
RTA-TRACE
ECU Link Guide

Contact Details

ETAS Group
www.etasgroup.com

Germany
ETAS GmbH
Borsigstraße 14
70469 Stuttgart
Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106
www.etas.de

USA
ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103
Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49
www.etasinc.com

Japan
ETAS K.K.
Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan
Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956
www.etas.co.jp

France
ETAS S.A.S.
1, place des États-Unis
SILIC 307
94588 Rungis Cedex
Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51
www.etas.fr

Korea
ETAS Korea Co. Ltd.
3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul
Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120
www.etas.co.kr

Great Britain
ETAS UK Ltd.
Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ
Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67
www.etas-uk.net

 3

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2003, 2004 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TD00009-003

RTA-TRACE 5

Contents

1 About this Manual ... 11
1.1 Who Should Read this Manual? .. 11
1.2 Document Conventions .. 11

2 What is an ECU Link? ... 13
2.1 What is the Serial (RS232) ECU Link?... 13
2.2 What is the Debugger ECU Link? .. 14
2.3 Choosing a Configuration... 14
2.4 Configuring the RTA-TRACE Server ... 15

3 The Debugger ECU Link ... 17
3.1 Using a Supported Debugger .. 17

3.1.1 Retrieving Trace Data.. 17
3.2 Using an Unsupported Debugger .. 17

3.2.1 Extracting the Trace Buffer ... 17
3.2.2 Buffer style 1 (CrossView) ... 18
3.2.3 Buffer Style 2 (Lauterbach).. 18

3.3 Other uses .. 19
3.4 Configuring the RTA-TRACE Server ... 19

Contents 7

4 The Serial ECU Link .. 21
4.1.1 Insert calls to TraceCommInit() and
UploadTraceData() .. 21
4.1.2 Review Driver Code .. 21
4.1.3 Link against the appropriate ELL 21

4.2 Generalized Use.. 22
4.3 Efficiency Issues .. 22

4.3.1 Common Issues .. 23
4.3.2 Polling mode .. 23
4.3.3 Interrupt mode ... 24

4.4 Configuring the RTA-TRACE Server ... 25
4.5 Reference 1: Library functions ... 25

4.5.1 TraceCommInit... 25
4.5.2 CheckTraceOutput ... 25
4.5.3 UploadTraceData.. 25

4.6 Reference 2: User-supplied functions... 26
4.6.1 osTraceCommInitTarget.. 26
4.6.2 osTraceCommDataReady.. 26
4.6.3 osTraceCommTxBlock... 26
4.6.4 osTraceCommTxByte .. 27
4.6.5 osTraceCommTxEnd ... 27
4.6.6 osTraceCommTxReady.. 27
4.6.7 osTraceCommTxStart.. 27

4.7 The RTA-TRACE Serial Protocol.. 28
4.7.1 Optional frame protocol ... 28

5 Custom ECU Links.. 31
5.1 Target ELL ... 31

5.1.1 UploadTraceData.. 31
5.2 Server DLL... 32

5.2.1 General .. 32
5.2.2 CommIdentify .. 33
5.2.3 CommBind ... 33
5.2.4 CommUnbind... 34
5.2.5 CommConnect... 34
5.2.6 CommDisconnect ... 35
5.2.7 CommOpen ... 35
5.2.8 CommClose ... 36

8 Contents

5.2.9 CommListen ... 36
5.2.10 CommStatus .. 38
5.2.11 CommConfigure .. 38
5.2.12 CommGetConfig.. 39
5.2.13 CommGetConfigOptions.. 40
5.2.14 CommSetConfigOptions... 41
5.2.15 CommRegisterDiagCallback.. 42

Contents 9

1.1

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably enhanced application or operating system, it provides the
embedded application developer with a unique set of services to assist in
debugging and testing. Foremost amongst these is the ability to see exactly
what is happening in a system at runtime with a production build of the
application software.

This manual explains how to get trace data from the target hardware to the
PC running RTA-TRACE. It covers the supplied byte- and block- serial
communication libraries, implementing a custom communication layer, and
running RTA-TRACE without a communication layer, using a debugger to
retrieve the trace data.

This manual does not explain how to instrument application code or build the
target application with tracing enabled. For this you should consult either the
RTA-TRACE Getting Started Guide or the RTA-TRACE User Manual.

1.1 Who Should Read this Manual?

The RTA-TRACE ECU Link Guide is for the software engineer who has an
application running on target hardware with tracing enabled, and who:

• wishes to transfer trace data to the host PC using one of the supplied
Server Plug-ins;

• wishes to implement a custom ECU Link

It does not cover enabling tracing within the target application. For this, refer
to the RTA-TRACE Getting Started Guide.

The reader should be familiar with C programming concepts for embedded
systems and their chosen target, build environment and debugger.

1.2 Document Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

Program code, header file names, C type names, C functions and API call
names appear in the courier typeface. When the name of an object is
made available to the programmer the name also appears in the courier
typeface, so, for example, a task named Task1 appears as a task handle called
Task1.

About this Manual 11

1.
2

Courier oblique is used for placeholders where the user should
substitute relevant text, e.g. RTserxxx refers to both RTserbyt and
RTserblk libraries.

When interaction with GUI elements is described, the elements' captions are
shown in bold. Navigation of a hierarchy, such as a menu structure, is shown
by separating the levels with a chevron, e.g. "Choose the Edit > Select All
Menu item." Or "Choose Edit > Select All".

12 About this Manual

2.1

2 What is an ECU Link?

RTA-TRACE requires an ECU Link to transfer data from the target to the RTA-
TRACE Server. The ECU Link can be implemented by any suitable hardware
available on the application hardware. The general layering of the
communications architecture is illustrated below:

Application

OS/Tracing core

ECU Link layer
(CLL)

Device driver

Server core
+ visualizer

OS DLL

ECU Link DLL

Device driver
(part of PC OS)

Communication hardware

Visualizer shows application trace data

Trace records are OS specific

Decode/unpack data frames

Software to control the physical hardware

Physical connection

In this reference model, the target code consists of two elements and the
server code consists of one. The target's ECU Link Layer (ELL) and the server's
ECU Link DLL encapsulate a common encoding/decoding scheme (for example
inserting and removing frame delimiters and escaping certain characters). The
ELL should be written in a target-independent manner and the Driver layer
beneath it would then tie it to some specific hardware.

In practice, it may be that both link layer and device driver get written
together as a single module of code. Whilst this may make it easier to write
the first edition of the combined ELL & Driver, subsequent migration of the
code to other platforms may be made much more difficult.

Supplied with RTA-TRACE are two example ECU Link technologies – Serial
(RS232), and Debugger.

2.1 What is the Serial (RS232) ECU Link?

The Serial ECU Link provided with RTA-TRACE provides the quickest way to
get running for many applications. It comprises an ECU Link DLL (RS232) for
the RTA-TRACE Server and a choice of ELL for the target hardware. The target
libraries and Server DLL encapsulate a framing and escaping protocol suitable
for transmitting trace data over a serial line.

The Serial ECU Link DLL connects to any hardware driver presenting itself as a
COM port on the host PC. The RTA-TRACE server plug-in allows the baud rate
and COM port to be configured to support the best data rate for the target
hardware and connection medium. The COM port does not necessarily have
to be a conventional RS232 line: for example, a USB Bluetooth transceiver that
presents itself in Windows as a COM port would also be usable with the DLL.

What is an ECU Link? 13

2.
2

The ELL libraries for the target hardware implement various functions which
must be invoked by the application. The libraries also expect a device-driver to
have been implemented which corresponds to the interface described in 4.6.

RTA-TRACE includes Driver source code for a reference target which may
need to be tailored to meet specific target requirements.

Further details can be found in Section 4.

2.2 What is the Debugger ECU Link?

The user may select an In-Circuit Debugger (ICD) to extract trace data. The ELL
and device driver functionality for the debugger ECU Link is provided by a set
of debugger macros, rather than target code; this saves compiling and linking
code to drive the communications hardware, and may be the only option if
the target board has no native ECU Link.

Using the debugger can have advantages in certain applications: there is a
reduced impact on the CPU time available to the application because trace
data is transmitted while the CPU is stopped. However, stopping the CPU
alters its behavior with respect to the outside world: interactions with
peripheral devices, timers, or other devices connected via I/O may be adversely
affected.

The Server plug-in reads trace data from the hard drive for display by the
Client. A debugger macro must be written to extract the contents of the
trace-buffer and write the data to a suitably named file. For certain
combinations of operating system and debugger, these macros are provided
by LiveDevices.

Further details can be found in section 3.

2.3 Choosing a Configuration

The most suitable ECU Link for a particular application will vary based on
responsiveness, the volume of trace-data, and various other factors. In
addition to the two ECU Links described above, it is also possible to create a
custom ECU Link, with a corresponding increase in workload for the
developers involved.

The available components are tabulated below:

DLL ELL Driver

DebugDump None (Use Debugger) Reference

RS232 Byte-serial/Block-serial Reference/Custom

Custom Byte-serial/Block-serial Custom

Custom Custom Custom

Additional supported connections may be available separately for RTA-TRACE
– contact LiveDevices for details of availability. This guide provides useful

14 What is an ECU Link?

2.4

background information for users of other ECU Links, but complete
information for other links will be found in the respective documentation.

Information relevant to implementing a custom ELL/DLL can be found in
section 5.

2.4 Configuring the RTA-TRACE Server

ECU Link DLLs appear as ‘OS-ECU Link’ choices in the RTA-TRACE Client
connection setup dialogue – the Serial ECU Link appears as ‘OS-RS232’, e.g.
"ERCOSek-RS232".

What is an ECU Link? 15

3.1

3 The Debugger ECU Link

The Debugger ECU Link uses disk files to transfer data between target and
Server.

Note: For optimal performance RTA-TRACE Server should be running on the
same computer as the debugger, since both the debugger and Server require
access to the same directory in order to transfer data.

3.1 Using a Supported Debugger

LiveDevices supplies scripts for supported debuggers to automate the process
of extracting trace data and transferring it ultimately to the Client. This section
outlines their use.

Currently, Lauterbach and Crossview debuggers are supported.

3.1.1 Retrieving Trace Data

The debugger scripts convert the trace data captured on the target board into
text files. These are written into the directory containing the Run-time
Interface (.rtp, .rta, .ort) file describing the target application to RTA-
TRACE.

Once the macros have been installed in the debugger session, and the target
is running, text files will be written to the cgen directory which the RTA-
TRACE Server will read and then delete.

Upon starting a new connection in the RTA-TRACE Client, choose the ‘xxx-
Debugger’ Interface. Locate the run-time interface file that was built with
your application and the client will start.

RTA-TRACE Server then monitors the directory containing the run-time
interface file for files dropped by the supplied debugger scripts and passes the
contents to the Client for display.

3.2 Using an Unsupported Debugger

When using ‘xxx-Debugger’ Interface as the ECU Link Interface, RTA-TRACE
Server monitors the directory containing the run-time interface file for files
dropped by the debugger, and passes the contents to the Client for display.

The transformation from the application’s trace buffer to files suitable for
RTA-TRACE Server is described below.

3.2.1 Extracting the Trace Buffer

At the target, the trace data is stored in the array osTraceBuffer[]. This
is a circular buffer and the start position is pointed to by
osTraceBufferDataStart (the end of the data being given by

The Debugger ECU Link 17

3.
2

osTraceBufferWrPtr). In order to stop the target application when the
trace buffer fills, it is necessary to place a breakpoint at the location indicated
by the label osTraceBreakLabel – it is necessary to then execute a
debugger macro to generate a text-file containing the trace buffer data.

3.2.2 Buffer style 1 (CrossView)

One form of the text file to be generated is as follows:

osTraceBufferDataStart = <ds_addr>
osTraceBufferWrPtr = <wp_address>
<ds_addr> = <dump of data as 4 32bit values>
<ds_addr+4>= <dump of data as 4 32bit values>
…
…

The generated text file should be given the name tracebuffern.txt
where n indicates the sequence number of the file.

For example, filename tracebuffer0.txt:
osTraceBufferDataStart = 0xd00002fc
osTraceBufferWrPtr = 0xd00002fc
0xd00002fc = 0 1704591476 3692928 1501587013
0xd000030c = 1740244481 100882816 1501587619 1789986308
…
…

3.2.3 Buffer Style 2 (Lauterbach)

The other supported text-file format is as follows:
B::v.v %symbol osTraceBufferDataStart osTraceBufferWrPtr
&osTraceBuffer[0] %tree.open osTraceBuffer
**osTraceBufferDataStart = <ds_addr> * osTraceBuffer[0]
**osTraceBufferWrPtr = <wp_address> * osTraceBuffer[100]+0x2
**&osTraceBuffer[0] = <buff_addr> * osTraceBuffer[0]
**osTraceBuffer = (
 1,
 1946157056,
 26857216,
 1,
 1946157056,
 56348416,
 2,
 1946157056,
 67489536,
 2,
…
)

The generated text file should be given the name tracebuffer0xn.txt
where n indicates the sequence number of the file in hexadecimal.

18 The Debugger ECU Link

3.3

For example, filename tracebuffer0x0.txt:

B::v.v %symbol osTraceBufferDataStart osTraceBufferWrPtr
&osTraceBuffer[0] %tree.open osTraceBuffer
**osTraceBufferDataStart = 0x00FF7350 * osTraceBuffer[0]
**osTraceBufferWrPtr = 0x00FF74E2 * osTraceBuffer[100]+0x2
**&osTraceBuffer[0] = 0x00FF7350 * osTraceBuffer[0]
**osTraceBuffer = (
 1,
 1946157056,
 26857216,
 1,
 1946157056,
 56348416,
 2,
 1946157056,
 67489536,
 2,
…
)

3.3 Other uses

The Debugger ECU Link may also be used in the case where a custom ELL is
being implemented on the target and the burden of writing a DLL wants to be
avoided. As an example, an ECU Link that transmits Ethernet frames may have
been written. Ordinarily, a DLL would need to be written that will decode the
Ethernet frames and pass them on to the OS DLL. Instead, a standalone
executable could be written that receives Ethernet frames and writes files in
the prescribed debugger format (see 3.2) – the Debugger DLL will then be
able to decode the trace data.

3.4 Configuring the RTA-TRACE Server

The Debugger ECU Link requires no server configuration.

The Debugger ECU Link 19

3.4

4 The Serial ECU Link

In order to use the Serial ECU Link, target code needs to be modified. The
basic steps are as follows:

• Insert calls to TraceCommInit(), UploadTraceData() , and
CheckTraceOutput() in the application

• Review the driver code (supplied as source)

• Link against the RTserbyt (or RTserblk) library

4.1.1 Insert calls to TraceCommInit() and UploadTraceData()

TraceCommInit() should be called as part of target initialization (i.e.
before the operating system is started). In turn, it will call
osTraceCommInitTarget() (see below).

This function is provided in the ELL. The prototype for the function is found in
the header file RTserial.h.

Note: In RTA-OSEK, if the ECU Link is being autostarted there is no need to
make a call to TraceCommInit().

UploadTraceData() is responsible for transferring the records in the trace
buffer to the communications hardware via the device-driver layer. Each call to
UploadTraceData() may cause data to be emitted from the
communications device.

UploadTraceData() should be called regularly from the lowest-priority
task that does not get starved of CPU time; if it is called from too high a
priority, it may affect system behavior.

4.1.2 Review Driver Code

The target-specific portion of the RS232 target code is supplied as source
code. It is likely that you will want to make changes to some parts of the
code. You should review the code paying special attention to the following:

• osTraceCommInitTarget() sets up the desired serial port with a
suitable baud rate.

• osTraceCommTxByte() puts a single byte into the port's transmit
register.

• osTraceCommTxReady() returns a BooleanType to indicate
whether the hardware is ready to receive another byte for transmission

4.1.3 Link against the appropriate ELL

As supplied, the RS232 ECU Link is used with the byte-serial library
(RTserbyt) which contains the UploadTraceData() function responsible
for framing the trace data and calling osTraceCommTxByte() to transmit

The Serial ECU Link 21

4.
2

the resulting sequence of bytes. Note that this should be linked in addition to
the RTA-TRACE core library.

4.2 Generalized Use

The target software is flexible in its application. It supports interrupt-based
handling of the I/O device, supports block-serial devices such as a buffered
serial module, and is not limited to driving the serial port. Any medium is
suitable if it can cause the host computer to receive data on a COM port (e.g.
a Bluetooth device with a suitable driver).
Once your transmission medium is selected, the first question is whether you
would prefer to work a byte at a time or in blocks of data. Working in byte-
serial mode can mean a simpler development process on unfamiliar hardware,
and may often result in good-enough performance. Block-serial mode will
allow you to exploit any built-in buffering in your I/O peripheral for efficient
implementation of the ECU Link.

Once this decision is made, you must implement the following functions:

• osTraceCommInitTarget(), to set up the I/O peripheral for
transmitting, and set osTracePacketMax to the maximum packet
size that can be carried by the ECU Link.

• osTraceCommTxByte() for byte-serial mode or
osTraceCommTxBlock() for block-serial mode, to place a byte or
block of data into the I/O peripheral's transmit buffer,

• osTraceCommTxReady() to test whether the I/O peripheral is ready
to accept another transmission unit.

Optionally the following functions may be required:

• osTraceCommTxStart() to perform any actions required at the
start of a transmission - such as enabling a transmit interrupt,

• osTraceTxEnd()to perform any actions required at the end of a
transmission - such as disabling a transmit interrupt

More detail on all the library functions and user-supplied functions can be
found in Sections 4.5 and 4.6.

4.3 Efficiency Issues

When instrumenting code to measure timing characteristics, it must be borne
in mind that the measuring activity takes up time that would otherwise be
available to the application. In a high-utilization situation care may be
necessary to successfully trace an application without missing additional
deadlines.

The RTA-TRACE Serial ECU Link can operate in either interrupt or polling
mode. Interrupt mode prioritizes communication at the expense of the
application's timing characteristics, whilst polling mode prioritizes the
application's timing behavior at the possible risk of some loss of trace data. In
general it is recommended to use polling mode and if necessary set target-
side triggers and filters to generate a smaller volume of data.

22 The Serial ECU Link

4.3

4.3.1 Common Issues

Except when using the Debugger ECU Link, target code must periodically call
UploadTraceData(). This function results in at most one unit (byte or
block) of data being transmitted, so should be called sufficiently often to
prevent trace buffer overflow. There is a balance to be struck between this
and the requirement that it should not interfere with the normal operation of
the software. It may be best to place a single call to UploadTraceData()
in the lowest-priority task that gets sufficient share of the CPU, or it may be
better to distribute calls between a background task and a higher-priority task
that is intermittent or "bursty".

If RTA-TRACE is in free-running mode, the buffer will be uploaded when full –
in order to upload data ahead of this (in an attempt to prevent the buffer
becoming full, and hence losing data), the application may call
CheckTraceOutput() regularly. If this is not called in a timely fashion,
UploadTraceData() will not transmit any data, and RTA-TRACE will fill up
the trace buffer then suspend tracing until CheckTraceOutput() is called
when the buffer becomes full. CheckTraceOutput() has a short
execution time so there is no significant overhead on the application if it gets
called more frequently than strictly necessary – especially if it is being called
from within an idle loop.

4.3.2 Polling mode

Polling mode is suitable for use with all trace modes and the byte-serial or
block-serial communications library.

Note: With the core in Free Running mode, tracing continues while trace data
is being transmitted to the host, so care must be taken to avoid affecting the
runtime characteristics of the application.

In polling mode, calls to UploadTraceData() (and, if applicable,
CheckTraceOutput()) are needed to cause each byte to be transmitted.

If there is data waiting, UploadTraceData() attempts to queue the byte
for sending:

• The byte-serial library calls the user-supplied function
osTraceCommTxReady() to check whether the serial interface can
accept a character. If so, then it calls osTraceTxByte() with the
byte to transmit passed as the parameter.

• The block-serial version places the byte into the block buffer and calls
osTraceCommTxReady() when it is full. If the hardware is ready to
accept a buffer, osTraceTxBlock() is called with the number of
valid bytes in the buffer.

The Serial ECU Link 23

4.
3

A typical background loop might look like this:

TASK(tskIdle)
{
 for(;;) {
 /* Check whether trace data is ready. Only
needed if core is in free-running mode */
 CheckTraceOutput();

 /* perhaps output a character */
 UploadTraceData();
 }
}

Note: in order for data to be sent, it is important that the task responsible for
calling CheckTraceOutput() and UploadTraceData() is not starved of
CPU time – it may be necessary to call this function from a task which is not
actually the lowest priority.

4.3.3 Interrupt mode

Using the byte-serial library, trace-data throughput can be optimized by using
a user-supplied function and the serial module's 'Transmit Complete' interrupt
to trigger transmission of a byte of data. This way, no call to
UploadTraceData() is needed in the idle loop, and the transmission
hardware is occupied as efficiently as possible.

Note: Since this may significantly affect the timing behavior of the system, it is
not recommended to use interrupt transmission in free-running mode. In
bursting and triggered modes, transmission takes place after trace recording
has stopped. In free-running mode, RTA-TRACE may be recording the
behavior of the system during transmission of trace data.

When trace data is ready for transmission in Bursting or Triggered mode, RTA-
TRACE calls the user-supplied function osTraceCommDataReady() (see
4.6.2). This must call UploadTraceData() to start the transmission of the
trace data.

When transmission begins and ends, RTA-TRACE calls
osTraceCommTxStart(), and osTraceCommTxEnd() respectively (see
4.6.5 and 4.6.7 for details). Implement these to enable and disable the serial
port's transmission-complete interrupt.

Finally, implement the interrupt handler. It should call
UploadTraceData() to transmit the next data byte.

24 The Serial ECU Link

4.4

4.4 Configuring the RTA-TRACE Server

ECU Link DLLs appear as ‘OS-ECU Link’ choices in the RTA-TRACE Client
connection setup dialogue – the Serial ECU Link appears as ‘OS-RS232’, e.g.
"ERCOSek-RS232".

There are two ways to set up the baud rate and COM port for the Serial ECU
Link: directly in the server, or "remotely" through the client. For either
method you must have a Client-to-Server RS232 connection active.

• Server Method: Right-click the RTA-TRACE Server icon in the System
Tray. Click the Properties menu item and choose the relevant
operatingsystem-RS232 menu item. Changes to the settings take
effect when you click OK to close the dialog box.

• Client Method: Choose File > Configure Connection… . A dialog
appears showing the configurable options. Changes take effect when
the OK button is clicked.

4.5 Reference 1: Library functions

4.5.1 TraceCommInit

osTraceStatusType TraceCommInit(void)

This function needs to be called at initialization time in order to initialize the
trace library. It, in turn, makes a call to the user-supplied function
osTraceCommInitTarget() defined below. The return value indicates the
any error that occurred during the initialization process, including any errors
from the call to osTraceCommInitTarget().

4.5.2 CheckTraceOutput

void CheckTraceOutput(void)

This function checks the availability of trace data; it is not necessary to call this
function when the core is in Bursting or Triggered mode, although it is not
harmful to do so.

4.5.3 UploadTraceData

void UploadTraceData(void)

This function is responsible for sending individual bytes of trace data over the
Serial ECU Link. It interacts with the hardware via the user-supplied functions
defined below.

In polled mode, it is necessary to call this function frequently enough to
ensure data is transmitted in a timely manner. As a special case, in interrupt
mode using the byte-serial library, this function should be called from the
user-supplied function osTraceCommDataReady() and the transmit-
interrupt handler.

The Serial ECU Link 25

4.
6

4.6 Reference 2: User-supplied functions

The following functions must be written for your specific hardware and linked
with the trace-enabled application. Their prototypes are in the C-header file
RTserial.h.

When using interrupt mode, it is also necessary to write a transmit-interrupt
handler which calls UploadTraceData().

4.6.1 osTraceCommInitTarget

osTraceStatusType osTraceCommInitTarget(void) (mandatory)

In this function you must set up the ECU Link hardware – bit rate, stop bits,
data bits, etc. – and must set the variable osTracePacketMax. The server
RS232 plug-in is expecting serial data as follows: 8 data bits, no parity, and 1
stop bit ("8n1").

If you wish to use interrupt mode, you should initialize, but not enable, the
UART's "transmit complete" interrupt here.

If an error occurs during this function, it should be returned – it will in turn be
returned to the caller of TraceCommInit().

4.6.2 osTraceCommDataReady

void osTraceCommDataReady(void) (optional)

If you implement this function, it will be called when trace data is ready to
transmit.

It is especially useful in interrupt mode with the byte-serial library to make the
first call to UploadTraceData(). Because data is ready to send, this results
in a call to osTraceCommTxStart(), and the first byte of the trace data
being passed to osTraceTxByte(). The transmit interrupt handler also
contains a call to UploadTraceData(), causing subsequent bytes of data
to be transmitted.

In polling mode, or when linked against the block-serial library, this function is
less likely to be useful and need not be implemented.

4.6.3 osTraceCommTxBlock

void osTraceCommTxBlock(UIntType nbytes) (mandated by block-
serial library)

This is called when the serial ECU Link is ready to transmit a block of data:
either the block is full or the end of the waiting data has been reached. The
number of valid bytes is given by nbytes, which will never exceed the value
given in osTraceBlockSize. You must ensure that only the valid bytes are
transmitted as the rest of the buffer may contain frame-start markers which
would result in corrupted data on the server.

26 The Serial ECU Link

4.6

Note: The function must not block. The serial ECU Link libraries call
osTraceCommReady() to check whether the hardware is ready to accept
data so this function will not be called unless user-supplied code has indicated
it is able to transmit a data block.

The data block to be transmitted will be placed in the array
 ByteType osTraceBlockBuffer[].

4.6.4 osTraceCommTxByte

void osTraceCommTxByte(const ByteType c) (mandated by byte-
serial library)

This function is responsible for transmitting the single byte c over the ECU
Link.

Note: The function must not block. The serial ECU Link libraries call
osTraceCommReady() to check whether the hardware is ready to accept
data so this function will not be called unless user-supplied code has indicated
it can take a byte.

4.6.5 osTraceCommTxEnd

void osTraceCommTxEnd(void) (optional)

This function is called at the end of a batch of trace data. In interrupt mode
(see 4.3.3) this may be used to disable the serial transmit interrupt.

Note: The function must not block.

4.6.6 osTraceCommTxReady

BooleanType osTraceCommTxReady(void) (mandatory)

This function is required to check whether the serial transmit buffer is
available. If the transmit buffer is able to accept a byte or block (depending on
selected library), the function returns a non-zero (TRUE) value.

For interrupt operation, this function can have an empty body.

Note: The function must not block.

4.6.7 osTraceCommTxStart

void osTraceCommTxStart(void) (optional)

This function is called at the start of a batch of trace data. In interrupt mode
(see 4.3.3) this may be used to enable the serial transmit interrupt.

The Serial ECU Link 27

4.
7

Note: The function must not block.

4.7 The RTA-TRACE Serial Protocol

Trace record Data is transmitted between target and Server in frames.

A frame contains a single leading identifier byte followed by up to
osTracePacketMax1 bytes of data.

The identifier byte is split into two 4-bit nibbles:

• The high nibble is used to identify the frame type, and can take values
0 to 14.Value 0 represents trace data.

• The low nibble is used to indicate the size of the individual records
which make up the frame. The size of each record (1 to 16 bytes with
0 representing 16) is stored in the nibble. This is of particular use with
trace data, because the width of a trace record is determined at build-
time by configuration options.

The following optional frame protocol (OFP) is specified to cope with such
cases. Its use is not mandatory, but will simplify code re-use at both target
and PC.

4.7.1 Optional frame protocol

The block- and byte- serial target libraries implement a simple framing
protocol. In ideal situations (i.e. with a packet-oriented ECU Link such as raw
Ethernet or UDP) the output driver can simply transmit one frame at a time
and not have to worry about issues such as signaling the start and end of a
frame.

This is not possible for byte-oriented media such as RS232, or media such as
CAN where the packet size is small.

An OFP frame comprises:

1. Start of frame marker byte (0xFE).

2. Frame identifier byte as described earlier.

3. Frame data, taken to be a sequence of unsigned chars. The
‘unescaped’ size is limited to osTracePacketMax

Any data values >= 0xFE that occur in the data are transmitted with a
postfixed 0xFF escape character. (i.e. 0xFE is transmitted as 0xFE
0xFF; 0xFF is transmitted as 0xFF 0xFF, neither of which can be
misinterpreted as a start or end of frame).

4. End of frame marker (0xFE 0xFE).

Note that even if a receiver starts listening part-way through the OFP frame,
no false ‘start of frames’ are possible. No checksums, CRCs or length fields are

1 The value of osTracePacketMax depends on the ECU Link characteristics. It is initialized
during TraceCommInit() via a callout to media-specific user code (contained in
osTraceCommInitTarget()).

28 The Serial ECU Link

4.7

included because it is assumed (required) that loss of data on reception will be
identifiable by the receiver.

The Serial ECU Link 29

5.1

5 Custom ECU Links

If the Serial or Debugger ECU Links are not suitable, it is possible to write a
custom ECU Link. LiveDevices intends to release new ECU Link products as
part of the continual product improvement process, as well as offering
consultancy services to aid in authoring custom ECU Links.

5.1 Target ELL

An ELL is only required to implement a single function:
UploadTraceData().

5.1.1 UploadTraceData

void UploadTraceData(void)

This function is responsible for translating the raw trace buffer data into a
form suitable for transmission via a device driver. If interaction with an existing
RTA-TRACE device driver is required, then the interface functions described in
4.6 should be followed; however this is not mandatory.

Information about the trace buffer is contained in objects called trace
descriptors. Trace descriptors are held in an array
(osTraceOutputDescriptors), with element 0 being used for describing
data to upload. A trace descriptor is defined as the following C structure:

typedef struct {
 ByteType *ptr; /* pointer to data */
 UIntType count; /* bytes in data */
 ByteType id_byte; /* size of 1 record */
 osTraceODState state; /* descriptor state */
}osTraceOutputDescriptor;

Where osTraceODState is defined as the following enumerated type:

typedef enum {
 osTraceODEmpty,
 osTraceODComplete,
 osTraceODReadyToTransmit,
 osTraceODBeforeIDByte,
 osTraceODInContent,
 osTraceODNeedEscapeChar,
 osTraceODFinal
}osTraceODState;

When UploadTraceData() is called it needs to check the state of the
output desriptors (in the array osTraceOutputDescriptors[]) to check

Custom ECU Links 31

5.
2

whether it contains data which is ready to transmit. This is indicated by the
state field being equal to osTraceODReadyToTransmit. If there is data
ready, then it is the responsibility of UploadTraceData() to run a state
machine out that will result in the data being transmitted.

In the supplied libraries, each pass through UploadTraceData() has a
short execution time – rather than simply transmitting all of the data in a
single burst, data is trickled out so as to have minimal impact on the running
system. Once all of the data has been transmitted, the state field must be set
to osTraceODFinal. This will be detected by the tracing core at the next
call to CheckTraceOutput(), and more data may be made available.

If the ELL is being implemented over a technology which supports large
packets of data (such as Ethernet), the value of osTracePacketMax set in
osTraceCommInitTarget() will need to reflect this (so, for Ethernet, this
may be set to 1536 rather than 65535). The size of the data block passed to
the ELL will not exceed this size.

5.2 Server DLL

An ECU Link DLL is a Win32 DLL; it is required to decode any framing scheme
implemented by the target ELL and to conform to a certain API (described
below) that the RTA-TRACE Server expects.

Note: The DLL file name must take the form ’rtc*.dll’.

Once the DLL has been built, it should be copied into the same directory as
the RTA-TRACE Server executable – the next time the RTA-TRACE Server
starts, it will recognize the DLL and be able to use it for communication.

If required, LiveDevices offer consultancy services to assist with the creation of
custom communications DLLs.

5.2.1 General

Other than via CommConfigure() and CommStatus() below, an ECU Link
DLL has no visual component and may not generate dialogs or windows that
require user intervention. ECU Link DLLs can be written in any suitable
language, provided that they are able to conform to the calling convention
specified here, and support the functionality of the required API calls.

API calls provided by the DLL are exported using the C calling convention.

e.g. In C++ Builder and Visual C++, an exported function ‘foo’ is declared
using the following form:

extern "C" __declspec(dllexport) int foo(int bar)

32 Custom ECU Links

5.2

This causes the function to be exported with the name _foo2.

For the purposes of this document the word EXPORT is used to represent this
behavior.

Data types, constants and function prototypes are supplied in the file
rtcDLLInterface.h, which must be used when building an ECU Link DLL.

The RTA-TRACE Server detects the presence of an ECU Link DLL by following
the steps below:

1. It looks for files name rtc*.dll in the installation directory.

2. For each such DLL, it looks for the existence of all the required API
calls.

3. For each conformant DLL, the DLL is registered and available for use.

5.2.2 CommIdentify

Prototype EXPORT const char * CommIdentify(void)

Description This function returns an ASCIIZ string that identifies the
support provided by the DLL e.g. "RS232”. The string
returned occupies statically assigned memory owned by the
DLL.

5.2.3 CommBind

Prototype EXPORT const void * CommBind(

 const char *name)

Parameters name is the ASCIIZ name of the OS DLL.

Description As shown in the diagram in section 2, an OS DLL connects to
a target via an ECU Link DLL. This call tells an ECU Link DLL
about each OS DLL that is trying to bind to it.

The ECU Link DLL, if possible, creates an internal ‘instance’ of
an object that binds to the specific OS DLL. A handle is
returned to the caller that can be used to reference this
specific OS/ECU Link instance. The OS/ECU Link instance
handle is subsequently used by many other API calls, detailed
below.

An ECU Link DLL can expect to create an OS/ECU Link
instance for each OS type supported on the system.

If the DLL cannot bind to the OS DLL, it returns NULL.

2 It may be necessary to call the function _foo() with VC++.

Custom ECU Links 33

5.
2

5.2.4 CommUnbind

Prototype EXPORT void CommUnbind(

 const void *h)

Parameters h is an instance of the OS/ECU Link pair, returned from the
previous call to CommBind().

Description This instructs the DLL to free up any resources related to the
bound OS/ECU Link instance. It is called as the ECU Link DLL
is being unloaded.

5.2.5 CommConnect

Prototype EXPORT const void *CommConnect(

 const void *h,

 const char *f,

 const rtcInfo *i)

Parameters h is the OS/ECU Link instance handle.

f is an ASCIIZ string that gives the address of the OS
configuration file currently selected. Its only valid use is to
derive a ‘working directory’ for links such as debugger
interfaces or situations where the directory contains other
link-specific files.

i is a pointer to a data structure that describes the low-level
characteristics that apply to the data received from the
target. It is used by the DLL to unpack trace data byte-
streams into ‘who’, ‘what’ and ‘when’ fields. It contains the
following fields:

 IntSize The size of an ‘int’ on the target, in bytes

 TimeSize; The number of bytes in the ‘when’ field of
the trace data

 IDSize; The number of bytes in the ‘who’ field of
the trace data

 InfoSize; The number of bytes in the ‘what’ field of
the trace data

 MaxAbsTime; The maximum value of ‘when’ that can be
recorded on the target

 BigEndian; Non-zero if the target data is big-endian.

34 Custom ECU Links

5.2

Description An ECU Link DLL may be able to support several different
independent physical links (‘channels’) at a time. e.g. COM1
and COM2. An OS DLL performs a ‘connect’ operation to
open each new communications channel.

The DLL must if possible create a channel instance that will
deal with the connection. A handle for the instance is
returned, used by subsequent API calls that require a channel
handle.

If the connection cannot be made, NULL is returned.

5.2.6 CommDisconnect

Prototype EXPORT void CommDisconnect(

 const void *h,

 const void *chan)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

Description CommDisconnect() is called when a channel is no longer
needed.

The DLL deletes the channel instance identified by chan and
any references to it. Any communications resources
belonging to the channel are released.

5.2.7 CommOpen

Prototype EXPORT BOOL CommOpen(

 const void *h,

 const void *chan,

 const char *conf)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

conf is an ASCIIZ string containing the configuration
information to be applied to the connection. It is in the same
format as that expected by CommSetConfigOptions(),
being derived from previously set defaults or a previous
CommGetConfig(). The string may be empty, in which
case appropriate defaults should be taken.

Description CommOpen is called to instruct the DLL to open the physical
link to the target, in preparation for receiving and decoding

Custom ECU Links 35

5.
2

trace data.

The call returns TRUE if the physical link was opened
successfully.

5.2.8 CommClose

Prototype EXPORT void CommClose(

 const void *h,

 const void *chan)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

Description CommClose() is called when the physical link can be closed
because no further trace data collection is required.

The DLL releases any resources claimed during the
corresponding CommOpen().

5.2.9 CommListen

Prototype EXPORT void CommListen(

 const void *h,

 const void *chan,

 CommTraceCallback cb,

 const void *inst,

 const void *prj,

 BOOL *finished)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

inst is a value private to the calling OS DLL that must be
passed back to it as the first parameter of the callback
function above.

prj is a value private to the calling OS DLL that must be
passed back to it as the second parameter of the callback
function above.

finished is a pointer to a flag that gets ‘set’ to indicate
that tracing is no longer needed and that the call can
terminate.

cb is a pointer to a callback function that is called to send
the trace data records up to the OS DLL. The function is

36 Custom ECU Links

5.2

described by:

typedef BOOL (*CommTraceCallback)(const
void *inst, const void *prj, const rtcData
*d, int num);

The trace data records are passed as an array with length
num and type rtcData. This type contains the following
fields:

 when A timestamp for this event.

 what The type of event.

 who The subject of the event.

Description When a trace client requests trace data from a selected
target that is not already supplying trace data, RTA-TRACE
Server creates a new thread and calls the OS DLL’s
ActivateTrace() function. This in turn calls the ECU Link
DLL’s CommListen() function.

The ECU Link DLL is now responsible for gathering trace
records from the target, repackaging them into raw ‘who’ ,
‘what’ and ‘when’ form and passing them via a callback
function to the OS DLL for decoding.

The DLL remains in the CommListen() function feeding
data up the line the ‘finished’ flag becomes non-zero, or an
error occurs.

If the DLL detects that trace data sent from the target has
been lost, it signals this to the OS DLL by passing a record
through the callback with zero values for ‘who’, ‘what’ and
‘when’. It must then stop uploading trace data until it has re-
established reliable communication.

The raw data received from the target is decoded based on
the field sizes and endianness indicated in the rtcInfo
data specified during CommConnect().

Note: swapping of byte order must be performed
for all big-endian targets.

Custom ECU Links 37

5.
2

5.2.10 CommStatus

Prototype EXPORT void CommStatus(

 const void *h)

Parameters h is the OS/ECU Link instance handle.

Description ECU Link DLLs must provide a simple modeless dialog that
shows the state of the specified OS/ECU Link instance. Each
instance may be supporting zero, one or more active
connections.

As a minimum, the number of active connections, the rate of
data transfer and the tracing state is shown.

Diagnostic text should also be available to help resolve
communication issues.

This data should be updated automatically.

Only one instance of the status dialog is allowed at a time,
regardless of the number of times that CommStatus() is
called.

The status dialog closes when the DLL closes, or when closed
by the user.

5.2.11 CommConfigure

Prototype EXPORT void CommConfigure(

 const void *h)

Parameters h is the OS/ECU Link instance handle.

Description ECU Link DLLs may require some user-configuration to tailor
their operation to a particular system. (e.g. baud-rate
selection).

A DLL must implement a modal configuration dialog (even if
it says ‘nothing to configure’), that gets run when
CommConfigure() is called. In the general case, there will
be a ‘default’ configuration setting, plus the option to
reconfigure ‘live’ any active connections.

The DLL must show its configuration dialog and use the
registry to store the resulting configuration settings before
returning from this call.

38 Custom ECU Links

5.2

5.2.12 CommGetConfig

Prototype EXPORT const char *CommGetConfig(

 const void *h,

 const void *chan)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

Description This call is used by RTA-TRACE Server to determine the active
configuration information for a specific active OS/ECU Link
instance. This information can be passed to a remote RTA-
TRACE client.

The OS DLL instructs the ECU Link DLL to return the current
configuration data by calling CommGetConfig().

The returned value is an ASCIIZ string residing in memory
allocated using the Win32 call
GlobalAlloc(GMEM_FIXED,-).

The allocated memory gets freed by the caller.

The string comprises zero or more ‘lines’ of data, separated
by a carriage-return, linefeed pair (CRLF).

Each line has the form:

<name>=<value>

(e.g. Port=COM1)

Where <name> represents the name of the configuration
option and <value> its value.

The set of data shipped via CommGetConfig() must
encompass all of the elements that are required by
CommSetConfig() for it to completely configure the ECU
Link. That is, it provides a complete description of the
configurable items.

Custom ECU Links 39

5.
2

5.2.13 CommGetConfigOptions

Prototype EXPORT const char *CommGetConfigOptions(

 const void *h,

 const void *chan)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

Description This call is used by RTA-TRACE Server to determine the
possible configuration options for a specific active OS/ECU
Link instance. This information can be passed to a remote
RTA-TRACE client.

The OS DLL instructs the ECU Link DLL to return the
configuration options by calling
CommGetConfigOptions().

The returned value is an ASCIIZ string residing in memory
allocated using the Win32 call
GlobalAlloc(GMEM_FIXED,-).

The allocated memory gets freed by the caller.

The string comprises zero or more ‘lines’ of data, separated
by CRLF.

Each line has the form:

<name>=<opt1>,<opt2>,<opt3>…

(e.g. Port=COM1,&COM2,COM3)

Where <name> represents the name of the configuration
option and the <opt> elements to the right of the ‘=’
represent the possible values of the option. The current value
of the option is identified by being prefixed with a ‘&’
character.

The set of data shipped via CommGetConfigOptions()
must encompass all of the elements that the user can
configure.

40 Custom ECU Links

5.2

5.2.14 CommSetConfigOptions

Prototype EXPORT const char *CommSetConfigOptions(

 const void *h,

 const void *chan,

 const char *opt)

Parameters h is the OS/ECU Link instance handle.

chan is the channel instance handle.

opt points to an ASCIIZ string in the format specified above
for CommGetConfig().

Description This call is used by the RTA-TRACE Server to change the
configuration data for a specific active OS/ECU Link instance.
This information can be passed from a remote RTA-TRACE
client.

The OS DLL instructs the ECU Link DLL to set the
configuration data by calling CommSetConfigOptions().

The returned value is an ASCIIZ string residing in memory
allocated using the Win32 call
GlobalAlloc(GMEM_FIXED,-).

The string contains any error information to be sent back to
the caller, or an empty string if the call succeeded.

Custom ECU Links 41

5.
2

5.2.15 CommRegisterDiagCallback

Prototype EXPORT void CommRegisterDiagCallback(

 void *h,

 DiagCallback cb,

 const void *connID)

Parameters h is the OS/ECU Link instance handle;

connID is an identifier passed in from the OS DLL; the
meaning of which will be specific to the particular OS.

cb is a callback handle where DiagCallback is defined as:

typedef void (*DiagCallback)(const void
*connID, const char *txt);

Description RTA-Server does not normally have a visible window.
However there is a diagnostic mode in which text can be
displayed. This mode can be set via the “Server Options”
dialog which is invoked via Properties->Server on the RTA-
TRACE Server popup menu. An ECU Link DLL can add text to
this window via a callback function that is passed to it via the
CommRegisterDiagCallback API.

Once CommRegisterDiagCallback has been called, the
DLL can call through the callback, passing ASCIIZ text txt to
be displayed. connID must match the value supplied in
CommRegisterDiagCallback.

42 Custom ECU Links

Index

C
CheckTraceOutput .. 23, 24, 25, 32

CommBind.. 33, 34

CommClose .. 36

CommConfigure ... 32, 38

CommConnect.. 34, 37

CommDisconnect .. 35

CommGetConfig... 35, 39, 41

CommGetConfigOptions... 40

CommIdentify ... 33

CommListen.. 36, 37

CommOpen .. 35, 36

CommRegisterDiagCallback .. 42

CommSetConfigOptions ... 35, 39, 41

CommStatus ... 32, 38

CommUnbind.. 34

O
osTraceCommDataReady... 24, 25, 26

osTraceCommInitTarget .. 21, 22, 25, 26, 32

osTraceCommTxBlock ... 22, 26

osTraceCommTxByte ... 21, 22, 27

osTraceCommTxEnd.. 24, 27

osTraceCommTxReady .. 21, 22, 23, 27

osTraceCommTxStart .. 22, 24, 26, 27

osTraceODState... 31

osTraceOutputDescriptors ... 31

T
TraceCommInit.. 25

U
UploadTraceData... 21, 23, 24, 25, 26, 31, 32

Index 43

Support
For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

Support 45

	Contact Details
	About this Manual
	Who Should Read this Manual?
	Document Conventions

	What is an ECU Link?
	What is the Serial (RS232) ECU Link?
	What is the Debugger ECU Link?
	Choosing a Configuration
	Configuring the RTA-TRACE Server

	The Debugger ECU Link
	Using a Supported Debugger
	Retrieving Trace Data

	Using an Unsupported Debugger
	Extracting the Trace Buffer
	Buffer style 1 (CrossView)
	Buffer Style 2 (Lauterbach)

	Other uses
	Configuring the RTA-TRACE Server

	The Serial ECU Link
	
	Insert calls to TraceCommInit() and UploadTraceData()
	Review Driver Code
	Link against the appropriate ELL

	Generalized Use
	Efficiency Issues
	Common Issues
	Polling mode
	Interrupt mode

	Configuring the RTA-TRACE Server
	Reference 1: Library functions
	TraceCommInit
	CheckTraceOutput
	UploadTraceData

	Reference 2: User-supplied functions
	osTraceCommInitTarget
	osTraceCommDataReady
	osTraceCommTxBlock
	osTraceCommTxByte
	osTraceCommTxEnd
	osTraceCommTxReady
	osTraceCommTxStart

	The RTA-TRACE Serial Protocol
	Optional frame protocol

	Custom ECU Links
	Target ELL
	UploadTraceData

	Server DLL
	General
	CommIdentify
	CommBind
	CommUnbind
	CommConnect
	CommDisconnect
	CommOpen
	CommClose
	CommListen
	CommStatus
	CommConfigure
	CommGetConfig
	CommGetConfigOptions
	CommSetConfigOptions
	CommRegisterDiagCallback

	Index
	Support

