 Text .. 17
3.2 Comments.. 18
3.3 Command tokens ... 19

3.3.1 font.. 19

Contents 7

3.3.2 fmt... 20
3.3.3 repeat .. 21
3.3.4 for.. 22
3.3.5 do .. 23
3.3.6 if .. 24
3.3.7 nl ... 24

3.4 Variable access.. 25
3.5 Object Attribute and Statistic Reference 25
3.6 Object Synonyms .. 27

8 Contents

1.1

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. It provides the
embedded application developer with a unique set of services to assist in
debugging and testing a system. Foremost amongst these is the ability to see
exactly what is happening in a system at runtime with a production build of
the application software.

Using the Report Plug-in for the RTA-TRACE client, custom reports can be
generated from the trace data captured from the target application. This
manual describes the RTA-TRACE Report Mark-up Language that allows these
reports to be customized.

1.1 Who Should Read this Manual?

It is assumed that you want to produce custom reports from the data
captured by RTA-TRACE. It is also assumed that you have set up and run RTA-
TRACE according to the Getting Started Guide and/or the User Reference
Manual.

1.2 Document Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

In this guide, program code, header file names, C type names, C functions
and API call names all appear in the courier typeface. When the name of
an object is made available to the programmer the name also appears in the
courier typeface, so, for example, a task named Task1 appears as a task
handle called Task1.

About this Manual 9

2.1

2 Usage

Reports are written to files, and are based on report templates. This section
describes how the report generation process can be used to generate some
example reports. A full description of the available template elements can be
found in section 3.

Generation of custom reports requires an additional license feature, available
from LiveDevices.

2.1 Generating a customised report

To generate a custom report, it is first necessary to produce a report template.
The report template can extract various parameters from system objects, and
combine these with fixed text strings as desired.

2.1.1 Creating a report template

A report template is able to programmatically extract information from system
objects, generating an output file. Let’s start with a simple example:

The following template iterates through every object in the system listing its
type, name, and identifier:

Objects in this system:
nl
nl
$repeat:ob=all$
@ob.Type@ "\t" @ob.Name@ "\t" @ob.ID@
nl
$~repeat$

The output will look something like this (depending upon the system
configuration):

Objects in this system:

Error Hook 65533
Cat2 ISR SystemISR 16
Task tskLeader 9
Process task_tskLeader 10
Task tskInterfere 7
Std resource rscContention 2
Std resource RES_SCHEDULER 1
Counter SystemTimer 11
Alarm almLeader 13
…
Tracepoint interfereValue 32771
Interval interfereRunTime 40965
Background (Unallocated) 65531
OS activity 65530

Usage 11

2.
1

Many report templates can be applied to any system that will be traced (such
as the one above). The ability to re-use templates allows engineers to extract
common information about each system.

Report templates can be generated in any text editor, as long as the report
template is saved as plain ASCII text. The resultant report format is entirely
under user control – examples will be given later to produce HTML files
(suitable for viewing in a web browser), and CSV (Comma Separated Value)
files (suitable for viewing/analysis in a spreadsheet).

2.1.2 Using a report template

Generation of a report from a template is carried out from the RTA-TRACE
TimeTrace Client:

1. With the RTA-TRACE Client running, and displaying trace data (either live
or from a file) click the ‘Generate Report’ button on the toolbar:

2. The following dialog box will then appear, and ‘User defined report’
should be selected (as shown):

A file selector will then appear prompting you for the file containing the
report template. Once the template has been found, another file selector
will appear prompting you for a filename and location for the generated
report.

3.

12 Usage

2.1

The generated report can then be viewed in whichever viewer is appropriate
for the type of file.

2.1.3 Viewing a report

The correct viewer for a report is necessarily dependent upon the type of
report generated. Generally, reports will be viewable in any text editor, but
they may make more sense in a different viewer (e.g. CSV files viewed in a
spreadsheet, HTML files in a web browser).

2.1.4 Example 1 (HTML)

This example is identical to the plain text example seen in section 2.1.1,
except for the addition of HTML tags:

<HTML>
<HEADER>
<TITLE>Objects in this system</TITLE>
</HEADER>
<BODY>
<H1>Objects in this system</H1>
$repeat:ob=all$
<P> @ob.Type@ "\t" @ob.Name@ "\t" @ob.ID@ </P>
nl
$~repeat$
</BODY>
</HTML>

The HTML headers are simply inserted as they are required to appear in the
output.

Of course with a little HTML knowledge, it is possible to put this information
into a table, apply text formatting etc.

Usage 13

2.
1

2.1.5 Example 2 (HTML)

This example shows how a conditional might be used to affect the generated
report. Again, each object in the system is shown, but this time those objects
with IDs greater than 32767 have their names highlighted in bold text.

The generated output is displayed in a tabular format.

<HTML><HEADER>
<TITLE>Objects in this system</TITLE>
</HEADER>
<BODY>
<H1>Objects in the system @System@</H1>
<TABLE>
nl
$repeat:ob=all$
<TR><TD>
$if:@ob.ID@,gt,32767$$~if$ // start BOLD
@ob.Type@
$if:@ob.ID@,gt,32767$$~if$ // end BOLD
</TD>
<TD> @ob.Name@ </TD>
<TD> @ob.ID@ </TD>
</TR>
nl
$~repeat$
nl
</TABLE></BODY></HTML>

2.1.6 Example 3 (CSV)

The trace data captured by RTA-TRACE can also be analyzed using the
statistics plug-in, and this statistical data can be captured in a report.

The following example displays a number of key statistics about the tasks in a
system. The resultant file can be imported into a spreadsheet and
subsequently plotted as a graph (if the spreadsheet program supports such
operations).

The following template generates a table of CPU utilization:

$fmt:ticks$
$repeat:ob=tasks$
"@ob.Name@ , @ob.Utilization@"
nl
$~repeat$
$repeat:ob=isrs$
"@ob.Name@ , @ob.Utilization@"
nl
$~repeat$
nl

This will generate a CSV file suitable for importing into a spreadsheet. All that
is required to do is to generate a figure for the ‘unknown’ time in the

14 Usage

2.2

measurement period. This can simply be done by subtracting the sum of
utilizations from 100 (For example: In Excel, this may be done by inserting
‘=100-SUM(B1:Bn)’ where n will be the number of objects in the graph).

As well as using pre-defined statistics such as Utilization, it is possible to
define your own statistics within the TimeTrace plug-in, and refer to those in
the same way as built-in statistics.

2.2 Errors

In the case of a malformed report template, the Report Generation will display
an error dialog something like this:

Error messages indicate the line at which the error occurred – line ‘-1’ above is
a non-line-oriented error.

Usage 15

3.1

3 Reference

Customised reports consist of the following elements:

• Text

• Comments

• Command tokens

• Variable references

• Object references

The following subsections describe these elements in greater detail.

3.1 Text

The plug-in supports quoted (using " characters) and unquoted text.

The interpretation of command tokens (between $ marks – see below) is
suppressed in quoted text.

Note: variable and object references (between @ marks – see below) are
interpreted in both quoted and unquoted text.

New-lines, carriage returns and tabs in quoted text are supported and
preserved.

Within quoted text, it is possible to suppress the meaning of the ‘@’, ‘"‘ and
‘\’ characters by using the ‘\’ character in front of the character. This means
that within quoted text, object attribute and statistics references can be
prevented and that quote and backslash characters can be included.

The plug-in also supports the insertion of arbitrary 8-bit characters via C-style
octal escape sequences within quoted text.

Example 1 Quoted versus unquoted text. The following fragment:

This text
" is followed by "
more text
nl
"Command tokens such as nl are
ignored in quoted text"

Produces:

This text is followed by more text.
Command tokens such as nl are
ignored in quoted text

Reference 17

3.
2

Example 2 Escaping of special characters. The following fragment:

This text
" \"is followed by\" "
This other text

Produces:

This text "is followed by" This other
text.

Example 3 Object reference. The following fragment:

The time is now @now@.
nl
"The value of \@now\@ is @now@."

Produces:

The time is now 12/01/2004 10:57:57.
The value of @now@ is 12/01/2004
10:57:57.

Example 4 Insertion of arbitrary characters via escape sequence. The
fragment:

" \101 \102 \103 \n \104 \105 \106 "

Produces:

 A B C
 D E F

3.2 Comments

Comments can be inserted into a report template which will not appear in the
generated report. Comments are started by the characters // and terminated
by a new-line (which forms part of the comment).

Example the following report fragment:

This should /app//remove this
ear/.

Generates the following output:

This should /appear/.

18 Reference

3.3

3.3 Command tokens

Command tokens are contained within $ pairs (e.g. nl) and give reports
the ability to contain programmatic elements. For example, iteration over all
tasks in a system (using $repeat:…$), or some decision based output (using
$if:…$).

3.3.1 font

Note: This token is deprecated, it is preferable in most cases to simply insert
text equivalent to the generated content.

Syntax Started by: $font:string$
Ended by: $~font$

Description The $font:…$ token inserts the text <string> into
the output stream.

The $~font$ token inserts the text </string> into
the output stream where the text comes from the
matching $font:…$ token.

These command tokens can be used to insert a variety of
paired tags as used in HTML (e.g. <p> and </p>, <h1>
</h1>, etc.).

The plug-in supports nested $font:…$ command
tokens.

Example The following fragment:

$font:p$A paragraph with $font:i$
italic$~font$ text.$~font$

produces this HTML output:

<p>A paragraph with <i>italic</i>
text.</p>

Reference 19

3.
3

3.3.2 fmt

Syntax $fmt:style$

Description The $fmt:…$ token changes the output format for
subsequent statistics. The default output format is str.

The valid values for style are:

• ms – output as milliseconds (no units are
displayed)

• ticks – output as ticks (no units are
displayed)

• str – output as a string (appropriate units
are displayed)

Invalid values of style revert to the default.

This token can be repeated as often as is required in a
report.

Example The following excerpt generates each of the format
types for the user object A (see statistic reference section
3.5):

"default: time = @A.Time Stat 1@\n"
$fmt:ms$
"ms : time = @A.Time Stat 1@\n"
$fmt:str$
"str : time = @A.Time Stat 1@\n"
$fmt:ticks$
"ticks : time = @A.Time Stat 1@\n"
$fmt:invalid$
"invalid: time = @A.Time Stat 1@\n"

Gives the following output:

default: time = 2ms 340us 100ns
ms : time = 2.340100
str : time = 2ms 340us 100ns
ticks : time = 23401
invalid: time = 2ms 340us 100ns

20 Reference

3.3

3.3.3 repeat

Syntax Started by: $repeat:var=name$
Ended by: $~repeat$

Description The $repeat:…$ tag supports the following values for
name:

• tasks and task – All tasks (includes
OSEK-type tasks and cooperative tasks);

• isrs and isr – All ISRs (includes Cat0,
Cat1 and Cat2);

• resources and resource – All
resources (standard and linked);

• std_resources and std_resource –
Standard resources only;

• intervals and interval – Intervals;

• processes and process – Processes;

• tracepoints and tracepoint – All
tracepoints;

• profiles and profile – All task/ISR
profiles;

• group and groups – All reported groups;

• all – All objects.

When processing a $repeat:…$ loop the encapsulated
tokens are interpreted once for each item in the object
dictionary that matches name.

When the repeat loop is interpreted, the variable var is
set to the object type and name for each matching
object. The variable thus created is then available for use
in reports via the normal variable-access mechanism.

The report mark-up language supports nested
$repeat:…$ loops.

Reference 21

3.
3

Example The following fragment produces a list of the types of
each object in a system:

$repeat:obj=all$
"Object is of type '@obj.Type@'\n"
$~repeat$

Producing:

…
Object is of type 'Task'
Object is of type 'Task'
Object is of type 'Cat2 ISR'
Object is of type 'Interval'
Object is of type 'Std resource'
Object is of type 'Linked resource'
…

3.3.4 for

Syntax Started by: $for:var=low,high$
Ended by: $~for$

Description When processing a $for:…$ loop the plug-in interprets
the encapsulated tokens once for each integer in the
range [low, high].

For each interpretation of the encapsulated tokens, the
variable var is set to the current loop counter value and
is available for use in reports via the normal variable-
access mechanism.

The plug-in supports nested $for:…$ loops.

Example This simple fragment:

$for:z=1,3$
"Line @z@ "
$for:x=1,@z@$
"*"
$~for$
nl
$~for$

generates this output:

Line 1 *
Line 2 **
Line 3 ***

22 Reference

3.3

3.3.5 do

Syntax Started by: $do:var=objects$
Ended by: $~do$

Description When processing a $do:…$ loop the plug-in interprets
the encapsulated tokens once for each integer in the
range [low, high].

For each interpretation of the encapsulated tokens, the
variable var is set to the object type and name for each
matching object or “unknown object” if the object does
not exist.

The plug-in supports nested $do:…$ loops.

Example The following script iterates all groups defined in the
time-trace visualizer and displays their content:

Groups:nl
$repeat:i=groups$
" @i@ members = @i.Members@"
nl
$do:m=@i.Members@$
" @m@"
nl
$~do$
nl
$~repeat$

Typical output:

Groups:
 Group 1 members = 9,3,7,5,16
 Task tskLeader
 Task tskFollower
 Task tskInterfere
 Task tskIdle
 Cat2 ISR SystemISR

Reference 23

3.
3

3.3.6 if

Syntax Started by: $if:<lhs>,<cond>,<rhs>$

Ended by: $~if$

Description The report mark-up language includes support for
conditional text. The tokens encapsulated by the block
are only interpreted if the condition triplet evaluates to
'true'.

Conditionals can be nested, both within other
conditional blocks as well as within $repeat$ and
for loops.

Supported values for the <cond> field are eq, ne,
gt, lt, le, ge.

Example The following fragment will iterate over the objects in a
system and display the object type. If the object has an
ID of more than 1000, it is displayed in bold (using
HTML tags).

…
$repeat:ob=all$
$if:@ob.ID@,gt,1000$ //start BOLD

$~if$
@ob.Type@
$if:@ob.ID@,gt,1000$ // end BOLD

$~if$
nl
$~repeat$
…

3.3.7 nl

Syntax nl

Description The nl token Inserts a Carriage Return + Line Feed
(CRLF) pair into the output stream. This differs from
simply using "\n" .which simply inserts a carriage return
into the output stream.

24 Reference

3.4

3.4 Variable access

The plug-in supports access to run-time defined variables via the token
@variable@.

The following variables are defined before token interpretation starts:

• delim – the delimiter used for CSV reports. This is inherited from the
underlying Windows Operating System and is dependent upon the
‘locale’. If the locale’s decimal separator is a comma, then delim is a
‘tab’ character; otherwise delim is a comma.

• now – the current time formatted according to the current system
locale.

• start – the time of the first record in the report using the “Multiple
units” format. If this is also the first record in the buffer then append
“(start of trace data)” to the time.

• end – the time of the final record in the report using the “Multiple
units” format. If this is also the last record in the buffer then append
“(end of trace data)” to the time.

• ns_per_tick – the number of nanoseconds represented by one tick.

• product – the report generator’s long name.

• version – the Window’s version number of the Report plug-in DLL.

3.5 Object Attribute and Statistic Reference

Objects are the fundamental components of the system being traced (i.e.
tasks, ISRs, resources, etc.). Object attributes are referenced using the
@Object.Attribute@ mechanism.

Objects can be referenced in the following ways (assuming a task called
tsk1):

• The object’s name (e.g. tsk1);

• The combination of object type and name (e.g. Task tsk1)

• A variable reference for a repeat or do loop variable1;

• A synonym (see section 3.6).

For any object Object defined as above, the plug-in supports references to
the following attributes:

• Name – Inserts the Name of Object (e.g. @tsk1.Name@ would
produce tsk1 in the output stream);

• Type – Inserts the Type of Object (e.g. "Task", "Resource", etc.);

1 Note that this requires a variable reference for a repeat loop and not a for loop. This is because
only repeat loops are guaranteed to give an object reference since a for loop index is an
integer.

Reference 25

3.
5

• ID – Inserts the object identifier of Object.

• ParentName – Inserts the name of the parent of Object. If
Object has no parent, <none> is inserted.

• ParentType – Inserts the type of the parent of Object. If the object
has no parent <none> is inserted.

• ParentID – Inserts the object identifier of the parent of Object. If
the object has no parent zero (“0”) is inserted.

• Children – Inserts the number of children objects belonging to
Object.

• Members – For “groups” only, inserts the member objects of a group as a
comma separated list of object identifiers.

Example 1 Given a system with a task named tsk1, the following
fragment:

"Object '@tsk1.Name@' is of type
'@obj.Type@'\n"

Produces:

Object 'tsk1' is of type 'Task'

Example 2 The following fragment:

$repeat:obj=all$
"Object '@obj.Name@' is of type
'@obj.Type@'\n"
$~repeat$

Produces:

…
Object 'tsk1' is of type 'Task'
Object 'tsk2' is of type 'Task'
Object 'isr1' is of type 'Cat2 ISR'
Object 'int1' is of type 'Interval'
Object 'res1' is of type 'Std
resource'
Object 'res2' is of type 'Linked
resource'
…

The plug-in also supports references to statistics via the token
@Object.Statistic@.

26 Reference

3.6

The text Statistic corresponds to the name that the user has given to a
statistic when it is defined.

The text Statistic can include object attribute references using ‘[‘ and ‘]’
as delimiters. The attribute reference is expanded before the statistic itself is
referenced. As an example:

$repeat:t=tasks$
 $repeat:r=std_resources$
 "@t.Name@ and resource @r.Name@: "
 $fmt:ms$"@t.Max Net Resource [r.Name]@ ms ("
 $fmt:str$"@t.Max Net Resource [r.Name]@)"
 nl
 $~repeat$
$~repeat$

Will produce the maximum net resource lock time for each task for each
resource in the system – as follows:

Task A and resource R1: 0.000400 ms (400ns)
Task B and resource R1: 0.000400 ms (400ns)
ISR Isr1 and resource R1: 0.000400 ms (400ns)

Attempting to reference an attribute or statistic that has not already been
defined produces an error message in the output file.

3.6 Object Synonyms

Synonyms are provided for objects that only ever occur once in a system but
for which the name is not known in advance. The provision of a standard
access method for these objects means that they can be more easily
referenced in report templates.

The report defines the following synonyms for system objects to be used in
object attribute and statistic reference:

• System – the OS object.

• Background – Unallocated activity (the idle task).

• Error – the system error mechanism (hook).

Reference 27

Index

D
do ... 23

F
fmt (format) .. 20

for... 22

I
if ... 24

L
Looping

do.. 23

for ... 22

repeat .. 21

N
nl (newline) ... 24

O
Object ... 25

Children... 26

ID... 26

Name... 25

ParentID... 26

ParentName... 26

ParentType... 26

Type... 25

R
repeat ... 21

all .. 21

group/groups ... 21

interval/intervals ... 21

isr/isrs... 21

process/processes... 21

profile/profiles.. 21

resource/resources ... 21

std_resource/std_resources .. 21

task/tasks ... 21

tracepoint/ tracepoints ... 21

Index 29

S
Synonym ... 27

Background.. 27

Error ... 27

System.. 27

30 Index

Support 31

Support
For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

	Contact Details
	About this Manual
	Who Should Read this Manual?
	Document Conventions

	Usage
	Generating a customised report
	Creating a report template
	Using a report template
	Viewing a report
	Example 1 (HTML)
	Example 2 (HTML)
	Example 3 (CSV)

	Errors

	Reference
	Text
	Comments
	Command tokens
	font
	fmt
	repeat
	for
	do
	if
	nl

	Variable access
	Object Attribute and Statistic Reference
	Object Synonyms

	Index
	Support

