ETAS

LABCAR-AUTOMATION 4.2.3
How to ...? Frequently asked questions — Tips & Tricks

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-
ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.

© Copyright 2012 - 2016 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

ETAS Contents

Contents

3 g1 o [T u T o PP 5
3 R 0] Y= o1 o) 5
1.2 Installation Pathsccoiiiiiiiiiicii e e 6

2 FOr Test Case DEVEIOPELSccuurruiiiiiiiiiiiiniiiis s s s s s s ersrsss s s s s e s e e e s s e s s s e e e rr s e e e e e s e eernnnaasennas 7
2.1 HOW dO I Wt TSt CASES? ... iivuuiiiiieiiiie e s e s e s e e e a e s e e eaa e s e rrnaneeennnn 7
2.2 Offling TSt CaSE DESIGN ..uuuiiiiiiiiiiriiei it e e e e s e e e e e e eaa e s e eeaareeennns 7
2.3 Test Case Design and Debugging within Visual Studioocceviiiiiiiiiniiiii v 11
2.4 Test Case Design without Test Management tools (Embeddable Package)cccovvviiiiiens 12
2.5 Automated Label Mappingccucoiiiiiiiiiiiii et e 13
2.6 Intermediate close of INCA EXPEriMENTu.iiiiiiiiiiiiiie it ers e e s e e ra s e n e e e 13
2.7 Building Test Case Definition (.tcd) File ...coooeeeie e, 13

3 For Test Bench Configuration ReSpONSIDIEScccveiiiiiiiiieeee e 14
3.1 Configuration Wizardoooooe i 14
I O B Y o (s U = L PPN 14
3.1.2 Features of the Configuration Wizardcccceiiiiiiiiiiiiiin it er e 14
3.2 Test Bench Configurations can be fully determined by “Unit under Test”cccoceeeeiiiiiiinnns 15
3.3 The SUT Mapping EQitOr......ccuuiiiiiiiiie i r e e s s s e e e e e ana e e ees 16
3.4 Access to INCA with or without LABCAR-OPERATOR.......cuueiiiiiieiirrrnrnssssssssseennnsnnssnsssseenns 16
3.4.1 Using INCA with LABCAR-OPERATORccuuuuiieiiiiieiiiniiiisisseseeeesssssssssssseessssnsnssesesenenns 17
3.4.2 INCA Standalone.....cccuuiiiiiiiieiiciiiie e eeiie s erre s e e s e e e s e e rae s s s erse e s e ern e e e rrnneeerrnnaaen 18
3.4.3 Necessary Installations for the use of INCA standaloneccccceeeiiiiivieceennnsnn e e eeeens 18
3.5 Flashing with INCA @nd PROFccuuiiiiiiiiiiicciiie et crn e s s s s e s e e s s s e e s e e enaaaeees 20
3.5.1 Pre-reqUISItIONS ..cccvureee e ieriis e s e r e e e s e r e e e renn 20
3.5.2 Preparing the test bench configurationc.ccooiii i 20
3.5.3 LINES iN COOR ...iiiiirrrruiiiisii s e ierrrrisss s s s s s s s s rrsass s s s s s s s e rr s s s e s s s e e e rsnsaa s e e aessnnnnsnnnneenenennnns 24
3.6 Parameter recording for SYNC DL.......cooiiiiiiiiiiiiiieccrersi s s s rsrs e eenes 25
3.7 Failure Simulation Load CUt Offccvuiiiiii e e e 26
3.8 Connection to dSpace TeSt BENCHcovviiiiiiiiiiiiin e rr s rrr e s eeens 27

L o) S I =11 =] PPN 29
4.1 Changing the layout of the repOrt.......ccuuiiiiiiiiii e 29
4.1.1 Changing report layout after creation per reportccviireiiiinncrer s 29
4.1.2 Changing report layout for all rePOrSiviiiiicicrerres e e 29

T 0034 0] (o0t (== 18 = PP 30
5.1 Offline Project generationcccooooioiii e 30
0 R I o o= | U LT = T PP 30
5.1.2 Features of the Project GENeratorcoiiiiiiiiiin e e 30
5.1.3 Feature HandliNgcccooo s 30
5.2 Report Structure 'Abstract SECHONcoviiiiiiiiriii e e 31
5.2.1 Feature DesCripPlioNuviiiiiiiiiiiii i 31
5.2.2 Test case development for use of the Abstract Sectioncccevevvvriiciinneceeresn e, 31
5.2.3 Report View with Abstract SECHON......cccoviviiiriiii e e 33
5.3 Improved Data 10gging functionalitycooverimmimiiniiiii i e 33
5.3.1 TYPICAI USE CASE.....ceirurruuiisiiriiiierrnnas s ssessrernsss s s asssserrsss s s s s s s senrrs s s e s e s ennnssnnsssssns 33

LABCAR-AUTOMATION 4.2.3 How to ...? Frequently asked questions — Tips & Tricks 3

ETAS Contents

5.3.2 Feature DeSCriPtiON ...icvuicriieeriier st sers e s e s s s s s s s s s s s s ea s e ra s s e ra s ena s e rn e s ennnarnnnan 34
5.3.3 Feature HandliNgcccoooio s 34
5.3.4 Test bench configuration for LCO project dataloggersccvveviiiiiiiiiiiinien e eeeennn, 35
0 0 T o {1 PP 35
5.4 MaPS @NA CUMVES......iieieieiiiiiis i sssssersssss s s s s s e e raraas s e s e e s s e e e s s s e e e s s e e ee e s e e e s e e e nnnrnnneeens 35
5.4.1 TYPICAl USE CASE....cciirrrrruiiiiiseieirrsiiissssesseersssas s e ssssserr s s s s s e s s senrr s s e e s eeennnnrnaneeens 35
5.4.2 Feature DeSCriPtiON ...icuuicreieiiieiiii s s srs s s s s s s s s s s s s s en s e eae s e ra s e s s ernssennssnnnnnns 35
5.4.3 Feature HandliNgcccoooio s 35
5.4.4 MappinNg FUIESccoiiiiieiiiiiie st e s e s e e e e e e e e e r e s 36
BiA5 EXAMPIE i 36
5.5 Real TiIMe TESLS SUPPOIT covvuu ittt ittt e s r e s e e s e e raa s 38
5.5.1 TYPICAl USE CASES ...ceevvrrruuiiiiireieirrsiniisssssssserssssssssssssenssssssssssssensssssssssssssennnsnnnsneseses 38
5.5.2 Feature DeSCriptiON ...icuuicriiiiesieii st ssris e s s s s s s s s s s s s en s s ra e s e ra s e nn s e rn e s enn s rnnans 38
5.5.3 Feature handliNgccuuiiiiiiiii it 39
5.5.4 Test case development for Real Time testingccooeeieoeiiiiieie 40
5.5.5 Test bench configuration for Real Time testingccoeoeiriiiiieie e 40
TR T o {1 0 PP 40
5.6 Soft-Stop FUNCLION fOr TESE CASEScuvuiiiiiiiii it e 41
5.6.1 TYPICAl USE CASEScevvrrruniriiiiiiiirsisis s sssssirsss s s s s rssss s s s s s naa s s s s s s e nn s b e e e s 41
5.6.2 Feature DeSCriPtiON ...icvuieeiieiie i st s s s e s s e s s e s e e s ra s e ra s e ra s e nn s e rn e s ennnarnnnans 41
5.6.3 Feature HandliNgccouiiiiiiiiii ittt 41
5.6.4 Test case development fOr SOft STOPcoceveirriiririrr 41
5.6.5 Test bench configuration for SOft STOPcoeeeiiiiiiii s 42
N LG o {1) PP 42
5.6.7 Difference between status shown in Test Handler and Verdict reported by test case 42
TN A = o g =T =T < 43
5.7.1 TYPICAl USE CASES .uutiiiiruiiiiiiii et s et s et s s e e s s s s e s e e e s e e e e s e e aa e s e e e s 43
5.7.2 Feature DeSCriPtiON ...icvuieeiieii i s s s s s rre s e s s e s s rn s s ea s s rn s e ra s e nn s ernassennssrnnsnns 43
5.7.3 Feature HandliNgccuuuiiiiiiiiiiiii i s s s 43
5.7.4 Test Case development with Error Manager..........ooviiimmiiinnnnnicnsns s 43
5.7.5 Test Bench Configuration for Error Managerccveviiiiiiiiiiciiin s ern s eeaas 45
D.7.6 HINES it e e 45
5.8 Working with @ Signal GENErator..........coiiiiiiiiiiii et e 45
5.8.1 TYPICAl USE CASES ...cevvrrrrunniriiserrrrrsnnssssssssssrrrssssassssssssennsssssssssssssennnssssssssesesennnnnnssssssees 45
5.8.2 Feature DesCripliOncc..iiiiiiee e e e e e e e rn s e e r s s e e r e s e e rn e e e rn e e rn s 45
5.8.3 Feature HandliNgcouuuuiiiiiiiiiiiiii i s s e 46
5.8.4 Test case development for the Signal Generatorccvvvviiiiiiiieverernss e 47
5.8.5 Test bench configuration for the Signal Generator.........ccccceeeviiiiiveerernccs e, 48
RS TG T 17 =T o o1V =TT 50
5.8.7 Working With dSPace.......ccooiiiiiiiiiiiii i 50
5.8.8 Example with LABCAR-OPERATOR 3.2.5 ... ciiiiiiiiiiiiiiccerrnsss e rerrnsns s enn s 51
(€7 g =T = | I = PP PPPPPN 52
6.1 Test Handler Tool Options — across different installationsccoeviiiiiiiiiiiiicee 52
6.2 SIlent INStAllationiiiceiei i an 52
6.3 LiCENSE MaNagEMENT ... ccuuiiii it st r e e s s e s a e e e rrnarran 54
ETAS CONtACt AAAIrESSES ...cevevrrrriiisiisererrrssinis s e sssseersrsas s s s s s s s e rr s s s e s s rerrrs s s e e s e s ernrssnnnsseeees 55

LABCAR-AUTOMATION 4.2.3 How to ...? Frequently asked questions — Tips & Tricks 4

ETAS Introduction

1 Introduction

This document helps you to

= setup your use case,

= getting answers for frequently asked questions,
= find useful hints when running in trouble,

= description of complex features.

Whenever you need some information about usage of LABCAR-AUTOMATION, this document
should be your first entry point to find a solution for your issue.

This document is grouped into different sections regarding the functional roles of the
automated testing process and the general issues concerning e.g. installation and terms of
use.

1.1 Conventions

Formatting of dialog elements

If names of entry fields used by a dialog are used in the documentation they are written in
ftalic letters.

E.g: Folder, Device, Database

Formatting of entries

Entries to be made in dialog fields are written in bold letters.

LABCAR-AUTOMATION 4.2.3 5

ETAS Introduction

1.2 Installation Paths

All installation paths in this document refer to a Windows 7 (64bit) system environment.
The standard directories in this environment are:

Program Files:
C:\Program Files (x86)\ETAS\LABCAR-AUTOMATION 4.x

Configuration Files:
C:\ProgramData\ETAS\LABCAR-AUTOMATION 4.x

Examples and Default Data:
C:\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.x

When working in a Windows XP environment, these directories are located at:

Program Files:
C:\Program Files\ETAS\LABCAR-AUTOMATION 4.x

Configuration Files:
C:\Documents and Settings\All Users\Application Data\
ETAS\LABCAR-AUTOMATION 4.x

Examples and Default Data:
C:\Documents and Settings\All Users\Documents\
ETAS\LABCAR-AUTOMATION 4.x

For a more detailed explanation please have a look into the LABCAR-AUTOMATION User’s
guide, chapter: 2.4.1 the "“|Users|Public|Documents|ETAS” Folder.

LABCAR-AUTOMATION 4.2.3 6

ETAS For Test Case Developers

2 For Test Case Developers

2.1 How do I write test cases?

First of all, before tests can be performed, they have to be created. There are to major
possibilities to do this.

= Using the Automation Sequence Builder

= Please have a look into the User's guide at chapter 4.1 Automation Sequence
Builder

= Using a .Net® compatible Software Development language like C# or Python

= Please read the document 'ATCL getting started.pdf. It provides a quite
comprehensive and detailed description how this works.

2.2 Offline Test Case Design

To reduce the expensive usage of test bench, there is a possibility to develop the test case
code with a virtual test bench, called Offline Test Bench.

Offline Test Benches fake the behavior of a real test bench. Test cases or useful functions
making use of ATCL signatures can be created, set to operation and validated without a full-
fledged test system.

The behavior of the complete test system corresponds to the real one. The whole tool
adapter chain, like SUT mappings, data conversion and unit conversions, is passed. Only the
final API calls to the test tools are faked by the use of text files containing the expected test
bench behavior or input dialogues returning the expected values.

= This mechanism can be used to execute test sequences offline from the
Automation Sequence Builder as well as test cases from the Test Handler

An "Offline Test Bench” is specified in the TBC File Editor as any other Test Bench by
selecting the “Offline Tools”. These tools replace the real-world tools.

[1] Test Bench Configuration File Editor - PT_LABCARDemo_Offline.th = [5 [|
File Edt View Help
Ey B @
Port to Tool Mapping > & X Ports _
Port Tool Instance Type Interface

ECUAcc
ECUACC
Modela
Modela
SyncOL

Offline Edit ECU Access Cali | =
Offline Edit ECU Access Mea | »
OfflineEdit Model Access (M| =
OfflineEdit ModelAccess (M| »
Offline Edit SyncDL -

LABCAR-AUTOMATION 4.2.3

ECUAccess Calibration

Type_ECUAccessCalibration_

ETAS.EAS. ToolAdapter.Port.ECUAcCcess.P_EAC

ECUAccessMeasurement

Type_ECUAccessMeasureme

ETAS.EAS.Tool&dapter.Port.ECUACcess.F_EAM

ModelAccess

Type_ModelAccess_port

ETAS.EAS. ToolAdapter.Port.ModelAccess.P_MA

Modelaccess2

Type_Modelaccess_port

ETAS.EAS.Tool&dapter.Port.ModelAccess.P_MA

SyncDL

Type_SyncDL_port

ETAS.EAS. Tool&dapter.Port.SyncDL.P_SyncDL

Tools

Name

TCF

SUT Mapping File

INCA(EAC) with LABCAR-OPERATOR V4.1

TNCAB.2tcf | =-

INCA.smf

INCA(EAM) with LABCAR-OPERATOR V4.1

INCAB.2.tcf | =e-

INCA.smf

LABCAR-OPERATOR V4.1

LCO4.1.tef | -

LCO.smf

Offline Edit ECU Access Calibra

tion (EAC)

INCAB.2tcf | ---

INCA.smf

Offline Edit ECU Access Measurement (EAM

INCAB.Ltcf |---

INCA.smf

Offline EditModel Access (MA)

LCO4. Licf | ---

LCO.smf

Offline Edit SyncDL

SyncDL with LABCAR-OPERATOR V4.1

ETAS

For Test Case Developers

There are two ways how expected values can be provided.

For single values an input at the testers console via dialogue is the most appropriate

method.

More frequently expected return values are preferably described in a text file called

‘offline file'. In this file each line represents one record for one return value.

GetModelValue = e

Signature Information

Testlabel: ICiAecelerator/Value
Toollabel: ICiAecelerator/Value
Unit:

Objecttype: Scalar

Datatype: Float

Comment

Signature Data
Part:
Signature: GetModel Value

Returnvalue: Etas Eas Atcl.Interfaces. Types TypeSutBase

ModelAccess

Delay (s): |D
o
A
.
1 wp MAv GetModelValue "Aocelerator” 0.0 0;
1 "B MA" GetDataloggerState e PortConfigured 0:
1 "B MA" GetLoggedSignals o D:\LCA-Tests\2_TBC\TIC_RllSignaturesOffline\Testbench Configuration'log_filename.dat 0:
1 wp_MAv GetSignalGeneratorState "-" PortConfigured 0;
1 "B MA" GetSelectedElements "label” [0:1.0] 0:
1 "B MA" Gethrraylength o 23 0:
L "P EAC" ChecksumlIsValid n_w true 0:
771 W E EACH Getvalue “HyLabel” B [H
IR RN GetVaiue iicceierator T ELE [H
1 wp_ERM" GetDataloggerState o PortConfigured 0;
1 "B_EEM" GetSelectedElements "label” [0:1.0] 0:
1 "E_EZRM" Gethrraylength o 23 0:
1 wp_ERM" GetSelectedSignals " R:B;C) 0;
1 "B_SyncDL" GetLoggedSignals e D:\LCR-Tests\2_TBC\IC_Rl1lSignaturesOffline\Testbench Configuration\datalogger.dat 0:
1 "E_EZRM" GetLoggedSignals o D:\LCA-Tests\2_TBC\TC_AllSignaturesOffline\Testbench Configuration'log_filename.dat 0:
r P SRR N N P Pl I S anm e P N P

Example with calls for all offline signatures

Offline file design

= Columns per row (separated by tabulators) are:
Repetition: Number of times the line is used
Port: Port on which the signature is called
Signature: The signature which needs a return value
Label: The label for which a value shall be fetched
Return Value: The value/values, data to be returned
Return Delay: The time it shall take at least to return

= Commenting is allowed (,,//"),

= Inclusion of other offline files is allowed (,,#include™)

With { } it is possible to group rows. The nhumber before the curly bracket is the
repetition of this group

Possible values in offline file and the dialogue

Possible values for all signatures retrieving states:

LABCAR-AUTOMATION 4.2.3

ETAS

PortAny
PortLoading
PortError
PortUndefined
PortStarting
PortCompleted
PortCreated
PortPaused
PortToolConfigured
PortConfigured
PortRecording
PortLLConfigured
PortRunning
PortStopped
PortHLConfigured
PortClosed
PortReset
PortListening
PortStateUnknown

For Test Case Developers

The values for signatures retrieving values as array have to be given in the following

format:
[0;1.0]
[A;B;C]

The GetLoggedSignals signature expects a path to the datalogger “.dat” file containing

the values.

Test Bench configuration for Offline tests

The offline file is specified additionally to the offline tool in the TBC Editor for each tool. The
file name has to be entered in the ,,Adapter Config File" - Column by selecting the Extended
View via right mouse click.

LABCAR-AUTOMATION 4.2.3

One file may store the return behavior of many tools, thus the same file can referenced for
different tools.

ETAS For Test Case Developers

Tools B
D T e D
Name TCF SUT Ma n-"‘-':‘,—Md = N |
INCA(EAC) with LABCAR-OPERATOR V4.1 | INCAG.2.tcf | == ¢ INCA.SmF |
INCA(EAM) with LABCAR-OPERATOR W41 | INCAB.2.tcf |--- | INCA.5mf
LABCAR-OPERATOR V4.1 LCO4.Ltcf |- LCO.smf Optimal Column Width
Offline Edit ECU Access Calibration (EAC) | INCAB.2.tcf | --- INCA.smf - I
Offline Edit ECU Access Measurement (EAM | INCAG.2.tcf | == | INCA.5mf EI Show Basic View
Offline Edit Model Access (M4) LCO4Ltcf | == LCO.sMF Show Extended View
Offline Edit SyncDL Open in Editor
SyncDL with LABCAR-OPERATOR V4.1
i
Eh
Il Paste Strg+V/ I
F 4

Creation and usage of the offline files realized in different modes:

Pure Offline Mode

Pure offline tool adapters will replay the offline file for each signature. In case a
mismatch of file and test case occurs, it creates an error like a real test bench error.

Offline/Edit Mode

This mode is used to create/modify new or existing offline files using “Offline/Edit”
tool adapter.

If a mismatch between called signature and file occurs, the user specifies the desired
behavior in a dialog and the file is extended.

Offline Recording

The third mode is for the creation of an offline file. With this mode the necessary data
are recorded via an online test run. The recording has to be switched ‘on’ for the
online tool in the custom properties in the TBC file editor.

Tools

SUT Mapping File | Parent | Location | Class Name | Version | Adapter Config File | CustomProperties |
INCA.smf :

4

etas.e |- ETASEAS, [+ | 1.0 --- | Edit Custom Properti ;

LABCAR-AUTOMATION 4.2.3 10

ETAS For Test Case Developers

Q Custom Properties Editor &J

Key Value [Add I
ToolAdapterfrchitecture (L2

ToolChainXml ECU Access Calibration OFf Remove

ToolAgentName ToolAgentType_EAC_Offlin
UseOfflineFileRecording itrue

[oK || Cancel |

Replay of such a created offline file can be triggered via pure offline mode.

“Offline”, “Offline/Edit” and “Offline Recording” — Tool adapter are available with following
ports:

Model Access

GetLoggedSignals, GetValue, GetSelectedElements, GetSelectedElementsLength,
GetSignalGeneratorState, GetDataLoggerState

ECU Access Measurement

The offline feature of this port is realized for LCO 4.1 and higher only
GetLoggedSignals ,GetValue, GetSelectedElements, GetSelectedElementsLength,
GetDatalLoggerState

“ECU Access Calibration”

The offline feature of this port is realized for LCO 4.1 and higher only
ChecksumlIsValid, GetValue

“Offline” and “Offline/Edit” — Tool adapter are available with following port as well:

“Synchronized Logging”
P_SyncDLGetLoggedSignals, getState

All “Set*” — signatures are assumed to be successful on an Offline Test Bench

2.3 Test Case Design and Debugging within Visual Studio

Starting and debugging Test Cases from Visual Studio (,,F5") is fully supported.
It includes specification of Test Bench Configurations and Report File location.

For this purpose the LABCAR-AUTOMATION Engine Controller is running as Windows service
to which the test case developer connects.

To start the LABCAR-AUTOMATION Engine Controller select via Start Menu:
Start > Programs > ETAS -> LABCAR-AUTOMATION 4.x - Test Design (ATCL) >
LABCAR-AUTOMATION Engine Controller

LABCAR-AUTOMATION 4.2.3 11

ETAS

2.4

For Test Case Developers

The LABCAR-AUTOMATION Engine Controller places an icon in the Windows® task bar. Via
this icon the user has to specify by double click the necessary Test Bench Configuration
(TBC) which LABCAR-AUTOMATION shall use for the test. Usually this is an offline test
bench configuration as the developer might not have all the appropriate tools installed.

&) LABCAR-AUTOMATION Engine Controller K

TBC File C:\lUsers\Public'\Documents"\ETAS\LABCAR-AUTOMATION 4. [:]

Ervironment | | Start

« D™ DG

To search out, which values are set in the selected TBC click the button ‘Environment’.

As soon as a TBC file is selected, start the LABCAR-AUTOMATION Engine Controller with the
appropriate button. The TBC can be only switched if the LABCAR-AUTOMATION Engine
Controller is stopped.

[ol EnvironmentForm | = | 5 ﬁ]\
Key Value

»
TEC_FILE C:\Users'\Publich....
uuT_uID
DERIVATE_NAME
TEST_CASE_IN...
REPORT_PATH
UUT_LIST_PATH
REPORT_LOCA...

*

| Load | | Save | | OK | | Cancel |

If the LABCAR-AUTOMATION Engine Controller was not started you'll get a Windows®
generated error like shown below as soon as you start your test case:

#1 CA\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.0.0\ASE\Sequence. 2\TRL\Sequence 2.\ () e

[e]l] — Could not locate the sewrver. Hetry in a few seconds?

Test Case Design without Test Management tools (Embeddable Package)

» The Test Release Procedure is simplified. The TCD Generator is capable to run in
batch mode for automated creation of Test Case Library files.

= Microsoft® .NET Framework Version 2.0 is fully integrated.

= With the improvements in the ATCL “ParameterManager” Interface the fully
parameterized Default Parameter Sets can be created directly in test case.

LABCAR-AUTOMATION 4.2.3 12

ETAS For Test Case Developers

2.5 Automated Label Mapping

When during execution a test label is detected which was not mapped in one of the SuT
mapping files, relevant for the used tool, it will be mapped automatically to the same label of
the given a2l — File. Label name, type and ranges are taken over from a2l.

If a test label was mapped actively in the mapping file, this mapping is the master. With this
the original functionality of your existing test cases is guaranteed.

2.6 Intermediate close of INCA Experiment

In case of long-lasting test cases it might be expedient to close the INCA experiment
interim. This ensures stability of such longer tests. Reopen of the Experiment is possible with
the EAM port signatures StopCommunication and StartCommunication. The optional
parameter then contains the former closed experiment.

These methods change the state of the port. After calling StopCommunication the state is
“PortToolConfigured” and after StartCommunication the state is “PortConfigured”.

2.7 Building Test Case Definition (.tcd) File

The test case definition file is necessary for the usage of test cases (e.g. .exe or .py) inside
of LABCAR-AUTOMATION projects. It contains the link to all structuring files as there are:

= Test Parameter File (.tpa)
= Test hierarchy definition (.thd)
» Test architecture definition (.tad)
As well additional used dynamic link libraries can be included into the .tcd file.

The .tpa, .thd and .tad files are created with a first execution of the test case .exe file. This
can be done outside of any tool (e.g. the Test Handler), the executable can be started by
double mouse click directly. The files are created automatically in the same folder like the
executable is located.

Please be aware that the test case executable might use report functions as well. In case a
Test Handler run is active at the same time, these report functions might lead to an
overwriting of the report, which is actually created by the Test handler test run.

Please do not run a test case executable in parallel with test handler test runs!

With the TCD Editor you have a graphical user interface to collect the definition files for your
test case and build the .tcd file or you can use the application TCDCMD.exe, which is
command line tool generating the TCD file without showing a wizard.

For more detailed information, please refer to the ATCL getting started.pdf, chapter 4.4.1
,Test Case Definition File" and ff.

LABCAR-AUTOMATION 4.2.3 13

ETAS

3.1

3.1.1

3.1.2

For Test Bench Configuration Responsibles

For Test Bench Configuration Responsibles

Configuration Wizard

Typical Use Case

LABCAR-AUTOMATION is a well structured and quite comprehensive tool suite. Many
variations are possible and supported with this collection. However, a high flexibility requires
a certain effort to configure the tool suite, so that it fits to the own requirements.

Configuring LABCAR-AUTOMATION is a little bit sophisticated. Especially when a more or
less static composition of the used test bench is used there has to be a fast and intuitive
method to achieve a complete and correct configuration.

Features of the Configuration Wizard

A guide through all necessary actions before a LABCAR-AUTOMATION test case runs at the
PC is the utmost concern of this wizard.

With the Configuration Wizard
»= a complete test bench configuration is created
= a default test case is created for further editing

= a default test project is created, using the default test case and the created test
bench.

Basis for the test bench configuration which is treated by the Configuration Wizard are at
first the installed tools. Depending on the LABCAR-AUTOMATION package which is licensed
the collection of tools to be configured is extended to all tools which are supported by
LABCAR-AUTOMATION.

Tools | Ports

B--[] INCAB.4 (Standalone) (1.0}

INCAE.2 {Standalone) {1.0)

LABCAR-OPERATORE.D (5.0)

LABCAR-OPERATORE.Q with INCAR.4 (5.0)

1[4 LABCAR-QPERATORS.0 with INCAG.2 (5.0)

v| ModelAccess

v| ECUAccessMeasurement
ECUAccessCalibration
ECUAccessFlashing

-] INTECRIOZ1 (1.0)

E-[] LABCAR-OPERATOR4.1 {4.1)

LABCAR-OPERATOR4.1 with INCAS.4 (4.7)

: ECUAccessCalibration
[ECUAzcessFlashing
= i LABCAR-OPERATORA4.1 with INCAE.2 (4.1)

----- ECUAzcessCalibration
o ECUAccessFlashing

(=} I ADFAD MDCDOATADT 3/ T

[Orly installed tools
- o o s

B N W W NP LV

LABCAR-AUTOMATION 4.2.3 14

ETAS

3.2

For Test Bench Configuration Responsibles

Most of the entries are preconfigured with either example files or folders or with the default
entries of the appropriate tool. The Configuration Wizard moreover supports for the other
entries with several search functions. All possible entries are filtered according the valid
extension. In case of configuration of the INCA connections it looks for the necessary entries
in the given INCA database.

After selecting all tools and providing all necessary inputs, the test bench configuration is
created.

The following step provides default test case and test project using exactly this test bench.
In the code of the test case all the selected tools of the test bench are available exemplarily
to prepare the test case for using the tool’s ports and signatures. The Test Manager, if
started from Configuration Wizard by a button push, uses exactly this default test case.
Starting the Test Handler out of the Configuration Wizard it is preconfigured with the created
test bench as well.

7 Configuration Wizard

ETAS

Configuration Wizard (Professional)

Finishing the Test Bench Configuration
The Test Bench / V5 Studio / LCA Project has been generated. You me

Generators
= Test bench corfiguration Folder

=@ C\Users\Public\ Documents\ETAS\LABCAR-ALTOMATIC

— Test case develpoment template
—é C:\lsers'Public’\Documents\ETAS\LABCAR-AUTOMATIC
&
I Test case management
C:\lsershPublic’\Documents\ETAS\LABCAR-AUTOMATIC
g
=, | Test case exscution
I’“"-‘@ C:\lsershPublic’\Documents\ETAS\LABCAR-AUTOMATIC

Finished!

Thus, as soon as the Configuration Wizard finishes his work the customer is able to run his
first test project at an operable test bench.

The complete detailed instruction manual is placed in the user’s guide at chapter '4.5.1 The
Configuration Wizard.

Test Bench Configurations can be fully determined by “Unit under Test”

Users can choose to specify the Test Bench configuration depending on the UuT selected for
testing:

LABCAR-AUTOMATION 4.2.3 15

ETAS For Test Bench Configuration Responsibles

E Cptions =RRel X

-~ Reporting

- Test Case Executor
- Tool

iTest Bench Corfiguratic @) Use global TBC file

[
@ Use UuT dependent TEC file mapping
TBC mapping 1D TBC file Add... I
TEC O Lo Ganste C\ LR o Doouman ETASL

Delete

UutEnvironmentView

LABCAR RTPC Demo Bench - ok X

TBC mapping ID: BC Type Full Engine Madel

4 Diagnostics i
Customer_|D defautt
ECU_ID defautt

4 ECUAccess =
EAID defautt 3

4 Fault Simulation
Model_ID default
ModelData_ID default
Model Type_ID default

4 File Access Composite Data

UuTFile_ID default
4 File Access Tabular Data i

Customer_ID

A “TBC mapping ID” can be specified in the Environment of each UuT.

If activated, the Test Handler maps the “TBC ID” to a specific Test Bench Configuration used
for this test.

The API of the UuT Server is extended to allow automated setting of the “TBC ID”

3.3 The SUT Mapping Editor

The SUT Mapping Editor is used by both, LABCAR-OPERATOR 5.x and LABCAR-
AUTOMATION V3.3 ff., and is able to treat both file formats, the LABCAR-OPERATOR text
file and the LABCAR-AUTOMATION format as well.

3.4 Access to INCA with or without LABCAR-OPERATOR

INCA can be addressed from within a test case with or without using LABCAR-OPERATOR.

Using both, INCA and LABCAR-OPERATOR, you can use additional functions, e.g. the
synchronous datalogging features, which synchronizes the time stamps of both loggings
(model and ECU).

The usage without LABCAR-OPERATOR is called ,INCA standalone’.

The following examples show the different configuration entries and descriptions. As this
accesses only the ECU, a synchronization of the time stamps is not necessary and not
possible.

LABCAR-AUTOMATION 4.2.3 16

ETAS

34.1

Using INCA with LABCAR-OPERATOR

For Test Bench Configuration Responsibles

When using INCA together with LABCAR-OPERATOR you have to look first to your LABCAR-

OPERATOR version. The handling until LABCAR-OPERATOR V3.2.5 is different to the newer

versions.

If both, INCA and LABCAR-OPERATOR, are installed and your Test Case is using the
ModelAccess Port to LABCAR-OPERATOR and the ECUAccess Port to INCA, the
configurations are like shown below.

Here you see a possible Test Bench:

LCO3.2.5 and INCA5.4 or INCAG.2 are installed

Test Bench Configuration File Editor - INCAWithLCO3.2.tbc

Fle Edit View Help

Bl oM i4E R X

Tools

Port to Tool Mapping * & X Poris

Port Tool Tyme

ECUAcc : INCA V6.2 .7 | ECUAccessCalibration Type_ECUAccessCalibration_ | ETAS.EAS. ToolAdapter.Port.ECUACCess.P_EAC
ECUAcCC (INCA V5.2 .7 | ECUAccessMeasurement Type_ECUAccessMeasureme | ETAS.EAS.ToolAdapter,Port.ECUACCess.P_EAM
Modeld | LABCAR-OPERATORV3Z |~ [MadelAccess Type_ModelAccess_port ETAS.EAS.ToolAdapter.Port.ModelAccess. P MA
SyneDL | SyncDL L~ | SyncDL Type_SyncDL_part ETAS.EAS. ToolAdapter.Port.SyncDL.P_SyncDL

Name TCF SUT Mapping File | Barant | Location \
INCA V6.2 INCAG.2.tcf | --- | default.smf .-J syncDL[~ | ktas.e --- [ETASEAS, |+ |1,
LABCAR-OPERATOR V3.2 LC03.2:4d |- | defauitsmf |- SyncDL[+ I:tas.e - ETASEAS, [+ | 14
SyncoL ~defaultsmf | ~—Gtas.e |- | ETASEAS, [« 1.

— If you like to use the synchronous datalogging feature, then for INCA and LCO
Tool in the parent column the parent port P_SyncDL have to be selected.

— The name of the ports (e.g. P_EAC and P_MA) have to fit to your test case names.

LCO4.1 (or higher) and INCAS5.4 or INCAG6.2 are installed

Test Bench Configuration File Editor - INCAWithLCO4.1.tbe

File Edit View Help

Bl oo+ BIX

Port to Tool Mapping

v 31X

Port Tool

Ports

ECUACc

INCA(EAC) with LABCAR-OP

ECUACc

INCA(EAM) with LABCAR-OP

Modeld

LABCAR-OPERATOR V4.1

SyncDL

LABCAR-AUTOMATION 4.2.3

SyncDL with LABCAR-OPER

[a 4 Fa 1]

Type

ECUAccessCalibration

Type_ECUAccessCalibration_

ETAS.EAS.ToolAdapter.Port.ECUACcess.P_EAC

ECUAccessMeasurement

Type_ECUAccessMeasureme

ETAS.EAS. ToolAdapter.Port.ECUACcess.P_EAM

ModelAccess

Type_ModelAccess_port

ETAS.EAS.ToolAdapter.Port.ModelAccess P MA

SyncDL

Type_SyncDL_port

ETAS.EAS.ToolAdapter.Port.SyncDL.P_SyncDL

Tools

Name TCF SUT Mapping File | Parent | Location | Class Name | \
INCA(EAC) with LABCAR-OPERATOR V4.1 INCALF | ew INCA.SMF - |~ ietas.e e ETASEAS = | 1
INCA(EAM) with LABCAR-OPERATOR V4.1 INCALF | wwe: INCA.smF e [» |i etas.e | - | ETASEAS. [+ |1
LABCAR-OPERATOR V4.1 LCOutcF e | LCO.sMF - [+ [ictas.e -~ ETASEAS, = |1,
SyncDL with LABCAR-OPERATOR V4.1 e e [+ | etas.e |-- ETASEAS. [+ [1,

17

ETAS For Test Bench Configuration Responsibles

— ModelAccess port to LABCAR-OPERATOR has to be configured before
ECUAccess port to INCA is configured inside the test case.

— If you use a LABCAR-OPERATOR version which is higher than V4.1 please adapt
the version number of the example entries above accordingly.

3.4.2 INCA Standalone

Using INCA without LABCAR-OPERATOR s called ,INCA Standalone’ handling, as no LABCAR-
OPERATOR has to be available installed at your PC.

Test Case only using the ECUAccess Port (INCA), here a possible Test Bench.

[[Ell Test Bench Configuration File Editor - OnlyINCA.the (e
Fle Edit View Help

BEe@ b E DX

Port to Tool Mapping * & X |Ports

Port Tool Type Interface

ECUAcc (INCAVSE.2 |~ [ECUAccessCalibration Type_ECUAccessCalibration_ | ETAS.EAS.ToolAdapter,Port.ECUACcess.P_EAC
ECUAcCc : INCA V6.2 |~ |ECUArcessMensurement Type_ECUAccessMeasureme : ETAS.EAS.ToolAdapter.Port.ECUACcess.P_EAM

TCF
INCAB.2.tcf |---

SUT Mapping File | Parent | Location | Class Name | \
default.smf - SyncDL[~ |l etas.e |- ETASEAS, |+ | 1,

— As only one signal source is available a synchronous datalogging is not provided
here.

— In case LABCAR-OPERATOR V3.2.5 is installed as well, a LABCAR-OPERATOR
window pops up and will be closed immediately. This does not harm the execution
w/o the LCO.

— Even if LABCAR-OPERATOR V4.1 is installed at your PC as well, do NOT use the
Tool template 'INCA(EAx) with LABCAR-OPERATOR' Vx.x, as this would lead to an
error.

3.4.3 Necessary Installations for the use of INCA standalone

Both, INCA and LABCAR-OPERATOR, are installed

= INCA5.4/INCA6.2. and LCO5.0 ff are installed
= Install INCA Standalone from the CD.

= INCA5.4/INCA6.2. and LCOA4.1 are installed
1. Install INCA Standalone from the CD.

2. Unregister the old API. Default Installation Path: “C:\Program
Files (x86)\ETAS\LABCAR-OPERATOR4.1\LABCAR-API” (regsvr32
Ju /s “<LCO4.1Installation PATH>\LCO3API.dII")

LABCAR-AUTOMATION 4.2.3 18

ETAS For Test Bench Configuration Responsibles

3. You will no longer be able to use synchronous data logging,
though you still can log both signal sources. But you have to
treat them as individual, separate data source.

= INCA5.4/INCA6.2. and LCO 3.2.x are installed on your PC and you want to measure

with INCA without LABCAR-OPERATOR:
= No further Installation is necessary.

Use of INCA5.4/INCA6.2 without installed LABCAR-OPERATOR application

1. Install INCA Standalone from the CD.

2. Copy all dlls from installation CD folder:
\Data\ThirdParty\ AVC++7SP1.Redistributables to your ETAS
directory of shared components: C:\ETAS\LABCAR-CCI-
Standalone3.2\System32

Use of INCA7.0/INCA7.1 without installed LABCAR-OPERATOR application

1. Install INCA Standalone from the CD.

(\Data\INCA Standalone\INCAXX\INCAAddOn_XML4LabCar.exe)
depends on the INCA Version.

3.5 Standalone Diagnostic with INCA 7.1

3.5.1 Pre-requisitions

A working installation of INCA and ODX-Link must be available on the computer.

3.5.2 Preparing the test bench configuration

Test bench configuration file

In your test bench configuration file you will need to define an instance of a Diagnostic port
and connect this Port to the Tool 7NCA V7. 1(DIAG) with ODX-LINK

[E] Test Bench Configuration File Editor - Diagnostics.the = [

Fle Edt View Help

ERHw BRI
Port to Tool Mapping Browser v &%
© & ECUAccessMeasurement
i & FaukSimulation
Diagnostis { Type_Diagnostics_port ETAS.EAS.ToolAdapter.Port.D |PortFAGD HI
R -]

& ModelAcesss

P_FACD

L& P_FATD

- P_RealTime Scripting

Real TimeSeript

b 8 SymeDL
B Tools

@\, New Tool

8 CortrolDesk

Port Tool Type Interface
Diagnostics i INCA V7.1(DIAG) with ODXL5

Name TCF SUT Mapping File Test Bench Initialization Order v 13X
INCA V7.1{DIAG) with ODX1.5 {INCATO.tcf - —l A v

Port Instance TB_Init Action
1 Diagnostics Create
2 Diagnostic Tool Configure

Information X
|essoge |
‘i) Loading configuration from file C-\ProgramData’\ETAS\LABCAR-AUTOMATION 4 2\conf\TBC_Editor_Corfiguration tbecfg

@H:ﬁljs‘ |

LABCAR-AUTOMATION 4.2.3 19

ETAS For Test Bench Configuration Responsibles

Hint:
It is not possible to use the tool *ODX (Diagnostics) with LABCAR-OPERATOR V5.x.". See
next chapter.

3.6 Standalone Diagnostic with LABCAR-OPERATOR

In the older LABCAR-AUTOMATION version it was possible to use the tool *ODX
(Diagnostics) with LABCAR-OPERATOR V5.x." also for a standalone Diagnostic. That means
that we are using the Diagnostic Port without a Model Access from LABCAR-OPERATOR. This
functionality will be removed in one of the next version. If you still need this feature modify
one/all of ODX files:
$ProgramData%\ETAS\LABCAR-AUTOMATION
4.2\conf\TBC\ETAS\Tools\ODX DiagnosticsPort EE[xx].xml

<?xml version="1.0" encoding="gpLf-8"2>

<objects xmir : /fwrw w3 . orq/2001/XMLSchema-instance” xmlns:vs="http://schemas.microsoft.com/Visual-Studio-Intelliser

3 =/ fvnrw . w3 . org/2001 /XML Schema” xmlns="http://www.springframework.net" xsi:schemalocation="http://www.springframework.net C:\spring-objects.xsd">
4 g <object ids DX_DiagnosticsPort EE35" type="ETAS.LCA.TA.ODX14.DiagnosticsPort, ETAS.LCA.TA.EEnvironment">

DIoRert me="EEEnviropment: ref="ODX EE35"

<!-— Please use the INCA Standalone Igoladapier instead! Rlternative you can set this flag to trus to have the old behaviour of the Igpladaprer./>——>

<property name="UseDirectIncaDiagnostics" value="false"/>
€ E P P ———— Change value from false to true

= <list element-type="ETAS.LCA.SAR.Core.Interfaces.Agents.T: ces">
<1-—<ref obje "AnalyseAgent® />——>

<ref objsct="LoggingAgent” />

<ref cbject="StateAgent" />

<ref cbiect ="DIAGTeolConfigurationAgent" />

<ref cbisct="SutMappinghgent" />

<ref cbject ="ParameterAgent" />

</list>
</property>

18 | </object>
2 [<object id="ODX EE35" type="ETAS.LCA.EnvironmentExperiment35.APIWrapper.EE Environment, ETAS.LCA.EnvirommentExperiment35.APIWrapper” singleton="true">
[E </object>
</objects>

3.7 Flashing with INCA and PROF

3.7.1 Pre-requisitions

A working installation of INCA and the PROF Tool must be available on your personal
computer. In addition all necessary accessories to flash the ECU must be available, i.e. hex
or s19 together with a2l-file, an INCA device to connect to and flash the ECU, like ES59x,
and an INCA database providing a fitting workspace. For the PROF-Tool a configuration is
necessary.

Hint:

Make sure the ECU can be flashed by hand with the INCA database, workspace and PROF-
Configuration you are going to use for your automated flashing.

3.7.2 Preparing the test bench configuration

Test bench configuration file

In your test bench configuration file you will need to define an instance of an ECU Access
Flash port.

Make sure you choose the right INCA version, which is working with your PROF version
smoothly.

LABCAR-AUTOMATION 4.2.3 20

ETAS For Test Bench Configuration Responsibles

Test Bench Configuration File Editor - ECUAccessFlashing.thc [E=EE)

File Edit View Help
BRI R 0 X

Port to Tool Mapping * 3 X
Port T Type : ™
IEcuAccessCaIibraﬁon TNCA V6.2 ECUAccessCalibration Type_ECUAccessCalibration_ | ETAS.EASTool&dap Diagnostics
ECUAccessFlashing - ECUAccessFlashing Type_ECUAccessFlashing_por ETAS.EASToolAdap # ECUAccessCalibration
ceessMeasuremen INCA V6.7 ECUAccessMeasurement Type_ECUAccessMeasureme ETAS.EASToolAday | | # ECUAccessFlashing
% ECUAccessMeasurement
) FauttSimulation
|PortFAGD
.- J1699 -
L FE—TT— ’
Test Bench Initializati... - & X

Port Instance | TB_Init Action
ECUAccessCalibr: Create
ECUAccessCalibri Tool Configure
ECUAccessMeas : Create
ECUAccessMeas i Tool Configure
ECUAccessFlashi: Create
ECUAccessFlashii Tool Configure

L F—Tp— ' C —T— 8
Infe ti - B3
|Hﬁsage |

'CQ Loading TBC File C:\Users"georg.schoebed" Desktop' TBFiles \ECUAccessHashing the.

@“ﬂﬁgﬂ|

Tool configuration file

In your tool configuration file you have to give the same information you provide for any
other ECU access. As there are (see Figure 1)

= the INCA Database to open

» Used Measurement Device

= Used Experiment

= Folder in database containing the used experiment
= Used Workspace

= Folder in database containing the used workspace
= SuT Mapping File to be used

LABCAR-AUTOMATION 4.2.3 21

ETAS For Test Bench Configuration Responsibles

=]l Tool Configuration File Editor - ECUAccessFlashing.tcf = | B S
Fle Edt Tools Help
MERENE 9 i
Tool Configuration for INCA6.2.x Values - I
EA D Device ID | Hardware LayerID | Protocol ID .ﬂ |
i default default default TestBoard ‘“ Value
2 Msu Mau CAN (1) KWP2000 ~ ASAP File
BE _|MoU Msu AN KowP2000 - Detgbase QALCANTRLAETAS'\P_EAF_Tests"MSUANCADB
4 Mou Mau ETK Mailbox - Datebase Export File
5 Msu Mau K-Line KWP2000 - Device ETKC:1
- ECU value get Timeout
- Experiment Experiment_ETK
- Experiment Folder [LED)
- HEX File
- SetweakBound
- SUT Mapping File ECUAccessFlashing smf
- Workspace ETK
- \workspace Folder MU
(EAF) Code/Data Files for fl{{flEWCILE] [
(EAF) Flash Port CAN1
(EAF) PROF Configuration F DAETASDATAVNCAG 2\PROF\ECU_CB™~1'xcellsis
(EAF) PROF Flash Paramety 3 chbnew convert
(EAF) Code/Data Files for flashing
Additional files which contain code/data to be flashed toa UuT (P_EAF only).(optional)
Information
Message
4! Open tcf file C:\Users'\georg schoeber\Desktop\ TBFiles\ECUAccessFashing tof r S
4 File Name Map Dialog ==
[wame Value] [aaa)
1 |testfile CA22\Source\TRUNKVTTCN\TC_LIB\TC_P_¢ 19 " —
Messages
=

Fig.1: Tool configuration file prepared for the EAF port

In addition you have to give the information necessary for flashing

= file you want to use for flashing is given in (EAF) Code/Data Files for flashing (see
Figure 1 and also “File Name Map Dialog ")

*= The Flash Port, i.e. the port used by INCA to flash the ECU. You can find this
information

— in the INCA hardware configuration in your flash port option. (See Figure 2). But
be aware that depending on the device chosen this information might be
misleading.

— by using the visual basic script GetFlashPortNames.vbs. It allows you to determine
the flash ports available in the device used by your experiment.

There are the following flashports available for device ETKC:1: CANL CANZ
KLinel ETK

[

You then have to choose the one used by your PROF tool.

— If you are using ODX have a look for your physical link device. You can find it in
the vehicle information table (VIT). You can use ODX-CONFIG to check.

— extract the information from the target server log file (TgtSvr.log)
Depending on the INCA version it is stored in
C:\ETAS\LogFiles\TgtSvr
or
C:\ETAS\LogFiles\ProcessLogsV2
Have a look for the line containing the string “StorePermanentlyToTarget”, e.g.

LABCAR-AUTOMATION 4.2.3 22

ETAS For Test Bench Configuration Responsibles

— Lodfile excerpt:

12-05-2006 17:59:52 API: StorePermanentlyToTarget (,
C:\DOCUME~1\...\Temp\flshtmpl.hex 0 cbbnew convert
)
where is the Flash Port entry, 0 cbbnew convert is the flash parameter and
is the PROF configuration file
entry.
<P Hardware: >ETK C ES591.1< Experiment: >I0TestE< o[B e
File Hardware Device Channels View 7
4@ XS @EE
1 Hardware devices 2 Parameters]ilm’o]
HWICETK C ES501.1 ETKC
;. ESBO0/ES590,/E5591:1 -
5N 121435 Optien Value
ETKC:1 MName ETKC:1
== ETK OFF

Meas. failure behavior Abort after failure

Mo init./no ECU acces
Time stamp quantization Off
Cennection behavior Prompt for reinitialize

Project Flex_ECU\Projekt\MED1734_Flx_G1.2_Releasel 5_eh_10Test_ CANA
working data MED1734_Flx_G1.2_Releasel.5_eh_10Test\MED1734_Flx_G1.2_Releasel.5_eh_10Test 3

Reference data
Differences (bytes)
Log out behavior No Automatic Flash Back
Transmission rate

Check memary pages
at initialization

ETK Flash timeout time [s] 120
CAMI1(1) / ES690/ES5590/E5591:1

Always check

ProF Flash Port

This flash pert supports enly the KWP2000 protocol.

l I b

Additional...
Reset

% Device inactive (Status not detec
% Device not connected

@ Device connected

@ Noinit. or no access

ﬂ HW status can not be detected

Fig. 2: Hardware dialog in INCA

= The (EAF) PROF Configuration File is holding the path to the PROF layout file (the
filename has no extension (see Figure 3) and Figure 1

Mame Grafie | Typ Geandert am
chbnew, pri 4KE PRI-Datei 12.08,2009 15:45
cbbonly pri ZKE PRI-Datei 12.08.2009 15:45
COMMON, [t ZKB PRI-Datei 12,06, 2009 15:45
canwert. pri ZKB PRI-Datei 12,06, 2009 15:46
e_mess.pri Z2kE PRI-Datei 12.058,2009 15:46
,ﬂ Feu_id.dll 30KE Application Extension 12.03,2009 15:46
FCU_ID TMP 1KE TMP-Datei 12,08,2009 15:45
Flash. pri 3KB PRI-Datei 12.08,2009 15:45
:}install.ini 1 KB Configuration Settings 12.08.2009 15:45

nacary pri

1 KB

PRI-Datei

12.05.2009 15:45

PROFINCA.CFG ZKB CFG-Datei 12.08,2009 15:45
progdata.pri 2kE PRI-Datei 12,05,2009 15:45
prognew.pri 4 kB PRI-Datei 12,05,2009 15:46
B xcellsis 6KE SpeedDial 12.08,2009 15:45

1kKE Datei 12.05,2009 15:45
xiellsis, prim 2KB PRM-Datei 12.08,2009 15:45

Fig. 3: The layout file is without any extension; therefore the type is Datei or file

respectively

the (EAF) PROF Flash Parameter is holding the parameter string given to the PROF

program when it is called by INCA.

The parameters used to flash your ECU can be extracted from the Logdfile (see page

LABCAR-AUTOMATION 4.2.3

23

ETAS For Test Bench Configuration Responsibles

27) or you can take it from the layout file directly (see Figure 4).
In both cases your parameters for the here shown example will be: 0 cbbnew

convert
1l 311 "File #name: 11113
2 TEOGLeT
3 I
4
5 Z 1 1 "$Baud rate: "1l1l1la 4
& "EWPonCan™ "ar
7" 10.4 kBaud" "17
g "125.0 kBaud™ "2
9 "250.0 kBaud" "3"
10
11 211 "#$iction: T1l11154
12 "Prograwm ECU chbh + program + data™ "chbrnew conwert D:A\ETASDATANINCAS. 3\FROFYFCU_CE~1%xcellsiz"
13 "Program ECU program + data™ "progmew convert D:\ETASDATAYINCAS.3\PROF\FCU_CE~1%\xcellsis"
14 "Program ECUT data™ "progdata conwvert DiAVETASDATANINCAS.3\PROFVFCU_CE~lhxcellsis™
15 "Program ECU chb™ "chbonly convert D:ZETASDATAYINCAS.3WPROFYFCU _CE~1%xcellsisz"™

la
17
15

Figure 4 Contents of PROF layout file

SuT mapping file

Is the same you use for your ECU measurement access.

3.7.3 Lines in code

Initialization of the port:

private IPortEAF m portEAF null;
private IPortEAC m portEAC = null;

private IPortMA m portMA = null;

/// <summary>
/// Registers the ports.
/// </summary>

private void RegisterPorts()

{
m portMA = Factory.GetPortMA ("ModelAccess");
m portMA.Timeout = -1;
m_portEAC = Factory.GetPortEAC ("ECUAccessCalibration");
m portEAC.Timeout = -1;
m portEAF = Factory.GetPortEAF ("ECUAccessFlashing");
m portEAF.Timeout = -1;
}

And to perform some flash action add the following parts to your test performance method:

#region ECU access flashing

LABCAR-AUTOMATION 4.2.3 24

ETAS For Test Bench Configuration Responsibles

Reporting.SectionBegin ("Flash access");

m_portEAF.Configure ("device2", "default", "default");

m portEAF.DeviceFlash ("workingpage");

// workingpage is the test label for the working page in INCA
// the testlabel is resolved by the SuTMapping

if (m_portEAF.ChecksumIsValid())

{

Reporting.SetInfoText (0L, "Flashed ETk successfully", 6L);
}

// The following flash command flashes the ECU with a given hex
or sl19 file

//m_portEAF.UuTFlashFile (@"C:\Users\Public\Documents\ETAS\LABCA
R-AUTOMATION 4.1.0\Examples\Test Bench Configurations\ATCL
Example NEW Test Bench for LCO50\Demo03.hex");

// The following flash command flashes the ECU with the working
or reference page

//m_portEAF.UuTFlash ("workingpage") ;
Reporting.SectionFinished("", new Verdict (VerdictCode.Pass));
#endregion ECU access flashing
You can find the full test case in the LABCAR-AUTOMATION examples.

3.8 Parameter recording for Sync DL

To use the INCA parameter recording for the SyncDL you have to set an user option inside
INCA to enable it.

Open your INCA and select in the Menue Bar: Options -> User Options and activate the tab
,Experiment’.

LABCAR-AUTOMATION 4.2.3 25

ETAS

3.9

For Test Bench Configuration Responsibles

User options - User:

===

Mame Alignment

Index Alignment

View of search dialog
Automatic start of data visualization

Display variables of all subfunctions

Set options for all measure windows.

Adjust font in the variable views if the view size is changed

Left
Left

Yes
By Structure
Neo
Yes

ASAM-2MC Editor] General] Calibration Session Log] Path] Limited EMU RAM] Data exchange I Autostart]
Database Experiment &P Hardware] Hesx Files I Autocommit] Impert / Export]

Option Value

Measure <-General, Measure window, Oscilloscope, Measurement Documentation-»

Calibration <-General, Calibration , Table editdr, Calibration window -»

Cancel

After double click at value for measurement in this window the panel for the change of the

measurement options open.

p
Adjust measure options

[SSX=)

XY-Oscilloscope I [¥T-Oscilloscope] Measurement Documentation] MDF header preset]

Measure window

MDF File Type

Cycletime

Payse time [ms] for paused measurement
En:%e multiple rasters

Enable Rec. of calculated signals

Enable Measurement of Calibrations
Cycle time for measure data polling [ms]
General Printer Font

Measure file base name (Preset)

Measure file name date/time suffix (Preset)

General l E, Measure window] % Measure table Menitoring bounds] Oscilloscope]
Option Value Il
Resource threshold 25

Hex, view Mo

Measure window

mdf 3.0
100
1000
Mo

Mo

Mo

100

Segoe UL Standard, 12 e

measure

m

<

characteristic elements,

Enables the creation of additional virtual devices for each ECU to suppert measurement of -

Cancel | Default |

In the Change Measurement options — window select the tab ,General’ and look for the entry
,Enable Measure Calibration devices’ and set it to ,yes’.

Failure Simulation Load Cut off

At the FS-Port for failure simulation it is possible to cut off the load via test case for each

failure set separately.

To use this functionality you've to reference the ATCL (Etas.Eas.Atcl.Interfaces.dll) build

version 1.0.0.4 and to use the Load Flag property of the ErrorDefinition.

LABCAR-AUTOMATION 4.2.3

26

ETAS

3.10

For Test Bench Configuration Responsibles

The load cut off for the complete port by a parameter in the tool configuration file is still

available.

This option setting (unless it is empty) is overwriting any settings inside the test case!

Connection to dSpace Test Bench

Connection to dSpace test benches is very easy as ETAS provides already a Tool Adapter for

it. This Tool Adapter enables the connection to dSpace ControlDesk 3.2.1
Configuration

The changes in the test bench are tool configuration related only:

= the Model Access — which is used for the access via LABCAR-OPERATOR as well - has

to bind to the Tool Adapter for dSpace ControlDesk like shown in the following
picture:

[E]| Test Bench Configuration File Editor - dSPACEContralDesk:the [P=E)

File Edt ‘iew Help
ERdO R EIX
Port to Tool Mapping

Port | Tool

ModelAccess : ControlDesk

ControlDesk dSPACE_ControlDesk_VehicleModelid dSPACE_ ControlDesk_VehicleMode smf

Thus the Model access Port (in this example called *ModelAccess’) with all its
functionality (“signatures”) is available now for the test cases.

= the Tool Configuration File has to point to the dSpace Control Desk project and to the
platform which is used. These are the main differences to the Tool Configuration File

of the LABCAR-OPERATOR.

Tool Configuration File Editor - dSpace_ControlDesk_VehicleModel.tcf (=] E [|

Model ID Model Data
VehicleModel default
Dafauli Paramaier Sof .
ds 1005
Project File Etas_CD_Test_Model.cdx
Project Folger Tlooladapier_test . esilase \Ftas'cd_project
Stimuli Stimuli Set Info saml
SUT Mapping File “dSPACE_CortrolDesk_VehicleModel smf
Platform Name
Name of the Plztform to be activated (must be registered)
Ll m 3

The dSpace ControlDesk Project file has the extension .cdx

LABCAR-AUTOMATION 4.2.3

27

ETAS For Test Bench Configuration Responsibles

The SuT Mapping File is slightly different to the one for LABCAR-OPERATOR due to the
different syntax in the dSpace ControlDesk. SUT Mappings naturally differ in tool labels
("Right hand side” of mapping). Additionally not only labels may differ, but also object and

data types.

Test Label |Too| Label =

Engine 1i/Pedal2MEngine Limit_EngineSpeedin_Engine

Accelerator Ii%ccelerator,l’\p‘alue

AcquisitionT ask Acquisition

AirConditionTorgue Hw [{IC, PedalZMEngine. AirConditionTorgue, physical. const

AirConditionTorque. mode Hw{{IC. PedalZMEngine. AirConditionToroue, ohysical. mode:

AirConditionTorgue.sg H{{IC. PedalzMEngine. AirCondif Test Label Tool Label L

AirConditionTorque, sgchannel - HWIC Pedal2MEngine. AirCondil 4_Throktle Model Root/Diesel Engine Yehicle Modelfvehicle ModelEngine..

Engine3peedLimit 1Cja_IdieCantrollerfa_IdeCantn 5 \ehide Madel RookiDiesel Engine Yehicle ModelfVehicle Model/vehicle.

Idl= 1CjA_TdieControllerfa_TdeContr) accelerator Model Rook/Diesel Engine Yehicle Model/DriverfAccelerator_

PIdle 1) _IdleControllerfa_IdeContr accelerator_ Model Root/Diesel Engine Yehicle Model/Driverjaccelerator_

StartAirCondition IC{PedalzMEngine/AirConditionM| Accelerator_ MUMBER{1)__ Madel RootDiesel Engine Yehicle Model/Driver/Longitudinal ..

o S T Accelerator MUMBER(Z)_ Model RootiDiesel Engine Yehicle ModeliVehicle ModelfAcceler.
Accelerator_ MUMBER(Z)__ Model Root/Diesel Engine Yehicle Modelivehicle ModelfEngine..
AcceleratorC Model Root/Diesel Engine Yehicle Model/DriverfD_Shifting/acc ..
AcceleratorC_ NUMBER(1)_ Model Root/Diesel Engine Yehicle ModelfDriver/D_Shifting/Acc ..
AcceleratorConkrol Model RootfDiesel Engine Wehicle Model/Driver D _Shifting/D_S.
AcceleratorDelayed Model RootfDiesel Engine vehicle ModeljDriver/acceleratorDel . .
< ¥

Example of a LABCAR-OPERATOR SuT Mapping File (left) /
dSpace ControlDesk related SuT Mapping File (right)

Use the example TBC, TCF or SMF out of the examples folder at C: |
Users|Public|Documents|ETAS|LABCAR-AUTOMATION 4.x|Examples|Test Bench
Configurations|Sample Files

Differences between LABCAR-OPERATOR and dSpace ControlDesk
» Signal Generation is limited to one object by dSPACE ControlDesk
= Datalogging functionality is limited by dSPACE ControlDesk
= Some Data Types are missing in ControlDesk
— boolean,
— char, string
— bitstrings; octetstrings, hexstrings
= Some Variable Objects are missing but exist in ControlDesk
“Map”/"2D-Table”
— “Curve”/"1D-Table"
= Initial variable creation by “"ModelValueSelect” is not necessary in dSPACE Test Bench

LABCAR-AUTOMATION 4.2.3 28

ETAS

4.1

4.1.1

4.1.2

For Testers

For Testers

Changing the layout of the report

There are two possibilities to change the layout of your report. Just have a short view about
the technique behind.

The reports are stored as xml format and are formatted by the browser you use to display.
This can the Microsoft Internet Explorer or our LABCAR-AUTOMATION Report viewer.

Browsers using style sheets (xslt files), referenced to format the input for the display. The
LABCAR-AUTOMATION Report viewer copies these style sheet into each report directory,
basing on its default option settings.

Changing report layout after creation per report

To change the layout of one single report, this is possible after the creation of the report
(and only then). You just have to change the style sheets, copied to the same location like
the report:

<your LCA project location>\TestRuns\Report <date and time> \Standard Report\styles
You have reopen the report for viewing again after changing the style sheets.

Changing report layout for all reports

To change the layout of all further reports you have to change the style sheet located in the
program folder of LABCAR-AUTOMATION (C:\Program Files (x86)\ETAS\LABCAR-
AUTOMATION4.x\TestTools\styles) and to adapt the option inside the report viewer.

Please restart the report viewer after changing this option
For existing reports the styles are not adapted, you have to do it manually

@ Cptions | e

- Report Viewer
5

Report Viewer

Stylesheet for overview data
Test Tools"styles ' RVMain xsit

Stylesheet for test reports
TestTools"styles\LCA_Reporting_TestCaseReport xskt

B O

Overall cascading stylesheet (css)
Test Tools"styles default css

Defautt view configuration file
Test Tools'confyRVConfiguration lcarve

LABCAR-AUTOMATION 4.2.3 29

ETAS

5.1

5.1.1

5.1.2

5.1.3

Complex features

Complex features

Offline Project generation

Typical Use Case

LABCAR-AUTOMATION projects are a collection of several artifacts working together during
test management and execution: test case, parameter set, units under test, test bench
configuration, tool configurations. On folder level they are well structured and one file
defines the complete content of the project.

With respect to cost and time savings projects are designed to be reapplied for different test
targets, test benches, test phases or with only different parameter sets. If only one of the
artifacts has to be changed and the other ones should be kept and shall be consistent
overall it is useful to manage the artifacts at a central place.

The project creation is separated out of the definition of the single peaces and often the
request is there to automate it.

The Project Generator is the choice for acting like this.

Features of the Project Generator

Having all artifacts of a LABCAR-AUTOMATION project available at any place in the folder
structure the Project Generator assembles the project out of it controlled by a so called
Project Management File (.pmf).

Feature Handling

To provide all inputs to the Project Generator a Project Meta File (.pmf) has to be created. It
is structured in XML and contains the link to all LABCAR-AUTOMATION project artifacts. All
of the artifacts have to be created before, e.g. by creating a new or changing an existing
LABCAR-AUTOMATION project.

The format follows a given schema. The complete schema is delivered within the installation
directory at: C:\Program Files (x86)\ETAS\LABCAR-AUTOMATION
4.x\TestTools\XMLSchema\lca_pmf_v1.1.xsd

This .pmf file is the only input to be entered at the dialogue of the Project Generator to
enable the generation. With the option ‘Force project creation’ the Project Generator is
instructed to overwrite an existing project.

Just press ‘Generate’ and it starts.

LABCAR-AUTOMATION 4.2.3 30

ETAS

5.2

5.2.1

5.2.2

Complex features

£ 3 LABCAR-AUTOMATION Project Generator = [G [|
About
LABCAR-AUTOMATION Project Generator ; e

Project Meta File:
C:\Users'Public\Documents\ETAS\LABCAR-AUTOMATION 4.0.0%TestBenchConfiguratorMy TestBench\LCAProject\Fl; D

Message Log:
.. done. -
Creating UuTs ...

@

=

@ ..done.

I Copying switch definition table...
@ ..done.

b= Creating project parameter set ...
@ ..done.

b= Creating test releaselibrary ..

@ ..done.

b= Creating functionalities ...

I

-]

@

[

e

-]

@

-]

Creating parameter set 'C:\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.0.0
\TestBenchConfiguratoriMyTestBench\TRL\My TestCase\My TestCase.tpa' for test case MyTestCase.
.. done.

m

.. done.

Creating test sequence TestList ...
2dding test case ‘DefaultTestCase'to test sequence ...
.. done.

.. done.

Cr\Users\PubliciDocuments\ETAS\LABCAR-AUTOMATION 4.0.0
\TestBenchConfigurator|MyTestBench\LCAProject|TestProject|TestProject.lcaps

[Force proec raton

Report Structure ‘Abstract Section’

Feature Description

Most of the information during test run are collected, reported and viewed according to the
chronological cycle of the test.

Nevertheless a summary of the results — more detailed than the verdict only — is interesting
to be seen aggregated and right at the top of the report or of a dedicated secition, even if
the information are partly originated at a late point in time of the test run.

This the Abstract Section in the report allows for.

Test case development for use of the Abstract Section

The Abstract Section is a special section inside the report. The test case has to border its
report parts for this special section with the two signatures.

= Reporting.SectionAbstractBegin
= Reporting.SectionAbstractFinished

The entry instructions for the Abstract section can be used several times per test case

And it also can be nested inside of other sections. In this case the abstract section content
relates to the section and is shown at the top of this section. One abstract section per report
section is possible.

The abstract section has to be realized in the following structure elements:

= TestCaseBegin/TestCaseEnd

= SectionBegin/SectionFinished

= TestEntityCalled/TestEntityFinished
» FunctionCalled/FunctionFinished

LABCAR-AUTOMATION 4.2.3 31

ETAS

Complex features

The abstract section allows the following structure elements/methods inside:

AddPlot2Report
AddTableToReport
FunctionCalled
FunctionFinished
SectionBegin
SectionFinished
SetErrorLevel
SetErrorLink
SetErrorText
SetErrorTextAndValue
SetHeaderLink
SetHeaderText
SetHeaderTextAndValue
SetInfoLink
SetInfoText
SetInfoTextAndValue
SetLink

SetResultLink
SetResultText
SetResultTextAndValue
SetText
SetTextAndValue
SetWarningLink
SetWarningText
SetWarningTextAndValue
StateCalled
StateFinished

TestEntityCalled

LABCAR-AUTOMATION 4.2.3

Overloaded.

Add the table to the report.
Overloaded.

Overloaded.

Adds a new Section to the report.
Finishes a section in the report.
Set the error level.

Sets the error link.

Sets the error text.

Sets the error text and value.
Sets the header link.

Sets the header text.

Sets the header text and value.
Sets the info link.

Sets the info text.

Sets the info text and value.
Set a link.

Sets the result link.

Sets the result text.

Sets the result text and value.
Set some Text.

Set some text and some values.
Sets the warning link.

Sets the warning text.

Sets the warning text and value.
Overloaded.

Overloaded.

Overloaded.

32

ETAS Complex features

TestEntityFinished Overloaded.

5.2.3 Report View with Abstract Section

The Abstract Section is shown by the report viewer at the top of the report or the section.

Using the overview page of a test case you find the content of the Abstract Section at the
top as chapter ‘Abstract”:

Fuloe, 4

P

Strm:hl'e||3 E By B fQ— -
Include overview sec Overview

¥ Project Data o 1ect sc | 2 Test Case : TC_HelloWorld_1
W TestHanderCol| 7 > C-HelloWel (TC HelloWorld)

% 3. TC_Hellowe
¥ TBInit/Finalize

¥ Campaign Exect) Test Result %
Test Result: nass
Include test level Start Time 100016506
? = Execution Time 00:00:02:758

Put Info that simulation and measurement started to the Abstract Section

De%o Table

|Co|umn A Column B

[bbbbbbbbbh cececeeee

- A P S O i v I e O © e s R

Using the link in the tree to a section of the test case you find the content of the section
related abstract at the chapter ‘Abstract’ at to top of this dedicated section:

5.3 Improved Data logging functionality

5.3.1 Typical use case

If customer uses standardized LABCAR-OPERATOR projects, which have to be used for the
simulation and tests it might be useful to predefine Dataloggers for values which have to be
logged in any case. Depending on the use case the test case or simulation sequence may
add some values to be logged for a more detailed view on the behavior.

LABCAR-AUTOMATION 4.2.3 33

ETAS

5.3.2

5.3.3

Complex features

B oreld & 1.1 Section : Initialization)
Overview
B « 1. TC_HelloWaorld_1 Test Result ?
v 1.1. Initializatiol ;
V " pass
v 12 Slmulatmnq Jd Measurement iestiVesdhct:
' 1.2, Evaluation Test Result: Initialization F o

¥ 2. TC_HelloWorld_SpellCheckMistake
All parameter registered successful. Find details below b

The test case will be inizialized

\.

Parameter A Test Parameter registered
Parameter Upper Case conversion registered

Parameter Sleep Time before Evaluation registered

1.2 Section : Simulation and Measurement

/-\,\ \.n\ A'\ -\ \g_

Test Result

Test Verdict: pass
Test Result: Simulation and)laasu.remen;
R

. npmww rasd sorcassfin]

The effort for the basic Dataloggers have not to be spent twice. However the test case is
able to log all necessary details without overloading the LABCAR-OPERATOR project with too
much Dataloggers.

Feature Description

Former LABCAR-AUTOMATION releases create their own Datalogger in the LABCAR-
OPERATOR project when a test runs, independently of the Dataloggers which already exist
in the LABCAR-OPERATOR project.

With the newest version of LABCAR-AUTOMATION it is now possible to access Dataloggers
that exist in the LABCAR-OPERATOR project already.

This feature is optional, by means that it can be selected, if the LABCAR-OPERATOR
Dataloggers shall be visible and usable inside the LABCAR-AUTOMATION test cases, or not.

Feature Handling

The new feature is provided by LABCAR-AUTOMATION as a new entry inside the tool
configuration of the model access. It is only available from LABCAR-OPERATOR V5.0
onwards.

There are no code changes necessary for the option to use the LABCAR-OPERATOR project
dataloggers in the LABCAR-AUTOMATION test case as well. It is only controlled by the tool
configuration of the LABCAR-OPERATOR.

If the test case uses the same value for logging like already defined by the LABCAR-
OPERATOR project and if the use of LABCAR-OPERATOR project dataloggers is enabled,
LABCAR-AUTOMATION merges both dataloggers automatically.

LABCAR-AUTOMATION 4.2.3 34

ETAS

5.3.4

5.3.5

5.4

54.1

5.4.2

5.4.3

Complex features

Test bench configuration for LCO project dataloggers

The tool configuration template of the LABCAR-OPERATOR V5.0 contains a new entry
‘CleanUp Datalogger’. It accepts the values ‘True’ and ‘False’.

=|| Tool Configuration File Editor - Default.tcf* = | B |-

Fie Edit Tools Help
ER R
Tool Configuration for LABCAR-OPERATOR 5.x

Model ID Model Data ID Model Type ID
1 |default default default

- Experiment
- SUT Mapping File
- SUT Mapping Files

CleanUp Datalogger

B o o L
Download Parameter Files
SignalGenerator File

CleanUp Datalogger
The Datalogger will not be clean up by the configure methode
when the flag is set to false (optional)

In case ‘False’ is entered, the Dataloggers defined in the LABCAR-OPERATOR project are
visible and usable by LABCAR-AUTOMATION as well.

To ensure the same behavior like in the past, the default value of this entry is ‘True’.
Leaving the entry blank has the same meaning like ‘True’.

Hints

The entry field of this new entry is free text. Thus you can enter each string you want. The
only value which is evaluated is ‘False’ or ‘FALSE'. All other values are resulting internally to
‘True'.

Maps and Curves

Typical use case

Signals which are recorded or used for stimulation are usually stored as a digital curve. It
uses pairs of dedicated values for the time line (x-axis) and the amplitude (y-axis). A set of
signals can be stored together as a map, using the same values for the time line. The
synchronous datalogging is a representative use case for these maps.

Feature Description

LABCAR-AUTOMATION is able to work with curves and maps using two dedicated TypeSut —
Types, called TypeSutlDFloatTable and TypeSut2DFloatTable.

Feature Handling

Reading measurement values or feeding parameter values as maps or curve these types can
be mapped accordingly to the tool labels.

Access to the single values and the time line point are possible via index values.

LABCAR-AUTOMATION 4.2.3 35

ETAS

5.4.4

5.4.5

Complex features

Mapping rules

Test case type SuT Mapping type

TypeSut1DFloatTable Curve
TypeSut2DFloatTable Map
Example

// A very simple Test Case Example snippet

TypeSutlDFloatTable resultCurve =

(TypeSutlDFloatTable) Ports.ECUAccessCalibration.GetValue (new
TypeSutlDFloatTable ("",

"One D.STD sintl6 sintl6.All Curves_ STD.Curves Raster 1", "The Test
Label is mapped in the SutMapping File", new double[0], new
double[0], 0.0, 0O, 0O, O, "™, "™M));

TypeSut2DFloatTable resultMap =

(TypeSut2DFloatTable) Ports.ECUAccessCalibration.GetValue (new
TypeSut2DFloatTable ("", "Group Two D 1.Map Mod", "The Test Label is
mapped in the SutMapping File", new double[0], new double[0], new
double[o]l OI OI OI OI OI OI ""I ""I ""));

// assign the first two amplitude figures to the curve
resultCurve.ValueY[0] = 100;

resultCurve.ValueY[1l] = 200;
// define a map containg values from 0 .. map length for x- and y-
axis

// assign the x-axis figures to the map

int index = 0;

for (int i = 0; i < resultMap.ValueX.Length; i++) {
resultMap.ValueX[i] = index;
index++;

}

// assign the y-axis figures to the map

index = 0;

for (int 1 = 0; 1 < resultMap.ValueY.Length; i++) {
resultMap.ValueY[i] = index;
index++;

}

// assign the z-axis figures to the map

index = 10;

for (int i = 0; i < resultMap.ValueZ.Length; i++) {

resultMap.ValueZ[i] = index;

LABCAR-AUTOMATION 4.2.3 36

ETAS

Complex features

index++;

// download curve and map settings onto the ECU
Ports.ECUAccessCalibration.SwitchSectionPage ("WorkingPage") ;
Ports.ECUAccessCalibration.SetValue (resultCurve) ;

Ports.ECUAccessCalibration.SetValue (resultMap) ;

// read curve and map back

TypeSutlDFloatTable resultCurve2 =
(TypeSutlDFloatTable)Ports.ECUAccessCalibration.GetValue (new
TypeSutlDFloatTable ("",

"One D.STD sintl6é sintl6.All Curves STD.Curves Raster 1", "The Test
Label is mapped in the SutMapping File", new double[0], new
doubleg[0], 0.0, 0, 0O, O, "™, "™M));

TypeSut2DFloatTable resultMap2 =

(TypeSut2DFloatTable) Ports.ECUAccessCalibration.GetValue (new
TypeSut2DFloatTable ("", "Group Two D 1.Map Mod", "The Test Label is
mapped in the SutMapping File", new double[0], new double[0], new
doublef(o0O], O, O, O, O, O, O, ™™, "™, "M));

// compare written and read figures of the curve

if (resultCurve.ValueY.LonglLength == resultCurve2.ValueY.LongLength)
{
for (int i = 0; i < resultCurve.ValueY.Length; i++) {
if(resultCurve.ValueY[1] != resultCurve2.ValueY[i]) {
Fail();

}
for (int i = 0; i1 < resultCurve.ValueX.Length; i++) {
if (resultCurve.ValueX[i] != resultCurve2.ValueX[i]) {
Fail():;

}
Pass () ;
}
else {

Reporting.LogExtension ("Length of written and read back curve is
different");

Fail();

// compare written and read figures of the map
if (resultMap.ValueY.LonglLength == resultMap2.ValueY.LongLength)
{
for (int 1 = 0; i1 < resultMap.ValueY.Length; i++) {
if (resultMap.ValueY[i] != resultMap2.ValueY[i]) {

LABCAR-AUTOMATION 4.2.3 37

ETAS

5.5

5.5.1

5.5.2

Complex features

Fail();

}
for (int 1 = 0; 1 < resultMap.ValueX.Length; i++) {
if (resultMap.ValueX[i] != resultMap2.ValueX[i]) {
Fail();

}
for (int 1 = 0; 1 < resultMap.ValueZ.Length; i++) {
if (resultMap.ValueZ[i] != resultMap2.Valuez[i]) {
Fail();

}
Pass () ;
}
else {

Reporting.LogExtension ("Dimension of written and read back map
is different");

Fail();
}

Pass () ;

Real Time Tests support

Typical use cases

The strong networking of ECUs and other controlling elements in cars leads more and more
to a time dependant interconnection. Especially the use case of a bus system where
information are exchanged randomly and with a high frequency of messages leads to the
necessity to observe the exact point in time as soon as messages are received.

Due to asynchronous design of communication between sensors, actors and different ECU’s,
the test of the behavior regarding reaction along the timeline becomes important. To realize
such tests the target reaction has to be detected like in the reality — in real time.

The possibility to perform tests at the real time environment (Real Time PC) of a LABCAR
covers this demand. Downloading new parts of code onto the Real Time PC during and thus
expand the model during test execution is another quite exciting benefit of this feature.

Feature Description

In case action and reaction of several values calculated by the model the point in time of
setting or measuring a value might impact the behavior. Without real time test possibility
both actions are depending on the performance and signal transmission time, which can lead
to unintentional delays. These parts of the test which are time critical in this sense should be
performed as real time tests.

LABCAR-AUTOMATION 4.2.3 38

ETAS Complex features

Non-real-time,

Windows PC Real-Time PC

Simulation
Code

TestAutomation

LABCAR.SetValue (..)
LABCAR.GetValue (..)

Real-time,
synchronous

Real-Time
Test
Automation

LABCAR.RTTest

TARAAD ~A+DAcial

The Real Time PC (RTPC) of the LABCAR expects C-code. LABCAR-AUTOMATION is able to
trigger the download of such code onto the RTPC, to set it into operation (activate) or to
deactivate it. Precondition for usage of this feature are:

= LCO 5.0 as Model access tool

= Prepared Model (hooks introduced)

= LABCAR as the test bench with RTPC for Simulation
» Existing C-code for download

5.5.3 Feature handling

To use the real time feature the model has to be prepared for it. Models use *hooks’ to
enable docking of alternative code. These hooks are the input and output interfaces for the
new code.

First you have to provide the C-code for the download onto the RTPC. One possibility to
develop such code is the LABCAR-ASC . LABCAR-ASC is an ASCET Add-On and comes with
LABCAR-OPERATOR. It provides among others the ASCET Target "RTPC" and enables
compilation on RTPC.

For more information on creating real time C-code and preparing the model please refer to
the user guides of RTPC and LABCAR-OPERATOR.

When developing your test case you have to use a new port ‘RealTimeScripting’ to initiate
the following actions

= Code Download

= Activation of downloaded code

= Deactivation of downloaded code
to use the Real Time Testing feature.

For executing LABCAR-AUTOMATION provides a special Tool Adapter (Test Bench Connector
Real Time Test — LABCAR-TBCRT) for access to this feature. It has to be configured in the
test bench configuration.

LABCAR-AUTOMATION 4.2.3 39

ETAS Complex features

5.5.4 Test case development for Real Time testing

The port providing the access to the real time test functionality is provided by LABCAR-
AUTOMATION with in the ATCL (Automotive Testing Class Library):

= Ports.RealTimeScripting

The creation and closing signatures are like usually
= Create
= ConfigureTool
= Configure
= Close

Special signatures for the real time test handling itself are:
= AddFiles — to pass the initial set of C-files to RTPC for later activation
= Activate — activation of the downloaded code at RTPC
= GetRTPCState — receive the current state of the RTPC
= Deactivate — deactivation of the downloaded code at RTPC

To get detailed information on the test case design find an example, delivered with the
installation of LABCAR-AUTOMATION, at:

C:\Users\Public\Documents\ETAS\LABCAR-AUTOMATION 4.x\Examples\Test Case
Development\TC_RealTimeScripting

5.5.5 Test bench configuration for Real Time testing

Within the LABCAR-AUTOMATION installation a tool adapter ,..." is provided . To use the
feature the test bench has to configure it.

Example of a test bench configuration with LABCAR-OPERATOR 5.0 / Experiment
Environment 3.2:

|E]| Test Bench Configuration File Editor - RealTimeScripting.the* E@u
Fle Edit View Help
BEdld R B X
Port to Tool Mapping _ ~ * X Ports o —
Port 1 Instance Type Interface
Modeljccees 1L N
RealTmeseript RealTmesain Mﬁﬁﬁ—Real'ﬁmeScnptMmmm_Type_RealﬂmeScrlptmgjortEFASEASTocIAdapter
Tools
Name TCF SUT Mapping File Parent | Location | Class Name | Version | A
P LCOcemf i
RealTimeScript ; RealTimeScripting.tef | --- | RealTimeScripting.smf - - | etas.e |--- | ETAS.EAS, E|1U

5.5.6 Hints

Datalogging with labels of the new code is not possible directly. The reason is the ignorance
of the new code labels — and thus of the mapped test labels — during test bench
LABCAR-AUTOMATION 4.2.3 40

ETAS

5.6

5.6.1

5.6.2

5.6.3

5.6.4

Complex features

initialization. A loophole out of this drawback is to *handover’ the values to the original
downloaded model and to log these model values.

Soft-Stop Function for Test cases

Typical use cases

Big test runs

In the case that the test run contains a lot of test cases and the test cases themselves
have a long duration an erroneous behavior of one test case might ‘kill’ the complete
test run. In this case it should be possible just to stop this single test case and
continue with the next one.

The already performed test cases may not run again and the following test cases can
run without any further actions.

Wrong test case coding

Test cases may include endless loops by accident. A test run stop would wait until this
endless test case is finished, which will never happen. The ‘Stop Test’ is a way out of
this.

Feature Description

In the past the stop button in Test handler stopped execution of the complete test run, but
did not finish the actual running test case before. The process was killed hardly, thus the
test bench left in an undefined, unpredictable state.

Now this additional choice is available via button push inside the Test Handler. The test case
receives the information about this stop and is able to react on this button push. Thus the
developer can decide, what has to be performed when the stop of the test case occurs.

Feature Handling

In the test handler the button ,Stop’ is extended with a small menu. The tester can select
the kind of stop which has to be carried out.

- [[@-]0 O vo
Test Run Stop Test Run
| | ﬁﬁ Stop Test Case |

For faster reaction of the tester in front of the desktop the different stop activities can be
triggered via short cut key combinations like shown in the picture right beside.

The test case which has been stopped with ‘Stop Test Case’ or Shift+F10 will have the
status ‘interrupted’ in the Test Handler’s execution overview:

Test case development for Soft Stop

The LABCAR-AUTOMATION library provides for its class TestCase a new virtual method
StopTestCase. This Method is prepopulated with no statements and does simply nothing,
except to set the verdict to ‘inconc’.

LABCAR-AUTOMATION 4.2.3 41

ETAS Complex features

To enable the test case to react on the event it just has to override this method with the
appropriate actions.

public override void StopTestCase()
{

int count = 0;

while (count != 10}

{
Reporting. SetText(0.0,"Stopp Test Case".0);
Thread.Sleep(250);
count++;

T

J
1
¥

e g B WY N g

This example just writes out ten times the "Stopp Test Case" string in time lags.
Typical Actions within this StopTestCase Method might be:
= Report, that the test case was stopped by an outside request
= Report the status of the test bench, e.g. the status of each port
= Measure and Log some important values
= Report the state of the test case

= Finalize the test bench, close all open ports or reset the test
bench

5.6.5 Test bench configuration for Soft Stop

There is no special test bench configuration necessary for this feature.

5.6.6 Hints

To prevent the running test cases or test run directly following the interrupted test case
from failure, each test case should provide a StopTestCase behavior by overriding the
method. At least a reset of the test bench should be performed to prepare a clean test
bench for the next test.

If the overridden method runs endless the Test Case will be not closed!

5.6.7 Difference between status shown in Test Handler and Verdict reported by test case

Test Handler status calculation and Verdict reporting by Test case

The Test Handler shows in the overview pane the Status of test case execution. If the
test case finishes its operation normally the status is been build of its verdict (pass,
fail or inconc). In the case the test case is not working (error in coding), the test
bench was set up wrongly or the test case is interrupted this is shown in the Status
column of the Test handler as values ‘error’ or ‘interrupted’.

In opposite to this the Report shows the final result of the test case — its verdict. If no
verdict could calculated at the end due to interruption or error this status is taken
over as result.

What does this mean for this feature?
When a test case is stopped by the tester using the new Stop button, the test handler
sets the status ‘Interrupted’ immediately as soon as the button was pressed and fires

the appropriate event. This is done independently of the test case behavior (as the
test case design is completely under developer’s control).

LABCAR-AUTOMATION 4.2.3 42

ETAS

5.7

571

5.7.2

5.7.3

5.7.4

Complex features

In some cases the report contains a verdict pass or fail, even if the test handler shows
‘Interrupted’.

Following two situations can lead to this rare case:

— The test case is ‘almost’ finished. In this glare situation the finish of the test case
and the stop event may occure at the same point in time. They are overlapping
each other, the event is fired but does not reach the test case anymore. LCA is not
able to set the verdict to ‘inconc’ (by default, defined in the provided virtual
method) due to the stop event. The interrupt of the test case is marked in the Test
Handler as ‘interrupted’ even if the test case has been finished normally.

— The test case has overridden the virtual method and do not set the verdict hardly
to ‘inconc’ but to another one (eg. ‘pass’ or *fail’), depending on its state or results
before. E.g. if there is a cool down of the engine performed after all test case
steps. In this case the verdict-relevant test part has finished and has evaluated a
valid verdict already, which should not overwritten by an interrupt anymore.

Error Manager

Typical Use Cases

In some cases you like to check the counter of messages of one of the used tools of your
test bench to check it inside the test case. If the tool underneath the LABCAR-AUTOMATION
does not report e.g. a warning via it's API — may be it is not relevant in the automated mode
— the test case is able to check if a warning was produced.

Feature Description

With the Error Manager it is possible to read the counter of errors, warnings or information
messages logged by a tool. Currently only the Experiment Environment version 3.2.1
supports this feature.

Feature Handling

The feature is available for programmed test cases, e.g. in C# or another .Net compatible
software language. It can be used by referencing the necessary error logging library in your
test case development project. This library provides you with the methods to

= Get the counter of Application Error Messages

= Get the counter of Application Warning Messages

» Get the counter of Application Information Messages
= Get the counter of Hardware Error Messages

= Get the counter of Hardware Warning Messages

= Get the counter of Hardware Information Messages
= Reset all Application Message Counters

= Reset all Hardware Message Counters

Test Case development with Error Manager

Library reference
Add the ErrorManager reference to your Test Case.

LABCAR-AUTOMATION 4.2.3 43

ETAS

Complex features

You find the ETAS.LCA.SAR.ErrorManager.dll to be referenced at C:\Program Files
(x86)\ETAS\LABCAR-AUTOMATION x.y.z\TestTools\Bin, whereby C:\Program Files

(x86)\ETAS\LABCAR-AUTOMATION x.y.z\ is your actual LABCAR-AUTOMATION
installation folder.

In the following picture you find as example a Visual Studio Solution with a test project.

Solution Explorer - Solution 'ManagerTest' {1 project)

-~ 01 ¥
25
m Solution ‘ManagerTest' (1 project) ~
= [ManagerTest

EI = References

-+ Etas.Eas.Atd.Interfaces

. ETAS.LCA.SAR. ErrorManager
«J System

- |8f] Func_TestCase.ico [v]

Resu:uurce View |@CIass View @Sﬂhﬂiﬂn Explorer ,_E'_|Data Sources

Properties

ETAS.LCA.SAR.ErrorManager Reference Properties

RN

Alizses global

| Copy Local False |

Srerifir Werinr Falze M

How to Use the ErrorManager in the Test Case

LABCAR-AUTOMATION 4.2.3

Constructor

public IErrorManager errorManager
{

get

{

return
(IErrorManager) Factory.GetManager ("IErrorManager") ;

}

Available methods

— int applicationerror =

errorManager.GetApplicationErrorMessageCount (Ports.ModelAcces
s)i

— int applicationwarning =

errorManager.GetApplicationWarningMessageCount (Ports.ModelAcc

44

ETAS

5.7.5

5.7.6

5.8

5.8.1

5.8.2

Complex features

ess) ;

— int applicationinfo =
errorManager.GetApplicationInfoMessageCount (Ports.ModelAccess
);

— 1int Hardwareerror =
errorManager.GetHardwareErrorMessageCount (Ports.ModelAccess) ;

— int Hardwarewarning =
errorManager.GetHardwareWarningMessageCount (Ports.ModelAccess

);

— 1int Hardwareinfo =
errorManager.GetHardwareInfoMessageCount (Ports.ModelAccess) ;

— errorManager.ResetAllApplicationMessageCount (Ports.ModelAcces
s);

— errorManager.ResetAllHardwareMessageCount (Ports.ModelAccess) ;

Test Bench Configuration for Error Manager

There are no configurations necessary in the test bench to use the Error Manager.

As from the Example above (Chapter 4.7.4) the Port Name must fit to the name used in the
test case — like usually for all calls to this port.

Hints

Due to the fact that only the Experiment Environment supports this feature, the method will
threw an exception in case of any other tool is referenced by the given port (parameter of
the methods).

Working with a Signal Generator

Typical use cases

To stimulate the model reproducible with a dedicated signal traces, thus reactions are
compareable you need a possibility to store and ,re-call’ this trace.

In some case it is necessary to stimulate different signals with a dedicated offset in time or
started equally at exactly the same point in time. For this you should have a possibility to
define these points exactly.

Third use case is the continuous realtime stimulation. The signal feed is created under real
time condition.

Feature Description

The feature uses different files to provide the input for the signal generation.

First of all you need the signal feed itself — the values which have to be set at certain points
in time. This input file is a description of the signal. It can be created out of a recorded
signal by LABCAR-OPERATOR (extension .lcs) or edited by hand.

LABCAR-AUTOMATION 4.2.3 45

ETAS

5.8.3

Complex features

The input of this file will be assigned to a signal generator. The Signal Generator, running at
the real time environment, is build up the signal and connects it to the signal input at the
model. Thus the model uses this as signal feed instead of the output of a device or other
model parts.

The generatation can be configured, started and stopped.

j TorqueCOscillation.lcs - Editor l =R X

Datei Bearbeiten Format Ansicht 7

[MODULE] -
asap2 = "5Gl.5timuliGenerator”
[CHANNEL]

Tabel = Torquerel
[SINEWAVE_SIGNAL_INTERVAL]
countMax = 1

deltat = 200

frequency = 1

phase = 0

amplitude = 50

offset = 0

[CHANNEL]

Tabel = Torqueabs
[SINEWAVE_SIGNAL_INTERWVAL]
countMax = 1

deltaT = 200

frequency = 1

phase = 0

amplitude = 50

offset = 750

Feature Handling

The signal generator is part of the model access port. Thus the configuration information are
included in the model acces Tool Configuration File.

The set of information regarding signal to be used, acquisition task and file to be used are
provided inside a stimuli set file additionally. This file will be automatically created by the

configuration wizard at your test bench configuration folder at the subfolder \TBC and called
per default StimuliSetInfo.xml. (see 4.8.5Test bench configuration for the Signal Generator)

In case of LABCAR-AUTOMATION Standard Package is installed the name and storage
location must not be changed!

In case of LABCAR-AUTOMATION's Shell Component 'Editors Package’ is licensed, you can
change name and storage location of this file and reference this directly in the tool
configuration file.

Following steps are necessary when you like to use this feature:

= Provide configuration information for the signal generator

— A traced signal — available as file of type .Ics (see 4.8.2
Feature Description)

— A stimuli set information file, provided by Configuration
Wizard or manually created.

If you do not use the Configuration Wizard you find an
example at C:| Users|Public|Documents|ETAS|LABCAR-
AUTOMATION 4.x|Examples|Test Bench Configurations|Demo
Test Bench|LCO 5.0|StimuliSetinfo.xm/

— A configuration information in the Tool Configuration File.

LABCAR-AUTOMATION 4.2.3 46

ETAS

Complex features

If you use the Configuration Wizard the Tool Configuration
File is created and prefilled with the correct values and
options.

— SuT Mapping Information in the SuT Mapping File to map
signal name, channel, mode and acquisition task

= Configure the signal generator and connect it to signals to be
stimulate

— Test case steps to configure (defining signal name and stimuli
set file)

— Connection to the correct signal channels
— Using LABCAR-OPERATOR V3.2.5:

The connection has to be done in the LABCAR-OPERATOR in
the signal list manually before starting the automated test.

— Using LABCAR-OPERATOR V5.0 or higher:

The connection has to be done inside the test case with the
method SetModelValue. (see 4.8.4 Test case development for
the Signal Generator). The values have to set the signal
mode, the signal name and the channel name.

The separate connection to dedicated signals is possible only
with the LABCAR-OPERATOR!

= Start/Stopp the stimualtion

— Test case steps to configure start, pause (optional) and stop
the signal generator. (see 4.8.4 Test case development for
the Signal Generator).

5.8.4 Test case development for the Signal Generator

In case you programm your test cases with C# you can find here an excample of the code:

first part — configure the signal generator
m maport.ConfigureSignalGenerator (

"ACTorqueSignal", //SignalGenerator name <SG .../> from
StimulisSetInfo.xml

"pulse"); // SGSet name <SGSet .../> from StimuliSetInfo.xml,
selects .lcs file

second part — connect the signal generator to the correct channels

m maport.SetModelValue (new TypeSutString("",
SutMapping.SIGNALSIGNALGENERATOR, "", "ACTorqueSignal"));

m maport.SetModelValue (new TypeSutString("",
SutMapping.SIGNALSIGNALGENERATORCHANNEL, "", "Torque")):;
// channel label inside the lcs file

// Available modes:

// 0 = constant

// 1 = stimuli

// 2 = model

// 3 = stim + model
// 4 stim * model

LABCAR-AUTOMATION 4.2.3 47

ETAS

5.8.5

LABCAR-AUTOMATION 4.2.3

Complex features

TypeSutFloat mode = new TypeSutFloat ("", SutMapping.SIGNALMODE,
"Mode value", 3.0, 0, 0, "M);

m_maport.SetModelValue (mode) ;

= // third part — start and stop the signal generator
m_maport.Start () ;
m maport.StartSignalGenerator ("ACTorqueSignal");

Thread.Sleep (4000) ;

m maport.StopSignalGenerator ("ACTorqueSignal");

m maport.Stop () ;

The separate connection to dedicated signals is possible only with the LABCAR-OPERATOR!

With LABCAR-OPERATOR V5.0 and higher it is mandatory to connect the signal generator
after configuration

The information regarding the signal (name and signal set name) have to match the
information of the stimuli information set. (see 4.8.5 Test bench configuration for the Signal
Generator)

The information which channel name, signal generator name and signal mode has to be
used for the signal to be stimulated you find in the signal list / signal center of LABCAR-
OPERATOR. Please have a look into the User guide of the appropriate version of LABCAR-
OPERATOR.

Test bench configuration for the Signal Generator

The configuration information is provided by the Configuration Wizard by default.

If you like to change this information or if you do not use the Configuration Wizard you need
to install the Tool Configuration File Editor, which is part of the Editors Package.

=/ Tool Configuration File Editor - LCOS.0.tcf = | B |
Fle Edt Tods Help
e = e g ull
Tool Configuration for LABCAR-OPERATOR 5.x values -
Model ID Model Data ID Model Type ID N ‘
1 |default default default T
2 | idieControilerHl Demo Demo . \ALCO Projecs\ic_ 410500\ permertsDe
- SUT Mapping File LCO5 Qs
- SUT Miapping Files
- Workspace -\ALCO Projects\ic_410_500\ic_410_500c |
Cleanllp Datalogger
Default Parameter Set {List)
Mewwnlond Pacarcter Eil = m
I SignalGenerstor File StimuiSetinfoxml
- Experiment
The LABCAR Experiment File. (.eex)
‘ ’
Information

For the format of the StimuliSetInfo file is like follows:

48

ETAS Complex features

= StimuliSetInfo.xml (for LCO):
<?xml version="1.0" encoding="utf-8" ?>
<File type="Stimuli Set Info" extension="XML" version="1.0">
<SG name="ACTorgqueSignal">
<SGModelName name="SignalGenerator 0" />
<AcquisitionTask name="TaskDVEModel" />
<SGSet name="pulse" file="TorqueOscillation.lcs"/>
</SG>
</File>

5.8.6 Configurable Signal Generator Input Mode Mapping

LABCAR-AUTOMATION 4.2.3 allows choosing between two different mapping behaviors for
the Signal Generator input mode.

The mode can be defined by the newly introduced flag “Inport Mode” within the test bench
configuration (tcf).

e Inport Mode = False (Default Mode): Mapping behavior represents for compatibility
reasons the behavior of previous version of LABCAR-AUTOMATION as introduced with
older versions LABCAR-OPERATOR Experiment Environment. This is the default behavior
of LABCAR-AUTOMATION 4.2.3.

e CONST=0
e STIMULI=1
e MODEL=2

e STIMULI + MODEL=3
e STIMULI * MODEL =4

¢ Inport Mode = True (Latest Mode): Mapping behavior represents the latest behavior
of the supported LABCAR-OPERATOR Experiment.

CONST =0

MODEL = 1

MODEL_PLUS_CONST =2
MODEL_MULT_CONST =3
MODEL_PLUS_SIGNALGENERATOR = 4
MODEL_MULT_SIGNALGENERATOR =5
SIGNALGENERATOR = 6
SIGNALGENERATOR_PLUS_CONST =7
SIGNALGENERATOR_MULT_CONST =8

Hint: This feature is only supported with the tool adapter for LABCAR-OPERATOR
Experiment Environment 3.5 or higher!

LABCAR-AUTOMATION 4.2.3 49

ETAS

5.8.7

5.8.8

Complex features

Mappings

All information to be used inside the test case for the signal generator have to be provided
accordingly in the mapping file. This is independent if you use C# as programming language
or the Automation Sequence Builder to set up the test case graphically.

Mappings are neccesary for

Signal channel = <label>.sgchannel
Signal mode = <label>.mode
Signal generator = <label>.sg

Acquisition task

Whereby <label> is the special signal tool label of LABCAR-OPERATOR.

Working with dSpace

StimuliSetInfo.xml (for ControlDesk)
<?xml version="1.0" encoding="utf-8"?>
<File type="Stimuli Set Info" extension="XML" version="1.0">
<SG name="SG">
<SGModelName name="SignalGenerator 0" />
<MPSubSystem name="" />
<SGSet name="start" file="Stimulusl.seq" />
<SGSet name="stop" file="Stimulus2.seq" />
</SG>
</File>

Signal trace file - input for signal generator (see example picture right side)
[“| stimulusl.seq - Editor L |

Datei Bearbeiten Format Ansicht 7

-- <modelpath>\vehiclemodel xi3
int 0

fltc 0.0025000000000000001
inc 118

inc 8
int 0

int 0

—— pc = 6, SIGNAL: PAREM 'Tunable Parameters/S Battery BatteryTsOnManual']
inc 1048328

int s928

int 1

int
int
int
int
int
int
int
int
int
int

cComRPoooooo

LABCAR-AUTOMATION 4.2.3 50

ETAS

5.8.9

Example with LABCAR-OPERATOR 3.2.5

Complex features

To get a general idea please find here an overview of the used data in the different tool

windows.

m_maport

“ACTC

name <SG _/> from StimulisSetinfoxml|

EPUIE"): // SGSet name <SGSet _/> from StimuliSetinfoxml, selects cs file . Stgnsis
=
El Pedal?NEngne
m. TypeSutString(™". SIGNAL 7. “ACT) 2 AxCondtionT orque
m, TypeSutString(™". L -, FTorque"): // channel label inside the ks file
J/ Avsilzble modes:
/74 = stim * model
TypeSutFloat mode = new TypeSutFloat(™", SutMapping SIGNALMODE “Mode value”, 30,0,0, ™)
“x
m_maport SetModelValue(mode): (= Genstators
= [SinalGenerator 0

> o
m_maportStart(): N Daiss

» Set
m “ACTC 1y Task

Chanel Reset Valoe

b StaTime

Thread Sleep(4000):
ABCAR-AUTOMATION3.1\Examples\Test Bench Configur.

m_s ACT: 53

<7xml version="1.0" encoding="utf-8" 7>

- <File type="Stimuli Set Info" extension="XML" versig;

- <SG name="ACTorqueSignal’>
name="

< AnTask name=

<SGSet name="pulse’ file="TorqueOscillation.lcs* />
</56>

<fFile>

ot - LEO) dieCon

WY

13 % 01X

3 X|[Test Label

HWIIC,Peds2NEngine. At CondRionTorque.physical 50
e

HWIAIC,

HWIIC,

IC/AcceleratorfVabe

HWI/IC. Pedal2NEngine ArConditionTorque. physical.const
1C/A_IdleControber/A_IdeControlier P
1C/A_IdleControler/A_IdeController I

Parameter, Scalar Float
Parameter, Scalar Float
Parameter, Scalar Flost

label = Torque
[PULSE_SIGNAL_INTERVAL]
countMax=1

deltaT = 100

LABCAR-AUTOMATION 4.2.3

IC/A_IdeControlier/A_IdeController_n_Engine_max

HW//1C.Pedal2NEngine. ArCondRionTorque. physical.sg

HWIC. AeC: sochannel Parameter, Scalar Integer

| Acqustion Parameter, Scalar String
HWJ[IC.Pedal2Engine ArCondRionTorque physical.mode Parameter, Swich, mode-swich

frequency = 025
amplitude = 10
offset=-10
dutycycle = 0.5

51

ETAS General issues

6 General issues

6.1 Test Handler Tool Options — across different installations

You may change your options in the Test Handler, e.g. for Reporting or UuT-TBC mappings.

After installation of a new version it is rather conceivably you like to have these option
available for the new version as well. Another requirement might be to save different tool
option configurations for further reuse.

The functionality you need, is to import and export these options. You find the new
functions a the Tools Menu.

To take over the content of the imported ToolOptions.conf file, a restart of the Test Handler
is mandatory.

#

wi Test Handler - Test Project IdleControllerlcapr)

File Edt Execution | Tools | Help
£ N =REE: Add In... >

- & Test Project IdieCon| {% View SAR Log Stro+L
- -] Demonstration | [} Check Consistency
£ Diesel Contral 1 ﬂ
- <J Gasoline DI EC

Test Bench Overview

i< StandardECU | Import Options... |
E- <@ TCU Generatiory T —
=z Full Rele _
E|.. Defaul (@ Options...
- [Report 20091007 1000 | B | 4 1y Test

Additionally the options file ToolOptions.conf will not be deleted during uninstall of LABCAR-
AUTOMATION from Version 3.4 onwards. Completive this file will not be overwritten during
re-installation. Thus you have the options available right after re-installation or repair.

An import is not necessary.

If you like to force to overwrite the Test Handler Tool Options during re-installation or repair

to the initial default values, please delete the ToolOptions.conf file before starting installation
or repair.

For details see the Release Notes.pdf you find on your LABCAR-AUTOMATION Installation
CD and at the ETAS program folder.

6.2 Silent Installation

LABCAR-AUTOMATION can be silently installed via the command line. Therefore call
‘setup.exe /silent'.

Examples:

e To specify which feature to be installed use the “feature” option like ‘Setup.exe
/features="Core,Doc,Basic, TestDesign,ReportViewer,Examples,Shell, TestCreation, Te
stManager, TestHandler,Editors,Misc,ConfigurationWizard" /silent’

e To specify ALL Features to be installed use the below option
Setup.exe /features="ALL" /silent

LABCAR-AUTOMATION 4.2.3 52

ETAS General issues

e To Install ReportViewer alone, use the below option
Setup.exe /features="Core,Basic,ReportViewer" /silent

In the following list, the LCA feature names used for silent installation are listed:

= Please be aware, that every LCA installation must contain the core, otherwise the
operation of LCA will fail

LABCAR-AUTOMATION

feature name

Core
e Doc
e Basic

o TestDesign

o ReportViewer
o Examples
Shell

e TestCreation

TestManager

TestHandler

Editors

e Misc

o ConfigurationWizard

ToolAdapters

e RealTimeScriptingAdapter

e dSpaceAdapter

LABCAR-AUTOMATION 4.2.3

LABCAR-AUTOMATION components

All core components of LABCAR-AUTOMATION
including Tool Adaptors for INCA, LCO/EE and
INTECRIO

User manuals and product documentation.

The main LCA modules (required for operation):
Executor (Engine), Automotive Test Case Library
(ATCL)

The Report Viewer to view the test reports.

The examples folder

Automation Sequence Builder
Test Manager

Test Handler

Editors Package

Project Generator

Configuration Wizard

Real Time Testing Tool adaptor

dSpace ControlDesk Tool adaptor

53

ETAS

6.3

General issues

e ODXAdapter Diagnose Tool adaptor for ODX Link (acc. INCA
Version)
e ES4440Adapter Fault Simulation Tool Adaptor (ES4440)

For an overview on the LABCAR-AUTOMATION components please refer to the LABCAR-
AUTOMATION release notes, chapter ‘LABCAR-AUTOMATION Packaging’, delivered with this
CD and placed in the Programs / ETAS folder after installation.

All the other additional Components, like Tool Adaptors for MLBA4, CANape, Excel etc. are
not handled in the LABCAR-AUTOMATION-4.x.msi (resp. Setup.exe). Separate installation is
required, the relevant installation files (.msi) are provided in the Installation CD.

I Please be aware, that the LABCAR-AUTOMATION is completely controlled by
licenses. This means, although you might have installed a specific component, it
would not work in case you do not own an appropriate license. In this case please
contact ETAS sales department, to order to correct component license

The different addons (tool adapters) can be silently installed as given below:
“msiexec /i <addon_installer>.msi /passive”

License Management

Every component of the LABCAR-AUTOMATION is protected by use of a license.

During Installation you are able to select ‘your’ package. If you select another option or
more than the available licenses grant, all selected components are installed, however they
are usable only in a ‘Grace mode’. This mode allows you to test the full functionality of the
components for a time frame of 30 operational days. After expiration of this time the
components without valid license do not work any longer.

For further particulars we refer you to the documentation “How to get a license file” listed in
the tool section of the Installation CD and the user’s guide to LABCAR-AUTOMATION.

Note:
Machine based licenses do not work together with Microsoft’s "Remote Desktop Connection”,
but you can use "Remote Desktop Sharing” of Windows NetMeeting, or use VINC.

There is no issue with Remote Desktop with a server based license.

LABCAR-AUTOMATION 4.2.3 54

ETAS ETAS Contact Addresses

7 ETAS Contact Addresses
ETAS HQ
ETAS GmbH
BorsigstraBe 14 Phone: +49 711 89661-0
70469 Stuttgart Fax: +49 711 89661-106
Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support

For details of your local sales office as well as your local technical support team and product
hotlines, take a look at the ETAS website:

ETAS subsidiaries WWW: www.etas.com/en/contact.php
ETAS technical support WWW: www.etas.com/en/hotlines.php

LABCAR-AUTOMATION 4.2.3 55

http://www.etas.com/en/contact.php
http://www.etas.com/en/hotlines.php

ETAS

LABCAR-AUTOMATION 4.2.3

56

	1 Introduction
	1.1 Conventions
	Formatting of dialog elements
	Formatting of entries

	1.2 Installation Paths

	2 For Test Case Developers
	2.1 How do I write test cases?
	2.2 Offline Test Case Design
	2.3 Test Case Design and Debugging within Visual Studio
	2.4 Test Case Design without Test Management tools (Embeddable Package)
	2.5 Automated Label Mapping
	2.6 Intermediate close of INCA Experiment
	2.7 Building Test Case Definition (.tcd) File

	3 For Test Bench Configuration Responsibles
	3.1 Configuration Wizard
	3.1.1 Typical Use Case
	3.1.2 Features of the Configuration Wizard

	3.2 Test Bench Configurations can be fully determined by “Unit under Test”
	3.3 The SUT Mapping Editor
	3.4 Access to INCA with or without LABCAR-OPERATOR
	3.4.1 Using INCA with LABCAR-OPERATOR
	3.4.2 INCA Standalone
	3.4.3 Necessary Installations for the use of INCA standalone

	3.5 Standalone Diagnostic with INCA 7.1
	3.5.1 Pre-requisitions
	3.5.2 Preparing the test bench configuration
	Test bench configuration file

	3.6 Standalone Diagnostic with LABCAR-OPERATOR
	3.7 Flashing with INCA and PROF
	3.7.1 Pre-requisitions
	3.7.2 Preparing the test bench configuration
	Test bench configuration file
	Tool configuration file
	SuT mapping file

	3.7.3 Lines in code

	3.8 Parameter recording for Sync DL
	3.9 Failure Simulation Load Cut off
	3.10 Connection to dSpace Test Bench

	4 For Testers
	4.1 Changing the layout of the report
	4.1.1 Changing report layout after creation per report
	4.1.2 Changing report layout for all reports

	5 Complex features
	5.1 Offline Project generation
	5.1.1 Typical Use Case
	5.1.2 Features of the Project Generator
	5.1.3 Feature Handling

	5.2 Report Structure ‘Abstract Section’
	5.2.1 Feature Description
	5.2.2 Test case development for use of the Abstract Section
	5.2.3 Report View with Abstract Section

	5.3 Improved Data logging functionality
	5.3.1 Typical use case
	5.3.2 Feature Description
	5.3.3 Feature Handling
	5.3.4 Test bench configuration for LCO project dataloggers
	5.3.5 Hints

	5.4 Maps and Curves
	5.4.1 Typical use case
	5.4.2 Feature Description
	5.4.3 Feature Handling
	5.4.4 Mapping rules
	5.4.5 Example

	5.5 Real Time Tests support
	5.5.1 Typical use cases
	5.5.2 Feature Description
	5.5.3 Feature handling
	5.5.4 Test case development for Real Time testing
	5.5.5 Test bench configuration for Real Time testing
	5.5.6 Hints

	5.6 Soft-Stop Function for Test cases
	5.6.1 Typical use cases
	5.6.2 Feature Description
	5.6.3 Feature Handling
	5.6.4 Test case development for Soft Stop
	5.6.5 Test bench configuration for Soft Stop
	5.6.6 Hints
	5.6.7 Difference between status shown in Test Handler and Verdict reported by test case

	5.7 Error Manager
	5.7.1 Typical Use Cases
	5.7.2 Feature Description
	5.7.3 Feature Handling
	5.7.4 Test Case development with Error Manager
	5.7.5 Test Bench Configuration for Error Manager
	5.7.6 Hints

	5.8 Working with a Signal Generator
	5.8.1 Typical use cases
	5.8.2 Feature Description
	5.8.3 Feature Handling
	5.8.4 Test case development for the Signal Generator
	5.8.5 Test bench configuration for the Signal Generator
	5.8.6 Configurable Signal Generator Input Mode Mapping
	5.8.7 Mappings
	5.8.8 Working with dSpace
	5.8.9 Example with LABCAR-OPERATOR 3.2.5

	6 General issues
	6.1 Test Handler Tool Options – across different installations
	6.2 Silent Installation
	6.3 License Management

	7 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

