
LABCAR-AUTOMATION 4.2.3

How to …? Frequently asked questions – Tips & Tricks

2

Copyright

The data in this document may not be altered or amended without special notification

from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-

ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-

rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express

written permission of ETAS GmbH.

© Copyright 2012 - 2016 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

ETAS Contents

LABCAR-AUTOMATION 4.2.3 How to …? Frequently asked questions – Tips & Tricks 3

Contents

1 Introduction .. 5

1.1 Conventions ... 5
1.2 Installation Paths ... 6

2 For Test Case Developers .. 7

2.1 How do I write test cases? .. 7
2.2 Offline Test Case Design ... 7
2.3 Test Case Design and Debugging within Visual Studio .. 11
2.4 Test Case Design without Test Management tools (Embeddable Package) 12
2.5 Automated Label Mapping .. 13
2.6 Intermediate close of INCA Experiment ... 13
2.7 Building Test Case Definition (.tcd) File ... 13

3 For Test Bench Configuration Responsibles ... 14

3.1 Configuration Wizard .. 14
3.1.1 Typical Use Case .. 14
3.1.2 Features of the Configuration Wizard .. 14
3.2 Test Bench Configurations can be fully determined by “Unit under Test” 15
3.3 The SUT Mapping Editor ... 16
3.4 Access to INCA with or without LABCAR-OPERATOR ... 16
3.4.1 Using INCA with LABCAR-OPERATOR .. 17
3.4.2 INCA Standalone .. 18
3.4.3 Necessary Installations for the use of INCA standalone .. 18
3.5 Flashing with INCA and PROF ... 20
3.5.1 Pre-requisitions .. 20
3.5.2 Preparing the test bench configuration .. 20
3.5.3 Lines in code ... 24
3.6 Parameter recording for Sync DL ... 25
3.7 Failure Simulation Load Cut off ... 26
3.8 Connection to dSpace Test Bench ... 27

4 For Testers ... 29

4.1 Changing the layout of the report.. 29
4.1.1 Changing report layout after creation per report .. 29
4.1.2 Changing report layout for all reports .. 29

5 Complex features .. 30

5.1 Offline Project generation ... 30
5.1.1 Typical Use Case .. 30
5.1.2 Features of the Project Generator ... 30
5.1.3 Feature Handling ... 30
5.2 Report Structure ‘Abstract Section’ .. 31
5.2.1 Feature Description .. 31
5.2.2 Test case development for use of the Abstract Section ... 31
5.2.3 Report View with Abstract Section ... 33
5.3 Improved Data logging functionality .. 33
5.3.1 Typical use case ... 33

ETAS Contents

LABCAR-AUTOMATION 4.2.3 How to …? Frequently asked questions – Tips & Tricks 4

5.3.2 Feature Description .. 34
5.3.3 Feature Handling ... 34
5.3.4 Test bench configuration for LCO project dataloggers .. 35
5.3.5 Hints ... 35
5.4 Maps and Curves .. 35
5.4.1 Typical use case ... 35
5.4.2 Feature Description .. 35
5.4.3 Feature Handling ... 35
5.4.4 Mapping rules .. 36
5.4.5 Example .. 36
5.5 Real Time Tests support ... 38
5.5.1 Typical use cases ... 38
5.5.2 Feature Description .. 38
5.5.3 Feature handling .. 39
5.5.4 Test case development for Real Time testing ... 40
5.5.5 Test bench configuration for Real Time testing .. 40
5.5.6 Hints ... 40
5.6 Soft-Stop Function for Test cases .. 41
5.6.1 Typical use cases ... 41
5.6.2 Feature Description .. 41
5.6.3 Feature Handling ... 41
5.6.4 Test case development for Soft Stop ... 41
5.6.5 Test bench configuration for Soft Stop .. 42
5.6.6 Hints ... 42
5.6.7 Difference between status shown in Test Handler and Verdict reported by test case 42
5.7 Error Manager .. 43
5.7.1 Typical Use Cases .. 43
5.7.2 Feature Description .. 43
5.7.3 Feature Handling ... 43
5.7.4 Test Case development with Error Manager ... 43
5.7.5 Test Bench Configuration for Error Manager .. 45
5.7.6 Hints ... 45
5.8 Working with a Signal Generator ... 45
5.8.1 Typical use cases ... 45
5.8.2 Feature Description .. 45
5.8.3 Feature Handling ... 46
5.8.4 Test case development for the Signal Generator .. 47
5.8.5 Test bench configuration for the Signal Generator .. 48
5.8.6 Mappings ... 50
5.8.7 Working with dSpace .. 50
5.8.8 Example with LABCAR-OPERATOR 3.2.5 .. 51

6 General issues ... 52

6.1 Test Handler Tool Options – across different installations ... 52
6.2 Silent Installation ... 52
6.3 License Management .. 54

7 ETAS Contact Addresses .. 55

ETAS Introduction

LABCAR-AUTOMATION 4.2.3 5

1 Introduction

This document helps you to

 setup your use case,

 getting answers for frequently asked questions,

 find useful hints when running in trouble,

 description of complex features.

Whenever you need some information about usage of LABCAR-AUTOMATION, this document

should be your first entry point to find a solution for your issue.

This document is grouped into different sections regarding the functional roles of the

automated testing process and the general issues concerning e.g. installation and terms of
use.

1.1 Conventions

Formatting of dialog elements

If names of entry fields used by a dialog are used in the documentation they are written in

italic letters.

E.g: Folder, Device, Database

Formatting of entries

Entries to be made in dialog fields are written in bold letters.

ETAS Introduction

LABCAR-AUTOMATION 4.2.3 6

1.2 Installation Paths

All installation paths in this document refer to a Windows 7 (64bit) system environment.
The standard directories in this environment are:

Program Files:

C:\Program Files (x86)\ETAS\LABCAR-AUTOMATION 4.x

Configuration Files:

C:\ProgramData\ETAS\LABCAR-AUTOMATION 4.x

Examples and Default Data:

C:\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.x

When working in a Windows XP environment, these directories are located at:

Program Files:

C:\Program Files\ETAS\LABCAR-AUTOMATION 4.x

Configuration Files:

C:\Documents and Settings\All Users\Application Data\

ETAS\LABCAR-AUTOMATION 4.x

Examples and Default Data:

C:\Documents and Settings\All Users\Documents\

ETAS\LABCAR-AUTOMATION 4.x

For a more detailed explanation please have a look into the LABCAR-AUTOMATION User’s
guide, chapter: 2.4.1 the “\Users\Public\Documents\ETAS” Folder.

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 7

2 For Test Case Developers

2.1 How do I write test cases?

First of all, before tests can be performed, they have to be created. There are to major

possibilities to do this.

 Using the Automation Sequence Builder

 Please have a look into the User’s guide at chapter 4.1 Automation Sequence
Builder

 Using a .Net® compatible Software Development language like C# or Python

 Please read the document ‘ATCL getting started.pdf’. It provides a quite
comprehensive and detailed description how this works.

2.2 Offline Test Case Design

To reduce the expensive usage of test bench, there is a possibility to develop the test case

code with a virtual test bench, called Offline Test Bench.

Offline Test Benches fake the behavior of a real test bench. Test cases or useful functions
making use of ATCL signatures can be created, set to operation and validated without a full-

fledged test system.

The behavior of the complete test system corresponds to the real one. The whole tool
adapter chain, like SUT mappings, data conversion and unit conversions, is passed. Only the

final API calls to the test tools are faked by the use of text files containing the expected test

bench behavior or input dialogues returning the expected values.

 This mechanism can be used to execute test sequences offline from the
Automation Sequence Builder as well as test cases from the Test Handler

An “Offline Test Bench” is specified in the TBC File Editor as any other Test Bench by

selecting the “Offline Tools”. These tools replace the real-world tools.

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 8

There are two ways how expected values can be provided.

 For single values an input at the testers console via dialogue is the most appropriate
method.

 More frequently expected return values are preferably described in a text file called
‘offline file’. In this file each line represents one record for one return value.

Example with calls for all offline signatures

Offline file design

 Columns per row (separated by tabulators) are:

Repetition: Number of times the line is used

Port: Port on which the signature is called

Signature: The signature which needs a return value

Label: The label for which a value shall be fetched

Return Value: The value/values, data to be returned

Return Delay: The time it shall take at least to return

 Commenting is allowed („//“),

 Inclusion of other offline files is allowed („#include“)

 With { } it is possible to group rows. The number before the curly bracket is the
repetition of this group

Possible values in offline file and the dialogue

 Possible values for all signatures retrieving states:

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 9

PortAny

PortLoading

PortError

PortUndefined

PortStarting

PortCompleted

PortCreated

PortPaused

PortToolConfigured

PortConfigured

PortRecording

PortLLConfigured

PortRunning

PortStopped

PortHLConfigured

PortClosed

PortReset

PortListening

PortStateUnknown

 The values for signatures retrieving values as array have to be given in the following
format:

[0;1.0]

[A;B;C]

 The GetLoggedSignals signature expects a path to the datalogger “.dat” file containing
the values.

Test Bench configuration for Offline tests

The offline file is specified additionally to the offline tool in the TBC Editor for each tool. The
file name has to be entered in the „Adapter Config File“ - Column by selecting the Extended

View via right mouse click.

One file may store the return behavior of many tools, thus the same file can referenced for
different tools.

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 10

Creation and usage of the offline files realized in different modes:

Pure Offline Mode

Pure offline tool adapters will replay the offline file for each signature. In case a

mismatch of file and test case occurs, it creates an error like a real test bench error.

Offline/Edit Mode

This mode is used to create/modify new or existing offline files using “Offline/Edit”

tool adapter.

If a mismatch between called signature and file occurs, the user specifies the desired
behavior in a dialog and the file is extended.

Offline Recording

The third mode is for the creation of an offline file. With this mode the necessary data

are recorded via an online test run. The recording has to be switched ‘on’ for the
online tool in the custom properties in the TBC file editor.

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 11

Replay of such a created offline file can be triggered via pure offline mode.

“Offline”, “Offline/Edit” and “Offline Recording” – Tool adapter are available with following

ports:

Model Access

GetLoggedSignals, GetValue, GetSelectedElements, GetSelectedElementsLength,
GetSignalGeneratorState, GetDataLoggerState

ECU Access Measurement

The offline feature of this port is realized for LCO 4.1 and higher only

GetLoggedSignals ,GetValue, GetSelectedElements, GetSelectedElementsLength,
GetDataLoggerState

 “ECU Access Calibration”

The offline feature of this port is realized for LCO 4.1 and higher only

ChecksumIsValid, GetValue

“Offline” and “Offline/Edit” – Tool adapter are available with following port as well:

 “Synchronized Logging”

P_SyncDLGetLoggedSignals, getState

All “Set*” – signatures are assumed to be successful on an Offline Test Bench

2.3 Test Case Design and Debugging within Visual Studio

Starting and debugging Test Cases from Visual Studio („F5“) is fully supported.

It includes specification of Test Bench Configurations and Report File location.

For this purpose the LABCAR-AUTOMATION Engine Controller is running as Windows service

to which the test case developer connects.

To start the LABCAR-AUTOMATION Engine Controller select via Start Menu:

Start  Programs  ETAS  LABCAR-AUTOMATION 4.x  Test Design (ATCL) 

LABCAR-AUTOMATION Engine Controller

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 12

The LABCAR-AUTOMATION Engine Controller places an icon in the Windows® task bar. Via
this icon the user has to specify by double click the necessary Test Bench Configuration

(TBC) which LABCAR-AUTOMATION shall use for the test. Usually this is an offline test

bench configuration as the developer might not have all the appropriate tools installed.

To search out, which values are set in the selected TBC click the button ‘Environment’.

As soon as a TBC file is selected, start the LABCAR-AUTOMATION Engine Controller with the

appropriate button. The TBC can be only switched if the LABCAR-AUTOMATION Engine
Controller is stopped.

If the LABCAR-AUTOMATION Engine Controller was not started you’ll get a Windows®

generated error like shown below as soon as you start your test case:

2.4 Test Case Design without Test Management tools (Embeddable Package)

 The Test Release Procedure is simplified. The TCD Generator is capable to run in
batch mode for automated creation of Test Case Library files.

 Microsoft® .NET Framework Version 2.0 is fully integrated.

 With the improvements in the ATCL “ParameterManager” Interface the fully
parameterized Default Parameter Sets can be created directly in test case.

ETAS For Test Case Developers

LABCAR-AUTOMATION 4.2.3 13

2.5 Automated Label Mapping

When during execution a test label is detected which was not mapped in one of the SuT
mapping files, relevant for the used tool, it will be mapped automatically to the same label of

the given a2l – File. Label name, type and ranges are taken over from a2l.

If a test label was mapped actively in the mapping file, this mapping is the master. With this
the original functionality of your existing test cases is guaranteed.

2.6 Intermediate close of INCA Experiment

In case of long-lasting test cases it might be expedient to close the INCA experiment

interim. This ensures stability of such longer tests. Reopen of the Experiment is possible with

the EAM port signatures StopCommunication and StartCommunication. The optional
parameter then contains the former closed experiment.

These methods change the state of the port. After calling StopCommunication the state is

“PortToolConfigured” and after StartCommunication the state is “PortConfigured”.

2.7 Building Test Case Definition (.tcd) File

The test case definition file is necessary for the usage of test cases (e.g. .exe or .py) inside
of LABCAR-AUTOMATION projects. It contains the link to all structuring files as there are:

 Test Parameter File (.tpa)

 Test hierarchy definition (.thd)

 Test architecture definition (.tad)

As well additional used dynamic link libraries can be included into the .tcd file.

The .tpa, .thd and .tad files are created with a first execution of the test case .exe file. This

can be done outside of any tool (e.g. the Test Handler), the executable can be started by
double mouse click directly. The files are created automatically in the same folder like the

executable is located.

Please be aware that the test case executable might use report functions as well. In case a

Test Handler run is active at the same time, these report functions might lead to an
overwriting of the report, which is actually created by the Test handler test run.

Please do not run a test case executable in parallel with test handler test runs!

With the TCD Editor you have a graphical user interface to collect the definition files for your

test case and build the .tcd file or you can use the application TCDCMD.exe, which is
command line tool generating the TCD file without showing a wizard.

For more detailed information, please refer to the ATCL getting started.pdf, chapter 4.4.1

‚Test Case Definition File’ and ff.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 14

3 For Test Bench Configuration Responsibles

3.1 Configuration Wizard

3.1.1 Typical Use Case

LABCAR-AUTOMATION is a well structured and quite comprehensive tool suite. Many
variations are possible and supported with this collection. However, a high flexibility requires

a certain effort to configure the tool suite, so that it fits to the own requirements.

Configuring LABCAR-AUTOMATION is a little bit sophisticated. Especially when a more or
less static composition of the used test bench is used there has to be a fast and intuitive

method to achieve a complete and correct configuration.

3.1.2 Features of the Configuration Wizard

A guide through all necessary actions before a LABCAR-AUTOMATION test case runs at the

PC is the utmost concern of this wizard.

With the Configuration Wizard

 a complete test bench configuration is created

 a default test case is created for further editing

 a default test project is created, using the default test case and the created test
bench.

Basis for the test bench configuration which is treated by the Configuration Wizard are at
first the installed tools. Depending on the LABCAR-AUTOMATION package which is licensed

the collection of tools to be configured is extended to all tools which are supported by
LABCAR-AUTOMATION.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 15

Most of the entries are preconfigured with either example files or folders or with the default

entries of the appropriate tool. The Configuration Wizard moreover supports for the other
entries with several search functions. All possible entries are filtered according the valid

extension. In case of configuration of the INCA connections it looks for the necessary entries
in the given INCA database.

After selecting all tools and providing all necessary inputs, the test bench configuration is

created.

The following step provides default test case and test project using exactly this test bench.
In the code of the test case all the selected tools of the test bench are available exemplarily

to prepare the test case for using the tool’s ports and signatures. The Test Manager, if
started from Configuration Wizard by a button push, uses exactly this default test case.

Starting the Test Handler out of the Configuration Wizard it is preconfigured with the created

test bench as well.

Thus, as soon as the Configuration Wizard finishes his work the customer is able to run his
first test project at an operable test bench.

The complete detailed instruction manual is placed in the user’s guide at chapter ‘4.5.1 The
Configuration Wizard.

3.2 Test Bench Configurations can be fully determined by “Unit under Test”

Users can choose to specify the Test Bench configuration depending on the UuT selected for
testing:

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 16

A “TBC mapping ID” can be specified in the Environment of each UuT.

If activated, the Test Handler maps the “TBC ID” to a specific Test Bench Configuration used

for this test.

The API of the UuT Server is extended to allow automated setting of the “TBC ID”

3.3 The SUT Mapping Editor

The SUT Mapping Editor is used by both, LABCAR-OPERATOR 5.x and LABCAR-

AUTOMATION V3.3 ff., and is able to treat both file formats, the LABCAR-OPERATOR text
file and the LABCAR-AUTOMATION format as well.

3.4 Access to INCA with or without LABCAR-OPERATOR

INCA can be addressed from within a test case with or without using LABCAR-OPERATOR.

Using both, INCA and LABCAR-OPERATOR, you can use additional functions, e.g. the

synchronous datalogging features, which synchronizes the time stamps of both loggings

(model and ECU).

The usage without LABCAR-OPERATOR is called ‚INCA standalone’.

The following examples show the different configuration entries and descriptions. As this

accesses only the ECU, a synchronization of the time stamps is not necessary and not

possible.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 17

3.4.1 Using INCA with LABCAR-OPERATOR

When using INCA together with LABCAR-OPERATOR you have to look first to your LABCAR-
OPERATOR version. The handling until LABCAR-OPERATOR V3.2.5 is different to the newer

versions.

If both, INCA and LABCAR-OPERATOR, are installed and your Test Case is using the
ModelAccess Port to LABCAR-OPERATOR and the ECUAccess Port to INCA, the

configurations are like shown below.

 LCO3.2.5 and INCA5.4 or INCA6.2 are installed

Here you see a possible Test Bench:

 If you like to use the synchronous datalogging feature, then for INCA and LCO

Tool in the parent column the parent port P_SyncDL have to be selected.

 The name of the ports (e.g. P_EAC and P_MA) have to fit to your test case names.

 LCO4.1 (or higher) and INCA5.4 or INCA6.2 are installed

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 18

 ModelAccess port to LABCAR-OPERATOR has to be configured before

ECUAccess port to INCA is configured inside the test case.

 If you use a LABCAR-OPERATOR version which is higher than V4.1 please adapt

the version number of the example entries above accordingly.

3.4.2 INCA Standalone

Using INCA without LABCAR-OPERATOR is called ‚INCA Standalone’ handling, as no LABCAR-

OPERATOR has to be available installed at your PC.

Test Case only using the ECUAccess Port (INCA), here a possible Test Bench.

 As only one signal source is available a synchronous datalogging is not provided

here.

 In case LABCAR-OPERATOR V3.2.5 is installed as well, a LABCAR-OPERATOR

window pops up and will be closed immediately. This does not harm the execution
w/o the LCO.

 Even if LABCAR-OPERATOR V4.1 is installed at your PC as well, do NOT use the

Tool template ‘INCA(EAx) with LABCAR-OPERATOR’ Vx.x, as this would lead to an

error.

3.4.3 Necessary Installations for the use of INCA standalone

Both, INCA and LABCAR-OPERATOR, are installed

 INCA5.4/INCA6.2. and LCO5.0 ff are installed

 Install INCA Standalone from the CD.

 INCA5.4/INCA6.2. and LCO4.1 are installed

1. Install INCA Standalone from the CD.

2. Unregister the old API. Default Installation Path: “C:\Program
Files (x86)\ETAS\LABCAR-OPERATOR4.1\LABCAR-API” (regsvr32
/u /s “<LCO4.1Installation PATH>\LCO3API.dll”)

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 19

3. You will no longer be able to use synchronous data logging,
though you still can log both signal sources. But you have to
treat them as individual, separate data source.

 INCA5.4/INCA6.2. and LCO 3.2.x are installed on your PC and you want to measure
with INCA without LABCAR-OPERATOR:

 No further Installation is necessary.

Use of INCA5.4/INCA6.2 without installed LABCAR-OPERATOR application

1. Install INCA Standalone from the CD.

2. Copy all dlls from installation CD folder:
\Data\ThirdParty_AVC++7SP1.Redistributables to your ETAS
directory of shared components: C:\ETAS\LABCAR-CCI-
Standalone3.2\System32

Use of INCA7.0/INCA7.1 without installed LABCAR-OPERATOR application

1. Install INCA Standalone from the CD.

(\Data\INCA Standalone\INCAXX\INCAAddOn_XML4LabCar.exe)
depends on the INCA Version.

3.5 Standalone Diagnostic with INCA 7.1

3.5.1 Pre-requisitions

A working installation of INCA and ODX-Link must be available on the computer.

3.5.2 Preparing the test bench configuration

Test bench configuration file

In your test bench configuration file you will need to define an instance of a Diagnostic port

and connect this Port to the Tool ‘INCA V7.1(DIAG) with ODX-LINK’

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 20

Hint:

It is not possible to use the tool ‘ODX (Diagnostics) with LABCAR-OPERATOR V5.x.’. See
next chapter.

3.6 Standalone Diagnostic with LABCAR-OPERATOR

In the older LABCAR-AUTOMATION version it was possible to use the tool ‘ODX
(Diagnostics) with LABCAR-OPERATOR V5.x.’ also for a standalone Diagnostic. That means
that we are using the Diagnostic Port without a Model Access from LABCAR-OPERATOR. This

functionality will be removed in one of the next version. If you still need this feature modify

one/all of ODX files:

%ProgramData%\ETAS\LABCAR-AUTOMATION

4.2\conf\TBC\ETAS\Tools\ODX_DiagnosticsPort_EE[xx].xml

3.7 Flashing with INCA and PROF

3.7.1 Pre-requisitions

A working installation of INCA and the PROF Tool must be available on your personal

computer. In addition all necessary accessories to flash the ECU must be available, i.e. hex
or s19 together with a2l-file, an INCA device to connect to and flash the ECU, like ES59x,

and an INCA database providing a fitting workspace. For the PROF-Tool a configuration is

necessary.

Hint:
Make sure the ECU can be flashed by hand with the INCA database, workspace and PROF-

Configuration you are going to use for your automated flashing.

3.7.2 Preparing the test bench configuration

Test bench configuration file

In your test bench configuration file you will need to define an instance of an ECU Access
Flash port.

Make sure you choose the right INCA version, which is working with your PROF version

smoothly.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 21

Tool configuration file

In your tool configuration file you have to give the same information you provide for any

other ECU access. As there are (see Figure 1)

 the INCA Database to open

 Used Measurement Device

 Used Experiment

 Folder in database containing the used experiment

 Used Workspace

 Folder in database containing the used workspace

 SuT Mapping File to be used

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 22

Fig.1: Tool configuration file prepared for the EAF port

In addition you have to give the information necessary for flashing

 file you want to use for flashing is given in (EAF) Code/Data Files for flashing (see
Figure 1 and also “File Name Map Dialog ”)

 The Flash Port , i.e. the port used by INCA to flash the ECU. You can find this
information

 in the INCA hardware configuration in your flash port option. (See Figure 2). But

be aware that depending on the device chosen this information might be

misleading.

 by using the visual basic script GetFlashPortNames.vbs. It allows you to determine

the flash ports available in the device used by your experiment.

You then have to choose the one used by your PROF tool.

 If you are using ODX have a look for your physical link device. You can find it in

the vehicle information table (VIT). You can use ODX-CONFIG to check.

 extract the information from the target server log file (TgtSvr.log)

Depending on the INCA version it is stored in
C:\ETAS\LogFiles\TgtSvr

or
C:\ETAS\LogFiles\ProcessLogsV2

Have a look for the line containing the string “StorePermanentlyToTarget”, e.g.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 23

 Logfile excerpt:
12-05-2006 17:59:52 API: StorePermanentlyToTarget(CAN1,

C:\DOCUME~1\...\Temp\flshtmp1.hex 0 cbbnew convert

D:\ETASDATA\INCA5.3\PROF\FCU_CB~1\xcellsis)

where CAN1 is the Flash Port entry, 0 cbbnew convert is the flash parameter and

D:\ETASDATA\INCA5.3\PROF\FCU_CB~1\xcellsis is the PROF configuration file
entry.

Fig. 2: Hardware dialog in INCA

 The (EAF) PROF Configuration File is holding the path to the PROF layout file (the
filename has no extension (see Figure 3) and Figure 1

Fig. 3: The layout file is without any extension; therefore the type is Datei or file

respectively

 the (EAF) PROF Flash Parameter is holding the parameter string given to the PROF
program when it is called by INCA.
The parameters used to flash your ECU can be extracted from the Logfile (see page

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 24

27) or you can take it from the layout file directly (see Figure 4).
In both cases your parameters for the here shown example will be: 0 cbbnew
convert

Figure 4 Contents of PROF layout file

SuT mapping file

Is the same you use for your ECU measurement access.

3.7.3 Lines in code

Initialization of the port:

private IPortEAF m_portEAF = null;

private IPortEAC m_portEAC = null;

private IPortMA m_portMA = null;

/// <summary>

/// Registers the ports.

/// </summary>

private void RegisterPorts()

{

m_portMA = Factory.GetPortMA("ModelAccess");

m_portMA.Timeout = -1;

m_portEAC = Factory.GetPortEAC("ECUAccessCalibration");

m_portEAC.Timeout = -1;

m_portEAF = Factory.GetPortEAF("ECUAccessFlashing");

m_portEAF.Timeout = -1;

}

And to perform some flash action add the following parts to your test performance method:

#region ECU access flashing

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 25

Reporting.SectionBegin("Flash access");

m_portEAF.Configure("device2", "default", "default");

m_portEAF.DeviceFlash("workingpage");

// workingpage is the test label for the working page in INCA

// the testlabel is resolved by the SuTMapping

if (m_portEAF.ChecksumIsValid())

{

Reporting.SetInfoText(0L, "Flashed ETk successfully", 6L);

}

// The following flash command flashes the ECU with a given hex

or s19 file

//m_portEAF.UuTFlashFile(@"C:\Users\Public\Documents\ETAS\LABCA

R-AUTOMATION 4.1.0\Examples\Test Bench Configurations\ATCL

Example NEW Test Bench for LCO50\Demo03.hex");

// The following flash command flashes the ECU with the working

or reference page

//m_portEAF.UuTFlash("workingpage");

Reporting.SectionFinished("", new Verdict(VerdictCode.Pass));

#endregion ECU access flashing

You can find the full test case in the LABCAR-AUTOMATION examples.

3.8 Parameter recording for Sync DL

To use the INCA parameter recording for the SyncDL you have to set an user option inside

INCA to enable it.

Open your INCA and select in the Menue Bar: Options -> User Options and activate the tab
‚Experiment’.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 26

After double click at value for measurement in this window the panel for the change of the
measurement options open.

In the Change Measurement options – window select the tab ‚General’ and look for the entry

‚Enable Measure Calibration devices’ and set it to ‚yes’.

3.9 Failure Simulation Load Cut off

At the FS-Port for failure simulation it is possible to cut off the load via test case for each
failure set separately.

To use this functionality you’ve to reference the ATCL (Etas.Eas.Atcl.Interfaces.dll) build

version 1.0.0.4 and to use the Load Flag property of the ErrorDefinition.

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 27

The load cut off for the complete port by a parameter in the tool configuration file is still

available.

This option setting (unless it is empty) is overwriting any settings inside the test case!

3.10 Connection to dSpace Test Bench

Connection to dSpace test benches is very easy as ETAS provides already a Tool Adapter for
it. This Tool Adapter enables the connection to dSpace ControlDesk 3.2.1

Configuration

The changes in the test bench are tool configuration related only:

 the Model Access – which is used for the access via LABCAR-OPERATOR as well - has
to bind to the Tool Adapter for dSpace ControlDesk like shown in the following
picture:

Thus the Model access Port (in this example called ‘ModelAccess’) with all its

functionality (“signatures”) is available now for the test cases.

 the Tool Configuration File has to point to the dSpace Control Desk project and to the
platform which is used. These are the main differences to the Tool Configuration File
of the LABCAR-OPERATOR.

The dSpace ControlDesk Project file has the extension .cdx

ETAS For Test Bench Configuration Responsibles

LABCAR-AUTOMATION 4.2.3 28

The SuT Mapping File is slightly different to the one for LABCAR-OPERATOR due to the

different syntax in the dSpace ControlDesk. SUT Mappings naturally differ in tool labels
(“Right hand side” of mapping). Additionally not only labels may differ, but also object and

data types.

Example of a LABCAR-OPERATOR SuT Mapping File (left) /

dSpace ControlDesk related SuT Mapping File (right)

Use the example TBC, TCF or SMF out of the examples folder at C:\
Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.x\Examples\Test Bench
Configurations\Sample Files

Differences between LABCAR-OPERATOR and dSpace ControlDesk

 Signal Generation is limited to one object by dSPACE ControlDesk

 Datalogging functionality is limited by dSPACE ControlDesk

 Some Data Types are missing in ControlDesk

 boolean,

 char, string

 bitstrings; octetstrings, hexstrings

 Some Variable Objects are missing but exist in ControlDesk

 “Map”/”2D-Table”

 “Curve”/”1D-Table”

 Initial variable creation by “ModelValueSelect” is not necessary in dSPACE Test Bench

ETAS For Testers

LABCAR-AUTOMATION 4.2.3 29

4 For Testers

4.1 Changing the layout of the report

There are two possibilities to change the layout of your report. Just have a short view about

the technique behind.

The reports are stored as xml format and are formatted by the browser you use to display.

This can the Microsoft Internet Explorer or our LABCAR-AUTOMATION Report viewer.

Browsers using style sheets (xslt files), referenced to format the input for the display. The

LABCAR-AUTOMATION Report viewer copies these style sheet into each report directory,
basing on its default option settings.

4.1.1 Changing report layout after creation per report

To change the layout of one single report, this is possible after the creation of the report

(and only then). You just have to change the style sheets, copied to the same location like
the report:

<your LCA project location>\TestRuns\Report <date and time> \Standard Report\styles

You have reopen the report for viewing again after changing the style sheets.

4.1.2 Changing report layout for all reports

To change the layout of all further reports you have to change the style sheet located in the

program folder of LABCAR-AUTOMATION (C:\Program Files (x86)\ETAS\LABCAR-

AUTOMATION4.x\TestTools\styles) and to adapt the option inside the report viewer.

Please restart the report viewer after changing this option

For existing reports the styles are not adapted, you have to do it manually

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 30

5 Complex features

5.1 Offline Project generation

5.1.1 Typical Use Case

LABCAR-AUTOMATION projects are a collection of several artifacts working together during
test management and execution: test case, parameter set, units under test, test bench

configuration, tool configurations. On folder level they are well structured and one file
defines the complete content of the project.

With respect to cost and time savings projects are designed to be reapplied for different test

targets, test benches, test phases or with only different parameter sets. If only one of the
artifacts has to be changed and the other ones should be kept and shall be consistent

overall it is useful to manage the artifacts at a central place.

The project creation is separated out of the definition of the single peaces and often the
request is there to automate it.

The Project Generator is the choice for acting like this.

5.1.2 Features of the Project Generator

Having all artifacts of a LABCAR-AUTOMATION project available at any place in the folder

structure the Project Generator assembles the project out of it controlled by a so called

Project Management File (.pmf).

5.1.3 Feature Handling

To provide all inputs to the Project Generator a Project Meta File (.pmf) has to be created. It
is structured in XML and contains the link to all LABCAR-AUTOMATION project artifacts. All

of the artifacts have to be created before, e.g. by creating a new or changing an existing
LABCAR-AUTOMATION project.

The format follows a given schema. The complete schema is delivered within the installation

directory at: C:\Program Files (x86)\ETAS\LABCAR-AUTOMATION

4.x\TestTools\XMLSchema\lca_pmf_v1.1.xsd

This .pmf file is the only input to be entered at the dialogue of the Project Generator to

enable the generation. With the option ‘Force project creation’ the Project Generator is

instructed to overwrite an existing project.

Just press ‘Generate’ and it starts.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 31

5.2 Report Structure ‘Abstract Section’

5.2.1 Feature Description

Most of the information during test run are collected, reported and viewed according to the
chronological cycle of the test.

Nevertheless a summary of the results – more detailed than the verdict only – is interesting

to be seen aggregated and right at the top of the report or of a dedicated secition, even if
the information are partly originated at a late point in time of the test run.

This the Abstract Section in the report allows for.

5.2.2 Test case development for use of the Abstract Section

The Abstract Section is a special section inside the report. The test case has to border its

report parts for this special section with the two signatures.

 Reporting.SectionAbstractBegin

 Reporting.SectionAbstractFinished

The entry instructions for the Abstract section can be used several times per test case

And it also can be nested inside of other sections. In this case the abstract section content

relates to the section and is shown at the top of this section. One abstract section per report
section is possible.

The abstract section has to be realized in the following structure elements:

 TestCaseBegin/TestCaseEnd

 SectionBegin/SectionFinished

 TestEntityCalled/TestEntityFinished

 FunctionCalled/FunctionFinished

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 32

The abstract section allows the following structure elements/methods inside:

Name Description

AddPlot2Report Overloaded.

AddTableToReport Add the table to the report.

FunctionCalled Overloaded.

FunctionFinished Overloaded.

SectionBegin Adds a new Section to the report.

SectionFinished Finishes a section in the report.

SetErrorLevel Set the error level.

SetErrorLink Sets the error link.

SetErrorText Sets the error text.

SetErrorTextAndValue Sets the error text and value.

SetHeaderLink Sets the header link.

SetHeaderText Sets the header text.

SetHeaderTextAndValue Sets the header text and value.

SetInfoLink Sets the info link.

SetInfoText Sets the info text.

SetInfoTextAndValue Sets the info text and value.

SetLink Set a link.

SetResultLink Sets the result link.

SetResultText Sets the result text.

SetResultTextAndValue Sets the result text and value.

SetText Set some Text.

SetTextAndValue Set some text and some values.

SetWarningLink Sets the warning link.

SetWarningText Sets the warning text.

SetWarningTextAndValue Sets the warning text and value.

StateCalled Overloaded.

StateFinished Overloaded.

TestEntityCalled Overloaded.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 33

TestEntityFinished Overloaded.

5.2.3 Report View with Abstract Section

The Abstract Section is shown by the report viewer at the top of the report or the section.

Using the overview page of a test case you find the content of the Abstract Section at the
top as chapter ‘Abstract’:

Using the link in the tree to a section of the test case you find the content of the section
related abstract at the chapter ‘Abstract’ at to top of this dedicated section:

5.3 Improved Data logging functionality

5.3.1 Typical use case

If customer uses standardized LABCAR-OPERATOR projects, which have to be used for the
simulation and tests it might be useful to predefine Dataloggers for values which have to be

logged in any case. Depending on the use case the test case or simulation sequence may

add some values to be logged for a more detailed view on the behavior.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 34

The effort for the basic Dataloggers have not to be spent twice. However the test case is

able to log all necessary details without overloading the LABCAR-OPERATOR project with too
much Dataloggers.

5.3.2 Feature Description

Former LABCAR-AUTOMATION releases create their own Datalogger in the LABCAR-

OPERATOR project when a test runs, independently of the Dataloggers which already exist
in the LABCAR-OPERATOR project.

With the newest version of LABCAR-AUTOMATION it is now possible to access Dataloggers

that exist in the LABCAR-OPERATOR project already.

This feature is optional, by means that it can be selected, if the LABCAR-OPERATOR
Dataloggers shall be visible and usable inside the LABCAR-AUTOMATION test cases, or not.

5.3.3 Feature Handling

The new feature is provided by LABCAR-AUTOMATION as a new entry inside the tool
configuration of the model access. It is only available from LABCAR-OPERATOR V5.0

onwards.

There are no code changes necessary for the option to use the LABCAR-OPERATOR project
dataloggers in the LABCAR-AUTOMATION test case as well. It is only controlled by the tool

configuration of the LABCAR-OPERATOR.

If the test case uses the same value for logging like already defined by the LABCAR-
OPERATOR project and if the use of LABCAR-OPERATOR project dataloggers is enabled,

LABCAR-AUTOMATION merges both dataloggers automatically.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 35

5.3.4 Test bench configuration for LCO project dataloggers

The tool configuration template of the LABCAR-OPERATOR V5.0 contains a new entry
‘CleanUp Datalogger’. It accepts the values ‘True’ and ‘False’.

In case ‘False’ is entered, the Dataloggers defined in the LABCAR-OPERATOR project are
visible and usable by LABCAR-AUTOMATION as well.

To ensure the same behavior like in the past, the default value of this entry is ‘True’.

Leaving the entry blank has the same meaning like ‘True’.

5.3.5 Hints

The entry field of this new entry is free text. Thus you can enter each string you want. The
only value which is evaluated is ‘False’ or ‘FALSE’. All other values are resulting internally to

‘True’.

5.4 Maps and Curves

5.4.1 Typical use case

Signals which are recorded or used for stimulation are usually stored as a digital curve. It
uses pairs of dedicated values for the time line (x-axis) and the amplitude (y-axis). A set of

signals can be stored together as a map, using the same values for the time line. The

synchronous datalogging is a representative use case for these maps.

5.4.2 Feature Description

LABCAR-AUTOMATION is able to work with curves and maps using two dedicated TypeSut –
Types, called TypeSut1DFloatTable and TypeSut2DFloatTable.

5.4.3 Feature Handling

Reading measurement values or feeding parameter values as maps or curve these types can
be mapped accordingly to the tool labels.

Access to the single values and the time line point are possible via index values.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 36

5.4.4 Mapping rules

Test case type SuT Mapping type

TypeSut1DFloatTable Curve

TypeSut2DFloatTable Map

5.4.5 Example

// A very simple Test Case Example snippet

TypeSut1DFloatTable resultCurve =

(TypeSut1DFloatTable)Ports.ECUAccessCalibration.GetValue(new

TypeSut1DFloatTable("",

"One_D.STD_sint16_sint16.All_Curves_STD.Curves_Raster_1", "The Test

Label is mapped in the SutMapping File", new double[0], new

double[0], 0.0, 0, 0, 0, "", ""));

TypeSut2DFloatTable resultMap =

(TypeSut2DFloatTable)Ports.ECUAccessCalibration.GetValue(new

TypeSut2DFloatTable("", "Group_Two_D_1.Map_Mod", "The Test Label is

mapped in the SutMapping File", new double[0], new double[0], new

double[0], 0, 0, 0, 0, 0, 0, "", "", ""));

// assign the first two amplitude figures to the curve

resultCurve.ValueY[0] = 100;

resultCurve.ValueY[1] = 200;

// define a map containg values from 0 .. map length for x- and y-

axis

// assign the x-axis figures to the map

int index = 0;

for (int i = 0; i < resultMap.ValueX.Length; i++) {

 resultMap.ValueX[i] = index;

 index++;

}

// assign the y-axis figures to the map

index = 0;

for (int i = 0; i < resultMap.ValueY.Length; i++) {

 resultMap.ValueY[i] = index;

 index++;

}

// assign the z-axis figures to the map

index = 10;

for (int i = 0; i < resultMap.ValueZ.Length; i++) {

 resultMap.ValueZ[i] = index;

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 37

 index++;

}

// download curve and map settings onto the ECU

Ports.ECUAccessCalibration.SwitchSectionPage("WorkingPage");

Ports.ECUAccessCalibration.SetValue(resultCurve);

Ports.ECUAccessCalibration.SetValue(resultMap);

// read curve and map back

TypeSut1DFloatTable resultCurve2 =

(TypeSut1DFloatTable)Ports.ECUAccessCalibration.GetValue(new

TypeSut1DFloatTable("",

"One_D.STD_sint16_sint16.All_Curves_STD.Curves_Raster_1", "The Test

Label is mapped in the SutMapping File", new double[0], new

double[0], 0.0, 0, 0, 0, "", ""));

TypeSut2DFloatTable resultMap2 =

(TypeSut2DFloatTable)Ports.ECUAccessCalibration.GetValue(new

TypeSut2DFloatTable("", "Group_Two_D_1.Map_Mod", "The Test Label is

mapped in the SutMapping File", new double[0], new double[0], new

double[0], 0, 0, 0, 0, 0, 0, "", "", ""));

// compare written and read figures of the curve

if(resultCurve.ValueY.LongLength == resultCurve2.ValueY.LongLength)

{

 for (int i = 0; i < resultCurve.ValueY.Length; i++) {

 if(resultCurve.ValueY[i] != resultCurve2.ValueY[i]) {

 Fail();

 }

 }

 for (int i = 0; i < resultCurve.ValueX.Length; i++) {

 if (resultCurve.ValueX[i] != resultCurve2.ValueX[i]) {

 Fail();

 }

 }

 Pass();

}

else {

 Reporting.LogExtension("Length of written and read back curve is

different");

 Fail();

}

// compare written and read figures of the map

if (resultMap.ValueY.LongLength == resultMap2.ValueY.LongLength)

{

 for (int i = 0; i < resultMap.ValueY.Length; i++) {

 if (resultMap.ValueY[i] != resultMap2.ValueY[i]) {

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 38

 Fail();

 }

 }

 for (int i = 0; i < resultMap.ValueX.Length; i++) {

 if (resultMap.ValueX[i] != resultMap2.ValueX[i]) {

 Fail();

 }

 }

 for (int i = 0; i < resultMap.ValueZ.Length; i++) {

 if (resultMap.ValueZ[i] != resultMap2.ValueZ[i]) {

 Fail();

 }

 }

 Pass();

}

else {

 Reporting.LogExtension("Dimension of written and read back map

is different");

 Fail();

}

Pass();

5.5 Real Time Tests support

5.5.1 Typical use cases

The strong networking of ECUs and other controlling elements in cars leads more and more
to a time dependant interconnection. Especially the use case of a bus system where

information are exchanged randomly and with a high frequency of messages leads to the

necessity to observe the exact point in time as soon as messages are received.

Due to asynchronous design of communication between sensors, actors and different ECU’s,
the test of the behavior regarding reaction along the timeline becomes important. To realize

such tests the target reaction has to be detected like in the reality – in real time.

The possibility to perform tests at the real time environment (Real Time PC) of a LABCAR
covers this demand. Downloading new parts of code onto the Real Time PC during and thus

expand the model during test execution is another quite exciting benefit of this feature.

5.5.2 Feature Description

In case action and reaction of several values calculated by the model the point in time of

setting or measuring a value might impact the behavior. Without real time test possibility
both actions are depending on the performance and signal transmission time, which can lead

to unintentional delays. These parts of the test which are time critical in this sense should be
performed as real time tests.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 39

The Real Time PC (RTPC) of the LABCAR expects C-code. LABCAR-AUTOMATION is able to
trigger the download of such code onto the RTPC, to set it into operation (activate) or to

deactivate it. Precondition for usage of this feature are:

 LCO 5.0 as Model access tool

 Prepared Model (hooks introduced)

 LABCAR as the test bench with RTPC for Simulation

 Existing C-code for download

5.5.3 Feature handling

To use the real time feature the model has to be prepared for it. Models use ‘hooks’ to

enable docking of alternative code. These hooks are the input and output interfaces for the
new code.

First you have to provide the C-code for the download onto the RTPC. One possibility to

develop such code is the LABCAR-ASC . LABCAR-ASC is an ASCET Add-On and comes with
LABCAR-OPERATOR. It provides among others the ASCET Target “RTPC” and enables

compilation on RTPC.

For more information on creating real time C-code and preparing the model please refer to
the user guides of RTPC and LABCAR-OPERATOR.

When developing your test case you have to use a new port ‘RealTimeScripting’ to initiate

the following actions

 Code Download

 Activation of downloaded code

 Deactivation of downloaded code

to use the Real Time Testing feature.

For executing LABCAR-AUTOMATION provides a special Tool Adapter (Test Bench Connector
Real Time Test – LABCAR-TBCRT) for access to this feature. It has to be configured in the

test bench configuration.

Real-Time PC

Windows PC

Test Case

LABCAR.SetValue(…)

LABCAR.GetValue(…)

TestAutomation

Test Case

LABCAR.RTTest

(…)

LABCAR.getResul

Real-Time

Test Code

…

Simulation

Code

Simulation

Code

Non-real-time,

Real-Time

Test

Automation

Real-time,

synchronous

LCA

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 40

5.5.4 Test case development for Real Time testing

The port providing the access to the real time test functionality is provided by LABCAR-
AUTOMATION with in the ATCL (Automotive Testing Class Library):

 Ports.RealTimeScripting

The creation and closing signatures are like usually

 Create

 ConfigureTool

 Configure

 Close

Special signatures for the real time test handling itself are:

 AddFiles – to pass the initial set of C-files to RTPC for later activation

 Activate – activation of the downloaded code at RTPC

 GetRTPCState – receive the current state of the RTPC

 Deactivate – deactivation of the downloaded code at RTPC

To get detailed information on the test case design find an example, delivered with the
installation of LABCAR-AUTOMATION, at:

C:\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.x\Examples\Test Case

Development\TC_RealTimeScripting

5.5.5 Test bench configuration for Real Time testing

Within the LABCAR-AUTOMATION installation a tool adapter ‚…’ is provided . To use the

feature the test bench has to configure it.

Example of a test bench configuration with LABCAR-OPERATOR 5.0 / Experiment
Environment 3.2:

5.5.6 Hints

Datalogging with labels of the new code is not possible directly. The reason is the ignorance

of the new code labels – and thus of the mapped test labels – during test bench

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 41

initialization. A loophole out of this drawback is to ‘handover’ the values to the original

downloaded model and to log these model values.

5.6 Soft-Stop Function for Test cases

5.6.1 Typical use cases

Big test runs

In the case that the test run contains a lot of test cases and the test cases themselves

have a long duration an erroneous behavior of one test case might ‘kill’ the complete
test run. In this case it should be possible just to stop this single test case and

continue with the next one.

The already performed test cases may not run again and the following test cases can

run without any further actions.

Wrong test case coding

Test cases may include endless loops by accident. A test run stop would wait until this

endless test case is finished, which will never happen. The ‘Stop Test’ is a way out of

this.

5.6.2 Feature Description

In the past the stop button in Test handler stopped execution of the complete test run, but
did not finish the actual running test case before. The process was killed hardly, thus the

test bench left in an undefined, unpredictable state.

Now this additional choice is available via button push inside the Test Handler. The test case

receives the information about this stop and is able to react on this button push. Thus the
developer can decide, what has to be performed when the stop of the test case occurs.

5.6.3 Feature Handling

In the test handler the button ‚Stop’ is extended with a small menu. The tester can select

the kind of stop which has to be carried out.

For faster reaction of the tester in front of the desktop the different stop activities can be
triggered via short cut key combinations like shown in the picture right beside.

The test case which has been stopped with ‘Stop Test Case’ or Shift+F10 will have the

status ‘interrupted’ in the Test Handler’s execution overview:

5.6.4 Test case development for Soft Stop

The LABCAR-AUTOMATION library provides for its class TestCase a new virtual method
StopTestCase. This Method is prepopulated with no statements and does simply nothing,

except to set the verdict to ‘inconc’.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 42

To enable the test case to react on the event it just has to override this method with the

appropriate actions.

This example just writes out ten times the "Stopp Test Case" string in time lags.

Typical Actions within this StopTestCase Method might be:

 Report, that the test case was stopped by an outside request

 Report the status of the test bench, e.g. the status of each port

 Measure and Log some important values

 Report the state of the test case

 Finalize the test bench, close all open ports or reset the test
bench

5.6.5 Test bench configuration for Soft Stop

There is no special test bench configuration necessary for this feature.

5.6.6 Hints

To prevent the running test cases or test run directly following the interrupted test case
from failure, each test case should provide a StopTestCase behavior by overriding the

method. At least a reset of the test bench should be performed to prepare a clean test

bench for the next test.

If the overridden method runs endless the Test Case will be not closed!

5.6.7 Difference between status shown in Test Handler and Verdict reported by test case

Test Handler status calculation and Verdict reporting by Test case

The Test Handler shows in the overview pane the Status of test case execution. If the
test case finishes its operation normally the status is been build of its verdict (pass,

fail or inconc). In the case the test case is not working (error in coding), the test
bench was set up wrongly or the test case is interrupted this is shown in the Status

column of the Test handler as values ‘error’ or ‘interrupted’.

In opposite to this the Report shows the final result of the test case – its verdict. If no

verdict could calculated at the end due to interruption or error this status is taken
over as result.

What does this mean for this feature?

When a test case is stopped by the tester using the new Stop button, the test handler

sets the status ‘Interrupted’ immediately as soon as the button was pressed and fires
the appropriate event. This is done independently of the test case behavior (as the

test case design is completely under developer’s control).

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 43

In some cases the report contains a verdict pass or fail, even if the test handler shows
‘Interrupted’.

Following two situations can lead to this rare case:

 The test case is ‘almost’ finished. In this glare situation the finish of the test case

and the stop event may occure at the same point in time. They are overlapping

each other, the event is fired but does not reach the test case anymore. LCA is not
able to set the verdict to ‘inconc’ (by default, defined in the provided virtual

method) due to the stop event. The interrupt of the test case is marked in the Test

Handler as ‘interrupted’ even if the test case has been finished normally.

 The test case has overridden the virtual method and do not set the verdict hardly

to ‘inconc’ but to another one (eg. ‘pass’ or ‘fail’), depending on its state or results
before. E.g. if there is a cool down of the engine performed after all test case

steps. In this case the verdict-relevant test part has finished and has evaluated a
valid verdict already, which should not overwritten by an interrupt anymore.

5.7 Error Manager

5.7.1 Typical Use Cases

In some cases you like to check the counter of messages of one of the used tools of your

test bench to check it inside the test case. If the tool underneath the LABCAR-AUTOMATION
does not report e.g. a warning via it’s API – may be it is not relevant in the automated mode

– the test case is able to check if a warning was produced.

5.7.2 Feature Description

With the Error Manager it is possible to read the counter of errors, warnings or information

messages logged by a tool. Currently only the Experiment Environment version 3.2.1
supports this feature.

5.7.3 Feature Handling

The feature is available for programmed test cases, e.g. in C# or another .Net compatible

software language. It can be used by referencing the necessary error logging library in your

test case development project. This library provides you with the methods to

 Get the counter of Application Error Messages

 Get the counter of Application Warning Messages

 Get the counter of Application Information Messages

 Get the counter of Hardware Error Messages

 Get the counter of Hardware Warning Messages

 Get the counter of Hardware Information Messages

 Reset all Application Message Counters

 Reset all Hardware Message Counters

5.7.4 Test Case development with Error Manager

Library reference

Add the ErrorManager reference to your Test Case.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 44

You find the ETAS.LCA.SAR.ErrorManager.dll to be referenced at C:\Program Files

(x86)\ETAS\LABCAR-AUTOMATION x.y.z\TestTools\Bin, whereby C:\Program Files
(x86)\ETAS\LABCAR-AUTOMATION x.y.z\ is your actual LABCAR-AUTOMATION

installation folder.

In the following picture you find as example a Visual Studio Solution with a test project.

How to Use the ErrorManager in the Test Case

 Constructor

public IErrorManager errorManager

{

 get

 {

 return

(IErrorManager)Factory.GetManager("IErrorManager");

 }

}

 Available methods

 int applicationerror =

errorManager.GetApplicationErrorMessageCount(Ports.ModelAcces

s);

 int applicationwarning =

errorManager.GetApplicationWarningMessageCount(Ports.ModelAcc

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 45

ess);

 int applicationinfo =

errorManager.GetApplicationInfoMessageCount(Ports.ModelAccess

);

 int Hardwareerror =

errorManager.GetHardwareErrorMessageCount(Ports.ModelAccess);

 int Hardwarewarning =

errorManager.GetHardwareWarningMessageCount(Ports.ModelAccess

);

 int Hardwareinfo =

errorManager.GetHardwareInfoMessageCount(Ports.ModelAccess);

 errorManager.ResetAllApplicationMessageCount(Ports.ModelAcces

s);

 errorManager.ResetAllHardwareMessageCount(Ports.ModelAccess);

5.7.5 Test Bench Configuration for Error Manager

There are no configurations necessary in the test bench to use the Error Manager.

As from the Example above (Chapter 4.7.4) the Port Name must fit to the name used in the
test case – like usually for all calls to this port.

5.7.6 Hints

Due to the fact that only the Experiment Environment supports this feature, the method will
threw an exception in case of any other tool is referenced by the given port (parameter of

the methods).

5.8 Working with a Signal Generator

5.8.1 Typical use cases

To stimulate the model reproducible with a dedicated signal traces, thus reactions are
compareable you need a possibility to store and ‚re-call’ this trace.

In some case it is necessary to stimulate different signals with a dedicated offset in time or

started equally at exactly the same point in time. For this you should have a possibility to
define these points exactly.

Third use case is the continuous realtime stimulation. The signal feed is created under real

time condition.

5.8.2 Feature Description

The feature uses different files to provide the input for the signal generation.

First of all you need the signal feed itself – the values which have to be set at certain points
in time. This input file is a description of the signal. It can be created out of a recorded

signal by LABCAR-OPERATOR (extension .lcs) or edited by hand.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 46

The input of this file will be assigned to a signal generator. The Signal Generator, running at

the real time environment, is build up the signal and connects it to the signal input at the
model. Thus the model uses this as signal feed instead of the output of a device or other

model parts.

The generatation can be configured, started and stopped.

5.8.3 Feature Handling

The signal generator is part of the model access port. Thus the configuration information are

included in the model acces Tool Configuration File.

The set of information regarding signal to be used, acquisition task and file to be used are
provided inside a stimuli set file additionally. This file will be automatically created by the

configuration wizard at your test bench configuration folder at the subfolder \TBC and called
per default StimuliSetInfo.xml. (see 4.8.5Test bench configuration for the Signal Generator)

In case of LABCAR-AUTOMATION Standard Package is installed the name and storage
location must not be changed!

In case of LABCAR-AUTOMATION’s Shell Component ‘Editors Package’ is licensed, you can
change name and storage location of this file and reference this directly in the tool
configuration file.

Following steps are necessary when you like to use this feature:

 Provide configuration information for the signal generator

 A traced signal – available as file of type .lcs (see 4.8.2
Feature Description)

 A stimuli set information file, provided by Configuration
Wizard or manually created.

If you do not use the Configuration Wizard you find an
example at C:\ Users\Public\Documents\ETAS\LABCAR-
AUTOMATION 4.x\Examples\Test Bench Configurations\Demo
Test Bench\LCO 5.0\StimuliSetInfo.xml

 A configuration information in the Tool Configuration File.

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 47

If you use the Configuration Wizard the Tool Configuration
File is created and prefilled with the correct values and
options.

 SuT Mapping Information in the SuT Mapping File to map
signal name, channel, mode and acquisition task

 Configure the signal generator and connect it to signals to be
stimulate

 Test case steps to configure (defining signal name and stimuli
set file)

 Connection to the correct signal channels

 Using LABCAR-OPERATOR V3.2.5:

The connection has to be done in the LABCAR-OPERATOR in
the signal list manually before starting the automated test.

 Using LABCAR-OPERATOR V5.0 or higher:

The connection has to be done inside the test case with the
method SetModelValue. (see 4.8.4 Test case development for
the Signal Generator). The values have to set the signal
mode, the signal name and the channel name.

The separate connection to dedicated signals is possible only
with the LABCAR-OPERATOR!

 Start/Stopp the stimualtion

 Test case steps to configure start, pause (optional) and stop
the signal generator. (see 4.8.4 Test case development for
the Signal Generator).

5.8.4 Test case development for the Signal Generator

In case you programm your test cases with C# you can find here an excample of the code:

 first part – configure the signal generator

m_maport.ConfigureSignalGenerator(

"ACTorqueSignal", //SignalGenerator name <SG .../> from

StimulisSetInfo.xml

"pulse"); // SGSet name <SGSet .../> from StimuliSetInfo.xml,

selects .lcs file

 second part – connect the signal generator to the correct channels

m_maport.SetModelValue(new TypeSutString("",

SutMapping.SIGNALSIGNALGENERATOR, "", "ACTorqueSignal"));

m_maport.SetModelValue(new TypeSutString("",

SutMapping.SIGNALSIGNALGENERATORCHANNEL, "", "Torque"));

// channel label inside the lcs file

// Available modes:

// 0 = constant

// 1 = stimuli

// 2 = model

// 3 = stim + model

// 4 = stim * model

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 48

TypeSutFloat mode = new TypeSutFloat("", SutMapping.SIGNALMODE,

"Mode value", 3.0, 0, 0, "");

m_maport.SetModelValue(mode);

 // third part – start and stop the signal generator

m_maport.Start();

m_maport.StartSignalGenerator("ACTorqueSignal");

Thread.Sleep(4000);

m_maport.StopSignalGenerator("ACTorqueSignal");

m_maport.Stop();

The separate connection to dedicated signals is possible only with the LABCAR-OPERATOR!

With LABCAR-OPERATOR V5.0 and higher it is mandatory to connect the signal generator
after configuration

The information regarding the signal (name and signal set name) have to match the

information of the stimuli information set. (see 4.8.5 Test bench configuration for the Signal
Generator)

The information which channel name, signal generator name and signal mode has to be

used for the signal to be stimulated you find in the signal list / signal center of LABCAR-

OPERATOR. Please have a look into the User guide of the appropriate version of LABCAR-
OPERATOR.

5.8.5 Test bench configuration for the Signal Generator

The configuration information is provided by the Configuration Wizard by default.

If you like to change this information or if you do not use the Configuration Wizard you need

to install the Tool Configuration File Editor, which is part of the Editors Package.

For the format of the StimuliSetInfo file is like follows:

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 49

 StimuliSetInfo.xml (for LCO):

<?xml version="1.0" encoding="utf-8" ?>

<File type="Stimuli Set Info" extension="XML" version="1.0">

<SG name="ACTorqueSignal">

<SGModelName name="SignalGenerator_0" />

<AcquisitionTask name="TaskDVEModel" />

<SGSet name="pulse" file="TorqueOscillation.lcs"/>

</SG>

</File>

5.8.6 Configurable Signal Generator Input Mode Mapping

LABCAR-AUTOMATION 4.2.3 allows choosing between two different mapping behaviors for
the Signal Generator input mode.

The mode can be defined by the newly introduced flag “Inport Mode” within the test bench

configuration (tcf).

 Inport Mode = False (Default Mode): Mapping behavior represents for compatibility

reasons the behavior of previous version of LABCAR-AUTOMATION as introduced with
older versions LABCAR-OPERATOR Experiment Environment. This is the default behavior

of LABCAR-AUTOMATION 4.2.3.

 CONST = 0

 STIMULI = 1

 MODEL = 2

 STIMULI + MODEL = 3

 STIMULI * MODEL = 4

 Inport Mode = True (Latest Mode): Mapping behavior represents the latest behavior

of the supported LABCAR-OPERATOR Experiment.

 CONST = 0

 MODEL = 1

 MODEL_PLUS_CONST = 2

 MODEL_MULT_CONST = 3

 MODEL_PLUS_SIGNALGENERATOR = 4

 MODEL_MULT_SIGNALGENERATOR = 5

 SIGNALGENERATOR = 6

 SIGNALGENERATOR_PLUS_CONST = 7

 SIGNALGENERATOR_MULT_CONST = 8

Hint: This feature is only supported with the tool adapter for LABCAR-OPERATOR
Experiment Environment 3.5 or higher!

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 50

5.8.7 Mappings

All information to be used inside the test case for the signal generator have to be provided
accordingly in the mapping file. This is independent if you use C# as programming language

or the Automation Sequence Builder to set up the test case graphically.

Mappings are neccesary for

 Signal channel = <label>.sgchannel

 Signal mode = <label>.mode

 Signal generator = <label>.sg

 Acquisition task

Whereby <label> is the special signal tool label of LABCAR-OPERATOR.

5.8.8 Working with dSpace

 StimuliSetInfo.xml (for ControlDesk)

<?xml version="1.0" encoding="utf-8"?>

<File type="Stimuli Set Info" extension="XML" version="1.0">

 <SG name="SG">

 <SGModelName name="SignalGenerator_0" />

 <MPSubSystem name="" />

 <SGSet name="start" file="Stimulus1.seq" />

 <SGSet name="stop" file="Stimulus2.seq" />

 </SG>

</File>

 Signal trace file - input for signal generator (see example picture right side)

ETAS Complex features

LABCAR-AUTOMATION 4.2.3 51

5.8.9 Example with LABCAR-OPERATOR 3.2.5

To get a general idea please find here an overview of the used data in the different tool
windows.

ETAS General issues

LABCAR-AUTOMATION 4.2.3 52

6 General issues

6.1 Test Handler Tool Options – across different installations

You may change your options in the Test Handler, e.g. for Reporting or UuT-TBC mappings.

After installation of a new version it is rather conceivably you like to have these option
available for the new version as well. Another requirement might be to save different tool

option configurations for further reuse.

The functionality you need, is to import and export these options. You find the new

functions a the Tools Menu.

To take over the content of the imported ToolOptions.conf file, a restart of the Test Handler

is mandatory.

Additionally the options file ToolOptions.conf will not be deleted during uninstall of LABCAR-
AUTOMATION from Version 3.4 onwards. Completive this file will not be overwritten during

re-installation. Thus you have the options available right after re-installation or repair.

An import is not necessary.

If you like to force to overwrite the Test Handler Tool Options during re-installation or repair
to the initial default values, please delete the ToolOptions.conf file before starting installation
or repair.

For details see the Release Notes.pdf you find on your LABCAR-AUTOMATION Installation
CD and at the ETAS program folder.

6.2 Silent Installation

LABCAR-AUTOMATION can be silently installed via the command line. Therefore call
‘setup.exe /silent’.

Examples:

 To specify which feature to be installed use the “feature” option like ‘Setup.exe

/features="Core,Doc,Basic,TestDesign,ReportViewer,Examples,Shell,TestCreation,Te

stManager,TestHandler,Editors,Misc,ConfigurationWizard" /silent’

 To specify ALL Features to be installed use the below option

Setup.exe /features="ALL" /silent

ETAS General issues

LABCAR-AUTOMATION 4.2.3 53

 To Install ReportViewer alone, use the below option

Setup.exe /features="Core,Basic,ReportViewer" /silent

In the following list, the LCA feature names used for silent installation are listed:

 Please be aware, that every LCA installation must contain the core, otherwise the
operation of LCA will fail

LABCAR-AUTOMATION

feature name
LABCAR-AUTOMATION components

Core All core components of LABCAR-AUTOMATION

including Tool Adaptors for INCA, LCO/EE and

INTECRIO

 Doc User manuals and product documentation.

 Basic

o TestDesign The main LCA modules (required for operation):

Executor (Engine), Automotive Test Case Library

(ATCL)

o ReportViewer The Report Viewer to view the test reports.

o Examples The examples folder

Shell

 TestCreation Automation Sequence Builder

 TestManager Test Manager

 TestHandler Test Handler

 Editors Editors Package

 Misc Project Generator

o ConfigurationWizard Configuration Wizard

ToolAdapters

 RealTimeScriptingAdapter Real Time Testing Tool adaptor

 dSpaceAdapter dSpace ControlDesk Tool adaptor

ETAS General issues

LABCAR-AUTOMATION 4.2.3 54

 ODXAdapter Diagnose Tool adaptor for ODX Link (acc. INCA

Version)

 ES4440Adapter Fault Simulation Tool Adaptor (ES4440)

For an overview on the LABCAR-AUTOMATION components please refer to the LABCAR-
AUTOMATION release notes, chapter ‘LABCAR-AUTOMATION Packaging’, delivered with this

CD and placed in the Programs / ETAS folder after installation.

All the other additional Components, like Tool Adaptors for MLBA4, CANape, Excel etc. are

not handled in the LABCAR-AUTOMATION-4.x.msi (resp. Setup.exe). Separate installation is
required, the relevant installation files (.msi) are provided in the Installation CD.

 Please be aware, that the LABCAR-AUTOMATION is completely controlled by
licenses. This means, although you might have installed a specific component, it
would not work in case you do not own an appropriate license. In this case please
contact ETAS sales department, to order to correct component license

The different addons (tool adapters) can be silently installed as given below:
“msiexec /i <addon_installer>.msi /passive”

6.3 License Management

Every component of the LABCAR-AUTOMATION is protected by use of a license.

During Installation you are able to select ‘your’ package. If you select another option or

more than the available licenses grant, all selected components are installed, however they
are usable only in a ‘Grace mode’. This mode allows you to test the full functionality of the

components for a time frame of 30 operational days. After expiration of this time the
components without valid license do not work any longer.

For further particulars we refer you to the documentation “How to get a license file” listed in

the tool section of the Installation CD and the user’s guide to LABCAR-AUTOMATION.

Note:

Machine based licenses do not work together with Microsoft’s “Remote Desktop Connection”,
but you can use “Remote Desktop Sharing” of Windows NetMeeting, or use VNC.

There is no issue with Remote Desktop with a server based license.

ETAS ETAS Contact Addresses

LABCAR-AUTOMATION 4.2.3 55

7 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

Borsigstraße 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-106

Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and product

hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: www.etas.com/en/contact.php

ETAS technical support WWW: www.etas.com/en/hotlines.php

http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

ETAS

LABCAR-AUTOMATION 4.2.3 56

	1 Introduction
	1.1 Conventions
	Formatting of dialog elements
	Formatting of entries

	1.2 Installation Paths

	2 For Test Case Developers
	2.1 How do I write test cases?
	2.2 Offline Test Case Design
	2.3 Test Case Design and Debugging within Visual Studio
	2.4 Test Case Design without Test Management tools (Embeddable Package)
	2.5 Automated Label Mapping
	2.6 Intermediate close of INCA Experiment
	2.7 Building Test Case Definition (.tcd) File

	3 For Test Bench Configuration Responsibles
	3.1 Configuration Wizard
	3.1.1 Typical Use Case
	3.1.2 Features of the Configuration Wizard

	3.2 Test Bench Configurations can be fully determined by “Unit under Test”
	3.3 The SUT Mapping Editor
	3.4 Access to INCA with or without LABCAR-OPERATOR
	3.4.1 Using INCA with LABCAR-OPERATOR
	3.4.2 INCA Standalone
	3.4.3 Necessary Installations for the use of INCA standalone

	3.5 Standalone Diagnostic with INCA 7.1
	3.5.1 Pre-requisitions
	3.5.2 Preparing the test bench configuration
	Test bench configuration file

	3.6 Standalone Diagnostic with LABCAR-OPERATOR
	3.7 Flashing with INCA and PROF
	3.7.1 Pre-requisitions
	3.7.2 Preparing the test bench configuration
	Test bench configuration file
	Tool configuration file
	SuT mapping file

	3.7.3 Lines in code

	3.8 Parameter recording for Sync DL
	3.9 Failure Simulation Load Cut off
	3.10 Connection to dSpace Test Bench

	4 For Testers
	4.1 Changing the layout of the report
	4.1.1 Changing report layout after creation per report
	4.1.2 Changing report layout for all reports

	5 Complex features
	5.1 Offline Project generation
	5.1.1 Typical Use Case
	5.1.2 Features of the Project Generator
	5.1.3 Feature Handling

	5.2 Report Structure ‘Abstract Section’
	5.2.1 Feature Description
	5.2.2 Test case development for use of the Abstract Section
	5.2.3 Report View with Abstract Section

	5.3 Improved Data logging functionality
	5.3.1 Typical use case
	5.3.2 Feature Description
	5.3.3 Feature Handling
	5.3.4 Test bench configuration for LCO project dataloggers
	5.3.5 Hints

	5.4 Maps and Curves
	5.4.1 Typical use case
	5.4.2 Feature Description
	5.4.3 Feature Handling
	5.4.4 Mapping rules
	5.4.5 Example

	5.5 Real Time Tests support
	5.5.1 Typical use cases
	5.5.2 Feature Description
	5.5.3 Feature handling
	5.5.4 Test case development for Real Time testing
	5.5.5 Test bench configuration for Real Time testing
	5.5.6 Hints

	5.6 Soft-Stop Function for Test cases
	5.6.1 Typical use cases
	5.6.2 Feature Description
	5.6.3 Feature Handling
	5.6.4 Test case development for Soft Stop
	5.6.5 Test bench configuration for Soft Stop
	5.6.6 Hints
	5.6.7 Difference between status shown in Test Handler and Verdict reported by test case

	5.7 Error Manager
	5.7.1 Typical Use Cases
	5.7.2 Feature Description
	5.7.3 Feature Handling
	5.7.4 Test Case development with Error Manager
	5.7.5 Test Bench Configuration for Error Manager
	5.7.6 Hints

	5.8 Working with a Signal Generator
	5.8.1 Typical use cases
	5.8.2 Feature Description
	5.8.3 Feature Handling
	5.8.4 Test case development for the Signal Generator
	5.8.5 Test bench configuration for the Signal Generator
	5.8.6 Configurable Signal Generator Input Mode Mapping
	5.8.7 Mappings
	5.8.8 Working with dSpace
	5.8.9 Example with LABCAR-OPERATOR 3.2.5

	6 General issues
	6.1 Test Handler Tool Options – across different installations
	6.2 Silent Installation
	6.3 License Management

	7 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

