
RTA-TRACE
RTA-TCEL User Guide

Contact Details

ETAS Group
www.etasgroup.com

Germany
ETAS GmbH
Borsigstraße 14
70469 Stuttgart
Tel.:+49 (711) 8 96 61-102
Fax:+49 (711) 8 96 61-106
www.etas.de

USA
ETAS Inc.
3021 Miller Road
Ann Arbor, MI 48103
Tel.: +1 (888) ETAS INC
Fax: +1 (734) 997-94 49
www.etasinc.com

Japan
ETAS K.K.
Queen's Tower C-17F,
2-3-5, Minatomirai, Nishi-ku,
Yokohama, Kanagawa
220-6217 Japan
Tel.: +81 (45) 222-0900
Fax: +81 (45) 222-0956
www.etas.co.jp

France
ETAS S.A.S.
1, place des États-Unis
SILIC 307
94588 Rungis Cedex
Tel.: +33 (1) 56 70 00 50
Fax: +33 (1) 56 70 00 51
www.etas.fr

Korea
ETAS Korea Co. Ltd.
3F, Samseung Bldg. 61-1
Yangjae-dong, Seocho-gu
Seoul
Tel.: +82 (2) 57 47-016
Fax: +82 (2) 57 47-120
www.etas.co.kr

Great Britain
ETAS UK Ltd.
Studio 3, Waterside Court
Third Avenue, Centrum 100
Burton-upon-Trent
Staffordshire DE14 2WQ
Tel.: +44 (0) 1283 - 54 65 12
Fax: +44 (0) 1283 - 54 87 67
www.etas-uk.net

 3

Copyright

The data in this document may not be altered or amended without special
notification from LiveDevices Ltd. LiveDevices Ltd. undertakes no further
obligation in relation to this document. The software described in it can only
be used if the customer is in possession of a general license agreement or
single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of LiveDevices Ltd.

© Copyright 2004 LiveDevices Ltd.

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document TD00101-002

RTA-TRACE 5

Contents

1 About this Manual ... 9
1.1 Who Should Read this Manual? .. 9
1.2 Document Conventions .. 9

2 What is RTA-TCEL?... 11
2.1 RTA-TCEL package contents.. 11

3 Installing RTA-TCEL .. 13
3.1 Host PC .. 13
3.2 Target Software .. 14

4 Usage... 15
4.1 Target software .. 15

4.1.1 Frame configuration ... 15
4.2 Configuring the RTA-TRACE Server ... 16

5 Target Examples ... 19
5.1 Basic steps .. 19

5.1.1 Adaptation layer details (TCEL_s) 20
5.2 Customization .. 21

Contents 7

5.2.1 Using multiple CAN frames to carry trace data.............. 21
5.2.2 Adaptation layer details (TCEL_m)................................. 21
5.2.3 Modifying the Device Driver.. 21
5.2.4 Using a third-party CAN Device driver........................... 21

6 Device Driver reference... 23
6.1 Required Types ... 23
6.2 Defined types.. 23

6.2.1 canStatusType .. 23
6.2.2 canConfigType ... 24

6.3 API reference .. 24
6.3.1 canInit .. 24
6.3.2 canTxMsg... 25
6.3.3 canStatus ... 26

8 Contents

1.1

1 About this Manual

RTA-TRACE is a software logic analyzer for embedded systems. Coupled with
a suitably enhanced application or operating system, it provides the
embedded application developer with a unique set of services to assist in
debugging and testing. Foremost amongst these is the ability to see exactly
what is happening in a system at runtime with a production build of the
application software.

This manual describes the RTA-TRACE add-on RTA-TCEL – a CAN-based ECU
Link.

This manual does not explain how to instrument application code or build the
target application with tracing enabled. For this you should consult both the
RTA-TRACE Getting Started Guide and the RTA-TRACE User Manual.

More information about ECU Links can be found in the RTA-TRACE ECU Link
Guide included with RTA-TRACE.

1.1 Who Should Read this Manual?

The RTA-TCEL User Guide is for the software engineer who wishes to use a
CAN bus to transfer trace data from an application instrumented with RTA-
TRACE.

It is assumed that the RTA-TRACE Getting Started Guide has been followed
and an application has been built (and seen to work) using the RS232 ECU
Link supplied with RTA-TRACE.

1.2 Document Conventions

Important: Notes that appear like this contain important information that
you need to be aware of. Make sure that you read them carefully and that
you follow any instructions that you are given.

Portability: Notes that appear like this describe things that you will need to
know if you want to write code that will work on any target processor.

Program code, header file names, C type names, C functions and API call
names appear in the courier typeface. When the name of an object is
made available to the programmer the name also appears in the courier
typeface, so, for example, a task named Task1 appears as a task handle called
Task1.

Courier oblique is used for placeholders where the user should
substitute relevant text, e.g. RTserxxx refers to both RTserbyt and
RTserblk libraries.

When interaction with GUI elements is described, the elements' captions are
shown in bold. Navigation of a hierarchy, such as a menu structure, is shown

About this Manual 9

1.
2

by separating the levels with a chevron, e.g. "Choose the Edit > Select All
Menu item." Or "Choose Edit > Select All".

10 About this Manual

2.1

2 What is RTA-TCEL?

RTA-TRACE requires an ECU Link to transfer data from the target to the RTA-
TRACE Server. RTA-TCEL is a CAN-based ECU Link.

The RTA-TRACE ECU Link Guide provides some more background information
about ECU Links.

The general layering of the communications architecture is illustrated below:

Application

OS/Tracing core

ECU Link layer
(CLL)

Device driver

Server core
+ visualizer

OS DLL

ECU Link DLL

Device driver
(part of PC OS)

Communication hardware

Visualizer shows application trace data

Trace records are OS specific

Decode/unpack data frames

Software to control the physical hardware

Physical connection

In this reference model, the target code consists of two elements and the
server code consists of one.

RTA-TCEL provides a means of transferring RTA-TRACE data from an
instrumented target using the CAN bus. CAN allows higher data rates to be
used (up to 1 Mbit) and is therefore better suited for tracing applications
which generate larger amounts of trace data. CAN is also a shared bus, so it is
possible to communicate with more than one application sharing the same
bus.

2.1 RTA-TCEL package contents

For RTA-TCEL, the ‘Device Driver’ block in the diagram above is actually
composed of two parts – an ELL adaptation layer and a CAN device driver.
The CAN device driver is intended to offer a simple interface to the CAN
hardware, and may be replaced by another device-driver if necessary.

Note: Target code is supplied for use with the Diab/MPC56x version of RTA-
OSEK . Other OS/targets will require some code modification. The adaptation
layer is written to be target-independent, although some changes may be
necessary.

What is RTA-TCEL? 11

2.
1

The RTA-TCEL package consists of the following:

• Software CD containing:

o RTA-TRACE Server TCEL DLL;

o Target device-driver example code;

o Target ELL adaptation-layer example code.

Each of these will be described in further detail later.

12 What is RTA-TCEL?

3.1

3 Installing RTA-TCEL

There are two aspects to the installation process – host PC hardware/software,
and target software.

3.1 Host PC

The RTA-TCEL software is provided on a CD.

1.
2.

3.

Insert the RTA-TCEL CD into the drive;

If the installer program does not start automatically, locate and run the
‘setup.exe’ file on the CD; a splash screen will appear.

Clicking on ‘Install’ will start the RTA-TCEL Windows installation wizard. You
will be asked for the location of the license file for RTA-TCEL, this will have
been supplied separately. When installation is complete, click the ‘Finish’
button.

Installing RTA-TCEL 13

3.
2

3.2 Target Software

The Software CD contains a directory called targets\diab56x, the
following files are contained there:

CAN_dd.c This file contains an implementation of a CAN
device driver. This is a reference implementation
solely for support of the CAN ECU Link.

This file will need to be re-written for your particular
target processor.

CAN_dd.h This file contains the function prototypes for the
example CAN device driver. This file should be
included into any other source file which uses the
example CAN device driver.

TCEL_s.c

TCEL_m.c

These files each contains an adaptation layer
between the ECU Link library included with RTA-
TRACE and the above CAN device driver.
TCEL_s.c uses a single CAN frame for trace-data,
TCEL_m.c uses multiple CAN frames.

config_s.h

config_m.h

Configuration header files for the single- and
multiple-frame adaptation layers.

M563HEADER.zip A support file from Motorola describing the register
layouts for the MPC563 microcontroller. This file is
only necessary if this is the processor being used. For
other Motorola 56x devices, similar header files are
available from Motorola.

These files should be copied to your application build location as appropriate.
(Note that the files may be marked as read-only if copied straight from the CD
– they will need to be made writable if editing them)

14 Installing RTA-TCEL

4.1

4 Usage

RTA-TCEL consists of software running on both target and PC.

4.1 Target software

The RTA-TCEL target software files (listed in Section 3.2) consist of an example
CAN device driver and adaptation-layers which will integrate with the serial
ECU Link libraries included with RTA-TRACE component of the OS (See RTA-
TRACE ECU Link Guide for more details of the required API; alternatively the
RTRS232.c driver file supplied with RTA-TRACE or you operating-system is
an example of the required API). The example code has been written for RTA-
OSEK running on the MPC56x using the Diab compiler suite. The code will
require porting for other targets. LiveDevices can offer assistance in this
aspect.

The basic steps for integrating the target software into your application are
the same as for the Serial ECU Link (See RTA-TRACE ECU Link Guide for full
details of the required API).

4.1.1 Frame configuration

The configuration file used by RTA-TCEL contains information about:

• the CAN frame-identifiers used;

• the number of CAN frames;

• whether standard or extended identifiers are used.

Note: Care should be taken when allocating frame identifiers when
integrating RTA-TCEL with an existing CAN-based application, since an
incorrect identifier choice may compromise the performance of the application
being measured.

A configuration file looks something like this:

#define LD_STANDARD_CAN_IDS (1)
#define LD_NUM_CAN_FRAMES (1)
#define LD_CAN_FRAMES 0x123

As can be seen, this looks like a standard C header file – this is intentional: it
allows consistency to be maintained between Server and target
configurations. An example of this type of file can be found in config_s.h
in the target directory.

In the case where multiple CAN frames are being used to transfer data,
LD_CAN_FRAMES becomes a comma-separated list of identifiers as follows:

Usage 15

4.
2

#define LD_STANDARD_CAN_IDS (1)
#define LD_NUM_CAN_FRAMES (3)
#define LD_CAN_FRAMES 0x123,0x124,0x125

This allows LD_CAN_FRAMES to be used to initialize an array of identifiers in
the target C code (see TCEL_m.c and config_m.h for an example of this).

In the configuration file, LD_STANDARD_CAN_IDS can be replaced by
LD_EXTENDED_CAN_IDS if extended identifiers are required.

Configuration files can be written using any text editor.

The supplied example code is described in Section 5.

Note: if the configuration files are not consistent between the target software
and RTA-TRACE Server, data may be corrupted, or not be seen.

4.2 Configuring the RTA-TRACE Server

ECU Link DLLs appear as ‘<OS>-<ECU Link>’ choices in the RTA-TRACE Client
connection setup dialogue – the CAN ECU Link appears as ‘OS-TCEL’.

The ECU Link can be configured either at the Server or the Client:

• Server Method: Right-click the RTA-TRACE Server icon in the System
Tray. Click the Properties menu item and choose the relevant
operatingsystem-TCEL menu item. Changes to the settings take effect
when you click OK to close the dialog box.

• Client Method: Choose File > Configure Connection… . A dialog
appears showing the configurable options. Changes take effect when
the OK button is clicked.

The configuration options in both cases allow the CAN interface, the CAN
frame-set, and the bus bitrate to be set.

16 Usage

4.2

Configuration files must have a .h extension and be placed in the <RTA-
TRACE installation directory>\TCEL_config\ directory. The
directory is re-read every time the configure-dialog is opened.

(For example, the above dialog box is the result of there being a configuration
file called config.h in the …\TCEL_config directory)

Usage 17

5.1

5 Target Examples

The supplied software comprises a device driver (CAN_dd.c) with two
adaptation layer variations, these are:

• Single CAN frame used for trace data, block-serial ELL (TCEL_s.c);

• Multiple CAN frames used for trace data, block-serial ELL (TCEL_m.c).

The API implemented by the TCEL_ files is specified in the RTA-OSEK ECU-
Link Guide.

Using a single CAN frame to transmit trace data is easy to set up, and has
minimal impact on any existing CAN frame-ID allocation scheme, but will not
provide a particularly high data-rate solution since there will be a response-
gap between the CAN controller becoming available for transmission, and the
ECU Link being able to supply data.

It is possible to attain a higher data-rate by using multiple slots in the CAN
controller in conjunction with multiple CAN frame IDs. Since the CAN protocol
has a well-defined priority scheme, it is possible to load trace-data into
multiple CAN frames (highest priority frame ID first) and let the CAN controller
transmit them back-to-back.

For the examples, the same device-driver has been used. To port the examples
to a different target, the device driver is the only element which will have to
be re-written if the same device-driver API is implemented.

5.1 Basic steps

For this walkthrough, we will assume that you have an application with
tracing enabled and are using the RS232 example drivers supplied with RTA-
TRACE. This stage can be reached by following the steps described in the
RTA-TRACE Getting Started Guide.

For simplicity, we are also assuming that this process is being carried out using
the default configuration (RTA-OSEK/Diab MPC56x) built for a MPC563.

The following example will result in a single CAN frame identifier being used
to transfer data.

1. Copy the following files from the TCEL target software directory to the
application directory currently containing the RTrs232.c file:

• CAN_dd.c

• CAN_dd.h

• TCEL_s.c

• TCEL_m.c

• config_s.h

• config_m.h

• M563HEADER.zip

2. Modify the configuration structure in osTraceCommInitTarget()
(In TCEL_s.c) appropriately. The default configuration (contained in
the cfg_block structure) assumes a 40MHz system clock and a

Target Examples 19

5.
1

required bit rate of 500kbit/s. The remaining parameters of the
configuration structure refer to CAN parameters that are fully
described in the CAN 2.0B specification document from Robert Bosch.

3. Change your build process, removing RTrs232.c, and adding
compilation of CAN_dd.c and TCEL_s.c;

4. Change the ELL library in your build script from RTAserbyt to
RTAserblk. (if using the OS Instrumenting Kit, build RTutd.c in
block-mode by ensuring BLOCK_MODE is defined at compilation).

5. If the M563HEADER file has not already been installed, unpack
M563HEADER.zip so that the subdirectory M563HEADER exists
within the application directory (if you require the header files
elsewhere, then can_dd.h will need to be updated to reflect the
location of M563HEADER).

6. Build the application.

7. The application can now be run. The supplied configuration file
(config_s.h) will generate CAN frames of up to 8 bytes with the
standard identifier 0x123.

8. Copy the config_*.h files into the <RTA-TRACE installation
directory>\TCEL_config\ directory, and start RTA-TRACE, using
the <OS>-TCEL configuration.

9. Ensure that the connection is configured correctly (either by selecting
Configure Connection… from the File menu, or by using the
Properties > <OS>-TCEL popup menu from the RTA-TRACE Server
taskbar icon) to the correct interface, the correct bit rate, and the
correct frame-set (config_s).

10. Trace data should now be visible. If there is no data visible, check the
diagnostic windows for the Server and <OS>-TCEL link.

5.1.1 Adaptation layer details (TCEL_s)

The single-frame adaptation layer (TCEL_s.c) allocates an 8 byte buffer for
the CAN frame data which is filled by the ELL. When the ELL fills the buffer (or
runs out of data) it makes a call to osTraceCommTxBlock() with the
number of bytes to send. The function then simply calls the device driver
function canTxMsg() with the parameters set to send a frame with the ID
0x123 (using the macro defined in the configuration file) from the first slot in
the CAN controller.

The implementation of osTraceCommTxReady() calls canStatus() if a
CAN frame recently been sent, returning non-zero if the slot status is
CAN_SLOTEMPTY. If a CAN frame has not been sent recently, non-zero is
returned.

20 Target Examples

5.2

5.2 Customization

5.2.1 Using multiple CAN frames to carry trace data

The example described above uses a single CAN frame to transfer trace data.
It is possible to achieve a greater data throughput by using multiple CAN
frames.

In the above example, the multi-frame adaptation layer can be used instead of
the single frame version by changing TCEL_s.c to TCEL_m.c. This process
will also change the configuration file used (to config_m.h).

Note: The supplied TCEL_m.c expects LD_CAN_FRAMES to be defined with
the highest priority (lowest number) CAN ID first. Failure to maintain this order
will result in trace data being corrupted since the data frames will be
transmitted out-of-order.

5.2.2 Adaptation layer details (TCEL_m)

The multi-frame adaptation layer (TCEL_s.c) allocates a buffer for the CAN
frame data which is filled by the ELL. The size of the buffer is given by the
number of CAN frames in use (taken from the configuration file) multiplied by
the size of each CAN frame (specified within TCEL_m.c). When the ELL fills
the buffer (or runs out of data) it makes a call to osTraceCommTxBlock()
with the number of bytes to send. The function then calls the device driver
function canTxMsg() a number of times, with the parameters set to send a
set of frames with the IDs defined in the configuration file. Multiple slots in
the CAN controller are used (one slot per CAN frame) which means that once
the frames have been written, the CAN controller itself is responsible for
sending the frames onto the bus as quickly as possible.

The implementation of osTraceCommTxReady() calls canStatus() if a
CAN frame recently been sent, returning non-zero if the slot status is
CAN_SLOTEMPTY. If a CAN frame has not been sent recently, non-zero is
returned.

5.2.3 Modifying the Device Driver

For targets where the supplied CAN device driver is not appropriate, it will be
necessary to re-write it. See Section 6 for a description of the device driver
functionality. Maintaining the same device-driver API will mean that the TCEL_
layers will not need to change.

5.2.4 Using a third-party CAN Device driver

The simple device-driver supplied is intended to be a generic implementation.
Conversion of either TCEL_s.c or TCEL_m.c to use a different device-driver

Target Examples 21

5.
2

should be straightforward. Refer to Section 6 for further details of the
supplied device driver.

22 Target Examples

6.1

6 Device Driver reference

The device driver supplied presents the following simple API to the adaptation
layer.

6.1 Required Types

Certain types are used by the CAN device driver which must be supplied by
the OS or user code. The default software configuration (for RTA-OSEK) uses
the RTA-OSEK include file ostarget.h to define these types.

The required types are as follows:

UInt32Type An unsigned 32 bit type

ByteType An unsigned 8 bit type

6.2 Defined types

6.2.1 canStatusType

The device driver calls each return a status code. The code is defined as
follows:

/* Status return values for CAN Device driver calls
 */
typedef enum {
 CAN_OK = 0,
 CAN_UNINIT,
 CAN_SLOTBUSY,
 CAN_SLOTEMPTY,
 CAN_SLOTNUM,
 CAN_ERROR = 0xFF
} canStatusType;

The meaning of each return code is described with each API call.

Device Driver reference 23

6.
3

6.2.2 canConfigType

To configure the CAN interface, the following structure exists which
encapsulates the configuration data necessary for a CAN controller. The
names of the variables are as specified in the CAN 2.0B specification
document.

/* Configuration data block for
 * CAN Device initialization
 */
typedef struct {
 UInt32Type sysclock;
 UInt32Type bitrate;
 ByteType propseg;
 ByteType pseg1;
 ByteType pseg2;
 ByteType rjw;
 ByteType tx_slots;
} canConfigType;

Some knowledge of the CAN controller in use will be necessary to ensure that
a compatible set of parameters are specified. For the supplied system, bit rates
of 1Mbit, 500kbit, 250kbit, 125kbit, and 62.5kbit are achievable (simple
factors of two from the default setting) simply by changing the bitrate
element. Other bit rates or using a different system clock rate may affect the
rates available.

Please refer to the manual for your CAN controller if specifying custom
bitrates.

6.3 API reference

In the following reference, CAN controller slots are numbered from zero.

6.3.1 canInit

Prototype canStatusType canInit(

 canConfigType *config)

Description This function is responsible for initializing the CAN device
driver.

It is required to initialize the CAN controller to a given bit
rate as well as set up a specified number of controller slots
for transmission.

For the supplied device driver, the initialization code

24 Device Driver reference

6.3

calculates the number of time-quanta per bit, and based
on that value and the requested bit rate, derives a prescaler
value in order to generate a suitable clock from the given
system clock frequency. The function then marks the
requested number of controller slots suitable for use as
transmit slots.

Return CAN_OK is returned if initialization was successful,
CAN_ERROR otherwise.

6.3.2 canTxMsg

Prototype canStatusType canTxMsg(

 ByteType slotNum,

 UInt32Type msgId,

 ByteType *data,

 ByteType dataLength)

Description This function transmits a CAN message.

slotNum contains the slot used for transmission of this
frame. The number of slots available will vary between
CAN controllers, CAN_ERROR is returned if the slot does
not exist.

msgId contains the full frame Identifier including RTR,
SRR, and IDE flags (where applicable). This means that a
standard identifier is 12 bits long (11 bit ID + RTR bit), and
an extended identifier is 32 bits long (29 bit ID + RTR, SRR,
IDE bits). Standard identifiers are contained in the least-
significant 12 bits. Helper macros are supplied in
CAN_dd.h which pack a given frame ID into a form
suitable for use in this argument.

data points to the data block which makes up the frame
body. This will contain between zero and eight bytes.

dataLength is the length of the data block pointed to by
data. If dataLength is greater than 8 bytes, only the first
eight bytes are transmitted.

Return CAN_OK when the frame has been successfully transferred
to the controller;

CAN_SLOTNUM if the specified is not valid.

Device Driver reference 25

6.
3

6.3.3 canStatus

Prototype canStatusType canStatus(

 ByteType SlotNum)

Description This call returns the status of the transmit CAN controller
slot specified with SlotNum.

Return CAN_SLOTNUM if the specified slot is not valid;

CAN_UNINIT if the controller has not yet been initialized;

CAN_SLOTBUSY if the slot is currently in use;

CAN_SLOTEMPTY if the slot is empty.

26 Device Driver reference

Support
For product support, please contact your local ETAS representative.

Office locations and contact details can be found on the ETAS Group website
www.etasgroup.com.

Support 27

	Contact Details
	About this Manual
	Who Should Read this Manual?
	Document Conventions

	What is RTA-TCEL?
	RTA-TCEL package contents

	Installing RTA-TCEL
	Host PC
	Target Software

	Usage
	Target software
	Frame configuration

	Configuring the RTA-TRACE Server

	Target Examples
	Basic steps
	Adaptation layer details (TCEL_s)

	Customization
	Using multiple CAN frames to carry trace data
	Adaptation layer details (TCEL_m)
	Modifying the Device Driver
	Using a third-party CAN Device driver

	Device Driver reference
	Required Types
	Defined types
	canStatusType
	canConfigType

	API reference
	canInit
	canTxMsg
	canStatus

	Support

