

ETAS LABCAR-OPERATOR V5.4.13

Schnelleinstieg

Copyright

Die Angaben in diesem Schriftstück dürfen nicht ohne gesonderte Mitteilung der ETAS GmbH geändert werden. Des Weiteren geht die ETAS GmbH mit diesem Schriftstück keine weiteren Verpflichtungen ein. Die darin dargestellte Software wird auf Basis eines allgemeinen Lizenzvertrages oder einer Einzellizenz geliefert. Benutzung und Vervielfältigung ist nur in Übereinstimmung mit den vertraglichen Abmachungen gestattet.

Unter keinen Umständen darf ein Teil dieser Veröffentlichung in irgendeiner Form ohne schriftliche Genehmigung der ETAS GmbH kopiert, vervielfältigt, in einem Retrievalsystem gespeichert oder in eine andere Sprache übersetzt werden.

© Copyright 2022 ETAS GmbH, Stuttgart

Die verwendeten Bezeichnungen und Namen sind Warenzeichen oder Handelsnamen ihrer entsprechenden Eigentümer.

LABCAR-OPERATOR V5.4.13 - Schnelleinstieg R01 DE - 01.2022

ETAS

Inhalt

1	Über dieses Dokument			
1.1	Klassifizierung von Warnhinweisen			
1.2	Darstellung von Handlungsanweisungen	. 6		
1.3	Typografische Konventionen			
1.4	Darstellung unterstützender Informationen			
1.5	Datenschutzhinweise	. 7 . 8		
1.6	Die Handbücher zu LABCAR-OPERATOR V5.4.13	. 8		
2	LABCAR-OPERATOR – Eine Übersicht	9		
2.1	Anforderungen an das Testsystem	. 9		
	2.1.1 Entwicklung von Controllerfunktionalität und deren Validierung2.1.2 Die allgemeine Architektur eines Testsystems			
2.2	LABCAR-OPERATOR			
	2.2.1 Die Komponenten von LABCAR-OPERATOR V5.4.13			
	2.2.3 ETAS Experiment Environment			
	2.2.4 Migration von älteren Projekten (ab V3.2.x)	19		
3	Installation	21		
3.1	Vorbereitung			
	3.1.1 Lieferumfang			
	3.1.3 Weitere Softwarevoraussetzungen	22		
	3.1.4 Benutzerrechte	23		
3.2	Programminstallation			
	3.2.1Startmenü3.2.2Programmversionen auswählen			
3.3	Lizenzierung			
	3.3.1 LABCAR-Lizenzmodelle			
3.4	HSP Update Tool	31		
3.5	Die Netzwerkverbindung zum Real-Time PC	32		
4	Tutorial	33		
4.1	Das Modell "IdleController"	33		
4.2	Erstellen des LABCAR-OPERATOR-Projekts			
4.3	Messwerte anzeigen und Parameter verstellen			
4.4	Hardware konfigurieren			
4.5	Inport hinzufügen51			
4.6	Signale im Connection Manager verbinden			
4.7	Konfiguration des Echtzeit-Betriebssystems			

ETAS

4.8	Experiment ausführen 5		57
4.9	Aufzeichnen mit dem Datalogger		62
5	ETAS Network Manager		68
5.1	Übersicht6		
5.2	ETAS-Hardware-Adressierung6		
5.3	Netzwe 5.3.1 5.3.2 5.3.3	Art der Netzwerkadapter-Adressierung	69 70
5.4	Bediend 5.4.1 5.4.2 5.4.3	Scherfläche	71 73
5.5	Netzwe 5.5.1 5.5.2 5.5.3	("Netzwerkeinstellungen für ETAS Hardware (Seite 4)") erkadressen für ETAS-Hardware konfigurieren Netzwerkadapter manuell konfigurieren Automatische Konfiguration von Netzwerkadaptern für ETAS-Hardware 77 APIPA in der Registrierung aktivieren	75 75 e .
6		tinformationen	
	Index .		81

Über dieses Dokument

Dieses Dokument richtet sich an Fachpersonal in den Bereichen Entwicklung und Test von Kfz-Steuergeräten. Fachwissen im Bereich Mess- und Steuergerätetechnik wird vorausgesetzt.

Dieses Dokument enthält Informationen zum Einstieg in die Arbeit mit LABCAR-OPERATOR V5.4.13.

Das Handbuch besteht aus folgenden Kapiteln:

- "Über dieses Dokument" auf Seite 5
 Dieses Kapitel
- "LABCAR-OPERATOR Eine Übersicht" auf Seite 9

In diesem Kapitel erhalten Sie einen Überblick über die Anforderungen an Testsysteme für Controller im Automotive-Bereich und die daraus folgende Architektur von LABCAR-OPERATOR und dessen Komponenten.

"Installation" auf Seite 21

Dieses Kapitel enthält Informationen über Lieferumfang, Hard- und Softwarevoraussetzungen für die Installation und die Vorbereitung der Installation.

"Tutorial" auf Seite 33

In diesem Kapitel wird anhand eines einfachen Beispiels beschrieben, wie Sie ein LABCAR-OPERATOR Projekt erstellen und mit diesem arbeiten.

"ETAS Network Manager" auf Seite 68

Dieses Kapitel beschreibt den ETAS Network Manager, der Sie bei der Adressierung der ETAS-Hardware in Ihrem Netzwerk unterstützt.

1.1 Klassifizierung von Warnhinweisen

Die hier verwendeten Warnhinweise warnen vor Gefahren, die zu Personenoder Sachschäden führen können:

GEFAHR

kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNUNG

kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

kennzeichnet eine gefährliche Situation mit geringem Risiko, die zu leichten oder mittelschweren Verletzungen führen kann, wenn sie nicht vermieden wird.

HINWEIS

kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

1.2 Darstellung von Handlungsanweisungen

Das zu erreichende Ziel wird in der Überschrift definiert. Die dafür notwendigen Handlungsschritte werden in einer Schritt-für-Schritt-Anleitung aufgeführt:

Zieldefinition

- 1. Schritt 1
- 2. Schritt 2
- 3. Schritt 3
- > Resultat

1.3 Typografische Konventionen

Software

OCI_CANTxMessage msg0 =	Code-Ausschnitte werden in der Schriftart Courier dargestellt. Die Bedeutung und Verwendung von Befeh- len erfolgen durch die Erklärungen in den Kommentaren. Die Kommentare werden dabei in der entsprechenden Syntax darge- stellt.
Wählen Sie Datei → Öffnen .	Menübefehle werden fett dargestellt.
Klicken Sie OK .	Schaltflächen werden fett dargestellt.
Drücken Sie <eingabe>.</eingabe>	Tastaturbefehle werden in spitzen Klammern, in Kapitälchen dargestellt.
Das Dialogfenster "Datei öffnen" erscheint.	Namen von Programmfenstern, Dialogfenstern, Feldern u.ä. werden in Anführungszeichen gesetzt.
Wählen Sie die Datei setup.exe aus.	Text in Auswahllisten, Programmcode sowie Pfad- und Dateinamen werden in der Schrift- art Courier dargestellt.
Eine Konvertierung zwischen den Datentypen logisch und arithmetisch ist <i>nicht</i> möglich.	Inhaltliche Hervorhebungen und neu eingeführte Begriffe werden <i>kursiv</i> gesetzt.

1.4 Darstellung unterstützender Informationen

INFO

Beinhaltet zusätzliche unterstützende Informationen.

1.5 Datenschutzhinweise

1.5.1 Datenverarbeitung des LABCAR-OPERATOR V5.4.13

Bitte beachten Sie, dass bei Nutzung des vorliegenden Produkts LABCAR-OPE-RATOR V5.4.13 personenbezogene Daten verarbeitet werden.

INFO

Der Erwerber des LABCAR-OPERATOR V5.4.13 ist gemäß Art. 4 Nr. 7 der Datenschutzgrundverordnung (DSGVO) für die rechtskonforme Verarbeitung der Daten verantwortlich.

Die ETAS GmbH haftet nicht als Hersteller für etwaiges Fehlverhalten im Umgang mit diesen Daten.

1.5.2 Daten und Datenkategorien

Bei Verwendung des ETAS License Managers in Kombination mit User-based Licenses werden insbesondere folgende personenbezogene Daten oder Datenkategorien zu Zwecken der Lizenzverwaltung erfasst:

Kommunikationsdaten: IP-Adresse

Benutzerdaten: UserID

1.5.3 Technische und organisatorische Maßnahmen

Das vorliegende Produkt LABCAR-OPERATOR V5.4.13 führt keine Verschlüsselung der erfassten personenbezogenen Daten durch.

Bitte stellen Sie die Datensicherheit der aufgezeichneten Daten durch geeignete technische oder organisatorische Maßnahmen ihres IT-Systems sicher, z.B. durch klassischen Diebstahl- und Zugangsschutz auf die Hardware.

1.6 Die Handbücher zu LABCAR-OPERATOR V5.4.13

Folgende Handbücher zu LABCAR-OPERATOR V5.4.13 sind erhältlich:

LABCAR-OPERATOR V5.4.13 - Schnelleinstieg

Dieses Handbuch

LABCAR-OPERATOR V5.4.13 - Benutzerhandbuch

In diesem Handbuch finden Sie eine vollständige Beschreibung aller Funktionen von LABCAR-OPERATOR V5.4.13 und Sie erhalten Anleitungen zur Bedienung dieser Funktionen.

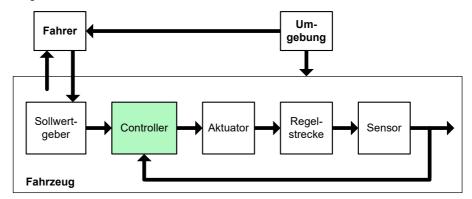
· LABCAR-RTC V5.4.13 - Benutzerhandbuch

In diesem Handbuch wird Erstellung und Parametrisierung von Hardwarekonfigurationen für HiL-Testsysteme beschrieben.

Die Handbücher befinden sich als PDF-Dateien auf Ihrer Installations-DVD und sind zudem über das Menü **Help** zugänglich. Über den Index, Volltextsuche und Hypertextlinks sind relevante Stellen schnell und komfortabel zu finden.

2 LABCAR-OPERATOR - Eine Übersicht

In diesem Kapitel erhalten Sie einen Überblick über die Anforderungen an Testsysteme für Controller im Automotive-Bereich und die daraus folgende Architektur von LABCAR-OPERATOR und dessen Komponenten.


2.1 Anforderungen an das Testsystem

Dieser Abschnitt beschäftigt sich mit den Anforderungen an ein Testsystem und der daraus folgenden Architektur desselben. Unter einem Testsystem wird ein System verstanden, das zur Validierung und Verifikation des mit "Controller" bezeichneten Objektes dient.

2.1.1 Entwicklung von Controllerfunktionalität und deren Validierung

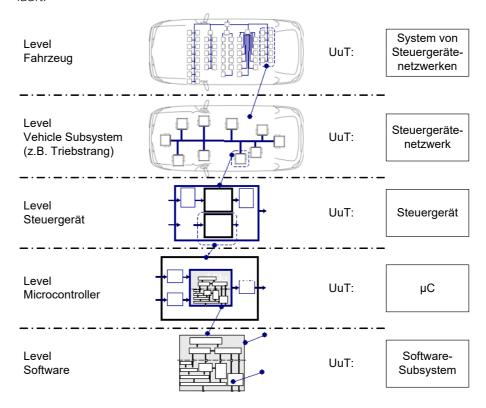
Abb. 2-1 zeigt den Controller, wie er im System Fahrzeug eingebettet ist und mit diesem wechselwirkt. Hinzu kommen im Gesamtmodell die Wechselwirkungen des Fahrzeugs (Vehicle) mit dem Fahrer (Driver) und diejenigen von Fahrer und Fahrzeug mit der Umwelt (Environment).

Der mit "Controller" bezeichnete Block in der regelungstechnischen Darstellung in Abb. 2-1 beinhaltet im allgemeinen die Steueralgorithmen, die Überwachungs- und Diagnosefunktionen. Er kann zudem Schnittstellen zur Außenwelt haben, die nicht mit den übrigen Komponenten in Wechselwirkung stehen, z.B. Diagnose und Mess- und Verstellschnittstellen.

Abb. 2-1 Fahrer, Fahrzeug und Umgebung (DVE)

Eine wichtige Voraussetzung für den Test von Controllerfunktionalität ist die Simulation von Fahrer, Fahrzeug und Umgebung (Driver, Vehicle, Environment, kurz: DVE). Zudem müssen Werkzeuge vorhanden sein, die systematische und automatisierte Tests ermöglichen.

Weiterhin muss berücksichtigt werden, dass beim Controller (im Weiteren allgemeiner "Unit under Test" (UuT) genannt) während seiner Entwicklung eine zunehmende Zahl von "Schnittstellen" bedient werden muss und Teile der DVE-Simulation durch reale Komponenten (Aktoren, Sensoren) ersetzt werden.


Besteht die UuT anfangs nur aus Steuerungsalgorithmen, kommen mit der Zeit weitere Schnittstellen hinzu:

- · Überwachung und Diagnose
- Verstellen

Die UuT ist im Laufe ihrer Fortentwicklung insbesondere bezüglich seiner Komplexität grossen Änderungen unterworfen. Es beginnt beim Modell einer Teilfunktionalität und reicht (über das physikalische Steuergerät) zu einem kompletten Steuergeräteverbund.

Die Evolution der UuT im Entwicklungsprozess

Abb. 2-2 zeigt die Komplexitätsstufen, die die UuT bei ihrer Entwicklung durchläuft.

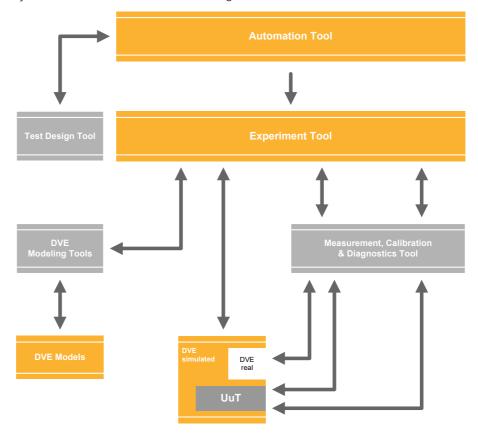


Abb. 2-2 Die Evolution der UuT im Entwicklungsprozess

- Softwarekomponente und -teilsystem
 In dieser Entwicklungsstufe besteht die UuT aus einem in Software geschriebenen Modell einer Controllerfunktionalität.
- · Microcontroller und Steuergerät
 - Auf den nächsten beiden Stufen besteht die UuT aus einem Hardwarecontroller oder einem kompletten Steuergerät. Hier ist die UuT entweder eine auf einem Zieltarget (Microcontroller) realisierte Software oder bereits ein physikalisch vorhandenes Steuergerät.
- Steuergeräteverbund eines Fahrzeugteilsystems oder des Gesamtfahrzeuges
 - Auf der obersten Stufe besteht die UuT aus Verbünden von Steuergeräten, die Teilsysteme des Fahrzeuges oder das ganze Fahrzeug steuern.

2.1.2 Die allgemeine Architektur eines Testsystems

Damit ergibt sich die in Abb. 2-3 gezeigte allgemeine Architektur eines Testsystems für die Controllerentwicklung.

Abb. 2-3 Allgemeine Architektur eines Validierungssystems

- Im Mittelpunkt steht das **Experiment**, das sich aus der UuT und der Simulation von Fahrer, Fahrzeug und Umgebung (DVE) zusammensetzt.
- Dieses Experiment wird von der **Experimentiersoftware** verwaltet, gesteuert und mit einer Instrumentierung versehen.
- Üblicherweise ist diese Experimentiersoftware über ein Automatisierungswerkzeug ansprechbar, das komplexe automatisierte Tests und Testauswertung ermöglicht.
- Zur Erstellung und Bearbeitung des DVE-Modells oder modellierter Controllerfunktionalität kommt ein Modellierwerkzeug zum Einsatz.
- Mess- und Kalibrierwerkzeuge ermöglichen den direkten Zugriff auf die UuT.
- Der Zugriff auf Diagnoseschnittstellen der UuT erfolgt mit einem Diagnosewerkzeug.

Diese Architektur stellt alle typischerweise erforderlichen Funktionalitäten eines Testsystems zur Verwaltung und Steuerung des Experiments, zur Anpassung des Modells an die sich verändernden Entwicklungsstufen der UuT und für den Zugriff auf Schnittstellen der UuT zur Verfügung.

2.2 LABCAR-OPERATOR

LABCAR-OPERATOR wurde anhand dieser oben beschriebenen grundlegenden Anforderungen an ein System zur Entwicklung und Validierung von Controllerfunktionalität entwickelt.

Seine Hauptfunktionen sind:

- Integrationsplattform (LABCAR-IP) für Funktionsmodule der verschiedensten Art:
 - MATLAB/Simulink-Modelle
 - ASCET Module
 - I/O-Hardwaremodule
 - C-Code Module
 - CAN-, LIN- und FlexRay-Module
 - Netzwerk-Module
 - FiL-Module
 - Module für Open-Loop-Zugriff und Signalbehandlung
- ETAS Experiment Environment (ETAS EE) für Hardware-in-the-Loop-Anwendungen mit
 - umfangreichen Instrumentierungsmöglichkeiten
 - Echtzeitsignalgenerator und Datenlogger
 - Visualisierung des Datenflusses vom Steuergerät über I/O-Hardware, Sensor-/Aktuator-Konfiguration und Simulationsmodell
 - Zusatzprodukte zum Zugriff auf das Steuergerät über Mess- und Verstell- oder Diagnoseschnittstellen (INCA)
- Fernsteuerung von Tests mit LABCAR-AUTOMATION

2.2.1 Die Komponenten von LABCAR-OPERATOR V5.4.13

Abb. 2-4 zeigt den Aufbau und die Bestandteile von LABCAR-OPERATOR V5.4.13.

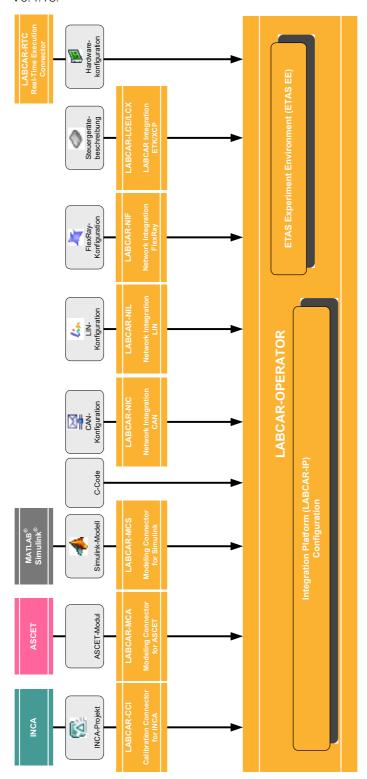


Abb. 2-4 Architektur von LABCAR-OPERATOR V5.4.13

Im Folgenden werden die in Abb. 2-4 gezeigten Add-Ons zu LABCAR-OPERATOR V5.4.13 beschrieben.

2.2.1.1 LABCAR-MCA V5.4.13 (Modeling Connector for ASCET)

In LABCAR-OPERATOR V5.4.13 können nun auch ASCET-Projekte als Module integriert werden, die zuvor aus ASCET (V6.0.1) für das Target "RTPC" exportiert wurden. Nach der Codegenerierung in LABCAR-IP stehen Ihnen dann die Messgrößen und Parameter in der Experimentierumgebung ETAS EE zur Verfügung.

2.2.1.2 LABCAR-MCS V5.4.13 (Modeling Connector for Simulink)

Mit dem Modeling Connector for Simulink können Simulink-Modelle direkt - mit nur minimalsten Erweiterungen am Modell - eingesetzt werden. Die Verwaltung eines Projektes findet vollständig in LABCAR-OPERATOR statt. Hier werden alle Projektinformationen und -konfigurationen erstellt und gespeichert.

Das Simulink-Modell kann sowohl für Model-in-the-Loop- als auch für Hardware-in-the-Loop-Experimente verwendet werden. Für beide Anwendungsfälle wird das Modell mit sogenannten **LABCAR Inports** und **LABCAR Outports** versehen, über die Modellsignale untereinander als auch inbesondere Modell- und Hardwaresignale verbunden werden können.

Für HiL-Anwendungen steht dafür der **Connection Manager** zur Verfügung. Hier werden dem Anwender sowohl alle Ein- und Ausgänge des Simulink-Modells (sofern sie mit LABCAR Inports und Outports versehen worden sind) als auch die Signale der konfigurierten Hardware sichtbar gemacht. Die Verbindungen zwischen Modell und Hardware werden hier erstellt und bearbeitet.

Diese Konfiguration wird im Projektzusammenhang von LABCAR-OPERATOR gespeichert - das Simulink-Modell bleibt von der jeweiligen Hardwarekonfiguration unberührt. Damit können Verbindungen zur Hardware beliebig geändert werden, ohne dass der Modell-Code erneut generiert werden muss. Lediglich der Code für die geänderte Hardware oder für die geänderten Verbindungen im Connection Manager müssen neu erstellt werden.

Zudem steht dem Anwender eine Default-OS-Konfiguration zur Verfügung -Änderungen an OS-Konfigurationen wird eine Aufgabe nur für Experten, die im **OS Configurator** durchgeführt wird.

2.2.1.3 LABCAR-RTC V5.4.13 (Real-Time Execution Connector)

Die Installation von LABCAR-RTC V5.4.13 ist notwendig, wenn Sie LABCAR-OPERATOR V5.4.13 zusammen mit Hardwarekomponenten in Echtzeitexperimenten einsetzen wollen.

Der Real-Time Execution Connector dient der Integration und Parametrisierung von Hardwarekomponenten, die in HiL-Tests eingesetzt werden. Zudem kann im Online-Modus der Signalfluss durch die Hardwarekanäle visualisiert werden und Hardwareeinstellungen angepasst werden. Die gespeicherten Hardwareinformationen werden in der LABCAR-OPERATOR-Umgebung angezeigt.

2.2.1.4 LABCAR-CCI V5.4.13 (Calibration Connector for INCA)

LABCAR-CCI V5.4.13 gibt dem Anwender die Möglichkeit, das LABCAR-Experiment mit einem INCA-Projekt zu verbinden, um im Experiment auf INCA-Daten zugreifen zu können - INCA-Labels des Experiments stehen zur Visualisierung in LABCAR-OPERATOR V5.4.13 zur Verfügung.

Zusammen mit den ETAS Mess- und Verstellwerkzeugen ist damit ein direkter Steuergerätezugriff möglich - zudem stehen Schnittstellen zur Fernsteuerung von INCA über LABCAR-OPERATOR V5.4.13 zur Verfügung.

Eine INCA-Lizenz ist im Produktumfang nicht enthalten.

2.2.1.5 LABCAR-NIC V5.4.13 (Network Integration CAN)

Mit LABCAR-NIC V5.4.13 haben Sie die Möglichkeit, einen simulierten CAN-Restbus zu konfigurieren und im Experiment mit diesem CAN-Botschaften auszutauschen.

2.2.1.6 LABCAR-NIL V5.4.13 (Network Integration LIN)

Mit LABCAR-NIL V5.4.13 haben Sie die Möglichkeit, einen simulierten LIN-Restbus zu konfigurieren und im Experiment mit diesem LIN-Botschaften auszutauschen.

2.2.1.7 LABCAR-NIF V5.4.13 (Network Integration FlexRay)

LABCAR-NIF V5.4.13 erlaubt Ihnen, zuvor mittels EB tresos Busmirror extrahierte Daten in Ihr LABCAR-OPERATOR-Projekt zu integrieren, um mit den Signalen des FlexRay-Moduls zu arbeiten.

2.2.1.8 LABCAR-LCE V5.4.13 (LABCAR Integration ETK)

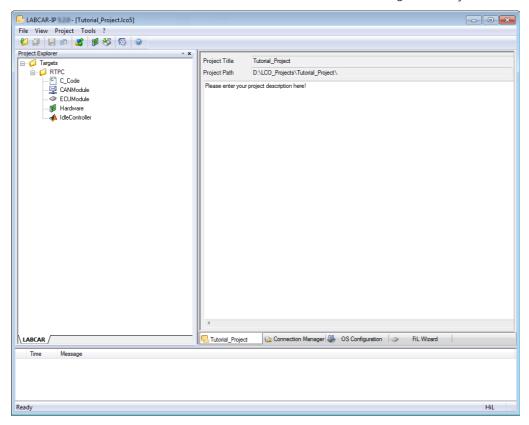
LABCAR-LCE V5.4.13 ermöglicht die Erstellung und Integration von FiL-Modulen. Bei einem FiL-System werden einige (oder alle) elektrischen Verbindungen umgangen und auf den Speicher des Steuergerätes direkt zugegriffen – dazu muss das Steuergerät mit einem ETK ausgerüstet sein.

2.2.1.9 LABCAR-LCX V5.4.13 (LABCAR Integration XCP)

LABCAR-LCX V5.4.13 ermöglicht die Erstellung und Integration von FiL-Modulen zum direkten Steuergerätezugriff via XETK oder XCP on CAN.

2.2.2 LABCAR-IP

Die Integrationsplattform von LABCAR-OPERATOR V5.4.13 dient hauptsächlich


- zum Import von Modulen unterschiedlicher Funktionalität in ein Projekt
- zur Konfiguration des I/O-Hardware-Moduls
- · zur Verbindung zwischen diesen Modulen und
- zur Erzeugung von Code für das Simulationstarget "RTPC"

Darüber hinaus werden hier

- die OS-Einstellungen für die Echtzeitsimulation vorgenommen und
- Signal Generator Sets für die Stimulation von Eingängen in Open-Loop-Experimenten erstellt

2.2.2.1 Die Bedienoberfläche

Die Bedienoberfläche von LABCAR-IP besteht aus den folgenden Objekten:

- Project Explorer, der alle Bestandteile des LABCAR-OPERATOR-Projektes enthält
- Hauptarbeitsbereich, der (über verschiedenene Register) die wichtigen Bestandteile von LABCAR-IP zugänglich macht:
 - Projektinformation
 - Connection Manager zur Verbindung von Signalen und zum Einfügung von Module zur Signalkonvertierung
 - CAN Editor zur Konfiguration der Restbus-Simulation (nur wenn LAB-CAR-NIC V5.4.13 installiert ist und das CAN-Modul geöffnet wurde)
 - LIN Editor zur Konfiguration der Restbus-Simulation (nur wenn LAB-CAR-NIL V5.4.13 installiert ist und das LIN-Modul geöffnet wurde)
 - FlexRay Editor zur Konfiguration der Restbus-Simulation (nur wenn LABCAR-NIF V5.4.13 installiert ist und das FlexRay-Modul geöffnet wurde)
 - **OS Settings** zur Konfiguration des Betriebssystems
 - FiL Wizard zur Konfiguration von Fil-Modulen
- Fenster "Messages" mit Informationen, Fehlermeldungen etc. zu Aktionen und zur angeschlossenen Hardware

2.2.2.2 Module

Ein Modul besteht aus:

- Signaleingängen
- Signalausgängen

- Funktionalität (in Form von Code)
- Messgrößen
- Parameter
- Prozesse, deren Ausführung in der Taskverwaltung des Echtzeitexperimentes geplant wird

Folgende Arten von Modulen sind in LABCAR-OPERATOR V5.4.13 verwendbar:

· ASCET-Modelle

ASCET-Modelle können mit LABCAR-MCA V5.4.13 eingebunden werden.

· Simulink-Modelle

Simulink-Modelle können mit LABCAR-MCS V5.4.13 eingebunden werden.

· C-Code-Module

Auch beliebiger benutzerspezifischer C-Code kann als Modul eingebunden werden.

CAN-Module

Module für die Restbus-Simulation können mit LABCAR-NIC V5.4.13 (Network Integration CAN) erstellt und bearbeitet werden.

· LIN-Module

Module für die Restbus-Simulation können mit LABCAR-NIL V5.4.13 (Network Integration LIN) erstellt und bearbeitet werden.

· Netzwerk-Module

Das Netzwerk-Modul stellt Konfigurationen unter Verwendung von verschiedenen Netzwerktypen für die Restbus-Simulation zur Verfügung.

· FlexRay-Module

Module für die Simulation eines FlexRay-Busses können mit LABCAR-NIF V5.4.13 (Network Integration FlexRay) integriert werden.

FiL-Module

Module für den Steuergerätezugriff über ETK/XETK können mit LAB-CAR-LCE V5.4.13 erstellt und integriert werden.

Hardware-Modul

Das bekannte RTIO-Modul zur Konfiguration der I/O-Hardware, erstellt und editierbar mit LABCAR-RTC V5.4.13 (Real-Time Execution Connector).

· Module zur Signalkonvertierung

In LABCAR-OPERATOR V5.4.13 neu eingeführt, wird hiermit die Modellierung von Sensoren/Aktoren im Open-Loop-Betrieb wesentlich vereinfacht.

2.2.3 ETAS Experiment Environment

ETAS Experiment Environment (ETAS EE) ist die Umgebung zur Konfiguration (Instrumentierung, Parametrierung etc.) und Ausführung von Experimenten.

Im Detail bietet die neue Experimentierumgebung folgende Möglichkeiten:

 Übersichtlicher Zugriff auf alle Parameter und Messgrößen durch Vereinigung von "Element List" und "Signal Center" im Fenster "Workspace Elements.

- Erstellen von Instrumentierungen zur Darstellung von Messgrößen und zur Änderung von Parametern des laufenden Experiments
- · Signalkonvertierung und Sensor/Aktormodellierung
- Verfolgung ("Tracing") von Signalpfaden
- · Datenaufzeichnung mit dem Datalogger
- · Stimulierung von Eingängen mit dem Signal Generator

2.2.3.1 Das Fenster "Workspace Elements"

In LABCAR-OPERATOR V5.4.13 sind die Element List und das Signal Center in einer einzigen Ansicht zusammengefügt, der Ansicht "Workspace Elements".

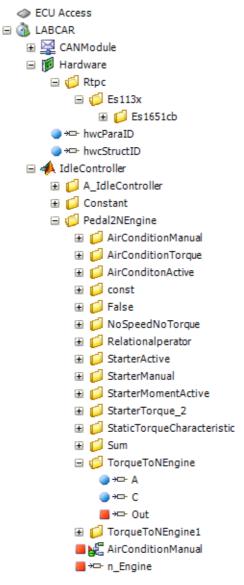


Abb. 2-5 Ausschnitt aus der Ansicht "Workspace Elements"

Hier hat der Anwender Zugriff auf

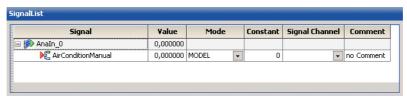
- Messgrößen
- Parameter
- Eingänge

- Ausgänge und
- Hardwarepins

des aktiven Experiments.

In dieser Ansicht können Sie auf einfache Art und Weise Signale, Parameter und Messgrößen und die Hierarchien der Module durchsuchen. Dabei hilft Ihnen auch die Filterfunktion und die Suchfunktion des Fensters "Workspace Elements".

2.2.3.2 Instrumentierung


Die Palette der Instrumente für die Darstellung von Messgrößen und Eingabe von Parametern wurde erheblich erweitert – desweiteren wurde ein neues Echtzeitoszilloskop entwickelt.

2.2.3.3 Open-Loop-Betrieb und Signalbearbeitung

Die konsequente Vereinheitlichung der Bestandteile des HiL-Experimentes in Form von Modulen ermöglicht einen systematischen Eingriff in den Signalverlauf.

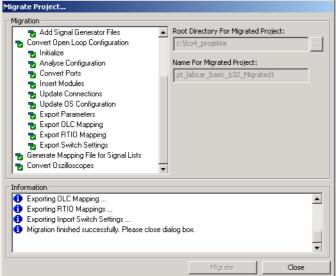
Generische Aktor/Sensor-Module (basierend auf C-Code-Modulen) können an jeder Stelle im Signalverlauf eingesetzt werden. Jeder Eingang kann dazu verwendet werden, die Signalkette aufzubrechen und den Eingang mit konstanten Werten oder Werten aus dem Signalgenerator zu stimulieren.

In ETAS EE gibt es zur Verwaltung, Verfolgung und Bearbeitung von Signalen das Instrument "Signal List".

Nach dem Hinzufügen eines Signals zur Signal List können hier folgende Aktionen durchgeführt werden:

- Verfolgen des Signalverlaufs
- Festlegung des Modus: Model, konstanter Wert oder Anschluss eines Signalgenerators für den Open-Loop-Betrieb.

2.2.4 Migration von älteren Projekten (ab V3.2.x)


Die Migration von Projekten, die mit LABCAR-OPERATOR V3.2.x und höher erstellt wurden, wurde bis LABCAR-OPERATOR V5.1.2 automatisch durchgeführt, ab Version V5.2.x ist dies nicht mehr möglich.

INFO

Wenn Sie ein solches Projekt mit LABCAR-OPERATOR V5.4.13 öffnen wollen, muss dieses zuvor mit der Version V5.1.x geöffnet, migriert und wieder gespeichert werden.

Das erfolgreich migrierte Projekt wird dann im zuvor gewählten Verzeichnis unter dem gewählten Namen abgelegt.

Einschränkungen

Die automatisierte Migration von Projekten funktioniert nicht, wenn

- das Projekt (LABCAR-OPERATOR V3.2.x) ein LABCAR-DEVELOPER-Projekt enthält
- bei Projekten mit Simulationstarget ES1130

Derartige Projekt müssen in LABCAR-OPERATOR V5.4.13 neu erstellt werden.

3 Installation

Dieses Kapitel enthält Informationen über Lieferumfang, Hard- und Softwarevoraussetzungen für die Installation und die Vorbereitung der Installation.

3.1 Vorbereitung

Überprüfen Sie den Lieferumfang auf Vollständigkeit und Ihren Rechner auf Übereinstimmung mit den Systemvoraussetzungen. Je nach verwendetem Betriebssystem und Netzwerkanbindung müssen Sie sicherstellen, dass Sie die erforderlichen Benutzerrechte haben.

INFO

Artefakte der LABCAR Software-Projekte beinhalten personenbezogene Daten (z.B. Nutzernamen des Erstellers oder Nutzers). Ein Beispiel sind Log-Dateien, die während der Laufzeit erstellt werden. Der Nutzer der Software ist für die Einhaltung (lokaler) Gesetze und Regularien – wie etwa Löschung personenbezogener Daten – verantwortlich.

3.1.1 Lieferumfang

Zum Lieferumfang von LABCAR-OPERATOR V5.4.13 gehören:

- LABCAR-OPERATOR V5.4.13 DVD-ROM
 - LABCAR-OPERATOR V5.4.13 Programmdateien
 - Das aktuelle Hardware Service Pack (HSP)
 - LABCAR-OPERATOR V5.4.13 Handbücher im PDF-Format
 - Handbücher zur aktuellen LABCAR-Hardware im PDF-Format
 - What's New, Release Notes und weitere aktuelle Dokumentation
- Das Handbuch "LABCAR-OPERATOR V5.4.13 Schnelleinstieg"
- Ein Dokument ("License Entitlement"), das beschreibt, wie Sie die Lizenzen für die erworbenen Softwarekomponenten erhalten.

3.1.2 Systemvoraussetzungen

Folgende Systemvoraussetzungen sind für den Betrieb von LABCAR-OPERA-TOR V5.4.13 erforderlich:

- Hardware:
 - Prozessor Intel Pentium Dual-Core 2 GHz oder besser
 - Hauptspeicher min. 4 GB; 8 GB empfohlen
 - Festplatte mit mindestens 20 GBSpeicherplatz (davon min 5 GB frei)
 - DVD-ROM-Laufwerk (für die Installation)
 - Grafikkarte kompatibel mit DirectX 9 oder h\u00f6her Aufl\u00f6sung 1280x1024, 16-Bit Farbe oder besser
 - Ethernetkarte (10/100BaseT)
- Betriebssysteme:
 - Windows 7 SP1 (32-Bit oder 64-Bit)
 - Windows 8.1 (64-Bit)

- Windows 10

Unterstützt werden folgende Sprachversionen der o.g. Betriebssysteme

- Englisch
- Deutsch
- Französisch
- Japanisch
- Koreanisch

3.1.3 Weitere Softwarevoraussetzungen

Die aktuelle Liste der für den Betrieb von LABCAR-OPERATOR V5.4.13 erforderlichen Softwareversionen finden Sie im Menü $? \rightarrow Help$ im Dokument "LABCAR-OPERATOR 5.x.y - Software Compatibility List".

3.1.4 Benutzerrechte

Beachten Sie bitte folgende Hinweise bezüglich der Benutzerrechte bei Installation und Betrieb von LABCAR-OPERATOR.

3.1.4.1 Notwendige Benutzerrechte bei der Installation

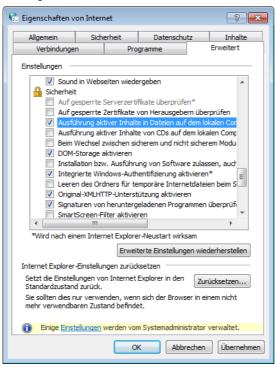
- Um LABCAR-OPERATOR-Produkte auf dem PC zu installieren, benötigen Sie die Benutzerrechte eines Administrators. Wenden Sie sich gegebenenfalls an Ihren Systemadministrator.
- Auf dem PC muss ein Verzeichnis für temporäre Dateien vorhanden sein (z.B. C:\TEMP), auf das alle Anwender Lese- und Schreibzugriff haben, die auf diesem PC mit LABCAR-OPERATOR arbeiten.

3.1.4.2 Notwendige Benutzerrechte beim Betrieb

 Um mit den Produkten von LABCAR-OPERATOR zu arbeiten, muss jeder Anwender das Recht "Anheben der Zeitplanungspriorität" vom Administrator erhalten. Wenn Sie bereits INCA installiert haben, haben Sie dies bei der Installation (siehe Abbildung) möglicherweise bereits für einige Anwender durchgeführt.

 Alle LABCAR-OPERATOR-Anwender müssen auf den Registrierungsschlüssel

"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\RNG"


Schreibzugriff haben und darüber hinaus vollen Zugriff auf den Schlüssel "HKEY_LOCAL_MACHINE\SOFTWARE\ETAS" und die Schlüssel aller Unterverzeichnisse haben.

 Alle Anwender von LABCAR-OPERATOR und der Standardbenutzer "Jeder" müssen volle Zugriffsrechte auf den Ordner \ETAS, dessen Unterverzeichnisse und auf die darin vorhandenen Dateien haben. Dies ist für die Codegenerierung mit dem GNU C-Compiler unbedingt erforderlich.

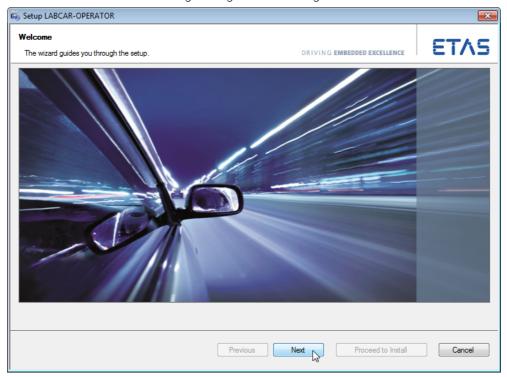
3.1.5 Darstellung von HTML-basierten Inhalten

Stellen Sie sicher, dass die Option "Ausführen aktiver Inhalte in Dateien auf dem lokalen Computer zulassen" aktiviert ist.

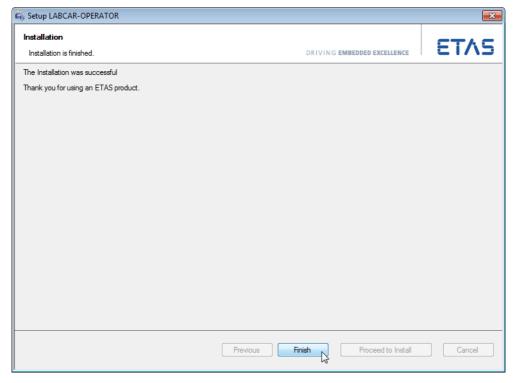
Sie finden diese Einstellungen in der Systemsteuerung unter "Internetoptionen" im Register "Erweitert".

3.2 Programminstallation

In diesem Abschnitt wird die Installation von LABCAR-OPERATOR V5.4.13 beschrieben.

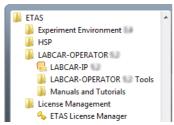

LABCAR-IP installieren

Legen Sie die Produkt-DVD in Ihr DVD-ROM-Laufwerk.
 Der DVD-Browser wird gestartet.


2. Wählen Sie

$\textbf{Installation} \rightarrow \textbf{Install LABCAR-OPERATOR}.$

Die Installation von HSP (Hardware Service Pack) können Sie später durchführen (siehe "HSP Update Tool" auf Seite 31). Das Begrüßungsfenster wird geöffnet.



- 3. Klicken Sie **Next** und folgen Sie den Anweisungen des Installationsassistenten.
- 4. Zum Abschluss der Installation klicken Sie Finish.

3.2.1 Startmenü

Der Startmenüordner Alle Programme \rightarrow ETAS \rightarrow LABCAR-OPERATOR X.Y enthält nach erfolgreicher Installation folgende Einträge:

LABCAR-IP

Startet die Integrationsplattform

LABCAR-OPERATOR Tools

Öffnet das LABCAR-OPERATOR-Verzeichnis \LCO Tools, in dem die folgenden Tools gestartet werden können:

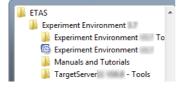
LABCAR-OPERATOR Version Selector

Damit kann zwischen den Versionen umgeschaltet werden (siehe "LABCAR-OPERATOR-Version auswählen" auf Seite 26).

MATLAB[®] Version Selector

Hiermit kann die zu verwendende MATLAB-Version gewählt werden (siehe "MATLAB-Version auswählen" auf Seite 27).

- RT-Plugin Builder


Startet eine Anwendung zur Erstellung von Realtime Plugins.

· Manuals and Tutorials

Öffnet ein Datei-Explorerfenster für \ProgramData\ETAS\
ETASManuals\, das wiederum einen Link zu den Handbüchern von LABCAR-OPERATOR und LABCAR Hardware enthält.

Der Startmenüordner Alle Programme \rightarrow ETAS \rightarrow

Experiment Environment X.Y enthält folgende Einträge:

Experiment Environment VX.Y Tools

Öffnet das Experiment Environment-Verzeichnis \EE Tools, in dem die folgenden Tools gestartet werden können:

Associate to INCA

Öffnet ein Dialogfenster, das ETAS EE mit einer bestimmten INCA-Version verknüpft (siehe "INCA-Version auswählen" auf Seite 27).

- Associate to RTA Trace

Öffnet ein Dialogfenster, das ETAS EE mit einer bestimmten Version von RTA Trace-Version verknüpft.

· Experiment Environment VX.Y

Startet die Experimentierumgebung ETAS EE

Manuals and Tutorials

Öffnet ein Datei-Explorerfenster für \ProgramData\ETAS\
ETASManuals\, das wiederum einen Link zur Online-Hilfe von ETAS EE enthält.

· TargetServernn Tools

Öffnet das Verzeichnis \ETAS\TargetServernn\Tools, in dem die folgenden Tools gestartet werden können:

Search for connected hardware

Der Target-Server wird gestartet und ein Suchvorgang nach angeschlossener Hardware durchgeführt.

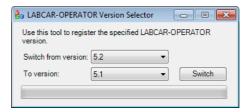
ETAS Network settings

Startet des ETAS Network Manager zur Konfiguration Ihrer Netzwerkkarte(n) für die ETAS Hardware und andere Netzwerke (siehe "ETAS Network Manager" auf Seite 68).

3.2.2 Programmversionen auswählen

Zum Abschluss der Installation sollten Sie noch für die im Umfeld von LABCAR-OPERATOR eingesetzte Software festlegen, welche Versionen verwendet werden sollen. Diese betrifft zum Einen die Version von LABCAR-OPERATOR selbst sowie die Version von Matlab/Simulink und INCA.

Für die aktuelle Liste der erforderlichen Softwareversionen lesen Sie das Kapitel "Weitere Softwarevoraussetzungen" auf Seite 22.


LABCAR-OPERATOR-Version auswählen

Falls Sie mehrere Versionen von LABCAR-OPERATOR installiert haben, können Sie die zu verwendende Version festlegen. Gehen Sie dazu wie folgt vor:

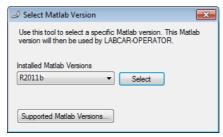
- 1. Falls LABCAR-IP geöffnet ist, schließen Sie das Programm.
- Wählen Sie im Start-Menü Alle Programme → ETAS → LABCAR-OPERATOR X.Y →

LABCAR-OPERATOR X.Y Tools →
LABCAR-OPERATOR VX.Y Tools →
LABCAR-OPERATOR Version Selector.

Der LABCAR-OPERATOR Version Selector wird geöffnet.

> 3. Wählen Sie die zukünftig zu verwendende Version und klicken Sie Switch.

Wenn der Wechsel erfolreich durchgeführt wurde, erhalten Sie folgende Bestätigung.


Verwenden Sie immer den LABCAR Version Selector der aktuellen Version von LABCAR-OPERATOR – ansonsten können doppelte Registry-Einträge zu Problemen führen.

MATLAB-Version auswählen

Falls Sie mehrere Versionen von Matlab/Simulink installiert haben, können Sie die (bei der Integration von Simulink-Modellen) zu verwendende Version festlegen. Gehen Sie dazu wie folgt vor:

> 1. Wählen Sie im Start-Menü **Alle Programme** → **ETAS** → LABCAR-OPERATOR X.Y \rightarrow LABCAR-OPERATOR VX.Y Tools \rightarrow Matlab Version Selector.

Das Fenster "Select Matlab Version" wird geöffnet.

- 2. Wählen Sie die zu verwendende Version aus der Liste "Installed Matlab Versions".
- 3. Um die von LABCAR-OPERATOR V5.4.13 unterstützten Versionen anzuzeigen, klicken Sie Supported Matlab Versions.
- 4. Um die Auswahl zu speichern, klicken Sie Select. Die erfolgreiche Auswahl wird bestätigt.
- 5. Klicken Sie **OK**, um den Matlab Version Selector zu verlassen.

INCA-Version auswählen

Falls Sie mehrere Versionen von INCA installiert haben, können Sie die (beim Zugriff auf INCA-Experimente mit LABCAR-CCI V5.4.13) zu verwendende Version festlegen. Diese Auswahl wird schon bei der Installation der Experimentierumgebung (ETAS EE) durchgeführt, kann aber jederzeit geändert werden. Gehen Sie dazu wie folgt vor:

Wählen Sie im Start-Menü Alle Programme → ETAS →
 Experiment Environment X.Y →
 Experiment Environment VX.Y Tools →
 Associate to INCA.

Das Fenster "Associate to INCA" wird geöffnet.

- 2. Wählen Sie die zu verwendende Version aus der Liste .
- Um die Auswahl zu speichern, klicken Sie Associate.
 Die Installation des ETAS Target Servers wird gestartet.
- 4. Folgen Sie den Anweisungen des Installationsassistenten.
- Geben Sie gegebenenfalls weitere Anwender an, die das Recht zum Anheben der Zeitplanungspriorität haben sollen.
 Nähere Informationen hierzu siehe "Notwendige Benutzerrechte beim Betrieb" auf Seite 22.

- 6. Klicken Sie Next.
- > Die Installation des Target Servers wird durchgeführt.

3.3 Lizenzierung

Um mit einem ETAS-Softwareprodukt arbeiten zu können, benötigen Sie eine Lizenz. Im Folgenden finden Sie einige grundlegenden Informationen zu diesem Thema. Details zum Umfang der Lizenzen und anderen rechtlichen Aspekten finden Sie in den allgemeinen Geschäftsbedingungen (AGB).

3.3.1 LABCAR-Lizenzmodelle

Für die Lizenzierung Ihrer LABCAR-Software sind zwei verschiedene Lizenzmodelle vorgesehen.

3.3.1.1 Rechnerbezogene Lizenz ("Machine Named", lokal)

- Eine Lizenz dieses Typs wird vom Anwender selbst verwaltet.
- Da Sie an den jeweiligen PC (besser: an die MAC-Adresse des Ethernet-Adapters) gebunden ist, gilt sie überall, wo der PC eingesetzt wird.
- · Beim Wechsel des PCs benötigen Sie eine neue Lizenz

3.3.1.2 Mehrfachnutzer-Lizenz ("Concurrent" oder "Floating", Serverbasiert)

Für diesen Typ gilt weitgehend dasselbe wie für die nutzerbezogene Lizenz. Der Unterschied besteht darin, dass sich hierbei mehrere Nutzer (unabhängig vom Benutzernamen) eine begrenzte Anzahl von Lizenzen teilen.

3.3.2 Wie erhalte ich eine Lizenz?

Wenn Ihre Firma einen Tool-Koordinator und eine Server-basierte Lizenzverwaltung für ETAS-Software besitzt, so wenden Sie sich an diese Person. Im anderen Fall (rechnerbezogene Lizenz) erhalten Sie Ihre Lizenz über das ETAS-Lizenzportal (die URL finden Sie in Ihrem Entitlement Certificate).

Auf der Startseite gibt es drei Arten, sich einzuloggen:

· Activation ID

Nach dem Einloggen ist eine bestimmte Activation¹ sichtbar und kann verwaltet werden – die Activation ID finden Sie im Entitlement Certificate.

Entitlement ID

Hier sind alle Activations des Entitlements² sichtbar und können verwaltet werden (z.B. für ein Unternehmen mit nur einem Entitlement).

· E-mail and Password

Alle Activations der Entitlements, die dem Nutzerkonto zugeordnet wurden, sind sichtbar und können verwaltet werden (z.B. für einen Tool-Koordinator mit Verantwortung für mehrere Entitlements)

Für Hilfe im Portal klicken Sie den Link Hilfe.

3.3.2.1 Welche Informationen werden benötigt?

Um Lizenzen zu aktivieren, müssen Informationen zu den Hosts eingegeben werden:

^{1.} Die Activations beziehen sich auf ein bestimmtes Produkt, seine Lizenzbedingungen, die verfügbare Anzahl an Lizenzen und weitere Details, die für die Erzeugung einer Lizenz erforderlich sind. Activations sind durch Activation IDs eindeutig identifiziert.

^{2.} Ein Entitlement zeigt an, welche Berechtigungen Sie als Nutzer haben; es steht für das Recht, eine oder mehr Lizenzen für ein Produkt zu erhalten. Es ist eine Art Konto von Nutzungsrechten für Software, aus dem Sie sich bei Bedarf Lizenzen entnehmen können.

Rechnerbezogene Lizenz

Hier wird die MAC Adresse des Ethernet-Adapters benötigt, an den die Lizenz gebunden sein soll.

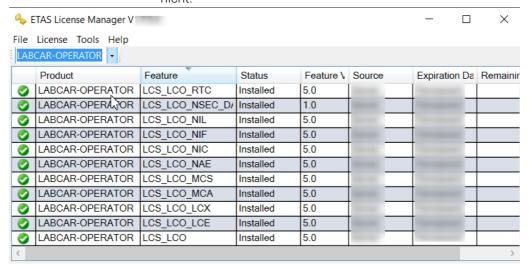
Concurrent (Floating) Lizenz.

Hier wird die MAC-Adresse oder Host-ID für einen Server Host oder eine Server Triade benötigt.

INFO

Wenn sich o.g. Daten ändern (z.B. durch Hardwareänderungen oder Benutzerwechsel), muss für die Lizenz ein sog. "Rehost" durchgeführt werden. Das Verfahren wird in der Hilfedatei im Portal beschrieben.

3.3.2.2 Lizenzdatei

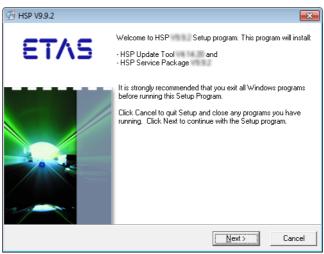

Ergebnis Ihrer Aktivtäten ist die Bereitstellung einer Datei < name > . lic, mit der Sie im ETAS-Lizenz-Manager Ihre jeweilige Software lizenzieren können.

Lizenzstatus einsehen

 Wählen Sie im Windows Start Menü in der App-Liste E → ETAS → ETAS License Manager.

Der ETAS-Lizenz-Manager wird geöffnet.

Der ETAS-Lizenz-Manager enthält einen Eintrag für jedes installierte Produkt. Das Symbol vor einem Eintrag und die Spalte "Status" zeigen an, ob schon eine gültige Lizenz vorliegt oder nicht.

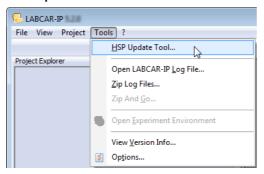

 Weitere Informationen zur Verwaltung von Lizenzen finden Sie in der Online-Hilfe (<F1>).

3.4 HSP Update Tool

Zur Aktualisierung Ihrer Hardware wird das HSP Update Tool mitgeliefert, mit dem Sie (mit dem aktuellen Hardware Service Pack von Ihrer Produkt-DVD) Ihre Hardware auf den neuesten Firmwarestand aktualisieren können.

Installation

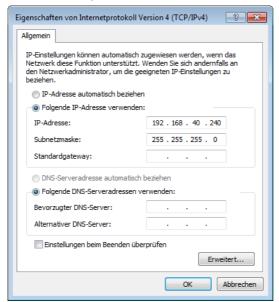
- Legen Sie die Produkt-DVD in Ihr DVD-ROM-Laufwerk.
 Der DVD-Browser wird gestartet.
- 2. Wählen Sie Installation → Install HSP < Versionsnummer>.



- Klicken Sie **Next**.Die Installation wird gestartet.
- 4. Folgen Sie den Anweisungen in den Dialogfenstern.
- 5. Zum Abschluss der Installation klicken Sie Fertigstellen.

Firmware-Update durchführen

1. Starten Sie das HSP Update Tool in LABCAR-IP über **Tools** \rightarrow **HSP Update Tool**.



Das HSP Update Tool wird gestartet.

- Wählen Sie Hilfe → Kurzanleitung.
 Ein Hilfe-Fenster mit Anweisungen zur Durchführung des Updates wird geöffnet.
- 3. Führen Sie das Firmware-Update wie beschrieben durch.

3.5 Die Netzwerkverbindung zum Real-Time PC

Die Verbindung zwischen Ihrem Bedien-PC und dem Target "RTPC" erfolgt zwischen einer zweiten Ethernetkarte im Bedien-PC und dem Anschluss "ETHO" Ihres Real-Time PCs. Anschließend konfigurieren Sie die Karte in Ihrem Bedien-PC mit der festen Netzwerkadresse 192.168.40.240 (Subnetzmaske: 255.255.255.0)

Weitere Informationen finden Sie im "ETAS RTPC V6.5.2 - Benutzerhandbuch" und im Kapitel "ETAS Network Manager" auf Seite 68.

4 Tutorial

In diesem Kapitel wird anhand eines einfachen Beispiels beschrieben, wie Sie ein LABCAR-OPERATOR Projekt erstellen und mit diesem arbeiten.

Dieses Tutorial ist wie folgt aufgebaut:

- "Das Modell "IdleController"" auf Seite 33
 In diesem Abschnitt finden Sie eine kurze Beschreibung des für dieses Projekt verwendeten Simulink-Modells "IdleController.mdl".
- "Erstellen des LABCAR-OPERATOR-Projekts" auf Seite 35
 In diesem Abschnitt werden die grundlegenden Schritte bei der
 Projekterstellung mit LABCAR-MCS V5.4.13 (Modeling Connector for
 Simulink) beschrieben.
- "Messwerte anzeigen und Parameter verstellen" auf Seite 40
 In dieser Lektion erstellen Sie ein Anzeigeelement für die Motordrehzahl
 und einen Schalter, mit dem die Klimaanlage zu- und abgeschaltet werden kann.
- "Hardware konfigurieren" auf Seite 48
 - Im Rahmen dieses Tutorials ist es nicht möglich, ein echtes HiL-Experiment aufzubauen dieser Abschnitt soll dazu dienen, den Umgang mit den Werkzeugen und Funktionen von LABCAR-MCS für diesen Einsatzbereich zu demonstrieren.
- "Inport hinzufügen" auf Seite 51
 Bevor Sie die Hardware mit Modellsignalen verbinden können, müssen Sie die zu verwendenden Modellsignale in Simulink mit LABCAR Inports oder Outports versehen.
- "Signale im Connection Manager verbinden" auf Seite 54
 Im Connection Manager wird schließlich das Signal des A/D-Wandlers ("0" oder "1") mit dem Modelleingang "AirConditionManual" verbunden.
- "Konfiguration des Echtzeit-Betriebssystems" auf Seite 56
 LABCAR-OPERATOR V5.4.13 legt für jedes neue Projekt eine Standard-OS-Konfiguration an, in der alle benötigten Tasks vorhanden sind und alle Prozesse diesen zugewiesen sind.
- "Experiment ausführen" auf Seite 57
 In diesem Abschnitt finden Sie eine Beschreibung der letzten Schritte, bevor Sie das Experiment durchführen.
- "Aufzeichnen mit dem Datalogger" auf Seite 62
 In diesem Abschnitt finden Sie eine Anleitung, wie Sie Signale mit dem Datalogger aufzeichnen.

4.1 Das Modell "IdleController"

In diesem Abschnitt finden Sie eine kurze Beschreibung des für dieses Projekt verwendeten Simulink-Modells "IdleController.mdl".

Abb. 4-1 zeigt das verwendete Simulink-Modell, das aus einem einfachen Motormodell "Pedal2NEngine" und dem eigentlichen Leerlauf-Controller "A_Id-leController" besteht.

Der Controller hat als Eingang die Gaspedalstellung vom Fahrer und die Motordrehzahl - im Leerlauf wird eine vorgegebene Drehzahl gehalten.

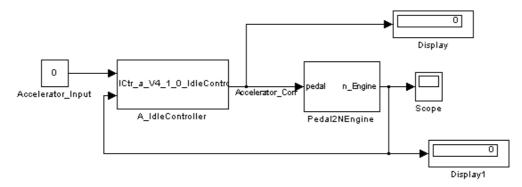


Abb. 4-1 Das Gesamtmodell "IdleController.mdl"

Im eigentlichen Motormodell (Abb. 4-2) wird aus der Gaspedalstellung ("Accelerator_Input") das Drehmoment errechnet, aus dem wiederum die Motordrehzahl berechnet wird. Zudem ist es möglich, zusätzlich eine Klimaanlage zuzuschalten, die dann natürlich Drehmoment kostet und - insbesondere im Leerlauf - die Drehzahl erniedrigt. Bei dieser Drehzahlerniedrigung wird der Leerlauf-Controller aktiv, der an das Motormodell eine korrigierte Gaspedalstellung liefert, um die Drehzahl wieder auf die geforderte Solldrehzahl zu regeln.

Geschaltet wird die Klimaanlage über den Wert von "AirConditionManual" links oben in Abb. 4-2. In diesem Tutorial wird dieser Wert zuerst über ein Bedienfenster geändert und anschließend über eine A/D-Wandler-Hardware eingespeist.

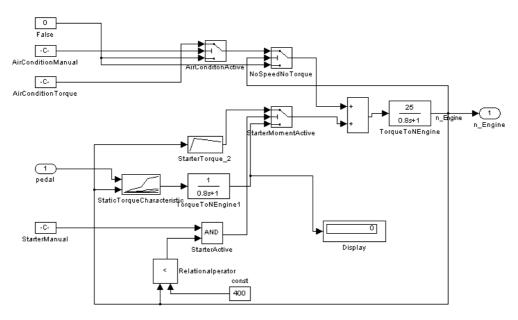
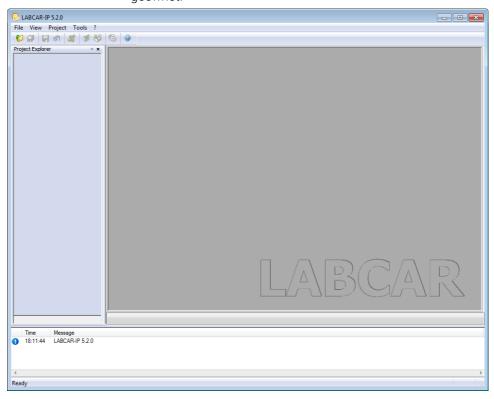


Abb. 4-2 Das Motormodell "Pedal2NEngine"

4.2 Erstellen des LABCAR-OPERATOR-Projekts

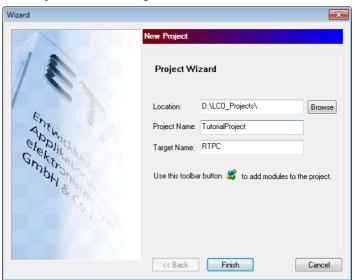

In diesem Abschnitt werden die grundlegenden Schritte bei der Projekterstellung mit LABCAR-MCS V5.4.13 (Modeling Connector for Simulink) beschrieben.

LABCAR-OPERATOR starten

 Wählen Sie Start → Alle Programme → ETAS → LABCAR-OPERATOR X.Y → LABCAR-IP.

oder

Doppelklicken Sie das Programmsymbol auf dem Desktop.
 LABCAR-OPERATOR wird gestartet und das Hauptfenster wird geöffnet.



Eine ausführliche Beschreibung der Bedienoberfläche finden Sie im LABCAR-OPERATOR V5.4.13 - Benutzerhandbuch.

Ein LABCAR-OPERATOR Projekt erstellen

1. Wählen Sie **File** → **New Project.**

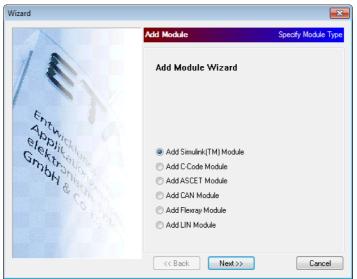
Der Project Wizard wird geöffnet.

- 2. Wählen Sie unter "Location" ein Verzeichnis, in dem das neue Projekt angelegt werden soll.
- 3. Geben Sie unter "Project Name" einen Projektnamen an.
- 4. Weisen Sie diesem Target unter "Target Name" ggf. einen speziellen Namen zu.
- 5. Klicken Sie Finish.
- > Das Projekt (ohne Module und Hardware) wird erstellt.

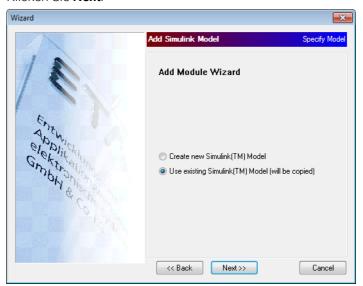
Simulink-Modell integrieren

1. Wählen Sie **Project** → **Add Module**.

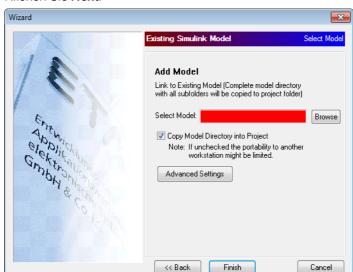
oder


1. Klicken Sie das Symbol Add Module.

oder

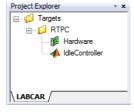

1. Rechtsklicken Sie auf das Target "RTPC" und wählen Sie im Kontextmenü **Add Module**.

Der Add Module Wizard wird geöffnet.


2. Wählen Sie die Option "Add Simulink (TM) Module".

3. Klicken Sie Next.

4. Wählen Sie "Use existing Simulink Model".


5. Klicken Sie Next.

6. Wählen Sie mit **Browse** das Simulink-Modell aus, das Sie verwenden möchten.

Das Modell "IdleController.mdl" finden Sie im Verzeichnis

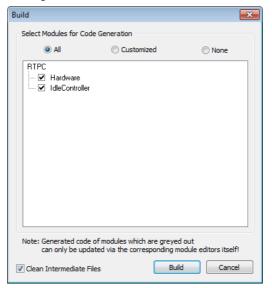
<Laufwerk>:\Program Files\ETAS\
LABCAR-OPERATORX.Y\Manuals\
Tutorial.

- Ist die Option "Copy Model Directory into Project" gewählt, wird das Simulink-Modell und die dazu gehörenden Dateien in das Projektverzeichnis kopiert – ansonsten wird das angegebene Modell lediglich aus dem Projekt heraus referenziert.
- > Mit **Advanced Settings** können Sie weitere Vorgaben bezüglich externer Dateien und Verzeichnisse machen (siehe LAB-CAR-OPERATOR V5.4.13 Benutzerhandbuch) für dieses Beispiel ist dies nicht notwendig.
- 7. Wählen Sie Finish.
- > Das Projekt wird erstellt und die entsprechenden Verzeichnisse und Dateien auf Ihrer Festplatte angelegt.
- > Im Project Explorer wird der Verzeichnisbaum des Projekts angelegt.

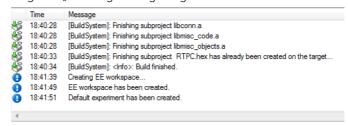
Nach dem Anlegen des Projekts kann jetzt der Code erzeugt werden.

INFO

Stellen Sie sicher, dass ihr Experimentaltarget ordnungsgemäß angeschlossen ist und betriebsbereit ist!


Code erzeugen

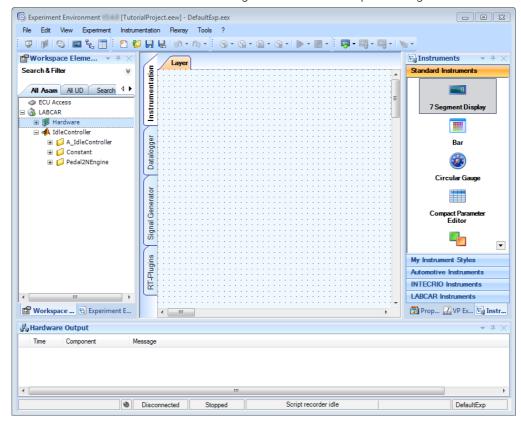
1. Wählen Sie **Project** → **Build...**


oder

- 1. Klicken Sie das Symbol Build LABCAR Project.
- 2. Wählen Sie im folgenden Fenster die Module aus, für die Code erzeugt werden soll.

- 3. Klicken Sie Build.
- Die Codegenerierung für die gewählten Module wird durchgeführt.
- > Eine erfolgreiche Codegenerierung wird anschließend im Register "Messages" angezeigt.

Mit dem erfolgreich erzeugten Code können Sie jetzt in der Experimentierumgebung ETAS EE ein Experiment öffnen, konfigurieren und ausführen.


INFO

Nach der erstmaligen Codegenerierung wird ETAS EE automatisch gestartet und ein Workspace für dieses Experiment erzeugt.

Experiment in ETAS EE starten

Klicken Sie das Symbol Open Experiment Environment.
 ETAS EE wird gestartet und das Experiment geöffnet.

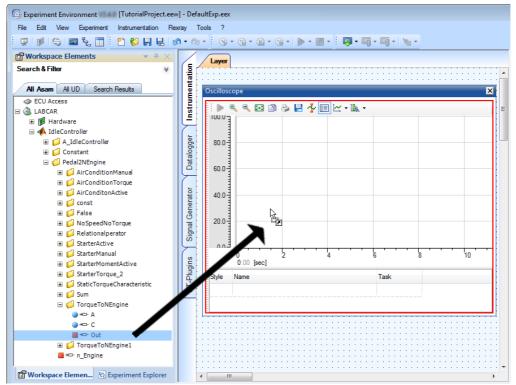
Im Fenster "Workspace Elements" sind alle Parameter, Messgrößen, Ein- und Ausgänge des Modells in der entsprechenden Hierarchie aufgeführt.

Im Hauptarbeitsbereich können Sie die Instrumentierung erstellen (in mehreren "Layern"), den Datalogger konfigurieren und bedienen (Register "Datalogger") und Signalgeneratoren erstellen und bedienen (Register "Signal Generator").

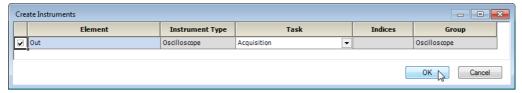
4.3 Messwerte anzeigen und Parameter verstellen

In dieser Lektion erstellen Sie ein Anzeigeelement für die Motordrehzahl und einen Schalter, mit dem die Klimaanlage zu- und abgeschaltet werden kann.

Ein Oszilloskop erstellen

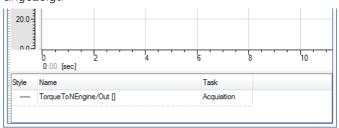


 Um ein Oszilloskop zur Anzeige der Motordrehzahl zu erstellen, klicken Sie in der Werkzeugleiste das Symbol Add Oscilloscope.


Ein Oszilloskopfenster wird geöffnet.

- 2. Suchen Sie im Fenster "Workspace Elements" (unter "Search&Filter") nach dem Ordner "TorqueToNEngine".
- 3. Klicken Sie die Hierarchie auf, bis Sie das Label "TorqueToNEngine\Out" sehen.

4. Wählen Sie "Out" und ziehen Sie diese bei gedrückter linker Maustaste in das Oszilloskopfenster.

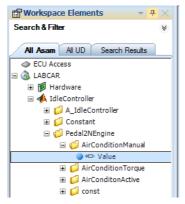


- 5. Lassen Sie die Maustaste über dem Oszilloskopfenster wieder los
 - Das Fenster "Create Instruments" wird geöffnet.
- 6. Wählen Sie "Acquisition" als Task zur Erfassung der Messgröße.

7. Klicken Sie OK.

Die Messgröße wird zum Oszilloskop hinzugefügt Der Name der darzustellenden Variablen wird in der Legende angezeigt.

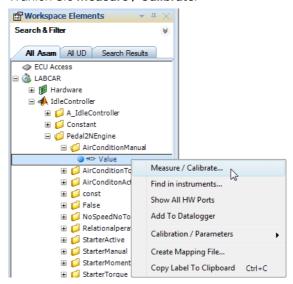
INFO


Messgrößen werden immer im Raster der Task aufgezeichnet, der sie zugeordnet sind - beträgt dieses Raster weniger als 5 ms, sind folgende Einschränkungen zu beachten:

- 1. In diesem Bereich kann eine lückenlose Aufzeichnung von Messwerten nicht mehr gewährleistet werden. Zur lückenlosen Aufzeichnung der Messdaten verwenden Sie bitte den Datalogger.
- 2. Die x-Werte (= Zeit) der dargestellten Messpunkte stimmen möglicherweise nicht mehr exakt mit diesem Raster überein es kann zu minimalen Zeitverzögerungen kommen.

Im Folgenden erstellen Sie einen Schalter, mit dem die Klimaanlage ein- und ausgeschaltet wird.

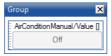
Einen Schalter für die Klimaanlage erstellen


1. Suchen Sie im Fenster "Workspace Elements" den Parameter "Value" im Ordner "AirConditionManual".

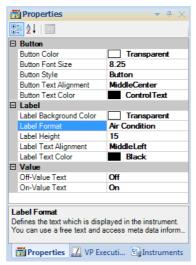
Ein anderer Weg zur Erstellung eines Bedien- oder Anzeigeelement ist der folgende:

2. Rechtsklicken Sie den Parameter "Value".

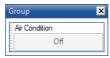
3. Wählen Sie Measure / Calibrate.


Das Fenster "Create Instruments" wird geöffnet.

4. Unter "Instrument Type" wählen Sie "On/Off".


- 5. Unter "Group" wählen Sie "<New Group>".
- 6. Klicken Sie OK.

Das Bedienelement wird erstellt.



7. Wählen Sie den inneren Bereich des Bedienelements und gehen Sie in das Fenster "Properties".

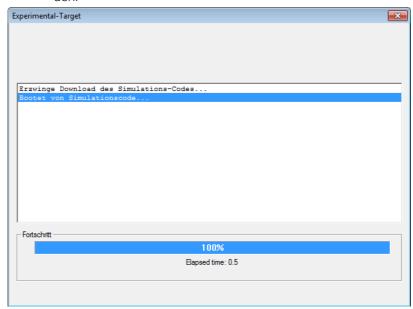
8. Ersetzen Sie unter "Label Format" die Zeichenkette "%Default" durch "Air Condition".

Der Schalter hat damit die entsprechende Beschriftung.

9. Fügen Sie ebenfalls den Parameter "Value" zum Oszilloskop hinzu.

Experiment zum Target herunterladen

1. Stellen Sie sicher, dass das bei der Projekterstellung angegebene Simulationstarget angeschlossen und eingeschaltet ist.


2. Wählen Sie **Experiment** \rightarrow **Download** \rightarrow **LABCAR**.

oder

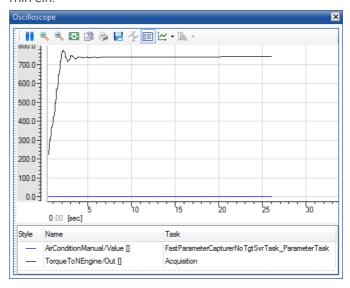
- Klicken Sie den Pfeil neben dem Symbol **Download** und wählen Sie **LABCAR**.

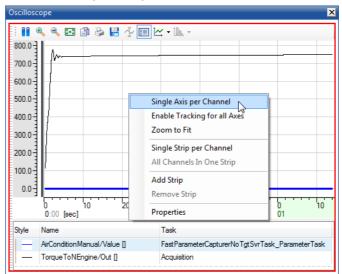
Das Experiment wird zum Experimentaltarget heruntergeladen

> Ein erfolgreiches Herunterladen wird Ihnen im Log-Fenster angezeigt.

Experiment durchführen

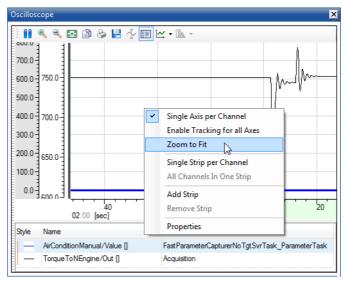
Starten Sie die Simulation mit Experiment → Start
 Simulation → LABCAR


oder


1. Klicken Sie neben den Symbol **Start Simulation** den Pfeil und wählen Sie **LABCAR**

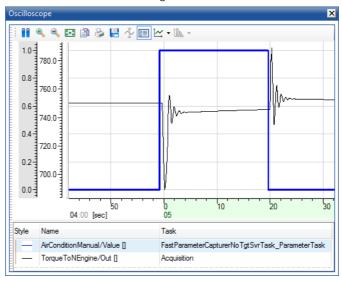
Die Messgröße wird im Oszilloskop angezeigt.

Nach einiger Zeit regelt sich die Leerlaufdrehzahl auf 750 U/min ein.



2. Zur Darstellung der Drehzahl und des Parameters zum An- und Ausschalten der Klimaanlage in jeweils eigenen Koordinatensystemen rechtsklicken Sie in das Koordinatensystem und wählen Sie **Single Axis per Channel**.

3. Um für die jeweilige y-Achse den maximal notwendigen Bereich zur Darstellung auszunutzen, wählen Sie die jeweilige Achse.



- 5. Verschieben Sie ggf. die y-Achsen mit der Maus.
- 6. Schalten Sie jetzt die Klimaanlage mit dem zuvor erstellten Schalter "Air Condition" an.

Die Leerlaufdrehzahl bricht aufgrund des zusätzlichen Moments kurz ein und wird vom Leerlaufregler wieder ausgeregelt.

7. Schalten Sie die Klimaanlage wieder aus.

Die vom Leerlaufregler korrigierte Pedalstellung führt zu einer kurzzeitigen Drehzahlerhöhung, die ebenfalls wieder ausgeregelt wird.

8. Halten Sie das Experiment durch Klicken des Symbols **Stop Simulation** an.

oder

Wählen Sie Experiment → Stop Simulation → LABCAR

Beenden Sie das Experiment durch Klicken des Symbols
 Disconnect.

oder

- Wählen Sie Experiment → Disconnect → LABCAR
- Wählen Sie File → Save Experiment.
- Wählen Sie File → Exit.

Wechseln Sie zur Konfiguration der Hardware wieder zurück zu LABCAR-IP.

4.4 Hardware konfigurieren

Im Rahmen dieses Tutorials ist es nicht möglich, ein echtes HiL-Experiment aufzubauen - dieser Abschnitt soll dazu dienen, den Umgang mit den Werkzeugen und Funktionen von LABCAR-MCS für diesen Einsatzbereich zu demonstrieren.

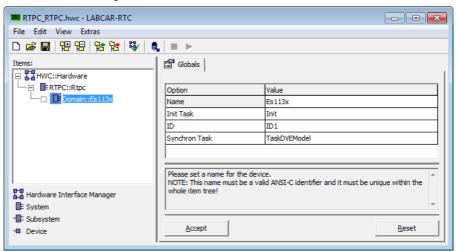
Im Folgenden wird eine A/D-Wandler-Hardware eingesetzt (PB1651ADC1 A/D Module auf einem ES1651.1 Carrier Board) – damit kann ein Spannungssignal zwischen 0 und 10 V zum Ein- oder Ausschalten der Klimaanlage verwendet werden.

Eine Hardwarekonfiguration erstellen

- 1. Öffnen Sie LABCAR-IP.
- 2. Wählen Sie **Project** → **RTIO Editor**.

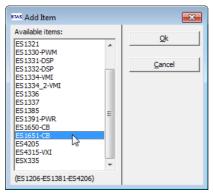
oder

- Klicken Sie das Symbol **Edit Hardware Configuration**.

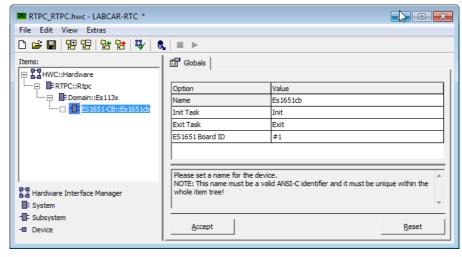

oder

- Wählen Sie das Hardware-Module und wählen Sie **Edit** aus dem Kontextmenü.

Der RTIO-Editor wird geöffnet. Im Baum der HWC-Items befindet sich bereits das bei der Projekterstellung angegebene Simulationstarget (hier: RTPC).

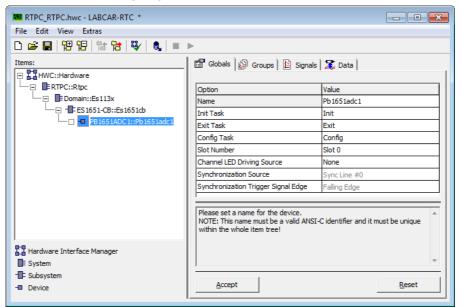

3. Wählen Sie das System "Domain" unterhalb des Simulationstargets "RTPC".

4. Wählen Sie **Edit** → **Add Item**.

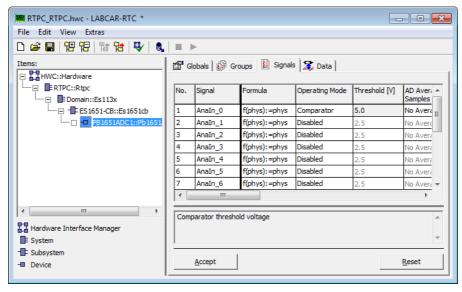

Das "Add Items" Fenster wird geöffnet.

5. Wählen Sie das Item "ES1651-CB".

6. Klicken Sie OK.


Das ES1651.1 Carrier Board wird zur Hardwarekonfiguration hinzugefügt.

- 7. Wählen Sie diesen neuen Eintrag in der Liste "Items".
- 8. Wählen Sie erneut **Edit** → **Add Item**.


- 9. Im "Add Items" Fenster wählen Sie das Item "PB1651ADC1".
- 10. Klicken Sie **OK**.

Das PB1651ADC1.1 Modul wird zur Hardwarekonfiguration hinzugefügt.

- 11. Wählen Sie die Registerkarte "Signals".
- 12. Wählen Sie das Signal "Analn_0".
- 13. Klicken Sie zweimal in die Zelle unter "Operating Mode".
- 14. Wählen Sie "Comparator" als Betriebsart.
- 15. Doppelklicken Sie die Zelle unter "Threshold [V]".
- 16. Geben Sie den Wert "5.0" ein.

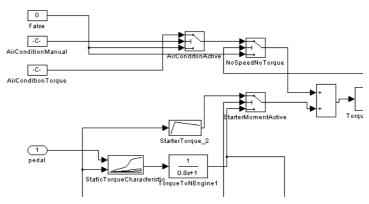
Damit wurde der Kanal als Komparator definiert - bei Spannungen < 5 V nimmt das Signal den Wert "0" an, ansonsten den Wert "1".

- 17. Klicken Sie Accept.
- 18. Wählen Sie File → Save.

19. Schließen Sie LABCAR-RTC mit **File** → **Exit**.

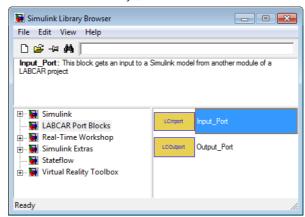
4.5 Inport hinzufügen

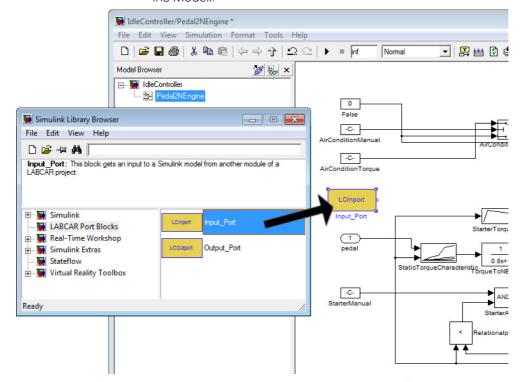
Bevor Sie die Hardware mit Modellsignalen verbinden können, müssen Sie die zu verwendenden Modellsignale in Simulink mit LABCAR Inports oder Outports versehen.


Einen Inport hinzufügen

- 1. Wählen Sie im Project Explorer das Modell "IdleController".
- 2. Im Kontextmenü wählen Sie Edit.

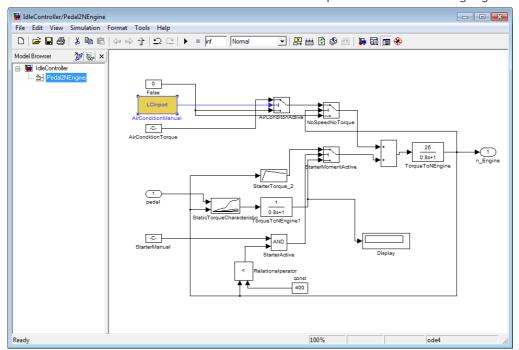
Das zum Projekt gehörende Modell wird in Simulink geöffnet.


3. Falls der Block "Pedal2NEngine" noch nicht geöffnet worden ist, doppelklicken Sie diesen.


Der Parameter "AirConditionManual" soll nun über eine A/D-Wandler-Hardware ins Modell eingespeist werden. Dazu muss für das entsprechende Signal ein LABCAR Inport (an Stelle der Konstanten) zum Modell hinzugefügt werden.

In Simulink wählen Sie View → Library Browser.
 Der Simulink Library Browser wird geöffnet.

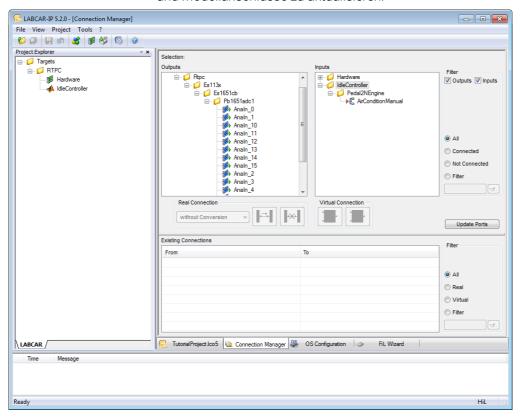
5. Öffnen Sie die Library "LABCAR Port Blocks".



6. Wählen Sie mit der Maus einen Input Port und ziehen Sie ihn ins Modell.

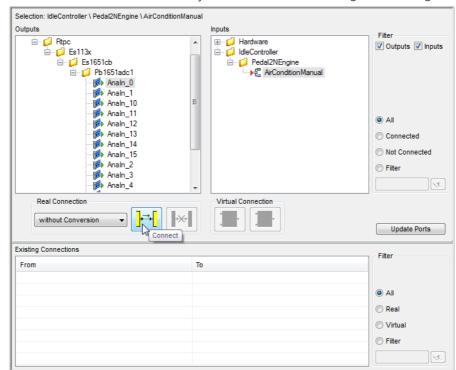
- 7. Löschen Sie den Block "AirConditionManual".
- 8. Bennnen Sie den LABCAR Inport in "AirConditionManual" um.

9. Verbinden Sie den LABCAR Inport mit dem freien Eingang.


10. Speichern Sie die Änderungen mit **File** \rightarrow **Save**.

4.6 Signale im Connection Manager verbinden

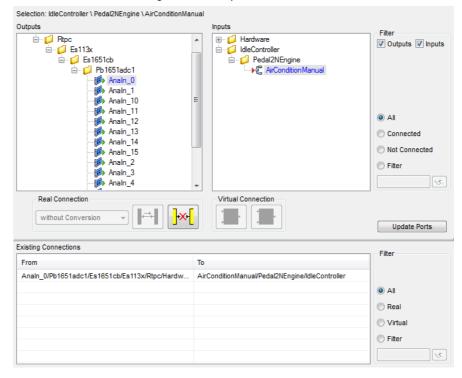
Im Connection Manager wird schließlich das Signal des A/D-Wandlers ("0" oder "1") mit dem Modelleingang "AirConditionManual" verbunden.


Den Connection Manager öffnen

- 1. Wählen Sie das Register "Connection Manager" im Hauptfenster von LABCAR-OPERATOR V5.4.13.
 - Der Connection Manager wird angezeigt.
- 2. Klicken Sie **Update Ports**, um die Darstellung aller Hardwareund Modellanschlüsse zu aktualisieren.

Eine Verbindung zwischen Modell und Hardware erstellen

1. Wählen Sie mit der Maus den Hardwareausgang "Analn_0") und den Modelleingang ("AirConditionManual").



2. Klicken Sie das Symbol zum Verbinden der gewählten Signale.

oder

- Wählen Sie einen Ausgang mit der Maus und schieben Sie ihn auf den gewünschten Eingang.

Die Verbindung wird erstellt und im Feld "Existing Connections" dargestellt (sofern nicht ein Filter aktiv ist, der die neu erstellte Verbindung ausblendet).

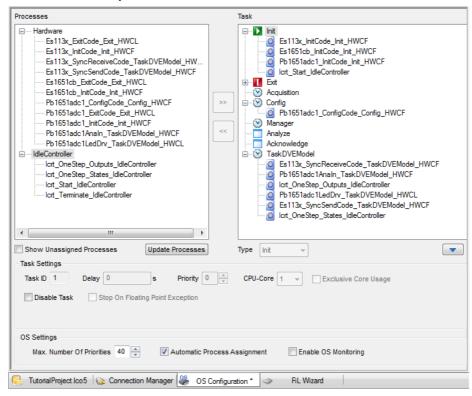
Um anzuzeigen, dass dieser Ausgang mit einem Eingang ver-

bunden wurde, werden die beiden Anschlüsse jetzt mit blauer Schrift dargestellt.

3. Speichern Sie die Änderungen mit File → Save All.

4.7 Konfiguration des Echtzeit-Betriebssystems

LABCAR-OPERATOR V5.4.13 legt für jedes neue Projekt eine Standard-OS-Konfiguration an, in der alle benötigten Tasks vorhanden sind und alle Prozesse diesen zugewiesen sind.


Um den OS Configurator kennenzulernen, öffnen Sie diesen wie im Folgenden beschrieben - eine detaillierte Beschreibung finden Sie im LABCAR-OPERATOR V5.4.13 - Benutzerhandbuch.

OS Configurator öffnen

1. Wählen Sie das Register "OS Configuration" im Hauptfenster von LABCAR-IP.

Das Fenster "OS Configuration" wird angezeigt.

2. Um sämtliche Informationen einsehen zu können, öffnen Sie alle Elemente der beiden Baumansichten und klicken Sie das Symbol mit dem blauen Pfeil.

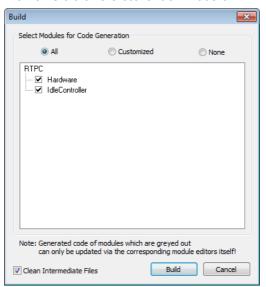
3. Klicken Sie Update Processes.

Im Fenster "Processes" (links) sind alle Hardware- und Modellprozesse aufgeführt, im Fenster "Tasks" alle automatisch erstellten Task und die zugeordneten Prozesse.

Die automatische Zuordnung kann so übernommen werden.

4. Speichern Sie die Änderungen mit File → Save All.

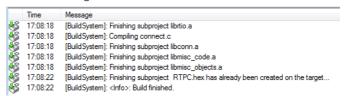
4.8 Experiment ausführen


In diesem Abschnitt finden Sie eine Beschreibung der letzten Schritte, bevor Sie das Experiment durchführen.

Im Einzelnen sind dies:

- "Code erzeugen" auf Seite 57
- "Einen neuen Layer f
 ür die Instrumentierung erstellen" auf Seite 58
- "Messgrößen in Oszilloskop darstellen" auf Seite 58
- "Signalkette öffnen" auf Seite 59
- "Spannungsquelle an ADC-Modul anschließen" auf Seite 61
- "Experiment starten" auf Seite 61

Code erzeugen

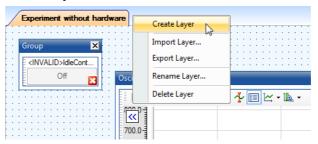

- 1. Stellen Sie sicher, dass das bei der Projekterstellung angegebene Simulationstarget angeschlossen und eingeschaltet ist.
- 2. Wählen Sie **Project** → **Build**.
- 3. Wählen Sie die zu erstellenden Module.

4. Klicken Sie Build.

Die Codegenerierung für das Modell, die Hardwarekonfiguration und den Connection Manager wird gestartet und eine ausführbare Datei erzeugt.

5. Vergewissern Sie sich im Register "Messages", dass der Build-Prozess erfolgreich war.

Sollten Fehler auftreten, so wird ein separates Fenster mit ausführlichen Informationen geöffnet.

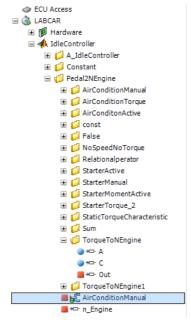


Klicken Sie das Symbol Experiment Environment.
 ETAS EE wird gestartet und das Experiment geöffnet.

Einen neuen Layer für die Instrumentierung erstellen

Im Register "Instrumentation" befindet sich jetzt der zuvor erstellte Layer mit dem Oszilloskop und dem Schalter für die Klimaanlage. Dieser Schalter ist jetzt hervorgehoben, das andeutet, dass der zugewiesene Parameter nicht mehr existiert (weil er durch einen LABCAR Inport ersetzt wurde).

- 1. Klicken Sie auf den Namen des Layers und wählen Sie **Rename** Layer.
- 2. Weisen Sie ihm beispielsweise den Namen "Experiment without hardware" zu.
- 3. Klicken Sie in der Umgebung der Registerkarte und wählen Sie **Create Layer**.

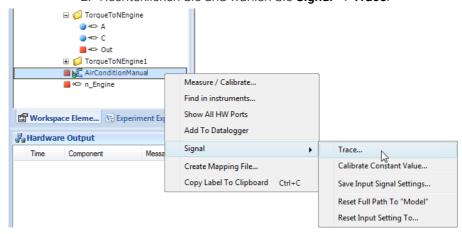

4. Nennen Sie den neuen Layer beispielsweise "Experiment with hardware".

Messgrößen in Oszilloskop darstellen

- Um in dem neuen Layer ein Oszilloskop zur Anzeige der Motordrehzahl zu erstellen, klicken Sie in der Werkzeugleiste das Symbol Add Oscilloscope.
- 2. Fügen Sie die Messgröße für die Drehzahl "IdleController/ Pedal2NEngine/TorqueToNEngine/Out" per Drag&Drop hinzu.

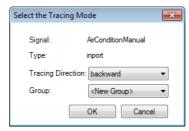
3. Fügen Sie ebenfalls den neu hinzugekommenen Modelleingang "AirConditionManual" hinzu.

- 4. Laden Sie das Experiment zum Simulationstarget herunter.
- 5. Starten Sie die Simulation.

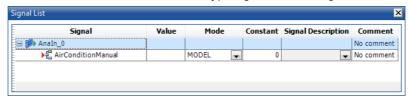

Die Leerlaufdrehzahl erreicht ihren Normwert und der Wert von "AirConditionManual" beträgt "0", da am Hardwareingang keine Spannung anliegt und somit der D/A-Wandler auch kein Ausgangssignal liefert.

- 6. Halten Sie die Simulation wieder an.
- 7. Wählen Sie File → Save Experiment.

Bevor die I/O-Hardware eingesetzt wird, soll an dieser Stelle die Funktion des Instruments "Signal List" demonstriert werden.

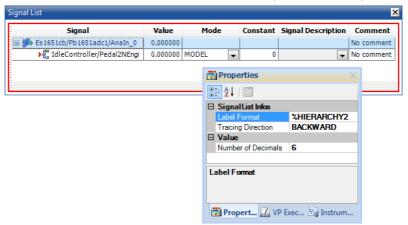

Signalkette öffnen

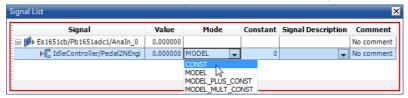
- 1. Wählen Sie in den Workspace Elements den vorhin erstellten Modelleingang "AirConditionManual".
- 2. Rechtsklicken Sie und wählen Sie Signal → Trace.



Das Fenster "Select the Tracing Mode" wird geöffnet.

3. Wählen Sie "backward" und "<New Group>" und klicken Sie OK.

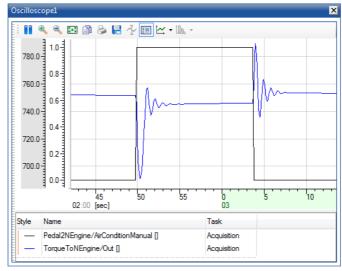

Ein neues Instrument vom Typ "Signal List" wird geöffnet.

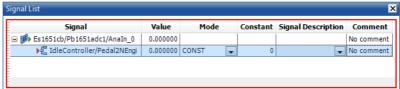

Sie sehen hier die zuvor im Connection Manager erstellte Verbindung zwischen dem A/D-Wandler-Modul und dem Modellanschluss.

- 4. Wählen Sie den inneren Bereich der Signal List mit der Maus.
- 5. Ändern Sie im Fenster "Properties" den Eintrag "Label Format" von "%HIERARCHY0" zu "%HIERARCHY2".

Dadurch wird die volle Hierarchie der Signalnamen dargestellt:

6. Um diese Verbindung vorübergehend zu unterbrechen, wählen Sie aus der Liste in der Spalte "Mode" den Eintrag "CONST".




Damit liegt an diesem Eingang jetzt ein konstanter Wert an, der in der Spalte "Constant" spezifiziert wird.

7. Starten Sie die Simulation.

8. Ändern Sie den Wert in der Spalte "Constant" auf 1 (danach <Return> drücken).

Wieder bricht die Leerlaufdrehzahl kurz ein und wird wieder ausgeregelt.

9. Ändern Sie den Wert in der Spalte "Constant" wieder auf "0" (danach <Return> drücken).

Die Leerlaufdrehzahl zeigt das gewohnte Verhalten und wird wieder ausgeregelt.

10. Setzen Sie "Mode" für den nachfolgenden Betrieb mit Hardware wieder auf "MODEL".

Spannungsquelle an ADC-Modul anschließen

Schließen Sie an den Eingangskanal 0 eine regelbare Spannungsquelle (0 - max. 10 V) an. Die Belegung des Frontsteckers finden Sie im "PB1651ADC1 A/D Module - Benutzerhandbuch".

Experiment starten

- 1. Stellen Sie sicher, dass das bei der Projekterstellung angegebene Simulationstarget angeschlossen und eingeschaltet ist.
- Wählen Sie Experiment → Download → LABCAR.

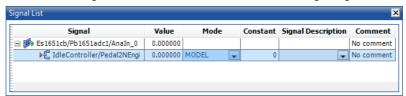
oder

- Klicken Sie den Pfeil neben dem Symbol **Download** und wählen Sie **LABCAR**.

Das Experiment wird zum Experimentaltarget heruntergeladen.

Wenn dies erfolgreich durchgeführt wurde, wird im Register "Messages" eine Meldung ausgegeben.

Wählen Sie Experiment → Start Simulation → LABCAR.
 oder



- Klicken Sie den Pfeil neben dem Symbol **Start Simulation** und wählen Sie **LABCAR**.

Das Experiment wird gestartet.

Solange die angelegte Spannung unter der vorher definierten Schwelle liegt, ist das Signal "AirConditionManual" gleich 0, die Leerlaufdrehzahl hat den Vorgabewert 750 U/min.

In der Signal List wird ebenfalls der Wert "O" angezeigt.

4. Verändern Sie nun die Spannung so, dass Sie die Komparatorschwelle von 5,0 V übersteigt.

Die Klimaanlage wird eingeschaltet ("AirConditionManual" = 1), die Leerlaufdrehzahl bricht aufgrund des zusätzlichen Momentes kurz ein und wird wieder ausgeregelt.

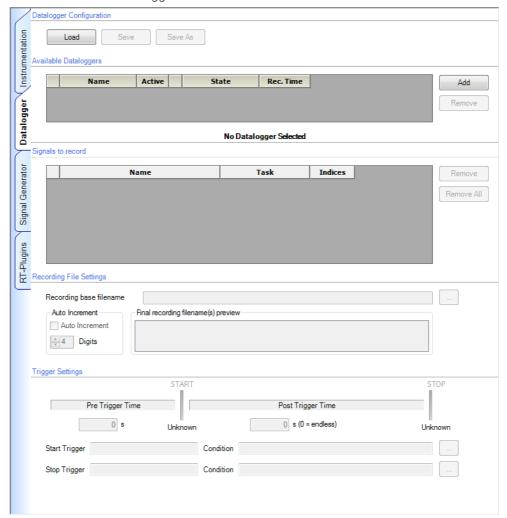
5. Senken Sie die Spannung wieder unter die Komparatorschwelle von 5,0 V.

Nach einem Überschwinger wird die Leerlaufdrehzahl wieder eingeregelt.

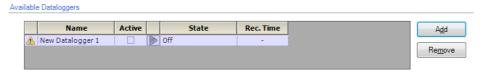
6. Halten Sie das Experiment durch Klicken des Symbols **Stop Simulation** an.

oder

- Wählen Sie Experiment → Stop Simulation → LABCAR.


4.9 Aufzeichnen mit dem Datalogger

In diesem Abschnitt finden Sie eine Anleitung, wie Sie Signale mit dem Datalogger aufzeichnen.

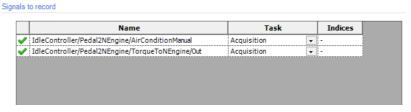

Um das An- und Ausschalten der Klimaanlage mit dem Datalogger aufzuzeichnen, gehen Sie wie folgt vor:

Einen Datalogger erstellen

1. Wählen Sie im Arbeitsbereich von ETAS EE das Register "Datalogger".

Klicken Sie Add im Feld "Available Dataloggers".
 Ein neuer Datalogger wird hinzugefügt

Den Datalogger konfigurieren

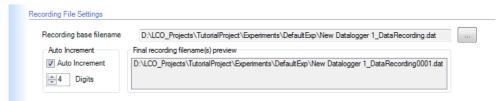

1. Um ein Signal aus der Element List zum Datalogger hinzuzufügen, wählen Sie die Messgröße "Out" (siehe Bild).

☐ Gedal2NEngine Instrumentation Load Save Save As ⊕ 💋 False State Rec. Time Active Name Off New Datalogger 1 Datalogger Configuration of New Datalogger 1 nals to record Sum In Task Name ☐ forqueToNEngine →□- A →□ C 13 ■ →□- Out AirCondition RT-Plugins ■ →□ n_Engine **™ Workspace Eleme... ™** Experiment Explorer

2. Drücken Sie die linke Maustaste und ziehen Sie das Element in den Bereich "Signals to record".

Das Signal wird in die Liste der aufzuzeichnenden Signale aufgenommen.

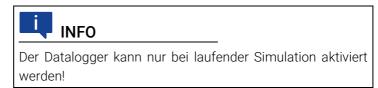
3. Fügen Sie ebenfalls den Modelleingang "AirConditionManual" zum Datalogger hinzu.



4. Wählen Sie eine Task aus, in deren Raster der Datalogger aufzeichnen soll (hier "Acquisition").

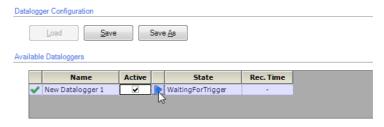
Datei für die aufgezeichneten Daten wählen

Der "Basisname" für die Datei, in der die aufgezeichneten Daten gespeichert werden, ist im Feld "Recording File Settings" unter "Recording Base filename" angegeben.


 Um eine andere Basisdatei zu wählen, klicken Sie
 Der Name nach jeder Aufzeichnung angelegten Datei wird durch die unter "Auto Increment" gewählten Optionen bestimmt.

Die Auswahl der Option "Auto Increment" führt dazu, dass der Dateiname um eine Nummer erweitert wird, die bei jedem Start des Dataloggers automatisch hochgezählt wird. Die Zahl der Stellen dieser Nummer legen Sie im Feld "Digits" fest.

Datalogger manuell starten


1. Starten Sie die Simulation.

2. Aktivieren Sie den Datalogger (in der Spalte "Active").

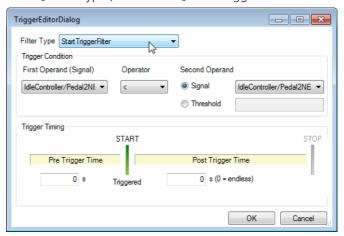
3. Zum Starten des Dataloggers klicken Sie auf die blaue Pfeilspitze.

Der Datalogger wird gestartet.

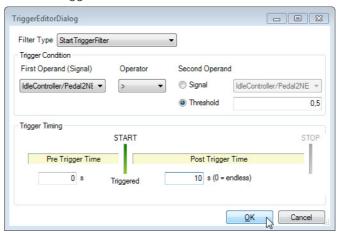
4. Zum Anhalten des Dataloggers klicken Sie auf das blaue Rechteck.

Der Datalogger wird angehalten und die Daten in einer Datei (*.dat) gespeichert.

Triggerbedingungen und Aufzeichnungsdauer festlegen


Wenn Sie einen automatischen Start (bzw. Ende) der Aufzeichnung wünschen, müssen Sie eine Triggerbedingung festlegen.

1. Klicken Sie das Symbol ... rechts unten im Feld "Trigger Settings".



Der Editor für die Triggereinstellungen wird geöffnet.

2. Unter "Filter Type", wählen Sie "Start Trigger Filter"

- 3. Wählen Sie unter "Trigger Condition" folgende Einstellungen:
 - First Operand (Signal): "AirConditionManual"
 - Operator: >
 - Threshold: 0,5
- 4. Wählen Sie unter "Trigger Timing" folgende Einstellungen:
 - Pre Trigger Time: 0 s
 - Post Trigger Time: 10 s

5. Klicken Sie OK.

ETAS

6. Aktivieren Sie den Datalogger (in der Spalte "Active").

7. Schalten Sie nun mit Ihrer Spannungsquelle die Klimaanlage an.

Der Datalogger beginnt nach Eintritt der Triggerbedingung mit der Aufzeichung der Daten, die nach 10 s wieder endet.

5 ETAS Network Manager

Der ETAS Network Manager wird für die Erstellung einer Konfiguration eingesetzt, die vom ETAS IP Manager für die dynamische IP-Adressierung der ETAS-Hardware in Ihrem Netzwerk (ETAS-Netzwerk) verwendet wird.

5.1 Übersicht

ETAS-Software unterstützt verschiedene Konfigurationen für den Hardware-Zugang über Ethernet:

- · Verwendung mehrerer Netzwerkadapter:
 - ein Netzwerkadapter für das Firmen-Netzwerk und
 - ein oder mehrere Netzwerkadapter für die ETAS-Hardware oder
- · Verwendung eines Netzwerkadapters:
 - automatisches Umschalten zwischen Firmen-Netzwerk und der ETAS-Hardware.

INFO

Sie benötigen keinen separaten Netzwerkadapter, um die ETAS-Hardware an Ihren PC anzuschließen. Sie können ein und denselben Netzwerkadapter sowohl für das Firmen-Netzwerk als auch für das ETAS-Netzwerk verwenden.

Bei der Auswahl des Netzwerkadapters für die ETAS-Hardware werden Sie vom ETAS Network Manager unterstützt.

Der ETAS Network Manager gibt Ihnen einen Überblick über die verfügbaren Netzwerkadapter Ihres PCs sowie der Art der IP-Adress-Zuweisung. Ist mehr als ein Netzwerkadapter im System vorhanden, können Sie hier den Netzwerkadapter auswählen, mit der Sie die ETAS-Hardware an Ihren PC anschließen. Außerdem können Sie den Adressbereich für die IP-Zuweisung der ETAS-Hardware festlegen.

Für die Auswahl des Netzwerkadapters und die Konfiguration der Netzwerkumgebung für die ETAS-Hardware benötigen Sie keine Administratorrechte. Sie können zwischen dem ETAS-Netzwerk und dem Firmen-Netzwerk wechseln, ohne den PC neu zu starten.

INFO

Mit dem Network Manager können Sie keine Konfiguration oder Konfigurationsänderung des Netzwerkadapters durchführen. Ändern Sie die Netzwerkeinstellungen Ihres PC stattdessen über die Systemsteuerung (siehe Dokumentation Ihres verwendeten Betriebssystems).

Hierfür sind Administratorrechte erforderlich.

5.2 ETAS-Hardware-Adressierung

Über das ETAS-Netzwerk können Sie mehrere Geräte (auch gleichen Typs) an Ihren PC anschließen. Die angeschlossenen Geräte werden im lokalen ETAS-Netzwerk durch ihre einmalige IP-Adresse identifiziert.

Ein in die ETAS-Software integrierter IP-Manager vergibt die IP-Adressen aus einem Adressen-Pool an die angeschlossenen Geräte.

Den Adressbereich des Adressen-Pools können Sie im Network Manager festlegen.

5.3 Netzwerkadapter-Adressierung

5.3.1 Art der Netzwerkadapter-Adressierung

Die Art der Netzwerkadapter-Adressierung im Firmen-Netzwerk ist vom verwendeten Betriebssystem und der Konfiguration des Netzwerkadapters abhängig:

Betriebssys- tem	Art der Netzwerkadapter-Adressierung				
	manuell	DHCP	DHCP+APIPA	DHCP+ alternative IP- Adresse	
Windows 7	ja	ja	ja	ja	
Windows 10	ja	ja	ja	ja	

Das ETAS-Netzwerk unterstützt folgende Netzwerkadapter-Adressierungen:

Betriebssys- tem	Art der Netzwerkadapter-Adressierung				
	manuell	DHCP	DHCP+APIPA	DHCP+ alternative IP- Adresse	
Windows 7	ja	nein	ja	ja	
Windows 10	ja	nein	ja	ja	

Wollen Sie die Netzwerkadapter sowohl für das Firmen-Netzwerk als auch für das ETAS-Netzwerk verwenden, können Sie die Netzwerkadapter, die ausschließlich die Adressierung DHCP unterstützen, nicht für den Doppelbetrieb verwenden.

INFO

DHCP kann nur in Kombination mit APIPA oder alternativer IP-Adresse verwendet werden!

5.3.2 Manuelle Adressierung der Netzwerkadapter

Das Adressieren eines Netzwerkadapters ist abhängig vom Betriebssystem.

Die Anleitung für die Adressierung des Netzwerkadapters Ihres PCs können Sie der Dokumentation Ihres Betriebssystems entnehmen.

Um den Netzwerkadapter manuell zu adressieren, benötigen Sie Administratorrechte. Wenden Sie sich gegebenenfalls an Ihren Systemadministrator.

Ist der Netzwerkadapter manuell adressiert, d.h., besitzt er eine statische IP-Adresse, kann der Fall eintreten, dass Sie versehentlich nach ETAS-Hardware suchen oder ETAS-Hardware initialisieren wollen, obwohl der PC mit dem Firmen-Netzwerk verbunden ist. Sie können im Network Manager festlegen, dass für diesen Fall eine Warnung angezeigt wird, bevor eine IP-Adresse an eine ETAS-Hardware vergeben wird.

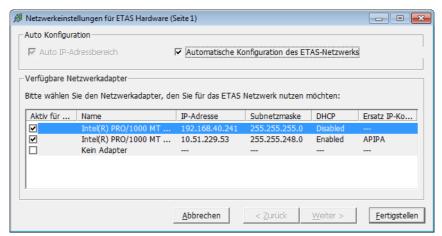
5.3.3 Adressierung des Netzwerkadapters über DHCP

Die Adressierung über DHCP setzt voraus, dass der DHCP-Server verfügbar ist. Sollte der DHCP-Server nicht verfügbar sein oder gibt es keinen DHCP-Server (wie im ETAS-Netzwerk), ist der Netzwerkadapter nicht konfiguriert.

Für diesen Fall hat jedes Betriebssystem einen Automatismus, damit der Netzwerkadapter automatisch eine IP-Adresse erhält:

Windows XP / Windows Vista/ Windows 7

Windows XP, Windows Vista und Windows 7 prüfen automatisch, ob eine Verbindung zum DHCP-Server besteht. Ist dies nicht der Fall, so wird die IP-Adresse automatisch entweder über APIPA vergeben oder es wird die benutzerspezifische alternative IP-Adresse verwendet. Im ETAS-Netzwerk wird immer entweder die APIPA-Adresse oder die alternative IP-Adresse verwendet.


Beim Umstecken zwischen DHCP-Netz und ETAS-Hardware sollte darauf geachtet werden, dass ein Verbindungsausfall durch das Betriebssystem detektiert wird, da nur dann eine Umkonfiguration angestossen wird. Dies dauert bis zu 10 Sekunden. Für die eigentlich Umkonfiguration von einer DHCP-Adresse auf eine APIPA oder die alternative benötigt das Betriebssystem 60 Sekunden. Wird der Netzwerkadapter wieder an das DHCP-Netz angeschlossen findet die Konfiguration auf eine DHCP-Adresse unmittelbar nach Verbindungsdetektion statt.

Eine Netzwerkadapter-Adressierung über DHCP ohne alternative Adressierung wird nicht unterstützt.

5.4 Bedienoberfläche

5.4.1 Konfigurationsfenster 1 — Auswahl eines Netzwerkadapters

("Netzwerkeinstellungen für ETAS Hardware (Seite 1)")

Folgende Informationen über die verfügbaren Netzwerkadapter werden angezeiat:

· Kontrollkästchen Automatischer IP-Adressbereich

Wenn Sie dieses Kontrollkästchen aktivieren, wird der nächste Konfigurationsschritt übersprungen, und der ETAS Network Manager weist automatisch IP-Adressbereiche für die Adressierung der ETAS-Hardware durch den ausgewählten Netzwerkadapter zu. Falls der IP-Adressbereich durch den IP-Manager automatisch geändert wird, wird im Infobereich der Windows-Taskleiste eine entsprechende Meldung angezeigt.

Kontrollkästchen Automatische Konfiguration des ETAS-Netzwerks

Durch Aktivierung dieses Kontrollkästchens können Sie mehrere Netzwerkadapter gleichzeitig für die automatische Konfiguration durch den IP-Manager aktivieren oder deaktivieren.

Wenn Sie dieses Kontrollkästchen aktivieren, wird das Kontrollkästchen "Automatischer IP-Adressbereich" aktiviert. In der Liste der verfügbaren Netzwerkadapter wird die Spalte "Aktiv für ETAS-Netzwerk" eingefügt. Dort können Sie festlegen, welche Netzwerkadapter für die automatische Konfiguration durch den IP-Manager zur Verfügung stehen sollen.

Beginnend mit dem ausgewählten Netzwerkadapter geht der ETAS Network Manager von oben nach unten durch die Liste, verwendet den ersten Adapter mit einer für ETAS gültigen IP-Konfiguration und konfiguriert den IP-Adressbereich automatisch. Kann ein konfigurierter Netzwerkadapter nicht verwendet werden, z.B. weil er deaktiviert wurde oder physikalisch nicht verfügbar ist, konfiguriert der IP-Manager automatisch den nächsten verfügbaren Netzwerkadapter. Im Infobereich der Windows-Taskleiste wird eine Meldung mit der Angabe der neuen Konfiguration angezeigt.

^{1.} Eine IP-Konfiguration ist gültig, wenn der Netzwerkadapter entweder eine feste IP-Adresse verwendet oder wenn DHCP und APIPA aktiviert sind.

Spalte Aktiv für ETAS-Netzwerk

Diese Spalte ist nur sichtbar, wenn das Kontrollkästchen "Automatische Konfiguration des ETAS-Netzwerks" aktiviert ist. Mit dem Kontrollkästchen in dieser Spalte können Sie festlegen, welche Netzwerkadapter für die automatische Konfiguration durch den ETAS Network Manager verfügbar sein sollen (siehe "Automatische Konfiguration von Netzwerkadaptern für ETAS-Hardware" auf Seite 77)

· Spalte Name

Name des Netzwerkadapters. Der Eintrag ist in diesem Fenster nicht editierbar.

Diese Spalte enthält auch den Eintrag "Kein Adapter". Wenn Sie den IP-Manager deaktivieren möchten, z.B. weil keine Ethernet-Hardware mit dem PC verbunden ist, können Sie diesen Eintrag in der Spalte "Aktiv für ETAS-Netzwerk" aktivieren.

· Spalte IP Adresse

IP-Adresse des Netzwerkadapters. Der Eintrag ist in diesem Fenster nicht editierbar.

• Spalte Subnetzmaske

Einstellung für die Subnetzmaske. Der Eintrag ist in diesem Fenster nicht editierbar.

· Spalte DHCP

Zeigt an, ob der Netzwerkadapter für DHCP konfiguriert ist:

- Enabled

Der Netzwerkadapter ist für DHCP konfiguriert.

- Disabled

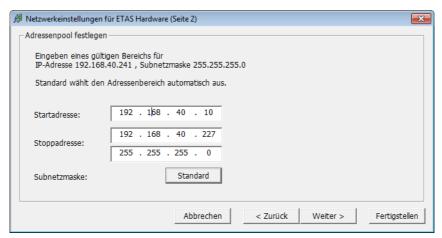
Der Netzwerkadapter ist mit einer festen IP-Adresse konfiguriert.

Spalte Ersatz IP-Konfiguration

Zeigt die alternative IP-Adressierung des Netzwerkadapters, wenn dieser für DHCP konfiguriert ist. Die Anzeige ist abhängig vom verwendeten Betriebssystem.

- APIPA

Automatic Private IP Addressing: Verfahren zur Automatisierung der IP-Konfiguration von Netzwerkverbindungen


_ ---

Eine alternative IP-Adresse ist nicht vorhanden.

User Defined

Eine benutzerspezifische alternative IP-Adresse kann vom Anwender definiert werden (Windows XP / Windows Vista).

5.4.2 Konfigurationsfenster 2 — Adressenpool festlegen ("Netzwerkeinstellungen für ETAS Hardware (Seite 2)")

Grundsätzlich lassen sich die Werte durch direktes Editieren bzw. durch das Setzen auf die Standardeinstellung über ein Dialogfenster verändern.

Folgende Netzwerkparameter können eingestellt werden:

Startadresse

Erste IP-Adresse des IP-Adressbereichs der ETAS-Hardware

· Stoppaddress

Letzte IP-Adresse des IP-Adressbereichs der ETAS-Hardware

· Subnetzmaske

Zugehörige Subnetzmaske

Reservierung von IP-Adressen

Im bisher für ETAS-Hardware benutzten IP-Adressbereich (192.168.40.1 - 192.168.40.254 mit der Subnet Mask 255.255.25) sind die folgenden IP-Adressen für bestimmte ETAS-Hardware reserviert:

IP_Adresse	ETAS-Hardware
192.168.40.10	ES1120
192.168.40.11	ES1130
192.168.40.12	ES780
192.168.40.13	reserviert
192.168.40.14	ETAS Real-Time PC
192.168.40.15	ES1135

Diese Adressen werden ausschließlich an diese Geräte vergeben und können somit nicht für andere ETAS-Hardware verwendet werden. Das ist bei der Definition des Adresspools unbedingt zu berücksichtigen.

5.4.3 Konfigurationsfenster 4 — Warnung anzeigen ("Netzwerkeinstellungen für ETAS Hardware (Seite 4)")

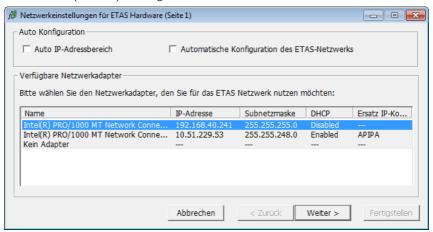
Dieses Dialogfenster wird Ihnen nur angezeigt, wenn der ausgewählte Netzwerkadapter manuell adressiert ist.

Folgende Parameter können eingestellt werden:

· Warnung anzeigen, bevor IP-Zuordnung ausgeführt wird

Mit dem Kontrollkästchen wird festgelegt, dass eine Warnung angezeigt wird, bevor eine IP-Adresse an ETAS-Hardware zugewiesen wird.

INFO


Die Aktivierung dieser Warnung ist nur sinnvoll, wenn über diesen Netzwerkadapter wahlweise der PC an einem Firmennetzwerk oder ETAS-Messmodule im ETAS-Netzwerk betrieben werden sollen.

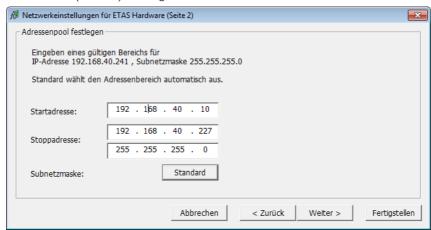
5.5 Netzwerkadressen für ETAS-Hardware konfigurieren

5.5.1 Netzwerkadapter manuell konfigurieren

Netzwerkadapter für ETAS-Hardware konfigurieren:

 Gehen Sie im Windows-Startmenü in den Programmordner Ihrer ETAS-Software (unter Start → Programme → ETAS) und wählen Sie dort den Eintrag ETAS Network Settings.
 Das Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 1)" wird geöffnet.

2. Wählen Sie im Feld "Verfügbare Netzwerkadapter" den Netzwerkadapter aus, die Sie für das Firmen- und das ETAS-Netzwerk verwenden wollen. Wenn kein Netzwerkadapter auf ihrem PC installiert ist, enthält das Dialogfenster keine Einträge.

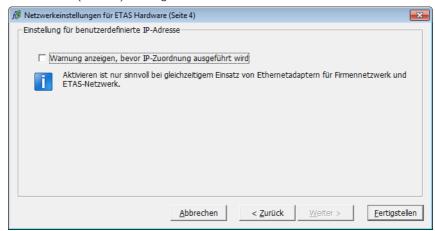


INFO

Die Art der Adressierung des Netzwerkadapters muss vom ETAS-Netzwerk unterstützt werden. Ist dies nicht der Fall, können sie den Netzwerkadapter nicht auswählen.

3. Klicken Sie Weiter.

Das Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 2)" wird geöffnet.



 Geben Sie den IP-Adressbereich für die ETAS-Hardware und die Subnetzmaske ein oder klicken Sie **Standard**, damit der Netzwerkmanager den IP-Adressbereich und die Subnetzmaske automatisch einträgt.

Sie können diese Einstellungen übernehmen oder überschreiben.

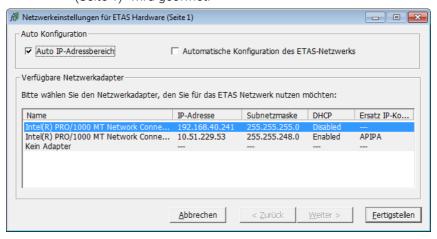
5. Klicken Sie Weiter.

Das Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 4)" wird geöffnet.

6. Falls Sie festlegen möchten, dass eine Warnung angezeigt wird, bevor der ETAS-Hardware eine IP-Adresse zugewiesen wird, aktivieren Sie "Warnung anzeigen, bevor IP-Zuordnung ausgeführt wird",

INFO

Die Aktivierung dieser Warnung ist nur sinnvoll, wenn über diesen Netzwerkadapter wahlweise der PC an einem Firmennetzwerk oder ETAS-Messmodule im ETAS-Netzwerk betrieben werden sollen.


- 7. Klicken Sie Fertigstellen.
- 8. Starten Sie die ETAS-Software neu, damit die Änderungen übernommen werden. Der Neustart ist nicht erforderlich, wenn der Konfigurator automatisch seitens der ETAS-Software bei einer Hardwaresuche oder Initialisierung aufgerufen wurde.

5.5.2 Automatische Konfiguration von Netzwerkadaptern für ETAS-Hardware

Der ETAS Network Manager bietet die Möglichkeit zur automatischen Zuweisung von IP-Adressbereichen im ETAS-Netzwerk durch den IP-Manager. Sie können entweder die automatische Konfiguration eines ausgewählten Netzwerkadapters durch den IP-Manager vornehmen lassen oder, falls mehrere Netzwerkadapter verfügbar sind, die automatische Konfiguration des ETAS-Netzwerks einschließlich Auswahl des zu verwendenden Adapters veranlassen

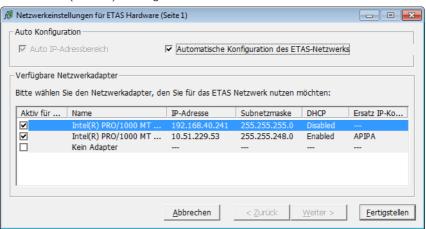
<u>Ausgewählten Netzwerkadapter für ETAS-Hardware automatisch konfigurieren</u>

 Gehen Sie im Windows-Startmenü in den Pro-grammordner Ihrer ETAS-Software (unter Start → Programme → ETAS) und wählen Sie dort den Eintrag ETAS Network Settings.
 Das Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 1)" wird geöffnet.

 Wählen Sie im Feld "Verfügbare Netzwerkadapter" des Dialogfensters "Netzwerkeinstellungen für ETAS Hardware (Seite 1)" den Netzwerkadapter aus, den Sie für das Firmen- und das ETAS-Netzwerk verwenden wollen. Wenn kein Netzwerkadapter auf ihrem PC installiert ist, enthält das Dialogfenster eine Einträge.

Die Art der Adressierung des Netzwerkadapters muss vom ETAS-Netzwerk unterstützt werden. Ist dies nicht der Fall, können sie den Netzwerkadapter nicht auswählen.

3. Aktivieren sie das Kontrollkästchen "Auto IP-Adressbereich".


4. Klicken Sie Fertigstellen.

Der ETAS-Netzwerkmanager legt automatisch Standardadressbereiche fest, die von dem ausgewählten Netzwerkadapter zur Adressierung der ETAS-Hardware verwendet werden.

Wenn der IP-Manager zu einem späteren Zeitpunkt den IP-Adressbereich automatisch ändert, wird eine Nachricht im Infobereich angezeigt.

<u>Einen Netzwerkadapter unter mehreren verfügbaren Netzwerkadaptern automatisch konfigurieren</u>

 Gehen Sie im Windows-Startmenü in den Pro-grammordner Ihrer ETAS-Software (unter Start → Programme → ETAS) und wählen Sie dort den Eintrag ETAS Network Settings.
 Das Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 1)" wird geöffnet.

- 2. Aktivieren Sie das Kontrollkästchen "Automatische Konfiguration des ETAS-Netzwerks" im Dialogfenster "Netzwerkeinstellungen für ETAS Hardware (Seite 1)"
 - Das Kontrollkästchen "Auto IP-Adressbereich" wird aktiviert und in der Liste der verfügbaren Netzwerkadapter wird die Spalte "Aktiv für ETAS-Netzwerk eingefügt.
- Aktivieren Sie alle Netzwerkadapter, die für eine automatische Konfiguration des IP-Managers verfügbar sein sollen, indem sie das entsprechende Kontrollkästchen der Spalte "Aktiv für ETAS-Netzwerk" aktivieren.
- 4. Klicken Sie Fertigstellen.

Beginnend mit dem ausgewählten Netzwerkadapter geht der ETAS Network Manager von oben nach unten durch die Liste, verwendet den ersten Adapter mit einer für ETAS gültigen¹ IP-Konfiguration und konfiguriert den IP-Adressbereich automatisch. Kann ein konfigurierter Netzwerkadapter nicht verwendet werden, z.B. weil er deaktiviert wurde oder physikalisch nicht verfügbar ist, konfiguriert der IP-Manager automatisch den nächsten verfügbaren Netzwerkadapter. Im Infobereich der Windows-Taskleiste wird eine Meldung mit der Angabe der neuen Konfiguration angezeigt.

^{1.} Eine IP-Konfiguration ist gültig, wenn der Netzwerkadapter entweder eine feste IP-Adresse verwendet oder wenn DHCP und APIPA aktiviert sind.

5.5.3 APIPA in der Registrierung aktivieren

INFO

Sie benötigen Administratorrechte, um Änderungen in der Registrierung vorzunehmen.

APIPA in der Registrierung aktivieren

- 1. Klicken Sie **Start** und anschließend Ausführen.
- Geben Sie regedit ein und klicken Sie OK.
 Der Registrierungs-Editor öffnet sich.
- 3. Klicken Sie auf den Eintrag eines Netzwerkadapters im Registrierungsschlüssel:

Globaler Schlüssel (für alle Netzwerkadapter)

HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\

Services\Tcpip\Parameters

Schnittstellen- oder kartenspezifischer Schlüssel

HKEY LOCAL MACHINE\SYSTEM\

CurrentControlSet\

Services\Tcpip\Parameters\

Interfaces\adapter name

INFO

Wenn keiner dieser Schlüssel existiert, ist der APIPA-Mechanismus deaktiviert. Existiert der globale Schlüssel, ist aber nicht aktiviert, ist der globale Schlüssel ausschlaggebend. Existiert der globale Schlüssel nicht oder ist er aktiviert, ist der kartenspezifische Schlüssel ausschlaggebend.

4. Setzen Sie den Wert für IPAutoconfigurationEnabled auf 1. Der APIPA-Mechanismus ist aktiviert.

ETAS Kontaktinformationen

6 Kontaktinformationen

ETAS Hauptsitz

ETAS GmbH

Borsigstraße 24 Telefon: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Deutschland Internet: www.etas.com

ETAS Regionalgesellschaften und Technischer Support

Informationen zu Ihrem lokalen Vertrieb und zu Ihrem lokalen Technischen Support bzw. den Produkt-Hotlines finden Sie im Internet:

ETAS Regionalgesellschaften Internet: www.etas.com/de/contact.php
ETAS Technischer Support Internet: www.etas.com/de/hotlines.php

ETAS Index

Index

В
Betriebssysteme21
C
Code
erzeugen
Connection Manager54
D
Datenschutzerklärung
•
E
Echtzeit-Betriebssystem
Konfiguration56
ETAS EE
ETAS Experiment Environment
ETAS Netzwerk
Adressierung
DHCP70 Network Manager71
Netzwerkadapter konfigurieren75 reservierte Adressen73
G
GUI
erstellen40
H
Handbücher8
Hardware
konfigurieren48
Hardwarekonfiguration
erstellen48
I
IdleController
Modell
INCA-Version
auswählen27
Inport
hinzufügen51
Installation
Benutzerrechte22
Systemvoraussetzungen21
Vorbereitung21
L
LABCAR Inport51
LABCAR Outport51
LABCAR-CCI14
LABCAR-LCE15
LABCAR-LCX15
LABCAR-Lizenzmodelle29
LABCAR-MCA
LABCAR-MCS
LABCAR-NIC
LABCAR-NIF
LABCAR-NIL

LABCAR-OPERATOR
Projekt erstellen36
starten35
LABCAR-OPERATOR-Version
auswählen26
LABCAR-RTC14
Lieferumfang21
Lizenz
Lizenzmodelle29
M
MATLAB-Version
auswählen27
0
OS Configurator
starten56
Oszilloskop
erstellen40
S
Sprachversionen
Betriebssystem22
T
Tutorial33
TULUTIAI