

 User Guide

ETAS INCA/MDA V7
Calculated Signals

Copyright
The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications
stipulated in the contract.

Under no circumstances may any part of this document be copied,
reproduced, transmitted, stored in a retrieval system or translated into
another language without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

ETAS INCA/MDA V7 | User Guide R02 EN | 06.2024

3 | Contents

ETAS INCA/MDA V7

Contents

1 Introduction ... 4

1.1 Calculated Signals and Perl ... 4

2 Custom Operations .. 5

2.1 Custom Operation Installation Directories ... 5

2.2 Basic Structure of a Custom Operation .. 5

2.3 Simple Custom Operation (Without Internal State) .. 6

2.4 Advanced Custom Operation (With Internal State) .. 8

2.5 Writing and Debugging Custom Operations ... 10

2.6 Old-Style Custom Operations ... 12

3 Custom Operation Call Patterns... 14

3.1 INCA (TargetServer) ... 14

3.2 MDA (Display in Table) ... 15

3.3 MDA (Generate Measure File) ... 15

4 Lookup Table Generator .. 16

4.1 Using the Lookup Table Generator .. 16

4.2 Using Calibration Data from INCA ... 17

4.3 Using Calibration Data from Excel .. 17

5 Constants ... 19

5.1 Constant Custom Operation ... 19

6 ETAS Contact Addresses.. 20

4 | Introduction

ETAS INCA/MDA V7

1 Introduction

 NOTE

The descriptions in this manual refer only to the "Calculated Signals" functions
for INCA V7 and MDA V7. It does not apply for MDA V8.

Data analysis may be enhanced by the usage of mathematical calculation rules.
To provide the user with a flexible way to define calculation rules an interpreter is
used thus allowing users to define their own set of calculation rules upon
measured data. Currently, INCA provides Perl — a general purpose programming
language — as an embedded interpreter.

Besides the fact, that Perl has a well-defined and well-documented interface for
embedding the interpreter into another application, it is also reasonably fast, and
has a rich set of built-in commands producing very compact code.

Perl is expandable with modules. For almost any task a specific module can be
found at the Comprehensive Perl Archive Network (www.cpan.org).

To compactly store and speedily manipulate large n-dimensional data arrays,
there exists a module called Perl Data Language (pdl.perl.org). PDL turns Perl into
an array-oriented, numerical language like such commercial packages as IDL and
MatLab.

 NOTE

This manual is intended for experienced Perl programmers only. If you have
little or no programming experience in Perl, please refer to learn.perl.org for a
brief introduction and for additional references. You might want to read about
Perl references (perlref) and objects (perlboot) as well as the basics of
PDL (PDL::Impatient).Contains additional supporting information.

1.1 Calculated Signals and Perl
Any measured or calculated signal subjected to a calculation rule is represented
internally in Perl as a PDL, a 1-dimensional array of doubles. User-defined
calculations based on measured data can be implemented by entering a
calculation rule in the dialog ‘Define Signal’ using simple variables for the signals.
To distinguish PDLs from other variables and to use signal names directly as
variable names a special syntax is used: Signal names must be enclosed by
braces and single quotes as, for example, ${´Test_Ch1\VADI-
Testdevice:1´}. A resulting expression may be stored and loaded as part of a
configuration in an XML file (file name extension xcs).

The usage of such configurations has one essential drawback: because of the
fixed operators, the reuse of a configuration is limited. To overcome this
limitation, custom operations have been introduced. A custom operation can be
thought of as parameterizable configurations. The calculation rule, its input
parameters and types and some basic documentation is stored together in a Perl
module.

http://www.cpan.org/
http://pdl.perl.org/
http://learn.perl.org/

5 | Custom Operations

ETAS INCA/MDA V7

2 Custom Operations

2.1 Custom Operation Installation Directories
Custom operations are read from two directories:

− <EtasShared>\CalculatedSignals\PM: custom operations provided by
ETAS.

− <EtasData>\<Product>\CalculatedSignals\PM: custom operations
written by the user.

The directories depend on the product (e.g. MDA Vx.y or INCA Vx.y) and the
options chosen during installation (paths for EtasData and EtasShared, using
shared or isolated installation).

Typical examples would be c:\Etas\EtasShared12\CalculatedSignals\PM or
d:\EtasData\MDA7.2\CalculatedSignals\PM.

Within the PM directory the files are organized as follows:

− PM: custom operations relevant to all products.
− PM\online: custom operations relevant to INCA only.
− PM\offline: custom operations relevant to MDA only.
− PM\Templates: sample custom operations that may be copied and

modified by the user.
− PM\Calibrations: calibration data used to auto generate custom

operations.

2.2 Basic Structure of a Custom Operation
A Custom Operation is a Perl module, which contains two sections: a code
section and a comment section. The delimiters for the comment section are the
keywords =pod and =cut.
perl code

=pod
<CUSTOMLIST><!-- XML fragment --> </CUSTOMLIST>
=cut

1;

The Perl interpreter only looks at the code section and ignores the comment
section. The code section contains the implementation of the custom operation.

The Calculated Signals dialog only looks at the XML fragment in the comment
section and ignores the code section. The XML fragment contains information
about which custom operations are available and for each operation a help text
and which parameters need to be provided by the user.

6 | Custom Operations

ETAS INCA/MDA V7

2.3 Simple Custom Operation (Without Internal State)
We use the module BinaryAND as a simple example. This module computes for
every measure point the bitwise logical AND with a given mask.
package BinaryAND;

The module starts with the package name in the first line. The package name
must be identical to the filename without the module extension *.pm.
use base qw(CustomCalculationBase);

The use base indicates that we are defining a derived Perl object which in this
case is derived from the CustomCalculationBase base class which helps
implement the custom operation.
$Id: BinaryAND.pm 144577 2009-08-03 14:56:27Z mibosch $

The ID line is a comment, which identifies the module version.
use PDL;
use PDL::Types;
use PDL::Func;
use PDL::Math;
use warnings;
use strict;

With the use statements other modules are included. Most of them are PDL
specific. The warnings module enables all warnings. The strict module
restricts unsafe constructs. It forces the declaration of every variable with the
keyword my. The my keyword restricts the visibility of a variable to the current
module which avoids conflicts between different custom operations.

Any other standard module may be used, as well as any self-defined module, as
long, as the modules are stored in the standard Perl path or in one of the two
paths mentioned above.

Below are the two standard methods, which must be provided by every module.
sub new
{
 return (bless {
 _signals => ['input'],
 _parameters => ['mask']
 })->create(@_);

}

The purpose of the new() method is to create a new instance of a Perl object
representing the custom calculation. In Perl an object is a hash table that has
been blessed. In this example the curly braces create a reference to a new hash
table which has already been initialized with some members. The call to bless
marks the hash table as an object of a type determined by the package name, i.e.,
BinaryAND. Finally the method create() is called on our new object. The
create() method is implemented by the CustomCalculationBase base class
and finishes the initialization of the object. To do this it needs access to the
parameters of the new() method, which are passed using @_ as the argument.

7 | Custom Operations

ETAS INCA/MDA V7

There is usually no need to customize the new() method except for the
initialization of the _signals and _parameters members. The _signals
member is the list of names of the input signals of the custom calculation, and the
_parameters member is the list of names of the parameters of the custom
calculation.
sub calc
{
 my ($this, $dim, $input, $mask) = @_;
 return double(long($input) & long($mask));
}

The calc() method is called internally for evaluation of the custom calculation.
The arguments are the object itself ($this), as well as the current dimension, i.e.
the number of samples to process ($dim), then one PDL for each input signal
(e.g. $input) and finally the parameters (e.g. $mask). Using the input signals
and parameters the calc() method computes a result, which must be a pdl of
the same dimension as the input signals. The result is returned as the return
value of the calc() method.

 NOTE

Because of performance reasons, explicit for loops using the index()
method should be avoided. Instead PDL methods like slice()should be used.
Many other useful methods for manipulating PDL arrays can be found in the
PDL::Ufunc module.

The block between =pod and =cut defines a documentation area, where the
XML description of the custom operation must be provided. This block may occur
only once.
=pod

<CUSTOMLIST>

 <VERSION>2.0</VERSION>

 <CUSTOM>
 <FUNCTIONNAME>BinaryAND</FUNCTIONNAME>
 <UNIT>N/A</UNIT>
 <DATATYPE>uint32</DATATYPE>
 <CALCULATIONRULE>BinaryAND::new(${input},
${mask});</CALCULATIONRULE>
 <DESCRIPTION><![CDATA[bitwise logical AND of <input> with
<mask>
parameters:
 <input> = input signal
 <mask> = bitmask, decimal or hex (0x)]]>
 </DESCRIPTION>
 <FLAGS>NoHistory</FLAGS>
 <PARAMETERLIST>

<PARAMETER><NAME>${input}</NAME><TYPE>VAR</TYPE></PARAMETER>

<PARAMETER><NAME>${mask}</NAME><TYPE>INT</TYPE></PARAMETER>
 </PARAMETERLIST>
 </CUSTOM>

8 | Custom Operations

ETAS INCA/MDA V7

</CUSTOMLIST>

=cut

The XML description of a Custom Operation is a Custom List, which contains a
version and the Custom Operation itself. The version is fixed and should not be
changed. The Calculation Rule calls the new() method of the object. The order
of the signals and parameters must be the same, as in the new() method in the
code section. The <UNIT>, <CALCULATIONRULE>, and the <DESCRIPTION>
element contain arbitrary text. If that text contains ‘&’ or ‘<’ characters they need
to be escaped (& or <) or the entire contents of the tag must be
enclosed in <!<CDATA[…]]> as shown in the <DESCRIPTION> tag.

The datatype of the custom operation may be one of the following: sin32,
uint32, double, bool. The parameter list must show every parameter with
the correct type.

The parameter type may be one of the following: VAR, INT, FLOAT, BOOL,
TIME. These types are used by the UI to handle the signal selection buttons and
to check the user input. VAR represents an input signal, INT, FLOAT, BOOL
represent various constant input parameters; TIME represents the measurement
time.
1;

The module must return true, so use 1; as the last statement in the file.

2.4 Advanced Custom Operation (With Internal State)
The following module Gradient is a more sophisticated example, because it uses
a configurable number of history data. The module computes the gradient
according to the following calculation rule:

gradient[i] = input[i] - input[i - n] / time[i] - time[i - n]

Here we have the special case that we need to know the input signal as well as
the time values, which becomes important when the time values are not equally
spaced. Also, for every run we need to know the last values of the previous run, to
compute the gradient of the first measure point. The parameter n (count)
determines the number of measure points, between which the gradient is to be
computed. This equals the number of measure points, which must be stored
between successive runs.

Here we focus on the enhanced features and do not explain the basic features
once more.
package Gradient;
use base qw(CustomCalculationBase);

$Id: Gradient.pm 144657 2009-08-03 18:05:51Z mibosch $

use PDL;
use PDL::Types;
use PDL::Func;
use PDL::Math;
use warnings;
use strict;

sub new

9 | Custom Operations

ETAS INCA/MDA V7

{
 return (bless {
 _signals => ['time', 'input'],
 _parameters => ['count']
 })->create(@_);
}

This is the standard header and new() function.
sub calc
{
 my ($this, $dim, $time, $input, $count) = @_;
 return undef if $count < 1;
 my $timedelay = $this->delay('timestate', $time);
 my $inputdelay = $this->delay('inputstate', $input);
 return ($input-$inputdelay) / ($time-$timedelay);
}

The gradient at sample number i is defined as the difference of values divided by
the difference of times:

gradient[i] = input[i] - input[i - count] / time[i] - time[i - count]

This means in addition to the current input values and time we also need previous
samples, possibly from a previous call to calc(). This is achieved by the
CustomCalculationBase::delay() function. The first parameter to the
function is the name of the member variable that is used to store the state
between calls to calc(). The second parameter is the input signal that is to be
delayed. The amount of delay is specified during the initialization phase which we
will see next.
sub init
{
 my ($this) = @_;
 my $count = $this->{count};
 return undef if $count < 1;
 $this->initdelay('timestate', zeroes($count));
 $this->initdelay('inputstate', zeroes($count));
 return 0;
}

The init() method will be called whenever a measurement is started. Its
purpose is to initialize all object members that store the state between calls to
calc(). The return value has no meaning but must be 0.

For each use of delay() in the calc() method we need to initialize the
corresponding delay state here. This is done using the initdelay() method.
The first parameter is again the name of the state variable with must match the
corresponding call to delay(). The second parameter specifies by how many
samples the signal should be delayed and which values delay() should return
until the first delayed sample is available.
=pod

<CUSTOMLIST>

 <VERSION>2.0</VERSION>

 <CUSTOM>

10 | Custom Operations

ETAS INCA/MDA V7

 <FUNCTIONNAME>Gradient</FUNCTIONNAME>
 <UNIT>N/A</UNIT>
 <DATATYPE>double</DATATYPE>
 <CALCULATIONRULE>Gradient::new(${time}, ${input},
${count});
 </CALCULATIONRULE>
 <DESCRIPTION><![CDATA[first derivative of last <count>
samples:
 <input>(k) - <input>(k - <count>)) / (t(k) - t(k -
<count>))
 k is the measure sample at current <time>
parameters:
 <time> = measure time
 <input> = input signal
 <count> = number of samples]]>
 </DESCRIPTION>
 <FLAGS>History</FLAGS>
 <PARAMETERLIST>

<PARAMETER><NAME>${time}</NAME><VALUE>${'~~measureTime~~'}</V
ALUE>
 <TYPE>VAR</TYPE></PARAMETER>

<PARAMETER><NAME>${input}</NAME><TYPE>VAR</TYPE></PARAMETER>

<PARAMETER><NAME>${count}</NAME><TYPE>INT</TYPE></PARAMETER>
 </PARAMETERLIST>
 </CUSTOM>

</CUSTOMLIST>

=cut

1;

The XML section is mostly the same as in the previous example. There are
however two noteworthy differences:

The <FLAGS> tag is now set to History (whereas earlier it was NoHistory).
The History flag notifies the system that the custom operation has state
variables that need to be preserved between calls to calc(). It is important to
set this flag to avoid performance optimizations which may lead to faulty results.

The first parameter of the custom calculation ($time) is hardwired to the special
signal ${'~~measureTime~~'} by using the <VALUE> tag. The measure time
signal contains the timestamps corresponding to the input samples. Note:
Timestamps are the same for all input signals. This is enforced by MDA and INCA
by first interpolating all input signals to one set of timestamps as chosen by the
user in the Calculated Signals dialog (periodic or same as signal).

2.5 Writing and Debugging Custom Operations
To get you up and running with your own custom calculation the directory

<EtasShared>\CalculatedSignals\PM\Templates

contains two sample custom calculations that can be easily adapted to your
needs:

11 | Custom Operations

ETAS INCA/MDA V7

− SampleSimple: custom calculations without state
− SampleHistory: custom calculations with state

Both templates contain at their start a list of steps you need to follow to create
your own custom calculation module.

12 | Custom Operations

ETAS INCA/MDA V7

When debugging your custom calculation, the first step should always be to try
to run your code directly with Perl, before you try it in MDA or INCA. Use the Perl
interpreter provided by the ETAS product you are targeting. The Perl interpreter
can be found at

<EtasShared>\perl586\bin\perl.exe

of the EtasShared corresponding to the product. Just call perl.exe with your
custom calculation module as the only argument from a command window, e.g.:

C:\etas\MDA7.2\ETASShared12\perl586\bin\perl.exe
C:\ETASData\ MDA7.2\CalculatedSignals\PM\MyCalc.pm

If you get no errors, you can be sure that the module will load and compile without
problems.

After that you can proceed to using it in INCA or MDA. Remember however to
restart INCA or MDA whenever you make changes to the Perl module, as the
modules are only loaded at startup of MDA or first opening of an experiment in
INCA.

 NOTE

Make sure, that the editor you use to edit the Perl module does not create
backup files in the same directory as the Perl module. MDA and INCA will read
all files regardless of their file extension. Since a backup file mostly has the
same content as the original this will lead to doubly defined packages and
methods causing the module loading to fail.

2.6 Old-Style Custom Operations
There are still existing custom operations that do not use the
CustomCalculationBase base class. We will call those operations old-style. An
old-style custom operation must always implement all of the following methods:

− $this = new(@inputs)
− $this->reinit(@inputs)
− $this->init()
− $this->run($dim)

Old-style custom operations must additionally implement the following tasks
which have now been taken over by the base class:

− The input signals and parameters have to be copied from the @inputs list
to individual member variables of the custom operation by new() and
reinit(). This has been taken over by the create() and reinit()
methods of the base class.

− The run() method needs to extract the input signals and parameters from
the custom operations member variables and shorten the signal data to
$dim samples by cutting of the unused samples at the end. The result
value must be extended again to the full length of the input signals by
adding dummy samples at the end. Both tasks have been taken over by
the run() method of the base class which calls the calc() method to do
the actual calculation work.

13 | Custom Operations

ETAS INCA/MDA V7

− The init() method needs to be present even if nothing is to be done. This
has been taken over by the default init() implementation on the base
class which can be overridden if necessary.

− The DESTROY() method needed to be implemented to clean up all member
data. This is now taken over by the base class.

14 | Custom Operation Call Patterns

ETAS INCA/MDA V7

3 Custom Operation Call Patterns
The order in which the methods of your Perl object are called and when they are
called is mostly up to the caller, i.e., INCA or MDA. The only guarantee is that the
first call to the object is new() and the last call is DESTROY(). Thus, the general
sequence of calls is as follows:

− One to many repetitions of the cycle

• new()
• any number of calls to run(), init() and reinit()
• DESTROY()

For a definition of the methods being called see section 2.6 Old-Style Custom
Operations.

To give you an idea how your Perl object is being used the following sections will
present specific sequences for some examples use cases. The sequences are
only to be used for reference and may change in future releases of the calculated
signals.

3.1 INCA (TargetServer)
For INCA the calculation will be run by the TargetServer process which runs in real
time priority class. For each calculated signal defined by the user, TargetServer
will create two instances of the Perl object: One for recording data and one for
display data. Under normal conditions both will be working on the same input
data. For an overload condition however the recording data will start to lag due to
buffering in the acquisition devices. The display data in contrast will be reduced
to a manageable rate to avoid the lag.

For both methods the TargetServer will run the calculations at its internal polling
rate. If there are more than 100 samples, it will break the computation into pieces
of 100 samples at a time.

− Start Measurement

• new()
• init()

− TargetServer Polling Cycle

• Repeat run(100) (until at most 100 samples left)
• run(remainder)

− Stop Measurement

• DESTROY()

The number of samples processed during each polling cycle depends on the
inputs of the calculation. The calculation can only be run up to the time where all
inputs have input data available. The availability of input data usually is outside
the control of the Perl object running the calculation: It may for example depend
on how often an Asap1b device provides data or the presence of an overload
condition.

15 | Custom Operation Call Patterns

ETAS INCA/MDA V7

3.2 MDA (Display in Table)
MDA calculates the calculated signals whenever it needs to display data for the
calculated signal. In the case of a calculated signal displayed in a table, the
sequence will look as follows:

− On Display Update

• new()
• run() (for samples before first visible sample, only called if History flag

is set)
• reinit()
• run() (for visible sample)
• DESTROY()

3.3 MDA (Generate Measure File)
As a special case calculated signals are also calculated when the user asks MDA
to generate a measurement file. When generating measurement files MDA will
break down the calculation into pieces of 1000 samples as follows:

− While there are more than 1000 samples

• new()
• run(1000)
• DESTROY()

− For remaining samples

• new()
• run(remainder)
• DESTROY()

16 | Lookup Table Generator

ETAS INCA/MDA V7

4 Lookup Table Generator
A lookup table is a data structure used to approximate an arbitrary function of n
inputs and one output. The number of inputs is also called the dimension of the
lookup table. Depending on the dimension a lookup tables is also called a curve
(n=1), map (n=2) or cuboid (n=3).

The approximation is usually calculated by the control algorithm of an ECU. If you
want to reproduce the calculation as a calculated signal in INCA or MDA, the
lookup table generator can create a custom operation for you based on lookup
table data you provide.

 NOTE

Currently, the lookup table generator only supports curves and maps.

4.1 Using the Lookup Table Generator
The lookup table generator is in the directory

<ETASData>\INCA7.2\CalculatedSignals\PM\LookupGenerator
The directory contains the calibration data in the form of CAL files and the
generator program (LookupGenerator.bat, LookupGenerator.pm).

Running the LookupGenerator.bat will read all CAL files in the directory and create
one custom calculation module per CAL file. The resulting custom calculation
modules (*.pm files) will be created ready to use in the directory
<ETASData>\INCA7.2\CalculatedSignals\PM, i.e., the parent directory.

To use lookup tables

1. Get the data for a lookup table and put it into a new CAL file in the
LookupGenerator directory. Use the name of the lookup table as the
name of the file and append the *.cal suffix. The name may however only
contain letters and digits and must start with a letter.

2. Repeat step 1 for as many lookup tables as you need.
3. Remove the *.cal files for lookup tables you no longer need.
4. Now run LookupGenerator.bat.
5. Use the generated custom operation in MDA or INCA calculated signal. The

tool must be restarted to discover the new or changed custom
calculations.

The directory already contains some sample CAL files that you can use for your
first steps.

 NOTE

All CAL files as well as the generated custom operations will be deleted by both
installation and deinstallation of the product.

Do not rename or modify the generated custom operations (*.pm files), unless
you have read and understood the complete chapter 2 Custom Operations.

17 | Lookup Table Generator

ETAS INCA/MDA V7

4.2 Using Calibration Data from INCA
INCA can provide real calibration data for any lookup table in a format suitable for
the CAL files.

To use calibration data from INCA

1. Open an Experiment in INCA that contains the desired lookup table.
2. Select the desired lookup table and assign it to a table editor.
3. Select the widget containing the lookup table.
4. Switch to the desired page (reference or working).
5. Switch to the desired mode (physical or hex).
6. Copy the calibration data to the clipboard using the Edit > Copy all data to

clipboard menu.
7. Open notepad or any other editor that can save ASCII.
8. Paste the data from the clipboard.
9. Save the file into the LookupGenerator directory, choosing a name that

identifies the lookup table.
10. In the Windows Explorer, rename the file extension from *.txt to *.cal
11. You are now ready to run the generator as explained in the previous

section.

4.3 Using Calibration Data from Excel
You can also create CAL files using Excel. You just need to arrange the data as
shown in the following examples and save it according to the instructions below.

float x 1 1,7 2,4 4,5 7

w 17 18 3 -15 -19
Tab. 4-1 Using Calibration Data from Excel – Example Curve

The areas of the Excel sheet are color coded for this manual:

− Yellow
this cell must contain the string ”float x” with exactly one space character
and is used to identify a one dimensional lookup table.

− Green
contains the data for the x-axis.

− Light blue
contains the data for the curve values.

18 | Lookup Table Generator

ETAS INCA/MDA V7

float y \ x 1 1.4 1.6 1.8 2

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

40 41 42 43 44 45

50 51 52 53 54 55
Tab. 4-2 Using Calibration Data from Excel – Example Map

The areas of the Excel sheet are color coded for this manual:

− Yellow
this cell must contain the string ”float y \ x” with exactly three space
characters and is used to identify a two dimensional lookup table.

− Green
contains the data for the x-axis.

− Light blue
contains the data for the curve values.

− Dark blue
contains the data for the y-axis.

To store your data from Excel to a CAL file

12. Arrange your calibration data for one lookup table in one Excel sheet . You
may use ”,” or ”.” as the decimal separator, i.e. 5.5 is treated the same as
”5,5”.

13. Select Save As.
14. In the file selection dialog, choose ”Text (Tab delimited) (*.txt)” as the

”Save as type:”.
15. Save the file into the LookupGenerator directory, choosing a name that

identifies the lookup table.
16. In Windows Explorer rename the file extension from *.txt to *.cal.

19 | Constants

ETAS INCA/MDA V7

5 Constants
To ease the use of constant values, a special type of Custom Operations has
been introduced. It is also implemented as a Perl module and the syntax is quite
like the Custom Operations. It is best explained when looking at one of the
example modules.

5.1 Constant Custom Operation
These modules have the same header as a Custom Operation. The package name
is mandatory. Include other modules with the use statement as needed. The code
section contains the functions, which return the constant value. This value is not
restricted to a constant, it may be something dynamically calculated like the
current date.
package CustomConstants;

$Id: CustomConstants.pm,v 1.6 2002/10/30 Exp $

use warnings;
use strict;

sub main::BIRTHDAY () { 14101957.0; }
sub main::EPOCH () { time; }

=pod

<CONSTANTLIST>

 <CONSTANT>
 <NAME>BIRTHDAY</NAME>
 <COMMENT>birthday [ddmmyyyy]</COMMENT>
 <VALUE>14101957</VALUE>
 </CONSTANT>

 <CONSTANT>
 <NAME>EPOCH</NAME>
 <COMMENT>seconds since
 00:00 January 1, 1970 GMT</COMMENT>
 <VALUE>dynamic</VALUE>
 </CONSTANT>

</CONSTANTLIST>

=cut

1;

The comment section contains an XML description of the constants. Each
constant is identified by its name, a comment, and a value. If the value is
dynamically calculated, the value field contains the word dynamic. The name of
the constant must be identical to the name of the function in the code section. In
order to specify such a constant just by its name without the package name, the
name of the function needs to be prepended with the package identifier ::main.
This puts the constant name in the top-level namespace.

20 | Contact Information

ETAS INCA/MDA V7

6 Contact Information

Technical Support
For details of your local sales office as well as your local technical support team
and product hotlines, take a look at the website: www.etas.com/hotlines

ETAS Headquarters
ETAS GmbH
Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com/hotlines
https://www.etas.com/

21 | Tables

ETAS INCA/MDA V7

Tables
Tab. 4-1 Using Calibration Data from Excel – Example Curve .. 17
Tab. 4-2 Using Calibration Data from Excel – Example Map ... 18

22 |

ETAS INCA/MDA V7

	1 Introduction
	1.1 Calculated Signals and Perl

	2 Custom Operations
	2.1 Custom Operation Installation Directories
	2.2 Basic Structure of a Custom Operation
	2.3 Simple Custom Operation (Without Internal State)
	2.4 Advanced Custom Operation (With Internal State)
	2.5 Writing and Debugging Custom Operations
	2.6 Old-Style Custom Operations

	3 Custom Operation Call Patterns
	3.1 INCA (TargetServer)
	3.2 MDA (Display in Table)
	3.3 MDA (Generate Measure File)

	4 Lookup Table Generator
	4.1 Using the Lookup Table Generator
	4.2 Using Calibration Data from INCA
	4.3 Using Calibration Data from Excel

	5 Constants
	5.1 Constant Custom Operation

	6 Contact Information
	Technical Support
	ETAS Headquarters

