
ETAS INTECRIO V5.0

User Guide

Copyright
The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used if
the customer is in possession of a general license agreement or single
license. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of ETAS GmbH.

© Copyright 2023 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or
brands belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
mathworks.com/trademarks for a list of additional trademarks.

INTECRIO V5.0 | User Guide R05 EN – 06.2023

https://mathworks.com/company/aboutus/policies_statements/trademarks.html
https://mathworks.com/company/aboutus/policies_statements/trademarks.html

3 | Contents

Contents

1 Safety and Privacy Information . 7

1.1 Intended Use . 7

1.2 Target Group . 7

1.3 Classification of Safety Messages . 7

1.4 Safety Information. 8

1.5 Privacy . 9
1.5.1 Data Processing . 9
1.5.2 Data and Data Categories . 9
1.5.3 Technical and Organizational Measures . 9

2 About INTECRIO . 10

3 Understanding INTECRIO . 11

3.1 Challenges of the Electronic Control Unit Development . 12
3.1.1 Complexity Through System Requirements. 12
3.1.2 Complexity Through Distributed Development. 14
3.1.3 Possible Steps . 15

3.2 Description of Electronic Systems . 15
3.2.1 Design and Operating Method of Electronic Systems . 16
3.2.2 Architecture and Description of Electronic Systems . 17

3.2.2.1 Application Software . 19
3.2.2.2 Platform Software: Hardware Systems . 22
3.2.2.3 Connecting Hardware and Software . 22

3.3 Virtual Prototyping. 23
3.3.1 Target-Close Prototyping. 24
3.3.2 Advantages of Virtual Prototyping . 24
3.3.3 Virtual Prototyping and Rapid Prototyping . 25

3.4 INTECRIO in the Development Process . 26

3.5 INTECRIO Working Environment . 27
3.5.1 Software Systems . 31

3.5.1.1 Modules and AUTOSAR Software Components 31
3.5.1.2 Functions . 33
3.5.1.3 Software Systems . 34

3.5.2 Environment Systems . 35
3.5.3 Hardware Systems. 35
3.5.4 System Projects . 36
3.5.5 Crossbar. 38

3.6 Experimenting with INTECRIO. 40

4 INTECRIO and AUTOSAR . 42

4.1 Overview . 42
4.1.1 RTA-RTE and RTA-OS . 43
4.1.2 Creating AUTOSAR Software Components (outside INTECRIO) 44
4.1.3 Validating Software Components . 44

4.2 What is a Runtime Environment? . 46
ETAS INTECRIO V5.0 | User Guide

4 | Contents
4.3 AUTOSAR Elements in INTECRIO . 47
4.3.1 AUTOSAR Software Components . 47
4.3.2 Ports and Interfaces . 47

4.3.2.1 Sender-Receiver Communication . 48
4.3.2.2 Client-Server Communication . 49
4.3.2.3 Calibration Parameter Interfaces . 49

4.3.3 Runnable Entities and Tasks . 49
4.3.4 Runtime Environment . 50

5 INTECRIO Components . 51

5.1 MATLAB® and Simulink® Connectivity . 52
5.1.1 Characteristics in the Creation of the Simulink Model . 54
5.1.2 Contents of the Description File . 55

5.2 ASCET Connectivity . 56
5.2.1 Characteristics in the Creation of the ASCET Model . 57
5.2.2 Contents of the Description File . 57

5.3 Hardware Configurator . 58
5.3.1 Discontinued Hardware . 58
5.3.2 HWX Import/Export . 59
5.3.3 Ethernet Controller and XCP on UDP . 60
5.3.4 XXX to CAN Gateway. 60

5.4 ES900 Connectivity and Hardware Configurator. 61
5.4.1 ES900 Configuration in the Hardware Configurator . 61
5.4.2 Interface Types and Supported Interfaces . 65

5.5 ES800 Connectivity and Hardware Configurator . 72
5.5.1 ES800 Configuration in the Hardware Configurator . 73
5.5.2 Interface Types and Supported Interfaces . 76

5.6 PC Connectivity . 83

5.7 Project Configurator. 84
5.7.1 Offline Mode . 84

5.7.1.1 Modules and SWC . 85
5.7.1.2 Functions . 85
5.7.1.3 Software Systems and Environments . 86
5.7.1.4 System Projects . 87

5.7.2 Online Mode . 88

5.8 OS Configurator . 89
5.8.1 Tasks of the Operating System . 89

5.8.1.1 Scheduling . 90
5.8.1.2 Tasks . 90
5.8.1.3 Cooperative and Preemptive Scheduling . 91
5.8.1.4 Data Consistency with Preemptive Scheduling 93
5.8.1.5 Application Modes . 95

5.8.2 Design of the OS Configurator . 96
5.8.3 The OSC Editor . 97

5.8.3.1 Creating Tasks . 98
5.8.3.2 Task Properties . 100
5.8.3.3 Setting Up Timer and Software Tasks . 103
ETAS INTECRIO V5.0 | User Guide

5 | Contents
5.8.3.4 Setting Up Interrupt Service Routines . 104

5.9 Project Integrator . 106
5.9.1 Build Process . 106

5.9.1.1 Overview . 107
5.9.1.2 Sequence . 108

5.9.2 ASAM-MCD-2MC Generation . 109

5.10 ETAS Experiment Environment . 110
5.10.1 Validation and Verification . 111
5.10.2 Measuring and Calibrating . 111
5.10.3 Experimenting with Different Targets . 113
5.10.4 Rapid Prototyping Experiment with the ETAS Experiment Environment . . . 115

5.10.4.1 Bypass Experiment . 115
5.10.4.2 Fullpass Experiment . 116
5.10.4.3 X-Pass Experiment . 118

5.10.5 Virtual Prototyping Experiments with the ETAS Experiment Environment . 118

5.11 Documentor . 118

5.12 RTA-TRACE Connectivity . 119

6 SCOOP and SCOOP-IX . 120

6.1 SCOOP Concept . 121

6.2 SCOOP-IX Language. 121
6.2.1 Modules and Interfaces . 122
6.2.2 Description of the C Code Interface. 122
6.2.3 Description of Semantic Information . 123

6.2.3.1 Model Origin . 123
6.2.3.2 Implementation . 125
6.2.3.3 Use . 126
6.2.3.4 Module Data . 126

6.2.4 Referenced Models . 127
6.2.4.1 Extract from a *.six File . 127
6.2.4.2 Extract from a *.ref_six File . 130

6.3 Creation of SCOOP-IX and Example . 132

7 Modeling Hints . 141

7.1 Modeling for INTECRIO. 141

7.2 Modeling with Simulink® . 141

7.3 Modeling with ASCET . 143

7.4 Integration of User Code . 143

8 Bypass Concept . 144

8.1 ETK Bypass Concept Description . 144

8.2 Bypass Input. 144

8.3 Hook-Based Bypass . 145

8.4 Service-Based Bypass . 146

8.5 Bypass Safety Considerations. 148
ETAS INTECRIO V5.0 | User Guide

6 | Contents
8.5.1 Bypass Input Data . 148
8.5.2 Bypass Calculation . 148
8.5.3 Bypass Output Data . 148
8.5.4 Message Copies . 148

8.6 Service-Based Bypass Specifics . 149
8.6.1 Service Processes for the SBB Implemented as Service Functions 150
8.6.2 Controlling the ECU Behavior from INTECRIO. 151
8.6.3 OS Configuration for Service-Based Bypass V3 . 151

8.6.3.1 Restrictions . 151
8.6.3.2 Classical ECU Function Bypass . 152
8.6.3.3 Bypass of an Entire ECU Functionality . 153
8.6.3.4 Read and Write Actions of the Same Service Point in Different

Rasters . 155
8.6.3.5 ECU-Synchronous Write-Back . 156

8.6.4 Summary . 158

9 Contact Information . 159

10 Glossary . 160

10.1 Abbreviations. 160

10.2 Terms . 164

Figures . 169

Tables . 173

Index . 174
ETAS INTECRIO V5.0 | User Guide

7 | Safety and Privacy Information
1 Safety and Privacy Information
In this chapter, you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (Help > Safety Advice) and to the safety
information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information.

1.1 Intended Use
INTECRIO is an integration platform for prototyping of automotive embedded con-
trol systems. It allows for the integration of application software from a wide vari-
ety of sources (e.g., ASCET, MATLAB® and Simulink®, C code) on embedded
control units.

Virtual prototyping minimizes development times and is therefore becoming
increasingly important. With the virtual prototyping capabilities of INTECRIO, sys-
tem models can be analyzed without the need for complex prototyping hardware.

With the rapid prototyping capabilities of INTECRIO, control and diagnostic func-
tions can be validated and verified under real conditions – also in the vehicle. Pro-
totypes can be integrated into existing ECU vehicle networks via the ETAS rapid
prototyping hardware. In a bypass application (via ETK, XETK, FETK, and XCP),
INTECRIO enables the rapid prototyping hardware to be used as a simulation con-
troller and calculates the parameters for new ECU functions.

1.2 Target Group
This manual is intended for trained personnel specializing in the area of function
and software development for embedded electronic systems.

INTECRIO users should be familiar with the operating systems Microsoft
Windows® 10 or Windows® 11.

Knowledge of a programming language, preferably ANSI-C, can be helpful to
advanced users.

Knowledge of the behavioral modeling tools ASCET and MATLAB and Simulink sup-
ported by INTECRIO are assumed.

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

DANGER
DANGER indicates a hazardous situation with a high risk of death or serious
injury if not avoided.
ETAS INTECRIO V5.0 | User Guide

8 | Safety and Privacy Information
1.4 Safety Information
Please adhere to the ETAS Safety Advice and to the following safety information to
avoid injury to yourself and others as well as damage to property.

In addition, take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer, hardware,
etc.).

Further safety advice for this ETAS product is available in the following formats:

- In electronic form on the installation medium: Documentation\
General\ETAS Safety Advice.pdf

- The "ETAS Safety Advice" window that opens when you start the program, or
when you select Help > Safety Advice.

WARNING
WARNING indicates a hazardous situation of medium risk, which could result in
death or serious injury if not avoided.

CAUTION
CAUTION indicates a hazardous situation of low risk, which may result in minor or
moderate injury if not avoided.

NOTICE
 NOTICE indicates a situation, which may result in damage to property if not

avoided.

WARNING
Harm or property damage due to unpredictable behavior of vehicle or test
bench
Wrongly initialized NVRAM variables can lead to unpredictable behavior of a vehi-
cle or a test bench. This behavior can cause harm or property damage.
INTECRIO systems that use the NVRAM possibilities of the experimental targets
expect a user-defined initialization that checks whether all NV variables are valid
for the current project, both individually and in combination with other NV vari-
ables. If this is not the case, all NV variables have to be initialized with their (rea-
sonable) default values.
Due to the NVRAM saving concept, this is absolutely necessary when projects
are used in environments where any harm to people and equipment can happen
when unsuitable initialization values are used (e.g. in-vehicle-use or at test
benches).
ETAS INTECRIO V5.0 | User Guide

9 | Safety and Privacy Information
1.5 Privacy
Your privacy is important to ETAS so we have created the following Privacy State-
ment that informs you which data are processed in INTECRIO, which data catego-
ries INTECRIO uses, and which technical measure you have to take to ensure the
users’ privacy. Additionally, we provide further instructions where this product
stores and where you can delete personal data.

1.5.1 Data Processing
Note that personal data respectively data categories are processed when using
this product. The purchaser of this product is responsible for the legal conformity
of processing the data in accordance with Article 4 No. 7 of the General Data Pro-
tection Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any
mishandling of this data.

1.5.2 Data and Data Categories
Please note that this product creates files containing file names and file paths, e.g.
for purposes of error analysis, referencing source libraries, or for communicating
with third-party programs.

The same file names and file paths may contain personal data, if they refer to the
current user's personal directory or subdirectories (e.g., C:\Users\
<UserId>\Documents\...).

Furthermore, using ETAS Rapid Prototyping solutions in test vehicles connected
to real sensors, buses or ECUs, the ETAS tools may get access to personal data of
the driver.

This data can also be stored using dataloggers as provided by INCA-EIP or the
ETAS Experiment Environment.

When using the ETAS License Manager in combination with user-based licenses,
particularly the following personal data respectively data categories can be
recorded for the purposes of license management:

- Communication data: IP address

- User data: UserID, WindowsUserID

1.5.3 Technical and Organizational Measures
This product does not itself encrypt the personal data respectively data catego-
ries that it records. Ensure that the data recorded are secured by means of suit-
able technical or organizational measures in your IT system.

Personal data in log files can be deleted by tools in the operating system.
ETAS INTECRIO V5.0 | User Guide

10 | About INTECRIO

ETAS INTECRIO V5.0 | User Guide

2 About INTECRIO
INTECRIO integrates code from various behavioral modeling tools, makes it possi-
ble to configure the prototype as well as a hardware system for Rapid Prototyping,
and allows the generation of executable code.

This manual supports the user when getting to know INTECRIO to ensure fast
results. It provides a step-by-step introduction to the system with all information
easy to look up.

The INTECRIO user guide supports readers in becoming acquainted with INTECRIO.

Chapter 3 "Understanding INTECRIO" presents the concepts that are important
for working with INTECRIO.

Chapter 4 "INTECRIO and AUTOSAR" describes how INTECRIO supports AUTOSAR.

Chapter 5 "INTECRIO Components" describes the different components of
INTECRIO, their tasks and methods of operation. Operating the components is
explained in the online help.

Chapter 6 "SCOOP and SCOOP-IX" describes the SCOOP concept for the descrip-
tion, management and exchange of C code interfaces and the interface describing
language SCOOP-IX.

Chapter 7 "Modeling Hints" describes how the behavioral modeling tools are used
in conjunction with INTECRIO and provides an overview of the modeling philosophy
of INTECRIO.

Chapter 8 "Bypass Concept" contains information on service-based and hook-
based bypass, and chapter 10 "Glossary" contains lists of the most important
abbreviations and terms.

NOTE
See also chapter "About INTECRIO" in the Getting Started manual.

11 | Understanding INTECRIO
3 Understanding INTECRIO
Today, developers of electronic control units often face the problem that the con-
trol algorithms are developed for an embedded control software without the avail-
ability of any target hardware. The algorithms are created using behavioral
modeling tools such as ASCET or MATLAB® and Simulink® – i.e. with tools that allow
for generating code based on the models. To overcome the lack of target hard-
ware, virtual prototyping or a rapid prototyping hardware system, such as the
ES900 and ES800 systems of ETAS, is used.

INTECRIO is an ETAS product family that supports developers in their daily task of
developing embedded control software by providing a uniform software platform
for virtual prototyping and rapid prototyping applications.

INTECRIO integrates code from different behavioral modeling tools (BMTs) in a
complete virtual prototyping or rapid prototyping system, enables configuring the
prototype and a hardware system for rapid prototyping, and allows the creation of
executable code. Finally, the ETAS Experiment Environment allows for performing
the virtual prototyping or rapid prototyping experiment. (In this context, perfor-
mance means the process of the experiment under real-time conditions and the
possibility of measuring and calibrating values during the experiment.)

Fig. 3-1 INTECRIO – Overview

Before discussing the content details of INTECRIO in more detail, a few notes are
necessary about electronic control unit development in general, about virtual pro-
totyping and about the position of INTECRIO in the development cycle.

MATLAB®/Simulink®

MATLAB® CoderTM

Simulink® CoderTM

Embedded Coder®
ASCET-RP INTECRIO-ASC

AUTOSAR
BMT

User
Code

Software components (C code, interface description, ...)

ASCET-MD

INTECRIO

Integration platform, BMT connectivity, Target connectivity

Experiment Environment

PC (VP)ES910

ES800
ETAS INTECRIO V5.0 | User Guide

12 | Understanding INTECRIO
3.1 Challenges of the Electronic Control Unit Development
The electronic control unit development is a highly complex process: Partly
because of the constantly increasing requirements of hardware and software,
partly because of the development which is frequently spread across several man-
ufacturers and suppliers.

3.1.1 Complexity Through System Requirements
Today, the complete description of an electronic control unit consists of the
description of the software to be run on the electronic control unit and the
description of the hardware. In most cases, control algorithms and electronic con-
trol unit software are closely linked with the target system on which they are exe-
cuted.

ASCET introduced the first steps to dissolve this mutual dependency by describ-
ing the software (the control algorithm) independently of the hardware on which it
is to run. ASCET accomplishes this by mapping the signals from the control algo-
rithm onto the signals supplied by the hardware. If it is a rapid prototyping system,
the hardware itself is described in a special editor. Different options exist for
microcontroller targets.

In the future, this separation of the descriptions of the target hardware and the
software will become increasingly more important for the successful implementa-
tion of a new electronic control unit.

On the one hand, it allows electronic control unit software and hardware to be
developed in parallel (see Fig. 3-2; the figure is based on the V model). This short-
ens the total development time.

Fig. 3-2 Overview of the development of electronic systems

Development
of electronic
systems

Electronic control
unit software
development

Setpoint encoder
and sensor
development

Actuator
development

...

Electronic control
unit hardware
development

Partitioning Integration
ETAS INTECRIO V5.0 | User Guide

13 | Understanding INTECRIO
On the other hand, the systems themselves become increasingly more complex,
and correlations between the different electronic control units are increasing. The
number of electronic control units per vehicle as well as the number of functions
per electronic control unit constantly increased during recent decades (see
Fig. 3-3).

Fig. 3-3 Functions and electronic control units per vehicle (in The Need for
Systems Engineering. An Automotive Project Perspective, Key Note at
the 2nd European Systems Engineering Conference, Munich, H.-G.
Frischkorn, H. Negele, J. Meisenzahl)

Car manufacturers and suppliers are faced with an enormous cost pressure; they
are forced to reduce costs by means of reuse and variants. That is, a certain func-
tionality is used for different vehicle types of a car manufacturer, and vehicle vari-
ants are created via software properties. The difference between two variants of a
vehicle may consist only in the presence or absence of a certain software func-
tionality and the corresponding sensors and actuators.

For this purpose, the hardware-independent development of the functionality is a
great advantage since this allows the functionality to be used universally.

The costs can also be reduced by arranging the software components on the
smallest possible hardware system. This limits the number of electronic control
units in the vehicle, but it may require the distribution of the components of one
functionality to several electronic control units.

In addition, new functionality can be added to a vehicle by means of so-called vir-
tual sensors. These are sensors that do not measure their signals, but calculate
them. This calculation can be performed by combining physical models with real
sensor values. A good example is tire slip. Tire slip cannot be measured, but by
combining the tire model with the current acceleration (measured by the elec-
tronic stability program ESP) and the current torque (from the engine control), it is
possible to calculate the slip.

Today's vehicle can contain up to 120 microcontrollers that are mostly connected
with each other via serial bus systems. The execution of a specific control algo-
rithm depends not only on the electronic control unit on which it runs, but also on
the inputs and outputs of other electronic control units.

ECUs per
vehicle

Number of functions
per electronic control
unit

Number
Number of functions
per vehicle

1970 1980 1990 2000 Time
ETAS INTECRIO V5.0 | User Guide

14 | Understanding INTECRIO
An example of an already distributed control algorithm is the electronic stability
program (ESP) and the engine control.

As soon as a critical driving situation is discovered, the ESP system requests a
reduction in engine torque from the engine control. This request is generally trans-
ferred via the CAN bus. As soon as the engine torque is reduced, the car can stabi-
lize itself and the torque can subsequently be increased again. If the vehicle does
not stabilize itself, the engine torque must be further reduced.

The following components are involved in the control algorithm: The ESP must
detect the necessity for reducing the engine torque. It must send the CAN mes-
sage and wait for a free position on the CAN bus. Depending on the load on the
CAN bus and the configuration of the communication, this may take some time.
Next, the engine control unit must process the request for a torque reduction. The
engine control unit also has other tasks (namely the engine control) that are very
time-critical. As soon as it finds some time to reduce the torque, it will do so. The
sum of all these waiting times provides an imperfect control behavior which the
driver may even notice (which is extremely undesirable).

This example underscores the fact that the electronics in the vehicle is becoming
more and more complex. On the other hand, the electronics plays an important role
for the success of a vehicle since 90% of all innovations in today's vehicles are
based on electronics. For this reason, car manufacturers and suppliers alike are
very much interested in increasing the quality and functionality of their vehicles.

3.1.2 Complexity Through Distributed Development
An additional contribution to the complexity of the electronic control unit develop-
ment consists of the fact that the development is often formed by a strong division
of labor between car manufacturers and suppliers. While the user requirements to
be considered on a function of the vehicle to be developed are generally defined
by the car manufacturer, the implementation of the functions through electronic
systems is often carried out by suppliers. However, the coordination and accep-
tance of the implemented functions in the vehicle is generally the responsibility of
the car manufacturer.

An indispensable prerequisite for a successful development with such a division of
labor is a precise definition of the interfaces between car manufacturer and sup-
plier. They can be clearly represented in the V model (Fig. 3-4). While the car man-
ufacturer carries the responsibility for the vehicle–on the left as well as the right
branch of the V model–the suppliers are frequently in charge of the component
level, at times even for the first integration steps.
ETAS INTECRIO V5.0 | User Guide

15 | Understanding INTECRIO
These interfaces can be defined differently from case to case, but they must be
defined exactly and completely in any case.

Fig. 3-4 Responsibilities of car manufacturers and suppliers. The interfaces
entered (dot-dash-lines) are examples.

The AUTOSAR partnership develops a standardization of basic system and inter-
face functions. INTECRIO V5.0 supports AUTOSAR; see chapter 4 for more infor-
mation.

3.1.3 Possible Steps
One could say now that the best way for a cost reduction consists of first defining
the functionality that a vehicle must have, and then to determine which hardware
is required for the system to run.

However, this would mean to redevelop the complete vehicle functionality at once,
which would involve significant effort and even risks. Therefore, it would be more
obvious to first describe today's electronic system and to control the complexity it
contains. INTECRIO was developed for this reason. As soon as it is under control,
optimization is the next step.

Additional information can be found in

- J. Schäuffele, Dr. T. Zurawka: "Automotive Software Engineering – Principles,
Processes, Methods, and Tools".

3.2 Description of Electronic Systems
A complete electronic control unit description requires a description of the hard-
ware as well as the software. As mentioned above, today's software can no longer
be viewed only as a collection of different software components that run on inde-
pendent electronic control units. Frequently, a complete control algorithm is

Vehicle development

Subsystem development Drive train
development

Chassis
development

Bodywork
development

Multimedia
development

Car manufacturer

Supplier

Car manufacturer
Supplier
ETAS INTECRIO V5.0 | User Guide

16 | Understanding INTECRIO
already distributed across several electronic control units and, therefore, must be
viewed and described as a whole, without orientation to the special electronic
control unit.

Since networks are not yet supported in INTECRIO V5.0, the focus of this section is
on the description of an individual electronic control unit.

3.2.1 Design and Operating Method of Electronic Systems
Design and operating method of the electronic systems of the vehicle are
explained in detail using the electrohydraulic braking system as an example.

Fig. 3-5 Design of the electrohydraulic brake (in Konventionelle und
elektronische Bremssysteme, Robert Bosch GmbH (ed.), Stuttgart,
2002)

Fig. 3-5 shows the design of the electrohydraulic braking system (Sensotronic
Brake Control, SBC) from Bosch. The sensotronic brake control combines the
functions of the power brake unit, anti-lock braking system (ABS) and ESP.

The mechanical activation of the brake pedal by the driver is sensed in the brake
pedal unit and electrically transferred to the electronic control unit. This electronic
control unit uses required values and different sensor signals, such as the steering
angle signal or the wheel speed signals, to calculate output quantities which, in
turn, are electrically transferred to the hydro unit where they are converted into

Vehicle

Environment

Driver

Other
vehicles

Electronic
control units

Bus

Hydro
unit

Brake pedal unit
(setpoint encoder)

Wheel
brake
(actuator)

Wheel brake
(actuator)

Steering
angle
sensor

Wheel
speed
sensor

Tool
(e.g. diagnostic tester)
ETAS INTECRIO V5.0 | User Guide

17 | Understanding INTECRIO
controlled variables for the wheel brakes through pressure modulation. The han-
dling of the vehicle, the so-called route (or controlled system) is influenced via the
wheel brakes. For this reason, the wheel brakes are also referred to as actuators.

The electronic control unit can communicate with other electronic control units of
the vehicle via a bus, such as CAN.

The system design illustrated by using the sensotronic brake control as an exam-
ple (see Fig. 3-6) is typical for all electronic control/closed-loop control and tracing
systems of the vehicle. In general, the following components of the vehicle can be
distinguished: setpoint encoder, sensors, actuators, electronic control units for
control/closed-loop control or tracing and route. The electronic control unit are
linked by a network to allow for an exchange of data.

Fig. 3-6 Schematic representation of control/closed-loop control and tracing
systems

The driver (possibly also other passengers) and the environment (including other
vehicles or electronic systems such as diagnostic tools in the environment of the
vehicle) can affect the behavior of the vehicle and are components of the higher-
level system vehicle-driver-environment.

By itself, an electronic control unit is merely a means to an end. Only a complete
electronic system consisting of electronic control units, setpoint encoders, sen-
sors and actuators affects or monitors the route, thereby meeting the use expec-
tations.

3.2.2 Architecture and Description of Electronic Systems
To describe an electronic system, a physical architecture that encompasses the
electronic control units and networking of the vehicle as well as the distribution of
the software to the existing hardware is required. Requirements such as the avail-
able space for the installation of electronic control units, required redundancies
for safety-critical component, etc., enter into the physical architecture.

On the other hand, one needs a logical architecture that represents the function-
ality of the software, which ideally starts with a layout for the complete system
that is subsequently broken down into functions, modules and individual classes.

In connection with AUTOSAR, AUTOSAR software components (SWC) take the
place of modules and classes.

Vehicle

EnvironmentDriver

Actuators Plant SensorsSetpoint
encoder

Control/closed-
loop control
monitoring
ETAS INTECRIO V5.0 | User Guide

18 | Understanding INTECRIO
Naturally, the connection between both architectures, which distributes the func-
tionality to the hardware, cannot be missing.

Fig. 3-7 shows the architectures; the areas where INTECRIO is used are circled.

Fig. 3-7 Architecture of an electronic control unit description

A detailed description from the perspective of INTECRIO is presented below.

On-board
network

Tasks

Electronic
control unit

Subsystems,
buses

Processes

Function calls

Logical architecture

Other classes

Software system

Function

Module

Class

INTECRIO

Task
Task
Task
Task

Method Method

MethodMethod

Physical architecture

Process ProcessProcessProcess

CPU
ETAS INTECRIO V5.0 | User Guide

19 | Understanding INTECRIO
Fig. 3-8 shows an overview of the different components of an electronic control
unit description.

Fig. 3-8 Electronic control unit description: Overview (INTECRIO view)

3.2.2.1 Application Software
The application software (or functional software) contains the signal flow-driven
control algorithm. This is a generic description that does not change its behavior
(based on requirements and specifications). The software consists of individual
modules or AUTOSAR software components and module/SWC groups or functions
(see Fig. 3-9 and the left side of Fig. 3-7).

Fig. 3-9 Functional software: Details

OSEK operating system

I/O driver (HAL) /
complex device

drivers

Module B / SWC B

Module A / SWC A

Module C / SWC C Ap
pl

ic
at

io
n

so
ftw

ar
e

Pl
at

fo
rm

 s
of

tw
ar

e

Crossbar / AUTOSAR-RTE

Communication driver / Basic software

....

[] Target-specific [] Generic (all targets) I/O interface

Module/
SWC A

Module/
SWC B

Module/
SWC C

BMT
view

Signal
sinks

Activation interface

Signal
sour-
ces

Data

Calculation
algorithm

OSEK operating system

I/O driver
(hardware
abstraction

layer)

....

Module/SWC B

Module/SWC A

Module/SWC C

Crossbar / AUTOASR-RTE

Communication driver
ETAS INTECRIO V5.0 | User Guide

20 | Understanding INTECRIO
The overview in Fig. 3-2 shows the development of the electronic control unit soft-
ware as a single development phase; however, section 3.1.2, Fig. 3-4 already
showed that this phase is divided again into other phases. This figure is still too
rough, though; even in the development of a specific functionality, it is possible
that the individual modules, SWC or functions are developed by different suppliers
using different tools.

Modules and AUTOSAR software components are principally designed the same
way from the INTECRIO perspective and feature the following interfaces:

- Signal sinks (inputs or clients and receivers),

- Signal sources (outputs or server and sender),

- Activation interfaces (processes or runnable entities (RE); graphically not
shown).

Fig. 3-10 Module/SWC: Schematic design (external view) and connection

Modules and AUTOSAR software components are also identical from an internal
design. In addition to the interfaces listed, the internal view contains the following
components:

- Calculation algorithm or functionality,

- Data of variables, constants and parameters.

Fig. 3-11 Modules: schematic internal view

Module 1
... ...

Module 2
... ...

Signal flow
connection

Sink 1
Sink 2

Source 1
Source 2

Sink 1
Sink 2

Source 1
Source 2

SWC A

Receiver Sender
Client Server
Mode

Module 1... ...

Sink 1 Source 1

Source 2Sink 2

Module 2... ...

Sink 1

Sink 2

Source 1

Source 2 Internal
view Module 1

Signal
sinks
(inputs)

Activation interface

Signal
sources
(outputs)

Data (variables/
constants/parameters)

Calculation
algorithm
ETAS INTECRIO V5.0 | User Guide

21 | Understanding INTECRIO
Fig. 3-12 shows a simple ASCET example for the internal view of a module.

Fig. 3-12 Module: ASCET example

The activation interfaces correspond to the ASCET processes, signal sinks and
sources correspond to the receive and send messages in ASCET. Variables,
parameters and constants are represented by ASCET objects of the same name.
Fig. 3-13 shows the same example for MATLAB and Simulink.

Fig. 3-13 Module: Simulink® example

For information to be exchanged between modules/SWC or functions and to cre-
ate a functioning overall system, the objects must be interconnected, i.e. inte-
grated. The calculation algorithms of the individual modules/SWC, i.e. their
functionality, do not play a role for integration. The modules are handled as "black
boxes" with

Source 1 = f1(sink 1, sink 2, ...)
and

Source 2 = f2(sink 1, sink 2, ...)

Internal
view

Signal
sinks

Activation interface

Signal
sources

Data

Calculation
algorithm

ASCET moduleASCET module

Internal
view

Signal
sinks

Activation interface

Signal
sources

Data

Calculation
algorithm

Simulink model
ETAS INTECRIO V5.0 | User Guide

22 | Understanding INTECRIO
This integration is the responsibility of INTECRIO. To be able to fulfill this task, the
model supplied by a BMT is dismantled for working with INTECRIO into description
files for the interfaces and data as well as into C code (see Fig. 3-14). These files
form a reusable software component; they can be processed by INTECRIO.

Fig. 3-14 Internal view and component view of a module (dashed: descriptions;
solid: implementations)

3.2.2.2 Platform Software: Hardware Systems
On the other side are the hardware systems that are affected by cost factors and
the different variants of a vehicle. The hardware is a network of electronic control
units that form a complete hardware topology. The latter must describe all aspects
of the hardware system that is available to the software. The hardware system is
also a generic system whose behavior or properties do not change.

With virtual prototyping, a model of driver, vehicle and environment is used instead
of real hardware and environment.

3.2.2.3 Connecting Hardware and Software
Finally, both systems must be connected with each other. To build a prototype (or
an actual vehicle project), the description of the software system must be linked
with the description of the hardware system. This linking forms a concrete applica-
tion. Of course, this requires some "adhesive" to connect the generic software
description and the generic hardware description.

Internal
view

Signal
sinks
(inputs)

Activation interface

Signal
sources
(outputs)

Data (variables/
constants/parameters)

Calculation
algorithm

C
om

po
ne

nt

C code

Data
description file
(ASAM-2MC)

Interface
description file
(SCOOP-IX)
ETAS INTECRIO V5.0 | User Guide

23 | Understanding INTECRIO
INTECRIO is the tool that provides this "adhesive" in the form of a project
configurator and connects the hardware description with the description of the
application software. Here, the focus is on the hardware description – it is config-
ured in INTECRIO while the components that form the application software are
provided by special behavioral modeling tools.

Fig. 3-15 shows the representation of an electronic control unit description and the
tasks taken on by the various INTECRIO components.

Fig. 3-15 System project (electronic control unit description) and INTECRIO
components

3.3 Virtual Prototyping
Virtual prototyping means that function developers can create virtual prototypes
of automotive electronic systems and test them on the PC. A virtual prototype of
this kind comprises:

- Automotive embedded software

• application software (functions for control and monitoring)
• platform software (I/O drivers, operating system, etc.)

- Plant model

• driver
• vehicle
• environment

Virtual prototyping enables collaboration in very early development phases
between function developers on one hand and system developers and simulation
experts on the other hand. Without virtual prototyping, these domains often do
not come into contact until very late in the process, e.g., during HiL (Hardware-in-

OSEK operating system

I/O driver
(HAL) /
complex

device drivers

....

Module B /
SWC B

Module A / SWC A

Module C /SWC C

Crossbar / AUTOSAR RTE

Communication driver / Basic
software

INTECRIO
Integration platform

INTECRIO
BMT connectivity

ASCET-RP
ASCET

BMTs

MATLAB Coder
Simulink Coder

Embedded Coder

MATLAB/Simulink

C
 c

od
e

en
vi

ro
nm

en
t

AU
TO

SA
R

BM

T

INTECRIO
target connectivity

ES900
ES800 PC (VP)
ETAS INTECRIO V5.0 | User Guide

24 | Understanding INTECRIO
the-Loop) testing. With virtual prototyping, developers can use system models
(such as chassis or engine models) in early stages of the process as well, and thus
validate their functions through Model-in-the-Loop (MiL) technology. Access to
system knowledge (and the corresponding models) early in the process creates
synergies between function development and system development in an ideal
way and fosters a more efficient development process.

3.3.1 Target-Close Prototyping
In INTECRIO, models can be created using a variety of different tools or a combina-
tion thereof (MATLAB and Simulink, ASCET, C code). With the PC connectivity pro-
vided by INTECRIO-VP, developers can now work within their familiar tool
environment and execute their virtual prototype directly at their desks on a stan-
dard Windows PC. Already in the function design phase, developers can thus vali-
date the functional architecture and verify the electronic architecture against the
plant model. Moreover, they can do all of this under target-close conditions. To put
it plainly:

INTECRIO Integration Platform
+ Function Model
+ Plant Model
+ Standard PC
+ RTA Virtual OSEK

= Virtual Prototyping with INTECRIO
By supporting RTA-OSEK for PC, a complete OSEK operating system for the PC,
INTECRIO-VP offers conditions that later exist on the vehicle ECU. These include
task and process oriented scheduling and buffered message communication
between individual OS processes. At the same time, INTECRIO-VP takes advantage
of the flexibility and short turn-around times of testing on the PC, which offers
ample room for experimentation due to fewer constraints in terms of timing, mem-
ory consumption, etc. than exist on the target ECU.

3.3.2 Advantages of Virtual Prototyping
Virtual prototyping offers new opportunities for early phases of vehicle develop-
ment, such as pre-calibration in the office, detailed analysis of function behavior,
and control over the execution speed of a prototype, as the following three exam-
ples illustrate.

A Saving time and money through pre-calibration

With virtual prototyping, developers can move some of the necessary devel-
opment steps from the test bench to the lab or to their desks and validate,
optimize, and pre-calibrate functions against a plant model right there. In
addition, a virtual testing environment on the PC also offers developers the
advantage of being able to minimize the execution time of experiments
(given the computational power and the complexity of the model) and thus
test a larger amount of functions or data variants in a shorter amount of time
(Fig. 3-16 bottom).
ETAS INTECRIO V5.0 | User Guide

25 | Understanding INTECRIO
B Detailed analysis using highly elaborate simulation models

The option of validating a new function based on elaborate plant simulations
allows developers to conduct a detailed analysis of its behavior. This possi-
bility is particularly valuable when an in-depth analysis is not possible in the
real-world environment.

C Slow-motion and fast forward

With INTECRIO-VP, users can influence simulation time by defining a scaling
factor and adjusting it while the simulation is running. Scaling factors < 1
allow users to accelerate the simulation, while scaling factors > 1 result in a
"slow motion" effect (Fig. 3-16, top). With that, users can, e.g., run the rele-
vant parts of a simulation in slow motion.

Fig. 3-16 Top: During simulation in scaled time, slow motion timing or fast
forward timing can be achieved (within the limits of model complexity
and computational power).
Bottom: In a simulation with adaptive time, complex models can be
executed at the fastest possible speed (i.e., the least possible
computation time).

3.3.3 Virtual Prototyping and Rapid Prototyping
In INTECRIO, the function model is strictly separated from OS configuration, hard-
ware configuration, and instrumentation. Given this separation, fewer model vari-
ants have to be created, and the optimum re-use of software prototypes,
experiments, and data sets can be ensured across teams, target platforms, and
development phases. Being able to re-use virtual prototyping models in rapid pro-
totyping will lead to considerable synergies.

OS
Scheduling

Simulation of
environment model

Simulation of SW
function model

Windows
latency

 0 10 20 30 40

0 10 20
Simulation time [ms]

Virtual Prototyping using scaled simulation time (Slow Motion)

Actual time
(PC clock) [ms]

Simulation time [ms]

Actual time
(PC clock) [ms]

Virtual Prototyping using adaptive simulation time

 0 10 20 30 40

 0 10 20 30 40 50
ETAS INTECRIO V5.0 | User Guide

26 | Understanding INTECRIO
To summarize the advantages of using both virtual and rapid prototyping:

Virtual prototyping thus complements the prototyping options available in
INTECRIO to date. With INTECRIO-VP, vehicle developers are able to test new func-
tions against plant simulations in early phases of development, which will contrib-
ute to a more efficient development process.

3.4 INTECRIO in the Development Process
Electronic control unit software is generally developed according to the V model. In
the process, smaller V cycles are typically passed through on every level. Fig. 3-17
shows the V model; the areas in which INTECRIO is used are marked.

Fig. 3-17 V cycle and INTECRIO

Virtual Prototyping Rapid Prototyping
enables developers to validate func-
tions and software

enables developers to validate and ver-
ify functions and software

- in the context of a simulated world at
their desks

- with pre-calibration options
- without any dedicated hardware
- not restricted by real-time require-

ments

- in the context of the real world, i.e.
using real world interfaces and sig-
nals

- on particularly designed hardware
systems

- in real time (e.g., through a bypass
experiment)

Function
development

Software
development

Test

Measurement
and Application

Rapid
Prototyping

Virtual
 Proto-
 typing
ETAS INTECRIO V5.0 | User Guide

27 | Understanding INTECRIO
In other words: INTECRIO allows the user a simple and quick integration of software
components from different manufacturers and different BMTs as well as the veri-
fication and validation of the software (in whole or in part) in virtual or rapid proto-
typing. New experimenting options allow for quick and complete validation and
verification of software modules.

Validation is the process for evaluating a system or a component with the pur-
pose of determining whether the application purpose or the user expectations are
met. Therefore, the validation is the check whether the specification meets the
user requirements, whether the user acceptance is reached by a function after all.

Verification is the process for evaluating a system or a component with the pur-
pose of determining whether the results of a given development phase corre-
spond to the specifications for this phase. Therefore, software verification is the
check whether an implementation of the specification specified for the respective
development step is sufficient.

A clear separation of validation and verification is often not possible when classical
development, integration and quality assurance methods for software are used.
Therefore, a significant advantage of the use of INTECRIO as rapid prototyping tool
consists of the fact that it allows for an early and electronic control unit-indepen-
dent function validation with an experimental system in the vehicle.

3.5 INTECRIO Working Environment
The design of INTECRIO is modular. The graphical framework forms the working
interface in which the various INTECRIO components are integrated.

Fig. 3-18 INTECRIO – Scheme of the interface

The graphical interface of INTECRIO is always designed in the same way. Below a
menu bar and a toolbar, the interface of the currently used configurator (OS, proj-
ect or hardware configurator) with the respective processing options is displayed

Toolbar Menu bar

File Edit View ...

Messages of the current component

WS browser
(tree view of
workspace) Display window for the

different components

Bottom pane

Scripting Window

INTECRIO Vx.y

Title Bar
ETAS INTECRIO V5.0 | User Guide

28 | Understanding INTECRIO
in the top right field. The two lower fields are used for scripting (see online help for
details) and as display for messages of the currently used configurator. The bot-
tom pane contains various status information.

The top left field, the WS browser, displays the current workspace in a tree struc-
ture. The workspace contains all the components of an electronic control unit
description in four predetermined main folders for hardware systems, software
systems, environment systems (virtual prototyping) and system projects.The
entire electronic control unit description is processed from here.

Fig. 3-19 Folder structure: workspace

Hardware systems: A hardware system is used for the configuration of the plat-
form software. It contains the complete description of a hardware topology, con-
sisting of the descriptions of the associated ECUs (rapid and virtual prototyping
targets) as well as the descriptions of the interfaces (bus systems) between the
devices.

The components of the hardware systems are stored in the Hardware folder.

Fig. 3-20 Folder structure: hardware systems

Software systems and environment systems: A software system contains the
application software, i.e. the generic parts of the control algorithm. For one thing,
these are the modules and AUTOSAR software components1) (SWC) that contain

Modules

Environment (contains environment software)

Functions

Environment Systems

Hardware Systems

Hardware

Systems (contains system projects)

Modules (contains modules and SWC)

Software

Functions

Software Systems

Workspace

Software

Hardware

ECU 1 (Experimental Target)
Hardware Systems

Controller 1
Hardware I/O

Environment

...

Systems

Workspace
ETAS INTECRIO V5.0 | User Guide

29 | Understanding INTECRIO
the functionality. In addition, functions and connections between modules, SWC
and functions are part of the software system. In INTECRIO V5.0, the execution
sequence is automatically determined based on the overall configuration.

An environment system contains the plant model for virtual prototyping, i.e. the
model of driver, vehicle, and environment. An environment system is built like a
software system.

The components of the software systems are stored in the Software folder and
the corresponding subfolders. The components of the environment systems are
stored in the Environment folder and the corresponding subfolders.

Fig. 3-21 Folder structure: software systems and environment systems

System projects: A system project is a complete electronic control unit
description. It combines a hardware system, a software system and an environ-
ment system into an overall project. The mapping of the signals provided by the
hardware onto the corresponding software signals and the configuration of the
operating system (OS configuration) are also a part of the system project.

1) See section 3.5.1.1 "Modules and AUTOSAR Software Components" for more infor-
mation.

Environment

Systems

Software system
Software Systems

Function 2 (by reference)
Module E (by reference)

(more software systems)
(more functios/modules/SWC by reference)

Workspace

Software

Functions

Module A (by reference)
Module C (by reference)

SWC B

Modules

Hardware

Function 1

(more functions)

Signal sources
Signal sinks

Module A

(more modules/SWC)

Modules

Signal sources/sinks
Module D

(more modules)

Environment

Workspace

Hardware

Software

Functions

Modules (by reference)
Function 2

(more functions)

Systems

Environment system
Environment Systems

Functions/modules (by reference)
(more environment systems)
ETAS INTECRIO V5.0 | User Guide

30 | Understanding INTECRIO
The system project are stored in the Systems folder.

Fig. 3-22 Folder structure: system project (objects marked with * are
referenced)

Software systems, hardware systems, environment systems (for virtual prototyp-
ing) and system projects are described in detail in the following sections.

Workspace

Software

Environment

Systems

Software System (∗)

Hardware System (∗)

System Project 1

Device 1 (∗)

Signals (∗)

Controller 1 (∗)

Board 1 (∗)

Signal Group 1 (∗)

(other Signal Groups (∗))

(other Boards (∗))

OS Configuration

Functions (∗)

Modules / SWC (∗)

(other System Projects)

Environment System (∗)

Functions (∗)

Modules / SWC (∗)

Hardware
ETAS INTECRIO V5.0 | User Guide

31 | Understanding INTECRIO
3.5.1 Software Systems
This section provides a detailed description of software systems. Fig. 3-23 shows
the content of a software system. The lines symbolize inclusion relationships;
dashed objects in the background are optional (if available, they contain the same
objects as the corresponding foreground object).

Fig. 3-23 Software system

3.5.1.1 Modules and AUTOSAR Software Components

The modules and AUTOSAR software components (SWC) in INTECRIO contain
the descriptions of the software modules that were imported in the system.

These can be user-defined ASCET modules, Simulink models or AUTOSAR soft-
ware components, but also test functions or complex stimulus generators in
C code or plant models (for "software in the loop" applications). The descriptions
are based on SCOOP-IX descriptions (see chapter 6 "SCOOP and SCOOP-IX") or
XML for AUTOSAR software components.

The schematic design of a module and SWC is represented in Fig. 3-10 on page 20.
INTECRIO only knows the signal sources and sinks (inputs and outputs) as well as
the activation interfaces (processes, or runnable entities for SWC) of the user-
defined modules and SWC (interface description file in Fig. 3-14). The functionality
of the software modules and SWC that was created with different BMTs is not of
importance here.

In INTECRIO, hardware I/O ports are also considered as modules with signal
sources and sinks.

NOTE
In INTECRIO V5.0.4, AUTOSAR support is limited to using existing work-
spaces that contain legacy AUTOSAR modules. It is not possible to import
new AUTOSAR software components.

Modules
Module / SWC

Input
signals

Output
signals

Processes /
RE

Signal mapping

Software System

Function (optional)
ETAS INTECRIO V5.0 | User Guide

32 | Understanding INTECRIO
 Thesignal mapping, i.e. the connections between the corresponding inputs and
outputs that are required for information exchange, must be performed explicitly.
There are no implicit connections, such as via same name.

Fig. 3-24 shows the simple connections: A source is connected with a sink (A) or
with several sinks (B); source and sinks have the same timing.

Fig. 3-24 Connections: A source, one or several sinks, same timing

In addition, other connections are possible:

- A source is connected with various sinks; source and sink(s) have a differ-
ent timing.

Fig. 3-25 Connection: One source, several sinks, different timing

The data of the source are buffered and then forwarded to the sink(s).

B
Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

A

Buffer
Sink

Sink

Source 1
ETAS INTECRIO V5.0 | User Guide

33 | Understanding INTECRIO
- Two sources are connected with a sink (only for rapid prototyping).

Fig. 3-26 Connection: several sources, one sink

There are two alternatives: On the one hand, switching between the two
sources (see Fig. 3-26) during the prototyping phase is accomplished by
using a crossbar manager (see section 3.5.5). On the other hand, the con-
nection can be permanently coded during the software development phase.

3.5.1.2 Functions
Modules and SWC can be inserted in a software system either directly or – to pro-
vide a better overview or for a simple reuse – grouped in functions. These func-
tions are classification objects without separate functionality (similar to the
hierarchies in ASCET block diagrams).

A function consists of the following components:

- one or several modules or SWC

- connections between inputs and outputs of the contained modules or SWC

- the function interface (inputs, outputs and activation interfaces)

The inputs and outputs of a function cannot have their own data or implementa-
tions. Outputs can be connected with one or several sinks of the modules/func-
tions contained in the function, inputs with exactly one source of a module/
function. With SWC, the output type determines whether the output can be con-
nected to one or more inputs (see “Ports and Interfaces” on page 47).

Sink

Version 2

Source

Version 1

Source
ETAS INTECRIO V5.0 | User Guide

34 | Understanding INTECRIO
It is also possible to automatically create the inputs and outputs of the function.
However, only the module/SWC inputs that are not yet connected can be taken
into account. Outputs take into account either all sources of the modules/SWC
contained in the function or only those that are not yet connected.

Fig. 3-27 Example for a function

Modules cannot be instantiated in INTECRIO. If a module is inserted into a function
more than once (either directly or as part of an inserted function), an error mes-
sage is issued during code generation.

3.5.1.3 Software Systems
A complete software system can be assembled from any number of functions and
individual modules or SWC.

Fig. 3-28 Example for a software system

Function

Sink
Source

Module 1
Sink

Source

Module 2

Receiver
SWC C

Receiver
Sender

Function A

Sink
Source

Module 1
Sink

Source

Module 2

Sink
Source

Module 3

Function B

Sink
Source

Module 6

Sink
Source

Module 4

Sink

Source

Module 5

Sink

Sink

Receiver
SWC C

Receiver
Sender
ETAS INTECRIO V5.0 | User Guide

35 | Understanding INTECRIO
Since modules and SWC cannot be instantiated, each module/SWC may appear
only once, regardless of whether it is a part of a function or not. Except for the cre-
ation of functions, an automatic check does not take place until the system proj-
ect is created (see section 3.5.4).

3.5.2 Environment Systems
Environment systems are used to model the plant model for virtual prototyping
(see section 3.3). They are built out of modules, SWC and functions, the same way
as software systems.

A module, SWC or function can, within one workspace, be used either for a soft-
ware system or an environment system. It is not possible to include modules, SWC
or functions imported/created for a software system (Software\Modules and
Software\Functions folders) in an environment system, and vice versa.

3.5.3 Hardware Systems
Fig. 3-29 shows the content of a hardware system (the lines symbolize inclusion
relationships). In the framework of the hardware system, the existing hardware
and the interfaces between the individual units (e.g. ETK, CAN) are described.

Fig. 3-29 Hardware system.

NOTE
Make sure that no module/SWC already included in a function is individually
inserted into the software system. Otherwise, the following error message is
issued during code generation:

Build preparation error: Multiple instances of same module in
software system

ECU description

CPU description

I/O interface

Output signals

Hardware System

Input signals
ETAS INTECRIO V5.0 | User Guide

36 | Understanding INTECRIO
The ECU description is the description of an individual controller hardware that is
usually installed inside a housing. (Despite different boards or interfaces, the
experimental targets are considered electronic control units.)

This includes descriptions of all processors of the electronic control unit and the
connections between the processors.

The CPU description is the description of an individual processor with all the rele-
vant details. This includes

- Characteristics of the processor (type, brand, etc.),

- Processor speed,

- Memory layout,

- Additional processor-specific configurations.

The I/O interface describes the interface between the input/output signals and
the processor.

The input and output signals are linked with a specific processor. They are used
to configure the inputs and outputs of the hardware (sensors and actuators) and
to establish the connection to the corresponding processor signals.

3.5.4 System Projects
The system project combines a hardware system, a software system and an envi-
ronment system (optional; for virtual prototyping) into an overall project. A check
is performed whether each module occurs only once in the overall project; if a
module occurs multiple times, an error message is issued.

In the system project, the signals provided by the hardware are mapped onto the
signals available in the software and the processing sequence of the processes is
defined in the framework of the operating system configuration.

Fig. 3-30 shows a system project. Dashed objects in the background are optional;
if available, they contain the same objects as the corresponding foreground
object.
ETAS INTECRIO V5.0 | User Guide

37 | Understanding INTECRIO
Fig. 3-30 System project

Software systems, environment systems, and hardware systems are described in
sections 3.5.1, 3.5.2 and 3.5.3.

The signal mapping references the functions/modules/SWC of the software or
environment and the ECU description with the respective inputs and outputs. The
mapping is performed here. Since functions/modules/SWC and ECU description
are referenced, changes to the software or hardware system immediately impact
the signal mapping.

Sy
st

em
 p

ro
je

ct

S
ch

ed
ul

in
g

OS
configu-
ration

CPU
description

sd

(reference)

S
ig

na
l m

ap
pi

ng

Function
sd

(referende) Input
signals

Output
signals

Input
signals

Output
signals

ECU
descrip-

tion
sd

(reference)

E
nv

iro
nm

en
t s

ys
te

m

Function
Module /

SWC

Signal
mapping

Input
signals

Output
signals

Processes /
RE

H
ar

dw
ar

e
sy

st
em

ECU
descrip-

tion

CPU
description

I/O
interface

Input
signals

Output
signals

S
of

tw
ar

e
sy

st
em

Function
Module /

SWC

Signal
mapping

Input
signals

Output
signals

Processes /
RE
ETAS INTECRIO V5.0 | User Guide

38 | Understanding INTECRIO
The scheduling, i.e. the processing sequence of the tasks and processes/runna-
ble entities, is defined in the configuration of the operating system, i.e. the OS
configuration. In the OS configuration, tasks are created and configured, to which
the processes (activation interfaces) of the system are subsequently assigned.

Fig. 3-31 Assigning processes to tasks

3.5.5 Crossbar
The connections between modules, functions and hardware are managed and
controlled by the Crossbar. When a system project contains at least one SWC, an
AUTOSAR runtime environment (see section 4.2 on page 46) is used instead of the
Crossbar.

The Crossbar is a software component that is executed with the target (e.g.,
ES830). The task of the Crossbar consists of connecting any signal sources with
any signal sinks. For this purpose, a signal source may be connected with several
signal sinks, but a signal sink can be connected only with exactly one signal
source.

The Crossbar can manage static and dynamic connections in interaction with the
project configurator. Static connections cannot be changed during runtime; if you
want a change, you must cancel the experiment, perform the change and recom-
pile the project. Dynamic connections can be changed during runtime.

Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

Process 1 Process 1

Task #1 Task #2

Process 1
ETAS INTECRIO V5.0 | User Guide

39 | Understanding INTECRIO
At runtime, the Crossbar receives the information about each connection (source,
sink, involved processes, variable type, ...). Value assignments by the Crossbar are
always performed before calling the "consuming" module. This allows the Crossbar
to trigger the necessary actions at runtime. The result are connections between
signal sources and sinks that are represented as gray circles in Fig. 3-32.

Fig. 3-32 Crossbar – Overview

The patented Crossbar guarantees real-time security for the modules through
carefully arranged copy actions. Required requantizations and data type conver-
sions are automatically performed.

A simple assignment serves as an example: sink 1 = source 0
If the two sides of the assignment are quantized differently, the value of
source 0 is requantized and then assigned to sink 1. If both sides feature dif-
ferent data types, source 0 is converted to the data type of sink 1.

Source 0

Source 1

Source 2

Source n

S
ink 0

S
ink 1

S
ink 2

S
ink m

-1

S
ink m

Crossbar

C
on

fig
ur

at
io

n
in

fo
rm

at
io

n
Scheduling
information
ETAS INTECRIO V5.0 | User Guide

40 | Understanding INTECRIO
3.6 Experimenting with INTECRIO
The executable prototype is created from the system project by using the project
integrator (see section 5.9 "Project Integrator"). Such a prototype shows the soft-
ware functions in practical use – entirely with different goal directions and in a dif-
ferent appropriation.

Fig. 3-33 Prototype for rapid or virtual prototyping experiment

By using the prototype, a rapid prototyping hardware and an experiment environ-
ment (e.g., the ETAS Experiment Environment), the experiment can be performed
under real-time conditions (also automatically if needed). This experiment fulfills
the following purposes:

- Validation of the control algorithm (in whole or in part)

- Verification of the software implementation

- Verification of the implementation information of the model magnitudes

In the experiment, values can be measured and calibrated in different measuring
and calibration windows. The configuration of the measuring and calibration win-
dows can be carried out either before or during the experiment. In a virtual proto-
typing experiment, also the simulation speed can be adjusted at runtime.

Prototype of a control algorithm

Control algorithm
Software system

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Source 1

Source 2

Sink 1

Sink 2

Prototyping hardware system

External
interfaces,
e.g. CAN-DB

PC (VP)

ES800
ES900
ETAS INTECRIO V5.0 | User Guide

41 | Understanding INTECRIO
Connections that were created as dynamic connections during the creation can
be changed during the running experiment. This can be useful, for example, if the
fixed-point code implementation of a model is to be compared with the physical
model or different versions of a model.

Fig. 3-34 Different models that can be connected with the hardware as an
option

Additional modification options during the running experiment include the follow-
ing:

- Change of conversion formulas of simple I/O signals

- Switching individual signal groups on/off

- Switching events on/off

The data gained during the experiment can be logged and analyzed under differ-
ent points of view. The results can be documented automatically.

Hardware
output

Hardware
input

Fixed-point code /
Version 2

Sink Source

Floating-point code /
Version 1

Sink Source
ETAS INTECRIO V5.0 | User Guide

42 | INTECRIO and AUTOSAR
4 INTECRIO and AUTOSAR
This chapter describes how INTECRIO supports AUTOSAR. Section 4.1 overviews
the purpose of AUTOSAR, section 4.2 describes the AUTOSAR runtime environ-
ment (RTE), section 4.3 lists the AUTOSAR elements supported by INTECRIO.

This chapter contains no detailed introduction to AUTOSAR; corresponding docu-
ments can be found at the AUTOSAR website: https://www.autosar.org/

4.1 Overview
Today, special effort is needed when integrating software components from dif-
ferent suppliers in a vehicle project comprising networks, electronic control units
(ECUs), and dissimilar software architectures. While clearly limiting the reusability
of automotive embedded software in different projects, this effort also calls for
extra work in order to provide the required fully functional, tested, and qualified
software.

By standardizing, inter alia, basic system functions and functional interfaces, the
AUTOSAR partnership aims to simplify the joint development of software for auto-
motive electronics, reduce its costs and time-to-market, enhance its quality, and
provide mechanisms required for the design of safety relevant systems.

To reach these goals, AUTOSAR defines an architecture for automotive embedded
software. It provides for the easy reuse, exchange, scaling, and integration of
those ECU-independent software components (SWCs) that implement the func-
tions of the respective application.

The abstraction of the SWC environment is called the virtual function bus (VFB). In
each real AUTOSAR ECU, the VFB is mapped by a specific, ECU-dependent imple-
mentation of the platform software. The AUTOSAR platform software is split into
two major areas of functionality: the runtime environment (RTE) and the basic
software (BSW). The BSW provides communications, I/O, and other functionality
that all software components are likely to require, e.g., diagnostics and error
reporting, or non-volatile memory management.

NOTE
In INTECRIO V5.0.4, AUTOSAR support is limited to using existing workspaces
that contain legacy AUTOSAR modules. It is not possible to import new AUTOSAR
software components.
ETAS INTECRIO V5.0 | User Guide

https://www.autosar.org/

43 | INTECRIO and AUTOSAR
4.1.1 RTA-RTE and RTA-OS
The runtime environment provides the interface between software components,
BSW modules, and operating systems (OS). Concerning the interconnection of
SWCs, the RTE acts like a telephone switchboard. This is similarly true of compo-
nents that reside either on single ECUs or networked ECUs interconnected by
vehicle buses.

Fig. 4-1 AUTOSAR software component (SWC) communications are
represented by a virtual function bus (VFB) implemented through the
use of the runtime environment (RTE) and basic software (BSW).

In AUTOSAR, the OS calls the runnable entities of the SWCs through the RTE. RTE
and OS are the key modules of the basic software with respect to controlling appli-
cation software execution. ETAS offers the RTA-RTE AUTOSAR Runtime Environ-
ment and the RTA-OS AUTOSAR Operating System.

Based on their AUTOSAR interfaces, basic software modules from third-party sup-
pliers can be seamlessly integrated with RTA-RTE and RTA-OS.

Virtual Function Bus (VFB)

...SWC 3

AUTOSAR
Interface

SWC 2

AUTOSAR
Interface

SWC n

AUTOSAR
Interface

SWC 1

AUTOSAR
Interface

SWC 1

AUTOSAR
Interface

SWC 3

AUTOSAR
Interface

ECU 1

Runtime Environment (RTE)

Basic Software (BSW)

SWC 2

AUTOSAR
Interface

ECU 2

RTE

BSW

... SWC n

AUTOSAR
Interface

ECU m

RTE

BSW

Gateway
Vehicle Bus
ETAS INTECRIO V5.0 | User Guide

44 | INTECRIO and AUTOSAR
4.1.2 Creating AUTOSAR Software Components (outside INTECRIO)
INTECRIO is not intended for the creation of AUTOSAR software components.
ASCET, however, can be used to define and implement the behavior of AUTOSAR-
compliant vehicle functions. If necessary, an AUTOSAR authoring tool can provide
initial descriptions of the system architecture and AUTOSAR interfaces,

Existing ASCET models can be easily adapted to AUTOSAR because many AUTO-
SAR concepts can be mapped to interface specifications in ASCET in a similar form.
On the whole, it suffices to rework the interface of the respective application to
make it AUTOSAR-compliant. As shown in practical demonstrations of adapting
older models, the expenditure in terms of time is relatively minor, even with the
ASCET version in current use.

Different ASCET versions support different AUTOSAR releases for the creation of
AUTOSAR SWC descriptions and the generation of AUTOSAR-compliant SWC pro-
duction code. See the ASCET documentation for details on the supported AUTO-
SAR versions.

4.1.3 Validating Software Components
The virtual function bus concept of AUTOSAR opens the road to virtual integration.
Because the virtual function bus blurs the ECU borders, software components of
different functions can be integrated in the design phase prior to having com-
pleted the final mapping to individual ECUs. This means that the interaction of
software components integrated by an RTE can be easily tested on a PC running
an AUTOSAR OS.

INTECRIO provides a powerful environment for prototyping and validating automo-
tive electronic systems. Version V5.0 enables the integration of legacy AUTOSAR
SWCs with function modules (Fig. 4-2). INTECRIO thus provides for the reuse of
existing models and C code during the migration of ECU software to AUTOSAR
architectures.

Legacy AUTOSAR SWC can be combined with functions (B in Fig. 4-2) or tested as
a pure AUTOSAR system (C in Fig. 4-2).
ETAS INTECRIO V5.0 | User Guide

45 | INTECRIO and AUTOSAR
By using plant models, Model-in-the-Loop experiments are realized on the PC.

Fig. 4-2 Integration (left) of software modules for virtual prototyping (middle)
or rapid prototyping (right) with the AUTOSAR RTE

INTECRIO V5.0 allows the use of legacy AUTOSAR SWC descriptions and the gen-
eration of the RTE configuration according to several AUTOSAR versions (see
Tab. 4-1).

Tab. 4-1 Supported AUTOSAR versions

INTECRIO V5.0 also provides the interpolation routines required for AUTOSAR SWC
descriptions generated by ASCET-SE.

AUTOSAR version Remarks
R3.0.0

not supported by ASCET

R3.0.1
R3.0.2
R3.1.0
R3.1.2
R3.1.4
R4.0.2 NVData interfaces and ModeSwitch interfaces are not sup-

ported by INTECRIO V5.0R4.0.3

INTECRIO

RTA-OSEK

Crossbar RTE

ASCET
Model

Simulink
Model

C Code
Module

...

RTA-OSEK

AUTOSAR RTE

ASCET
Model

Simulink
Model

SWC

AUTOSAR
Interface

...

RTA-O
SEK

AUTOSAR RTE

SWC n

AUTOSAR
Interface

...SWC 2

AUTOSAR
Interface

SWC 1

AUTOSAR
Interface

Step 1:
Integration of software components

Step 3:
Rapid prototyping in real-world environment

Step 2:
Virtual prototyping on the PC

INTECRIO

RTA-TRACE

ECU

Rapid
Prototyping
Module

Vehicle Bus

Bypass

INTECRIO

RTA-TRACE

...
Function prototype

...

Plant m
odel

A

B

C

ETAS INTECRIO V5.0 | User Guide

46 | INTECRIO and AUTOSAR
With RTA-RTE1) for the AUTOSAR R4.0 releases mentioned in Tab. 4-1 and RTA-
OSEK V5.0, INTECRIO V5.0 can create close-to-production AUTOSAR prototypes
for PC and ETAS rapid prototyping systems.

INTECRIO strictly separates the communications between software components
from the prototyping hardware configuration. Thus, INTECRIO V5.0 is able to
export the validated RTE configuration in the form of an XML file. An AUTOSAR RTE
generator, e.g., RTA-RTE, can use this information to create the RTE of an
AUTOSAR ECU.

4.2 What is a Runtime Environment?
The VFB provides the abstraction that allows components to be reusable. The
runtime environment (RTE) provides the mechanisms required to make the VFB
abstraction work at runtime. The RTE is, therefore, in the simplest case, an imple-
mentation of the VFB. However, the RTE must provide the necessary interfacing
and infrastructure to allow software components to:

A be implemented without reference to an ECU (the VFB model); and

B be integrated with the ECU and the wider vehicle network once this is known
(the Systems Integration model) without changing the application software
itself.

More specifically, the RTE must do the following:

- Provide a communication infrastructure for software components.

This includes both communication between software components on the
same ECU (intra-ECU) and communication between software components
on different ECUs (inter-ECU).

- Arrange for real-time scheduling of software components.

This typically means that the runnable entities of the SWC are mapped,
according to time constraints specified at design time, onto tasks provided
by an operating system.

Application software components have no direct access to the basic software
below the abstraction implemented by the RTE. This means that components can-
not, for example, directly access operating system or communication services. So,
the RTE must present an abstraction over such services. It is essential that this
abstraction remains unchanged, irrespective of the software components loca-
tion. All interaction between software components therefore happens through
standardized RTE interface calls.

In addition, the RTE is used for the specific realization of a previously specified
architecture consisting of SWC on one or more ECUs. To make the RTE implemen-
tation efficient, the RTE implementation required for the architecture is deter-
mined at build time for each ECU. The standardized RTE interfaces are
automatically implemented by an RTE generation tool that makes sure that the
interface behaves in the correct way for the specified component interaction and
the specified component allocation.

1) RTA-RTE 5.4 can be used with AUTOSAR R4.0.*.
ETAS INTECRIO V5.0 | User Guide

47 | INTECRIO and AUTOSAR
For example, if two software components reside on the same ECU they can use
internal ECU communication, but if one is moved to a different ECU, communica-
tion now needs to occur across the vehicle network.

From the application software component perspective, the generated RTE there-
fore encapsulates the differences in the basic software of the various ECUs by:

- Presenting a consistent interface to the software components so they can
be reused—they can be designed and written once but used multiple times.

- Binding that interface onto the underlying AUTOSAR basic software imple-
mented in the VFB design abstraction.

4.3 AUTOSAR Elements in INTECRIO
The following AUTOSAR elements are supported in INTECRIO:

4.3.1 AUTOSAR Software Components
AUTOSAR software components are generic application-level components that
are designed to be independent of both CPU and location in the vehicle network.
An AUTOSAR software component (SWC) can be mapped to any available ECU
during system configuration, subject to constraints imposed by the system
designer.

An AUTOSAR software component is therefore the atomic unit of distribution in an
AUTOSAR system; it must be mapped completely onto one ECU.

Before an SWC can be created, its component type (SWC type) must be defined.
The SWC type identifies fixed characteristics of an SWC, i.e. port names, how ports
are typed by interfaces, etc. The SWC type is named, and the name must be
unique within the system. Thus, an SWC consists of

- a complete formal SWC description that indicates how the infrastructure of
the component must be configured,

- an SWC implementation that contains the functionality (in the form of
C code).

To allow an SWC to be used, it needs to be instantiated as configuration time. The
distinction between type and instance is analogous to types and variables in con-
ventional programming languages. You define an application-wide unique type
name (SWC type), and declare one uniquely named variableof that type (one SWC
instance).

4.3.2 Ports and Interfaces
In the VFB model, software components interact trough ports which are typed by
interfaces. The interface controls what can be communicated, as well as the
semantics of communication. The port provides the SWC access to the interface.
The combination of port and port interface is named AUTOSAR interface.

There are two classes of ports:

- Provided ports (Pports) are used by an SWC to provide data or services to
other SWC. Pports are implemented either as sender ports or as server
ports.
ETAS INTECRIO V5.0 | User Guide

48 | INTECRIO and AUTOSAR
- Required ports (Rports) are used by an SWC to require data or services from
other SWC. Rports are implemented either as receiver ports or as client
ports.

INTECRIO V5.0 supports the following interface types in existing legacy AUTOSAR
modules1):

- sender-receiver (signal passing)

- client-server (function invocation)

- calibration parameter interfaces

If an SWC contains other interfaces (i.e. an NVData interface or a ModeSwitch
interface), these interfaces are skipped during import, and a warning is issued for
each skipped interface.

Each Pport and Rport of an SWC must define the interface type it provides or
requires.

If a system project is built from SWC instances, the Rports and Pports of the
instances are connected. Senders must be connected with receivers, clients with
servers.

4.3.2.1 Sender-Receiver Communication
Sender-receiver communication involves the transmission and reception of sig-
nals consisting of atomic data elements sent by one SWC and received by one or
more SWC.

An SWC type can have multiple sender-receiver ports.

Each sender-receiver port can contain multiple data elements each of which can
be sent and received independently. Data elements within the interface can be
simple (integer, float, ...) or complex (array, matrix, ...) types.

Sender-receiver communication is one-way; each reply by a receiver must be
modeled as separate sender-receiver communication.

An Rport of an SWC that requires a sender-receiver interface can read the data
elements of the interface. A Pport that provides the interface can write the data
elements.

In INTECRIO V5.0, sender-receiver communication can be only "1:n" (one sender,
several receivers). "n:1" (several senders, one receiver) is not supported in this
version.

NOTE
In the following, AUTOSAR ports are referred to as Rports or Pports, to avoid con-
fusion with non-AUTOSAR ports.

1) A legacy AUTOSAR module is an AUTOSAR module that was imported with INTECRIO
V5.0.0 or earlier.
ETAS INTECRIO V5.0 | User Guide

49 | INTECRIO and AUTOSAR
4.3.2.2 Client-Server Communication
Client-server communication involves an SWC invoking a defined server function
in another SWC; the latter may or may not return a reply.

An SWC type can have multiple client-server ports.

Each client-server port can contain multiple operations that can be invoked sepa-
rately. An Rport of an SWC that requires an AUTOSAR server interface to the SWC
can independently invoke any of the operations defined in the interface by making
a client-server call to a Pport providing the service. A Pport that provides the cli-
ent-server interface provides implementations of the operations.

Supported are several clients invoking the same server, i.e. "n:1" with n ≥ 0. It is
not possible for a client to invoke multiple servers with a single request; several
requests are necessary for that purpose.

4.3.2.3 Calibration Parameter Interfaces
Calibration parameter interfaces are used for communication with Calibration
components.

Each calibration parameter interface can contain multiple calibration parameters.
A port of a software component that requires an AUTOSAR calibration interface to
the component can independently access any of the parameters defined in the
interface by making an RTE API to the required port. Calibration components pro-
vide the calibration interface and thus provide implementations of the calibration
parameters.

4.3.3 Runnable Entities and Tasks
A runnable entity is a piece of code in an SWC that is triggered by the RTE (cf.
section 4.2) at runtime. It corresponds largely to the processes known in
INTECRIO.

A software component comprises one or more runnable entities the RTE can
access at runtime. Runnable entities are triggered, among others, by the following
events:

- Timing events represent some periodic scheduling event, e.g. a periodic
timer tick. The runnable entity provides the entry point for regular execution.

- Events triggered by the reception of data at an Rport (DataReceive events).

AUTOSAR runnable entities can be sorted in several categories. INTECRIO sup-
ports runnable entities of category 1.

In order to be executed, runnable entities must be assigned to the tasks of an
AUTOSAR operating system.

Inter-Runnable Variables
The RTE allows the configuration of inter-runnable variables that provide a way for
the runnable entities of a software component to communicate with each other. In
INTECRIO, these inter-runnable variables can be measured during an experiment.
ETAS INTECRIO V5.0 | User Guide

50 | INTECRIO and AUTOSAR
4.3.4 Runtime Environment
The runtime environment is described in section 4.2.

An RTE is – like the crossbar (section 3.5.5) – delivered with the INTECRIO installa-
tion. It is configured in INTECRIO via assignment of SWC to software systems,
graphical connections and the OS configuration.
ETAS INTECRIO V5.0 | User Guide

51 | INTECRIO Components
5 INTECRIO Components
INTECRIO consists of a series of base components and connectivity packages.

Fig. 5-1 INTECRIO – components
(black: INTECRIO, dark gray: INTECRIO-related ETAS tools,
light gray: ETAS tools that can be used to experiment with INTECRIO)

The project configurator (section 5.7), OS configurator (section 5.8), hardware
configurator (section 5.3) and project integrator (section 5.9) are indispensable
for working with INTECRIO; they are part of the INTECRIO integration platform. The
documentor (section 5.11) is also part of the INTECRIO integration platform.

The ETAS Experiment Environment (section 5.10), which includes RTA-TRACE
connectivity (section 5.12), INCA and INCA-EIP are separate products. The ETAS
experiment is shipped with INTECRIO; INCA and INCA-EIP have to be purchased
individually.

Target Connectivity: The INTECRIO-RP package provides connectivity to the
rapid prototyping hardware, i.e. ES900 (section 5.4) and ES800 (section 5.5), and
the INTECRIO-VP package provides connectivity to the PC (section 5.6) and all
prerequisites for virtual prototyping.

OS Configurator

Project IntegratorHardware
Configurator

BMT connectors

INTECRIO Integration Platform

Target connectivity

Integration
platform

MATLAB®/Simulink®

Connectivity

Project Configurator

Documentor

ASCET
Connectivity

Further INTECRIO-related tools and products

ES900
Connectivity

INTECRIO-RP

INTECRIO-RLINK
rapid/virt. prototyping
in MATLAB/Simulink

RTA-RTE
required for
AUTOSAR

VP-PC
Connectivity

INTECRIO-VP

ES800
Connectivity

RTA-Trace
Connectivity

Experiment
Environment

INCA

INCA-EIP
ETAS INTECRIO V5.0 | User Guide

52 | INTECRIO Components
BMT Connectivity: Different behavioral modeling tools (BMTs) allow users to
model the functionality of the application software. The models are integrated in
the system project. Checking or editing the models is not part of INTECRIO;
INTECRIO only serves as integration tool in this context.

- MATLAB® and Simulink® connectivity (cf. section 5.1) is provided by the
INTECRIO integration platform directly.

- ASCET connectivity (cf. section 5.2)

In ASCET V6.3 and higher, ASCET connectivity is integrated in ASCET-MD.
In ASCET V6.2 and lower, ASCET connectivity is available as a separate
ASCET add-on named INTECRIO-ASC, or as a part of ASCET-RP. You can
install it directly from the ASCET installation medium, according to your
needs. The license is included with the license for the INTECRIO integration
platform.

Other Tools and Products: The RTA-RTE tool provides the runtime environment
(see section 4.2 on page 46) required for AUTOSAR.

5.1 MATLAB® and Simulink® Connectivity

Fig. 5-2 INTECRIO-IP: MATLAB® and Simulink® connectivity

MATLAB and Simulink connectivity is provided by the INTECRIO integration plat-
form without the need of further add-on installations. The integration platform
contains everything required for a successful linking of Simulink models in
INTECRIO for integration and rapid prototyping.

It allows the integration of code generated by MATLAB® CoderTM + Simulink®
CoderTM + (optional) Embedded Coder®.

INTECRIO
Integration platform

INTECRIO
MATLAB®/Simulink® Connectivity

Software component

Description
file

(SCOOP-IX)

Description
file

(ASAM-2MC)

C code

Real-Time Workshop®

(optional: RTW Embedded CoderTM)

MATLAB®/Simulink®

MATLAB® CoderTM / Simulink® CoderTM

(optional: Embedded CoderTM)
ETAS INTECRIO V5.0 | User Guide

53 | INTECRIO Components
MATLAB and Simulink versions R2016a – R2022a and their related service packs
known at the time of the INTECRIO V5.0 release are supported. If several supported
MATLAB and Simulink versions are installed, all of them are supported at the same
time.

Unsupported MATLAB and Simulink versions cannot be used to create code for
use with INTECRIO.

Model code created with MATLAB and Simulink R2006b – R2015b can still be
imported and integrated in INTECRIO V5.0.

During the installation of MATLAB and Simulink connectivity, the MATLAB and
Simulink installation is adjusted so that MATLAB and Simulink can interact with
INTECRIO.

MATLAB and Simulink connectivity has the following tasks:

- Providing the INTECRIO target irt.tlc that must be selected if the
Simulink model must be further processed with INTECRIO.

- Providing the INTECRIO target ier.tlc that must be selected if the
Simulink model to be used in INTECRIO was created with the MATLAB Coder
+ Simulink Coder + Embedded Coder software.

- Providing the automatic creation of the SCOOP-IX description file (see
chapter 6) during code generation with one of the following setups:

• MATLAB Coder + Simulink Coder
• MATLAB Coder + Simulink Coder + Embedded Coder
The contents of this description file is explained in section 5.1.2.

- Providing the option to start the integration in a newly created INTECRIO
system and the INTECRIO build process directly from Simulink (one-click
prototyping).

- Automatic re-import of the model in INTECRIO after changes and new code
generation in Simulink.

If no MATLAB and Simulink installation was available during INTECRIO installation,
or if you want to change the MATLAB and Simulink version associated with
INTECRIO, proceed as follows.

To connect INTECRIO and MATLAB and Simulink subsequently:

1. Install MATLAB and Simulink as described in the relevant installation instruc-
tions.

NOTE
If you want to use a network installation of MATLAB and Simulink, click on the
Help button and follow the instructions given in the message window.
ETAS INTECRIO V5.0 | User Guide

54 | INTECRIO Components
2. In the Windows Start menu, INTECRIO folder, select Connectivity >
Associate with Matlab.

The "Associate with Matlab" window opens. It offers all supported MATLAB
and Simulink installations available on your computer for selection.

Fig. 5-3 "Associate with Matlab" window

3. In the "Associate with Matlab" window, select one or more MATLAB and
Simulink installations.

4. Click OK to continue.

INTECRIO and the selected MATLAB and Simulink installation(s) are con-
nected.

5.1.1 Characteristics in the Creation of the Simulink Model
Several points must be observed when creating the Simulink model for later use
with INTECRIO. Only the most important points are listed here; additional informa-
tion about modeling in Simulink can be found in section 7.2 "Modeling with
Simulink®".

- Only the signal ports of the top-level hierarchy of the model are recognized
as signal sources or sinks in INTECRIO.

- INTECRIO supports floating-point code that was generated with MATLAB
Coder + Simulink Coder (+ Embedded Coder).

This entails that all Simulink blocks for which code can be generated with
MATLAB Coder + Simulink Coder are supported.

- INTECRIO target irt.tlc or ier.tlc must be selected for the code gener-
ation to create the SCOOP-IX file.

NOTE
Signal ports from lower levels of the hierarchy are not recognized as signal
sources or sinks. (Exceptions are listed in the INTECRIO section in the
MATLAB AND SIMULINK online help viewer.)
ETAS INTECRIO V5.0 | User Guide

55 | INTECRIO Components
- INTECRIO allows for the integration of several Simulink models. Each model
can be assigned a different integration algorithm (solver for continuous
states) with fixed step width.

- Since V4.7.2, INTECRIO supports the Model Referencing feature of Simulink.

5.1.2 Contents of the Description File
The interface description file that is automatically created during the code gener-
ation, the SCOOP-IX file, contains the following information if they were specified
in Simulink:

- Signal sources and sinks (inports and outports of the highest modeling
level)

• Name
• Physical value range
• Implementation data type and value range (can also be calculated using

the physical value range and the quantization formula)
• Quantization formula

- A signal for each one-dimensional Simulink signal

- One signal for the real part and one signal for the imaginary part of a complex
Simulink signal

- Parameters and variables (no distinction is made between one, two and
three-dimensional quantities)

• Name
• Physical value range
• implementation data type and quantization
• Hierarchical information, i.e. the exact location of the quantity in the

model
- Activation interfaces (processes)

• Timing information for cyclical processes
ETAS INTECRIO V5.0 | User Guide

56 | INTECRIO Components
5.2 ASCET Connectivity

Fig. 5-4 ASCET connectivity

ASCET Connectivity contains everything required for a successful linking of
ASCET models in INTECRIO for integration and rapid prototyping.

In ASCET V6.2 and earlier, ASCET connectivity is available as an add-on named
INTECRIO-ASC. During the installation of INTECRIO-ASC, the required files and set-
tings are automatically inserted in the existing ASCET installation. INTECRIO-ASC
supports ASCET V5.1 – V6.2; if several ASCET versions are installed, all of them are
supported at the same time.

In ASCET V6.3 and higher, ASCET connectivity is included in ASCET-MD. Nothing
else has to be installed.

ASCET connectivity has the following tasks:

- Providing the targets Prototyping and ES900, one of which must be
selected if the ASCET model is to be further processed with INTECRIO.

- Selection of INTECRIO as rapid prototyping environment in the project editor
of ASCET.

NOTE
Since V5.0.1, INTECRIO no longer supports ES1000 and RTPRO-PC hardware sys-
tems. ASCET models that include either of these hardware systems cannot be
transferred to INTECRIO.

NOTE
ASCET connectivity does not support ES8xx hardware.

ASCET-RP

INTECRIO
Integration platform

ASCET Connectivity
ASCET-MD (since V6.3) / INTECRIO-ASC (til V6.2)

ASCET-MD

Software component

Description
file

(SCOOP-IX)

Description
file

(ASAM-2MC)

C code
ETAS INTECRIO V5.0 | User Guide

57 | INTECRIO Components
- In the context of an ASCET project, provision of a special code generation
for INTECRIO in which all required files (C code, ASAM-MCD-2MC file,
SCOOP-IX description file) are created.

The contents of the SCOOP-IX description file is explained in section 5.2.2.
In addition, an *.oil file is generated that contains the OS configuration.
This file can be manually imported into INTECRIO.

- If the ASCET code generation for INTECRIO is used, automatic import of the
project in INTECRIO.

- Adjusting the handling of non-resolved global variables and messages to
the needs of INTECRIO.

- Providing options for the migration of existing projects.

- Providing the option to start the integration in an INTECRIO system and the
INTECRIO build process directly from ASCET (one-click prototyping).

- Automatic re-import of the model in INTECRIO after changes and new code
generation in ASCET.

5.2.1 Characteristics in the Creation of the ASCET Model
When you create an ASCET model for later use with INTECRIO, you can make use of
all ASCET facilities. Keep in mind the following points:

- Receive messages without corresponding send messages form the signal
sinks in INTECRIO, send messages without corresponding receive mes-
sages form the signal sources in INTECRIO.

If desired, you can make connected messages appear as signal sinks and
sources, too.

- When your project contains unresolved messages (imported messages
without corresponding export), code generation for INTECRIO produces an
error message.

You can resolve the messages automatically, or cancel code generation and
resolve the messages manually.

- Using global variables and parameters is possible, but strongly discour-
aged.

- In the project options, you must select an appropriate target so that code
generation for INTECRIO is available.

5.2.2 Contents of the Description File
The interface description file that is automatically created during the code gener-
ation, the SCOOP-IX file, contains the following information if they were specified
in ASCET:

- Signal sources (send messages) and signal sinks (receive messages)

• Name
• Physical value range
• Implementation data type and value range (can also be calculated using

the physical value range and the quantization formula)
• Quantization formula
ETAS INTECRIO V5.0 | User Guide

58 | INTECRIO Components
- Parameters and variables (no distinction is made between one, two and
three-dimensional quantities)

• Name
• Physical value range
• implementation data type and quantization
• Hierarchical information, i.e. the exact location of the quantity in the

model
- Activation interfaces (processes)

• Timing information for cyclical processes

5.3 Hardware Configurator
During the development of a control algorithm, the actual controlled system must
be addressed at some time so that realistic results can be achieved. The con-
trolled system (or the technical process) appears to the rapid prototyping system
as a set of sensors and actuators with which the system can be connected using
a series of appropriate peripheral devices.

These peripheral devices must be configured so that they fit the actual technical
process that must be modeled. For example, for A/D converters it is possible to
configure the input range, scanning/keeping, etc. In addition, the signal must be
conditioned to adjust it to the control algorithm. The conditioning essentially con-
sists of converting measured electrical signals to physical signal values.

These tasks are handled by the Hardware Configurator and the target connectivity
packages (section 5.4 and section 5.5) in INTECRIO.

If an algorithm passed the first general validation check in the virtual model, it can
be examined for errors, refined and optimized until it meets the specified require-
ments of functionality, quality and code size. As a direct troubleshooting option,
the Hardware Configurator offers, for example, to measure the signal values of the
hardware directly in the ETAS Experiment Environment.

5.3.1 Discontinued Hardware
Since V4.7.3, INTECRIO no longer supports ES1000 and RTPRO-PC hardware sys-
tems.

Until INTECRIO V5.0.0, these hardware systems were still visible when you opened
an existing workspace. The hardware systems and targets were marked as unus-
able with a red X in the Workspace Browser, but you could view the hardware sys-
tems.
ETAS INTECRIO V5.0 | User Guide

59 | INTECRIO Components
Since INTECRIO V5.0.1, ES1000 or RTPRO-PC hardware systems are deleted when
you open an existing workspace. Only ES800 and ES900 and VP-PC hardware sys-
tems are shown.

5.3.2 HWX Import/Export
As an alternative to manual configuration (see section 5.4.1 or section 5.5.1), it is
possible to export and import hardware descriptions (*.hwx files). For that pur-
pose, INTECRIO provides the necessary context menu options and dialog win-
dows.

You can import *.hwx files created with several tools1), and you can import *.hwx
files exported with INTECRIO into these other tools.2)

The file extension *.hwx is used for two description formats, the outdated HWX1
format and the HWX2 format.3) INTECRIO V5.0 uses only HWX2; if you try to import
an HWX1 file, an error is issued.

The hardware description is mapped onto an existing or new ES900, ES800, or VP-
PC hardware system during import.

The log window displays a list with information about the import procedure.

If the *.hwx file contains elements not supported by INTECRIO and the selected
target, these elements are skipped, and warnings are issued.

NOTE
Once an ES1000 or RTPRO-PC hardware system has been deleted, the system
project that used it is no longer usable.

You have to add a new hardware system, add devices, connect hardware and
software, and set up the OS, before you can again build the system project. See
the online help for details.

1) INTECRIO, ASCET V6.3 or higher, ASCET V5.1 – V6.2 and INTECRIO-ASC or ASCET-RP
V5.3 (or higher), INTECRIO-RLINK, or customer-specific ASCET extensions

NOTE
If your hardware configuration contains a bypass2) configuration that requires
an ASAM-MCD-2MC file, or a daisychain configuration that requires an *.xml
file, keep in mind the following:

- If you export the hardware configuration, make sure that the *.a2l/*.xml
files are exported, too. See the online help for details.

- For a successful import of such a hardware configuration, the *.a2l/*.xml
files have to be provided at the same location as the *.hwx file. so that the
HXW importer finds them automatically.

An ASAM-MCD-2MC file that was exported by ASCET may cause errors when
imported in INTECRIO. It is thus strongly recommended to use only original
ASAM-MCD-2MC files.

2) ETK/XETK/FETK/XCP bypass
3) The HWX2 format is used by INTECRIO V3.2 and higher and by the Hardware Config-

urator in ASCET-RP V6.1 and higher.
ETAS INTECRIO V5.0 | User Guide

60 | INTECRIO Components
5.3.3 Ethernet Controller and XCP on UDP
The Rapid Prototyping targets ES910 and ES830 support one Ethernet controller
that can be used for XCP bypass on UDP and X/FETK bypass.

The Ethernet controller supports up to four XCP on UDP interfaces and one
(ES910) or three (ES830) X/FETK bypass devices.

Fig. 5-5 shows the schematic structure of the Ethernet controller and XCP on UDP
in the WS browser.

Fig. 5-5 Ethernet and XCP on UDP structure in the WS browser

5.3.4 XXX to CAN Gateway
The XXX to CAN Gateway functionality serves to generate a gateway from an ETK,
X/FETK, XCP on CAN or XCP on UDP device to a CAN device. The signal interfaces
between the devices are generated in a semi-automated way; the behavior is con-
trolled by an *.xml settings file. For details, see the online help.

NOTE
In a hardware system, 4 is the maximum number of all XCP interfaces, i.e. XCP on
UDP and XCP on CAN.

Ethernet_Controller

XCP_on_UDP_IP

Status signal(s)

Status signal group(s)

ES910 / ES830

Rasters

Status

Signal(s)

Signal group(s)

Target (ES900 or ES800)
ETAS INTECRIO V5.0 | User Guide

61 | INTECRIO Components
5.4 ES900 Connectivity and Hardware Configurator
INTECRIO V5.0 supports the ES900 hardware, i.e. the ES910.2 and ES910.3 rapid
prototyping modules and the ES920 (FlexRay), ES921 (additional CAN) and ES922
(additional CAN or CAN FD) modules. The ES4xx, ES63x and ES930 modules are
supported, too. In combination with ES900 connectivity, the Hardware Configura-
tor (HC) is provided for the integration and configuration of this hardware.

Fig. 5-6 INTECRIO-RP: ES900 connectivity

The Hardware Configurator allows the configuration of ES900 hardware systems
to provide real physical signals for inputs and outputs of the model, which can be
linked with the software function model in the project configurator (see
section 5.7). It is used to configure interfaces available in the ES900 for the exper-
iment. They do not have to be installed at the time of configuration.

Information about the individual interfaces can be found in section 5.4.2 and in the
manuals of the hardware products.

5.4.1 ES900 Configuration in the Hardware Configurator
The Hardware Configurator contains the following components required for
ES900 configuration:

NOTE
The ES900 configuration capabilities of the Hardware Configurator are only
available if you installed the INTECRIO-RP package and have an appropriate
license key.

INTECRIO
Integration platform (including HC)

INTECRIO-RP
ES900 Connectivity

.a2l.cod

ES4xx

...
ES63x

ES930

ES900
ETAS INTECRIO V5.0 | User Guide

62 | INTECRIO Components
- A framework that provides the basic editor and connections to other
INTECRIO components (e.g. OS configurator, project integrator, ETAS
Experiment Environment), among others.

- A specific expansion of the basic editor for each interface supported by
INTECRIO. Each of these expansions allows for the configuration of the
respective interface based on parameters that are displayed in various tabs.

- A generator for the configuration of the device drivers.

These components can be used for the following tasks:

- Configuring interfaces (or loading a daisy chain, CAN, FlexRay or LIN config-
uration)

- Assigning input or output actions for operating system tasks (defined in the
OS configurator)

- Providing conversion formulas for describing the mapping of physical sig-
nals (model view) to raw values (driver view)

The current hardware system is displayed in the WS browser as a tree structure.
The ES900 itself is located in the Hardware/Hardware Systems folder on the
top level, the current simulation controller (ES910) is shown on the level directly
underneath it. This is the master with which all other interfaces are linked as
slaves. The available hardware signals are placed in a lower hierarchy level. Each
level has parameters that can be adjusted in appropriate editors.

Fig. 5-7 Hardware Configurator – diagram

The entry (controller, device, signal group, signal) to be edited is selected in the
WS browser, while the corresponding editor is opened in the display window. It is
possible to edit several objects at the same time.

The editor lists all parameters of the respective object in tables. Number and
names of the parameters and registers depend upon the object.

Manual Configuration: In offline mode, the Hardware Configurator allows for the
configuration of the interfaces supported by INTECRIO to build a hardware system.
The following points must be observed when the board hierarchy is created:

File Edit View ...

Message window

WS browser HC Element Name

HC Element Name

Value
<Name>

<Value n>

...

<Value 1>

Name
Name

Parameter 1

...

Parameter n

Comment
1
2

4
3

Scripting window

INTECRIO Vx.y
ETAS INTECRIO V5.0 | User Guide

63 | INTECRIO Components
- You can create an arbitrary number of ES900 hardware systems. Each hard-
ware system can contain only one ES910 target.

- The ES910 target is mandatory.

- A hierarchy consists of the target as master and one or several slave inter-
faces controlled by the master.

- All slave interfaces are located on the same hierarchy level; a slave interface
cannot have its own slave interfaces.

- Each slave interface is assigned to its master.

- Some interfaces are present several times in an ES900 system. Tab. 5-1 lists
the available numbers of interfaces.

Tab. 5-1Number of interfaces/elements per system controller

ES910 Remarks
CAN Controller 0 – 2 (4) two additional classic CAN interfaces with

ES921
two additional classic CAN/CAN FD interfaces
with ES922

XCP on CAN (via
CAN controller)

0 – 4 4 is the maximum number of all XCP inter-
faces, i.e. XCP on CAN and XCP on UDP.

LIN 0 – 2 The LIN interfaces use the same ES910 hard-
ware connectors as the main two CAN inter-
faces.
With a suitable cable, you can use CAN and
LIN simultaneously.

ETK Bypass 0 – 1 Can be used as hook-based bypass or ser-
vice-based bypass.

SystemDevice 0 – 1
ES920 (FlexRay) 0 – 1
Daisychain
(IO interface)

0 – 1 A chain of ES4xx and/or ES63x and/or ES930
modules.

Ethernet and
XCP on UDP

0 – 4 See section 5.3.3 on page 60 for details.
4 is the maximum number of all XCP inter-
faces, i.e. XCP on CAN and XCP on UDP.

Ethernet and
X/FETK_Bypass

0 – 1 Can be used as hook-based bypass or ser-
vice-based bypass.
The X/FETK bypass device is used for XETK.

NOTE
INTECRIO supports ETK and XETK on ES900 systems. XETK bypass is sup-
ported via the Ethernet controller with an XETK bypass device in the
INTECRIO hardware configuration. In addition, XETK can be accessed via
XCP bypass.

To connect the XETK hardware, the ECU port on the ES910 is used.
Starting with INTECRIO V5.0.1, support of FETK bypass with ES910 is depre-
cated. Please use a combination of ES830 and ES89x for FETK bypass.
See the INTECRIO online help for details on XETK configuration.
ETAS INTECRIO V5.0 | User Guide

64 | INTECRIO Components
- For the CAN/CAN FD interfaces, you must make sure that each interface
features a unique ID.

For the remaining interfaces, the ID is automatically assigned.
In each case, it must be ensured that the ID of the interface to be used is
correctly set in the Hardware Configurator.

- To use CAN FD, the ES922 must be mounted in the ES910. A suitable port
(CAN* (ES922 FD)) must be assigned to the CAN controller.

- Interfaces of different types can be used with a master.

Interfaces, devices and other sublevels can be inserted in the hierarchy, and
deleted when these points are taken into account.

The interfaces, devices, signal groups and signals of the hardware system –
except the daisy chain which is configured in a separate configuration tool – can
be configured in the Hardware Configurator. The following points must be
observed during the configuration:

- While a series of interface parameters are preset, the tasks and processes
associated with the signals/signal groups are defined in the OS configura-
tor. All signals of a signal group are processed at the same time.

- During the configuration of individual signals, conversion formulas for sen-
sors and actuators can be specified. The following formulas are available:

• Identity: f(phys) = phys
• linear: f(phys) = a*phys + b

- An implementation (i.e. a conversion formula and a valid value range) can be
specified for CAN signals.

- ES920 (FlexRay) and ES921/ES922 (additional CAN/CAN FD controllers) can
be configured in the same hardware system, even though only one plugin
module can be connected to the ES910.

At runtime, only that plugin module actually present in the hardware is acti-
vated. The other plugin modules produce an error message.
It is thus recommended to set the ES910 parameter "I/O Failure Behavior" to
continue so that the experiment continues despite the error. (Otherwise,
the experiment is stopped immediately due to the error.)

- Up to four CAN controllers and two LIN controllers can be configured in the
same hardware system. To access all of them at runtime, you need a suit-
able cable.

NOTE
During insertion, the Hardware Configurator offers a list with objects that
may be inserted at the current location of the tree view.

The RP model can use the Presence flag to
check whether a configured plugin module is
actually available and ready for use, and act
accordingly.
ETAS INTECRIO V5.0 | User Guide

65 | INTECRIO Components
Parts of the hardware system can be copiedvia Copy and Paste. The settings of
the target parts are overwritten; if no target part is selected, a new one is created.

Import: As an alternative to manual configuration, it is possible to import a hard-
ware description (*.hwx file); see “HWX Import/Export” on page 59.

5.4.2 Interface Types and Supported Interfaces
Tab. 5-2 contains the interface classes for the ES900 and the names of the inter-
face supported by INTECRIO. The listed interfaces of the ES900 can be configured
using the Hardware Configurator.

Tab. 5-2 Interface classes of the ES900 and names of supported interfaces/
elements

Tab. 5-1 on page 63 indicates how many interfaces of a type can be used with
which system controller.

Fig. 5-8 shows the schematic structure of the interfaces in the WS browser.

Fig. 5-8 Display of the interfaces in the WS browser

Interface class Name Description
Simulation controller ES910 system controller
Communication inter-
face

CAN_Controller +
CAN_IO

CAN IO interface

CAN_Controller +
XCP_on_CAN

XCP bypass on CAN

ETK_Bypass ETK interface
LIN_Controller LIN interface
ES920 FlexRay interface
Ethernet_Controller Interface for XCP bypass on UDP

and XETK bypass
IO interface Daisychain A chain of ES4xx and/or ES63x

and/or ES930 modules; con-
nected to the IO interface

System interface SystemDevice controls display and monitoring
modes

Controller (CAN, LIN, Ethernet)

ES900

Device

Signal(s)

Signal group(s)

ES910
ETAS INTECRIO V5.0 | User Guide

66 | INTECRIO Components
Simulation controller: The simulation controller (ES910 in Fig. 5-8) is equipped
with an Ethernet interface (named ECU on the ES910) for XCP on UDP and XETK,
interfaces to the CAN/CAN FD, LIN and FlexRay bus of the vehicle, and an ETK inter-
face.

Communication interfaces: Communication interfaces are used for distributing
messages on the network (such as the CAN bus). The display of supported com-
munication interfaces in the Hardware Configurator varies so much that all are
described below.

CAN Controller + CAN IO

- In the tree view, the first hierarchy level (i.e. the one underneath the ES910)
is occupied by the CAN controller.

- The second hierarchy level is occupied by the CAN node (device, CAN IO).

- The third hierarchy level is occupied by folders for CAN frames (signal
groups) and CAN signals.

Underneath the folder for CAN frames, the hierarchy levels are occupied as
follows:
• The fourth hierarchy level is occupied by CAN frames (signal groups).
• The fifth hierarchy level is occupied by simple CAN signals and/or CAN

signals of type multiplexor.
• Underneath a CAN signal of type multiplexor, the sixth hierarchy level is

occupied by CAN multiplex groups.
• The seventh hierarchy level under the CAN multiplex group is occupied

by CAN signals of type multiplexed.
Underneath the folder for CAN signals, the hierarchy levels are occupied as
follows:
• The fourth hierarchy level is occupied by CAN signals of type standard.
ETAS INTECRIO V5.0 | User Guide

67 | INTECRIO Components
Fig. 5-9 Display of the CAN IO interface in the WS browser

CAN Controller + XCP bypass

- In the tree view, the first hierarchy level (i.e. the one underneath the ES910)
is occupied by the CAN controller.

- The second hierarchy level is occupied by the XCP on CAN node (device).

- The third hierarchy level is occupied by folders for rasters and status.

Underneath the folder for rasters, the hierarchy levels are occupied as fol-
lows:
• The fourth hierarchy level is occupied by XCP rasters (signal groups).
• The fifth hierarchy level is occupied by XCP signals.
Underneath the Status folder, the hierarchy levels are occupied as follows:
• The fourth hierarchy level is occupied by status signal groups.
• The fifth hierarchy level is occupied by status signals.

ETK interface

- The first hierarchy level is occupied by the ETK bypass device.

For a hook-based bypass, the levels underneath the bypass device are
occupied as follows:

NOTE
The ETK interface supports hook-based and service-based bypass (V2
and V3). Both types can be used separately or in parallel.

INTECRIO does not support service-based bypass on an ETK with 8 Mbit/s.

CAN_Controller

Frames

CAN_IO

<CAN Frame Name>

<CAN Signal Name>

<CAN Multiplexor Signal Name>

<CAN Multiplex Group Name>

<CAN Multiplexed Signal Name>

Signals

<CAN Signal Name>

ES910 (E-Target)
ETAS INTECRIO V5.0 | User Guide

68 | INTECRIO Components
• The second hierarchy level is occupied by the signal groups for sending
and receiving.

• The third hierarchy level is occupied by individual signals.
For a service-based bypass, the levels underneath the bypass device are
occupied as follows:
• The second hierarchy level is occupied by the signal groups for sending

and receiving and by the service points and hooked service points.
The ASAM-MCD-2MC file contains service point descriptions. Number
and configurations of the service points actually used in the bypass are
determined in the service point selection editor.

• Below the signal groups, the third hierarchy level is occupied by individ-
ual signals.

• Below the service points, the third hierarchy level is occupied by the sig-
nal groups for sending and receiving.
The available signal groups depend on the settings made in the service
point and hooked service point selection editors.

• The fourth hierarchy level is occupied by individual signals.

LIN interface

- In the tree view, the first hierarchy level (i.e. the one underneath the ES910)
is occupied by the LIN controller.

- The second hierarchy level is occupied by the LIN node (device, LIN I/O).

A LIN node can be used either as master or as slave. The selected node type
determines availability and direction of several items below the node level.

- The third hierarchy level is occupied by folders for schedule tables (only
available for Master nodes), status display, frames, diagnostic frames, and
signals.

Underneath the folder for schedule tables, the hierarchy levels are occu-
pied as follows:
• The fourth hierarchy level is occupied by schedule tables.
• The fifth level is occupied by frames of the various types.
• For unconditional frames, the sixth level is occupied by signals.
• For event-triggered and sporadic frames, the sixth level is occupied by

references to unconditional frames.
• For event-triggered and sporadic frames, the seventh level is occupied

by references to signals of unconditional frames.
Underneath the folder for status display, the hierarchy levels are occupied
as follows:
• The fourth hierarchy level is occupied by status signal groups.
• The fifth hierarchy level is occupied by status signals.
Underneath the folder for frames, the hierarchy levels are occupied as fol-
lows:

NOTE
Instead of configuring the LIN interface manually, you can import a cluster con-
figuration from a LIN description file.
ETAS INTECRIO V5.0 | User Guide

69 | INTECRIO Components
• The fourth hierarchy level is occupied by folders for event-triggered
frames, sporadic frames (only available for Master nodes), and uncondi-
tional frames.

• The fifth level is occupied by frames of the various types.
• For unconditional frames, the sixth level is occupied by signals.
• For event-triggered and sporadic frames, the sixth level is occupied by

references to unconditional frames.
• For event-triggered and sporadic frames, the seventh level is occupied

by references to signals of unconditional frames.
Underneath the folder for diagnostic frames, the hierarchy levels are occu-
pied as follows:
• The fourth hierarchy level is occupied by diagnostic frames (signal

groups).
• The fifth hierarchy level is occupied by diagnostic signals.
Underneath the folder for signals, the hierarchy levels are occupied as fol-
lows:
• The fourth hierarchy level is occupied by LIN signals of type standard.

FlexRay interface

- The first hierarchy level is occupied by the FlexRay IO device (i.e. the ES920).

- The second hierarchy level is occupied by folders for channels, status dis-
play, FlexRay frames, FlexRay PDUs, and FlexRay signals.

Underneath the folder for channels, the hierarchy levels are occupied as fol-
lows:
• The third hierarchy level is occupied by two channels.
• The fourth hierarchy level is occupied by slots. Up to 2047 slots can

belong to one channel.
• The fifth hierarchy level is occupied by frames. Up to 64 frames can

belong to one slot.
• The sixth hierarchy level underneath a frame is occupied by the frame’s

PDUs.
The levels below a PDU are described on Page 69.

Underneath the folder for status display, the hierarchy levels are occupied
as follows:
• The third hierarchy level is occupied by status signal groups.
• The fourth hierarchy level is occupied by status signals.
Underneath the folder for frames, the hierarchy levels are occupied as fol-
lows:
• The third hierarchy level is occupied by FlexRay frames.
• The fourth hierarchy level is occupied by FlexRay PDUs (signal groups).
• The fifth hierarchy level is occupied by simple FlexRay signals and/or

FlexRay signals of type multiplexor.
• Underneath a FlexRay signal of type multiplexor, the sixth hierarchy level

is occupied by FlexRay multiplex groups.
• The seventh hierarchy level under the FlexRay multiplex group is occu-

pied by FlexRay signals of type multiplexed.
Underneath the folder for PDUs, the hierarchy levels are occupied as fol-
lows:
ETAS INTECRIO V5.0 | User Guide

70 | INTECRIO Components
• The third hierarchy level is occupied by FlexRay PDUs (signal groups).
• The fourth hierarchy level is occupied by simple FlexRay signals and/or

FlexRay signals of type multiplexor.
• Underneath a FlexRay signal of type multiplexor, the fifth hierarchy level

is occupied by FlexRay multiplex groups.
• The sixth hierarchy level under the FlexRay multiplex group is occupied

by FlexRay signals of type multiplexed.
Underneath the folder for FlexRay signals, the hierarchy levels are occupied
as follows:
• The third hierarchy level is occupied by FlexRay signals of type standard.

Fig. 5-10 Display of the FlexRay interface in the WS browser

FlexRay_IO (ES920)

status signal groups

status signals

channel

ES910 (E-Target)

frame(s)

slot(s)

frame(s)

PDU(s)

Channels

Status

Frames

PDU(s)+

+

signal(s)

Signals

multiplex group(s)

multiplexed signal(s)

signal(s)

multiplexor signal(s)

multiplex group(s)

multiplexed signal(s)

PDU(s) (= signal group(s))

PDU(s)
ETAS INTECRIO V5.0 | User Guide

71 | INTECRIO Components
Ethernet interface: The Ethernet interface is used to configure an XCP bypass
(XCP on UDP and XETK) or an XETK bypass.

For a description of the XCP bypass (XCP on UDP and XETK), see section 5.3.3 on
page 60.

XETK Bypass

- In the tree view, the first level (i.e. the one underneath the ES910) is occu-
pied by the Ethernet Controller.

- The second hierarchy level is occupied by the X/FETK bypass device.

- The third hierarchy level is occupied by the service points and hooked ser-
vice points.

The ASAM-MCD-2MC file contains service point descriptions. Number and
configurations of the service points actually used in the bypass are deter-
mined in the service point selection and hooked service point selection edi-
tors.

- The fourth hierarchy level is occupied by the signal groups for sending and
receiving.

The available signal groups depend on the settings made in the service
point selection and hooked service point selection editors.

- The fifth hierarchy level is occupied by individual signals.

System interface: The system interface is used to configure the monitoring and
display modes of the ES910. Signal groups for the different modes can be activated
independently.

- The first hierarchy level is occupied by the system interface device.

- The second hierarchy level is occupied by the signal groups for the different
modes.

- The third level is occupied by the individual signals of the different modes.
The signals of a mode are predetermined.

IO interface / Daisychain: An ES4xx/ES63x/ES930 daisy chain can be connected
to the IO interface at the back of the ES910. The WS browser in INTECRIO does not
display the individual elements of the chain, it displays only the chain as a whole,
with one signal group for each chain element and sample period.

- The first hierarchy level combines the daisy chain and the device.

- The second hierarchy level is occupied by the signal groups for the different
sample periods and chain elements.

NOTE
Different from the other interfaces, the daisy chain cannot be configured in
INTECRIO. Instead, an externally created configuration file is imported.

If the configuration file is edited, the changes must be imported, via the Update
context menu, into INTECRIO.
ETAS INTECRIO V5.0 | User Guide

72 | INTECRIO Components
- The third hierarchy level is occupied by the individual signals assigned to the
sample periods and chain elements. The actual signals depend on the daisy
chain.

5.5 ES800 Connectivity and Hardware Configurator
INTECRIO V5.0 supports the ES800 hardware, i.e. the combination of one ES830
rapid prototyping module and up to four ES891 or ES892 or ES882 or ES886 ECU
and bus interface modules.

In combination with ES800 connectivity, the Hardware Configurator (HC) is pro-
vided for the integration and configuration of this hardware.

Fig. 5-11 INTECRIO-RP: ES800 connectivity

The Hardware Configurator allows the configuration of ES800 hardware systems
to provide real physical signals for inputs and outputs of the model, which can be
linked with the software function model in the project configurator (see
section 5.7). It is used to configure interfaces available in the ES800 for the exper-
iment. They do not have to be installed at the time of configuration.

NOTE
The ES800 configuration capabilities of the Hardware Configurator are only
available if you installed the INTECRIO-RP package and have an appropriate
license key.

Experimenting with an ES800 hardware system requires INCA V7.4 or higher with
INCA-EIP or the ETAS Experiment Environment V3.8.4 or higher.

INTECRIO
Integration platform (including HC)

INTECRIO-RP
ES800 Connectivity

.a2l.cod

ES800

ES4xx

...

ES930

ES63x
ETAS INTECRIO V5.0 | User Guide

73 | INTECRIO Components
Information about the individual interfaces can be found in section 5.5.2 and in the
manuals of the hardware products.

5.5.1 ES800 Configuration in the Hardware Configurator
The Hardware Configurator contains the following components required for ES800
configuration:

- A framework that provides the basic editor and connections to other
INTECRIO components (e.g. OS configurator, project integrator, ETAS
Experiment Environment), among others.

- A specific expansion of the basic editor for each interface supported by
INTECRIO. Each of these expansions allows for the configuration of the
respective interface based on parameters that are displayed in various tabs.

- A generator for the configuration of the device drivers.

These components can be used for the following tasks:

- Configuring interfaces (or loading a daisy chain, CAN, or FlexRay configura-
tion)

- Assigning input or output actions for operating system tasks (defined in the
OS configurator)

- Providing conversion formulas for describing the mapping of physical sig-
nals (model view) to raw values (driver view)

The current hardware system is displayed in the WS browser as a tree structure.
The ES800 itself is located in the Hardware/Hardware Systems folder on the
top level, the combination of simulation controller (ES830) and interface modules
(ES891, ES892, ES882, or ES886) is shown on the level directly below. This is the
master with which all other interfaces are linked as slaves. The available hardware
signals are placed in a lower hierarchy level. Each level has parameters that can be
adjusted in appropriate editors. Their appearance is the same as for the ES900
interface editors (cf. Fig. 5-7 on page 62).

The entry (controller, device, signal group, signal) to be edited is selected in the
WS browser, while the corresponding editor is opened in the display window. It is
possible to edit several objects at the same time.

The editor lists all parameters of the respective object in tables. Number and
names of the parameters and registers depend upon the object.

Manual Configuration: In offline mode, the Hardware Configurator allows for the
configuration of the interfaces supported by INTECRIO to build a hardware system.
The following points must be observed when the hierarchy is created:

- You can create an arbitrary number of ES800 hardware systems. Each hard-
ware system can contain only one ES830 target.

- The ES830 target is mandatory.

- A hierarchy consists of the ES830 as master and one or several interfaces on
the ES891/ES892/ES882/ES886 controlled by the master.

- All slave interfaces are located on the same hierarchy level; a slave interface
cannot have its own slave interfaces.
ETAS INTECRIO V5.0 | User Guide

74 | INTECRIO Components
- Each slave interface is assigned to its master.

- Some interfaces are present several times in an ES800 system. Tab. 5-1 lists
the available numbers of interfaces.

ES830 Remarks
CAN Controller 0 – 5 per

module
classic CAN / CAN FD
To actually use four or five CAN ports of an
ES891/ES892, you have to set the CAN4/FLX1
and/or CAN5/FLEX2 ports to CAN in the
ES800 web interface.
In that case, you cannot use FlexRay.
In addition, you need suitable cables, e.g.,
CBCFI100, to use both ports that share a
socket:
- CAN1 and CAN2
- ES89x:

• CAN3 and LIN
• CAN4 and CAN5

- ES88x:
• CAN3 and CAN4
• CAN5 and LIN

XCP_on_CAN
(via CAN
controller)

0 – 4 4 is the maximum number of all XCP interfaces,
i.e. XCP_on_CAN and XCP_on_UDP.

LIN 0 – 1 per
module

The LIN interface uses the same hardware
connectors as the CAN3 (ES89x) or CAN5
(ES88x) interface.
With a suitable cable, e.g. CBCFI100, you can
use CAN and LIN simultaneously.

System Device 0 – 1
FlexRay 0 – 1

per ES89x
The ES88x and ES892 do not offer FlexRay
interfaces.
To actually use the FlexRay interface of an
ES891, you have to set the CAN4/FLX1 and/or
CAN5/FLEX2 ports to FlexRay in the ES800
web interface.
In that case, only 3 CAN ports can be used.
In addition, you need suitable cables, e.g.,
CBCFI100, to use both ports, which share a
socket.

Ethernet and
Daisychain
(IO interface)

0 – 1 per
module

A chain of ES4xx and/or ES63x and/or ES930
modules.
ETAS INTECRIO V5.0 | User Guide

75 | INTECRIO Components
Tab. 5-3 Number of interfaces/elements per ES800 hardware system

- For the CAN interfaces, you must make sure that each interface uses a
unique ID.

For the remaining interfaces, the ID is automatically assigned.
Interfaces, devices and other sublevels can be inserted in the hierarchy, and
deleted when these points are taken into account.

The interfaces, devices, signal groups and signals of the hardware system can be
configured in the Hardware Configurator. The following points must be observed
during the configuration:

- While a series of interface parameters are preset, the tasks and processes
associated with the signals/signal groups are defined in the OS configura-
tor. All signals of a signal group are processed at the same time.

- During the configuration of individual signals, conversion formulas for sen-
sors and actuators can be specified. The following formulas are available:

• Identity: f(phys) = phys
• linear: f(phys) = a*phys + b

- An implementation (i.e. a conversion formula and a valid value range) can be
specified for CAN signals.

Ethernet and
XCP_on_UDP

0 – 4 See section 5.3.3 on page 60 for details.
4 is the maximum number of all XCP inter-
faces, i.e. XCP_on_CAN and XCP_on_UDP.

Ethernet and
X/FETK Bypass

0 – 4

for details,
see
Tab. 5-6

Can be used as hook-based bypass or ser-
vice-based bypass.
The X/FETK bypass device is used for XETK,
BR_XETK and FETK.
ES882/ES886 support XETK and BR_XETK.
ES891/ES892 support XETK and FETK.

NOTE
INTECRIO supports FETK and XETK on ES800 systems. X/FETK bypass is
supported via the Ethernet controller with an X/FETK bypass device in the
INTECRIO hardware configuration.

To connect the XETK hardware, the FE port of the ES891/ES892 or ES882/
ES886 is used.
To connect the BR_XETK hardware, the AE port of the ES882/ES886 is
used.
To connect the FETK hardware, the FETK1/GE or FETK2/GE port of the ES891
or ES892 is used. These ports must be set to FETK mode In the ES800 Web
interface.
See the INTECRIO online help for details on X/FETK configuration.
See the ES800 System user's guide for more information on the ES800 Web
interface.

ES830 Remarks
ETAS INTECRIO V5.0 | User Guide

76 | INTECRIO Components
- The maximum number of devices per ES89x or ES88x module is given in the
INTECRIO online help. The maximum number in the hardware system
depends on its consistency and setup of your ES800 stack.

To access all controllers at runtime, you need suitable cables.
Parts of the hardware system can be copied via Copy and Paste. The settings of
the target parts are overwritten; if no target part is selected, a new one is created.

Import: As an alternative to manual configuration, it is possible to import a hard-
ware description (*.hwx file); see “HWX Import/Export” on page 59.

5.5.2 Interface Types and Supported Interfaces
Tab. 5-4 contains the interface classes for the ES800 and the names of the inter-
face supported by INTECRIO. The listed interfaces of the ES800 can be configured
using the Hardware Configurator.

Tab. 5-4 Interface classes of the ES800 and names of supported interfaces/ele-
ments

Tab. 5-3 on page 75 indicates how many interfaces of a type can be used with an
ES830 per ES891, ES892, ES882, or ES886. The maximum number in the hardware
system depends on its consistency and setup of your ES800 stack.

Interface class Name Description
Simulation controller ES830
Communication
interfaces (ES891,
ES892, ES882, ES886)

CAN_Controller +
CAN_IO

CAN IO interface

CAN_Controller +
XCP_on_CAN

XCP bypass on CAN

LIN_Controller LIN interface
FlexRay FlexRay interface (ES891 only)
Ethernet_Controller +
X_FETK_Bypass

Interface for XETK/BR_XETK/
FETK bypass
ES88x support XETK and
BR_XETK. ES89x support XETK
and FETK.

Ethernet_Controller +
XCP_on_UDP

XCP bypass on UDP

IO interface Ethernet_Controller +
Daisychain

A chain of ES4xx and/or ES63x
and/or ES930 modules; con-
nected to the Fast Ethernet con-
troller

System interface SystemDevice controls display and monitoring
modes
ETAS INTECRIO V5.0 | User Guide

77 | INTECRIO Components
Fig. 5-8 shows the schematic structure of the interfaces in the WS browser.

Fig. 5-12 Display of the ES800 interfaces in the WS browser

Simulation controller: The simulation controller ES830 is connected to up to four
ES891 or ES892 or ES882 or ES886 interface modules. The ES89x/ES88x have no
separate node in the WS browser.

Communication interfaces: An ES891 or ES892 or ES882 or ES886 is equipped
with the following interfaces:

Tab. 5-5 Interfaces per ES89x/ES88x hardware module. The maximum number
in the hardware system depends on its consistency and setup of your
ES800 stack.

INTECRIO supports the following combinations of X/BR_X/FETK per ES89x/ES88x
module in an ES800 hardware system.

Tab. 5-6 Max. number of X/BR_X/FETK per ES89x/ES88x module

Interface Modules
5 interfaces to the CAN bus of the vehicle ES89x, ES88x
1 interface to the FlexRay bus of the vehicle
(replaces 2 CAN interfaces)

ES891

1 interface to the LIN bus of the vehicle ES89x, ES88x
1 Fast Ethernet connection that can be used for XETK or
daisychain

ES89x, ES88x

2 Gigabit Ethernet connections that can be used for FETK ES89x
1 Automotive Ethernet connection with 3 (ES882) or 4 (ES886)
ports; can be used for BR_XETK

ES88x

ES891/ES892 - one or two FETK
- one XETK
- one or two FETK and one XETK

ES882/ES886 - up to three BR_XETK and/or XETK

NOTE
The maximum number of X/FETK devices in an ES800 hardware system is 4.

Controller (CAN, LIN, FlexRay, Ethernet)

ES800

Device (CAN IO, XCPonCAN, LIN, X/FETK Bypass, XCPonUDP, Daisychain)

Signal Group(s)

Folders / Service Point(s)

ES830

Signal(s)
ETAS INTECRIO V5.0 | User Guide

78 | INTECRIO Components
Two of the ES891 ports can be used either as CAN ports or as FlexRay ports.
INTECRIO supports one FlexRay controller in an ES800 hardware system.

CAN Controller + CAN IO

- In the tree view, the first hierarchy level (i.e. the one underneath the ES830)
is occupied by the CAN controller.

- The second hierarchy level is occupied by the CAN node (device, CAN IO).

- The third hierarchy level is occupied by folders for CAN frames (signal
groups) and CAN signals.

Underneath the folder for CAN frames, the hierarchy levels are occupied as
follows:
• The fourth hierarchy level is occupied by CAN frames (signal groups).
• The fifth hierarchy level is occupied by simple CAN signals and/or CAN

signals of type multiplexor.
• Underneath a CAN signal of type multiplexor, the sixth hierarchy level is

occupied by CAN multiplex groups.
• The seventh hierarchy level under the CAN multiplex group is occupied

by CAN signals of type multiplexed.
Underneath the folder for CAN signals, the hierarchy levels are occupied as
follows:
• The fourth hierarchy level is occupied by CAN signals of type standard.

Fig. 5-13 Display of the CAN IO interface (ES800) in the WS browser

CAN Controller + XCP bypass

- In the tree view, the first hierarchy level (i.e. the one underneath the ES830)
is occupied by the CAN controller.

- The second hierarchy level is occupied by the XCP on CAN node (device).

CAN_Controller

Frames

CAN_IO

<CAN Frame Name>

<CAN Signal Name>

<CAN Multiplexor Signal Name>

<CAN Multiplex Group Name>

<CAN Multiplexed Signal Name>

Signals

<CAN Signal Name>

ES830 (E-Target)
ETAS INTECRIO V5.0 | User Guide

79 | INTECRIO Components
- The third hierarchy level is occupied by folders for rasters and status.

Underneath the folder for rasters, the hierarchy levels are occupied as fol-
lows:
• The fourth hierarchy level is occupied by XCP rasters (signal groups).
• The fifth hierarchy level is occupied by XCP signals.
Underneath the Status folder, the hierarchy levels are occupied as follows:
• The fourth hierarchy level is occupied by status signal groups.
• The fifth hierarchy level is occupied by status signals.

LIN interface

- In the tree view, the first hierarchy level (i.e. the one underneath the ES830)
is occupied by the LIN controller.

- The second hierarchy level is occupied by the LIN node (device, LIN I/O).

A LIN node can be used either as master or as slave. The selected node type
determines availability and direction of several items below the node level.

- The third hierarchy level is occupied by folders for schedule tables (only
available for Master nodes), status display, frames, diagnostic frames, and
signals.

Underneath the folder for schedule tables, the hierarchy levels are occu-
pied as follows:
• The fourth hierarchy level is occupied by schedule tables.
• The fifth level is occupied by frames of the various types.
• For unconditional frames, the sixth level is occupied by signals.
• For event-triggered and sporadic frames, the sixth level is occupied by

references to unconditional frames.
• For event-triggered and sporadic frames, the seventh level is occupied

by references to signals of unconditional frames.
Underneath the folder for status display, the hierarchy levels are occupied
as follows:
• The fourth hierarchy level is occupied by status signal groups.
• The fifth hierarchy level is occupied by status signals.
Underneath the folder for frames, the hierarchy levels are occupied as fol-
lows:
• The fourth hierarchy level is occupied by folders for event-triggered

frames, sporadic frames (only available for Master nodes), and uncondi-
tional frames.

• The fifth level is occupied by frames of the various types.
• For unconditional frames, the sixth level is occupied by signals.
• For event-triggered and sporadic frames, the sixth level is occupied by

references to unconditional frames.

NOTE
Instead of configuring the LIN interface manually, you can import a cluster con-
figuration from a LIN description file.
ETAS INTECRIO V5.0 | User Guide

80 | INTECRIO Components
• For event-triggered and sporadic frames, the seventh level is occupied
by references to signals of unconditional frames.

Underneath the folder for diagnostic frames, the hierarchy levels are occu-
pied as follows:
• The fourth hierarchy level is occupied by diagnostic frames (signal

groups).
• The fifth hierarchy level is occupied by diagnostic signals.
Underneath the folder for signals, the hierarchy levels are occupied as fol-
lows:
• The fourth hierarchy level is occupied by LIN signals of type standard.

FlexRay interface

- The first hierarchy level is occupied by the FlexRay device.

- The second hierarchy level is occupied by folders for status display, chan-
nels, FlexRay frames, FlexRay PDUs, and FlexRay signals.

Underneath the folder for status display, the hierarchy levels are occupied
as follows:
• The third hierarchy level is occupied by status signal groups.
• The fourth hierarchy level is occupied by status signals.
Underneath the folder for channels, the hierarchy levels are occupied as fol-
lows:
• The third hierarchy level is occupied by two channels.
• The fourth hierarchy level is occupied by slots. Up to 2047 slots can

belong to one channel.
• The fifth hierarchy level is occupied by frames. Up to 64 frames can

belong to one slot.
• The sixth hierarchy level underneath a frame is occupied by the frame’s

PDUs.
The levels below a PDU are described on Page 80.

Underneath the folder for frames, the hierarchy levels are occupied as fol-
lows:
• The third hierarchy level is occupied by FlexRay frames.
• The fourth hierarchy level is occupied by FlexRay PDUs (signal groups).
• The fifth hierarchy level is occupied by simple FlexRay signals and/or

FlexRay signals of type multiplexor.
• Underneath a FlexRay signal of type multiplexor, the sixth hierarchy level

is occupied by FlexRay multiplex groups.
• The seventh hierarchy level under the FlexRay multiplex group is occu-

pied by FlexRay signals of type multiplexed.
Underneath the folder for PDUs, the hierarchy levels are occupied as fol-
lows:
• The third hierarchy level is occupied by FlexRay PDUs (signal groups).
• The fourth hierarchy level is occupied by simple FlexRay signals and/or

FlexRay signals of type multiplexor.

NOTE
Only ES891 offers a FlexRay interface.
ETAS INTECRIO V5.0 | User Guide

81 | INTECRIO Components
• Underneath a FlexRay signal of type multiplexor, the fifth hierarchy level
is occupied by FlexRay multiplex groups.

• The sixth hierarchy level under the FlexRay multiplex group is occupied
by FlexRay signals of type multiplexed.

Underneath the folder for FlexRay signals, the hierarchy levels are occupied
as follows:
• The third hierarchy level is occupied by FlexRay signals of type standard.

See Fig. 5-10 on page 70 for a schematic display of the FlexRay interface.

Ethernet interface: The Gigabit Ethernet interfaces and/or the Fast Ethernet
interface of the ES891 or ES892 can be used to configure an X/FETK bypass.

The Fast Ethernet interface of the ES882 or ES886 can be used to configure an
XETK bypass, and the Automotive Ethernet interface of the ES882 or ES886 can be
used to configure a BR_XETK bypass.

For a description of the XCP bypass (XCP on UDP and X/FETK), see section 5.3.3 on
page 60.

X/FETK Bypass

- In the tree view, the first level (i.e. the one underneath the ES830) is occu-
pied by the Ethernet Controller.

- The second hierarchy level is occupied by the X/FETK bypass device.

- The third hierarchy level is occupied by the service points and hooked ser-
vice points.

The ASAM-MCD-2MC file contains service point descriptions. Number and
configurations of the service points actually used in the bypass are deter-
mined in the service point selection and hooked service point selection edi-
tors.

- The fourth hierarchy level is occupied by the signal groups for sending and
receiving.

The available signal groups depend on the settings made in the service
point selection and hooked service point selection editors.

- The fifth hierarchy level is occupied by individual signals.

NOTE
The ES800 hardware system supports only X/FETK bypass.

Tab. 5-6 lists the max. number of bypass devices that can be used simultane-
ously on a particular ES89x/ES88x module, and the possible X/BR_X/FETK type
combinations.
ETAS INTECRIO V5.0 | User Guide

82 | INTECRIO Components
IO interface / Daisy Chain: An ES4xx/ES63x/ES930 daisy chain can be con-
nected to the Fast Ethernet port of the ES800 target. The WS browser in INTECRIO
does not display the individual elements of the chain, it displays only the chain as a
whole, with one signal group for each chain element and sample period.

- The first hierarchy level contains the Ethernet controller.

- The second hierarchy level contains the daisy chain device.

- The third hierarchy level is occupied by the signal groups for the different
sample periods and chain elements.

- The fourth hierarchy level is occupied by the individual signals assigned to
the sample periods and chain elements. The actual signals depend on the
daisy chain.

System interface: The system interface is used to configure the monitoring and
display modes of the ES830. Signal groups for the different modes can be acti-
vated independently.

- The first hierarchy level is occupied by the system interface device.

- The second hierarchy level is occupied by the signal groups for the different
modes.

- The third level is occupied by the individual signals of the different modes.
The signals of a mode are predetermined.

NOTE
Different from the other interfaces, the daisy chain cannot be configured in
INTECRIO. Instead, an externally created configuration file is imported.

If the configuration file is edited, the changes must be imported, via the Update
context menu, into INTECRIO.
ETAS INTECRIO V5.0 | User Guide

83 | INTECRIO Components
5.6 PC Connectivity

Fig. 5-14 INTECRIO-VP: VP-PC connectivity

With its PC connectivity, INTECRIO-VP offers the possibility to use INTECRIO for vir-
tual prototyping purposes, i.e. validation and pre-calibration of application soft-
ware. The possibility to verify and validate software as early in the V cycle as
possible is the main motivation for virtual prototyping.

INTECRIO-VP provides the functionality required for virtual prototyping with
INTECRIO. This means in detail:

- Providing the VP-PC target. This target can be selected in the WS browser
just like ES900 or ES800.

- The possibility to execute models with adaptive simulation time (i.e. the
shortest possible computation time given the computational power and the
complexity of the model).

- The possibility to configure the RTA-OSEK for PC operating system in the
OSC (see section 5.8),

- The possibility to generate executable file and ASAM-MCD-2MC description
just as for rapid prototyping (see section 5.9).

- The possibility to use RTA-TRACE and INCA-EIP in the virtual prototyping
experiment. This includes the VP service, available in the Windows task bar.

- The possibility to use back animation of ASCET and MATLAB and Simulink
models during the virtual prototyping experiment.

Back animation means that the model variables can be displayed on the BMT
display devices and that calibration variables can be calibrated directly from
within the model.

INTECRIO
Integration platform (including HC)

INTECRIO-VP
PC Connectivity

.a2l.cod

PC
(Virtual Prototyping)
ETAS INTECRIO V5.0 | User Guide

84 | INTECRIO Components
- The possibility to connect to a Microsoft® Visual Studio® debugger during
the virtual prototyping experiment.

The debugging possibility is limited to the following use case: Build process
and experiment are performed on the same workstation, and the experi-
ment is started immediately after the build process.
In order to simulate interrupts in a virtual ECU, the virtual machine has to
manipulate the stack of the application thread asynchronously. Since many
functions cannot cope with asynchronous stack changes, stepping is not
possible in every line of code.

5.7 Project Configurator

Fig. 5-15 Project configurator

The project configurator is part of the integration platform of INTECRIO. It is used
to specify software systems and system projects. It contains a graphical editor (on
the right in Fig. 5-15) that can be used in offline and online mode.

5.7.1 Offline Mode
In offline mode, modules and AUTOSAR software components (SWC) can be dis-
played, and functions, software systems and system projects can be created and
configured.

NOTE
It is recommended that you set multiple breakpoints and jump from break-
point to breakpoint. For further details, see the RTA-OSEK for PC docu-
mentation.

INTECRIO integration platform

OS Configurator
Configuration of
OSEK operating

system

Project Configurator
Network list of
functions and

modules

Project Integrator
Fundamental build

process for the
project integration

Module interface
Interface for
integrating

software components

Documentor

HC

Sensor/
actuator
signal

Function
net list
ETAS INTECRIO V5.0 | User Guide

85 | INTECRIO Components
5.7.1.1 Modules and SWC
In the workspace, modules and SWC (see also “Modules and AUTOSAR Software
Components” on page 31) are saved in the folders Software\Modules or –mod-
ules only – Environment\Modules.

In the graphical editor of the project configurator, modules/SWC are represented
as blocks, together with the name of the module.

The signal sinks or inputs are arranged on the left side of the block, the signal
sources or outputs on the right side. The color denotes either the BMT used to
create the module (defaults: light red – MATLAB and Simulink, green – ASCET, dark
red – AUTOSAR SWC) or the usage as environment module (slightly different
green).

Fig. 5-16 Standard layout of a module/SWC (a: Simulink module, b: ASCET
module, c: AUTOSAR SWC, d: environment module)

The standard size of the block is designed so that all interface elements are visible.
The names of the signal sources and sinks are abbreviated, if required; complete
names appear as tooltips.

The color of the block can be adjusted; SWC/modules created with the same BMT
always have the same color. Size and layout of each block can be adjusted individ-
ually.

If the description of the module is updated by importing a new version of the
SCOOP-IX file, all user settings are retained.

5.7.1.2 Functions
Functions (see also the section “Functions” on page 33) are created in the project
configurator and placed in the folders Software\Functions or
Environment\Functions in the workspace. Their names can be randomly
selected.

The interface of a function – signal sinks, signal sources – is also created in the
project configurator. Implementations, signal type, etc., are adopted by the ele-
ments that are connected to the inputs and outputs.

The standard layout for the external view of a function is designed just like that of
a module/SWC: the signal sinks of the function are arranged on the left side, signal
sources on the right side. The icons are derived from the connected module/SWC

(a)

(c)

(b)

(d)
ETAS INTECRIO V5.0 | User Guide

86 | INTECRIO Components
ports. The block size is selected automatically, according to the number of signal
sinks and sources. The size of the function and the positions of the signal sinks
and sources on their respective sides can be adjusted.

Fig. 5-17 Standard layout (external view) of a function (a) and an environment
function (b)

Any number of modules can be assigned to a function, but each module can be
assigned only once. This restriction notwithstanding, a module can appear more
than once in the graphical display of a function. Other functions cannot be
assigned to a function.

The interface elements of the modules can be connected with each other in the
graphical editor or the connection wizard of the project configurator or with inter-
face elements of the function. Unused module interface elements can be removed
from the graphical representation (not from the module). The following rules apply
to the connections:

- Modules: A source (output) can be connected with any number of sinks
(inputs).

A sink (input) can be connected with exactly one source (output).
- SWC: A sender can be connected with several receivers, a server can be

connected with several clients.

Scalar senders and receivers with primitive typization can be connected
with inputs and outputs of modules.

- Disconnected sources and sinks are allowed.

- A connection between modules can be either static or dynamic. Dynamic
connections can be changed during the runtime of the program. For SWC,
only static connections are possible.

5.7.1.3 Software Systems and Environments
Software systems (see also the section “Software Systems” on page 34) and envi-
ronment systems are created in the project configurator and placed in the
Software\Software Systems or Environment\Environment Systems
folder in the workspace. Their names can be randomly selected.

The interface of a software or environment system is created the same way as the
interface of a function (see "Functions"). The standard layout of a software or
environment system corresponds to that of a function. The block size is selected

(a) (b)
ETAS INTECRIO V5.0 | User Guide

87 | INTECRIO Components
automatically, according to the number of signal sinks and sources. The size of the
software or environment system and the positions of the signal sinks and sources
on their respective sides can be adjusted.

Fig. 5-18 Standard layout of a software system (a) and environment system (b)

Any number of modules, SWC or functions can be assigned to a software or envi-
ronment system. For assignment and connection, the following applies:

- In INTECRIO, modules and SWC cannot be multiply instantiated, i.e. each
module or SWC can be used only once in a particular software or environ-
ment system. If several functions containing the same module/SWC are
inserted in a software or environment system, the code generation issues
an error message. The same happens if a module/SWC is inserted into a
software or environment system both directly and as part of a function.
This restriction notwithstanding, a module/SWC can appear more than once
in the graphical display of a software or environment system.

- Modules, SWC and functions can be used either for software systems or
for environment systems. It is not possible to use a module/SWC/function
imported/created for a software system in an environment system, and vice
versa.

5.7.1.4 System Projects
Similar to functions and software or environment systems, system projects (see
also “System Projects” on page 36) are created and configured in the project con-
figurator. A system project can be assigned a hardware system, a software sys-
tem, and an environment system (i.e. any number of modules and functions).

(a) (b)
ETAS INTECRIO V5.0 | User Guide

88 | INTECRIO Components
In the graphical editor, software system, environment system and each hardware
device are displayed as separate blocks. Unused signals can be removed from the
graphical representation.

Fig. 5-19 System project in the graphical editor

The required connections between the signal sources and sinks of hardware and
software must be created by the user. The same rules apply as for the connections
within a function (see Page 86), expanded to software and hardware components.

The size of the hardware blocks and the positions of the signal sinks and sources
on their respective sides can be adjusted.

A workspace can contain several system projects. The user can activate only one
system project at a time. For each system project, build options can be set that
affect the creation of the executable file. If the build process is invoked not from
the context menu of a system project, but from the menu or the toolbar, it uses the
active system project.

5.7.2 Online Mode
Dynamic connections can be changed in online mode, i.e. during the running
experiment. In general, changes are allowed that do not lead to a change in struc-
ture. Changes to the description or display of modules, functions or software sys-
tems (e.g. removing or adding signal sources/sinks, modules or functions) are not
possible in online mode.

The implementation characteristic of the newly connected signal sources and
sinks is adjusted via changes in the copying process on the target. A conversion is
performed in the case of different value ranges or quantizations. The value assign-
ment to the signal sink is always limited; this limitation cannot be deactivated.

The mechanism for editing connections is the same as in the offline mode. In addi-
tion, the online mode offers the option of connecting a stimuli signal with a signal
sink.
ETAS INTECRIO V5.0 | User Guide

89 | INTECRIO Components
5.8 OS Configurator

Fig. 5-20 OS configurator

The configuration of the operating system is a very important task in the context
of creating a real-time prototype. Inside of INTECRIO, this task is handled by the OS
configurator (another component of the integration platform).

Section 5.8.1 provides an overview of the tasks of the operating system,
section 5.8.2 describes the OS configurator.

5.8.1 Tasks of the Operating System
The OSEK consortium1) developed standards for the real-time operating systems
used in the automobile industry, among them the OSEK implementation language
OIL. An operating system that meets the OSEK standards is referred to as OSEK
operating system.

The ES910 and ES830 use the OSEK-compatible and AUTOSAR2)-compatible oper-
ating system RTA-OSEK, the PC uses, in case of virtual prototyping, RTA-OSEK for
PC.

OSEK operating systems support the coordinated execution of many processes
and – when using AUTOSAR – runnable entities (RE). On systems with a single
CPU, different processes/RE cannot be executed at exactly the same time since
the CPU is capable of executing only one instruction at a time. For this reason, the
operating system is responsible for performing a quasi-parallel processing or mul-
titasking. That is, the operating system determines the processing sequence of
the tasks and processes/RE that compete for the processor and, if necessary,
toggles between the executions of different tasks.

1) Working group for Open Systems and their Interfaces for Electronics in Motor Vehi-
cles (German: Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug)

2) Automotive Open System Architecture, see https://www.autosar.org

INTECRIO integration platform

OS Configurator
Configuration of
OSEK operating

system

Project Configurator
Network list of
functions and

modules

Project Integrator
Fundamental build

process for the
project integration

Module interface
Interface for
integrating

software components

Documentor

HC

OIL file
ETAS INTECRIO V5.0 | User Guide

https://www.autosar.org

90 | INTECRIO Components
5.8.1.1 Scheduling
Scheduling is a core function of an OSEK operating system. The scheduler must
decide which process is started first from a group of activated processes/RE. The
decision strategy, the so-called scheduling algorithm, is very important since it
affects the real-time capabilities and the efficiency of the system. To meet the
strict requirements of efficiency and real-time behavior, OSEK operating systems
use a combination of static and dynamic scheduling, together with a combination
of cooperative and preemptive scheduling.

Static scheduling: For static scheduling, the scheduling algorithm has all the
information about the processes/RE to be scheduled and their limitations. Custom
limitations are calculation time, deadline, future execution times, priority relation-
ships and mutual exclusion. Since all limitations of the processes and RE are known
before the system starts, it is possible to determine the processing sequence of
these processes/RE up front (offline). If such an offline schedule exists, it is suffi-
cient to start the processes/RE at runtime at the predefined times in the pre-
defined order.

Dynamic scheduling: For dynamic scheduling on the other hand, the algorithm
only knows the activated processes/RE and does not have any knowledge of
future activations. Since new processes/RE can be activated spontaneously, the
scheduler must determine at runtime which one of the processes/RE must be
selected.

The advantage of dynamic scheduling over static scheduling lies in the flexibility
with which external events can be addressed. In particular, the effectiveness of
static scheduling decreases with decreasing latency period. Disadvantages of
dynamic scheduling are higher demands on the computing power and need for
increased memory for managing the processes/RE. Since dynamic as well as static
scheduling are supported, OSEK operating systems allow for the application of
combined strategies which were optimized with respect to the demands concern-
ing response time and memory capacity.

5.8.1.2 Tasks
An operational sequence or Task is defined as the result of static scheduling. It
contains a sequence of processes or RE that must be executed in the specified
order and with a defined priority if a certain activation event occurs.

Fig. 5-21 Task scheme

p1A p3Ap2A p4A

Time

Task

Processes
ETAS INTECRIO V5.0 | User Guide

91 | INTECRIO Components
Dynamic task scheduling (or multitasking) only applies to tasks as a whole, not the
individual processes/RE. Within a task, the scheduler does not have to make a
decision since the processing sequence is statically specified. This reduces the
required computing power at runtime and the memory requirement since it is not
necessary to manage a high number of processes/RE but only a much smaller
number of tasks.

Each task is assigned a static priority. Tasks activated at runtime are handled
according to their respective priority. A task with a higher priority takes prece-
dence over a task with a lower priority. Different tasks can have the same priority. If
these tasks are scheduled for execution at the same time, they are arranged in a
FIFO queue and processed based on the principle "First come, first served."

Dynamic scheduling is handled in accordance with a status model for the tasks.
Upon activation, a task is changed to the status activated. If its priority is higher
than that of the running task and if switching is possible, it is started (the latter
translates to a direct transition from the status "inactive" to the status "running")
while the execution of the current task is interrupted (the task is changed to the
status "activated"). At the end of the running task, i.e. when it changes to the sta-
tus inactive, the activated task with the highest priority and at the first position of
the respective FIFO queue is started or continued (if this task was previously inter-
rupted). Fig. 5-22 shows the existing task states and all possible transitions.

Fig. 5-22 Task states and transitions

5.8.1.3 Cooperative and Preemptive Scheduling
There are two possible methods for switching between a running task and an acti-
vated task with higher priority. The first switches the execution at predefined loca-
tions of the software. These predefined locations are the boundaries between the

Activated

Running Inactive

Activate

Start

Terminate

Interrupt

Start
ETAS INTECRIO V5.0 | User Guide

92 | INTECRIO Components
processes/RE of a task. Since the task with the higher priority is waiting until the
running process/RE finishes, this method is referred to as cooperative scheduling
(see Fig. 5-23).

Fig. 5-23 Cooperative scheduling

The advantage of cooperative scheduling is the efficient utilization of resources.
The design ensures that access to resources, such as stack, register or mes-
sages, is exclusive. In addition, there is no need to secure the process/RE context
when switching takes place; all processes/RE can be executed using the same
register bank. The disadvantage of cooperative scheduling is the relatively slow
response time that is dependent upon the longest execution time of the pro-
cesses/RE.

The second strategy–preemptive scheduling–allows for switching the execution
inside the processes/RE at the boundaries of machine instructions (provided that
the interrupts are not deactivated).

The scheduler is, therefore, capable of interrupting the currently running process/
RE of a task and starting the execution of a task with higher priority (see Fig. 5-24).

Fig. 5-24 Preemptive scheduling

NOTE
Cooperative scheduling is not available for RTA-OSEK.

Priority

p1A

Activate task B

Start task B

p2B p3B p5Bp1B p4B

Time

Task B

Task A p2A p3A p4A

Interruption ... … Continuation of p2A

Priority

Task B

Task A

Time

p1A p2A p2A p3A p4A

Activate task B
Start task B

p2B p3B p5Bp1B p4B
ETAS INTECRIO V5.0 | User Guide

93 | INTECRIO Components
External events (interrupts) and periodic activations with controlled variations
require short response times. Preemptive scheduling can meet these require-
ments. The disadvantage of preemptive scheduling is higher memory capacity
since it is necessary to secure the context of interrupted processes/RE and
ensure data consistency.

Preemptive scheduling also offers flexibility for handling external events or
interrupts. It is possible to assign an interrupt source to a priority level, thereby
starting the task with a very fast response time. This mechanism is represented by
the direct transition from the status inactive to running (see Fig. 5-22 on page 91).
The tasks called by the occurrence of interrupts and planned by the interrupt con-
troller are referred to as hardware tasks.

Preemptive and cooperative tasks have different priority ranges that do not over-
lap. Preemptive tasks always have a higher priority than cooperative tasks.

5.8.1.4 Data Consistency with Preemptive Scheduling
In preemptive scheduling, it is possible that a process or RE with low priority is
interrupted by a process/RE with higher priority. If the interrupted process/RE
reads a variable and the interrupting process/RE describes the same variable,
inconsistencies may occur if the interruption occurs between to successive read
operations as illustrated in Fig. 5-25. The diagram shows what happens of the pro-
gram code is interrupted during the processing and no resource protection is
implemented.

Fig. 5-25 Data inconsistency

Process p1A of task A calculates the absolute value of x:

if (x<0)
{y = -x;}

else
{y = x;}

Process p1A reads the input value -1. The condition of the first line of the algorithm
is met, so that the assignment y = -x is scheduled for execution. Before the
assignment can be executed, process p1A is interrupted. Process p2B of task B

y = 1

Priority x = 2

p1A if(x < 0) p1A {y = -x}{y = -x}

y = -2

Data inconsistency Time

Task A

Task B
x = -1

p1B p2B
ETAS INTECRIO V5.0 | User Guide

94 | INTECRIO Components
assigns x the value of 2. If p1A is taken up again after the end of task B, the algo-
rithm uses the pending assignment y = -x and the new value x = 2 instead of x
= -1, i.e. p1A furnishes an incorrect result: |-1| ≠ 2.

This is merely a simple example to illustrate data inconsistency; however, in a real
application, data inconsistency can lead to a system crash.

The correctness of the system therefore depends on the time sequence and the
order of interruptions in the system. To avoid system and timing-dependent soft-
ware errors, data consistency must be guaranteed.

Messages: To solve the problem of data consistency, the messages concept is
supported by the crossbar (cf. section 3.5.5). These are protected global vari-
ables. The protection is achieved by working with copies of the global variables.
The system analyzes whether a copy is required and ensures an optimum data
consistency scheme without detrimental effects on the core of the runtime.

While a process is being started, all input messages in its private area are copied
for message copies. After the process is finished, all output messages that are
located in the private area as copies, are copied into the global message area. The
operating principle of messages is represented in Fig. 5-26.

Fig. 5-26 Handling of messages

At the start, process p1A of task A copies the incoming message msg to the private
message copy msg(1). All subsequent read operations to the message access
this private copy. Although process p1A is interrupted by task B, which sets the
value of msg from -1 to 2, this change does not affect process p1A. This ensures
that process p1A works with the private copy throughout the entire execution time.
This ensures the data consistency since the algorithm

if (x<0)

NOTE
For the time between start and termination of a process P1 or RE R1, it must be
ensured that all data stored in memory accessed by P1/R1 may change their value
if and only if they are changed by P1/R1.

Priority
x = 2

p1A if(x < 0) p1A {y = -x}

y = 1

Task A

Task B
x = -1

p1B p2B

msg

msg(1)

x = -1

msg

x = -1

msg(1)

Time
ETAS INTECRIO V5.0 | User Guide

95 | INTECRIO Components
{y = -x;}
else

{y = x;}
is correctly executed in any case.

When working with AUTOSAR SWC, an AUTOSAR runtime environment (RTE, cf.
section 4.2) is used instead of the crossbar. If necessary, the RTE uses suitable
means of the OS (resources, interrupt blocks) to ensure consistency of the trans-
mitted data.

5.8.1.5 Application Modes
Application Modes were developed to support different runtime configurations of
the complete system at different times. They allow for a simple and flexible design
and the management of system statuses of completely different functions. Exam-
ples of such application modes are Startup, Normal Operating Mode, Shutdown,
Diagnosis, and EEPROM Programming. Each application mode can be equipped
with its own tasks, priorities, timer configurations, etc.

An application mode consists of two successive phases: an initialization and a nor-
mal sequence phase. During initialization, all interrupts are deactivated. This is
used, for example, for the set-up of hardware registers and variables. At the end of
the phase, interrupts are activated and the normal processing of the tasks begins.

NOTE
 RTA-OSEK, and thus INTECRIO, supports only one application mode.
ETAS INTECRIO V5.0 | User Guide

96 | INTECRIO Components
5.8.2 Design of the OS Configurator
The design of the OS configurator of INTECRIO is shown in Fig. 5-27.

Fig. 5-27 OS configurator: Design

The figure replicates the process sequence during the configuration of the oper-
ating system.

The OSC editor is an easy to handle editor that provides the user with a quick over-
view of the system and allows for editing the configuration in an application-ori-
ented display.

After completed configuration, the OIL interface creates the required configura-
tion files in the OIL language (*.oil files).

OSC editor

*.oil,
*.esc

Configurator/generator
(e.g. ESCAPE)

*.c,
*.h

Compiling

Operating system

OIL interface

Connection to other OSEK
operating systems is
possible

PC

Experimental
Target

OS libraries

RTA-OSEK,
RTA-OSEK f. PC,
...
ETAS INTECRIO V5.0 | User Guide

97 | INTECRIO Components
However, only the OSEK conformance classes BCC1 and BCC2 are directly sup-
ported. The OIL configuration files can be processed further with any OSEK operat-
ing system. The further processing in INTECRIO is based on the operating systems
RTA-OSEK or RTA-OSEK for PC of ETAS.

The configurator/generator generates C-code files from the *.oil files which, in
turn, are used to compile the operating system while linking the operating system
library. Only the completed operating system is loaded onto the experimental tar-
get, all previous levels are executed on the PC.

5.8.3 The OSC Editor

The interface of the OSC is divided into three parts: The top left field contains the
OS configuration view, at the top right are three tabs that show the hierarchical
structures of software, environment and hardware system. You can select
whether the tabs show all processes or only those that are not assigned to a task.
Below these two fields if the input field for the attributes of the object selected in
the OS configuration view. The attributes relevant for the object and the operating
system are shown.

The OSC has two modes:

- Offline mode

The operating system is configured in offline mode. The minimal priority of
preemptive tasks can be set for the operating system. It can also be defined
whether tracing the runtime behavior should be handled using the tool
RTA-TRACE (global or on the process level).
For ASCET models, you have the additional option to configure the OS in
ASCET, and then import the configuration (*.oil file) into INTECRIO.

- Online mode

In online mode, i.e. with running experiment, the setting options of the OSC
are blocked. You can use the OS configurator only as display.

HardwareEnvironmentSoftware

OS
 AppMode
 Task1

 Task2
Init

 Exit

Actions
 Event

 ISRs
 Software Tasks

Software
Function1

Module1
 Processes
 Process1
 Process2
 ...

Priority 5
Period 600
...

Sys1 - Target - CPU1 - OS Configuration

File Edit View ...
INTECRIO Vx.y

٪٪٪٪

Software
Environment
System
 Sys1

SWSys

 Target
 CPU1
 OS

Hardware
ETAS INTECRIO V5.0 | User Guide

98 | INTECRIO Components
5.8.3.1 Creating Tasks
The operating system is located on the top level of the OS configuration view.

With legacy AUTOSAR SWC: No application mode is shown in the display. One
Init and Exit task each are automatically created directly below the operating
system. In addition, tasks can be created in the Software Tasks folder. The type
of these tasks is defined by the assigned runnable entities.

Fig. 5-28 OSC: Tree structure
(1: not for AUTOSAR SWC, 2: with AUTOSAR-SWC: Tasks, 3: with
AUTOSAR SWC: task type defined by assigned RE)

Without AUTOSAR SWC: The application mode (see “Application Modes” on
page 95) is created directly below the operating system.

The tasks of type Timer are created on the next level below the application mode.
One Init and Exit task each are automatically created directly below the operating
system; they are used by all application modes. In addition, tasks of type Software
can be created in the Software Tasks folder. When working with RTA-OSEK, you
can also create interrupt service routines in the ISRs folder. The task types are
explained in Tab. 5-7.

OS

AppMode1

Init task

-

-

+

Exit task+

Timer task+

ISRs1+

Software Tasks2-

Software task3+
ETAS INTECRIO V5.0 | User Guide

99 | INTECRIO Components
The possible task types have the following meaning:

Tab. 5-7 Task types

Below the application mode, timer tasks can be created, deleted and renamed.
Each task features the folders Actions and Event for processes and events.

Fig. 5-29 OSC: Application mode with assigned timer tasks

Software tasks can only be created in the Software Tasks folder. These tasks
do not belong to any application mode and are not included in the scheduling of
the operating system. They can still be called during an experiment, e.g. with an
event from the Hardware Configurator.

Timer These tasks are periodically activated. They can have different peri-
ods.

Software These tasks are non-periodically activated via commands of the
operating system or via certain events.

Init Automatically created task that is executed once when an applica-
tion mode is executed. Interrupts are deactivated during the runtime
of the task.

Exit Automatically created task that is executed once at the end of the
simulation. Interrupts are deactivated during the runtime of the task.

ISR Interrupt service routines (RTA-OSEK only).

NOTE
The RTA-OSEK operating system does not support init/exit tasks. In that case,
INTECRIO automatically generates code that calls these tasks at the start or end
of an application mode via C function calls.

NOTE
For virtual prototyping (target PC), the Event folder is omitted.

+

+

AppMode

Task_1

-

. . .

Actions

Event

-

Task_2+

Task_3+
ETAS INTECRIO V5.0 | User Guide

100 | INTECRIO Components
Interrupt service routines (ISRs) can only be created in the ISRs folder. The ISR
sequence has no influence on the runtime behavior.

Fig. 5-30 OSC: Software task and ISR (Neither ISRs nor events exist for virtual
prototyping. The respective folders are omitted in that case.)

5.8.3.2 Task Properties
The properties of timer and software tasks can be edited. In case of incorrect
entries, warnings or error messages are issued, and the old value is kept.

With legacy AUTOSAR SWC:

- Priority

The activation of tasks is determined by their priority if several tasks are
scheduled for execution at the same time. Tasks are interrupted if a task
with a higher priority than the currently running task is activated.
Possible minimum and maximum values depend upon the target as well as
the scheduling; Fig. 5-31 on page 101 shows the scheme of possible values.

- Maximum number of simultaneous activations (Task Activation)

This value determines how often a task can be activated for scheduling. If a
task is activated again before the execution is finished after its previous
activation, the task is then activated twice. To save system resources, the
number of simultaneous activations can be limited.

NOTE
The properties of the Init and Exit tasks cannot be edited. For ISRs, only the pri-
ority can be edited.

+

OS

Init task

-

+

Exit task+

Software Tasks

AppMode+

Software task-

-

ISRs

Actions

Event. . .

ISR

Actions

Interrupt. . .

-

-

+

+

+

ETAS INTECRIO V5.0 | User Guide

101 | INTECRIO Components
Without AUTOSAR SWC:

- TaskID

Unique number as identifier.
- Priority

The activation of tasks is determined by their priority if several tasks are
scheduled for execution at the same time. For example, if several periodic
tasks were scheduled for simultaneous activation, the task with the highest
priority is executed first. Tasks are interrupted if a task with a higher priority
than the currently running task is activated.
Possible minimum and maximum values depend upon the target as well as
the scheduling; Fig. 5-31 shows the scheme of possible values.

Fig. 5-31 Priority scheme

- Period

It determines after what time in seconds the task is activated again.
This option is only available for timer tasks.

- Delay

The task is activated for the first time after the time in seconds defined in
this option. If the delay value is 0, the task is activated as soon as the pro-
gram starts, and afterwards at the beginning of every period.

Fig. 5-32 Delay of a task

This option is only available for timer tasks.
- Execution Budget

This value contains the maximum execution time (in seconds) of a task. Val-
ues between 0.000001 s and 128 s are permitted; the value 0 disables run-
time monitoring.

NOTE
RTA-OSEK supports only preemptive scheduling.

min. preemptive priority

min. interrupt priority
max. priority (software/periodic)

max. interrupt priority

pr
ee

m
pt

iv
e

Software and
periodic tasks

Hardware
Tasks (ISR)

Pr
io

rit
y

0

Task

Period

Delay Time
ETAS INTECRIO V5.0 | User Guide

102 | INTECRIO Components
- Maximum number of simultaneous activations (Max. number of activation)

This value determines how often a task can be activated for scheduling. If a
task is activated again before the execution is finished after its previous
activation, the task is then activated twice. To save system resources, the
number of simultaneous activations can be limited.

- Monitoring

This option determines whether monitoring information is collected for this
task (True) or not (False). If the option is activated, additional signal
sources, e.g. for the entire runtime of the task, are created. These signal
sources are part of the ASAM-MCD-2MC description and can be measured
in the ETAS Experiment Environment or in INCA/INCA-EIP.
If monitoring is enabled, the following monitoring variables are created for
each task:

The monitoring variables are measured in systems ticks. They must be con-
verted to seconds for the user.

- Exclude from Tracing

This option determines whether a task is excluded (True) from monitoring
with RTA-TRACE or not (False).

Variable Meaning
actTime Activation time of the task
startTime Start time of the task
grossRunTime Total runtime of the task
netRunTime Net runtime of the task
minRunTime Minimum runtime of the task
maxRunTime Maximum runtime of the task
dT Time difference between the last and the current

activation of the task
ETAS INTECRIO V5.0 | User Guide

103 | INTECRIO Components
5.8.3.3 Setting Up Timer and Software Tasks
Finally, the processes/RE available in the modules, SWC and functions of software
and environment system are inserted in the Actions folders of the tasks. You can
also assign processes/RE that were furnished by the hardware configuration, e.g.
for the hardware initialization or signal processing. Each process/RE can be
assigned exactly to one task.

Fig. 5-33 OSC: Task with assigned processes

The sequence in which the processes/RE are displayed corresponds to the pro-
cessing sequence; the top process/RE is processed first, the bottom one last. The
processes/RE can be moved within a task to change the processing sequence.

In a similar way, exactly one event can be assigned to the Event folder of a task
(exception: RTA-OSEK for PC/PC). Events are driven by interrupts and serve for
triggering actions. The Event folder contains the event that, upon occurrence,
triggers the one-time execution of the respective task. Events can be hardware-
driven (e.g. watchdog alarm) or non-periodic (e.g. upon receipt of a trigger signal).

The configurations described can be performed manually or automatically via the
automapping function.

NOTE
The RTA-OSEK and RTA-OSEK for PC operating systems do not support pro-
cesses. Instead, INTECRIO automatically generates code for the tasks that
invokes the assigned processes/RE as C functions.

NOTE
Only interrupt-triggered signals can be assigned to the Event folder. Only one
event can be assigned to each task.

-

Task_1

Mod1:Proc_1

Mod2:Proc_2

Mod1:Proc_3

Processing
sequence

-

Actions

Event+
ETAS INTECRIO V5.0 | User Guide

104 | INTECRIO Components
5.8.3.4 Setting Up Interrupt Service Routines
Interrupt service routines are set up in a similar way as tasks. A hardware interrupt
is inserted in the Interrupt folder of an ISR; each HW interrupt can be assigned
to exactly one ISR. The processes belonging to the ISR are inserted to the
Actions folder. As for tasks, the process sequence in the Actions folder corre-
sponds to the processing sequence.

Some HW interrupts have the AnalyzeCapable property (this property is set auto-
matically by Hardware Configurator). In this case, the triggering event, i.e. the
interrupt, can have sub-events that are analyzed at runtime. Each sub-event has a
set of processes which are executed if required.

If such a HW interrupt is assigned to an ISR, the Event Dependencies sub-folder
is created automatically in the Actions folder. The Event Dependencies folder
contains the sub-events; these are displayed as further sub-folders that contain
the respective processes.

Semantics is as follows: If the ISR is executed at runtime, and the analysis recog-
nizes one or more events from the Event Dependencies folder, the process lists
for those events are executed.

Fig. 5-34 OSC: ISR

Two procedures exist for ISR configuration. The automapping function for ISRs
uses the default procedure.

ISRs

Actions

Interrupt

. . .

Process 1

Event Dependencies

Event 1

Process a

HW Interrupt

-

-

.

. . .

-

-

-

ISR

-

ETAS INTECRIO V5.0 | User Guide

105 | INTECRIO Components
A Default

This procedure should always be used, unless urgent scheduling require-
ments must be met.
A HW interrupt is assigned to a newly created ISR. Within the high-priority
ISR, only the analysis is executed. If required, the analysis task activates fur-
ther tasks. These software tasks (with lower priority than the ISR) contain
the processes to be executed (signal groups and user-defined processes).

B Fastest response time

This procedure should only be used if signals must be evaluated as fast as
possible.
After the ISR was created and the HW interrupt assigned, the event belong-
ing to the signal is assigned to the Event Dependencies folder. The signal
group, as well as the user-defined processes, are inserted in the Event
<event name> subfolder.
The disadvantage is that the user-defined processes are executed with the
high priority of the ISR and thus block most other actions in the system.
ETAS INTECRIO V5.0 | User Guide

106 | INTECRIO Components
5.9 Project Integrator

Fig. 5-35 Project integrator

The project integrator (PI) combines all the components of the system – modules
and functions, hardware interfacing, OS configuration, etc. – into an executable
file. It essentially consists of a tool chain. The frame of this chain, i.e. the compo-
nents, that provides the Make functionality is the PI build system.

Additional components are the PI plugin, which provides the variables parts of the
build configuration, compiler, linker, etc.

Besides the executable file, an ASAM-MCD-2MC file is created for the experi-
ment's project in which the ASAM-MCD-2MC files of the individual modules and
additional information about the total project are combined. Optionally, the project
integrator also creates a configuration file for RTA-TRACE.

In contrast to the configurators, the project integrator does not have its own edi-
tors. In the graphical framework, it only reveals itself by using the Integration
menu.

5.9.1 Build Process
For a successful build process, all necessary files (*.six, *.c, *.h, *.a2l, ...)
must be available for all modules. An installation of the BMT that generated these
files is not necessary.

INTECRIO integration platform

HC

Documentor

OS Configurator
Configuration of
OSEK operating

system

Proj. Configurator
Network list of
functions and

modules
INTECRIO

Integration platform
Project integrator

ASAM-
2MC
file

executable
file

C code ASAM-
2MC
file

SCOOP-
IX
file

OIL
file

Funct.
Network

list

Hard-
ware-
config.Module interface

Interface for
integrating software

components

Project Integrator
Fundamental build

process for the
project integration
ETAS INTECRIO V5.0 | User Guide

107 | INTECRIO Components
5.9.1.1 Overview
Fig. 5-36 schematically displays the phases of the build process and the file types
concerned. Each one of the phases, in turn, can be subdivided into individual
steps.

Fig. 5-36 Build process

At the start of the build process, the parser analyzes the configurations of all
components and the total project, as well as the interface descriptions provided
by the behavioral modeling tools (*.six).

For the code generation, the interface descriptions (*.six) and the configura-
tions (*.oil, ...) created with different INTECRIO components are transferred to
C code. This code contains the information required in addition to the functional
code of the modules.

Generated files
*.c, *.h, ...

*.c, *.h, ...
Compiling

Compiler results
*.o

Linker *.o,
*.lib,
*.loc

Linker result
*.l

Post processing
*.a2l

External files

External files

Code generation *.oil,
 ...

ASAM-2MC file
*.a2l

Executable file
*.a2l.cod

External files

External files

Parser

External files

*.six
*.c, *.h, *.a2l,
*.six, ...

BMTs, config.

*.six,
*.oil,
*.xml
ETAS INTECRIO V5.0 | User Guide

108 | INTECRIO Components
For the compiling, object files are created from the files created during the code
generation and the C code of the behavioral modeling tools. External C code files
or header files can be added here. Only one compiler can be used for a system proj-
ect.

The compiling results are linked into a binary file by the linker. External object files
or libraries can be added here. Only one linker can be used for a system project.

In post-processing, the final executable file and the ASAM-MCD-2MC description
file for the complete project is created from the binary file. The ASAM-MCD-2MC
files generated by the behavioral modeling tools are included here.

5.9.1.2 Sequence
Before the build process can run, it must be ensured that the system project con-
tains the following components:

- A configuration of the hardware (see section 5.3),

- A configuration of the software (see section 5.7),

- A completely configured system project (see section 5.7, subsection "Sys-
tem Projects"), and

- An OS configuration (see section 5.8).

Once it is started, the build process runs automatically. Information about the cur-
rent status and warnings or error messages are displayed. If a warning occurs, the
process is continued; in case of a normal error, the current phase is completed
before the process is canceled. In case of a severe error or a missing source file,
the build process is canceled immediately, if necessary in the middle of a phase.

Code is created that can be executed in RAM with the option for a dynamic recon-
figuration at runtime, and optionally code that can be executed in FLASH. This
FLASH code does not offer dynamic reconfiguration. The latter can be executed in
standalone mode on the rapid prototyping hardware. It is also possible to run only
the code generation phase.

The files created in the build process are written to a directory that was specifically
created for this system project, <workspace>\cgen\system<n>. This directory
contains subdirectories for compiled files and other, temporary files. The final exe-
cutable file and the ASAM-MCD-2MC description are written to the Results sub-
directory of the project directory (...\<workspace>), if nothing else is specified.
The basic name for the executable file (<basic name>.a2l.cod) and the ASAM-
MCD-2MC file (<basic name>.a2l) can be predefined; the name of the system
project is used by default.

If nothing else is specified, the build process is incremental, i.e. only modified input
files are included and only missing output files or output files created with other
input files than the current ones are generated. Upon request, it is possible to
delete all INTECRIO system files, except for the generated code from the behav-
ioral modeling tools and the SCOOP-IX files, prior to the start of the build process.
This forces a complete rebuild of the entire project. This cleanup can also be per-
formed without subsequent build process.
ETAS INTECRIO V5.0 | User Guide

109 | INTECRIO Components
5.9.2 ASAM-MCD-2MC Generation
The build process of the project integrator generates an ASAM-MCD-2MC
description (*.a2l file) of the project that meets the specifications of the working
group for standardization of automation and measuring systems, version 1.41).
Such a description is required for the ETAS Experiment Environment to identify the
model elements that must be measured or calibrated.

During the creation of this ASAM-MCD-2MC file, the *.a2l files provided by the
behavioral modeling tools for the modules contained in the project are combined.
Furthermore, additional entries are added that describe the project as a whole.

In general, an ASAM-MCD-2MC file contains the following components:

- Project information

- Descriptions of data structures used in the project

- Descriptions of variables and parameters

- Descriptions of external interfaces

- Descriptions of communication protocols

- Descriptions of conversion formulas

1) The current specification can be obtained here: https://www.asam.net/
ETAS INTECRIO V5.0 | User Guide

https://www.asam.net/

110 | INTECRIO Components
5.10 ETAS Experiment Environment

Fig. 5-37 ETAS Experiment Environment used with INTECRIO

This section provides an introduction to experiments in general and the ETAS
Experiment Environment in particular. Using the ETAS Experiment Environment is
described in the online help.

Experimenting can generally be subdivided into three steps:

- Preparing the experiment

- Performing the experiment

- Analysis after the experiment

Preparing the experiment contains creating a prototype that is specifically suited
for this special experiment, as well as the creation of a suitable environment for
the experiment. The analysis following the experiment essentially contains the
analysis of recorded data with suitable tools1). However, only the performance of
experiments is dealt with at this point.

1) for example, the ETAS Measure Data Analyzer (MDA)

R
P

 e
xp

er
im

en
t

E.g. ETK

D
VE

 re
al

E-Target

ES800

ES900
VP

 e
xp

er
im

en
t

D
VE

 v
irt

ua
l

VP-PC

INTECRIO
Integration plattform

INTECRIO
MATLAB/Simulink connectivity

MATLAB and Simulink
connectivity ASCET connectivity

MATLAB®/Simulink® ASCET User Code

RTA-TRACE

ETAS Experiment Environment
RTA-TRACE connectivity

Ba
ck

 A
ni

m
at

io
n

EE/INTECRIO components

Other programs

DVE Driver/vehicle/environment
ETAS INTECRIO V5.0 | User Guide

111 | INTECRIO Components
Prototypes that use a VP-PC target contain one memory page, prototypes that
use an ES910 or ES830 target contain two memory pages. To make use of both
memory pages, you have to use INCA/INCA-EIP as experiment environment; the
ETAS Experiment Environment does not support multiple memory pages. See the
INCA and INCA-EIP documentation for details on using memory pages.

5.10.1 Validation and Verification
If the software components or the complete application software must be vali-
dated and verified in the function development phase (see also section 3.4
"INTECRIO in the Development Process"), it generally requires an experiment envi-
ronment. It must provide all the functions required for the validation and verifica-
tion.

In general, an experiment environment must deal with the following tasks:

- Loading code and data onto the target

- Starting, stopping and interrupting the experiment

- Measuring and calibrating different elements with different means

- Use of stimuli, if necessary

The tasks vary with the targets used.

It is also necessary that all the settings required for the validation and verification
during the creation of the prototype are performed so that it is possible to perform
a useful experiment.

5.10.2 Measuring and Calibrating
In general it can be said that the main task of an experiment environment consists
of two items: measuring and calibrating. Measuring means that the current status
of an element is read and made visible in an environment-dependent form. Cali-
brating means that the current status of an element is changed or adjusted in a

NOTE
Beginning with V5.0.4, INTECRIO supports ETAS Experiment Environment V3.8.4.
ETAS Experiment Environment V3.7 is no longer supported.

ETAS Experiment Environment V3.9 is not supported.
Experimenting with an ES800 hardware system requires INCA V7.4 or higher with
INCA-EIP, or ETAS Experiment Environment V3.8.4.
ETAS INTECRIO V5.0 | User Guide

112 | INTECRIO Components
suitable way. For this reason, an experiment environment is characterized by two
different capabilities: measurement and visualization of element statuses as well
as calibration (adjustment) of element statuses.

Fig. 5-38 Main tasks of the ETAS Experiment Environment

The following elements can be measured in the ETAS Experiment Environment:

- Module variables – Variables within the modules specified with BMTs

- Function network list – The values of the connections between the differ-
ent software and hardware modules can be measured to obtain information
about the current signal value exchange between the components.

- Real-time behavior of the operating system – The current status of the
operating system, i.e. the current task, execution times, etc., can be dis-
played.

- I/O driver – The values provided or consumed by a driver are of interest just
like the current driver configuration.

The following elements can be calibrated in the ETAS Experiment Environment:

- Module parameters – The parameters in the various modules can be cali-
brated.

- Function network list – The connections between software and hardware
modules can be changed at runtime. This is an essential capability for valida-
tion and verification.

Calibrated parameters can be saved and loaded.

ETAS
Experiment Environment

Measuring

INTECRIO
OS real-time behavior

INTECRIO
Module variables

INTECRIO
Function network list - Measurement

INTECRIO
I/O driver - Values

Calibrating

INTECRIO
Module parameters

INTECRIO
Function network list - Changes

INTECRIO
OS-config. - Modifications

INTECRIO
I/O driver - Values
ETAS INTECRIO V5.0 | User Guide

113 | INTECRIO Components
5.10.3 Experimenting with Different Targets
In order for experiments to run on a target, the target must support different inter-
faces. These properties depend on the requested functionality, as discussed in
section 5.10.1 "Validation and Verification". Therefore, the target must be prepared
to allow for the combination of the different tasks of the experiment environment
as well as the measuring and calibrating of the relevant elements.

Fig. 5-39 Experiment interfaces

Fig. 5-39 shows the different experiment interfaces that are required so that all
the measuring and calibrating tasks displayed in Fig. 5-38 can be performed.

- The measuring and calibrating interface – for access to variables and
parameters,

- INTECRIO-RTE (Crossbar) – for access to the function network list,

- The configuration interface for communication – for access to the I/O driver
values,

- The I/O configuration interface – for access to the configuration of the I/O
drivers,

- The OS configuration interface – for access to the OS configuration.

However, not every target has to feature all of these interfaces; it is sufficient if
the interfaces required for the respective task are available.

I/O interface Experiment interface

OSEK operating system

I/O driver
(hardware

abstraction layer)

....

Module B

Module A

Module C

INTECRIO-RTE (crossbar)

Communication driver

Meas./calib.
interface

A
pp

lic
at

io
n

so
ftw

ar
e

P
la

tfo
rm

 s
of

tw
ar

e

Configuration interface for communication

I/O
 c

on
fig

ur
at

io
n

in
te

rf
ac

e

OS configuration
interface
ETAS INTECRIO V5.0 | User Guide

114 | INTECRIO Components
Real-time targets for rapid prototyping should support all listed interfaces since
this type of experiment requires the possibility for quick changes for verification
and validation.

Fig. 5-40 Experiment interfaces for rapid prototyping targets

Fig. 5-40 shows which interface takes on what measuring and calibrating tasks for
a rapid prototyping system.

However, for experiments on the production electronic control unit there is no
possibility to calibrate the configurations during the running experiment or –
except for the real-time behavior of the operating system – to measure. For this
reason, only the measuring and calibrating interface as well as the OS configura-
tion interface are required, the others can be omitted (see Fig. 5-41).

Fig. 5-41 Experiment interfaces for production electronic control units

OSEK
operating system

I/O
driver

....

Module B

Module A

Module C

Communication driver

Meas./cal.
interface

Configuration interface for
communication

I/O
 c

on
fig

ur
at

io
n

in
te

rfa
ce

OS configuration
interface

INTECRIO-RTE (crossbar)

ETAS
Experiment Environment

Measuring

INTECRIO
OS real-time

behavior

INTECRIO
Module variables

INTECRIO
Function network

list - Measurement

INTECRIO
I/O driver - Values

Calibrating

INTECRIO
Module parameters

INTECRIO
Function network

list - Changes

INTECRIO
OS config. -
Modifications

INTECRIO
I/O driver - Config.

ES800

ES900

ETAS
Experiment environment

Measuring

OS real-time
behavior

Module variables

Function network
list - Measurement

I/O driver - Values

Calibrating

Module parameters

Function network
list - Changes

OS-config. -
Modifications

I/O driver - Config.

OSEK
operating system

I/O
driver

....

Module B

Module A

Module C

Communication driver

Meas./calib.
interface

OS configuration
interface

Runtime Environment
ETAS INTECRIO V5.0 | User Guide

115 | INTECRIO Components
5.10.4 Rapid Prototyping Experiment with the ETAS Experiment Environ-
ment
In principle, there are two types of experiments with rapid prototyping systems:
bypass and fullpass experiment. The performance of an experiment is roughly the
same in both cases; the user wants to execute the prototype, measure values and
calibrate parameters. Nevertheless, there are clear differences which are
described in the following sections.

5.10.4.1 Bypass Experiment
A bypass experiment exists if only parts of the application software are computed
on the rapid prototyping hardware.

Bypass experiments are preferably used if only a few software functions must be
developed and an electronic control unit with validated software functions – per-
haps from a predecessor project – is already available. This electronic control unit
then needs to be modified so that it supports a bypass interface. The necessary
software modifications with respect to the electronic control unit are referred to
as bypass hooks. The effort for creating a bypass experiment is low.

Fig. 5-42 Bypass experiment: Scheme

A bypass system can be considered as a system with two processors: The elec-
tronic control unit with bypass link is one processor, the other processor is the
rapid prototyping system. The application software (sometimes even a part of the
platform software) is distributed to these two processors which are linked with
each other by means of a bypass synchronization mechanism (e.g. ETK or CAN
bus).

The calculation of the bypass function is generally initiated by the electronic con-
trol unit via a control flow interface or trigger; the output values of the bypass
function are monitored in the electronic control unit for plausibility. In this case,

ES800

ES900

OSEK operating system

I/O driver
(hardware
abstraction

layer)

....

Module B

Module A

Module C

INTECRIO-RTE (crossbar)

Communication driver

ECU with
bypass link
ETAS INTECRIO V5.0 | User Guide

116 | INTECRIO Components
electronic control unit and rapid prototyping system operate synchronously.
Alternatively, it is also possible to implement an unsynchronized communication
without trigger.

Since the two processors are forming a system, it is necessary that the controlling
PC views them as one system. This means that access to both processors is
assigned by a control application. This is easy to implement by using INCA since
INCA allows access to the rapid prototyping target as well as the electronic control
unit target.

INTECRIO and the ETAS Experiment Environment support bypass experiments,
too. During a bypass experiment with INTECRIO, you can access the experimental
target from the ETAS Experiment Environment, i.e. you can measure and calibrate
the bypass hook variables. However, you have no direct access to the ECU.

Fig. 5-43 Bypass experiments with INTECRIO + ETAS Experiment Environment

5.10.4.2 Fullpass Experiment
If an electronic control unit with validated software functions and bypass interface
is not available or if additional sensors and actuators must be validated, fullpass
experiments are frequently preferred. The real-time behavior must be guaranteed
by the rapid prototyping hardware and possibly monitored; all sensor and actuator
interfaces required by the function must be supported.

Ac
tu

at
or

s

Intelligent I/OSensors

Serial
com

m
unication

INTECRIO + ETAS Experiment Environment

E-Target

ES800

ES900
ETAS INTECRIO V5.0 | User Guide

117 | INTECRIO Components
The environment of INTECRIO refers to a fullpass experiment if the entire applica-
tion software (the control algorithm) runs on the rapid prototyping hardware. The
hardware runs in standalone mode (without electronic control unit); the I/O inter-
faces form the connection to the outside world (see Fig. 5-44); sensors and actu-
ators are directly connected to the hardware.

Fig. 5-44 Fullpass experiment in standalone mode

Fig. 5-45 Fullpass experiment with INTECRIO + ETAS Experiment Environment

ES1130/ES1135/ES910

OSEK operating system

I/O driver
(hardware
abstraction

layer)

....

Module B

Module A

Module C

INTECRIO-RTE (crossbar)

Communication driver I/O interfaces

ES800

ES900

Serial
com

m
unicationAc

tu
at

or
s

Sensors Intelligent I/O

INTECRIO + ETAS Experiment Environment

E-Target

ES800
ES900
ETAS INTECRIO V5.0 | User Guide

118 | INTECRIO Components
The other option consists of using INCA/INCA-EIP instead of the ETAS Experiment
Environment.

5.10.4.3 X-Pass Experiment
The X-pass experiment is a mixture of bypass and fullpass experiment. The rapid
prototyping hardware utilizes the electronic control unit with bypass hooks as
interface to the outside world (see Fig. 5-46).

Fig. 5-46 X-pass experiment with electronic control unit as I/O

5.10.5 Virtual Prototyping Experiments with the ETAS Experiment Environ-
ment
The ETAS Experiment Environment offers the same options for virtual prototyping
as it does for rapid prototyping, e.g. to view variables and to change parameters. In
parallel, this is possible directly in MATLAB and Simulink or in ASCET, as well. In
addition, users can change parameters and module connections on the running
prototype in order to compare various model configurations.

5.11 Documentor
The INTECRIO documentor offers the possibility to generate documentation for
the components of a system project. The documentation can be generated in
HTML or PDF format, and the be printed or used in other documents.

Besides general information on the system project, the documentation file con-
tains information on the software and hardware systems and the OS configura-
tion. The exact content can be configured; the following specifications are
possible:

System Project
- general information (INTECRIO version, creation date, etc.)

- workspace information

- system-level connections (i.e. between hardware and software)

ES1130/ES1135/ES910

OSEK operating system

I/O driver
(hardware
abstraction

layer)

....

Module B

Module A

Module C

INTECRIO-RTE (Crossbar)

Communication driver

ECU with
bypass link

ES800

ES900
ETAS INTECRIO V5.0 | User Guide

119 | INTECRIO Components
Software System
- information on the software system (general information, signal sources/

sinks of software system and functions, connections on software system
level, etc.)

- information on the contained modules (general information, information
regarding module code and files, signal sources/sinks of modules, parame-
ter, processes, etc.)

Environment System
- information on the environment system (general information, signal

sources/sinks of environment system and functions, connections on envi-
ronment system level, etc.)

- information on the contained modules (general information, information
regarding module code and files, signal sources/sinks of modules, parame-
ter, processes, etc.)

Hardware System
- information on the hardware system (general information, ECU, CPU, signal

sources/sinks of hardware, connections on hardware system level, etc.)

- information on devices (name, signal groups, signals, etc.)

OS Configuration
- general information

- information on application modes and tasks

- information on OS actions (i.e. processes)

- information on events

Details regarding the setup and generation of documentation can be found in the
online help.

5.12 RTA-TRACE Connectivity

RTA-TRACE connectivity is an add-on to the ETAS Experiment Environment. It
allows for connecting RTA-TRACE with the rapid prototyping hardware or the PC in
case of virtual prototyping. By using RTA-TRACE, the time behavior (VP) or the
real-time behavior (RP) of the experiment on the target (ES910, ES830, VP-PC) can
be displayed.

Additional information about RTA-TRACE and how to operate this tool can be
found in the RTA-TRACE documentation.

NOTE
RTA-TRACE is discontinued. However, existing installations can still be used.
ETAS INTECRIO V5.0 | User Guide

120 | SCOOP and SCOOP-IX
6 SCOOP and SCOOP-IX
This chapter contains a concept for the description, management and exchange
of C code interfaces. The description and exchange of code interfaces is a very
important topic in the context of INTECRIO since the interfaces for integration are
of significant importance.

In the framework of the embedded control software, the smooth integration of
simple C code is affected by the fact that certain semantic pieces of information
are not part of the standard C code:

- Implementation data, such as conversion formula, minimum, maximum and
limitation for C variables as well as return values and arguments of
C functions,

- Grouping information for characteristic values (lookup tables) represented
by several C arrays with disjointed definitions or embedded in C structures
(struct),

- Information about use that indicate whether an element is intended for
measurements or calibration with running experiment, and

- Origin of the model and specific data (e.g. model name, physical unit,
embedded component or block, notes, use as message, process, signal or
parameter), particularly for automatically generated source files.

Furthermore, additional information is more or less obviously "hidden" in the
C code and cannot easily be extracted:

- Memory classes that are written to by non-standard target-specific
#pragma instructions

- Attributes of C variables or C functions that are written to by non-standard
target-specific modifiers such as inline or far.

The concept introduced in this chapter that is used to collect all the necessary
interface information and make it available, is referred to as SCOOP (Source
Code, Objects, and Physics).

The approach of SCOOP essentially consists of an interface description language
(roughly comparable with known interface description languages such as ARXML1)
or that of CORBA2) and COM from Microsoft) and tools for creating, managing and
using the interface descriptions.

The interface description language SCOOP-IX (see also section 6.2 "SCOOP-IX
Language" on page 121) is intended for the detailed collection of all the information
about interfaces in a wider sense. SCOOP-IX descriptions can be used for the data
exchange between tools or supplied together with open or compiled C code for
later integration.

1) AUTOSAR XML
2) Common Object Request Broker Architecture, developed by the Object Manage-

ment Group (OMG, see https://www.omg.org/)
ETAS INTECRIO V5.0 | User Guide

https://www.omg.org/

121 | SCOOP and SCOOP-IX
6.1 SCOOP Concept
The approach of SCOOP aims at providing a uniform description of the aforemen-
tioned information, together with the actual interfaces of the code on C level.
Besides the initially mentioned semantic information, a SCOOP-IX interface
description essentially consists of the following information:

- Name, type and magnitude of C variables

- Name, return value and signature of C functions

- File origin of C elements

The combination of this information to an interface description language offers a
very powerful tool for the following applications:

- Representation of interface inside of INTECRIO and its components, partic-
ularly the following:

• Experimental target configurator
• OS configurator
• Project configurator
• Project integrator

- Representation of interfaces for communication between different tools
and the interfacing of ASCET and MATLAB and Simulink to INTECRIO.

SCOOP provides a formal interface description that is suitable for the following
purposes:

- Distribution of object files or libraries together with a comprehensive inter-
face description on the levels of C code, physics and semantics with the
support of know-how protection (IP protection).

- Check for compatibility of interfaces of different software modules, not only
on the level of C code (name, type, signature), but also on the physical
(implementation, unit) and semantic (record layout, use as message or pro-
cess) level.

- Generation of connection code or wrapper functionality to adjust noncon-
forming module interfaces to each other for integration.

- To provide tools (such as the OS configurator) with the opportunity of using
information further that is transferred by code generators (e.g. all
C elements that represent ASCET processes and messages).

6.2 SCOOP-IX Language
SCOOP-IX is short for SCOOP Interface Exchange Language; this language is the
basis of the SCOOP concept. As mentioned earlier, SCOOP-IX provides means for
describing the interfaces of C modules to enable their integration with INTECRIO.

The SCOOP-IX language is based on XML and, therefore, well suited for use in
INTECRIO, ASCET, Simulink®, or similar tools.

NOTE
INTECRIO V5.0 supports SCOOP-IX versions V1.0, V1.1, V1.2, V1.4, and V1.5.
ETAS INTECRIO V5.0 | User Guide

122 | SCOOP and SCOOP-IX
6.2.1 Modules and Interfaces
SCOOP views a module either as an individual compiling unit (usually a C file) or as
a combination of several compiling units (a group of C code or object files, libraries,
etc.) with a common interface. Exactly one SCOOP-IX file belongs to a module.

Global C variables as well as C functions can be part of a module interface. If this is
the case, they are referred to as interface elements below.

Interface elements are characterized as partners in an access or call relationship
beyond module boundaries. For this reason, a C declaration or definition is consid-
ered to be the correspondence of an interface element of the module in the fol-
lowing cases:

- Export interface: A C variable or C function is globally defined in the module
and available for external linking (not declared as static). The exact defini-
tion of the element can be determined directly. Elements that cannot be
accessed from outside the module should be omitted from the SCOOP-IX
description.

- Import interface: A C variable is accessed from within the module (read,
write or address operation) or a C function is called within the module
(directly or via address operation), but the element is defined outside of the
module. The exact definition of the element can be determined by examin-
ing the associated declaration (whose existence is guaranteed with
MISRA1) compatibility).

6.2.2 Description of the C Code Interface
The description of the C code interface consists of information that is contained in
the source code. The elements of the code interfaces fall into two categories, vari-
ables and functions, and they each contain specific descriptions of the interface
elements.

Additional general information about the elements and the modules are also
addressed by SCOOP-IX and are described below.

The interface description of a C variable (<dataElement> block, see Page 136,
137, and 138) essentially consists of the following information:

- The name of the variable (<dataCInterface> block, see Page 137, among
others)

- The C type of the variable (<type> block, see Page 137, among others)

- The number of entries in x (and y) direction if the variable is an array (matrix)

- Information for storage in memory (such as extern, static, const and
volatile, far or huge, #pragma instructions)

- An optional initialization value (<initValue> block, see Page 137, among
others)

Accordingly, the interface description of a C function (<functionElement>
block, see Page 139) essentially consists of the following information:

- Name of the function (<functionCInterface> block, see Page 139)

1) Motor Industry Software Reliability Association
ETAS INTECRIO V5.0 | User Guide

123 | SCOOP and SCOOP-IX
- Information for storing the function in memory (such as extern and static
(general), inline (target-specific), #pragma instructions)

- Arguments and return values of the function, such as:

• Names of all arguments
• C types of all arguments and the return value (<return> block, see

Page 139)
• Information for storage in memory (such as const, far or huge)
• Sequence in which the arguments appear

In addition to the specific information described so far about C variables and
C functions, general information about each element are important, such as the
following:

- Type of interface element (import vs. export; interfaceKind parameter,
see Page 137 and Page 139),

- File origin (<fileOrigin> block, see Page 137 and Page 139)

Each module interface is described not only by its elements, but also by the follow-
ing general information:

- File origin of elements (<fileContainer> block, see Page 135).

- C header files to be integrated (also <fileContainer> block).

- Status of the module (source code, object file or library; <constitution>
block and mode parameter, see Page 134).

- Hardware target (<target> block, see Page 134) and compiler (<tool>
block, see Page 135) that the module requires.

- Compiler options and similar settings that were used for the creation or
must be used for further processing (<configuration> block, see
Page 135).

6.2.3 Description of Semantic Information
In contrast to the information about the C code interface, semantic information
cannot be extracted from source code through analysis. Instead, this type of inter-
face information must be created manually or automatically by a code generator
together with the actual code generation. ASCET and MATLAB and Simulink con-
nectivity offer the latter option.

Semantic information about elements is divided into the categories "Model Origin"
, "Implementation" and "Use" . These categories are explained in the following sec-
tions. Additional module-specific information is also considered (see “Module
Data” on page 126).

6.2.3.1 Model Origin
If the C source code described was automatically generated or manually created
from a more or less formal model (such as block diagram, state machine, control or
data flow diagram), the origin of each interface element can be described in the
model.
ETAS INTECRIO V5.0 | User Guide

124 | SCOOP and SCOOP-IX
The model origin is used primarily for documentation purposes and for improved
orientation of the user. Configuration tools, such as the project configurator, can
display this information, thereby providing the user a means for identifying model
elements.

In addition, the information about the model origin can be used to forward specific
information to other tools. For example, if ASCET marks the C elements that were
generated for processes and messages, it allows the OS configurator to locate
precisely these elements out of the entire interface description and to present to
the user as possible candidates for the configuration of the operating system.

In addition to that, the description of the origin allows for enabling semantic
checks in the model at the highest level with respect to consistency or plausibility
across domain and tool boundaries.

Information about the model origin are divided into general and model-specific
information. The latter are explained using examples of ASCET and MATLAB and
Simulink.

General information about the model origin (<modelOrigin> block, see Page 137
and Page 139) can consist of the following elements:

- A model name such as the displayed name of the interface element (<name>
block, see Page 137 and Page 139) or the element name of a memory ele-
ment, signal, method, etc.

- A unique identifier in the model (identifier option, see Page 137 and
Page 139)

- A model path within a hierarchical model structure (<modelLink> block,
see Page 137 and Page 139)

- Model type such as continuous, discrete, Boolean, array, etc. for
C variables, return values and arguments of functions (<modelType> block,
see Page 138)

- Model form such as variable, parameter or constant for C variables
(<modelKind> block, kind option, see Page 138 and Page 140)

- Visibility in other models, either public or private (visibility option,
see Page 138 and Page 140)

public visibility corresponds to the ASCET scope exported,
private visibility corresponds to the ASCET scope local.

- Logical flow direction for C variables, such as input port or output port
(<flowDirection> block, see Page 137)

- Physical unit for C variables, return values and arguments of functions

- Value range on the model level for C variables, return values and arguments
of functions

- Textual notes, such as user comments, additional non-specific model infor-
mation, etc. (<annotation> block, see Page 138 and Page 140)

Depending on the BMT used, certain domain-specific information is important for
the integration of SCOOP-IX modules.
ETAS INTECRIO V5.0 | User Guide

125 | SCOOP and SCOOP-IX
The following information is of special interest for code that was generated with
ASCET:

- The ASCET component in which the equivalent of the respective interface
element is embedded

- The type of component (class, module or project; <pathNode> block with
kind="asd:module" option, see Page 137)

- The type of equivalent of the interface element (element, message,
resource, method, process, task; <pathNode> block with
kind="asd:element" option, see Page 138)

In real-time operating systems, such as RTA-OSEK, processes on C code level are
represented by means of void/void functions. With respect to the OS configura-
tion and project integration, the following information is of interest, among others:

- Messages that are accessed within the process or any C function that is
called inside of them (<messageAccess> block, see Page 140), as well as
the respective access mode (send, receive; send option, see Page 140).

- Resources that are accessed within the process or any C function that is
called inside of them (<resourceAccess> block, see Page 140).

- Time requirements on the model level (<constraint> block, see
Page 140), such as

• Period (<period> block, see Page 140), offset, deadline and priority
(priority option, see Page 140) of the execution,

• Type of trigger (initialization, timer, interrupt or software; trigger
option, see Page 140) and

• Scheduling mode (preemptive, cooperative or non-preemptable;
<scheduling> block, see Page 140).

Since the actual priority levels are dependent upon the operating system
and the CPU, imprecise priorities such as background, low, normal, high
and scheduler are allowed.

The following information is of special interest for code that was generated with
MATLAB and Simulink:

- MATLAB and Simulink subsystem or block that contains the counterpart to
the respective interface element, as well as the type of subsystem or block.

- Type of counterpart to the interface element (signal or parameter).

The scan rates of a MATLAB and Simulink model can be formulated by means of
comparable time restrictions such as the aforementioned ones.

6.2.3.2 Implementation
To allow for data consistency checks and the generation of connection code,
information about the implementations of the C code interfaces is required. This
applies to C variables, return values and arguments of functions.

Implementation information (<implementation> block, see Page 138) is com-
prised of
ETAS INTECRIO V5.0 | User Guide

126 | SCOOP and SCOOP-IX
- A conversion formula that describes the relationship between the data of a
model element and those of its C code equivalent (<conversion> block,
see Page 136, and <conversionRef> block, see Page 138),

- Minimum and maximum values on the C code level (<valueRange> block,
see Page 138) and

- The use of ASCET limiters and (in SCOOP-IX V1.2) resolution scheme if the
boundaries of the value range are exceeded (<saturation> block, see
Page 138).

The <saturation> block contains the options value, resolution and
assignment. Depending on the settings in the ASCET implementation edi-
tor, the options are set as follows.
• value is set to true (false) if Limit to maximum bit length is activated

(deactivated)
• resolution is set to automatic, keep, or reduce, depending on the

selection in the combo box next to Limit to maximum bit length.
• assignment is set to true (false) if Limit Assignments is activated

(deactivated).
For Simulink models, or for ASCET variables that use no limiter, the
<saturation> block is omitted.

- For SCOOP-IX files generated with ASCET V6.4: The <zeroExcluded> block
(see Page 138) always contains value="false".

For SCOOP-IX files generated with ASCET V5.0 - V6.3: The
<zeroExcluded> block contains information whether zero is explicitly
excluded from the interval.

6.2.3.3 Use
The following semantic information about the use of interface elements is import-
ant (only data elements):

- The relationship between characteristic values and the respective
C variables from which they are formed, as well as information about the
characteristic value, such as axes, dimensions and record layout

- Use for measurement or calibration: <usage> block, see Page 138 (mea-
surement) or Page 139 (calibration)

- Pseudo addresses for the simulation interface to the experimental target or
ECU addresses with the corresponding bit masks

6.2.3.4 Module Data
The following add-on information may be contained in the SCOOP-IX description of
a module (<moduleInfo> block, see Page 133):

- Module name (<name> block, see Page 133)

- The module version concerning the contents of the interface description
(<version> block, see Page 133)

- Date and time of the creation (<dateTime> block with the
kind="created" option, see Page 133)

- Date and time of the last modification (<dateTime> block with the
kind="lastModified" option, see Page 133)
ETAS INTECRIO V5.0 | User Guide

127 | SCOOP and SCOOP-IX
- Degree of completion of the interface description (<completion> block,
see Page 133), i.e. one of the following statuses:

• basic (only pure C code interface data, no semantic information)
• in progress (intermediate format, semantic information partially com-

pleted)
• full (document is considered to be stable, semantic information not

compulsorily complete)
- Information about user and company (blocks <company>, <user> and

<creators>, see Page 134)

- Name and version of the generating BMT (<tool> blocks, see Page 134)

- Textual notes (<annotation> block, see Page 134)

6.2.4 Referenced Models
Beginning withV5.0.4, INTECRIO supports the Model Referencing feature of Sim-
ulink. If you generate code for a Simulink model with referenced models, the follow-
ing happens:

- A *.six file of SCOOP-IX V1.5 is generated for the main model. See section
6.2.4.1 "Extract from a *.six File" on page 127 for an extract.

This *.six file contains all necessary links to all referenced models, i.e.
models referenced by the main model and models referenced by other ref-
erenced models.
The *.six file is the only file that needs to be selected during model import
into INTECRIO.

- For each referenced model, a separate SCOOP-IX file named
<referenced_model_name>.ref_six of SCOOP-IX V1.5 is generated.
See section 6.2.4.2 "Extract from a *.ref_six File" on page 130 for an
extract.

A *.ref_six file does not contain links to other *.six or *.ref_six files.
If a referenced model contains other referenced models, these are linked in
the main *.six file.

6.2.4.1 Extract from a *.six File
This section contains an extract from the *.six file of a main model, i.e. a Simulink
model that contains a referenced model.

References to main model and referenced model are set in blue font.

...
<module

xmlns="http://www.etas.com/scoop-ix/1.5"
xmlns:ix="http://www.etas.com/scoop-ix/1.5"
xmlns:mlsl="http://www.etas.com/scoop-ix/1.5/

modelDomain/matlab-simulink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.etas.com/scoop-ix/1.5

file://C:\ETAS\INTECRIO5.0\SCOOP-IX\1.2/schemas/
scoop-ix-domain-mlsl.xsd"

xmlns:html="http://www.w3.org/1999/xhtml">
<directoryLocations scheme="MATLAB 9.3">
ETAS INTECRIO V5.0 | User Guide

128 | SCOOP and SCOOP-IX
...
</directoryLocations>
<moduleInfo identifier="MyMainModel">

<name>MyMainModel</name>
<modelLink href="mlsl://"{{modelDir}}

MyMainModel.slx""/>
<version major="1" minor="9"/>
...
<creators>

<user lastName="MOL9FE" role="creator"/>
<tool kind="environment" vendor="The Mathworks, Inc."

name="MATLAB">
...

</tool>
<tool kind="modeler" vendor="The Mathworks, Inc."

name="Simulink">
...

</tool>
<tool kind="modeler" vendor="The Mathworks, Inc."

name="Stateflow">
</tool>
<tool kind="codeGenerator" vendor="The Mathworks, Inc."

name="Simulink Coder">
...

</tool>
<tool kind="codeGenerator" vendor="The Mathworks, Inc."

name="MATLAB Coder">
...

</tool>
<tool kind="codeGenerator" vendor="ETAS GmbH"

name="Connector for Simulink (IRT)"
family="INTECRIO Tool Suite">
<version major="4" minor="7" year="2019"

month="1" day="1"/>
<configuration>

<option identifier="SCOOPIXFileName">
<![CDATA[MyMainModel.six]]></option>

...
</configuration>

</tool>
</creators>

</moduleInfo>
<codeInfo>

<constitution mode="sourceCode"/>
<dateTime kind="created" year="2019" month="5" day="16"

hour="11" minute="20" second="37"/>
<target>

<board vendor="ETAS GmbH" model="INTECRIO Generic
Experimental Target"/>
ETAS INTECRIO V5.0 | User Guide

129 | SCOOP and SCOOP-IX
<tool kind="compiler" vendor="GNU Project"
family="GNU Compiler Collection" name="GNU C Compiler">
<configuration>

<optionKind name="macroDefine" prefix="-D"/>
<optionKind name="includeDirectory" prefix="-I"/>
<!-- RTW specific defines -->
<option kind="macroDefine" name="USE_RTMODEL"/>
<option kind="macroDefine" name="MODEL">

MyMainModel</option>
...
<!-- RTW specific include directories -->
<option kind="includeDirectory">

<![CDATA[{{codeDir}}]]></option>
...
<!-- S-Function specific include directories -->
<!-- Referenced models local include

directory -->
<option kind="includeDirectory">

<![CDATA[{{codeDir}}
referenced_model_includes]]></option>

</configuration>
</tool>

</target>
</codeInfo>
<!-- Model specific files -->
<fileContainer constitution="sourceCode">

<pathBase path="{{codeDir}}"/>
<!-- Model specific source files -->
<file name="MyMainModel_types.h" kind="header"/>
<file name="MyMainModel.h" kind="header"/>
<!-- used through rtwShared.lib:

zero_crossing_types.h -->
<file name="MyMainModel.c" kind="body"/>
<file name="MyMainModel_private.h" kind="header"/>
<file name="rtmodel.h" kind="header"/>
<!-- used through rtwShared.lib: rtGetInf.h -->
<!-- used through rtwShared.lib: rtGetInf.c -->
<!-- used through rtwShared.lib: rtGetNaN.h -->
<!-- used through rtwShared.lib: rtGetNaN.c -->
<file name="MyMainModel_main.c" kind="body"/>
<!-- Additionally registered model specific source files -->
<file name="rt_sim.c"

path="{{codeDir}}external\rtw\c\src\" kind="body"/>
<!-- Target specific libraries -->
<file name="rtwStaticLib.lib" kind="symbolicLibrary"/>
<file name="rtwSharedLib.lib" kind="symbolicLibrary"/>
<!-- Additional files -->

</fileContainer>
<fileContainer constitution="referencedModels">
ETAS INTECRIO V5.0 | User Guide

130 | SCOOP and SCOOP-IX
<!-- SCOOP-IX files for referenced models -->
<file name="MySub.ref_six"

path="D:\ETASData\INTECRIO5.0\User\ModelRef\
modules\mysub\" kind="SIX" format="SCOOP-IX"/>

</fileContainer>
...

6.2.4.2 Extract from a *.ref_six File
This section contains an extract from the *.ref_six file of a referenced model.

References to the model described in *.ref_six are set in blue font.

...
<module

xmlns="http://www.etas.com/scoop-ix/1.5"
xmlns:ix="http://www.etas.com/scoop-ix/1.5"
xmlns:mlsl="http://www.etas.com/scoop-ix/1.5/

modelDomain/matlab-simulink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.etas.com/scoop-ix/1.5

file://C:\ETAS\INTECRIO4.7\SCOOP-IX\1.2/schemas/
scoop-ix-domain-mlsl.xsd"

xmlns:html="http://www.w3.org/1999/xhtml">
<directoryLocations scheme="MATLAB 9.3">

...
</directoryLocations>
<moduleInfo identifier="MySub">

<name>MySub</name>
<modelLink

href="mlsl://"{{modelDir}}MySub.slx""/>
<version major="1" minor="26"/>
...
<creators>

<user lastName="MOL9FE" role="creator"/>
<tool kind="environment" vendor="The Mathworks Inc."

name="MATLAB">
...

</tool>
<tool kind="modeler" vendor="The Mathworks, Inc."

name="Simulink">
...

</tool>

NOTE
The <fileContainer constitution="referencedModels"> section in
the *.six file of a main model contains links to all referenced models, i.e. models
referenced by the main model and models referenced by other referenced mod-
els.
ETAS INTECRIO V5.0 | User Guide

131 | SCOOP and SCOOP-IX
<tool kind="modeler" vendor="The Mathworks, Inc."
name="Stateflow">

</tool>
<tool kind="codeGenerator" vendor="The Mathworks, Inc."

name="Simulink Coder">
...

</tool>
<tool kind="codeGenerator" vendor="The Mathworks, Inc."

name="MATLAB Coder">
</tool>
<tool kind="codeGenerator" vendor="ETAS GmbH"

name="Connector for Simulink (IRT)"
family="INTECRIO Tool Suite">
<version major="4" minor="7" year="2019" month="1"

day="1"/>
<configuration>

<option identifier="SCOOPIXFileName">
<![CDATA[MySub.ref_six]]></option>

...
</configuration>

</tool>
</creators>

</moduleInfo>
<codeInfo>

<constitution mode="sourceCode"/>
<dateTime kind="created" year="2019" month="5" day="16"

hour="11" minute="20" second="19"/>
<target>

<board vendor="ETAS GmbH" model="INTECRIO Generic
Experimental Target"/>

<tool kind="compiler" vendor="GNU Project"
family="GNU Compiler Collection" name="GNU C Compiler">
<configuration>

<optionKind name="macroDefine" prefix="-D"/>
<optionKind name="includeDirectory" prefix="-I"/>
<!-- RTW specific defines -->
<option kind="macroDefine" name="USE_RTMODEL"/>
<option kind="macroDefine" name="MODEL">

MySub</option>
...
<!-- RTW specific include directories -->
<option kind="includeDirectory">

<![CDATA[{{codeDir}}]]></option>
...
<!-- S-Function specific include directories -->
<!-- Referenced models local include

directory -->1)

...

1) Only present if the referenced model contains another referenced model.
ETAS INTECRIO V5.0 | User Guide

132 | SCOOP and SCOOP-IX
</configuration>
</tool>

</target>
</codeInfo>
<!-- Model specific files -->
<fileContainer constitution="sourceCode">

<pathBase path="{{codeDir}}"/>
<!-- Model specific source files -->
<file name="MySub_types.h" kind="header"/>
<file name="MySub.h" kind="header"/>
<!-- used through rtwShared.lib: rtwtypes.h -->
<!-- used through rtwShared.lib: multiword_types.h -->
<file name="MySub.c" kind="body"/>
<file name="MySub_private.h" kind="header"/>
<!-- Additionally registered model specific source files -->
<file name="rt_sim.c"

path="{{codeDir}}external\rtw\c\src\" kind="body"/>
<!-- Target specific libraries -->
<file name="rtwStaticLib.lib" kind="symbolicLibrary"/>
<file name="rtwSharedLib.lib" kind="symbolicLibrary"/>
<!-- Additional files -->

</fileContainer>
<fileContainer constitution="referencedModels">
</fileContainer>

...

6.3 Creation of SCOOP-IX and Example
Tools that are either a part of INTECRIO or are coupled to INTECRIO create SCOOP-
IX descriptions if C code is created for the integration. In the case of ASCET and
MATLAB and Simulink, the SCOOP-IX generation is performed by the respective
connectivity tool.

An example for a simple SCOOP-IX file created with ASCET can be found below. The
example is used exclusively for representing an interface description in SCOOP-IX,
it does not claim to be meaningful or correct.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE module [

<!ENTITY szlig "ß">
<!ENTITY copy "©">

NOTE
The <fileContainer constitution="referencedModels"> section in a
*.ref_six file is always empty, even if the referenced model contains further
referenced models.

All links to referenced models are provided in the *.six file of the main model.
ETAS INTECRIO V5.0 | User Guide

133 | SCOOP and SCOOP-IX
<!ENTITY baseTypes-asd SYSTEM
'c:\ETAS\ASCET6.4\Formats\SCOOP-IX\1.2\common\

baseTypes-asd.xml'>
]>

<?xml-stylesheet type="text/xsl" href="c:\ETAS\ASCET6.4\Formats\
SCOOP-IX\1.2\common\showSCOOP-IX.xsl"?>

<!--
<h1>SCOOP-IX</h1>
<p>

Copyright © 2002-2004 ETAS GmbH
Borsigstraße 14, D-70469 Stuttgart.
All rights reserved.

</p>
-->
<module

xmlns="http://www.etas.de/scoop-ix/1.2"
xmlns:ix="http://www.etas.de/scoop-ix/1.2"
xmlns:asd="http://www.etas.de/scoop-ix/1.2/modelDomain/ascet"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.etas.de/scoop-ix/1.2

c:\ETAS\ASCET6.4\Formats\SCOOP-IX\1.2\Schemas\
scoop-ix-domain-asd.xsd"

xmlns:html="http://www.w3.org/1999/xhtml" >

<directoryLocations scheme="ASCET 6.4">
<directory identifier="integratorDir"

path="E:\ETAS\INTECRIO5.0\" ></directory>
<directory identifier="toolDir"

path="c:\ETAS\ASCET6.4\" ></directory>
<directory identifier="modelDir"

path="c:\ETASData\ASCET6.4\Database\INTECRIO\" >
</directory>

<directory identifier="codeDir"
path="c:\ETASData\ASCET6.4\Database\INTECRIO\
Project\CGen\" ></directory>

</directoryLocations>

<moduleInfo identifier="_040VSM3H60001KO7102G5GFA1O5G0">
<name>ASDSimpleModel</name>
<modelLink href="asd://{{modelDir}}?Training/

ASDSimpleModel" ></modelLink>
<version major="1" minor="0" ></version>
<dateTime kind="created" year="2011" month="02" day="13"

hour="15" minute="37" second="04" ></dateTime>
<dateTime kind="lastModified" year="2011" month="03"

day="04" hour="17" minute="14" second="44" > </dateTime>
<completion degree="full" ></completion>
<suitability>

<application domain="rapidPrototyping"
addressesAvailable="true"
instanceTreeRootIdentifier=
ETAS INTECRIO V5.0 | User Guide

134 | SCOOP and SCOOP-IX
"_040VSM3H60001KO7102G5GFA1O5G0instance"
setGetDeltaTIdentifier=

"__040VSM3H60001KO7102G5GFA1O5G0">
</application>

</suitability>
<company name="ETAS GmbH" department="ETAS/PAC-F1"

city="Stuttgart" country="Germany" />
<user lastName="Doe" firstName="John" title="Dr" ></user>
<creators>

<user lastName="Doe" firstName="John" title="Dr" ></user>
<tool kind="modeler" vendor="ETAS GmbH" name="ASCET">

<version major="6" minor="1" revision="1" ></version>
<configuration >

<option identifier="ignoreInternalMessages"
> false</option>

</configuration>
</tool>
<tool kind="codeGenerator" vendor="ETAS GmbH"

name="ASCET">
<version major="6" minor="1" revision="1" >

</version>
<mode name="experiment" value="Implementation" ></mode>
<configuration>

<option identifier="Code Generator" >
Implementation Experiment</option>

<option identifier="Target" >Prototyping</option>
...1)

</configuration>
</tool>

</creators>
<annotation>

<ix:documentation xmlns="http://www.w3.org/1999/xhtml">
<p>This is a sample module interface description file.

It is used for demonstrating an interface
description in the SCOOP-IX language.</p>
<p>Neither is its content supposed to make any sense at

all, nor has its correctness been checked by
compilation.</p>

</ix:documentation>
</annotation>

</moduleInfo>

<codeInfo>
<constitution mode="sourceCode" ></constitution>
<dateTime kind="created" year="2011" month="02" day="13"

hour="15" minute="38" second="4" ></dateTime>
<target>

1) A SCOOP-IX file contains all settings from the project properties. For documentation
purposes, only the first two are listed.
ETAS INTECRIO V5.0 | User Guide

135 | SCOOP and SCOOP-IX
<processor vendor="Motorola" model="MPC750" ></processor>
<board vendor="ETAS GmbH" model="Prototyping" ></board>
<tool kind="compiler" vendor="GNU Project"

family="GNU Compiler Collection"
name="GNU C Compiler for Embedded PowerPC target">
<configuration>

<optionKind name="macroDefine" prefix="-D" >
</optionKind>

<optionKind name="includeDirectory" prefix="-I" >
</optionKind>

<!-- ASCET specific defines -->
<option kind="macroDefine" name="EXT_INTEGRATION" >

</optionKind>

<!-- ASCET specific include directories -->
<option kind="includeDirectory">

<![CDATA[{{codeDir}}]]></option>
</configuration>

</tool>
</target>
<target >

<board vendor="ETAS GmbH" model="INTECRIO Generic
Experimental Target" >

</board>
<tool kind="compiler" vendor="GNU Project"

family="GNU Compiler Collection"
name="GNU C Compiler" >
<configuration >

<optionKind name="macroDefine" prefix="-D" >
</optionKind>

<optionKind name="includeDirectory"prefix="-I" >
</optionKind>

<option kind="macroDefine" name="EXT_INTEGRATION" >
</option>

<option kind="includeDirectory" >
<![CDATA[{{codeDir}}]]></option>

</configuration>
</tool>

</target>
</codeInfo>

<fileContainer complete="false">
<pathBase path="{{codeDir}}" ></pathBase>
<!-- model specific C files -->
<file name="_asd_pid.c" kind="body" ></file>
<file name="asdsmpm.c" kind="body" ></file>
<file name="conf.c" kind="body" ></file>
<file name="modulem.c" kind="body" ></file>
<file name="asdsmpm.h" kind="header" ></file>
ETAS INTECRIO V5.0 | User Guide

136 | SCOOP and SCOOP-IX
<file name="conf.h" kind="header" ></file>
<file name="modulem.h" kind="header" ></file>
<!-- additional files -->
<file name="ASDSimpleModel.a2l"

content="dataDescription" format="ASAM-2MC"
formatVersion="1.5" ></file>

</fileContainer>

<interface>
<modelLinkBase href="asd://

{{modelDir}}?Training/ASDSimpleModel/" >
</modelLinkBase>

<pathBase path="{{codeDir}}" ></pathBase>
<headerFile name="asdsmpm.h" ></headerFile>
<headerFile name="conf.h" ></headerFile>
<headerFile name="modulem.h" ></headerFile>
<usage layoutFamily="asd:standardLayout" ></usage>
&baseTypes-asd;

<definitions>
<conversion name="ident">

<rationalFunction>
<numerator bx="1" ></numerator>
<denominator f="1" ></denominator>

</rationalFunction>
</conversion>

</definitions>

<dataElement interfaceKind="export">
<dataCInterface identifier=

"MODULE_IMPL_ClassObj.Out1->val">
<type><typeRef name="real64" ></typeRef></type>
<fileOrigin name="MODULEM.c" ></fileOrigin>
<initValue value="0.0" ></initValue>

</dataCInterface>
<modelOrigin identifier="ASDSimpleModel.Module.Out1">

<name>Out1</name>
<modelLink href="Module.Out1" ></modelLink>
<modelLocation>

<pathNode name="Module" kind="asd:module">
<pathParameter name="asd:implementation"

value="Impl" ></pathParameter>
<pathParameter name="asd:dataSet" value="Data" >

</pathParameter>
</pathNode>
<pathNode name="Out1" kind="asd:element" >

</pathNode>
</modelLocation>
<modelKind kind="message" visibility="public">
ETAS INTECRIO V5.0 | User Guide

137 | SCOOP and SCOOP-IX
<flowDirection in="false" out="true" >
</flowDirection>

</modelKind>
<modelType type="continuous" ></modelType>
<annotation>

<ix:documentation xmlns=
"http://www.w3.org/1999/xhtml" lang="en-US">
This is output message <i>Out1</i> of

continuous type.
</ix:documentation>

</annotation>
</modelOrigin>
<implementation>

<conversionRef name="ident" ></conversionRef>
<valueRange min="-2147483648" max="2147483647" >

</valueRange>
<saturation value="true" resolution="reduce"

assignment="true" ></saturation>
<zeroExcluded value="false" ></zeroExcluded>

</implementation>
<usage measurement="true" virtual="false"

variant="false" >
<address kind="pseudo" >

<BLOB kind="KP_BLOB" device="E_TARGET" >
<![CDATA[2 1001 1 1001 1]]></BLOB>

</address>
</usage>

</dataElement>

<dataElement interfaceKind="export">
<dataCInterface identifier=

"ASDSIMPLEMODEL_IMPL_ClassObj.Module->
myProduct->val">
<type><typeRef name="sint32" ></typeRef></type>
<fileOrigin name="MODULEM.c" ></fileOrigin>
<initValue value="0" ></initValue>

</dataCInterface>
<modelOrigin identifier=

"ASDSimpleModel.Module.myProduct">
<name>myProduct</name>
<modelLink href="ASDSimpleModel.Module.myProduct" >

</modelLink>
<modelLocation>

<pathNode name="Module" kind="asd:module">
<pathParameter name="asd:implementation"

value="Impl" ></pathParameter>
<pathParameter name="asd:dataSet"

value="Data" ></pathParameter>
</pathNode>
ETAS INTECRIO V5.0 | User Guide

138 | SCOOP and SCOOP-IX
<pathNode name="myProduct" kind="asd:element" >
</pathNode>

</modelLocation>
<modelKind kind="variable" visibility="private" >

</modelKind>
<modelType type="continuous" >

<valueRange min="-2147483648.0" max="2147483647.0" >
</valueRange>

</modelType>
<annotation>

<ix:documentation xmlns=
"http://www.w3.org/1999/xhtml" lang="en-US">
This is variable <i>myProduct</i> of

continuous type.
</ix:documentation>

</annotation>
</modelOrigin>
<implementation>

<conversionRef name="ident" ></conversionRef>
<valueRange min="-2147483648" max="2147483647">

</valueRange>
<saturation value="true" resolution="reduce"

assignment="true" ></saturation>
<zeroExcluded value="false" ></zeroExcluded>

</implementation>
<usage measurement="true" virtual="false"

variant="false" >
<address kind="pseudo" >

<BLOB kind="KP_BLOB" device="E_TARGET" >
<![CDATA[2 1001 1 1000 0]]></BLOB>

</address>
</usage>

</dataElement>

<dataElement interfaceKind="export">
<dataCInterface identifier=

"ASDSIMPLEMODEL_IMPL_ClassObj.Module->myPar->val">
<type><typeRef name="real64" ></typeRef></type>
<fileOrigin name="MODULEM.c" lines="23" > </fileOrigin>
<initValue value="3.2" />

</dataCInterface>
<modelOrigin identifier="ASDSimpleModel.Module.myPar">

<name>myPar</name>
<modelLink href="ASDSimpleModel.Module.myPar">

</modelLink>
<modelLocation>

<pathNode name="Module" kind="asd:module">
<pathParameter name=

"asd:implementation" value="Impl" >
</pathParameter>
ETAS INTECRIO V5.0 | User Guide

139 | SCOOP and SCOOP-IX
<pathParameter name="asd:dataSet" value="Data" >
</pathParameter>

</pathNode>
<pathNode name="myPar"

kind="asd:element" ></pathNode>
</modelLocation>
<modelKind kind="parameter" visibility="private" >

</modelKind>
<modelType type="continuous" ></modelType>
<annotation>

<ix:documentation xmlns=
"http://www.w3.org/1999/xhtml" lang="en-US">
This is parameter <i>myPar</i> of continuous type.

</ix:documentation>
</annotation>

</modelOrigin>
<implementation>

<conversionRef name="ident" ></conversionRef>
<valueRange min="-1.e+037" max="1.e+037" >

</valueRange>
<zeroExcluded value="false" ></zeroExcluded>

</implementation>
<usage calibration="true" virtual="false"

variant="false" >
<address kind="pseudo" >

<BLOB kind="KP_BLOB" device="E_TARGET"
><![CDATA[2 1001 1 1000 1]]></BLOB>

</address>
</usage>

</dataElement>

<functionElement interfaceKind="export">
<functionCInterface identifier="MODULE_IMPL_compute">

<signature>
<return>

<type><void /></type>
</return>
<void />

</signature>
<fileOrigin name="MODULEM.c" ></fileOrigin>

</functionCInterface>
<modelOrigin identifier="Module.compute">

<name>compute</name>
<modelLink href="Module.compute" />
<modelLocation>

<pathNode name="Module" kind="asd:module">
<pathParameter name="asd:implementation"

value="Impl" ></pathParameter>
ETAS INTECRIO V5.0 | User Guide

140 | SCOOP and SCOOP-IX
<pathParameter name="asd:dataSet" value="Data" >
</pathParameter>

</pathNode>
<pathNode name="compute" kind="asd:process" >

</pathNode>
</modelLocation>
<modelKind kind="process" visibility="public" >

</modelKind>
<runTimeInfo>

<FPUUsage value="true" ></FPUUsage>
<TerminateTaskUsage value="false" >

</TerminateTaskUsage>
<messageAccess>

<message identifier=
"MODULE_IMPL_ClassObj.Out1->val" send="true" >
</message>

</messageAccess>
<resourceAccess ></resourceAccess>
<constraint>

<period value="0.01" ></period>
<execution trigger="timer" priority="0" >

</execution>
<scheduling mode="preemptive" > </scheduling>

</constraint>
</runTimeInfo>
<annotation>

<ix:documentation xmlns=
"http://www.w3.org/1999/xhtml">
This is process <i>compute</i> of module

<i>Module</i>.
</ix:documentation>

</annotation>
</modelOrigin>

</functionElement>
</interface>

</module>
ETAS INTECRIO V5.0 | User Guide

141 | Modeling Hints
7 Modeling Hints
This chapter provides an overview of the modeling philosophy of INTECRIO and
describes how the behavioral modeling tools are used in conjunction with
INTECRIO.

This chapter does not intend to provide the complete instructions for creating an
effective executable model.

7.1 Modeling for INTECRIO
If you create a model to be integrated with INTECRIO, the model itself does not
contain any target-dependent information. The configuration of the operating
system and the hardware configuration (e.g. assignment of processes to tasks or
mapping of signals to a CAN frame) are performed with INTECRIO.

A software module is the unit that can be imported in INTECRIO. It corresponds
exactly to one SCOOP-IX description. In Simulink, this unit is a complete model that
can contain any number of subsystems. As a special case, you can also generate
code for a subsystem. This is treated as if it were a complete model. In ASCET, a
complete project is considered to be the unit that can be imported. It can contain
any number of classes and modules.

Several models can be imported in INTECRIO as software modules. The inputs and
outputs can be connected with each other and with physical I/O systems. These
connections can be changed dynamically, i.e. during the running experiment. A
limitation is that these connections must be scalar. Vector connections can be
measured as a whole, but only connected element by element in INTECRIO.

Several software modules with their connections, a hardware system and an OS
configuration form a system project – the unit for which INTECRIO can generate
executable code (an *.a2l.cod file).

7.2 Modeling with Simulink®
MATLAB and Simulink connectivity (see section 5.1) supports MATLAB® and
Simulink® with versions R2016a – R2022a and their related service packs known at
the time of the INTECRIO V5.0 release.

Unsupported MATLAB and Simulink versions cannot be used to create code for
use with INTECRIO.

Model code created with MATLAB and Simulink R2006b – R2015b can still be
imported and integrated in INTECRIO V5.0.

During the installation of MATLAB and Simulink connectivity, the MATLAB and
Simulink installation is adjusted so that MATLAB and Simulink can interact with
INTECRIO.

The following functions offered by Simulink and MATLAB® CoderTM + Simulink®
CoderTM (+ Embedded Coder®) are supported:
ETAS INTECRIO V5.0 | User Guide

142 | Modeling Hints
- Almost all of the blocks supplied with Simulink

(except the blocks To File, From File, To Workspace and From
Workspace because they are not directly applicable to rapid prototyping
targets)
Only 1-D and 2-D lookup tables (but no higher-dimensional lookup tables)
can be available as curve or map CHARACTERISTIC elements in the ASAM-
MCD-2MC file.

- Different scanning times

- Single-tasking or multitasking (see Simulink documentation)

- Models containing continuous states (as well as all integration methods
with fixed step size)

- Inlining of parameters and all the remaining optimizations offered by
MATLAB Coder + Simulink Coder (+ Embedded Coder)

- The model verification blocks supplied with Simulink (model verification at
runtime)

- Full fixed-point support (any data types with random scaling)

- User-defined S functions (no inlining, wrapper inlining, full inlining)

- Models with Stateflow® diagrams

- External mode

- Referenced models

Modeling with Simulink for INTECRIO is based on the MATLAB Coder + Simulink
Coder/Embedded Coder code generation. By providing the INTECRIO Real-Time
Target (IRT) and the INTECRIO Embedded Coder Real-Time Target (IER), code
generation can be adjusted to the requirements of INTECRIO. During the installa-
tion of the MATLAB and Simulink interfacing, the path to the IRT or IER and to
INTECRIO-specific blocks are added to the MATLAB path settings of he user.

Modeling is carried out according to the instructions in the documentation of Sim-
ulink, MATLAB Coder, Simulink Coder, and Embedded Coder, only target-depen-
dent blocks of third parties must be avoided. IRT or IER must be selected as the
target for the code generation.
ETAS INTECRIO V5.0 | User Guide

143 | Modeling Hints
Details about modeling with MATLAB and Simulink and about the joint use of
MATLAB and Simulink and INTECRIO can be found in the INTECRIO section in the
MATLAB and Simulink online help viewer.

7.3 Modeling with ASCET
An ASCET project is considered to be the unit that is imported in INTECRIO. The OS
configuration can partly be performed in ASCET, although this is not mandatory.

Details about modeling with ASCET and about the joint use of ASCET and INTECRIO
can be found in the ASCET online help (V6.3 and higher) or in the INTECRIO-ASC
and ASCET-RP documentation (V6.2 and lower).

7.4 Integration of User Code
If you want to import code in INTECRIO that is written by the user, a SCOOP-IX
description must be created manually. It must contain the necessary include
instructions as well as descriptions of the processes and values that you want to
measure and calibrate.
ETAS INTECRIO V5.0 | User Guide

144 | Bypass Concept
8 Bypass Concept

8.1 ETK Bypass Concept Description
With an ETK equipped ECU, the ECU code must be prepared to set up data struc-
tures and communication with the ETK to enable communication between the
rapid prototyping system used for the ETK bypass and the ECU itself.

Independent of the ECU implementation of these drivers, some safety issues com-
mon to the concept of the bypass must be considered.

8.2 Bypass Input
Like for measurement, the Distab13 (and Distab12 for hook-based bypass) mecha-
nism is used to provide ECU variables as inputs for the bypass.

The DISplay TABle for the Distab13 contains a sorted list of addresses of variables
in the ETK Flash. 8, 4, 2 and 1 byte values are supported. The addresses are ordered
corresponding to the size of the values they point to. The ECU driver parses the
table and writes the contents of the addresses to a table of return values in the
ETK RAM. This table is ordered in the same manner as the address list: first, all 8
byte values, then the 4 byte values, etc.

With this approach, INCA and INTECRIO are given access to values of the internal
memory of the microcontroller. Also, collecting the data in a table allows using
block modes for transferring the data to the PC.

Fig. 8-1 gives an overview on the data layout for Distab13.

Fig. 8-1 Distab13 data structure

For each bypass raster that contains hooks for the hook-based bypass, an
instance of the Distab is created and a Distab process is called. For the service-
based bypass, one instance of the Distab data structure exists for each trigger
where a service is provided and configured to read ECU values as input for the
bypass calculation.

For the hook-based bypass, the number and name of Distabs implemented in the
ECU code, and their size, e.g. the number of bytes per channel, is set by the ECU
software setup and documented in the A2L description.

ETK Flash

active unused

unusedunused

of 8 bytes

of 1 bytes# of 2 bytes

of 4 bytes

address list

ETK RAM

64bit values

32bit values

16bit values

8bit values
ETAS INTECRIO V5.0 | User Guide

145 | Bypass Concept
For service-based bypass, all tables are allocated dynamically in a given working
memory.

8.3 Hook-Based Bypass

Classical
For the classical hook-based bypass, the input values of the bypass are gathered
with the same Distab13 mechanism as the measurements. After the bypass input
data is written to the ETK RAM, the bypass calculation is triggered. In addition, a
channel for writing back bypass results to the ETK where they can be retrieved by
the ECU is introduced.

For each bypass input channel, an output channel is provided. The size of these
channels, as well as their names, also have to be documented in the A2L descrip-
tion. The prototyping tool (INTECRIO, INTECRIO-RLINK or ASCET-RP) can define
the number of variables written back to the ECU, depending on the bypass experi-
ment setup. Each variable written to by the bypass must be prepared in the ECU
software by applying a hook to prevent the ECU from writing to this value if the
bypass is active. The hook code is specific to the ECU and the variable it is applied
to. No service is provided within this sample implementation for this task. The val-
ues prepared have to be documented in the A2L file by an IF_DATA
ASAP1B_BYPASS description.

The following figure describes the hook-based bypass principle. The hook indi-
cates the possibility to toggle between the results of the original function (Fn) and
the bypass function (Fn*).

Fig. 8-2 Hook-Based Bypass: Principle

With Distab17
In connection with Distab17, the concept of service point configuration extends to
the hook-based bypass. In this case, the hook-based bypass (HBB) is integrated
with the service-based bypass (SBB): For hooked service points, the new signal
values calculated in the rapid prototyping system are transferred to the ECU soft-
ware by dedicated hook codes in the ECU functions instead of generically in a ser-
vice point write action. Hooked service points are supported as of Distab17.

D
is

ta
b

Fn*

aFn
hook

time

ECU

Bypass
ETAS INTECRIO V5.0 | User Guide

146 | Bypass Concept
- In the following illustration, Fn denotes the original function that runs on the
ECU.

Fig. 8-3 Bypass with hooked service points

- Prior to the execution of the original function that runs on the ECU, hooked
service points can be used to receive data from the ECU to the rapid proto-
typing system via a read or receive pre-action. The associated hook codes
are usually implemented at the end of the original function. The hooks
receive their source (i.e. SOURCE_ID) and offset (i.e. BUFFER_OFFSET)
information from the associated hook labels.

- During the execution of the original function in the ECU, the rapid prototyp-
ing system writes data to a double-buffered send data table that can be
accessed by these hooks in the original function. The two buffers are used
alternately. Either the resulting bypass value or the value calculated inter-
nally by the original function is used.

8.4 Service-Based Bypass

For the service-based bypass, both the input values and the output values of the
bypass function are transmitted with the same Distab13 mechanism. After the
bypass input data is written to the ETK RAM, the bypass calculation is triggered. In
addition, a channel for writing back bypass results to the ETK where they can be
retrieved by the ECU is introduced. Here, each bypassed ECU process uses and
calls its own Distab.

This service also contains an inverted Distab mechanism to write back bypass out-
puts to the ECU. The ECU does not need to apply hooks to the variables written to,
since the service simply overwrites the values with the bypass outputs. INTECRIO
sets up a Distab-like sorted address table with the addresses of the ECU variables

NOTE
Service-based bypass on an ETK with 8 Mbit/s is not supported.

Rapid-Prototyping System

ECU

Hook labels

SOURCE_ID
BUFFER-OFFSET

Send data table

Buffer 1
Buffer 2

Fn
bypass value

internally calculated
value

hooked
service
point

r
pre action
ETAS INTECRIO V5.0 | User Guide

147 | Bypass Concept
to be written to, and writes the corresponding values in a table of the ETK Flash.
The part of the ECU service that writes the bypass outputs to the ECU parses the
address table and gets the corresponding values from the data table and writes
the values to the ECU addresses.

The following figure describes the service-based bypass principle.

Fig. 8-4 Service-Based Bypass: Principle (The dashed line indicates that
bypass data can be written back at a later time as well.)

INTECRIO V5.0 supports several versions of service-based bypass (SBB). Tab. 8-1
lists the supported SBB versions for each target (+: supported, –: not supported),
and Tab. 8-2 lists the AML versions available in the SBB versions.

Tab. 8-1 Supported SBB versions

Tab. 8-2 SBB versions and AML versions

SBB V2.0 SBB V2.1 SBB V3.*
ES 910.2 / supported ETKs + + –
ES 910.3 / supported ETKs + + +
ES 8xx / supported ETKs + + +

NOTE
Service-based bypass on an ETK with 8 Mbit/s is not supported.

SBB version supported AML versions supported Distab types
V2.0 + V3.0 ETK AML 1.2.0 – 1.7.0 Distab13 - Distab16

XETK AML ≥ 1.0.0
SBB AML ≥ 2.0.0

V2.1 ETK AML not supported Distab17
XETK AML ≥ 2.0.0
SBB AML ≥ 3.1.1

V3.1 ETK AML not supported Distab17
XETK AML ≥ 2.0.0
SBB AML ≥ 3.1.0

r /
 w

Fn*

Fn r /
 w

time

ECU

Bypass
ETAS INTECRIO V5.0 | User Guide

148 | Bypass Concept
8.5 Bypass Safety Considerations
With calculating a bypass function on a rapid prototyping system and feeding data
back into the ECU, the same care needs to be taken for development and use of
bypass software as for ECU software. The bypass output may directly or indirectly
influence the output channels of the ECU. The same applies, of course, if the rapid
prototyping system uses own output channels.

Thus, it is highly recommended that the bypass functions include range checks
and validations algorithms for the bypass outputs.

8.5.1 Bypass Input Data
To perform proper calculations, the bypass obviously needs consistent and valid
input data. The ECU software must ensure this and prevent activation of the
bypass if the ECU software detects incorrect or invalid inputs. This also includes
ECU states like initialization and afterrun, or error modes the ECU might run in. In
other words, activation of and data transfer to the bypass must be covered by the
safety mechanisms of the ECU.

8.5.2 Bypass Calculation
The ECU software must be aware whether the bypass is active and must provide
measures to react on bypass failures, for example missing calculations or unex-
pected shut off of the bypass system.

Failsafe measures might be using the alternative output values of the bypassed
ECU functions, using constant fallback values, or even resetting the ECU, depend-
ing on the bypassed ECU function. This is entirely under responsibility of the ECU
provider who integrates the bypass drivers.

Some implementations of the ECU bypass drivers, as for the service-based
bypass, allow the deactivation of the bypassed ECU function by the bypass user.
In this case, the results of the bypassed ECU function obviously cannot be used as
fallback. This must be considered when setting up a safety strategy.

8.5.3 Bypass Output Data
The ECU provider must guarantee that any value sent back by the bypass system
leads to a predictable behavior of the ECU – the bypass output values must
undergo the same range check and validation as the values calculated within the
bypass.

As said before, the implementation of the ECU drivers must, in any case, ensure
that bypass failures can be detected by the ECU and valid and safe fallback values
are available at any time.

8.5.4 Message Copies
If the ECU software contains message copies, the bypass must be aware of them.

The usual implementations of the hook-based bypass are an exception to that
rule. Here, the hooks (and thus the messages written to) are known before compi-
lation, so that the hook code can take care of and use message copies if needed—
individual code and addresses are used at each hook.
ETAS INTECRIO V5.0 | User Guide

149 | Bypass Concept
With the service-based bypass, users cannot choose variables and decide which
message to write to before they set up the bypass experiment in INTECRIO. Thus,
the services in the ECU are generic code and do not know about specific message
copies.

This requires two steps:

A The ECU software provider must provide this message copy information in
the A2L file (usually in encrypted and password-protected form).

B If the message copy information is encrypted, the user of the bypass sys-
tem receives a password from the ECU software provider. He must enter this
password to decrypt the information and use it for system configuration.

If one of these two steps is missing (usually a wrong password is entered), the
bypass system has no knowledge of message copies and reads from / writes to
the original variable address, as it is declared in the MEASUREMENT declaration of
the A2L file. For receive variables, this yields old data values. For send variables, the
data value written by the bypass model may be overwritten by other parts of the
ECU software. Both cases may cause bypass malfunction!

Another principal problem can arise with ECU software that contains message
copies. The original code to create the message copies for an ECU task was based
on the given message usage and generated appropriate code. By writing variable
values into the ECU via bypass methods, the data flow changes, and a new or dif-
ferent message copy may become necessary. This can result in wrong variable val-
ues in the ECU software even at locations which are not directly related to the
bypassed functions. Whether writing to a certain variable at a certain location (e.g.
service point) may be dangerous or not, can be answered only by the ECU soft-
ware supplier. This information cannot be declared in the A2L file.

8.6 Service-Based Bypass Specifics
Unlike the hook-based bypass where either the ECU or the bypass writes to the
bypassed variable, the service-based bypass has an inherent possibility of data
inconsistency, since both the ECU and the bypass write to the same value con-
secutively. Due to ECU real-time constraints, interrupts cannot be disabled to pro-
tect the sequence of writing the results of the ECU function and then writing the
variable values of the bypass.
ETAS INTECRIO V5.0 | User Guide

150 | Bypass Concept
So, if a preemptive task of higher priority interrupts the tasks containing the
bypass service, it will see the ECU value instead of the bypass value. The probabil-
ity of this inconsistency depends on the distance between the two writes.

Fig. 8-5 Possible data inconsistency (the small arrows () indicate a waiting
time for bypass results)

A countermeasure to this problem is disabling the ECU function, so that only the
bypass is writing to the bypassed ECU values (see below). Be aware that disabling
the ECU function implies other safety constraints in case of bypass failures as dis-
cussed below.

8.6.1 Service Processes for the SBB Implemented as Service Functions
For SBB, the way of ECU implementation is to replace the ECU process to be
bypassed by a container process that contains service function calls before and
after it calls the original ECU process. This allows to call the ECU process under
certain conditions only, e.g. to deactivate it in case of possible data consistency
problems. To simulate the timing behavior of the disabled ECU process, a delay
time can be configured.

Therefore, the suggested ECU implementation looks like this:

Fig. 8-6 Suggested SBB implementation

For setting up the bypass experiment in INTECRIO and implementing the service
point in the ECU software as container process, a service point is defined as

Fn*

time

ECU

Bypass

Interrupting task

r /
 w Fn r /
 w

r /
 w

Fn*

Fn r /
 w

time

ECU

Bypass
ETAS INTECRIO V5.0 | User Guide

151 | Bypass Concept
A receiving data from the ECU (pre read action),

B waiting for data to be sent (a time-out is defined),

C sending data to the ECU (pre write action),

D conditionally executing the original ECU process,

E receiving data from the ECU (post read action),

F waiting for data to be sent (a time-out is defined),

G sending data to the ECU (post write action).

Each pre and post action can be freely configured or activated / deactivated.

8.6.2 Controlling the ECU Behavior from INTECRIO
Upon setting up the INTECRIO experiment, an initial setting of the control variables
can be done in INTECRIO. These values are written to the ETK on experiment initial-
ization.

The ECU function can be controlled by the INTECRIO user in several ways (if the
ECU drivers also provide this functionality):

- The ECU function can be deactivated in the service point editor of INTECRIO
(column, see Fig. 8-7)

- The detection of a bypass error can be defined

- The bypass error behavior of the ECU code can be influenced

Fig. 8-7 Controlling ECU function execution from INTECRIO
(The columns "Cluster Group" and "Cluster" are only available for SBB
V3.*. The "Raster Usage" display is only available for SBB V2.*.)

8.6.3 OS Configuration for Service-Based Bypass V3
This section explains some ways how to configure the operating system for a sys-
tem project with service-based bypass V3.

8.6.3.1 Restrictions
The following restrictions are valid for OS configuration of a system project with
service-based bypass V3:
ETAS INTECRIO V5.0 | User Guide

152 | Bypass Concept
- A read action (represented by a receive signal group,) is allowed only in
an INTECRIO software task where the read action is mapped both as action
and as event.

Since an event can be mapped to only one task, this means that a read
action can be mapped to only one INTECRIO software task.

- Read actions cannot be assigned to timer, init, or exit tasks, or ISR.

- Up to 247 read actions (255 minus 8 reserved for internal use) can be used
per INTECRIO task priority and thus per ETK trigger.

- The currently used RTA-OSEK restricts the number of tasks available for ser-
vice-based bypass to a maximum of 253 (the total number of available tasks
is 256, and 3 system-internal tasks are necessary in any case).

- No restrictions apply to write actions (represented by send signal groups,
).

• Write actions can be mapped to all kinds of tasks (software, timer, init,
exit, ISR).

• A single INTECRIO task can contain write actions from different service
points in different service point clusters.

Fig. 8-10 shows an example for an INTECRIO task that contains one read action and
several write actions from various ECU tasks.

8.6.3.2 Classical ECU Function Bypass
In a classical ECU function bypass, the pre read action and the post write action of
a service point are activated. Both actions are mapped to the same INTECRIO task.

Fig. 8-8 Example: classical bypass

To achieve this kind of OS configuration, the following steps are required:

A Use the Auto Mapping feature of the OSC as a starting point.

With that, actions from different service points are mapped to different
software tasks, and appropriate events are assigned. Software processes
are mapped to timer, init or exit tasks.

B In the OSC, move the software processes that replaces the ECU function of
a certain service point to the INTECRIO software task that contains read and
write action of that service point.

C Remove empty tasks from the OS Configuration (optional).

Read_F1
F1'
Write_F1

SW task A

EC
U

pre
F1

post

SP 1

IN
TE

C
R

IO

F3

SP 3

SW task B

Read_F3
F3'
Write_F3

SP 2 SP 4

F2 F4
ETAS INTECRIO V5.0 | User Guide

153 | Bypass Concept
Fig. 8-9 OS configuration for a classical ECU function bypass

8.6.3.3 Bypass of an Entire ECU Functionality
One INTECRIO task may contain pre and post write actions from different service
points and ECU tasks. This can be used to bypass the entire ECU functionality
(consisting of several processes in different ECU tasks), which minimizes the
number of interrupts and thus latency. Read signals are not updated while the task
runs on the rapid prototyping target. Partial results are sent to the ECU as fast as
possible to ensure the currency of the values of other functions.
ETAS INTECRIO V5.0 | User Guide

154 | Bypass Concept
In the example shown in Fig. 8-10, service points SP 1 and SP 2 belong to a high-
priority ECU task A. Service point SP 3 belongs to a medium-priority ECU task B.
Service point SP n belongs to a low-priority ECU task C. The read action of SP 1 and
the write actions of all service points are assigned to the same INTECRIO software
task.

Fig. 8-10 Example: Bypass of an entire ECU functionality

To achieve this kind of OS configuration, the following steps are required:

A Use the Auto Mapping feature of the OSC as a starting point.

With that, actions from different service points are mapped to different
software tasks, and appropriate events are assigned. Software processes
are mapped to timer, init or exit tasks.

B In the OSC, move the write actions (i.e. send signal groups) from the fastest
timer task, where they were mapped automatically, to the INTECRIO soft-
ware task that contains the read action of SP 1.

You may use the "Hardware" tab of the OSC to search for a particular signal
group, and the Search context menu of the group to locate it in the OS con-
figuration tree view.

C Move the software processes to the same INTECRIO software task as the
write actions.

You may use the "Software" tab of the OSC to search for a particular pro-
cess, and the Search context menu of the process to locate it in the OS
configuration tree view.

D Remove empty tasks from the OS Configuration (optional).

Read_F1
F1'
Write_F1
F2'
Write_F2
F3'
Write_F3

Fn
Write_FnIN

TE
C

R
IO

EC
U ECU task A

ECU task B

ECU task C

F1 F2

Fn

F3
SP 1 SP 2

SP 3

SP n

SW task
ETAS INTECRIO V5.0 | User Guide

155 | Bypass Concept
Fig. 8-11 OS configuration for the bypass of an entire ECU functionality

8.6.3.4 Read and Write Actions of the Same Service Point in Different Ras-
ters
The read action and the write action of the same service point can be configured
independently, they can be assigned to different tasks with different events or
periodicities.

Fig. 8-12 shows two examples. On the left (A), a higher-priority model task is
assigned a higher ETK raster priority for the write action. On the right (B), a lower
priority model task is assigned a lower ETK raster priority for the write action.

Fig. 8-12 Examples: Read and Write actions in different rasters

To achieve this kind of OS configuration, the following steps are required:

A For a given service point, activate one read action and a write action after
the read action.

B Manual configuration:

• Create a software task with appropriate priority, assign the read action
to the Actions folder and the event of the read action to the Events
folder of this task.

IN
TE

C
R

IO

Read_F1
...

...
Write_F1

...
Write_F1

Read_F1
...

EC
U

F1

Service Point

F1

Service Point

INTECRIO
task priority higher task priority 

higher ETK raster priority

lower task priority 
lower ETK raster priority

(A) (B)
ETAS INTECRIO V5.0 | User Guide

156 | Bypass Concept
• Create another task (e.g., a timer task) with appropriate priority and
assign the write action to the Actions folder of this task.

Or
C Use the Auto Mapping feature of the OSC as a starting point:

• Perform Auto Mapping.
Auto Mapping maps both actions of the service point to the same soft-
ware task.

• Move the write action to the INTECRIO task you want to use.
D Map the software processes to appropriate tasks.

E Remove empty tasks from the OS Configuration (optional).

Fig. 8-13 OS configuration (incomplete) for a bypass with read and write actions
of a service point in different tasks

8.6.3.5 ECU-Synchronous Write-Back
The idea of ECU-synchronous write-back is to calculate results at the earliest pos-
sible stage on the rapid prototyping system (E-target) so it can be retrieved by the
ECU at the right point-in-time.

Fig. 8-14 illustrates how service points can be used for ECU-synchronous write-
back. Following the pre-action Read_F1 of service point SP 1, the result, F3', is avail-
able in the rapid prototyping system, but not in the ECU. At the right point in time,
ETAS INTECRIO V5.0 | User Guide

157 | Bypass Concept
service point SP 3 fetches F3' and writes the result to the ECU as F3. Note that the
(Read_F3) action is a "dummy" action that merely serves to release the ETK chan-
nel, and that no signal has to be selected for that dummy signal group.

Fig. 8-14 Example: ECU-synchronous write-back

To achieve this kind of OS configuration, the following steps are required:

A Use the Auto Mapping feature of the OSC as a starting point.

With that, actions from different service points are mapped to different
software tasks, and appropriate events are assigned. Software processes
are mapped to timer, init or exit tasks.

B In the OSC, move the F3’ software process to the INTECRIO software task
assigned to the read action of SP 1.

C Remove empty tasks from the OS Configuration (optional).

Fig. 8-15 OS configuration (incomplete) for a bypass with read and write actions
of a service point in different tasks

For SBB V3 and higher, the results of OS mapping and trigger assignment in the
build process are reported in an XML log file. The file is stored in the workspace log
directory, it is named <system name>_ETKSBBV3_TriggerInfo.xml.

Read_F1
...
F3'

SW task A
EC

U

pre
F1

post

SP 1

IN
TE

C
R

IO

SP 3

SW task B

(Read_F3)

Write_F3

F3
ETAS INTECRIO V5.0 | User Guide

158 | Bypass Concept
This file lists, for each service-point action used in the system project, the name
(TASKNAME) and priority (TASKPRIO) of the task where the signal group is exe-
cuted, as well as number (TRGNUMBER) and priority (RASTERPRIO) of the ETK trig-
ger with which the signal group data will be transferred.

Example:

<TriggerInfo
SIGNALGROUPNAME=

"ETK_Bypass.MySP_1.MySP_1_before_receive_from_ECU"
RASTERPRIO="8"
TASKNAME="M_ETK_Bypass_MySP_1_before_re"
TASKPRIO="195"
TRGNUMBER="28"
TRGFLAGADDR="a303efb8"
RAID="1"/>

This information is useful if the bypass system must be debugged.

8.6.4 Summary
The implementation and integration of the ECU drivers must take care of the fol-
lowing:

- As the service-based bypass only overwrites ECU values with bypass values
without preventing the ECU from writing these values, there is a possibility
of data inconsistency which can lead to unpredicted behavior of the ECU.

- INTECRIO provides a configuration variable to set the maximal number of tol-
erated lost cycles, e.g. how many ECU calculation cycles without receiving
bypass values are tolerated before this is regarded as an error. But it is up to
the provider of the ECU software to make sure missing bypass output values
are detected.

- INTECRIO provides a configuration variable to set a specific error behavior (if
also supported by the ECU implementation). But it is up to the provider of
the ECU software to make sure bypass failures or bypass deactivation can
be detected by the ECU software! The configuration setting in the INTECRIO
GUI can then be used to choose between different provided error behaviors
in the ECU.

- INTECRIO allows disabling the bypassed ECU process. In this case, no ECU
values can be used as fallback values for bypass failures! It is up to the pro-
vider of the ECU software to make sure sensible data is written to the vari-
ables if both the ECU process and the bypass is disabled.
ETAS INTECRIO V5.0 | User Guide

159 | Contact Information

ETAS INTECRIO V5.0 | User Guide

9 Contact Information

Technical Support
For details of your local sales office as well as your local technical support team
and product hotlines, take a look at the ETAS website:

 www.etas.com/hotlines

ETAS Headquarters
ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com
https://www.etas.com/hotlines
https://www.etas.com/hotlines

160 | Glossary
10 Glossary
This glossary contains explanations of the technical terms and abbreviations used
in the INTECRIO documentation. While many terms are also used in a more general
sense, this glossary specifically addresses the meaning of those terms as they are
applied to INTECRIO. The terms are listed in alphabetical order.

10.1 Abbreviations
API

Programming interface for the application developer (Application
Programming Interface).

ASAM-MCD
Working Group for Standardizing Automation and Measuring Systems,
including the Working Groups Measuring, Calibrating, and Diagnostics (Ger-
man: Arbeitskreis zur Standardisierung von Automations- und
Messsystemen, mit den Arbeitsgruppen Messen, Calibrieren und Diagnose)

ASAM-MCD-2MC
A file format used to describe the calibration variables and measured signals
contained in the control unit software, and additional specific information
designed to parameterize the experiment interface. ASAM-MCD-2MC is
used to import the information required for this into an experiment (A2L file).
INTECRIO V5.0 supports the ETK AML versions 1.1 (only hook-based bypass)
or 1.2 – 1.7 (hook-based and service-based bypass), XETK AML versions up to
2.5, ASAP1B_Bypass AML V1.0 and higher, and SBB AML versions 2.0, 3.0 and
3.1.
For further information, refer to https://www.asam.net.

ASCET
ETAS product family for the development of electronic control unit software.
ASCET models can be imported in INTECRIO.

ASCET-MD
ASCET Modeling & Design – the behavioral modeling tool of the ASCET prod-
uct family.

ASCET-RP
ASCET Rapid Prototyping – the rapid prototyping tool of the ASCET product
family.

AUTOSAR
Automotive Open System Architecture; see https://www.autosar.org/

BMT
Behavioral Modeling Tool. The BMT can be used to edit, simulate and ani-
mate the behavior of models and generate the function code.

BR_XETK
Emulator test probe (ETK) with Automotive Ethernet interface.
Requires an ES800 hardware system with ES882/ES886.

BSW
Basic software; provides communications, I/O, and other functionality that
all software components are likely to require.
ETAS INTECRIO V5.0 | User Guide

https://www.asam.net
https://www.autosar.org/

161 | Glossary
CAN
Controller Area Network; a robust vehicle bus standard designed to allow
microcontrollers and devices to communicate with each others' applica-
tions without a host computer.

CANdb
CAN database; CAN description file created with the CANdb data manage-
ment program made by the company Vector Informatik.
INTECRIO V5.0 supports the CANdb versions V2.3 and higher.

CPU
Central Processing Unit. In the context of INTECRIO, this refers to a single
microcontroller.

Distab
Data exchange method, used in ETK bypass experiments for data exchange
between experimental target and ECU.
INTECRIO V5.0 supports hook-based bypass with Distab 12 and higher (XETK
AML: Distab 13), as well as service-based bypass with Distab 13.
In combination with ES830 or ES910.3, INTECRIO V5.0 supports also bypass
with Distab 17.

ECU
Electronic Control Unit; a small embedded computer system that consists
of a CPU and the associated periphery, where everything is usually located
in the same housing.

ETK
emulator test probe (German: Emulator-Tastkopf)

FETK
emulator test probe (ETK) for the ETAS ES89x ECU and Bus Interface Mod-
ules

FIBEX
Field Bus Exchange – an exchange format based on an XML schema which is
used for descriptions of the complete in-vehicle communication network.
FIBEX is defined for various network types (CAN, LIN, MOST, FlexRay) and
contains information about bus architecture, signals, properties of network
nodes, etc.
The FIBEX file format is standardized by ASAM (Association for Standardiza-
tion of Automation and Measuring Systems).
INTECRIO V5.0 supports the FIBEX baseline versions FIBEX V2.0.x and V3.1.0;
the latter with some restrictions (see the online help for details).
For further information, refer to https://www.asam.net.

FIFO
First in, first out

HBB
hook-based bypass

HC
Hardware Configurator

IER
INTECRIO Embedded Coder Real-Time Target (Embedded Coder real-time
target for importing Simulink models in INTECRIO)
ETAS INTECRIO V5.0 | User Guide

https://www.asam.net

162 | Glossary
INCA
ETAS measuring, calibration and diagnostics system (Integrated Calibration
and Acquisition Systems)
For cooperation with INTECRIO V5.0.4, you need INCA V7.2.17 or higher.

INCA-EIP
INCA add-on; allows access to the rapid prototyping (ES910, ES830) and vir-
tual prototyping (VP-PC) targets for INCA.
For cooperation with INTECRIO V5.0.4, you need INCA-EIP V7.2.17 or higher.

INTECRIO-RP
INTECRIO Rapid Prototyping package – provides connectivity to the rapid
prototyping targets.

INTECRIO-VP
INTECRIO Virtual Prototyping package – provides connectivity to the virtual
prototyping targets.

IRT
INTECRIO Real-Time Target (Simulink Coder real-time target for importing
Simulink models in INTECRIO)

LDF
LIN description file – a configuration file for a LIN controller.
INTECRIO V5.0.4 supports the LDF versions 1.3, 2.0, 2.1, and 2.2.

LIN
Local Interconnect Network; a serial network protocol used for communica-
tion between components in vehicles.
LIN is used where the bandwidth and versatility of CAN are not needed. Typ-
ical application examples are the networking within the door or the seat of a
motor vehicle.

LSB and lsb
Least Significant Byte (capital letters) or bit (small letters)

MDA

Measure Data Analyzer program; an offline instrument by ETAS for display-
ing and analyzing saved measurement data.

MSB and msb
Most Significant Byte (capital letters) or bit (small letters)

OIL
OSEK Implementation Language – as describing language for electronic
control unit networks, it is an indirect part of the OSEK operating system. OIL
is used to describe static information of the electronic control unit network,
such as communication connections and electronic control unit properties.

OS
Operating System

OSC
OS configurator (Operating System Configurator)

OSEK
Working group for Open Systems for Electronics in Motor Vehicles (German:
Offene Systeme für die Elektronik im Kraftfahrzeug)
ETAS INTECRIO V5.0 | User Guide

163 | Glossary
PDU
Protocol data unit; a data unit that contains payload and control information
which is passed between the layers in a protocol stack.
In INTECRIO V5.0, a FlexRay PDU corresponds to a signal group.

RE
Runnable entity; a a piece of code in an SWC that is triggered by the RTE at
runtime. It corresponds largely to the processes known in INTECRIO.

RP
Rapid prototyping; see also page 166

RTA-OSEK
ETAS real-time operating system; implements the AUTOSAR-OS V1.0 (SC-1)
and OSEK/VDX OS V2.2.3 standards and is fully MISRA compliant.

RTA-OS
ETAS real-time operating system; implements the AUTOSAR R3.0 OS and
OSEK/VDX OS V2.2.3 standards and is fully MISRA compliant.

RTA-RTE
AUTOSAR runtime environment by ETAS

RTE
AUTOSAR runtime environment; provides the interface between software
components, basic software, and operating systems.

RTIO
Real-Time Input-Output

SBB
Service-based bypass

SBC
Electrohydraulic brake system (Sensotronic Brake Control)

SCOOP
Source Code, Objects, and Physics

SCOOP-IX
SCOOP Interface Exchange language.
INTECRIO V5.0 supports SCOOP-IX versions V1.0, V1.1, V1.2, V1.4, and V1.5.

SP
Service point; see also Page 167

SWC
Atomic AUTOSAR software component; the smallest non-dividable soft-
ware unit in AUTOSAR.

UDP
User Datagram Protocol

UML
Unified Modeling Language

VFB
Virtual function bus in AUTOSAR

VP
Virtual prototyping; see also page 167
ETAS INTECRIO V5.0 | User Guide

164 | Glossary
XCP
Universal measurement and calibration protocol; the x generalizes the vari-
ous transportation layers that can be used. The long name is ASAM MCD-1
XCP.
INTECRIO V5.0 supports XCP version V1.0 and all subsequent versions which
are compatible with V1.0. In addition, the XCPplus keyword from V1.1 and
higher is supported.

XETK
emulator test probe (ETK) with Ethernet interface

XML
Extensible Markup Language

10.2 Terms
Actuator

Executing hardware unit. It forms the physical interface between electronic
signal processing and mechanics.

Application mode
An application mode is part of the operating system; it describes different
possible states of a system, such as the application mode EEPROM pro-
gramming mode, starting or normal operation.

AUTOSAR software component
see SWC

Basic software
see BSW

Bypass experiment
In a bypass experiment, parts of an electronic control unit program are exe-
cuted on the experimental target (ES900, ES800). This requires a special
hook in the code.
INTECRIO V5.0 supports several types of bypass experiments: XCP bypass
on CAN or UDP, as well as hook-based and service-based ETK/XETK/FETK
bypass.

Connection, dynamic
Connection between signal source and sink that can be changed at runtime
without a new build process.

Connection, static
Connection between signal source and sink that cannot be changed at run-
time.

Crossbar
Manages and controls the connections between modules, functions and
hardware in a non-AUTOSAR environment.

Embedded Coder®
An add-on for the Simulink® CoderTM; extends the capabilities provided by
the Simulink Coder to support specification, integration, deployment, and
testing of production applications on embedded targets.
ETAS INTECRIO V5.0 | User Guide

165 | Glossary
Environment system
Environment systems are used to model the plant model for virtual proto-
typing. They are built out of modules and functions, the same way as soft-
ware systems.

Event
An event is an (external) trigger that initiates an action of the operating sys-
tem, such as a task.

Event interface
see Process

FlexRay
FlexRay is a scalable and fault tolerant communication system for high-
speed and deterministic data exchange. FlexRay’s time-division multiplex-
ing facilitates the design of modular or safety-related distributed systems.
Its high bandwidth of 10 MBaud on two channels helps to cope with the high
network load caused by the increasing amount of innovative electronic sys-
tems in modern vehicles.
The communication system’s specifications are released by the FlexRay
consortium which is widely supported by vehicle manufacturers and suppli-
ers worldwide.

Fullpass experiment
In a fullpass experiment, the complete electronic control unit program is
executed on the experimental target.

Function
A grouping object for software systems that does not feature its own func-
tionality. Modules or functions are assembled and connected in a function;
they are thus clearly arranged and can be easily reused.

Graphical framework
The window that displays after the start of INTECRIO. The different
INTECRIO components are integrated in the graphical framework.

Hardware system
A hardware system contains the complete description of a hardware topol-
ogy, consisting of the descriptions of the associated ECUs (experimental
targets) as well as the descriptions of the interfaces (bus systems)
between the devices.

Implementation
An implementation describes the conversion of the physical task definition
(of the model) into executable fixed-point code. An implementation con-
sists of a (linear) conversion formula and a limiting interval for the model val-
ues.

Integration
The convergence of model code, which may have been developed by differ-
ent partners or with different tools, to control algorithm, the configuration of
this algorithm for the hardware on which it is supposed to run, and finally the
creation of an executable file.

INTECRIO
INTECRIO is a tool that combines, i.e. integrates, the parts of the control
algorithm created with different behavioral modeling tools that allows for
creating and configuring a hardware system and the connection of this
hardware system with the control algorithm.
ETAS INTECRIO V5.0 | User Guide

166 | Glossary
legacy AUTOSAR module
AUTOSAR module imported with INTECRIO V5.0.0 or older.

MATLAB®

High-performance language for technical calculations; contains mathemat-
ical calculations, visualization and programming in one environment.

MATLAB® CoderTM

Code generator for MATLAB code.
Module

A module in INTECRIO contains the generic description of a functionality for
an electronic control unit. For example, it corresponds to an ASCET project
or a Simulink model.

OS configurator and OSC
The task of the operating system configuration is carried out within
INTECRIO the OS configurator and the OSC editor. The OSC is part of the OS
configurator, an easy to handle editor for the operating system configura-
tion that provides the user with a quick overview of the system and allows
for editing the configuration in an application-oriented display.

Process
A process is a simultaneously executable functionality that is activated by
the operating system. Processes are specified in modules and do not fea-
ture any arguments/inputs or result values/outputs.

Processor
see CPU

Project Configurator
The project configurator is part of the integration platform of INTECRIO. It is
used to specify software systems and system projects.

Project Integrator
The project integrator combines all the components of the system (mod-
ules and functions, hardware interfacing, OS configuration, etc.) into an
executable file.

Prototype
Completely executable file for an experimental target system. Such a proto-
type shows the software functions in practical use – entirely with different
goal directions and in a different appropriation.

Rapid prototyping
The execution of a software on an experimental target, i.e. a computer with
an interface to the vehicle.

RTA-Trace
Discontinued software tracing tool that can monitor system behavior over a
versatile interface to the ECU. Existing installations can still be used.

Runnable entity
see RE

Runtime environment
see RTE

Sensor
Sensors convert a physical or chemical (usually nonelectrical) quantity into
an electrical quantity.
ETAS INTECRIO V5.0 | User Guide

167 | Glossary
Service point
A service point is an encapsulation of a process in the ECU software. It pro-
vides data transfer actions to and from the target system; these actions can
be enabled and configured by the user.

Service point cluster
A group of service points that are executed in the ECU with the same priority
(service points located in the same ECU task).

Service point cluster group
A group of service point clusters. The group contains all service points of all
tasks that can potentially be invoked at the same time in the ECU.

Simulink®

Tool for modeling, simulation and analysis of dynamic systems. The models
can be imported in INTECRIO.

Simulink® CoderTM

Code generator for Simulink and Stateflow models. Requires the MATLAB®
CoderTM.

Stateflow®
Tool for modeling and simulation of complex event-controlled systems. It is
seamlessly integrated in MATLAB and Simulink.

Software system
A software system contains the generic parts of the ECU description: mod-
ules, functions and connections.

System project
A system project combines a hardware system, a software system, an envi-
ronment system (if applicable), the mapping of the signals and the configu-
ration of the operating system in a common project and allows for the
generation of executable code.

Task
A task is an ordered collection of processes that can be activated by the
operating system. Attributes of a task are its application modes, activation
trigger, priority and modes of its scheduling. Upon activation, the processes
of the task are executed in the specified order.

Validation
Process for the evaluation of a system or a component with the purpose of
determining whether the application purpose or the user expectations are
met. Therefore, the validation is the check whether the specification meets
the user requirements, whether the user acceptance is reached by a func-
tion after all.

Verification
Process for evaluating a system or a component with the purpose of deter-
mining whether the results of a given development phase correspond to the
specifications for this phase. Therefore, software verification is the check
whether an implementation of the specification specified for the respective
development step is sufficient.

Virtual prototyping
Function developers create virtual prototypes of electronic vehicle func-
tions and test them on the PC.
ETAS INTECRIO V5.0 | User Guide

168 | Glossary
Workspace
The workspace combines all the data generated while working with
INTECRIO. From the WS browser, i.e. the tree view of the workspace, you can
call up all the components of INTECRIO.

X-Pass experiment
Mixture of bypass and fullpass experiment. The experimental target
(ES900, ES800) utilizes the ECU with bypass hooks as interface to the out-
side world.
ETAS INTECRIO V5.0 | User Guide

169 | Figures

Figures

Fig. 3-1 INTECRIO – Overview . 11

Fig. 3-2 Overview of the development of electronic systems .12

Fig. 3-3 Functions and electronic control units per vehicle (in The Need for Systems
Engineering. An Automotive Project Perspective, Key Note at the 2nd European
Systems Engineering Conference, Munich, H.-G. Frischkorn, H. Negele,
J. Meisenzahl) .13

Fig. 3-4 Responsibilities of car manufacturers and suppliers. The interfaces entered
(dot-dash-lines) are examples. .15

Fig. 3-5 Design of the electrohydraulic brake (in Konventionelle und elektronische
Bremssysteme, Robert Bosch GmbH (ed.), Stuttgart, 2002) .16

Fig. 3-6 Schematic representation of control/closed-loop control and tracing systems . . . 17

Fig. 3-7 Architecture of an electronic control unit description .18

Fig. 3-8 Electronic control unit description: Overview (INTECRIO view) .19

Fig. 3-9 Functional software: Details .19

Fig. 3-10 Module/SWC: Schematic design (external view) and connection 20

Fig. 3-11 Modules: schematic internal view . 20

Fig. 3-12 Module: ASCET example .21

Fig. 3-13 Module: Simulink® example .21

Fig. 3-14 Internal view and component view of a module (dashed: descriptions;
solid: implementations) . 22

Fig. 3-15 System project (electronic control unit description) and INTECRIO
components . 23

Fig. 3-16 Top: During simulation in scaled time, slow motion timing or fast forward timing
can be achieved (within the limits of model complexity and computational
power).
Bottom: In a simulation with adaptive time, complex models can be executed
at the fastest possible speed (i.e., the least possible computation time). 25

Fig. 3-17 V cycle and INTECRIO . 26

Fig. 3-18 INTECRIO – Scheme of the interface . 27

Fig. 3-19 Folder structure: workspace . 28

Fig. 3-20 Folder structure: hardware systems . 28

Fig. 3-21 Folder structure: software systems and environment systems 29

Fig. 3-22 Folder structure: system project (objects marked with * are referenced) 30

Fig. 3-23 Software system .31

Fig. 3-24 Connections: A source, one or several sinks, same timing . 32

Fig. 3-25 Connection: One source, several sinks, different timing . 32

Fig. 3-26 Connection: several sources, one sink . 33

Fig. 3-27 Example for a function . 34

Fig. 3-28 Example for a software system . 34

Fig. 3-29 Hardware system. . 35
ETAS INTECRIO V5.0 | User Guide

170 | Figures
Fig. 3-30 System project . 37

Fig. 3-31 Assigning processes to tasks . 38

Fig. 3-32 Crossbar – Overview . 39

Fig. 3-33 Prototype for rapid or virtual prototyping experiment . 40

Fig. 3-34 Different models that can be connected with the hardware as an option 41

Fig. 4-1 AUTOSAR software component (SWC) communications are represented by a
virtual function bus (VFB) implemented through the use of the runtime
environment (RTE) and basic software (BSW). . 43

Fig. 4-2 Integration (left) of software modules for virtual prototyping (middle) or rapid
prototyping (right) with the AUTOSAR RTE . 45

Fig. 5-1 INTECRIO – components
(black: INTECRIO, dark gray: INTECRIO-related ETAS tools,
light gray: ETAS tools that can be used to experiment with INTECRIO)51

Fig. 5-2 INTECRIO-IP: MATLAB® and Simulink® connectivity . 52

Fig. 5-3 "Associate with Matlab" window . 54

Fig. 5-4 ASCET connectivity . 56

Fig. 5-5 Ethernet and XCP on UDP structure in the WS browser . 60

Fig. 5-6 INTECRIO-RP: ES900 connectivity .61

Fig. 5-7 Hardware Configurator – diagram . 62

Fig. 5-8 Display of the interfaces in the WS browser . 65

Fig. 5-9 Display of the CAN IO interface in the WS browser . 67

Fig. 5-10 Display of the FlexRay interface in the WS browser . 70

Fig. 5-11 INTECRIO-RP: ES800 connectivity . 72

Fig. 5-12 Display of the ES800 interfaces in the WS browser .77

Fig. 5-13 Display of the CAN IO interface (ES800) in the WS browser . 78

Fig. 5-14 INTECRIO-VP: VP-PC connectivity . 83

Fig. 5-15 Project configurator . 84

Fig. 5-16 Standard layout of a module/SWC (a: Simulink module, b: ASCET module,
c: AUTOSAR SWC, d: environment module) . 85

Fig. 5-17 Standard layout (external view) of a function (a) and an environment
function (b) . 86

Fig. 5-18 Standard layout of a software system (a) and environment system (b) 87

Fig. 5-19 System project in the graphical editor . 88

Fig. 5-20 OS configurator . 89

Fig. 5-21 Task scheme . 90

Fig. 5-22 Task states and transitions .91

Fig. 5-23 Cooperative scheduling . 92

Fig. 5-24 Preemptive scheduling . 92

Fig. 5-25 Data inconsistency . 93

Fig. 5-26 Handling of messages . 94
ETAS INTECRIO V5.0 | User Guide

171 | Figures
Fig. 5-27 OS configurator: Design . 96

Fig. 5-28 OSC: Tree structure
(1: not for AUTOSAR SWC, 2: with AUTOSAR-SWC: Tasks, 3: with AUTOSAR
SWC: task type defined by assigned RE) . 98

Fig. 5-29 OSC: Application mode with assigned timer tasks . 99

Fig. 5-30 OSC: Software task and ISR (Neither ISRs nor events exist for virtual
prototyping. The respective folders are omitted in that case.) 100

Fig. 5-31 Priority scheme . 101

Fig. 5-32 Delay of a task .101

Fig. 5-33 OSC: Task with assigned processes . 103

Fig. 5-34 OSC: ISR . 104

Fig. 5-35 Project integrator . 106

Fig. 5-36 Build process . 107

Fig. 5-37 ETAS Experiment Environment used with INTECRIO . 110

Fig. 5-38 Main tasks of the ETAS Experiment Environment . 112

Fig. 5-39 Experiment interfaces . 113

Fig. 5-40 Experiment interfaces for rapid prototyping targets . 114

Fig. 5-41 Experiment interfaces for production electronic control units 114

Fig. 5-42 Bypass experiment: Scheme . 115

Fig. 5-43 Bypass experiments with INTECRIO + ETAS Experiment Environment116

Fig. 5-44 Fullpass experiment in standalone mode . 117

Fig. 5-45 Fullpass experiment with INTECRIO + ETAS Experiment Environment 117

Fig. 5-46 X-pass experiment with electronic control unit as I/O . 118

Fig. 8-1 Distab13 data structure . 144

Fig. 8-2 Hook-Based Bypass: Principle . 145

Fig. 8-3 Bypass with hooked service points . 146

Fig. 8-4 Service-Based Bypass: Principle (The dashed line indicates that bypass data
can be written back at a later time as well.) . 147

Fig. 8-5 Possible data inconsistency (the small arrows () indicate a waiting time for
bypass results) . 150

Fig. 8-6 Suggested SBB implementation . 150

Fig. 8-7 Controlling ECU function execution from INTECRIO
(The columns "Cluster Group" and "Cluster" are only available for SBB V3.*. The
"Raster Usage" display is only available for SBB V2.*.) . 151

Fig. 8-8 Example: classical bypass . 152

Fig. 8-9 OS configuration for a classical ECU function bypass . 153

Fig. 8-10 Example: Bypass of an entire ECU functionality . 154

Fig. 8-11 OS configuration for the bypass of an entire ECU functionality 155

Fig. 8-12 Examples: Read and Write actions in different rasters . 155

Fig. 8-13 OS configuration (incomplete) for a bypass with read and write actions of a
service point in different tasks . 156
ETAS INTECRIO V5.0 | User Guide

172 | Figures
Fig. 8-14 Example: ECU-synchronous write-back . 157

Fig. 8-15 OS configuration (incomplete) for a bypass with read and write actions of a
service point in different tasks . 157
ETAS INTECRIO V5.0 | User Guide

173 | Figures
Tables

Tab. 4-1 Supported AUTOSAR versions . 45

Tab. 5-1 Number of interfaces/elements per system controller . 63

Tab. 5-2 Interface classes of the ES900 and names of supported interfaces/elements . . . 65

Tab. 5-3 Number of interfaces/elements per ES800 hardware system . 75

Tab. 5-4 Interface classes of the ES800 and names of supported interfaces/elements . . . 76

Tab. 5-5 Interfaces per ES89x/ES88x hardware module. The maximum number in the
hardware system depends on its consistency and setup of your ES800 stack.77

Tab. 5-6 Max. number of X/BR_X/FETK per ES89x/ES88x module .77

Tab. 5-7 Task types . 99

Tab. 8-1 Supported SBB versions . 147

Tab. 8-2 SBB versions and AML versions . 147
ETAS INTECRIO V5.0 | User Guide

174 | Index
Index
Symbols
*.ref_six file . 130
*.six file

example . 132
referenced model127

A
Application mode . 95
Application software .19
ASAM-MCD-2MC generation 109
ASCET connectivity . 56

automatic re-import of model 57
Characteristics . 57
Description file . 57

ASCET model
Characteristics during creation 57
Description file . 57

ASCET modeling . 143
Automapping function 103
AUTOSAR . 42–50

calibration parameter interface 49
client-server communication 49
elements in INTECRIO 47
interface . 47
inter-runnable variable 49
Overview . 42
port . 47
Pport . 47
Rport . 48
runnable entity . 49
runtime environment 43, 46, 50
sender-receiver communication 48
software component 42, 47
virtual function bus 42

AUTOSAR interface . 47
AUTOSAR software component

see SWC
B
BR_XETK . 75
Build process . 106

Code generation .107
Compiling . 108
Linker . 108
Parser .107
Post-processing 108
Sequence . 108

bypass
concept . 144–158
hook-based .67, 145
safety . 148
service-based 68, 146, 149
XCP on CAN .67, 78
XCP on UDP . 60

Bypass experiment . 115
Bypass hooks . 115

C
calibration parameter interface 49
CAN interface

CAN IO . 66, 78
XCP bypass .67, 78

CAN IO . 66, 78
client-server communication 49
Configuration of operating system

see OS configuration
Connection . 32

Dynamic . 38, 41, 86
Modules .21
Rules . 86
static . 38

Contact information . 159
Cooperative scheduling91
Crossbar . 38

D
Daisychain . 71, 82
Discontinued HW . 58
Documentor . 118
Dynamic connection 38, 41, 86

E
Environment system 28, 35

working in project configurator 86
ES4xx . 71, 82
ES63x . 71, 82
ES800

BR_XETK . 75
FETK . 75
XETK . 75

ES800 configuration 72–82
daisychain . 82
export . 59
import . 59, 76
in hardware configurator 73
interface types . 76
manual configuration 73
XCP on UDP . 60

ES8xx . 80
ES900

ETK . 63
FETK . 63
XETK . 63

ES900 configuration 61–72
daisychain . 71
export . 59
import . 59, 65
in hardware configurator61
interface types . 65
Manual configuration 62
XCP on UDP . 60

ES910
memory pages . 111
ETAS INTECRIO V5.0 | User Guide

175 | Index
ES920 . 69
ES930 . 71, 82
ETAS contact information 159
ETAS Experiment Environment 110–118

Calibrating . 111
different targets . 113
Measuring . 111
RTA-TRACE connectivity 119
Tasks . 111

Ethernet interface
ES8xx .81
ES910 . 71

ETK bypass . 67
ETK interface . 67
Experimenting . 40

Bypass experiment 115
Fullpass experiment 116

F
FETK . 60, 63, 75
FETK bypass .81
FlexRay interface . 80

ES920 . 69
Fullpass experiment . 116
Function . 33

working in project configurator 85

G
Glossary . 160–168

Abbreviations 160–164
Terms . 164–168

H
Hardware

discontinued . 58
Hardware Configurator 58–84

ES800 configuration 72, 73
ES900 configuration 61
HWX export . 59
HWX import . 59
interface types (ES800) 76
interface types (ES900) 65
PC configuration . 83
Supported interfaces (ES800) 76
Supported interfaces (ES900) 65
XXX to CAN . 60

Hardware system 22, 28, 35
hook-based bypass . 145

classical . 145
with Distab17 . 145

HWX export . 59
HWX import . 59, 65, 76

HWX2 . 59

I
IER

Simulink real-time target 142
Initialization

Application mode 95

INTECRIO
AUTOSAR elements 47
connect with MATLAB/Simulink 53

INTECRIO components 51–119
ASCET connectivity 56
Documentor . 118
ES800 Connectivity 72
ES900 Connectivity61
ETAS Experiment Environment 110
hardware configurator 58
MATLAB/Simulink connectivity 52
OS configurator . 89
PC connectivity . 83
Project configurator 84
Project integrator 106

INTECRIO Embedded Coder Real-Time
Target

see IER
INTECRIO Real-Time Target

see IRT
INTECRIO-ASC

see ASCET connectivity
interface . 47
Interface types . 65, 76

CAN IO . 66, 78
communication interface 66, 77
daisychain . 71, 82
Ethernet interface 71, 81
ETK interface . 67
FlexRay interface 69, 80
IO interface . 71, 82
LIN interface . 68, 79
Simulation controller 66, 77
System interface 71, 82
XCP bypass on CAN 67, 78
XCP bypass on UDP 60

inter-runnable variable 49
Interrupt service routines

see ISRs
IO interface . 71

ES8xx . 82
IRT

Simulink real-time target 142
ISRs . 100

AnalyzeCapable . 104
configuration procedures 104
Event Dependencies 104
set up . 104

L
LIN interface . 68, 79

M
MATLAB/Simulink

connect with INTECRIO 53
ETAS INTECRIO V5.0 | User Guide

176 | Index
MATLAB/Simulink connectivity 52
automatic re-import of model 53
characteristics . 54
description file . 55

Messages . 94
Modeling hints . 141–143

ASCET . 143
Simulink . 141
User code . 143

Module . 31
Connection . 21
Design . 20
working in project configurator 85

O
Operating system . 89

RTA-OSEK . 89
RTA-OSEK for PC . 89
Scheduling . 90
Tasks . 90

OS configuration . 38
automatic . 103
import from ASCET 97

OS configurator . 89–105
Configurator/generator 97
Design . 96
OIL interface . 96
OSC . 96, 97

OSC . 96, 97
Automapping function 103
import from ASCET 97
ISRs . 100
Offline mode . 97
Online mode . 97
set up ISRs . 104

P
PC configuration . 83
Platform software . 22
port

AUTOSAR . 47
Pport . 47
Preemptive scheduling91

Data consistency 93
privacy . 9
Product liability disclaimer8
Project configurator 84–88

connections . 86
environment . 86
Functions . 85
Modules . 85
Offline mode . 84
Online mode . 88
Software system . 86
SWC . 85
System projects . 87

Project integrator 106–109
ASAM-MCD-2MC generation 109

Build process . 106

R
Referenced model

*.ref_six file . 130
*.six file .127

Resources . 92
Rport . 48
RTA-TRACE connectivity119
runnable entity . 49
runtime environment 43, 46, 50

S
Safety information . 8
Scheduling . 38, 90

cooperative .91
Data consistency 93
Dynamic . 90
preemptive .91
Priorities .91
static . 90
Tasks . 90

SCOOP . 120–140
Concept . 121

SCOOP-IX . 120–140
*.ref_six file . 130
example . 132
language . 121
referenced models127

scripting . 28
sender-receiver communication 48
service-based bypass 146

OS configuration (SBB V3) 151
specifics . 149

Signal mapping
Software system . 32
System project . 37

Simulink
Target IER . 142
Target IRT . 142

Simulink model
characteristics during creation 54
description file . 55

Simulink modeling . 141
Supported functions 141

software component . 47
Software system 28, 31, 34

Connection . 32
Functions . 33
Modules .31
Signal mapping . 32
SWC .31
working in project configurator 86

SWC . 31, 42, 47
working in project configurator 85

System interface
ES830 . 82
ES910 . 71
ETAS INTECRIO V5.0 | User Guide

177 | Index
System project . 29, 36
OS configuration . 38
Signal mapping . 37
working in project configurator 87

T
Task . 90

activated .91
Event . 103
inactive .91
Priority . 91, 100, 101
running .91
Types . 99

U
User code modeling . 143

V
Validation .27, 111
Verification .27, 111
virtual function bus . 42
virtual prototyping . 23

memory pages . 111

W
Workspace . 28

X
X/FETK bypass . 71, 81
XCP bypass on CAN 67, 78
XCP bypass on UDP . 60
XETK . 60, 63, 75
XETK bypass . 71, 81
XXX to CAN . 60
ETAS INTECRIO V5.0 | User Guide

	User Guide
	ETAS INTECRIO V5.0
	Contents
	1 Safety and Privacy Information
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.5 Privacy
	1.5.1 Data Processing
	1.5.2 Data and Data Categories
	1.5.3 Technical and Organizational Measures

	2 About INTECRIO
	3 Understanding INTECRIO
	3.1 Challenges of the Electronic Control Unit Development
	3.1.1 Complexity Through System Requirements
	3.1.2 Complexity Through Distributed Development
	3.1.3 Possible Steps

	3.2 Description of Electronic Systems
	3.2.1 Design and Operating Method of Electronic Systems
	3.2.2 Architecture and Description of Electronic Systems
	3.2.2.1 Application Software
	3.2.2.2 Platform Software: Hardware Systems
	3.2.2.3 Connecting Hardware and Software

	3.3 Virtual Prototyping
	3.3.1 Target-Close Prototyping
	3.3.2 Advantages of Virtual Prototyping
	3.3.3 Virtual Prototyping and Rapid Prototyping

	3.4 INTECRIO in the Development Process
	3.5 INTECRIO Working Environment
	3.5.1 Software Systems
	3.5.1.1 Modules and AUTOSAR Software Components
	3.5.1.2 Functions
	3.5.1.3 Software Systems

	3.5.2 Environment Systems
	3.5.3 Hardware Systems
	3.5.4 System Projects
	3.5.5 Crossbar

	3.6 Experimenting with INTECRIO

	4 INTECRIO and AUTOSAR
	4.1 Overview
	4.1.1 RTA-RTE and RTA-OS
	4.1.2 Creating AUTOSAR Software Components (outside INTECRIO)
	4.1.3 Validating Software Components

	4.2 What is a Runtime Environment?
	4.3 AUTOSAR Elements in INTECRIO
	4.3.1 AUTOSAR Software Components
	4.3.2 Ports and Interfaces
	4.3.2.1 Sender-Receiver Communication
	4.3.2.2 Client-Server Communication
	4.3.2.3 Calibration Parameter Interfaces

	4.3.3 Runnable Entities and Tasks
	4.3.4 Runtime Environment

	5 INTECRIO Components
	5.1 MATLAB® and Simulink® Connectivity
	5.1.1 Characteristics in the Creation of the Simulink Model
	5.1.2 Contents of the Description File

	5.2 ASCET Connectivity
	5.2.1 Characteristics in the Creation of the ASCET Model
	5.2.2 Contents of the Description File

	5.3 Hardware Configurator
	5.3.1 Discontinued Hardware
	5.3.2 HWX Import/Export
	5.3.3 Ethernet Controller and XCP on UDP
	5.3.4 XXX to CAN Gateway

	5.4 ES900 Connectivity and Hardware Configurator
	5.4.1 ES900 Configuration in the Hardware Configurator
	5.4.2 Interface Types and Supported Interfaces

	5.5 ES800 Connectivity and Hardware Configurator
	5.5.1 ES800 Configuration in the Hardware Configurator
	5.5.2 Interface Types and Supported Interfaces

	5.6 PC Connectivity
	5.7 Project Configurator
	5.7.1 Offline Mode
	5.7.1.1 Modules and SWC
	5.7.1.2 Functions
	5.7.1.3 Software Systems and Environments
	5.7.1.4 System Projects

	5.7.2 Online Mode

	5.8 OS Configurator
	5.8.1 Tasks of the Operating System
	5.8.1.1 Scheduling
	5.8.1.2 Tasks
	5.8.1.3 Cooperative and Preemptive Scheduling
	5.8.1.4 Data Consistency with Preemptive Scheduling
	5.8.1.5 Application Modes

	5.8.2 Design of the OS Configurator
	5.8.3 The OSC Editor
	5.8.3.1 Creating Tasks
	5.8.3.2 Task Properties
	5.8.3.3 Setting Up Timer and Software Tasks
	5.8.3.4 Setting Up Interrupt Service Routines

	5.9 Project Integrator
	5.9.1 Build Process
	5.9.1.1 Overview
	5.9.1.2 Sequence

	5.9.2 ASAM-MCD-2MC Generation

	5.10 ETAS Experiment Environment
	5.10.1 Validation and Verification
	5.10.2 Measuring and Calibrating
	5.10.3 Experimenting with Different Targets
	5.10.4 Rapid Prototyping Experiment with the ETAS Experiment Environment
	5.10.4.1 Bypass Experiment
	5.10.4.2 Fullpass Experiment
	5.10.4.3 X-Pass Experiment

	5.10.5 Virtual Prototyping Experiments with the ETAS Experiment Environment

	5.11 Documentor
	5.12 RTA-TRACE Connectivity

	6 SCOOP and SCOOP-IX
	6.1 SCOOP Concept
	6.2 SCOOP-IX Language
	6.2.1 Modules and Interfaces
	6.2.2 Description of the C Code Interface
	6.2.3 Description of Semantic Information
	6.2.3.1 Model Origin
	6.2.3.2 Implementation
	6.2.3.3 Use
	6.2.3.4 Module Data

	6.2.4 Referenced Models
	6.2.4.1 Extract from a *.six File
	6.2.4.2 Extract from a *.ref_six File

	6.3 Creation of SCOOP-IX and Example

	7 Modeling Hints
	7.1 Modeling for INTECRIO
	7.2 Modeling with Simulink®
	7.3 Modeling with ASCET
	7.4 Integration of User Code

	8 Bypass Concept
	8.1 ETK Bypass Concept Description
	8.2 Bypass Input
	8.3 Hook-Based Bypass
	8.4 Service-Based Bypass
	8.5 Bypass Safety Considerations
	8.5.1 Bypass Input Data
	8.5.2 Bypass Calculation
	8.5.3 Bypass Output Data
	8.5.4 Message Copies

	8.6 Service-Based Bypass Specifics
	8.6.1 Service Processes for the SBB Implemented as Service Functions
	8.6.2 Controlling the ECU Behavior from INTECRIO
	8.6.3 OS Configuration for Service-Based Bypass V3
	8.6.3.1 Restrictions
	8.6.3.2 Classical ECU Function Bypass
	8.6.3.3 Bypass of an Entire ECU Functionality
	8.6.3.4 Read and Write Actions of the Same Service Point in Different Rasters
	8.6.3.5 ECU-Synchronous Write-Back

	8.6.4 Summary

	9 Contact Information
	10 Glossary
	10.1 Abbreviations
	10.2 Terms

	Figures
	Tables
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

