RTA-TRACE

Configuration Guide

Contact Details

ETAS Group

Germany

ETAS GmbH
Borsigstralle 14
70469 Stuttgart

Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106

Japan

ETAS K.K.

Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan

Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956

Korea

ETAS Korea Co. Ltd.

3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul

Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120

USA

ETAS Inc.
3021 Miller Road
Ann Arbor, Ml 48103

Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49

France

ETAS S.A.S.

1, place des Etats-Unis
SILIC 307

94588 Rungis Cedex

Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51

Great Britain

ETAS UK Ltd.

Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ

Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2004 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TDO0O008-002

RTA-TRACE

Contents

1 About this Manual ... 9
1.1 Who Should Read this Manual?cccoooiiiiiiiii 9

1.2 CONVENTIONS ..o 9

2 RTA-OSEK Configuration..........cccooiiiiiiii i 11
2.1 General configurationccccoiiiiiiiiii 11

2.2 TraCePOINTS ..o 15

2.3 Task TraCePOINTSviieiiiiie e 15

2.4 INTEIVAIS ..o 15

2.5 CAEQOIIES .ot 16

2.6 ENUMEratioNS. ...cooiiiiiiiiii e 16

2.7 FIROIS o 16

2.8 0STraceStopWaLChviiii e 17

3 ERCOS™ Configuration File..........cc.oooviiiiiiiiiieceeeee e, 19
3.1 Target Configurationccccoiiiiiiiiiiii e 19

311 BUFFER_SIZE ..o 19

3120 TIME_SIZE ..o 19

3.1.3 COMPACT - 20

Contents

4

Contents

3.2 Tracing Configurationcccociiiiiiiiiiiii 20

3.2.1 TASKS_AND_ISRS ..o 21
3.2.2 EXCLUDE_TASK_OR_ISR....utiiiiiiiiiiiiiiiiiiiiiiiiiiie 21
3.2.3 PROCESSES ..o 21
3.2.4 STARTUP_AND_SHUTDOWNoovviiiiiiiiiiiiiiiiiiiiiii, 21
3.2.5 ACTIVATIONS ..o 22
3.2.6 RESOURCES ..ottt 22
3.2.7 INTERRUPT_LOCKS ...etiiiiiiiiiiiiiiiieiiiiee 22
3.2.8 ERRORS ..o 22
3.2.9 EXPLICIT_STATE_MESSAGES.......ooviiiiiiiiiiiiiiiiii, 22
3.2.10 IMPLICIT_STATE_MESSAGES.......ootiiiiiiiiiiiiiiiii, 23
3.2.11 OSEK_MESSAGESoiiiiiiiiiiiiii 23
3.2.12 MESSAGE_DATA ..o 23
3.2.13 ALARMS .o 23
3.2.14 TIMETABLES ..o 24
3.2.15 SWITCHING_OVERHEADS......ooiiiiiiiiiiiiiiiiii, 24
3.2.16 TRACEPOINTS ...ttt 24
3.2.17 TASK_TRACEPOINTS ..ottt 24
3.2.18 INTERVALS ..o 25
3.2.19 STACK e 25
3.2.20 CATEGORY oot 25
3.3 Tracing Display Control..........ccocvviiiiiiiiiiiiiiieccc e 26
3.3. 1 MESSAGE ... 26
3.3. 2 TRACEPOINT .ottt 26
3.3.3 TASK_TRACEPOINT ..ottt 27
3.3.4 INTERVAL ..o 27
3.3.5 COUNTER ..ottt 27
336 ENUM Lo 28
FOrMAt STINGS ..o 29
A1 RUIBS .o 29
4.2 EXAMPIES oo 31

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably enhanced application, it provides the embedded application
developer with a unique set of services to assist in debugging and testing a
system. Foremost amongst these is the ability to see exactly what is happening
in a system at runtime with a production build of the application software.

This document provides describes the RTA-TRACE configuration options
specific to RTA-OSEK and ERCOS™.

1.1 Who Should Read this Manual?

The RTA-TRACE Configuration Guide is aimed at the technical reader who
wishes to use RTA-TRACE to examine an application under RTA-OSEK or
ERCOS®. It should be read in conjunction with the RTA-TRACE User Manual,
which explains the RTA-TRACE C API calls.

1.2 Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

In this guide you'll see that program code, header file names, C type names, C
functions and API call names all appear in the courier typeface. When the
name of an object is made available to the programmer the name also
appears in the courier typeface, so, for example, a task named Task 1
appears as a task handle called Task1.

About this Manual 9

2 RTA-OSEK Configuration

Configuration of RTA-TRACE parameters for RTA-OSEK is carried out using
the RTA-OSEK GUI. The GUI is largely self-explanatory, so this section will
simply describe a set of tasks and how one might achieve them.

It is assumed that you have some knowledge of using the RTA-OSEK
configuration tool, so creation/configuration of the application is not
discussed here.

All of the configuration tasks relating to RTA-TRACE are accessed from the
RTA-TRACE tab at the bottom-left hand side of the GUI:

[= | =
Ol Resources
There is one standar
Analyze

RES SCHEDULEF
W Blanner ['§7 Buider (7 RTATRACE]2

History o % B Application Surmmary

2.1 General configuration

The following options can be set from this pane:

Trace Type Disables or enables (either simple or advanced) tracing.

Advanced tracing provides more detailed tracing at than
simple tracing, with a corresponding increase in trace-

records.

Trace type
f* Dizabled
i Simple
" Advanced

Cancel

Compact IDs The compact trace format saves buffer space by only
allowing 4 bits for task tracepoint ID values, and 8-bits for
tracepoint and interval ID values. Other identifiers (Tasks,
Resources etc.) use 8 bits.

If compact identifiers are not selected, 12 bits are used for
tracepoint, task tracepoint, and interval ID values, and 16
bits are used for other identifiers.

Compact Time Select compact (16-bit) or extended (32-bit) time format.
This option may not be available for every target.

Trace Stack Select whether to record stack usage or not

RTA-OSEK Configuration 11

Target
Triggering

Buffer Size

Autostart

12 RTA-OSEK Configuration

Select whether runtime target triggering is available. If
target triggering is not enabled then none of the
Trigger... () API calls will function.

This controls the size of the buffer reserved on the target
for the tracing information. Note that the number is in
records, not bytes, so the actual buffer size in bytes
depends upon sizes selected for time and identifier.

Specify number of trace recornds

Becordz l@

ok Cancel

Select whether tracing is started automatically, and which
trace mode to start in.

For triggering operation, the trigger setup (TriggeroOn...)
code is entered here. Details of the triggering API can be
found in the RTA-TRACE User Manual.

Startup settings

Autoztart Setting Set trace repeat

f+ DK [Enable trace comms link
" Bursting

" Free running

™ Triggering |

Initial Categories If run-time categories have been defined (See the RTA-
TRACE User Manual for more details about categories), this
dialog allows you to choose which run-time categories are
enabled when tracing starts. Below, we can see three run-
time categories, one of which is initially disabled.

Select initial value

O ptian Walle -~ oK
a_category Enabled =
b_categary Dizabled Cancel
c_category Enabled —

[%

RTA-OSEK Configuration 13

14

Initial Classes

Stopwatch

RTA-OSEK Configuration

Choose which record classes are enabled when tracing
starts. Below we can see that task and ISR, activation, and
event tracing can be enabled and disabled at run-time and
that event tracing is initially disabled.

Select initial value

Option Walue M o
Tasks_and_|5R= Enabled =
l Activations Enabled Cancel
Eventd Dizabled
i

This dialog allows the user to specify which function is
used to implement GetStopwatch () . In the dialog
below, this is a user-supplied function called now () . The
header file supporting this function is called now. h.

Trace Stopwatch

Template code for GetStopwatch(]

|n|:|w[]

Hinclude file for for GetStopwatch(]

|n|:|w.h

Template code for GetStopwatchU noertainty(]

O Cancel

2.2 Tracepoints

This pane allows tracepoints to be defined. New tracepoints are initially given
auto-generated identifiers, but this can be over-ridden using the ID button:

Specify tracepoint 1D

1D [D=auta] |4

ok LCancel

If the tracepoint has associated data, it is possible to supply a format-string

(see section 4 for more information about format strings) to govern how the
data will be displayed:

Specify trace data format

i

Earmat

Format azziztant

heradecimal integer [target size] ﬂ

ok LCancel

2.3 Task Tracepoints

This pane allows task-tracepoints to be defined. New task-tracepoints are

initially given auto-generated identifiers, but this can be over-ridden using the
ID button as for tracepoints.

Format strings are entered in the same way as for tracepoints.

2.4 Intervals

This pane allows intervals to be defined. New intervals are initially given auto-

generated identifiers, but this can be over-ridden using the ID button as for
tracepoints.

Format strings are entered in the same way as for tracepoints.

RTA-OSEK Configuration 15

2.5 Categories

This pane allows trace categories to be defined, along with their mask-value.
See the RTA-TRACE User Manual for more details about categories.
Categories can be always enabled, always disabled, or enabled/disabled at
run-time by using the filter pane (see 2.7 below).

2.6 Enumerations

This pane allows enumerated identifiers to be specified, along with numeric
values. The example shown illustrates how the first few OSEK error codes
might be enumerated.

Select Enumeration ¥alues

E Walue
E_OF
E_OS5_aALCCESS
E_O5_CALLEVEL
E_OS_ID
E_OS_LIMIT
E_OS_MOFUMC
E_OS5_RESOURCE
E_OS_STATE

ak

Cancel

&dd

Bemove

bt A Ty B R ' T LN T e

2.7 Filters

This pane configures the filtering of event classes and categories. Events can
be either always enabled; always disabled; or enabled/disabled at run-time.
Run-time classes can be initially enabled or disabled based upon the ‘Initial
Classes’ button on the configuration pane (See section 2.1).

16 RTA-OSEK Configuration

2.8

osTraceStopwatch

RTA-TRACE requires a function to return the current system time. This
function is required to have the following prototype:
OS_NONREENTRANT (StopwatchTickType) osTraceStopwatch (void);

When GetStopwatch is defined, it uses the same timer hardware as
osTraceStopwatch. It is necessary on certain targets (where the timer
cannot be read in a single instruction) to ensure that GetStopwatch reads
the timer without interruption — this can be done using the 0S ATOMIC ()
macro as follows:

OS_NONREENTRANT(StopwatchTickType)
osTraceStopwatch (void)
{
/* GET TIMER VAL() is a user-defined
* macro that reads the appropriate
* timer hardware */

return GET TIMER VAL();

OS_NONREENTRANT(StopwatchTickType)
GetStopwatch (void)

{
StopwatchTickType temp;

/* GET TIMER VAL() is a user-defined
* macro that reads the appropriate
* timer hardware */

OS ATOMIC (temp = GET TIMER VAL());
return temp;

Note: If GetStopwatch () has been defined in the stopwatch dialog (See
Section2.1) then osTraceStopwatch () will be automatically defined.

RTA-OSEK Configuration 17

3 ERCOS® Configuration File

Configuration of RTA-TRACE for ERCOSEK is carried out using the file
RTAtrace.cfg (located in the same directory as project settings.mk),
containing directives to control the tracing subsystem. A maximum of one
directive can be present on each line. Comments are preceded with a ‘#’
character. Anything after the first ‘#' character on a line is a comment.

No directive is mandatory.

3.1 Target Configuration

3.1.1 BUFFER_SIZE

Usage
Default

Description

Legal values

3.1.2 TIME_SIZE

BUFFER SIZE = size
200

This controls the size of the buffer reserved on the
target for the tracing information. Note that the
number is in records, not bytes, so the actual buffer size
in bytes depends upon sizes selected for time and
identifier (see 3.1.2 and3.1.3).

32..65535

Usage
Default

Description

Legal values

TIME SIZE =size
32

This setting defines the number of bits necessary to
record a timestamp.

16 or 32

ERCOSEK Configuration File 19

3.1.3 COMPACT

Usage COMPACT = TRUE or FALSE
Default TRUE
Description The COMPACT trace format saves buffer space by only

allowing 4 bits for task tracepoint ID values, and 8-bits
for tracepoint and interval ID values. Other identifiers
(Tasks, Resources etc.) use 8 bits.

If you need to use larger values for identifiers, you must
set COMPACT=FALSE. In this case, 12 bits are used for
tracepoint, task tracepoint, and interval ID values, and
16 bits are used for other identifiers.

Legal values TRUE or FALSE

3.2 Tracing Configuration

These directives select objects or classes of object for tracing. Use them to
achieve a suitable level of detail in the trace data for analysis, while omitting
superfluous data.

Parameters are described using the following convention:
true-false TRUE or FALSE

true-false-runtime TRUE or FALSE or RUNTIME

RUNTIME allows a class to be enabled or disabled within
the code using the EnableTraceClass () and
DisableTraceClass () APl calls.

Maskbit An integer power of 2, in other words a value whose
representation in 32-bit binary has exactly one bit set.

Identifier The C identifier that identifies a specific object, e.g.
task.

Note: Classes marked as RUNTIME are initially disabled.

20 ERCOSEK Configuration File

3.2.1 TASKS_AND_ISRS

Usage:
Default:

Description:

TASKS AND ISRS = true-false-runtime
TRUE

Enables logging of task and ISRs entering and leaving
the running state, subject to the
EXCLUDE TASK OR_ISR directive below.

3.2.2 EXCLUDE_TASK_OR_ISR

Usage:
Default:

Description:

3.2.3 PROCESSES

EXCLUDE _TASK OR ISR = identifier
This directive has no default.

This directive prevents the logging of start, stop, and
process information for task or ISR name.

Activation events for the excluded object will still be
logged.

Usage:
Default:

Description:

PROCESSES = true-false-runtime
FALSE

Enables logging of ERCOS™ process objects. To fully log
processes, SWITCHING OVERHEADS (see 3.2.15)
needs to be enabled as well; without

SWITCHING OVERHEADS, only process starts are
logged.

3.2.4 STARTUP_AND_SHUTDOWN

Usage:
Default:

Description:

STARTUP AND SHUTDOWN = true-false-runtime

FALSE

Enables logging of Start0S () and ShutdownOS () in
ERCOS™

ERCOSEK Configuration File 21

3.2.5 ACTIVATIONS

Usage:
Default:

Description:

3.2.6 RESOURCES

ACTIVATIONS = true-false-runtime
FALSE

Enables logging of task activation attempts, whether or
not successful.

Usage:
Default:

Description:

3.2.7 INTERRUPT_LOCKS

RESOURCES = true-false-runtime
FALSE

Enables logging of resource locking and unlocking.

Usage: INTERRUPT LOCKS = true-false-runtime
Default: FALSE
Description: Enables logging of interrupt enable/disable attempts
made using the OSEK API.
3.2.8 ERRORS
Usage: ERRORS = true-false-runtime
Default: TRUE
Description: Enables logging of operating-system error conditions

3.2.9 EXPLICIT_STATE_MESSAGES

Usage:
Default:

Description:

EXPLICIT STATE MESSAGES = true-false-runtime
FALSE

Enables logging of ERCOS™ explicit state messages. See
also IMPLICIT STATE MESSAGES below

22 ERCOSEK Configuration File

3.2.10 IMPLICIT_STATE_MESSAGES

Usage:
Default:

Description:

3.2.11 OSEK_MESSAGES

IMPLICIT STATE MESSAGES = true-false
FALSE

Enables logging of ERCOS™ implicit state messages. See
the ESCAPE reference manual for details of the ERCOS™
messaging system.

Usage:
Default:

Description:

OSEK _MESSAGES = true-false-runtime
FALSE

Enables logging of OSEK COM MESSAGE objects.

Note: Applies to ERCOS®™ 4.3 and above.

3.2.12 MESSAGE_DATA

Usage:
Default:

Description:

3.2.13 ALARMS

MESSAGE DATA = true-false-runtime
FALSE

Reports the data content of ERCOS™ state messages.

Usage:
Default:

Description:

ALARMS = true-false-runtime
FALSE

Enables logging of OSEK alarms.

ERCOSEK Configuration File 23

3.2.14 TIMETABLES

Usage: TIMETABLES = true-false-runtime
Default: FALSE
Description: Enables logging of ERCOS™ timetables.

3.2.15 SWITCHING_OVERHEADS

Usage: SWITCHING OVERHEADS = true-false-runtime
Default: FALSE
Description: Increases the detail of task and process logging to

include switching overheads; for example SystemISR
(timer: may be more than one system ISR on some
targets), preemptive scheduling overheads, and inter-
process time.

Note: Use of EXCLUDE TASK OR ISR is not recommended in conjunction
with this directive because not all overheads will be correctly recorded (e.qg.
task exit overheads are not recorded for excluded tasks).

3.2.16 TRACEPOINTS

Usage: TRACEPOINTS = true-false-runtime
Default: TRUE
Description: Enables logging of tracepoints, recorded by calling

LogTracePoint.. () APl functions.

3.2.17 TASK_TRACEPOINTS

Usage: TASK_TRACEPOINTS = true-false-runtime
Default: TRUE
Description: Enables logging of task tracepoints, recorded by calling

LogTaskTracePoint.. () APl functions.

24 ERCOSEK Configuration File

3.2.18 INTERVALS

Usage: INTERVALS = true-false-runtime

Default: TRUE

Description: Enables logging of intervals of elapsed time by calling
LogInterval..() APl functions.

3.2.19 STACK

Usage: STACK = true-false

Default: FALSE

Description: Enables logging of stack usage within an application.

3.2.20 CATEGORY

Usage:

Description:

CATEGORY identifier = true-false

or:

CATEGORY identifier = RUNTIME MASK AUTO
or:

CATEGORY identifier = RUNTIME MASK maskbit

Defines a category. Category identifiers are made
visible in the application. They are used in conjunction
with the Log... () calls to enable or disable particular
groups of user tracepoints.

Categories set to RUNTIME have their status held in a
4-byte bitmap: there can be up to 31 RUNTIME
categories, but an unlimited number of configuration-
time categories.

Designating a category as ‘RUNTIME MASK AUTO’
causes the system to allocate a unique bit for that
category's status.

If categories are referenced in pre-compiled libraries,
then values must be explicitly given in maskbit since
category values will be compiled into the library.

ERCOSEK Configuration File 25

3.3 Tracing Display Control

These directives do not affect the target code. They influence the
interpretation of the trace data before it is displayed in the visualizer.

Parameters are in the following convention:

id

identifier

name

string

format-string

index

3.3.1 MESSAGE

The number passed to the APl (e.g. in
LogTracePoint ()) to identify that tracing object.

The C identifier that identifies a specific object, e.g.
task.

A name that will be associated in the visualizer display
with the corresponding id for that object type. This
should conform to C identifier syntax too, though it
does not affect the target code.

A sequence of characters enclosed in double quotes ("

)

A string that describes the interpretation and
representation of trace data. See Section 4.

For enum classes, the value within that class that
corresponds to a name.

Usage:

Description:

3.3.2 TRACEPOINT

MESSAGE = identifier [AS format-string]

This directive governs how message identifier is
displayed in the visualizer.

Usage:

Description:

TRACEPOINT =id : name [AS format-string]

This directive assigns name name to tracepoint id.

If the tracepoint has associated data, it is displayed
according to format-string.

26 ERCOSEK Configuration File

3.3.3 TASK_TRACEPOINT

Usage:

Description:

3.3.4 INTERVAL

TASK TRACEPOINT =id[, identifier]: name [AS
format-string]

This directive assigns the name name to task tracepoint
id and optionally limits the scope of the assignment to
task tracepoints dropped by task identifier.

If the task tracepoint has associated data, it is displayed
according to format-string.

Usage:

Description:

3.3.5 COUNTER

INTERVAL = id : name[AS format-string |

This directive assigns the name name to the interval
identified by id.

If the interval has associated data, it is displayed
according to format-string.

Usage:

Description:

COUNTER = identifier [AS format-string |

This directive governs how a counter is displayed in the
visualizer.

ERCOSEK Configuration File 27

3.3.6 ENUM

Usage:

Description:

Example

ENUM =id : index [CALLED string]

This directive governs how an enumerated type is
displayed in the visualizer.

there follows a C enum and a reflection of it in RTA-
TRACE directives:

/* C fragment */

enum e Rainbow ({
E RED,
E ORANGE,
E YELLOW,
E_GREEN,
E BLUE,
E_INDIGO,
E_VIOLET

b

/* End C fragment */

RTAtrace.cfg fragment

enum = 1 0 as "Red";

enum = 1 1 as "Orange";
enum = 1 2 as "Yellow";
enum = 1 3 as "Green";
enum = 1 4 as "Blue";

enum = 1 5 as "Indigo";
enum = 1 6 as "Violet";

End RTAtrace.cfg fragment

28 ERCOSEK Configuration File

4

Format Strings

4.1

Format strings specify how a tracing item's data should be displayed. Simple
numeric data can be displayed using a single format specifier. More complex
data, e.g. a C struct, can be displayed by repeatedly moving a cursor
around the data block and emitting data according to more complex format
specifiers.

If a format string is not supplied, data is displayed in the following manner:

e if the data size is no greater than the size of the target's int type,
data is decoded as if “%d"” had been specified.

e Otherwise the data is displayed in a hex dump, e.qg.
0000 00 01 02 03 04 05 06 07 08 09 Oa 0b Oc 0d Oe Of
0010 10 11 12 13 14 15 16 17 18 19 la 1b 1c 1d le 1f

e A maximum of 256 bytes is shown.

Note: when format specifiers are given, the target's endian-ness is taken into
account. When a hex dump is shown, the target's memory is dumped byte-
for-byte. In particular, you may not get the same output from a hex dump as
from the $x format specifier.

Rules

Format strings are similar to the first parameter to the C function printf ():
e Format strings are surrounded by double-quote (") symbols.

e A format string may contain two types of object: ordinary characters,
which are copied to the output stream, and format elements, each of
which causes conversion and printing of data supplied with the event.

e A format element comprises a percent sign, zero or more digits and a
single non-digit character, with the exception of the $E element — see
below.

e The format element is decoded according to the rules in the table
below, and the resulting text is added to the output string.

e The special format element $% emits a %.

e In addition to ordinary characters and conversion specifications, certain
characters may be emitted by using a ‘backslash-escape-sequence’. To
emit a double-quote (") character, \" is used, and to emita \
character, \\ is used.

e The optional size parameter to integer format specifiers defines the
field's width in bytes. Valid values are 1, 2, 4 or 8.

Note: An important difference from printf () is that the cursor does not
automatically move on from the current field when a field is emitted. This is
to facilitate multi-format output of a single field.

Format Strings 29

30

Format Element

Meaning

$offset

Moves the cursor offset bytes into the data. This can be
used to extract values from multiple fields in a structure.

$[sizeld

Interpret the current item as a signed integer. Output the
value as signed decimal.

$[sizelu

Interpret the current item as an unsigned integer. Output
the value as unsigned decimal.

$[size]lx

Interpret the current item as unsigned integer. Output
the value as unsigned hexadecimal.

% [size]lb

Interpret the current item as an unsigned integer. Output
the value as unsigned binary.

$enum|:sizelE

Interpret the current item as an index into the
enumeration class who's ID is enum. Emit the text in that
enumeration class that corresponds with the item's value.

The enumeration class should be defined using ENUM
directives. An exception is implicitly defined enum classes
98 and 99, which are startup and error codes
respectively.

o
3|

Treat the current item as an IEEE ‘double’. Output the
value as a double, in exponent format if necessary.

oe
D

Emit in the form of a hex dump.

o°
o\

No conversion is carried out; emita %

Format Strings

4.2 Examples

Description Format String Example | Notes

A native integer "$d 0x%x" 10 0xA | The "0x" is not emitted by the

displayed in decimal $x format specifier but is

and hexadecimal. specified in literal characters in
the string.
Absence of size specifier
means the target's int size is
assumed.

A single unsigned "$1luss" 73% Use of size specifier of 1 byte.

byte representing a Use of % to emit %.

percentage.

struct{ "(%5d,%4@%d) " (20, - Use of soffset@ to move to

int x; 15) byte-offset within the
structure.
int vy;

}i

... On a 32-bit

processor.

A value of type enum | "$1E" Yellow | The number 1 refers the ID of

e Rainbow (see the enum class in the ENUM

Section 3.3.6), using directives, not to the width of

the enum class the field.

shown in that

section.

Format Strings 31

Index

A

ACTIVATIONS ..ttt 22
ALARMS . 23
B

BUTTEI SIZE s 12
BURFER _SIZE ..ottt 19
C

(@) (=T o] <SR SPUPPRRROPPRR 16
CATEGORY e, 25
COMPACT ettt ettt 20
COMPACE IDS. .ottt 11
COMPACE TIMIB ettt ettt ettt et e e e et e e et e e enee e 11
COUNTER ...ttt ettt ettt e 27
E

ENUM s 28, 30, 31
ENUMIEIATIONS ...ttt 16
ERRORS ... oo 22
EXCLUDE_TASK _OR_ISR ...ttt 21,24
EXPLICIT_STATE_MESSAGES ...ttt 22
F

TS e 16
|

IMPLICIT_STATE_MESSAGES ...t 22,23
INTERRUPT_LOCKS ..ttt 22
INTERVAL ... et 27
INEEIVAIS. ..t 15
INTERVALS ..ot 25
M

IMIESSAGE ...t 23,26
IMESSAGE _DATA ettt 23
o

OSEK _IMESSAGES ...ttt 23
P

PROCESSES ..ttt 21

33

34

R

RESOURCES. ...ttt ettt 22
S

STACK 25
STARTUP_AND_SHUTDOWN ...t 21
SWITCHING_OVERHEADS ... 21,24
T

TaSK TraCEPOINTS ...ttt 15
TASK _TRACEPOINT L.ttt 27
TASKS_ANDL_ISRS ..ttt ettt 21
TIME_SIZE ..ttt 19
TIMETABLES ... 24
TTACE YD ettt 11
TRACEPOINT L 26
L La=] o Jo 1l) TP PSPPSR 15
TRACEPOINTS et 24

Index

Support

For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

Support 35

	Contact Details
	About this Manual
	Who Should Read this Manual?
	Conventions

	RTA-OSEK Configuration
	General configuration
	Tracepoints
	Task Tracepoints
	Intervals
	Categories
	Enumerations
	Filters
	osTraceStopwatch

	ERCOSEK Configuration File
	Target Configuration
	BUFFER_SIZE
	TIME_SIZE
	COMPACT

	Tracing Configuration
	TASKS_AND_ISRS
	EXCLUDE_TASK_OR_ISR
	PROCESSES
	STARTUP_AND_SHUTDOWN
	ACTIVATIONS
	RESOURCES
	INTERRUPT_LOCKS
	ERRORS
	EXPLICIT_STATE_MESSAGES
	IMPLICIT_STATE_MESSAGES
	OSEK_MESSAGES
	MESSAGE_DATA
	ALARMS
	TIMETABLES
	SWITCHING_OVERHEADS
	TRACEPOINTS
	TASK_TRACEPOINTS
	INTERVALS
	STACK
	CATEGORY

	Tracing Display Control
	MESSAGE
	TRACEPOINT
	TASK_TRACEPOINT
	INTERVAL
	COUNTER
	ENUM

	Format Strings
	Rules
	Examples

	Index
	Support

