
RTA-TRACE
OS Instrumenting Kit Manual

 3

Contact Details

ETAS Group
www.etasgroup.com

Germany
ETAS GmbH
Borsigstraße 14
70469 Stuttgart
Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106
www.etas.de

USA
ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103
Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49
www.etasinc.com

Japan
ETAS K.K.
Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan
Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956
www.etas.co.jp

France
ETAS S.A.S.
1, place des États-Unis
SILIC 307
94588 Rungis Cedex
Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51
www.etas.fr

Korea
ETAS Korea Co. Ltd.
3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul
Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120
www.etas.co.kr

Great Britain
ETAS UK Ltd.
Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ
Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67
www.etas-uk.net

RTA-TRACE 5

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2004 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TD00007-004

Contents 7

Contents

1 About this Manual ... 11
1.1 Who Should Read this Manual? .. 11
1.2 Conventions ... 11

2 Introduction ... 13
2.1 Mechanisms.. 13
2.2 Use ... 14
2.3 Kit contents .. 14

3 Trace Object Description... 15
3.1 Describing the Target System .. 15
3.2 Outline of .rta File Format ... 16

3.2.1 Declaration Section... 16
3.2.2 Sample .rta Implementation.. 17
3.2.3 Information Section .. 21

3.3 Trace Objects .. 22
3.3.1 Object type OS ... 23
3.3.2 Object type Trace ... 24
3.3.3 Tasks, ISRs, Processes and Profiles - overview 25

8 Contents

3.3.4 Object Type Task .. 27
3.3.5 Object Type ISR2/ISR1/ISR0 ... 28
3.3.6 Object Type Process.. 29
3.3.7 Object Type Profile ... 30
3.3.8 Object Type Resource ... 30
3.3.9 Object Type COUNTER.. 31
3.3.10 Object Type ALARM ... 32
3.3.11 Object Type MESSAGECONTAINER 33
3.3.12 Object Type Tracepoint... 34
3.3.13 Task Tracepoints... 34
3.3.14 Object Type Interval.. 35
3.3.15 Object Type CritExec... 35

4 Instrumentation Part 1 – macro API .. 37
4.1 OS .. 37

4.1.1 osTraceOSStart ... 37
4.1.2 osTraceOSExit... 37
4.1.3 osTraceSchedulerEntry.. 38
4.1.4 osTraceSchedulerExit .. 38

4.2 Tasks/ISRs ... 39
4.2.1 osTraceTaskActivate ... 39
4.2.2 osTraceTaskStart... 39
4.2.3 osTraceTaskEnd .. 39
4.2.4 osTraceCat1Start .. 40
4.2.5 osTraceCat1End ... 40
4.2.6 osTraceCat2Start .. 40
4.2.7 osTraceCat2End ... 40
4.2.8 osTraceProcessStart .. 41
4.2.9 osTraceProcessEnd.. 41

4.3 Task/ISR Switching API .. 41
4.3.1 osTraceTaskSchedulerEntry ... 41
4.3.2 osTraceTaskSchedulerExit ... 42
4.3.3 osTraceInterruptHandlerEntry 42
4.3.4 osTraceInterruptHandlerExit.. 42
4.3.5 osTraceTaskSleep.. 42
4.3.6 osTraceTaskWake ... 43

4.4 Events... 43

Contents 9

4.4.1 osTraceEventWaitEntry ... 43
4.4.2 osTraceEventWaitExit.. 43
4.4.3 osTraceEventSet ... 43
4.4.4 osTraceEventClear .. 44

4.5 Resources ... 44
4.5.1 osTraceResourceGet ... 44
4.5.2 osTraceResourceRelease ... 44

4.6 Alarms and Counters .. 44
4.6.1 osTraceCounterTick .. 44
4.6.2 osTraceAlarmExpire .. 45

4.7 Messages.. 45
4.7.1 osTraceMessageSend.. 45
4.7.2 osTraceMessageReceive.. 45

4.8 Interrupt manipulation .. 46
4.8.1 osTraceInterruptAllDisable .. 46
4.8.2 osTraceInterruptAllEnable ... 46
4.8.3 osTraceInterruptAllSuspend .. 46
4.8.4 osTraceInterruptAllResume ... 46
4.8.5 osTraceInterruptOSSuspend.. 47
4.8.6 osTraceInterruptOSResume... 47

4.9 Error reporting .. 47
4.9.1 osTraceError ... 47

5 Instrumentation Part 2 – support API .. 49
5.1 Types used.. 49
5.2 Target Configuration .. 50
5.3 osTraceGetSystemTime ... 52
5.4 osTraceRunningTaskID .. 53
5.5 Interrupt manipulation macros .. 53
5.6 Other API calls .. 53

6 Instrumenting hints .. 55
6.1 General hints .. 55
6.2 Functional blocks .. 55
6.3 Periodic events .. 56

7 OS Instrumenting Kit Files... 57
7.1 RTapevnt.c .. 57
7.2 RTapnd.c .. 57

10 Contents

7.3 RTapnddt.c ... 57
7.4 RTapndvl.c .. 57
7.5 RTbef.c ... 57
7.6 RTbreak.c.. 57
7.7 RTbwcf.c... 58
7.8 RTctick.c ... 58
7.9 RTcto.c ... 58
7.10 RTdata.c ... 58
7.11 RTfin.c .. 58
7.12 RTsetrep.c... 58
7.13 RTsettrg.c ... 58
7.14 RTsetwin.c .. 58
7.15 RTstbt.c .. 59
7.16 RTstfr.c ... 59
7.17 RTstop.c.. 59
7.18 RTsttt.c ... 59
7.19 RTtrgsup.c .. 59
7.20 RTwrrec.c.. 59

8 Format Strings.. 61
8.1 Rules... 61
8.2 Examples .. 63

1.1

About this Manual 11

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably enhanced operating system, it provides the embedded application
developer with a unique set of services to assist in debugging and testing a
system. Foremost among these is the ability to see exactly what is happening
in a system at runtime with a production build of the application software.

This document explains how to use RTA-TRACE with other embedded systems
– whether using a preemptive operating system, a cyclic executive, or no
scheduler at all.

1.1 Who Should Read this Manual?

It is assumed that you are a developer. You should read this guide if you want
to customize RTA-TRACE to support a previously unsupported embedded
system.

The reader should be familiar with C programming concepts for embedded
systems, and the operation of RTA-TRACE.

1.2 Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

In this guide you’ll see that program code, header file names, C type names, C
functions and API call names all appear in the courier typeface. When the
name of an object is made available to the programmer the name also
appears in the courier typeface, so, for example, a task named Task1
appears as a task handle called Task1.

Sessions at the command prompt are shown with output shown in courier
and user input shown in courier bold.

2.1

Introduction 13

2 Introduction

RTA-TRACE records the activity of a running application and displays both
instantaneous and summary information at runtime. It gives the engineer a
valuable insight into the actual behavior of a system and allows detailed
analysis of behavior via runtime visualization, reporting, and measurement
tools.

RTA-TRACE can record OS activity (such as task activations, resource-locks,
and alarms) as well as user-specified occurrences. The OS and application
must be instrumented in order to record these events.

The diagram below illustrates the separate components involved:

Target RTA-TRACE Server RTA-TRACE Client

Buffer

Application

RTA-TRACE layerRTOS

ECU Link
Library

Device driver

Processing

OS DLL

Comm. DLL

Device driver
(Windows)

Time Trace
visualizer

Statistics module

CPU utilization

Other modules

RTA-TRACE supports the following OS implementations:

• RTA-OSEK;

• ERCOSEK;

• Other OS

This document describes the mechanisms used in instrumenting a system
based on an ‘Other OS’. This also applies to applications not using an OS at
all.

Usage with RTA-OSEK and ERCOSEK are described in separate documents.

2.1 Mechanisms

The target RTA-TRACE layer is responsible for placing trace data in a trace
buffer. The trace data may originate from the OS or from application code.
The ECU Link library is responsible for transmitting the trace buffer contents
to the RTA-TRACE Server via any communications mechanism appropriate.

The OS Instrumenting Kit contains the code that is used on the target, as well
as a PC-based plugin for the RTA-TRACE Server application.

The target code is split into ‘instrumenting’ and ‘support’ parts: the
instrumenting API is the set of C functions (or macros) that are used to place
instrumentation points in the target code; whilst the support API is the set of
C functions and data that are required to support the instrumenting API.

The API is described in Sections 4 and 5.

2.
2

14 Introduction

2.2 Use

The OS Instrumenting Kit contains C source code that can be compiled and
linked alongside an application/OS. It is your job to place instrumenting calls
at appropriate places in the application or OS code (see Section 6 for hints
about this) in order for meaningful trace data to be extracted. The resultant
application will also need to be linked with an appropriate ECU Link
technology – See the RTA-TRACE ECU Link Guide for more details about this.

2.3 Kit contents

The OS Instrumenting Kit consists of a number of source files in the OS
Instrumenting Kit\RTLib\ directory. These are broadly split into macro
definitions (contained in RTapi.h) and support code (in the .c files).

The ECU Link source code is contained in the directory OS Instrumenting
Kit\RTComm\.

Also supplied is an example application (in the directory OS
Instrumenting Kit\Example\) to illustrate the way in which
instrumenting calls may be integrated.

The example application does not use any OS services and is single-threaded.
This allows is to run on any platform, including a Microsoft Windows PC (a
Windows executable is provided to allow the installation to be tested before
needing to derive an embedded application). The application simulates the
behavior of a multi-threaded application by making commented-out calls to a
purely illustrative OS API and then imitating the behavior that would result.
The illustrative OS API calls all take the form OSxxx().

As the application is single-threaded, explicit calls to upload trace information
have been inserted throughout. This would not be required in a multi-
threaded environment. Guidance on the insertion of code into real
applications to upload trace information is provided in the RTA-TRACE ECU
Link Guide.

3.1

Trace Object Description 15

3 Trace Object Description

RTA-TRACE deals with traceable objects, and the trace events that occur for
each of them. These objects include thing like tasks, messages, resources, and
tracepoints. Each object has a trace ID by which it can be identified in the
trace data stream.

The trace objects, their characteristics and their trace ID have to be described
to RTA-TRACE in order for it to be able to correctly decode the target trace
data. This declaration is done via a Run-Time Interface file (having a .rta
suffix)

The format of the .rta file is based around the ORTI language1 used for
supporting OSEK-aware debuggers. This is intended to make it easy to adapt
existing OSEK code generation tools to support RTA-TRACE. Non-OSEK
implementations will generally have little difficulty in generating an equivalent
file however.

3.1 Describing the Target System

The purpose of a .rta file is to describe the target’s traceable objects to RTA-
TRACE.

The target application is composed of a collection of trace objects. Objects
include:

• Tasks

• ISRs

• Resources

• Counters

• Alarms

• Messages

• Processes

• Profiles

• Tracepoints (i.e. arbitrary trace events)

• Task tracepoints (i.e. arbitrary trace events that are associated with a
particular task)

• Intervals (a mechanism used to measure how long some activity takes)

The .rta file describes each such object found in the target. The remainder
of this section introduces the objects that RTA-TRACE understands. RTA-
TRACE has been designed to work primarily with operating systems that are
similar to OSEK/VDX and this is reflected in the way that RTA-TRACE models
target objects. Readers who are already familiar with OSEK should also find
much of the following description familiar. Although RTA-TRACE focuses on
OSEK it can also be used with other targets such as cyclic executives – simply

1 “OSEK/VDX OSEK Run Time Interface (ORTI) Part A: Language Specification”, Version 2.1.1, 4
March 2002, http://www.osek-vdx.org/orti_documents.htm

3.
2

16 Trace Object Description

ensure that the description in the .rta file is consistent with the way that the
target is instrumented. Instrumentation hints for non-OSEK systems are given
in section 6.

3.2 Outline of .rta File Format

This section describes the format of .rta – files. The description is not
exhaustive, but is sufficient to allow .rta files to be written.

A .rta file consists of two major parts:

Declaration
section

This declares the types of objects that can be present
in the system.

Information
section

This contains information about all of the objects
present in the system. Each object has a type
declared in the declaration section.

3.2.1 Declaration Section

The declaration section declares the types of objects that can be present in the
system. The declaration section has the form:

IMPLEMENTATION implementation_name {
 object type declarations
};

implementation_name is the name of the system chosen by the file
author. It can be any valid identifier. Identifiers follow the same rules as C
language identifiers. All identifiers and keywords (e.g. IMPLEMENTATION) are
case sensitive.

An object type declaration has the form:

object_type {
 attribute declarations
};

object_type is the name of the object type (e.g. TASK, ISR1 or
RESOURCE) and must be a valid identifier.

Attribute declarations have several forms. Those relevant to .rta files are
shown in the table below. In all cases attribute_name is the name of the
attribute and must be a valid identifier. label is a human friendly short
description of the attribute.

STRING attribute_name, “label”; This declares an attribute that
has a string value.

UINT16 attribute_name, “label”; This declares an attribute that
has a 16-bit unsigned integer
value.

3.2

Trace Object Description 17

The name of an attribute is local to the object type that contains the attribute.
That is, multiple object types may have attributes with the same name.

Consider a simple example of a declaration section:

IMPLEMENTATION rta_trace {
 OBJECT_A {
 STRING attr_a, “String attribute of OBJECT_A”;
 UINT16 attr_b, “uint16 attribute of OBJECT_A”;
 };
 OBJECT_B {
 STRING attr_a, “String attribute of OBJECT_B”;
 UINT16 attr_c, “uint16 attribute of OBJECT_B”;
 };
 OBJECT_C {
 STRING attr_a, “String attribute of OBJECT_C”;
 UINT16 attr_d, “uint16 attribute of OBJECT_C”;
 };
};

This declaration section declares three objects types – called OBJECT_A,
OBJECT_B and OBJECT_C. OBJECT_A has a string attribute called attr_a
and a 16 bit unsigned integer attribute called attr_b. OBJECT_B has a
string attribute called attr_a and a 16 bit unsigned integer attribute called
attr_c. OBJECT_C has a string attribute called attr_a and a 16 bit
unsigned integer attribute called attr_d.

3.2.2 Sample .rta Implementation

Apart from trace enumerations (described later), the required contents of the
.rta Implementation section tends not to have to change between different
applications, so the following example could be used as the basis for a
template.

IMPLEMENTATION rta_trace {
 OS {
 ENUM UINT8 [
 "E_OK" = 0,
 "E_OS_ACCESS" = 1,
 "E_OS_CALLEVEL" = 2,
 "E_OS_ID" = 3,
 "E_OS_LIMIT" = 4,
 "E_OS_NOFUNC" = 5,
 "E_OS_RESOURCE" = 6,
 "E_OS_STATE" = 7,
 "E_OS_VALUE" = 8,
 "E_OS_SYS_IDLE" = 16,
 "E_OS_SYS_AP_INVALID" = 17,
 "E_OS_SYS_AP_NULL" = 18,
 "E_OS_SYS_AP_READONLY" = 19,
 "E_OS_SYS_TS_INVALID" = 20,
 "E_OS_SYS_TS_READONLY" = 21,
 "E_OS_SYS_S_MODULO" = 22,
 "E_OS_SYS_S_INVALID" = 23,

3.
2

18 Trace Object Description

 "E_OS_SYS_S_MISMATCH" = 24,
 "E_OS_SYS_STACK_FAULT" = 25,
 "E_OS_SYS_T_INVALID" = 26,
 "E_OS_SYS_R_PERMISSION" = 28,
 "E_OS_SYS_COUNTER_INVALID" = 29,
 "E_OS_SYS_CONFIG_ERROR" = 30,
 "E_OS_SYS_CALLEVEL" = 31,
 "E_COM_ID" = 32,
 "E_COM_BUSY" = 33,
 "E_COM_NOMSG" = 34,
 "E_COM_LIMIT" = 35,
 "E_COM_LOCKED" = 36,
 "E_COM_SYS_STOPPED" = 48,
 "Budget Overrun" = 255
] LASTERROR, "Last OSEK error";
 ENUM UINT8 [
 "NO_APPMODE" = 0,
 "OSDEFAULTAPPMODE" = 1
] CURRENTAPPMODE, "Current AppMode";
 ENUM UINT32 [
 "a" = 1,
 "b" = 2,
 "c" = 3,
 "d" = 4
] a, "OS_1";
 ENUM UINT32 [
 "t" = 44,
 "s" = 55,
 "r" = 66,
 "q" = 77,
 "p" = 88
] b, "OS_2";
 STRING vs_p_Fmt1, "StartOS Data format";
 STRING vs_p_Fmt2, "ShutdownOS Data format";
 };
 TASK {
 STRING vs_ID, "Trace ID";
 UINT16 vs_ACTIVATIONS, "Max activations";
 STRING vs_TYPE, "Conformance type";
 STRING vs_p_Pri, "Base priority";
 STRING vs_p_Disp, "Dispatch priority";
 STRING vs_InternalRes, "Internal resource
ID";
 STRING vs_p_StackCeiling, "Stack limit";
 STRING vs_p_StackRange, "Stack range";
 STRING vs_p_Budget, "Budget";
 STRING vs_p_Excl, "Excluded?";
 STRING vs_p_OSEvents, "Events";
 };
 ISR2 {
 STRING vs_ID, "Trace ID";
 STRING vs_RESOURCES, "Resources";
 STRING vs_BUFFERING, "Buffering";

3.2

Trace Object Description 19

 STRING vs_p_Pri, "Base priority";
 STRING vs_p_Disp, "Dispatch priority";
 STRING vs_p_StackCeiling, "Stack limit";
 STRING vs_p_StackRange, "Stack range";
 STRING vs_p_Budget, "Budget";
 STRING vs_p_Excl, "Excluded?";
 STRING vs_p_Arb, "Arbitration";
 };
 ISR1 {
 STRING vs_ID, "Trace ID";
 STRING vs_BUFFERING, "Buffering";
 STRING vs_p_Pri, "Base priority";
 STRING vs_p_Disp, "Dispatch priority";
 STRING vs_p_StackCeiling, "Stack limit";
 STRING vs_p_StackRange, "Stack range";
 STRING vs_p_Budget, "Budget";
 STRING vs_p_Excl, "Excluded?";
 STRING vs_p_Arb, "Arbitration";
 };
 ISR0 {
 STRING vs_ID, "Trace ID";
 STRING vs_BUFFERING, "Buffering";
 STRING vs_p_Pri, "Base priority";
 STRING vs_p_Disp, "Dispatch priority";
 STRING vs_p_StackCeiling, "Stack limit";
 STRING vs_p_StackRange, "Stack range";
 STRING vs_p_Budget, "Budget";
 STRING vs_p_Excl, "Excluded?";
 STRING vs_p_Arb, "Arbitration";
 };
 ALARM {
 STRING vs_ID, "Trace ID";
 STRING ACTION, "Action";
 STRING vs_Owner, "Owning counter ID";
 STRING vs_Activates, "Activates";
 STRING vs_SetEvent, "Sets Event";
 };
 COUNTER {
 STRING vs_ID, "Trace ID";
 STRING vs_p_Fmt, "Data format";
 };
 MESSAGECONTAINER {
 STRING vs_ID, "Trace ID";
 STRING MSGNAME, "Message Name";
 STRING vs_CDATATYPE, "C type";
 STRING vs_p_Fmt, "Data format";
 STRING vs_Activates, "Activates";
 STRING vs_SetEvent, "Sets Event";
 };
 Trace {
 STRING vs_VERSION, "Trace version";

3.
2

20 Trace Object Description

 STRING vs_p_TickDuration, "Stopwatch tick
duration";
 STRING vs_p_MaxAbsTime, "Max Stopwatch
value";
 STRING vs_p_BigEndian, "BigEndian";
 STRING vs_p_IntSize, "IntSize";
 STRING vs_ErrorFmt, "ErrorFmt";
 STRING vs_KindSize, "KindSize";
 STRING vs_InfoSize, "InfoSize";
 STRING vs_TimeSize, "TimeSize";
 STRING vs_TASKS_AND_ISRS, "Filter
TASKS_AND_ISRS";
 STRING vs_STARTUP_SHUTDOWN, "Filter
STARTUP_SHUTDOWN";
 STRING vs_ACTIVATIONS, "Filter ACTIVATIONS";
 STRING vs_COUNTERS_ALARMS, "Filter
COUNTERS_ALARMS";
 STRING vs_SCHEDULES, "Filter SCHEDULES";
 STRING vs_RESOURCES, "Filter RESOURCES";
 STRING vs_INTERRUPT_LOCKS, "Filter
INTERRUPT_LOCKS";
 STRING vs_ERRORS, "Filter ERRORS";
 STRING vs_OSEK_MESSAGES, "Filter
OSEK_MESSAGES";
 STRING vs_MESSAGE_DATA, "Filter
MESSAGE_DATA";
 STRING vs_SWITCHING_OVERHEADS, "Filter
SWITCHING_OVERHEADS";
 STRING vs_OSEK_EVENTS, "Filter OSEK_EVENTS";
 STRING vs_TRACEPOINTS, "Filter TRACEPOINTS";
 STRING vs_TASK_TRACEPOINTS, "Filter
TASK_TRACEPOINTS";
 STRING vs_INTERVALS, "Filter INTERVALS";
 STRING vs_STACK, "Filter STACK";
 };
 Profile {
 STRING vs_ID, "Trace ID";
 STRING vs_Owner, "Owning Task/ISR";
 };
 TaskTracepoint {
 STRING vs_ID, "Trace ID";
 STRING vs_Owner, "Owning Task/ISR";
 STRING vs_p_Fmt, "Data Format";
 };
 Tracepoint {
 STRING vs_ID, "Trace ID";
 STRING vs_p_Fmt, "Data Format";
 };
 CritExec {
 STRING vs_ID, "Trace ID";
 STRING vs_Owner, "Owning Task/ISR/Profile";
 STRING vs_p_Budget, "Budget";

3.2

Trace Object Description 21

 };
 Interval {
 STRING vs_ID, "Trace ID";
 STRING vs_p_Fmt, "Data Format";
 };
 Resource {
 STRING vs_ID, "Trace ID";
 STRING vs_p_Pri, "Task priority";
 STRING vs_p_Isr, "ISR priority";
 STRING vs_Owner, "Owning resource";
 STRING vs_Internal, "Internal?";
 };
 Schedule {
 STRING vs_ID, "Trace ID";
 };
};

3.2.3 Information Section

The information section contains definitions of each of the objects that exist in
the system. Each object is described in turn, following the implementation
section. An object definition has the form:

object_type object_name {
 attribute_name0 = “value0”;
 …
 attribute_nameN = “valueN”;
};

object_type is the name of an object type declared in the declaration
section. object_name is the name of the object and must be a valid
identifier. attribute_name0 … attribute_nameN are the names of
attributes declared in the declaration of object_type. value0 … valueN
are values assigned to the attributes. Not all of the attributes declared in an
object type declaration need to be assigned values when an object of that
type is defined. The attribute description (Section 3.3) will indicate which
attributes are optional. The information section does not need to define an
object of every object type in the declaration section.

Consider an example using the reference implementation section shown
above:

TASK myTask {
 vs_ID = "7";
 vs_ACTIVATIONS = "1";
 vs_TYPE = "ECC2";
 vs_p_Pri = "2";
 vs_p_Disp = "2";
 vs_p_OSEvents = "ea2.1 ";
 vs_p_StackCeiling = "169";
 vs_p_StackRange = "37";

3.
3

22 Trace Object Description

};
Resource RES_SCHEDULER {
 vs_ID = "1";
 vs_p_Pri = "5";
};
Trace Trace {
 vs_VERSION = "2.0.0";
 vs_p_TickDuration = "250";
 vs_p_MaxAbsTime = "65535";
 vs_p_BigEndian = "1";
 vs_p_IntSize = "32";
 vs_ErrorFmt = "%99E";
 vs_KindSize = "1";
 vs_InfoSize = "1";
 vs_TimeSize = "2";
 vs_TASKS_AND_ISRS = "false";
 vs_STARTUP_SHUTDOWN = "runtime";
 vs_ACTIVATIONS = "true";
 vs_COUNTERS_ALARMS = "true";
 vs_SCHEDULES = "true";
 vs_RESOURCES = "true";
 vs_INTERRUPT_LOCKS = "true";
 vs_ERRORS = "true";
 vs_OSEK_MESSAGES = "true";
 vs_MESSAGE_DATA = "true";
 vs_SWITCHING_OVERHEADS = "true";
 vs_OSEK_EVENTS = "true";
 vs_TRACEPOINTS = "true";
 vs_TASK_TRACEPOINTS = "true";
 vs_INTERVALS = "true";
 vs_STACK = "true";
};

3.3 Trace Objects

This section describes the trace object information that must be present in a
.rta file. The description consists of a list of object types and attributes
understood by RTA-TRACE. Some of the object types are specific to RTA-
TRACE, but many are also used by the OSEK ORTI language. If you are starting
from an ORTI file generated by an OSEK OS tool then you will find that the file
already contains objects of type TASK for example.

The .rta file can contain objects and attributes not used by RTA-TRACE since
RTA-TRACE only looks for the objects and attributes that it uses. So if you
start from an automatically generated file there is no need to remove objects
and attributes not used by RTA-TRACE.

Note: All numeric values should be specified as decimal numbers.

3.3

Trace Object Description 23

An explanation of format strings (referenced in the following descriptions) can
be found in section 8

3.3.1 Object type OS

A single object of type OS is used to define general characteristics of the
operating system, and enumeration values (below).

Attribute Type Description

vs_p_Fmt1 STRING

(optional)

A format string that describes
how to display the value
associated with the trace API
osTraceOSStart(). A typical
value is “%98E” which maps the
startup value to the
CURRENTAPPMODE enumeration
in the OS object.

vs_p_Fmt2 STRING

(optional)

A format string that describes
how to display the value
associated with the trace API
osTraceOSExit(). A typical
value is “%99E” which maps the
startup value to the LASTERROR
enumeration in the OS object.

Enumerations provide a way of mapping numeric values in the target
application onto textual descriptions that can be used by RTA-TRACE to
visualize the target behavior better. They are often used to decode error codes
for example.

Enumerations are defined in the OS implementation clause and take the
following form:

ENUM <type> [
 "<name>" = <value>,
 …
] <enum_name>, "<enum_reference>";

For example – RAINBOW may be defined as follows:

ENUM UINT8 [
 "RED" = 0,
 "ORANGE" = 1,
 "YELLOW" = 2,
 "GREEN" = 3,
 "BLUE" = 4,
 "INDIGO" = 5,
 "VIOLET" = 6

3.
3

24 Trace Object Description

] RAINBOW, "OS_1";

Enumerations are referenced in trace data format specifications using the
form “%nE” where n is given in the enum_reference field (i.e.“OS_n”).

The two ‘special’ enumerations are CURRENTAPPMODE which is taken to be
equivalent to “OS_98” and LASTERROR which is taken to be equivalent to
“OS_99”.

3.3.2 Object type Trace

An object of type Trace is used to provide RTA-TRACE with general
information about the system being traced. A single object of this type must
exist.

Attribute Type Description

vs_VERSION STRING

(mandatory)

The version of the .rta file.
Typically set to “2.0.0”.

vs_p_TickDuration STRING

(mandatory)

The number of nanoseconds in
one tick of the traced system’s
timestamp clock (may contain a
decimal point).

vs_p_MaxAbsTime STRING

(mandatory)

The maximum absolute value of
the traced system’s clock. E.g. if
the traced system’s clock is 16 bit
then this value would be
“65535”.

vs_p_BigEndian UINT8

(mandatory)

“0” if the traced system is little-
endian or “1” if the traced system
is big-endian.

vs_p_IntSize UINT8

(mandatory)

The number of bits in a C
language int type on the traced
system.

vs_ErrorFmt STRING

(mandatory)

A format string that describes how
error information should be
displayed. Typically %99E.

vs_KindSize UINT8

(mandatory)

The number of bytes in the traced
system’s “kind” field – either 1 or
2. The “kind” field contains a
descriptor for the kind of an event
(i.e. Task start, get-resource, etc.)

3.3

Trace Object Description 25

vs_InfoSize UINT8

(mandatory)

The number of bytes in the traced
system’s “info” field – either 1 or
2. The “info” field contains the
object to which the event relates
(i.e. identifier of ‘Task1’,
‘Resource7’ etc.)

vs_TimeSize UINT8

(mandatory)

The number of bytes used to
record time in a trace record –
either 2 or 4 (16 or 32 bits).

vs_TASKS_AND_ISRS
vs_ERRORS
vs_ACTIVATIONS
vs_SCHEDULES
vs_RESOURCES
vs_OSEK_EVENTS
vs_TRACEPOINTS
vs_INTERVALS
vs_MESSAGE_DATA

STRING

(optional)

vs_COUNTERS_ALARMS
vs_STARTUP_SHUTDOWN
vs_OSEK_MESSAGES
vs_INTERRUPT_LOCKS
vs_SWITCHING_OVERHEADS
vs_TASK_TRACEPOINTS

Each trace class (See RTA-TRACE
User Manual) can be filtered by
build-time options. Each class can
be filtered out at build-time (string
value "false"), always traced at
build-time (string value "true")
or filtered at runtime. (string value
"runtime").

Note: In the current implementation, vs_KindSize and vs_InfoSize
must both have the same value. The size of these fields correlates to the use
of standard/compact identifiers (standard: 16-bit; compact: 8-bit). Also see
Section 5.1

3.3.3 Tasks, ISRs, Processes and Profiles - overview

A Task is an element of program execution – sometimes also called a thread.
A task executes some specific program code to perform a particular function.
For RTA-TRACE, tasks can exist in a number of states – unknown, activated,
running, preempted and waiting. Each task has a priority allocated to it.

Since there is only one processor, only one task can be executing code at once
– that is only one task can be in the running state. The OS manages which
task is running. Usually the OS will ensure that the highest priority runnable
task executes in preference to other tasks. If a task that has a higher priority
than the currently running task becomes ready then the OS can suspend the
currently running task and start running the higher priority task. The higher
priority task is said to have preempted the lower priority task.

In the .rta file there are two descriptions of priority. A task’s base priority
describes how it is prioritized in relation to other tasks when considering

3.
3

26 Trace Object Description

which task to start. A task’s dispatch priority is used to indicate that the
priority that the task takes when it starts running. This can be used as a way
of ensuring that only one of a group of tasks may run at once. For example,
consider task A with a base priority of 1 and a dispatch priority of 2 and task B
with a base priority of 2 and a dispatch priority of 2. When the OS has to
choose which of A and B to run first it will choose B as it has a higher base
priority. However, if A is running when B is activated, B will not preempt A as
they have the same dispatch priority. A task’s base and dispatch priorities can
be the same.

An ISR is the element of target code that handles an interrupt. Generally ISRs
have a higher priority than tasks. When an interrupt signal occurs the OS or
hardware checks the priority of the task or ISR that is running, and if the new
interrupt has a higher priority then it preempts the currently running task/ISR.
If the new interrupt has a lower priority, then its ISR is not run until it is the
highest priority ISR that can be run. The priority of an ISR may be determined
by the target hardware – specification of ISR priority is implementation-
specific.

RTA-TRACE supports OSEK-like Category 1 and Category 2 interrupts. A
Category 1 interrupt is intended to be ‘fast’, and not require access to the OS
API functions or services. A Category 2 interrupt is managed by the OS and its
ISR may use a subset of OS API functions. Category 0 interrupts are also
provided. These are non OSEK, but can be used just like any other interrupt.

For the purposes of RTA-TRACE, ISRs are treated exactly the same as tasks.

A process is a typically small piece of code that runs in a task or ISR to
perform a specific sub-function. A process is run by a task/ISR from beginning
to end. A task or ISR can contain several processes that run one after the
other. The process start and end points can be easily seen in RTA-TRACE. A
process can only be owned by a single Task/ISR.

(Note that the process concept here is not the same as the process concept in
an OS like UNIX or Windows.)

A profile is a means of describing an execution path through a program. For
example, for an ISR that executes one of many alternative branches based on
some runtime condition, the ISR can be instrumented to report which
execution profile it is executing at each invocation – e.g. ‘CAN_Rx_Interrupt’,
‘Timer3_Expiry’, ‘ADC_complete’.

Note: Tasks, processes and ISRs share the same identifier numberspace – the
vs_ID values for these objects must not overlap.

3.3

Trace Object Description 27

3.3.4 Object Type Task

A TASK object is used to describe an OS task. A TASK object must exist for
every task in the system.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the task
object.

vs_p_Pri STRING

(mandatory)

The base priority of the task. The
lower the number the lower the
priority.

vs_p_Disp STRING

(mandatory)

The dispatch priority of the task. It
is the same or higher than the
base priority. See the description
of tasks in section 3.2.

vs_ACTIVATIONS UINT16
(optional)

The maximum number of
outstanding task activations that
can be recognized. In a simple
OSEK ‘BCC1’ task, activation
requests for tasks are not queued,
so this value would be ‘1’. In other
cases, the OS may be able to
queue up to 4 activation requests
for the task, so the value can be
set accordingly.

vs_TYPE STRING

(mandatory)

A short description of the task
type. For OSEK systems this could
be “BCC1”, “BCC2”, “ECC1” and
“ECC2”, but other values can be
specified.

vs_InternalRes STRING

(optional)

The vs_ID of an internal resource
that is implicitly locked when the
task is running. An internal
resource may be shared by
multiple tasks to ensure that only
one of the tasks can run at once.

vs_p_StackCeiling STRING

(optional)

The maximum stack value that is
expected from any event logged
during the execution of this task.
This value is in bytes.

vs_p_StackRange STRING

(optional)

Gives the maximum amount of
stack that the task is expected to
use during the execution of this
task.

3.
3

28 Trace Object Description

vs_p_Budget STRING

(optional)

The execution budget declared for
the task. i.e. the maximum
number of stopwatch ticks that
the task is allowed to run for.

vs_p_Excl STRING

(optional)

“1” if the task should not be
traced. Omitted if the task should
be traced.

vs_p_OSEvents STRING

(optional)

The names of OSEK events on
which the task may wait. Only
present for ECC tasks. The format
of this is a space separated list of
<eventname>:mask pairs. e.g.
"ea1.1 ea2:8" represents an
event named ea1 with mask value
1, and an event named ea2 with
a mask value 8.

3.3.5 Object Type ISR2/ISR1/ISR0

ISR objects are used to describe an Interrupt Service Routines.

Note: Tasks, profiles and ISRs share the same identifier numberspace – the
vs_ID values for these objects must not overlap.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the ISR
object.

vs_p_Pri STRING

(mandatory)

The base priority of the ISR. The
lower the number the lower the
priority.

vs_p_Disp STRING

(mandatory)

The dispatch priority of the ISR. It
is the same or higher than base
priority.

vs_p_Arb STRING

(mandatory)

The arbitration order of the ISR.
Where two ISRs that share the
same priority become ready at the
same instant, the target hardware
will service the ISR with the
highest arbitration value first. This
order is often determined by the
target hardware.

3.3

Trace Object Description 29

vs_p_StackCeiling STRING

(optional)

The maximum size of the traced
system’s stack.

vs_p_StackRange STRING

(optional)

Gives the maximum amount of
stack that the task is expected to
use during the execution of this
task.

vs_p_Budget STRING

(optional)

The execution budget declared for
the ISR. i.e. the maximum number
of stopwatch ticks that the ISR is
allowed to run for.

vs_p_Excl STRING

(optional)

“1” if the ISR should not be
traced. Omitted if the ISR should
be traced.

3.3.6 Object Type Process

A Process object is used to describe a small piece of code – generally run as
part of a task. This is a means for partitioning functional blocks.

Attribute Type Description

vs_ID UINT16

(mandatory)

The trace identifier of the process
object.

Each Process object must be
numbered uniquely, starting at 1.

vs_Owner UINT16

(mandatory)

The vs_ID of the task or ISR that
owns the process

3.
3

30 Trace Object Description

3.3.7 Object Type Profile

A Profile object is simply a means of indicating to RTA-TRACE which piece
of code is actually being executed in the case of a Task/ISR which may
perform different functions at runtime.

Note: Tasks, profiles and ISRs share the same identifier numberspace – the
vs_ID values for these objects must not overlap.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the profile
object.

vs_Owner STRING

(mandatory)

The vs_ID of the task or ISR that
owns the profile.

3.3.8 Object Type Resource

A resource is an entity that allows an application to serialize execution. After
task/ISR X has locked a resource, no other task/ISR may lock that resource
until task/ISR X has unlocked the resource (resources may also be called
“mutexes”). OSEK operating systems use the “priority ceiling protocol” to
implement resources. That is, each resource has a priority that is equal to the
maximum dispatch priority of any task/ISR that may lock the resource. When a
task/ISR locks a resource its effective dispatch priority is increased to the
priority of the resource. This prohibits any other task/ISR that is allowed to
lock the resource from being run by the OS. When the task/ISR unlocks the
resource its effective dispatch priority is returned to its previous value. In
OSEK, it may be possible to share resources between tasks and ISRs, although
this is implementation specific. (Resources may also be called semaphores
(either binary or counted) for other OSs)

Resource objects must exist for all resource types (standard, internal, and
linked).

The Resource object is used to describe a resource.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the resource
object.

Each Resource object must be
numbered uniquely, starting at 1.

vs_p_Pri STRING

(see
description)

The ceiling priority of the resource
if the resource can only be locked
by tasks. Omitted if the resource
can be locked by an ISR.

3.3

Trace Object Description 31

vs_p_Isr STRING

(see
description)

The ceiling priority of the resource
if the resource can be locked by
an ISR. Omitted if the resource
cannot be locked by an ISR.

vs_Owner STRING

(optional)

The trace ID of this resource’s
owner. Only present for a linked
resource.

vs_Internal STRING

(optional)

If this is set to “1”, the resource is
taken to be of ‘internal’ or
‘automatic’ type. Any task with a
vs_InternalRes value that
matches the trace ID of this
resource is deemed to lock/unlock
this resource automatically when
it starts/stops.

3.3.9 Object Type COUNTER

Counters are tightly coupled with Alarms (see next section). An OSEK Alarm is
an OS resource that allows activity to occur some time in the future (Alarms
may also be used to implement periodic behaviour). Alarms perform certain
actions when they expire (activating a task, invoking a callback function, or
setting an event for an ECC task); expiry times being set either at
configuration time or at run time. Alarms are attached to Counters which, in
turn, are ticked from an appropriate source (i.e. a periodic timer, an external
stimuli, a task etc.).

A COUNTER object is used to describe a counter. Counters are the mechanism
used to drive ALARMs. They cause alarms to execute when the alarm expiry
time matches the counter’s current value.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the counter
object.

Each COUNTER object must be
numbered uniquely, starting at 1.

vs_p_Fmt STRING

(optional)

The format string describing how
to display any count value.

3.
3

32 Trace Object Description

3.3.10 Object Type ALARM

An ALARM object is used to describe an alarm.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the alarm
object.

Each ALARM object must be
numbered uniquely, starting at 1.

vs_Owner STRING

(mandatory)

The trace ID of the counter that
owns this alarm.

vs_p_Action STRING

(optional)

A description of what happens
when the alarm expires. This
appears in text form in RTA-
TRACE floating hints.

vs_Activates
STRING

(optional)

The trace ID of a task that this
alarm is deemed to activate.
Where present, the ‘activate’
indication will be inserted
automatically by RTA-TRACE.

vs_SetEvent
STRING

(optional)

A string in the form
“<num1>:<num2>” is taken to
mean that the alarm sets an event
belonging to task ID <num1>,
with event mask <num2>. Where
present, the ‘set event’ indication
will be inserted automatically by
RTA-TRACE.

3.3

Trace Object Description 33

3.3.11 Object Type MESSAGECONTAINER

Alongside the OSEK OS, there is a communications standard known as OSEK
COM. OSEK COM provides a means of sending messages between tasks.
These messages are sent via message containers. A message container has the
following information in its definition: the C language data type of the
message, the number of messages that may be queued and optionally
notification (activate a task, set an event, or invoke a callback function) when
a message is sent or received.

A MESSAGECONTAINER object is used to describe OSEK-style messages. The
content of the message can be displayed by RTA-TRACE if configured to do
so.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the message
object.

Each MESSAGECONTAINER object
must be numbered uniquely,
starting at 1.

vs_p_CType STRING

(optional)

The C language data type used for
the message.

vs_p_Fmt STRING

(optional)

The format string describing how
to display the message data.

vs_Activates
STRING

(optional)

The trace ID of a task that this
message is deemed to activate.
Where present, the ‘activate’
indication will be inserted
automatically by RTA-TRACE and
does not have to be recorded on
the target.

vs_SetEvent
STRING

(optional)

A string in the form
“<num1>:<num2>” is taken to
mean that the message sets an
event belonging to task ID
<num1>, with event mask
<num2>. Where present, the ‘set
event’ indication will be inserted
automatically by RTA-TRACE and
does not have to be recorded on
the target.

3.
3

34 Trace Object Description

3.3.12 Object Type Tracepoint

A tracepoint is used to log the occurrence of an arbitrary event. The target
can contain tracepoints at any point in the program.

The Tracepoint object is used to describe a tracepoint. Tracepoint
objects do not need to be declared before use unless you want to assign a
particular name or format string to them.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the
tracepoint object.

Each Tracepoint object must be
numbered uniquely, starting at 1.

vs_p_Fmt STRING

(optional)

A format string used for displaying
data associated with the
tracepoint.

3.3.13 Task Tracepoints

A task tracepoint is a special form of a tracepoint that gets associated with
the task/ISR that logs it. In RTA-TRACE, they get drawn alongside the task/ISR
that was running when they were logged.

The TaskTracepoint object is used to describe a task tracepoint.
TaskTracepoint objects do not need to be declared before use unless you
want to assign a particular name or format string to them.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the task
tracepoint object.

Each TaskTracepoint object must
be numbered uniquely, starting at
1.

vs_Owner STRING

(optional)

The trace ID of the task/ISR that
owns this task tracepoint. If
omitted then any task tracepoint
in the traced system that specifies
this object’s trace ID will use this
description.

vs_p_Fmt STRING

(optional)

A format string used for displaying
data associated with the
tracepoint.

3.3

Trace Object Description 35

3.3.14 Object Type Interval

An interval is used to measure the amount of time that some activity takes.
The target program code contains interval start and end instrumentation
around the activity.

An Interval object is used to describe an interval. Interval objects do
not need to be declared before use unless you want to assign a particular
name or format string to them.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the interval
object.

Each Interval object must be
numbered uniquely, starting at 1.

vs_p_Fmt STRING

(optional)

A format string used for displaying
data associated with the interval.

3.3.15 Object Type CritExec

A CritExec object is used to represent a critical execution point in a
task/ISR/profile. It is similar to a task tracepoint, and is typically used to mark
the completion of a particular section of code. RTA-TRACE can monitor the
min/max execution time from the start of the task/ISR to each critical
execution point.

Attribute Type Description

vs_ID STRING

(mandatory)

The trace identifier of the CritExec
object.

Each CritExec object must be
numbered uniquely, starting at 1.

vs_Owner STRING

(optional)

The trace ID of the task/ISR that
owns this critical execution point.

vs_p_Budget STRING

(optional)

The execution time declared for
the CritExec object. i.e. the
maximum number of stopwatch
ticks that are expected before it
occurs.

4.1

Instrumentation Part 1 – macro API 37

4 Instrumentation Part 1 – macro API

The macros described in this section are defined in the header file RTapi.h.

Trace events are placed in the trace buffer using macros defined in the
supplied header file. Each trace event has a particular mapping to the
behavior of an Operating System object, and therefore a particular
representation in the Time-Trace visualizer. The available macros are described
here, along with a description of typical usage and visualizer representation.

Further information can be gathered from examination of the example
application supplied on the CD.

Note: for the visualizer to display meaningful trace data, each object
reference used must be defined in the .rta file (Section 3).

4.1 OS

The API macros defined in this section deal with functions within the OS itself.
If instrumenting a non-OS based system, not all of these APIs will be relevant.

4.1.1 osTraceOSStart

Usage: osTraceOSStart(<value>)

Description: This indicates that the OS/Scheduler/system has
started. For an OSEK system, this might be placed
within the startup-hook for example.

<value> is OS dependent. It could indicate which
mode of operation the system is running in. The value
can be displayed by RTA-TRACE if the OS object
attribute vs_p_Fmt1 is specified correctly.

4.1.2 osTraceOSExit

Usage: osTraceOSExit(<value>)

Description: This indicates that the OS/Scheduler/system has
shutdown. For an OSEK system, this might be placed
within the shutdown-hook for example.

<value> is OS dependent. It could indicate why the
OS has stopped. The value can be displayed by RTA-
TRACE if the OS object attribute vs_p_Fmt2 is
specified correctly.

4.
1

38 Instrumentation Part 1 – macro API

4.1.3 osTraceSchedulerEntry

Usage: osTraceSchedulerEntry()

Description: This is used to indicate that the system being
instrumented is just about to enter the operating
system scheduler. Typically this will be just before
some preemption takes place (either because of a
new higher-priority task becoming ready, or because
of an interrupt).

In the case of an interrupt handler, this event would
be placed as early as possible in the interrupt handler.

4.1.4 osTraceSchedulerExit

Usage: osTraceSchedulerExit()

Description: This is used to indicate that the system being
instrumented is just about to exit the operating
system scheduler.

4.2

Instrumentation Part 1 – macro API 39

4.2 Tasks/ISRs

For the Instrumenting Kit, Tasks and interrupt handlers (ISRs) are given the
generic group name of Tasks since they share many characteristics. For this
reason, it is important that the identifiers for tasks and ISRs do not overlap
(e.g. a single system cannot contain both a task with an ID of 3 and an ISR
with an ID of 3).

Profiles are logged using standard RTA-TRACE instrumenting calls – described
in the RTA-TRACE User Manual.

4.2.1 osTraceTaskActivate

Usage: osTraceTaskActivate(<task_id>)

Description: This is used to indicate that task activation has been
requested. In an OSEK system, this API will be placed
as early as possible in (or just prior to) the call to
ActivateTask().

Note <task_id> must refer to a task.

4.2.2 osTraceTaskStart

Usage: osTraceTaskStart(<task_id>)

Description: This indicates that the indicated task has started.

For a non-OS based system, this might indicate the
start of a significant code block for example.

4.2.3 osTraceTaskEnd

Usage: osTraceTaskEnd(<task_id>)

Description: This indicates that the indicated task has finished.

4.
2

40 Instrumentation Part 1 – macro API

4.2.4 osTraceCat1Start

Usage: osTraceCat1Start(<isr1_id>)

Description: This indicates that the indicated category 1 ISR has
started.

This call should be inserted as early as possible in the
interrupt handler.

4.2.5 osTraceCat1End

Usage: osTraceCat1End(<isr1_id>)

Description: This indicates that the indicated category 1 ISR has
finished.

This call should be inserted as late as possible in the
interrupt handler.

4.2.6 osTraceCat2Start

Usage: osTraceCat2Start(<isr2_id>)

Description: This indicates that the indicated category 2 ISR has
started.

This call should be inserted as early as possible in the
interrupt handler.

4.2.7 osTraceCat2End

Usage: osTraceCat2End(<isr2_id>)

Description: This indicates that the indicated category 2 ISR has
finished.

This call should be inserted as late as possible in the
interrupt handler.

4.3

Instrumentation Part 1 – macro API 41

4.2.8 osTraceProcessStart

Usage: osTraceProcessStart(<process_id>)

osTraceProcessStart(<task_id>)

Description: This is used to indicate that a process has been
started. A process is a sub-function contained within a
task.

If <process_id> is not known, then the id of the
task owning the process can be used and the
visualizer will infer which process should be indicated,
assuming that processes run in order.

For a non-OS system, this might be used to mark the
start of a sub-function.

4.2.9 osTraceProcessEnd

Usage: osTraceProcessEnd(<process_id>)

osTraceProcessEnd(<task_id>)

Description: This is used to indicate that a process has ended.

It is permissible to omit process ends – RTA-TRACE
will infer end of a process when the next process
starts or the task ends.

4.3 Task/ISR Switching API

4.3.1 osTraceTaskSchedulerEntry

Usage: osTraceTaskSchedulerEntry()

Description: This is used to indicate that the task has offered up a
re-scheduling point. For an OSEK system, this is a call
to Schedule().

In a co-operative scheduling system, this would be the
point at which a task yields.

4.
3

42 Instrumentation Part 1 – macro API

4.3.2 osTraceTaskSchedulerExit

Usage: osTraceTaskSchedulerExit()

Description: This is used to indicate that the re-scheduling point
has returned to the calling task.

4.3.3 osTraceInterruptHandlerEntry

Usage: osTraceInterruptHandlerEntry()

Description: This is used to indicate that an interrupt has been
recognized. There may be some time between this
point and the start of the interrupt handler proper
(logged with an osTraceCatnStart() call).

This call should be placed as early as possible in the
interrupt-recognition process, offering the opportunity
to measure operating-system overheads.

4.3.4 osTraceInterruptHandlerExit

Usage: osTraceInterruptHandlerExit()

Description: This is used to indicate that an interrupt has been
recognized. There may be some time between the
end of the interrupt handler proper (logged with an
osTraceCatnEnd() call) and this point.

This call should be placed as late as possible in the
interrupt-handler.

4.3.5 osTraceTaskSleep

Usage: osTraceTaskSleep(<task_id>)

Description: This is used to indicate that the task is being put to
sleep – for example at the end of a timeslice. This
event will be generated from within the operating
system since a task should be unaware of any time-
slicing that takes place.

In a time-sliced OS, a Task would typically be started
by the OS (logging a task-start event) and for each
time-slice, a sleep/wake pair would be used.

4.4

Instrumentation Part 1 – macro API 43

4.3.6 osTraceTaskWake

Usage: osTraceTaskWake(<task_id>)

Description: This is used to indicate that a task is being woken
after a sleep, i.e. a new time-slice has been allocated
to the task.

4.4 Events

The following API calls refer to OSEK-style event behavior. Events are always
defined as masks.

4.4.1 osTraceEventWaitEntry

Usage: osTraceEventWaitEntry(<task_id>,
 EventMaskType <event_mask>)

Description: This is used to indicate that the task is waiting for an
OSEK event (<event_mask>) to be set. Once the
event has been set, task execution will resume.

4.4.2 osTraceEventWaitExit

Usage: osTraceEventWaitExit(<task_id>)

Description: This is used to indicate that the task previously waiting
for an OSEK event has been resumed.

4.4.3 osTraceEventSet

Usage: osTraceEventSet(<task_id>,
 EventMaskType<event_mask>)

Description: This is used to indicate that the event given by
<event_mask> is being set for the task referenced
by <task_id>.

Note Any task can set an event for another task, but
<task_id> must refer to the task for which the
event is being set.

4.
5

44 Instrumentation Part 1 – macro API

4.4.4 osTraceEventClear

Usage: osTraceEventClear(<task_id>,
 EventMaskType<event_mask>)

Description: This is used to indicate that the event given by
<event_mask> is being cleared for the task
referenced by <task_id>.

4.5 Resources

The following API calls refer to resources.

4.5.1 osTraceResourceGet

Usage: osTraceResourceGet(<resource_id>)

Description: This is used to indicate that the resource
<resource_id> is being locked.

4.5.2 osTraceResourceRelease

Usage: osTraceResourceRelease(<resource_id>)

Description: This is used to indicate that the resource indicated is
being unlocked.

4.6 Alarms and Counters

The following calls allow counters and alarms to be instrumented. These
mechanisms are also used when instrumenting a schedule or timetable of
programmed task activations.

4.6.1 osTraceCounterTick

Usage: osTraceCounterTick(<counter_id>,
 TickType <counter_value>)

Description: This is used to indicate that the counter indicated is
being ticked, along with its new value.

4.7

Instrumentation Part 1 – macro API 45

4.6.2 osTraceAlarmExpire

Usage: osTraceAlarmExpire(<alarm_id>)

Description: This is used to indicate that the alarm indicated has
expired.

4.7 Messages

These API calls allow messages to be tracked.

4.7.1 osTraceMessageSend

Usage: osTraceMessageSend(<msg_id>)

osTraceMessageSendData(<msg_id>,
 <data_ptr>,
 <data_len>)

Description: This is used to indicate that the message indicated has
been sent.

The second form of this call allows the actual message
content to be logged as well as the message
identifier.

4.7.2 osTraceMessageReceive

Usage: osTraceMessageReceive(<msg_id>)
osTraceMessageReceiveData(<msg_id>,
 <data_ptr>,
 <data_len>)

Description: This is used to indicate that a receive-message call has
been made for the indicated message.

The second form of this call allows the actual message
content to be logged as well as the message
identifier.

4.
8

46 Instrumentation Part 1 – macro API

4.8 Interrupt manipulation

4.8.1 osTraceInterruptAllDisable

Usage: osTraceInterruptAllDisable()

Description: This is used to indicate that all interrupts are being
disabled.

4.8.2 osTraceInterruptAllEnable

Usage: osTraceInterruptAllEnable()

Description: This is used to indicate that all interrupts are being
enabled.

4.8.3 osTraceInterruptAllSuspend

Usage: osTraceInterruptAllSuspend(
 <nesting_count>)

Description: This indicates that all interrupts are being suspended.
<nesting_count> will be zero when the interrupt
level has been raised and a positive number otherwise.
<nesting_count> increases by one for every
‘SuspendAll’ call.

4.8.4 osTraceInterruptAllResume

Usage: osTraceInterruptAllResume(
 <nesting_count>)

Description: This indicates that the interrupt level in place at the
matching ‘Suspend All’ call is being resumed.
<nesting_count> will be zero when the interrupt
level has been lowered and a positive number otherwise.
<nesting_count> decreases by one for every
‘Resume All’ call.

4.9

Instrumentation Part 1 – macro API 47

4.8.5 osTraceInterruptOSSuspend

Usage: osTraceInterruptOSSuspend(<nest_count>)

Description: This indicates that interrupts up to OS level are being
suspended. <nest_count> will be zero when the
interrupt level has been raised and a positive number
otherwise. <nest_count> increases by one for every
‘Suspend OS’ call.

4.8.6 osTraceInterruptOSResume

Usage: osTraceInterruptOSResume(<nest_count>)

Description: This indicates that the interrupt level in place at the
matching ‘Suspend OS’ call is being resumed.
<nest_count> will be zero when the interrupt level
has been lowered and a positive number otherwise.
<nest_count> decreases by one for every ‘Resume
OS’ call.

4.9 Error reporting

This API is used to instrument errors. It is suggested that an enumerated
variable is used for error codes, allowing the visualizer to display meaningful
text instead of a simple error code.

4.9.1 osTraceError

Usage: osTraceError(<error_code>)

Description: This indicates that an error has been reported. The
display format for the error code depends on the
vs_ErrorFmt attribute of the OS object within the
.rta.file.

5.1

Instrumentation Part 2 – support API 49

5 Instrumentation Part 2 – support API

In addition to the instrumentation API defined in section 4, there are some
functions that are supplied as C code. These functions deal with the insertion
of trace records into the trace-buffer, and trace-buffer management. The
communication-elements of the RTA-TRACE target code are described
separately in the RTA-TRACE ECU Link Guide.

The code should not require any modification since it is written in ‘vanilla’ C,
although certain target specific code enhancements may be required (i.e. if
placing data elements in ‘near’ RAM). Such modifications are beyond the
scope of this document. Please contact LiveDevices if assistance is required.

In addition to the supplied support API, there is a requirement on the user to
supply a number of target-specific macros/functions in order for the supplied
support API to work correctly. These are described below.

5.1 Types used

Basic types are defined by the user in the file RTLib\RTtarget.h. This file
is required to define the following:

Name Description

Int8Type A signed 8-bit integer.

UInt8Type An unsigned 8-bit integer.

Int16Type A signed 16-bit integer.

UInt16Type An unsigned 16 bit integer.

Int32Type A signed 32-bit integer.

UInt32Type An unsigned 32 bit integer.

BooleanType A Boolean.

IntType A ‘natural’ integer for the platform

UIntType An unsigned ‘natural’ integer for the
platform.

osTraceEventMaskType A type used for event bitmasks. If
instrumenting an ECC OSEK OS, this will
need to be defined as EventMaskType.

osTraceTickType A type used for capturing counter-values. If
instrumenting an OSEK OS, this will need to
be defined as TickType.

Three basic types are used by the tracing library – osTraceTimeType,
osTraceInfoType and osTraceKindType. The size of these types

5.
2

50 Instrumentation Part 2 – support API

depends upon whether standard (16-bit) or compact (8-bit) identifiers, or
standard (32-bit) or compact (16-bit) times are in use. The default operation is
to use standard identifiers (16-bit) and times (32-bit).

Compact times will be used if the pre-processor symbol COMPACT_TIME is
defined; compact identifiers will be used (for ‘kind’ and ‘info’ types) if the
pre-processor symbol COMPACT_ID is defined. These definitions are
contained within the file RTconfig.h (see Section 5.2).

This is shown in the following table:

Maps to Type Name

Standard Compact

osTraceTimeType UInt32Type UInt16Type

osTraceKindType UInt16Type UInt8Type

osTraceInfoType UInt16Type UInt8Type

osTraceCategoriesType UInt32Type

osTraceClassesType UInt16Type

Note that the standard/compact setting must match the info/kind sizes
defined in the Trace object defined in the .rta file.

5.2 Target Configuration

Target configuration details are contained within the file RTconfig.h. This
file is specific to your application – and hence should be in the application
directory. This file contains configuration parameters which have an
equivalent in the .rta file.

Note 1: Any changes made to this file will require that the library code be
rebuilt.

Note 2: It is your responsibility to keep RTconfig.h and your application’s
.rta file consistent with each other (buffer size, compact time, and compact
identifiers).

5.2

Instrumentation Part 2 – support API 51

OSTRACE_ENABLED Defining this symbol enables tracing
on the target. If tracing is not
required, then this symbol should not
be defined.

OSTRACEBUFFERSIZE The size of the trace-buffer (in
records). Typically a buffer size of
200-600 records is required to
provide sufficient contiguous data for
proper system analysis.

COMPACT_TIME If this symbol is defined, the compact
representation of time is used (see
5.1), otherwise standard
representation is used.

COMPACT_ID If this symbol is defined, the compact
representation of ‘kind’ and ‘info’
fields are used (see 5.1), otherwise
standard sizes are used.

OSTRACE_TRIGGERING_ENABLED If runtime triggering is required on
the target, this symbol should be
defined. Leaving this symbol
undefined will result in a reduction in
size of the tracing code, since runtime
trigger checks will not be done.

OSTRACE_USING_COMMLINK Define this symbol if an ECU Link is
being used for transferring trace data
from the target. Defining this symbol
means that the files in the
…\RTcomm\ directory will also need
to be incorporated into your
application. If it is not defined, the
debugger interface will be used.

5.
3

52 Instrumentation Part 2 – support API

OSTRACE_ACTIVATIONS_FLTR

OSTRACE_TASKS_AND_ISRS_FLTR

OSTRACE_RESOURCES_FLTR

OSTRACE_PROCESSES_FLTR

OSTRACE_OSEKEVENTS_FLTR

OSTRACE_ERRORS_FLTR

OSTRACE_ALARMS_FLTR

OSTRACE_OSEK_MESSAGES_FLTR

OSTRACE_INTERRUPT_LOCKS_FLTR

OSTRACE_SWITCHING_OVERHEADS_FLTR

OSTRACE_STARTUP_AND_SHUTDOWN_FLTR

OSTRACE_TRACEPOINTS_FLTR

OSTRACE_TASK_TRACEPOINTS_FLTR

OSTRACE_INTERVALS_FLTR

Define tracing support for
the various classes of
events. All of these
symbols must be defined
to either:

 OSTRACE_ALWAYS,

 OSTRACE_NEVER,

 OSTRACE_RUNTIME.

Runtime
enabling/disabling of
classes is demonstrated in
the
demo_preemption()
routine of the example
application (in main.c).

Note: In order to keep code size small, use OSTRACE_ALWAYS or
OSTRACE_NEVER rather than OSTRACE_RUNTIME when tracing is not going
to be altered at runtime.

5.3 osTraceGetSystemTime

Prototype: osTraceTimeType osTraceGetSystemTime(

 void);

Description: This function is responsible for supplying time values for
all of the event-insertion code.

Note that osTraceTimeType will be 16- or 32-bits in
size depending upon the setting of the COMPACT_TIME
symbol.

5.4

Instrumentation Part 2 – support API 53

5.4 osTraceRunningTaskID

Prototype: osTraceInfoType osTraceRunningTaskID (

 void)

Description: This function is responsible for supplying the trace
identifier of the currently running task. This will reflect
the task which currently occupies the CPU.

The function is only used by the LogTaskTracepoint(…)
set of API calls to implement an aspect of run-time
triggering. If run-time triggering is not being used, then
this function can simply return 0. If task-tracepoints are
not being used at all, the function can be omitted.

5.5 Interrupt manipulation macros

The OS Instrumenting kit uses a number of macros in order to manipulate
interrupt levels as follows

NOTE re: recursion

Macro name: RESERVE_PREV()

SAVE_PREV()

DISABLE_INTRPTS()

RESTORE_PREV()

Description: RESERVE_PREV() declares a variable for a subsequent
save of interrupt level

SAVE_PREV() saves the current interrupt level in the
variable declared in the RESERVE_PREV() macro

DISABLE_INTRPTS() disables interrupts

RESTORE_PREV() restores interrupt level to that stored
in SAVE_PREV().

5.6 Other API calls

Other API calls (starting/stopping the trace, logging tracepoints, triggering,
etc.) function as described in the RTA-TRACE User Manual.

6.1

Instrumenting hints 55

6 Instrumenting hints

Many different embedded scenarios may be enhanced with the instrumenting
kit – both with and without an operating system.

Some broad guidelines about instrumenting are given below. Please contact
technical support if more assistance is required.

6.1 General hints

It is very important that ‘paired’ API calls (i.e. osTraceTaskStart() and
osTraceTaskEnd()) are actually nested correctly. If the API call closing a
section (i.e. osTraceTaskEnd()) is omitted, then RTA-TRACE will display
increasing levels of pre-emption rather than execution of a background task
(for example).

This applies to all entry/exit and start/end calls. i.e.:

void task_a(void)
{
 osTraceTaskStart(TASKA)
 if (on_button_pressed()) {
 switch_system_on();
 } else {
 osTraceTaskEnd(TASKA);
 return;
 }
 check_system_status();

 osTraceTaskEnd(TASKA);
 return;
}

Note that in the above example, both task-exit paths need to have the
osTraceTaskEnd() function present.

6.2 Functional blocks

Pieces of code which form significant functional blocks (i.e. OSEK(time) tasks)
should be modeled as task objects, with a osTaskStart (osTaskEnd) call
placed as early (late) as possible in the block. If there is a particular activity that
causes the block to be executed, it may be appropriate to mark it with a
osTaskActivate call. A suitable task type (vs_TYPE) should be chosen in
the .rta file – BCC1 is often the most suitable.

Processes can be used to represent functional blocks, with osProcessStart
and osProcessEnd calls placed appropriately.

6.
3

56 Instrumenting hints

6.3 Periodic events

Periodic events may be modeled using counters and alarms. Typically, there is
some ‘tick’ event which periodically causes some code to be executed. The
‘tick’ event may be modeled as a counter, whilst an alarm may be used to
indicate the time at which a piece of code (or task) was activated.

For a time-sliced system, ‘Sleep’ and ‘Wake’ trace calls should be inserted as
appropriate.

7.1

OS Instrumenting Kit Files 57

7 OS Instrumenting Kit Files

This section describes the files contained in the instrumenting kit library
directory (\RTLib\), and the function(s) contained within each file.

7.1 RTapevnt.c

osTraceAppendEventMask Append trace record plus Event-
Mask to buffer (calls
osTraceAppendData)

7.2 RTapnd.c

osTraceAppend Append trace record to buffer
(calls
osTraceWriteTraceRecord)

7.3 RTapnddt.c

osTraceAppendData Append trace record plus arbitrary
data bytes to buffer (calls
osTraceWriteTraceRecord)

7.4 RTapndvl.c

osTraceAppendVal Append trace record plus integer
data to buffer (calls
osTraceWriteTraceRecord)

7.5 RTbef.c

osTraceBufferEmptyFunction Called on buffer empty

7.6 RTbreak.c

osTraceBreakLabel
Debugger integration label:
Breakpoint on this to detect buffer
full when using debugger link
rather than ECU Link.

7.
7

58 OS Instrumenting Kit Files

7.7 RTbwcf.c

osTraceBufferWrCheckFunction Called to check writes to buffer,
typically on buffer full

7.8 RTctick.c

osTraceCounterTick1 Append trace record plus Counter
Value to buffer (calls
osTraceAppendData)

7.9 RTcto.c

CheckTraceOutput See RTA TRACE ECU Link Guide

7.10 RTdata.c

This file contains OS Instrumenting Kit implementation variables. These are
required for the kit to function correctly.

7.11 RTfin.c

osTraceFinished Ensures finished trace data is
correctly terminated

7.12 RTsetrep.c

SetTraceRepeat See RTA-TRACE User Manual

7.13 RTsettrg.c

SetTriggerConditions Support function for triggering

7.14 RTsetwin.c

SetTriggerWindow Support function for triggering

7.15

OS Instrumenting Kit Files 59

7.15 RTstbt.c

StartBurstingTrace See RTA-TRACE User Manual

7.16 RTstfr.c

StartFreeRunningTrace See RTA-TRACE User Manual

7.17 RTstop.c

StopTrace See RTA-TRACE User Manual

7.18 RTsttt.c

StartTriggeringTrace See RTA TRACE User Manual

7.19 RTtrgsup.c

osTraceCheckForTrigger

TriggerNow

Support functions for triggering

7.20 RTwrrec.c

osTraceWriteTraceRecord Write a trace record to the buffer
(not re-entrant)

8.1

Format Strings 61

8 Format Strings

Format strings specify how a tracing item's data should be displayed. Simple
numeric data can be displayed using a single format specifier. More complex
data, e.g. a C struct, can be displayed by repeatedly moving a cursor
around the data block and emitting data according to more complex format
specifiers.

If a format string is not supplied, data is displayed in the following manner:

• if the data size is no greater than the size of the target's int type,
data is decoded as if "%d" had been specified.

• Otherwise the data is displayed in a hex dump, e.g.
0000 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0010 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

• A maximum of 256 bytes is shown.

Note: when format specifiers are given, the target's endian-ness is taken into
account. When a hex dump is shown, the target's memory is dumped byte-
for-byte. In particular, you may not get the same output from a hex dump as
from the %x format specifier.

8.1 Rules

• A format string may contain two types of object: ordinary characters,
which are copied to the output stream, and format elements, each of
which causes conversion and printing of data supplied with the event.

• A format element comprises a percent sign, zero or more digits and a
single non-digit character, with the exception of the %E element – see
below.

• The format element is decoded according to the rules in the table
below, and the resulting text is added to the output string.

• The special format element %% emits a %.

• In addition to ordinary characters and conversion specifications, certain
characters may be emitted by using a ‘backslash-escape-sequence’. To
emit a double-quote (") character, \" is used, and to emit a \
character, \\ is used.

• The optional size parameter to integer format specifiers defines the
field's width in bytes. Valid values are 1, 2, 4 or 8.

8.
1

62 Format Strings

Format Element Meaning

%offset@ Moves the cursor offset bytes into the data. This can be
used to extract values from multiple fields in a structure.

%[size]d Interpret the current item as a signed integer. Output the
value as signed decimal.

%[size]u Interpret the current item as an unsigned integer. Output
the value as unsigned decimal.

%[size]x Interpret the current item as unsigned integer. Output
the value as unsigned hexadecimal.

%[size]b Interpret the current item as an unsigned integer. Output
the value as unsigned binary.

%enum[:size]E Interpret the current item as an index into the
enumeration class whose ID is enum. Emit the text in
that enumeration class that corresponds with the item's
value.

The enumeration class should be defined using ENUM
directives. An exception is implicitly defined enum classes
98 and 99, which are startup and error codes
respectively.

%F Treat the current item as an IEEE double. Output the
value as a double, in exponent format if necessary.

%% No conversion is carried out; emit a %

%? Emit in the form of a hex dump.

8.2

Format Strings 63

8.2 Examples

Description Format String Example Notes

A native integer
displayed in decimal
and hexadecimal.

"%d 0x%x" 10 0xA The "0x" is not emitted by
the %x format specifier but
is specified in literal
characters in the string.

Absence of size specifier
means the target's int size is
assumed.

A single unsigned
byte representing a
percentage.

"%1u%%" 73% Use of size specifier of 1
byte.

Use of %% to emit %.

struct{
 int x;
 int y;
};

… On a 32-bit
processor.

"(%d,%4@%d)" (20,-15) Use of %offset@ to move
to byte-offset within the
structure.

A value of type enum
RAINBOW, using an
enum class (see
3.3.1)

"%1E" Yellow The number 1 refers the ID
of the enum class in the
ENUM directives, not to the
width of the field.

Index 65

Index

B
BooleanType.. 49

E
ENUM ... 62, 63

I
Int16Type .. 49

Int32Type .. 49

IntType .. 49

O
osTraceAlarmExpire ... 45

osTraceCategoriesType.. 50

osTraceClassesType ... 50

osTraceCounterTick... 44

osTraceError .. 47

osTraceEventClear ... 44

osTraceEventSet .. 43

osTraceEventWaitEnter.. 43

osTraceEventWaitExit .. 43

osTraceGetSystemTime.. 52

osTraceInfoType .. 50

osTraceInterruptAllDisable ... 46

osTraceInterruptAllEnable.. 46

osTraceInterruptAllResume .. 46

osTraceInterruptAllSuspend ... 46

osTraceInterruptOSResume.. 47

osTraceInterruptOSSuspend... 47

osTraceKindType ... 50

osTraceMessageReceive... 45

osTraceMessageSend .. 45

osTraceOSExit.. 23, 37

osTraceOSStart .. 23, 37

osTraceProcessEnd .. 41

osTraceProcessStart ... 41

osTraceResourceGet .. 44

osTraceResourceRelease .. 44

osTraceRunningTaskID... 53

osTraceScheduleEnter.. 41, 42

osTraceScheduleExit .. 42

osTraceSchedulerExit ... 38

osTraceSchedulerStart ... 38

osTraceTaskActivate .. 39

66 Index

osTraceTaskEnd... 39, 40

osTraceTaskSleep... 42

osTraceTaskStart.. 39, 40

osTraceTaskWake.. 43

osTraceTimeType... 50

U
UInt16Type.. 49

UInt32Type.. 49

UInt8Type.. 49

UIntType.. 49

Support 67

Support
For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

	RTA-TRACE OS Instrumenting Kit Manual
	Contact Details
	Copyright
	Contents

	About this Manual
	Who Should Read this Manual?
	Conventions

	Introduction
	Mechanisms
	Use
	Kit contents

	Trace Object Description
	Describing the Target System
	Outline of .rta File Format
	Declaration Section
	Sample .rta Implementation
	Information Section

	Trace Objects
	Object type OS
	Object type Trace
	Tasks, ISRs, Processes and Profiles - overview
	Object Type Task
	Object Type ISR2/ISR1/ISR0
	Object Type Process
	Object Type Profile
	Object Type Resource
	Object Type COUNTER
	Object Type ALARM
	Object Type MESSAGECONTAINER
	Object Type Tracepoint
	Task Tracepoints
	Object Type Interval
	Object Type CritExec

	Instrumentation Part 1 – macro API
	OS
	osTraceOSStart
	osTraceOSExit
	osTraceSchedulerEntry
	osTraceSchedulerExit

	Tasks/ISRs
	osTraceTaskActivate
	osTraceTaskStart
	osTraceTaskEnd
	osTraceCat1Start
	osTraceCat1End
	osTraceCat2Start
	osTraceCat2End
	osTraceProcessStart
	osTraceProcessEnd

	Task/ISR Switching API
	osTraceTaskSchedulerEntry
	osTraceTaskSchedulerExit
	osTraceInterruptHandlerEntry
	osTraceInterruptHandlerExit
	osTraceTaskSleep
	osTraceTaskWake

	Events
	osTraceEventWaitEntry
	osTraceEventWaitExit
	osTraceEventSet
	osTraceEventClear

	Resources
	osTraceResourceGet
	osTraceResourceRelease

	Alarms and Counters
	osTraceCounterTick
	osTraceAlarmExpire

	Messages
	osTraceMessageSend
	osTraceMessageReceive

	Interrupt manipulation
	osTraceInterruptAllDisable
	osTraceInterruptAllEnable
	osTraceInterruptAllSuspend
	osTraceInterruptAllResume
	osTraceInterruptOSSuspend
	osTraceInterruptOSResume

	Error reporting
	osTraceError

	Instrumentation Part 2 – support API
	Types used
	Target Configuration
	osTraceGetSystemTime
	osTraceRunningTaskID
	Interrupt manipulation macros
	Other API calls

	Instrumenting hints
	General hints
	Functional blocks
	Periodic events

	OS Instrumenting Kit Files
	RTapevnt.c
	RTapnd.c
	RTapnddt.c
	RTapndvl.c
	RTbef.c
	RTbreak.c
	RTbwcf.c
	RTctick.c
	RTcto.c
	RTdata.c
	RTfin.c
	RTsetrep.c
	RTsettrg.c
	RTsetwin.c
	RTstbt.c
	RTstfr.c
	RTstop.c
	RTsttt.c
	RTtrgsup.c
	RTwrrec.c

	Format Strings
	Rules
	Examples

	Index
	Support

