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ABSTRACT

A fuel cell stack power prediction model that takes into consideration the various stack control parameters is important in 
the optimization design of the controls for each item of auxiliary equipment in a system equivalent to that of an actual vehicle. 
However, creating a model for quantitative prediction of stack power requires large amounts of data concerning the materials 
and structure inside the fuel cell. Moreover, since the internal phenomena are complex, large-scale modeling is necessary. For 
this research, a design of experiment method known as the space filling technique was used to acquire data efficiently. With 
the acquired data as a basis, the use of Gaussian process regression made it possible to create a model capable of predicting 
stack performance as well as the temperature and pressure in the various parts of the stack in a short computation time. It 
was also made clear that this model could be used to calculate operating conditions that would maximize stack power, and 
verification by testing showed that it would be possible to obtain a power prediction model that could be used to investigate 
stack performance from a limited amount of test data.

1. Introduction

1.1. Background
The polymer electrolyte fuel cell (FC) converts chemical 

energy directly into electrical energy using hydrogen 
(H2) as a fuel. This gives it higher energy efficiency than 
an internal combustion engine, while water is the only 
substance it emits during operation. It is, therefore, a 
power generating device with low environmental impact, 
and as such it is expected to have a wide range of uses, 
including in automobiles and trucks, as backup power 
sources for factories, and so on(1). The automobile industry, 
in particular, is pursuing development of FC automobiles 
with low environmental impact as a way of achieving 
electrification according to the laws and regulations of 
different countries. However, the penetration rate of FC 
automobiles is low for various reasons, including inadequate 
infrastructure development and the high cost of FC stacks(2), 

(3). Realizing lower-cost FC stacks will require achieving 
the necessary power and durability with limited catalyst 
loading and active area(3). The development of materials 
and optimization of control to enhance power output are 
therefore considered to be necessary.

Current distribution and electrochemical reaction 
activity inside the FC stack change according to the gas, 
temperature, and water produced by the generation of 
electricity in the electric power-generating environment. 

Since the stack performance changes as a result, multiple 
studies are being conducted on the reproduction of the 
stack interior environment by mathematical modeling 
for the purpose of predicting stack performance with 
respect to control(4), (5). When performing mathematical 
modeling of the FC stack, the various parameters influence 
each other, and the modeling becomes complicated as 
a result. This also requires understanding of the various 
theoretical formulas for the physical phenomena involved, 
the physical properties for the various materials, and so 
on(6). Consequently, it becomes necessary to have accurate 
measurements and coefficient fitting in order to obtain 
multiple parameters every time a change is made to the 
materials or FC structure.

Regard ing o the r mode l ing methods , wi th the 
development of artificial intelligence technology, increasing 
research is being done on modeling that uses machine 
learning(7). The advantages of FC stack performance 
modeling by machine learning include, for example, the 
possibility of modeling the complex state of fluids and 
water inside the stack without performing a simulation.

Supervised learning is one type of machine learning. 
By appropriately labeling the input and output of feature 
values in measurement data, it learns the data and creates 
a model. Stack power prediction models that use artificial 
neural networks, which are one type of machine learning 
that is supervised learning, are highly accurate and capable 
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of quantitative prediction of performance(8), (9). However, 
creating a performance prediction model that uses artificial 
neural networks requires large quantities of measurement 
data. Furthermore, the examples in the references(8), (9) 

all have about five explanatory variables, and since the 
distribution of explanatory variables is limited to about 
three levels for each variable, the possible range of accurate 
stack power prediction is also limited. For this research, 
therefore, measurement data was acquired efficiently by the 
design of experiment (DoE) method, and Gaussian process 
regression(10) was used to create from that data a predictive 
model for FC stack power, differential pressure, and outlet 
temperature with respect to 11 variables that serve as input 
control parameters. In order to enhance the output of the 
created stack power prediction model, overall optimization 
of the control parameter variables was carried out and the 
enhancement of stack power was verified using an actual 
FC stack. This made clear that a stack power prediction 
model using Gaussian process regression with a small 
quantity of training data can be used to investigate control 
for the purpose of enhancing output.

1.2. Overview of Stack Modeling
Figure 1 shows an overview of the stack that was 

evaluated in the course of creating a Gaussian process 
regression model for this research.

First, the space filling technique(11), which is a DoE, was 
used to set the experiment conditions so that training data 
can be acquired efficiently for use in machine learning. A 

Table 1   Definition of input and output parameters

device was also created with the capability to perform the 
experiment fully automatically as well as to preprocess 
the data. This is done simply by installing the FC stack 
on the device, and it creates the experiment conditions, 
performs the experiment, acquires the experiment data, 
and organizes the data. The experiment data acquired by 
the fully automated evaluation system was used to create 
the machine learning statistical model of the FC stack by 
Gaussian process regression. The input and output for the 
created model are shown in Table 1. The ETAS ASCMO 
tool from ETAS was used to formulate the experiment 
design and to create the Gaussian process regression model.

2. Stack Performance Evaluation

2.1. Setting the Experiment Conditions
When using DoE to set the experiment conditions, it is 

necessary to set the upper limits and the lower limits for 
each of the 11 control parameters. The upper and lower 
limits were set according to two perspectives, that of the 
range within which the stack components will not be 
damaged, and that of the upper and lower limits for control 
of the evaluation device. As one example, in cases when 
differential pressure is generated inside the stack between 
the anode and cathode, then from the perspective of stack 
protection, an upper limit was set for the differential 
pressure between the anode and cathode in order to protect 
components from differential pressure at or above a certain 
level(12).

Fig. 1   Schematic image of stack

Anode Membrane Cathode

P T

P T

PT

PT

P
T

P
T

Load

Humidified
gas (H2, N2) in

Gas out

Humidified
gas (air) in

Gas out

C
oolant

in

C
oolant
out

T
P

: Thermometer

Current

: Pressure gauge

H2

H2

e-

H+

H+

2H2 4H++4e-

Air

Air
H+

H+

4H++O2+4e- 2H2O

C
ell 1

C
ell 2

C
ell 3

C
ell n

e-

Anode Cathode Coolant Electrical

Input 
parameter

Flow 
rate
(An_Q)

Relative 
humidity
(An_RH)

Pressure
(An_P)

N2
concentration
(An_N2)

Flow 
rate
(Ca_Q)

Pressure
(Ca_P)

Relative 
humidity
(Ca_RH)

Flow 
rate
(Co_Q)

Pressure
(Co_P)

Temperature
(Co_T)

Current 
density
(CD)

Output 
parameter

Differential pressure
(An_dP)

Differential pressure
(Ca_dP)

Outlet pressure Outlet 
temperature

Power



Fuel Cell Stack Power Prediction Model Using Gaussian Process Regression Model

− 89 −

Fig. 2   Schematic image of experiment protocol

Fig. 3   Schematic image of automated test process

2.2. Experiment Procedure
A stack of nine cells in layers was fabricated to conduct 

the experiment. The experiment procedure was set as shown 
in Fig. 2 for conducting the evaluation under each of the 
measurement conditions based on DoE.

The anode and cathode were supplied with H2 and 
nitrogen (N2) and the temperatures of the stack and 
humidifier were adjusted. Next, air was introduced to the 
cathode and the backpressure of the anode and cathode 
was adjusted. If the open circuit voltage of the stack is held 
to the vicinity of 1 V at this time, the components will be 
progressively degraded. The current value was therefore set 
so that the voltage would be decreased slightly.

Generation would proceed at 1 A/sec until the current 
reached the set value. That current would be maintained for 
30 minutes, and the average value for the last minute would 
be taken as the stack power performance under the target 
measurement conditions. After measurement, N2 would 
again be introduced to the cathode, the stack voltage would 
be lowered, and discharged water would be treated under 
temperature adjustment and H2 and N2 supply conditions.

2.3. Fully Automated Evaluation System
A system capable of automated evaluation was created 

in order to conduct the experiment under the above 
conditions and procedure and to organize the data for use 
in creating the Gaussian process regression model. An 
overview is shown in Fig. 3.

The fully automated evaluation system is made up of 
three main parts, which are the experiment control system, 
the experiment device system, and the data analysis part. 
In the experiment control system, a device control file is 
created using 11 variables based on the DoE created using 
the ETAS ASCMO software made by ETAS, and a control 
profile converted for use in experiment device control is 
transmitted. In the experiment device system, control of 
the above-mentioned experiment procedure is implemented 
based on the control profile in which only the control 
parameter portion related to the 11 variables is different. 
The experiment data under each condition is measured by 
each of the measuring instruments and recorded by the 
logger. The measurement data is organized automatically in 
the data analysis part and then labeled according to Table 1

to process it into data for machine learning use. A Gaussian 
process regression model is then created using that created 
data set. ETAS INCA-FLOW software from ETAS was 
used as the management system to operate this device in a 
fully automated manner.

2.4. Gaussian Process Regression Model of the Stack
Gaussian process regression was used for modeling 

the stack. A feature of Gaussian process regression is that 
it is nonlinear and uses probability theory so that model 
predicted values have uncertainty and the probability of 
predicted values can be distinguished(10).

The prediction equation based on Gaussian process 
regression used in modeling is shown in Eq. (1)(13).

y(x) = ∑    
∑    

Ci · e l=1
lr

D (Xi,l  Xl)2 2

21N
i=1

(1)

For the Gaussian kernel function in the exponential 
function part, the generally used ARD squared exponential 
kernel was used. x is the input vector of the explanatory 
variable, N is the number of training data items, and Ci is 
the coefficient of the ith training data item, derived from 
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Fig. 4   Results of leave one out evaluation

Fig. 5   Input relevance to stack power

Fig. 6   Comparison of model prediction and measured 
data

the hyperparameters. D is the number of dimensions, Xi,l

indicate the training data location, Xl is the input value, and 
rl is the length scale. Of these, Ci and rl are hyperparameters, 
and in ASCMO, these hyperparameters are determined by 
marginal likelihood optimization algorithms(14).

Out of the experiment conditions set by the space 
filling technique, the Gaussian process regression model 
was created on the basis of the data set consisting of 169 
conditions acquired by the fully automated evaluation 
system. Table 1 shows the definitions (labeling) of the 
parameters for modeling. The N2 concentration here is 
the proportion of N2 in the gas supplied to the anode inlet. 
The differential pressures of the anode and cathode are 
the difference in pressure at the stack inlet and outlet. In 
modeling the power, the stack output was converted from 
the total for nine cells to the equivalent for one cell. For the 
11 defined input parameters, each output item was modeled 
by Gaussian process regression.

The accuracy of the created model was evaluated 
using the leave-one-out (LOO) method(15). Model accuracy 
obtained by the LOO method can be evaluated by the 
determination coefficient R2. If R2 is 0.9 or greater, it can be 
determined that a model capable of quantitative prediction 
has been obtained, and if R2 is 0.6 or greater, it can be 
determined that a model capable of qualitative prediction 
has been obtained(15).

3. Results and Discussion

3.1. Stack Model Evaluation
The anode differential pressure, cathode differential 

pressure, coolant outlet pressure, coolant outlet temperature, 
and stack power were modeled on the basis of the input 
conditions defined in Table 1. Figure 4 shows the results 
for evaluation of the created model by the LOO method. 
The modeling used 169 items of measurement data. An 
accuracy of R2>0.9 is indicated for the prediction of stack 
power and the various outlet parameters. This indicates that 
a model has been obtained that is capable of quantitative 

prediction of stack power in a steady state as well as 
cathode differential pressure, anode differential pressure, 
and coolant outlet temperature and pressure.

The contributions to stack power made by the 11 
variables were evaluated based on the Gaussian process 
regression model. The parameter making the greatest 
contribution to power is current, and when that contribution 
is taken as 1, the relative contributions of the other 
parameters are shown in Fig. 5. It is apparent that the 
contribution of the anode control parameter is low and 
the contribution of the cathode control parameter is high. 
Since the FC overvoltage is more dependent on the oxygen 
reduction reaction in the cathode than on the hydrogen 
oxidation reaction in the anode(16), it is apparent that the 
stack characteristics for the power prediction model in this 
research have also been selected appropriately.

Figure 6 shows the polarization curve for the stack 
measured under the various standard conditions and the 
average power values predicted by the power prediction 

M
ea

su
re

d

Predicted

M
ea

su
re

d

Predicted

M
ea

su
re

d

Predicted

M
ea

su
re

d

Predicted

M
ea

su
re

d

Predicted

R2: 0.998R2: 0.998

R2: 0.972R2: 0.972 R2: 0.978R2: 0.978

R2: 0.999R2: 0.999

R2: 1.000R2: 1.000

(e) Gross power

(a) Anode differential pressure (b) Cathode differential pressure 

(d) Coolant outlet temperature 

(c) Coolant outlet pressure 

0.0 0.2 0.4 0.6 0.8 1.0

An_Q
An_P

An_RH
An_N2
Ca_Q
Ca_P

Ca_RH
Co_T
Co_Q
Co_P

CD

Contribution 

C
el

l v
ol

ta
ge

 [V
]

Current density [A/cm2]

Model
±3σ
Measured



Fuel Cell Stack Power Prediction Model Using Gaussian Process Regression Model

− 91 −

Fig. 7   Effect of optimized parameters on stack power

model when the control parameters under the various 
standard conditions have been input. The model created 
by Gaussian process regression yields the predicted value 
averages and standard deviation σ(10), (17). Figure 6 also 
shows the results for model prediction average values within 
±3σ. The polarization curve from actual measurement of 
the stack falls within the ±3σ range, indicating that output 
under the various operating conditions can be predicted.

In Fig. 6, the σ spread is greater at high current 
density than at low current density. This is because the 
number of measurement data items on the high load side 
is approximately 12% of the total number of measurement 
data items and there is less learning data than for low loads.

Up to now, stack power had been predicted by the results 
of parametric study of experiment designs created using 
multiway layout(18). Consequently, there was an issue in that 
the number of measurement points increased conspicuously 
when mult iple variables changed simultaneously. 
Furthermore, in order to evaluate 11 variables in a multiway 
layout and create a highly accurate prediction model, it is 
necessary to conduct tens of thousands of experiments. The 
experiment design for this research used the space filling 
technique, which is a DoE method, to perform modeling by 
Gaussian process regression. This made clear that prediction 
of the various output items was possible with the number of 
evaluation points reduced to several hundred and while the 
11 correlated variables underwent simultaneous change.

3.2. Output Enhancement by Examination of Control 
Parameters Using a Power Prediction Model

Verification was performed regarding whether or not 
it is possible to investigate the various control parameters 
using the stack power prediction model and enhance output. 
Verification involved overall optimization of the control 
parameters with the aim of maximizing both the low current 
density and high current density output of the stack.

Figure 7 shows average values for model prediction 
output and measured output under standard conditions and 
optimized conditions. The specifications of the measured 
stack were the same as those of the stack used in creating 
the model, but a different stack was used.

The average power prediction values calculated from 
the power prediction model can be expected to show power 
enhancement of 8.9% for low current density and 7.0% 
for high current density when the control parameters are 
changed from the standard conditions. As measured, the 
figures were 4.1% and 6.0%. Therefore it is possible to 
use the power prediction model created for this research to 
investigate the enhancement of stack power.

Figure 8 shows the ratio of the control parameters 
for both low current density and high current density as 
optimized overall to those parameters under standard 
operating conditions. Under the optimized conditions, the 
cathode pressure and cathode flow rate are set to higher 
levels than under the standard operating conditions, and the 
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enhancement of power can be considered to occur because 
the cathode overvoltage is reduced. In the anode, on the 
other hand, the conditions call for flow to be reduced and N2

concentration to be increased, and this can be considered to 
be because anode overvoltage makes almost no contribution 
to power performance. These adjustments of the control 
parameters are also supported by the results in Fig. 5 and 
by general FC characteristics(16). Creating a more accurate 
power prediction model appears likely to necessitate 
increased density of data overall in the space formed from 
11 dimensions.

The stack power prediction model created in this 
research will be used going forward to proceed with 
optimization of an FC system equivalent to that of an actual 
vehicle that also combines accessories and related items.

4. Conclusion

The results obtained in this research are shown as 
follows.
(1) With the number of stack performance evaluation points 

reduced to the smallest amount by means of the space 
filling technique, the various output items were modeled 
using Gaussian process regression on the basis of 
measurement data acquired by an automated system for 
experimentation and data analysis.

(2) Using the Gaussian process regression model, the 
control parameters were optimized for the purpose of 
maximizing stack power, and this made it possible to 
investigate the enhancement of stack power.

Going forward, the model described in this paper will be 
used to carry out optimization at the system level.
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