

ETAS ES421.1-K Thermo-Modul

Benutzerhandbuch

Copyright

Die Angaben in diesem Schriftstück dürfen nicht ohne gesonderte Mitteilung der ETAS GmbH geändert werden. Des Weiteren geht die ETAS GmbH mit diesem Schriftstück keine weiteren Verpflichtungen ein. Die darin dargestellte Software wird auf Basis eines allgemeinen Lizenzvertrages oder einer Einzellizenz geliefert. Benutzung und Vervielfältigung ist nur in Übereinstimmung mit den vertraglichen Abmachungen gestattet.

Unter keinen Umständen darf ein Teil dieser Veröffentlichung in irgendeiner Form ohne schriftliche Genehmigung der ETAS GmbH kopiert, vervielfältigt, in einem Retrievalsystem gespeichert oder in eine andere Sprache übersetzt werden.

© Copyright 2021 ETAS GmbH, Stuttgart

Die verwendeten Bezeichnungen und Namen sind Warenzeichen oder Handelsnamen ihrer entsprechenden Eigentümer.

ES421.1-K - Benutzerhandbuch R09 DE - 10.2021

ETAS Inhalt

Inhalt

1	Über dieses Dokument	7	
1.1	Klassifizierung von Warnhinweisen		
1.2	Darstellung von Handlungsanweisungen		
1.3	Typografische Konventionen		
1.4	Darstellung unterstützender Informationen		
1.5	Lieferumfang		
1.6	Weitere Informationen	8	
2	Grundlegende Sicherheitshinweise	9	
2.1	Allgemeine Sicherheitsinformationen	9	
2.2	Anforderungen an die Benutzer und Pflichten des Betreibers	9	
2.3	Bestimmungsgemäße Verwendung	9	
3	ES400 Produktfamilie	4	
3.1	Verkabelungskonzepte in Versuchsfahrzeugen	4	
3.2	Eigenschaften der ES400-Baureihe		
	3.2.1 Vorteile des dezentralen Verkabelungskonzepts		
3.3	Gehäuse1		
3.4	Anschlüsse 1	17	
	3.4.1 Sensoranschlusskabel		
3.5	LED		
	3.5.1 Betriebszustand		
	3.5.3 Funktionszustand		
4	Hardwarebeschreibung	9	
4.1	Eigenschaften der ES421.1-K	9	
4.2	Blockdiagramm	20	
4.3	Sensorkanäle	20	
4.4	Messfehler		
4.5	3 3	22	
	4.5.1 Kommunikationsprotokolle	22 23	
	4.5.2 Realisierung		
4.6	Stromversorgung	27	
	3 3 1 3	27	
	3 9	27 27	
4.7		30	
4.8	Tool-Integration	30	
4.9	Firmware-Aktualisierung 3	30	

ETAS

4.10	Kalibrierung			
5	Inbetrieb	onahme	31	
5.1	Allgeme	ine Einbauempfehlungen	31	
	5.1.1 5.1.2 5.1.3	Montageumgebung und Bauteile zur Befestigung	31	
5.2	Montage 5.2.1 5.2.2	e	32	
5.3	Bohrsch	ablone	35	
5.4	Applikati 5.4.1 5.4.2 5.4.3	ionen Allgemeines. ES400 Module mit weiteren ETAS Modulen (MC-Applikation) ES400 Module mit weiteren ETAS Modulen (Rapid Prototyping-Applika on)	36 36 ati-	
5.5		lungsbeispiele		
	5.5.1 5.5.2 5.5.3 5.5.4 5.5.5	ES400 Module mit weiteren ETAS Modulen (Measurement and Calibration) ES400 Module mit weiteren ETAS Modulen und Drive Recorder (Measment and Calibration) ES400 Module mit ES910.3 (Rapid Prototyping) ES400 Module mit ES910.3 und Drive Recorder (Rapid Prototyping) ES400 Module mit ETAS RTPRO-PC (Rapid Prototyping)	.38. ure- 39. 40 41	
5.6	Verkabe	lung		
	5.6.1 5.6.2	Sensoranschlusskabel		
6	Behandl	ung von Problemen	45	
6.1	Anzeiger	Anzeigen der LEDs		
6.2	Problem	Probleme mit der ES421.1-K		
6.3	Allgeme 6.3.1 6.3.2 6.3.3	ine Probleme und Lösungen	48 49	
7	Technise	che Daten	55	
7.1	Allgeme 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7	ine Daten. Kennzeichnungen auf dem Produkt. Standards und Normen. Umgebungsbedingungen Wartung des Produkts. Reinigung des Produkts Mechanische Daten ES4xx Systemeigenschaften	55 56 57 57 57	
7.2	RoHS-Ko	RoHS-Konformität		
7.3	CE-Konf	CE-Konformität		
7.4	UKCA-K	onformität	58	
7.5	KCC-Kor	nformität	58	
7.6	Produktr	rücknahme und Recycling	58	

ETAS

7.7	Deklarationspflichtige Stoffe		
7.8	Verwendung von Open Source Software.		59
7.9	Systemv 7.9.1 7.9.2	voraussetzungen	59
7.10	Elektrisc 7.10.1 7.10.2 7.10.3	he Daten Host-Schnittstelle Spannungsversorgung Sensoreingänge	60 61
7.11	Anschlus 7.11.1 7.11.2 7.11.3	ssbelegung. Anschluss "IN". Anschluss "OUT". Sensoranschlusskabel	63 64
8	Kabel un	nd Zubehör	65
8.1	Kombini 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11	erte Ethernet- und Stromversorgungskabel Übersicht Kabel CBEP410.1 Kabel CBEP415.1 Kabel CBEP4155.1 Kabel CBEP420.1 Kabel CBEP4205.1 Kabel CBEP425.1 Kabel CBEP425.1 Kabel CBEP430.1 Kabel CBEP430.1 Kabel CBEP430.1	66 67 68 68 69 70 71
8.2	Ethernet 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	kabel Kabel CBE400.2 Kabel CBE401.1 Kabel CBE430.1 Kabel CBE431.1 Kabel CBEX400.1 ES4xx_BRIDGE	72 72 73 73 73
8.3	Schutzka 8.3.1 8.3.2 8.3.3 8.3.4	appen. Mitgelieferte Schutzkappen. Kappe CAP_LEMO_1B. Kappe CAP_LEMO_1B_LC Kappe CAP_SOURIAU_8STA	75 75 75
8.4	ES4xx-H 8.4.1 8.4.2	altewinkel ES4xx-Haltewinkel links ES4xx-Haltewinkel rechts	77
9	Bestellinformationen		
9.1	ES421.1	-K	78
9.2	Zubehör 9.2.1 9.2.2 9.2.3 9.2.4	Kabel Schutzkappen ES4xx-Haltewinkel Kalibrierung	78 79 80

ETAS

10	Kontaktinformationen	81
	Abbildungsverzeichnis	82
	Index	84

ETAS Über dieses Dokument

1 Über dieses Dokument

1.1 Klassifizierung von Warnhinweisen

Die hier verwendeten Warnhinweise warnen vor Gefahren, die zu Personenoder Sachschäden führen können:

GEFAHR

kennzeichnet eine gefährliche Situation mit hohem Risiko, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht vermieden wird.

WARNUNG

kennzeichnet eine gefährliche Situation mit mittlerem Risiko, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.

VORSICHT

kennzeichnet eine gefährliche Situation mit geringem Risiko, die zu leichten oder mittelschweren Verletzungen führen kann, wenn sie nicht vermieden wird.

HINWEIS

kennzeichnet eine Situation, die zu Sachschäden führen kann, wenn sie nicht vermieden wird.

1.2 Darstellung von Handlungsanweisungen

Das zu erreichende Ziel wird in der Überschrift definiert. Die dafür notwendigen Handlungsschritte werden in einer Schritt-für-Schritt-Anleitung aufgeführt:

Zieldefinition

- 1. Schritt 1
- 2. Schritt 2
- 3. Schritt 3
- > Resultat

ETAS Über dieses Dokument

1.3 Typografische Konventionen

Hardware

Fett Menübefehle, Schaltflächen, Beschriftungen am Produkt *Kursiv* Inhaltliche Hervorhebungen und neu eingeführte Begriffe

1.4 Darstellung unterstützender Informationen

INFO

Beinhaltet zusätzliche unterstützende Informationen.

1.5 Lieferumfang

Bitte überprüfen Sie vor der ersten Inbetriebnahme des Moduls, ob das Modul mit allen erforderlichen Teilen und Kabeln geliefert wurde (siehe Kapitel 9.1 auf Seite 78).

Weitere Kabel und Adapter können separat von der ETAS bezogen werden. Eine Liste des verfügbaren Zubehörs und dessen Bestellbezeichnung finden Sie im Kapitel "Bestellinformationen" auf Seite 78 dieses Handbuchs oder im ETAS Produktkatalog.

1.6 Weitere Informationen

Die Konfigurationsanleitungen für das Modul unter INCA finden Sie in der entsprechenden Software-Dokumentation.

2 Grundlegende Sicherheitshinweise

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Allgemeine Sicherheitsinformationen" auf Seite 9
- "Anforderungen an die Benutzer und Pflichten des Betreibers" auf Seite 9
- "Bestimmungsgemäße Verwendung" auf Seite 9

2.1 Allgemeine Sicherheitsinformationen

Bitte beachten Sie den Produkt-Sicherheitshinweis ("ETAS Safety Advice") und die nachfolgenden Sicherheitshinweise, um gesundheitliche Beeinträchtigungen oder Schäden am Gerät zu vermeiden.

INFO

Lesen Sie die zum Produkt gehörende Dokumentation (Product Safety Advice und dieses Benutzerhandbuch) vor der Inbetriebnahme sorgfältig.

Die ETAS GmbH übernimmt keine Haftung für Schäden, die durch unsachgemäße Handhabung, nicht bestimmungsgemäßen Gebrauch und durch Nichteinhaltung der Sicherheitsvorkehrungen entstanden sind.

2.2 Anforderungen an die Benutzer und Pflichten des Betreibers

Montieren, bedienen und warten Sie das Produkt nur, wenn Sie über die erforderliche Qualifikation und Erfahrung für dieses Produkt verfügen. Fehlerhafte Nutzung oder Nutzung durch Anwender ohne ausreichende Qualifikation kann zu Schaden an Leben bzw. Gesundheit oder Eigentum führen.

Die Sicherheit von Systemen, die das Produkt verwenden, liegt in der Verantwortung des Systemintegrators.

Allgemeine Arbeitssicherheit

Die bestehenden Vorschriften zur Arbeitssicherheit und Unfallverhütung sind einzuhalten. Beim Einsatz dieses Produktes müssen alle geltenden Vorschriften und Gesetze in Bezug auf den Betrieb beachtet werden.

2.3 Bestimmungsgemäße Verwendung

Einsatzbereich des Produkts

Dieses Produkt wurde für Anwendungen im Automotive-Bereich entwickelt und freigegeben. Das Modul ist für den Einsatz in Innenräumen, in der Fahrgastzelle, im Kofferraum, im Motorraum oder im Außenbereich von Fahrzeugen geeignet.

Für eine Benutzung in anderen Anwendungsfeldern wenden Sie sich bitte an Ihren ETAS-Kontaktpartner.

Anforderungen an den technischen Zustand des Produktes

Das Produkt entspricht dem Stand der Technik sowie den anerkannten sicherheitstechnischen Regeln. Das Produkt darf nur in technisch einwandfreiem Zustand sowie bestimmungsgemäß, sicherheits- und gefahrenbewusst unter Beachtung der zum Produkt gehörenden Dokumentation betrieben werden. Wird das Produkt nicht bestimmungsgemäß eingesetzt, kann der Schutz des Produktes beeinträchtigt werden.

Anforderungen an den Betrieb

- Verwenden Sie das Produkt nur entsprechend den Spezifikationen im zugehörigen Benutzerhandbuch. Bei abweichender Nutzung ist die Produktsicherheit nicht gewährleistet.
- · Beachten Sie die Anforderungen an die Umgebungsbedingungen.
- Verwenden Sie das Produkt nicht in explosionsgefährdeten Bereichen.

Elektrosicherheit und Stromversorgung

- Beachten Sie die am Einsatzort geltenden Vorschriften zur Elektrosicherheit sowie die Gesetze und Vorschriften zur Arbeitssicherheit!
- Schließen Sie an die Anschlüsse des Moduls nur Stromkreise mit Sicherheitskleinspannung gemäß EN 61140 (Schutzklasse III) an.
- Sorgen Sie für die Einhaltung der Anschluss- und Einstellwerte (siehe Informationen im Kapitel "Technische Daten").
- Legen Sie keine Spannungen an die Anschlüsse des Moduls an, die nicht den Spezifikationen des jeweiligen Anschlusses entsprechen.

Stromversorgung

- Die Stromversorgung für das Produkt muss sicher von der Netzspannung getrennt sein. Verwenden Sie z.B. eine Fahrzeugbatterie oder eine geeignete Laborstromversorgung.
- Verwenden Sie nur Laborstromversorgungen mit doppeltem Schutz zum Versorgungsnetz (mit doppelter Isolation/ mit verstärkter Isolation (DI/ RI)).
- Die Laborstromversorgung muss für eine Einsatzhöhe von 5000 m und für eine Umgebungstemperatur bis zu 120 °C zugelassen sein.
- Bei Normal-Betrieb der Module sowie bei sehr langem Standby-Betrieb ist ein Entleeren der Fahrzeugbatterie möglich.

Anschluss an die Stromversorgung

- Das Stromversorgungskabel darf nicht direkt, sondern nur über eine geeignete Absicherung an die Fahrzeugbatterie oder die Laborstromversorgung angeschlossen werden.
- Sorgen Sie für die leichte Erreichbarkeit der Anschlüsse der Laborstromversorgung, der Stromversorgung am Modul und der Fahrzeugbatterie!
- Verlegen Sie das Stromversorgungskabel so, dass es gegen Abrieb, Beschädigungen, Verformung und Knicken geschützt ist. Stellen Sie keine Gegenstände auf das Stromversorgungskabel!

GEFAHR

Gefährliche elektrische Spannung!

Verbinden Sie das Stromversorgungskabel nur mit einer geeigneten Fahrzeugbatterie oder mit einer geeigneten Laborstromversorgung! Der Anschluss an Netzsteckdosen ist untersagt!

Um ein versehentliches Einstecken in Netzsteckdosen zu verhindern, empfiehlt ETAS, in Bereichen mit Netzsteckdosen die Stromversorgungskabel mit Sicherheits-Bananenstecker einzusetzen.

Modul spannungsfrei schalten

Das Modul hat keinen Betriebsspannungsschalter. Das Modul kann wie folgt spannungsfrei geschaltet werden:

Trennen der Kabel von den Messeingängen

und

- Trennen des Moduls von der Stromversorgung
 - Ausschalten der Laborstromversorgung

oder

 Trennen des Moduls von der Laborstromversorgung
 Trennvorrichtung ist der Laborstecker des Stromversorgungskabels oder der Stecker des Stromversorgungskabels am Anschluss des Moduls

oder

 Trennen des Moduls von der Fahrzeugbatterie
 Trennvorrichtung ist der Laborstecker des Stromversorgungskabels oder der Stecker des Stromversorgungskabels am Anschluss des Moduls

oder

Abklemmen der Fahrzeugbatterie.

Verkabelung

Zugelassene Kabel:

- Verwenden Sie an den Anschlüssen des Moduls ausschließlich ETAS-Kabel!
- Halten Sie die maximal zulässigen Kabellängen ein!
- Verwenden Sie keine beschädigten Kabel! Kabel dürfen nur von ETAS repariert werden!

VORSICHT

Verbinden Sie einen Stecker niemals mit Gewalt mit einem Anschluss. Achten Sie darauf, dass sich keine Verunreinigungen im und am Anschluss befinden, dass der Stecker zum Anschluss passt und dass Sie die Stecker korrekt mit dem Anschluss ausgerichtet haben.

VORSICHT

Beschädigung der Anschlüsse der Module oder der ES4xx_BRIDGE möglich!

Verschrauben Sie die beiden Module ohne sie zu verkanten bis zum Anschlag innerhalb des Moduls.

Ausführliche Informationen zur Verkabelung finden Sie im Benutzerhandbuch des Moduls.

VORSICHT

Potentialausgleich im Fahrzeug über den Schirm der Anschlusskabel der Module möglich!

Montieren Sie die Module nur an Orte mit gleichem elektrischen Potential oder isolieren Sie die Module vom Montageort.

Anforderungen an den Aufstellungsort

- Stellen Sie das Modul oder den Modulstapel auf einen glatten, ebenen und festen Untergrund.
- Das Modul oder der Modulstapel müssen immer sicher befestigt werden.

Anforderung an die Belüftung

- Halten Sie das Modul von Wärmequellen fern und schützen Sie es vor direkter Sonneneinstrahlung.
- Der Freiraum über und hinter dem Modul muss so gewählt werden, dass eine ausreichende Luftzirkulation gewährleistet ist.

Fixieren der Module auf einem Trägersystem

Beachten Sie bei der Auswahl des Trägersystems die statischen und dynamischen Kräfte, die durch das Modul oder den Modulblock am Trägersystem entstehen können.

VORSICHT

Beschädigung oder Zerstörung der Module möglich.

Die Module der ES400-Baureihe sind nur für die Montage und den Betrieb an Bauteilen oder an Orten zugelassen, die die Einhaltung der technischen Daten der Module gewährleisten, wie z. B.:

- die Vibrationsfestigkeit der Module (Module beispielsweise nur an gefederten Massen, nicht jedoch an Radaufhängungen oder direkt am Motor montieren) und
- die Temperaturfestigkeit der Module (Module beispielsweise nicht an Motor, Turbolader, Auspuffkrümmer oder deren Umgebung montieren).

VORSICHT

Beachten Sie bei der Montage der Module den zulässigen Temperaturbereich der von Ihnen verwendeten Kabelbinder!

Beschädigung des Moduls und Verlust der Eigenschaften nach IP65

VORSICHT

Verlust der Eigenschaften nach IP65 möglich!

Stehendes Wasser am Druckausgleichselement (DAE) beschädigt die Membran!

Bei senkrechtem Einbau des Moduls Einbaurichtung beachten!

Transport

- Verblocken und verbinden Sie die Module erst am Ort der Inbetriebnahme!
- Transportieren Sie die Module nicht am Kabel des Moduls oder an anderen Kabeln.

Wartung

Das Produkt ist wartungsfrei.

Reparatur

Sollte eine Reparatur eines ETAS Hardware-Produktes erforderlich sein, schicken Sie das Produkt an ETAS.

Reinigung des Modulgehäuses

- Verwenden Sie ein trockenes oder leicht angefeuchtetes, weiches, fusselfreies Tuch zum Reinigen des Modulgehäuses.
- Verwenden Sie keine Sprays, Lösungsmittel oder Scheuermittel, die das Gehäuse beschädigen könnten.
- Achten Sie darauf, dass keine Feuchtigkeit in das Gehäuse eindringt.
 Sprühen Sie Reiniger niemals direkt auf das Modul.

3 ES400 Produktfamilie

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Verkabelungskonzepte in Versuchsfahrzeugen" auf Seite 14
- "Eigenschaften der ES400-Baureihe" auf Seite 15
- "Gehäuse" auf Seite 16
- "Anschlüsse" auf Seite 17
- "LED" auf Seite 18

3.1 Verkabelungskonzepte in Versuchsfahrzeugen

In ein Versuchsfahrzeug sind für die Erprobungsphase in vielen Bereichen mehrere hundert Sensoren einzubauen, z.B. im Motorraum und im Bodenbereich. Die über das gesamte Fahrzeug verteilten Sensoren müssen anschließend mit den Messgeräten des Versuchsaufbaus verbunden werden.

Heutige Standard-Lösungen mit einem zentralen Aufbau der Messgeräte im Fahrzeuginnenraum erfordern eine aufwändige Verkabelung der weiträumig verteilten Sensoren mit den Messgeräten. Zahlreiche, zumeist lange Verbindungskabel zwischen Sensoren und Messgeräten, zusammengefasst zu mehreren dicken Kabelbäumen, bedingen eine stark modifizierte Spritzwand des Versuchsfahrzeugs. Das verursacht lange Rüstzeiten und hohe Kosten.

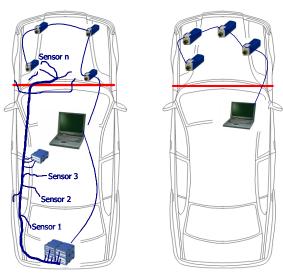


Abb. 3-1 Zentrale und dezentrale Sensorverkabelung

ETAS bietet mit den ES400 Modulen eine dezentrale Lösung, die den Messaufbau der Sensoren erheblich vereinfacht.

Grundidee dieses Konzeptes ist es, die Module der ES400-Familie räumlich möglichst nahe an den Sensoren unterzubringen, die Module miteinander zu verketten und nur das erste Modul dieser Kette mit dem Laptop im Fahrzeug zu verbinden.

3.2 Eigenschaften der ES400-Baureihe

3.2.1 Vorteile des dezentralen Verkabelungskonzepts

- Die kompakten ES400 Module können nahe an den Sensoren mit kurzen Verbindungskabeln montiert werden.
- Das einfache Montage- und Verkabelungsprinzip (Daisy-Chain-Topologie) der Module
 - erfordert zwischen den Modulen nur ein gemeinsames Kabel für die Stromversorgung und die Übertragung der Daten
 - reduziert die Aufbauzeiten für die Versuche erheblich
 - vereinfacht die Wartung und die Erweiterung des Messaufbaus
- Im Fahrzeug ist nur noch der Laptop unterzubringen, der mit den Modulen mit einem einzigen Kabel verbunden wird.
- Mit einem ES400-Messsystem ausgestattete Testfahrzeuge sind flexibel verwendbar, weil die Fahrzeuge für geänderte oder neue Testaufgaben nicht modifiziert werden müssen.

3.2.2 Weitere Eigenschaften

Ergänzend zu den Vorteilen der dezentralen Verkabelung weitere Eigenschaften der ES400-Baureihe im Überblick:

- Die Bauform der ES400-Module ist sehr kompakt.
- In jedem Modul ist eine LED zum Lokalisieren des Moduls vorhanden.
- Die Thermo-Module der ES400-Familie verwenden ein XCP-basierendes Protokoll, das zur existierenden ETAS Ethernet-Topologie kompatibel ist. Das Konzept erfüllt folgende Anforderungen:
 - hohe Bandbreite, um viele Kanäle mit hohen Auflösungen (typisch in Mess- und Verstellanwendungen) durch schnelle Abtastraten realisieren zu können
 - auf der Ethernet-Integration in INCA basierende einfache Anwendung; keine komplizierten Einstellungen von Busparametern
 - einfache Integration in Mess- und Verstellwerkzeuge von Drittanbietern durch Verwenden von XCP als Anwendungsprotokoll
 - Unterstützung aller in der Automobilindustrie verwendeten Messfühler und Drucksensoren
- Innovatives, batteriesparendes Stromversorgungsmanagment
 - automatische Stromsparfunktion ("Standby")
 - "Wake Up" über die Ethernet-Schnittstelle
- · Teil der ETAS Tool Suite
- Stand-alone Betrieb mit Daisy Chain Configuration Tool

• automotivtaugliche Module, die für den Einsatz im Labor und im Fahrzeug auf Teststrecken geeignet sind:

- Gehäuse, Anschlüsse und Kabel nach IP65 bzw. IP67 wasser- und staubdicht; für den Einsatz im Motorraum oder Außenbereich des Fahrzeugs konzipiert
- robust gegenüber Beschleunigungen und mechanischen Beschädigungen
- robust gegenüber extremen Umweltbedingungen (Temperatur, Feuchtigkeit, EMV)
- Sehr niedrige Temperaturkoeffizienten tragen zur Reduzierung von Messfehlern bei.

Die vollständigen technischen Daten finden Sie im Kapitel "Technische Daten" auf Seite 55.

3.3 Gehäuse

Für die ES421.1-K wird ein robustes Metallgehäuse mit Anschlüssen auf der Gerätefrontseite verwendet, so dass sie auch in engen Zwischenräumen Platz finden. Die ES421.1-K ist für die Unterbringung im Motorraum, aber auch in der Fahrgastzelle konzipiert.

Die Gehäuse der ES400-Familie können schnell und einfach miteinander zu einem Messsystem verbunden werden (siehe Kapitel 5.2 auf Seite 32). Im Fahrzeug oder im Labor können die Module ohne großen Aufwand an ein Trägersystem direkt verschraubt oder mit Kabelbindern befestigt werden.

Diese einfachen und unkomplizierten Befestigungsmöglichkeiten ermöglichen eine flexible Montage der Module. Darüber hinaus ist auch unter rauen Umweltbedingungen (Salznebel, Schmutz) eine hohe Verfügbarkeit der Befestigungsmöglichkeiten gegeben.

VORSICHT

Verlust der Eigenschaften nach IP65!

Öffnen oder verändern Sie das Modulgehäuse nicht! Arbeiten am Modulgehäuse dürfen nur von qualifiziertem Fachpersonal ausgeführt werden."

3.4 Anschlüsse

Sämtliche Steckverbindungen der ES400-Messmodule sind auf der Frontseite angebracht (siehe Abb. 3-2 auf Seite 17).

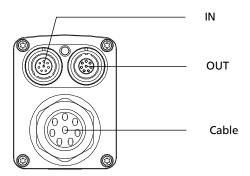


Abb. 3-2 Frontseite

Die verwendeten Lemo- bzw. Mini-TC-Steckverbinder werden entsprechend der Schutzart IP65 verbaut. Alle Steckverbindungen sind durch die ausschließliche Verwendung von codierten Lemo- bzw. TC-Steckverbindern verpolungssicher.

3.4.1 Sensoranschlusskabel

An der Frontseite der ES421.1-K befindet sich ein integriertes Sensoranschlusskabel mit TC-Buchsen für die acht Thermoelemente.

3.4.2 Daisy-Chain-Anschlüsse ("IN", "OUT")

Die Module werden über eine Daisy-Chain Topologie verbunden. Daraus ergibt sich, dass jedes Modul eine explizite Eingangsbuchse sowie eine explizite Ausgangsbuchse hat. Die Ethernet-Datenleitung und die Spannungsversorgung werden durch die Daisy-Chain-Anschlüsse des Moduls geschleift:

- "IN" (Eingang)
- "OUT" (Ausgang)

Am Anschluss "IN" (Eingang) werden der PC, die ES523, ES59x, ES600.2, ES891, ES910.3 oder der Drive Recorder ES720 angeschlossen. Der Anschluss "OUT" (Ausgang) wird mit dem folgenden Modul der ES400-Baureihe verbunden bzw. bleibt am letzten Modul der Kette frei.

3.5 LED

Jedes Modul ist mit einer LED ausgerüstet. Sie zeigt folgende Zustände des Moduls an:

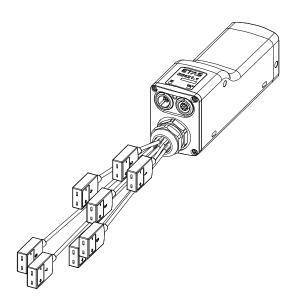
3.5.1 Betriebszustand

Anzeige		Zustand
ON	aus	keine Stromversorgung des Moduls
OFF —t		
OFF t	gelb blinkend 0,25 s an / 0,25 s reduziert	Initialisierung des Moduls noch nicht abgeschlossen - Weitere Module innerhalb einer Kette noch nicht initialisiert
ON OFF t	grün leuchtend halbe Helligkeit	normal
ON OFF t	gelb leuchtend halbe Helligkeit	Mindestens eine Sensorversorgungsspannung ist eingeschaltet.
OFF t	grün blinkend 0,1 s an / 1,9s aus	Standby keine Ethernet-Verbindung aufge- baut

3.5.2 Servicezustand

Anzeige		Zustand
ON OFF	rot blinkend 0,25 s an / 0,25 s reduziert	Modulidentifizierung
ON OFF	rot blinkend 0,1 s an / 0,6 s aus	Update der Firmware / HDC

3.5.3 Funktionszustand


Anzeige		Zustand
ON OFF	gelb-rot blinkend 0,5 s gelb reduziert / 0,5 s rot reduziert	Warnung Überlast auf beliebigem Sensor- versorgungsspannungskanal
ON OFF t	rot leuchtend volle Helligkeit	Fehler während Selbsttest
ON OFF	rot leuchtend halbe Helligkeit	interner Fehler

4 Hardwarebeschreibung

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Eigenschaften der ES421.1-K" auf Seite 19
- "Blockdiagramm" auf Seite 20
- "Sensorkanäle" auf Seite 20
- "Messfehler" auf Seite 21
- "Datenübertragung" auf Seite 22
- "Stromversorgung" auf Seite 27
- "Konfiguration" auf Seite 30
- "Tool-Integration" auf Seite 30
- "Firmware-Aktualisierung" auf Seite 30
- "Kalibrierung" auf Seite 30

4.1 Eigenschaften der ES421.1-K

Abb. 4-1 ES421.1-K Gehäuse

Das Thermo-Modul ES421.1-K gehört zur Familie der ES400-Module. Die ES421.1-K kann an acht Eingangskanälen Temperaturen mittels Thermoelementen erfassen.

Die wichtigsten Eigenschaften der ES421.1-K im Überblick:

- 8 galvanisch getrennte Messkanäle für Thermoelemente
- Messbereich von -200 °C bis +1372 °C
- Galvanische Trennung der Messkanäle untereinander und von der Versorgungsspannung
- Einstellbare Erfassungsrate pro Kanal
- Softwarefilter zur Signalglättung

Die vollständigen technischen Daten der ES421.1-K finden Sie im Kapitel "Technische Daten" auf Seite 55.

4.2 Blockdiagramm

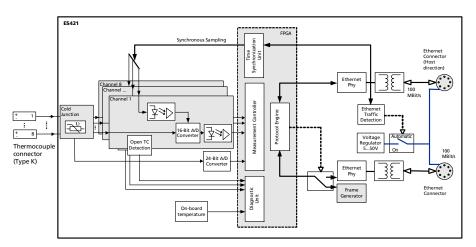


Abb. 4-2 Blockdiagramm

Die ES421.1-K ist ein Modul mit acht identisch aufgebauten Sensorkanälen mit gemeinsamer Kaltstellenkompensation, zwei gemeinsam genutzten Ethernet-Schnittstellen, einem Netzteil und dem integrierten Sensoranschlusskabel.

Das Sensoranschlusskabel besteht aus acht identischen Kabelsträngen unterschiedlicher Länge mit Mini-TC-Buchsen für die Thermoelemente. Jeder Kabelstrang ist jeweils einem ES421.1-K Messkanal zugeordnet und nach dem selben Schema verkabelt.

4.3 Sensorkanäle

Alle Sensorkanäle der ES421.1-K sind identisch aufgebaut. Die Sensorkanäle haben eine Auflösung von 16 Bit. Sie können Thermoelemente der Typs K einsetzen. Der maximale Messbereich beträgt -200 °C bis +1372 °C.

Das zum Thermoelement-Typ K passende integrierte Sensoranschlusskabel besteht aus der gleichen Materialkombination wie die Thermoelemente. Um hohe Genauigkeiten über den gesamten Temperaturbereich zu erreichen, werden im Sensoranschlusskabel Thermoleitungen des entsprechenden Typs verwendet (NiCr und Ni).

Der Materialübergang von der Thermoleitung auf eine Leiterplatte bildet die Kaltstelle. Die Messung der Kaltstelle erfolgt gemeinsam für alle Kanäle mit einem PTC (PT1000), der auf dieser Leiterplatte montiert ist.

Durch den Aufbau ist gewährleistet, dass auch bei schnellen Temperaturänderung oder ungleichmäßiger Temperaturverteilung (z. B. bei Einbau nahe der Abgasanlage oder Luftausströmern) das Messergebnis nur um wenige Zehntel Kelvin beeinflusst wird.

Die Thermokanäle sind voneinander, von der Versorgungsspannung und von der Gerätemasse galvanisch getrennt. Somit ist auch der Einsatz von nicht isolierten Thermoelementen in nicht potentialfreien Aufbauten ohne Einschräkung der Genauigkeit möglich.

Die Kombination aus Thermoelement und der ES421.1-K mit integriertem Sensoranschlusskabel ermöglicht hochpräzise, von Umgebungseinflüssen nahezu unabhängige Temperaturmessungen.

4.4 Messfehler

Bei der Messung mit Thermoelementen setzt sich der gesamte maximale Messfehler aus verschiedenen Teilfehlern zusammen. Die Teilfehler sind:

- Grundgenauigkeit ΔT_a
- Temperaturdrift der Thermoelementeingänge ΔT_d
- Messfehler der vom Innenwiderstand des Thermoelements abhängt ΔT_i
- Messfehler der Kaltstellenkompensation ΔT_{cic}
- Temperaturdrift der Kaltstellenkompensation ΔT_{dcjc}

Der maximal zu erwartende Gesamtfehler ist die Summe aller Teilfehler.

$$\Delta T = \Delta T_{q} + \Delta T_{d} + \Delta T_{i} + \Delta T_{cic} + \Delta T_{dcic}$$

Der Betrag der Teilfehler ist vom Typ des Thermoelements abhängig. Die Zahlenwerte finden Sie in der Tabelle "Sensoreingänge" auf Seite 75.

Zwei Beispiele verdeutlichen Ihnen die Berechnung des maximal zu erwartenden Gesamtfehlers.

Beispiel 1

Mit einem Thermoelement des Typs K mit einem Innenwiderstand R_i von weniger als 50 Ω soll bei einer Umgebungstemperatur T_a von 25 °C eine Temperatur T_m von 200 °C (473,15 K) gemessen werden.

$$\begin{split} & \Delta T_g = (\mid T_m - T_0 \mid * 0,025 \%) + 0,25 \text{ K} \\ & \Delta T_g = (\mid 473,15 \text{ K} - 298,15 \text{ K} \mid * 0,025 \%) + 0,25 \text{ K} \\ & \Delta T_g = 0,29 \text{ K} \\ & \Delta T_d = 0,005 \text{ K/K} * \mid T_a - T_0 \mid \\ & \Delta T_d = 0,005 \text{ K/K} * \mid 25 \text{ °C} - 25 \text{ °C} \mid \\ & \Delta T_d = 0,006 \text{ K} \end{split}$$

 ΔT_i = 0, da der Innenwiderstand kleiner als 50 Ω ist.

$$\begin{split} &\Delta T_{cjc} = 1 \text{ K} \\ &\Delta T_{dcjc} = 0,008 \text{ K/K} * | T_a - T_0 | \\ &\Delta T_{dcjc} = 0,008 \text{ K/K} * | 25 \text{ °C} - 25 \text{ °C} | \\ &\Delta T_{dcjc} = 0,00 \text{ K} \end{split}$$

Der maximal zu erwartenden Gesamtfehler ergibt sich somit zu

$$\begin{split} & \Delta T = \Delta T_{g} + \Delta T_{d} + \Delta T_{i} + \Delta T_{cjc} + \Delta T_{dcjc} \\ & \Delta T = 0,29 \text{ K} + 0,00 \text{ K} + 0,00 \text{ K} + 1 \text{ K} + 0,00 \text{ K} \\ & \Delta T = 1,29 \text{ K} \end{split}$$

In diesem Beispiel wird der maximal zu erwartenden Gesamtfehler also maßgeblich von dem Messfehler der Kaltstellenkompensation bestimmt.

Beispiel 2

Mit einem Thermoelement des Typs K mit einem Innenwiderstand R $_{\rm i}$ von 150 Ω soll bei einer Umgebungstemperatur T $_{\rm a}$ von 50 °C eine Temperatur T $_{\rm m}$ von 400 °C (673,15 K) gemessen werden.

$$\begin{split} & \Delta T_g = (\mid T_m - T_0 \mid * 0,025 \%) + 0,25 \text{ K} \\ & \Delta T_g = (\mid 673,15 \text{ K} - 298,15 \text{ K} \mid * 0,025 \%) + 0,25 \text{ K} \\ & \Delta T_g = 0,34 \text{ K} \\ & \Delta T_d = 0,005 \text{ K/K} \mid T_a - T_0 \mid \\ & \Delta T_d = 0,005 \text{ K/K} \mid 50 \text{ °C} - 25 \text{ °C} \mid \\ & \Delta T_d = 0,13 \text{ K} \\ & \Delta T_i = 0,004 \text{ K/}\Omega \mid * R_i \\ & \Delta T_i = 0,004 \text{ K/}\Omega \mid * 150 \Omega \\ & \Delta T_i = 0,60 \text{ K} \\ & \Delta T_{cjc} = 1 \text{ K} \\ & \Delta T_{dcjc} = 0,008 \text{ K/K} \mid T_a - T_0 \mid \\ & \Delta T_{dcjc} = 0,008 \text{ K/K} \mid 50 \text{ °C} - 25 \text{ °C} \mid \\ & \Delta T_{dcic} = 0,20 \text{ K} \end{split}$$

Der maximal zu erwartenden Gesamtfehler ergibt sich somit zu

$$\Delta T = \Delta T_{g} + \Delta T_{d} + \Delta T_{i} + \Delta T_{cjc} + \Delta T_{dcjc}$$

$$\Delta T = 0.34 \text{ K} + 0.13 \text{ K} + 0.60 \text{ K} + 1 \text{ K} + 0.20 \text{ K}$$

$$\Delta T = 2.27 \text{ K}$$

In diesem Beispiel wird der maximal zu erwartenden Gesamtfehler maßgeblich von dem Messfehler der Kaltstellenkompensation und dem Messfehler, dervom Innenwiderstand des Thermoelements abhängt, bestimmt.

4.5 Datenübertragung

Die ES930.1 sowie die ES4xx- und die ES63x-Module nutzen zur Datenübertragung eine 100 Mbit/s Ethernet-Netzwerk-Verbindung im Duplex-Betrieb. Die Datenübertragung kann sehr flexibel an den Messaufbau und an die Messaufgabe angepasst werden.

INFO

Sowohl für Messdaten als auch für Stellgrößen steht die vollständige Ethernet-Bandbreite zur Verfügung.

Verstellvorgänge können in einer Rapid Prototyping-Anwendung ohne Verzögerung erfolgen, während gleichzeitig Messdaten erfasst werden.

4.5.1 Kommunikationsprotokolle

Zur seriellen Kommunikation dient das universelle ASAM-Mess- und Applikationsprotokoll XCP. Auf der Ethernettransport- und Netzwerkschicht kommt das UDP/IP-Protokoll zum Einsatz (siehe Abb. 4-3 auf Seite 22).

Die Module übertragen innerhalb des XCP-Protokolls u.a. Modulkennung, Zeitstempel und Mess- bzw. Stimulationsdaten in einem hoch genauen und vorhersagbaren Zeitraster. Das für die Module verwendete Kommunikationsprotokoll vermeidet die wiederholte Übertragung von Protokolldaten wie etwa bei Handshake-basierten Systemen. Dadurch wird eine hohe Bandbreite für die Nutzdaten zur Verfügung gestellt.

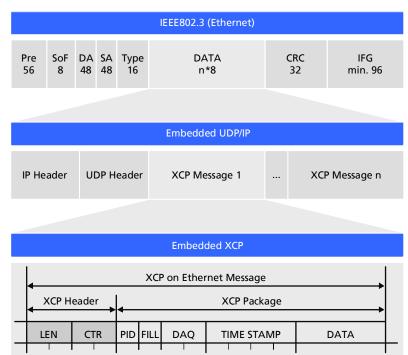


Abb. 4-3 Nachrichtenformat "XCP on UDP" (schematisch)

Die Verwendung des UDP/IP Standards zur Datenübertragung ermöglicht eine direkte Verbindung der Module mit einem PC, einem Router oder einem Switch. Bei der XCP-Kommunikation übernimmt der PC die Master-Funktion.

An die Applikation werden dabei keine Echtzeitanforderungen gestellt. Eine Messdatenerfassung auf einem PC, die im Allgemeinen keine hohen Echtzeitanforderungen erfüllen muss, kann also direkt an eine ES400-Kette angeschlossen werden. Mit einem echtzeitfähigen Master, wie z. B. einem Rapid Prototyping-System, ist der Zugriff auf viele verschiedenartige I/O-Signale bei extrem kurzen Zyklenzeiten möglich.

INFO

Das von der ES400-Familie verwendete Kommunikationsprotokoll bietet Drittanbietern die Möglichkeit, nach der Konfiguration der Module mit dem "ES4xx Configuration Tool aus ES4xx_DRV_SW" das Kommunikationsprotokoll für eigene, ETAS-unabhängige Applikationen zu nutzen.

4.5.2 Realisierung

Zeitscheibenverfahren

Die hintereinander geschalteten Module übertragen die Daten auf einer 100 MBit/s Ethernet-Verbindung zeitgesteuert, d. h. ohne Anforderung, zum Master. Die Funktion des Masters übernimmt der PC. Die Module verhalten sich im Verbund wie ein einziges Ethernet-Gerät mit einer MAC-Adresse.

In allen verketteten Modulen ist ein Generator vorhanden, der nur im jeweils letzten Modul der Kette nach Anschluss des Messaufbaus an den PC aktiviert ist. Die Frequenz des Generators bzw. die Periodendauer der erzeugten Zeitscheiben ist im Applikationsprogramm einstellbar. Sie entspricht der Messfrequenz des Messkanals mit der höchsten Erfassungsrate innerhalb der Kette.

Ein an den Generator gekoppelter Binär-Zähler zählt die erzeugten Zeitscheiben periodisch (Wertebereich: 2^{16} = 65536). Das letzte Modul der Kette verschickt die jeweilige Nummer der Zeitscheiben im IP-Header. Die Ethernet-Frames werden in der Kette von Modul zu Modul weitergereicht.

Jedes Modul der Kette erhält Bandbreite zur Übertragung seiner Messdaten in frei wählbaren Zeitscheiben innerhalb der Periode des Binärzählers zugeordnet. Mit Hilfe der Nummer der Zeitscheibe stellt das Modul fest, ob es in die aktuelle Zeitscheibe eine XCP-Message mit seinen Messdaten einfügen darf.

Das schnellste Modul, das mit seinen Daten die Periodendauer der erzeugten Zeitscheiben bestimmt, überträgt in jeder Zeitscheibe Daten. Ein Ethernet-Frame enthält dann mindestens ein XCP-on-Ethernet Datenpaket. Die Länge des innerhalb einer Zeitscheibe übertragenen Ethernet-Frames steigt mit der Anzahl der Module, die ihre Daten in diese Zeitscheibe einfügen dürfen.

Die Nummerierung der Zeitscheiben stellt sicher, dass beispielsweise zwei Module, die mit der halben Abtastrate des Generators arbeiten, niemals ihre Daten an den gleichen Ethernet-Frame anhängen. Das eine Modul verwendet nur die ungeraden Frame-Nummern und das andere Modul nur die geraden Frame-Nummern. Dieser Mechanismus ermöglicht außerdem, dass die zugeordneten Frames die Länge einer Zeitscheibe mit Sicherheit nicht überschreiten.

Die Messdaten werden auf die Frames automatisch so aufgeteilt, dass die verfügbare Bandbreite optimal genutzt wird.

Das Zeitscheibenverfahren ermöglicht sowohl Messungen von schnellen Signalen als auch die Erfassung sehr vieler Kanäle mit niedriger Abtastrate.

Werden in einer Kette einige schnelle und viele langsame Signale erfasst, so kann die Übertragung der langsamen Signale im Zeitmultiplexverfahren erfolgen.

INFO

Aufgrund der Datenübertragung über Ethernet gibt es selbst bei schnellen Abtastraten nahezu keine Einschränkungen hinsichtlich der Anzahl von Modulen in einer Modulkette.

Taktgeber für die Synchronisation der Module

Taktgeber für die Synchronisation der Module ist entweder das erste Modul in einer Modul-Kette oder das Netzwerkmodul ES600. Die Synchronisation der Messdaten erfolgt in beiden Fällen mit einer Genauigkeit von einer Mikrosekunde. Mit Hilfe eines ES600-Netzwerkmoduls können mehrere ES4xx/ES63x/ES93x-Ketten miteinander oder mit den Modulen der ES600-Serie synchronisiert werden. Die ES4xx/ES63x/ES93x- und ES600-Module fügen zu jedem Messwert den zugehörigen Zeitstempel in das Ethernet-Datenpaket ein. Die damit erreichte exakte zeitliche Zuordnung der Messdaten der verwendeten ES4xx/ES63x/ES93x- und ES600-Module ermöglicht eine präzise Analyse der Korrelationen von Mess-Signalen.

Synchronisation der Module und INCA-Signalverarbeitung

Die Datenübertragung setzt keine Synchronisation der lokalen Zeitbasen der ES4xx/ES63x/ES93x-Module voraus. Die Zeitstempel werden vom System dennoch synchronisiert, um Messdaten und Abtastzeitpunkte von verschiedenen Modulen im Anschluss an die Datenübertragung zeitlich korrelieren zu können. Dazu findet in den Modulen eine präzise Zeit- und Drift-Synchronisation über eine Hardware-Schaltung statt.

Im Gegensatz zur Zeitsynchronisation nach IEEE1588 (Precision Time Protocol) wird hierfür keine Bandbreite benötigt. Die Module fügen zu jedem Messdatum den Zeitstempel mit in das Ethernet-Datenpaket ein.

Durch die Kombination aus Zeitstempelsynchronisierung, Vollduplex- und Zeitscheibenverfahren wird eine sehr hohe Nutzdatenrate der Module erreicht.

4.5.3 Beispiele

Beispiel 1

Abb. 4-4 auf Seite 25 zeigt ein Anwendungsbeispiel mit drei verketteten ES400-Modulen mit gleichen Erfassungsraten. Das Übertragungsschema für diese Konfiguration ist in Abb. 4-5 auf Seite 25 dargestellt.

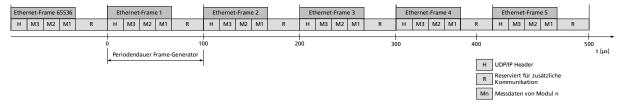



Abb. 4-4 Zeitmultiplexe Datenübertragung zwischen einer ES400-Modulkette und PC

Abb. 4-5 Übertragungsschema für Beispiel 1 (vereinfacht; nicht maßstabsgetreu)

In diesem Beispiel erzeugt das dritte Modul periodisch 2¹⁶ (65536) Zeitscheiben mit jeweils 100 Mikrosekunden Länge. Die Module 1, 2 und 3 erfassen Messwerte mit der gleichen Rate von jeweils 10 kHz. Modul 1, Modul 2 und Modul 3 koppeln ihre Messwerte in jede Zeitscheibe ein (siehe Abb. 4-5 auf Seite 25).

Unabhängig davon können gleichzeitig Stellwerte vom PC zu den Modulen übertragen werden.

Beispiel 2

Abb. 4-6 auf Seite 26 zeigt ein Beispiel, in dem drei Module mit unterschiedlichen Erfassungsraten miteinander verkettet sind. Das Übertragungsschema für diese Konfiguration ist in Abb. 4-7 auf Seite 26 dargestellt.

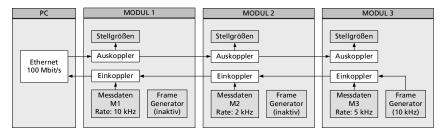


Abb. 4-6 Zeitmultiplexe Datenübertragung zwischen einer ES400-Modulkette und PC

Abb. 4-7 Übertragungsschema für Beispiel 2 (vereinfacht; nicht maßstabsgetreu)

Im Beispiel erzeugt das dritte Modul periodisch 2¹⁶ (65536) Zeitscheiben (Ethernet-Frames) mit jeweils 100 Mikrosekunden Länge. Die ES400-Module 1, 2 und 3 erfassen Messwerte mit einer Rate von 10 kHz, 2 kHz und 5 kHz. Modul 1 koppelt seine Messwerte in jeden, Modul 2 in jeden fünften und Modul 3 in jeden zweiten Ethernet-Frame ein (unteres Bild).

Unabhängig davon können gleichzeitig Stellwerte vom PC zu den Modulen übertragen werden.

4.6 Stromversorgung

4.6.1 Versorgungsspannung

DC/DC-Wandler in jedem Modul garantieren sowohl den Betrieb als auch den Start der ES400-Module bei Versorgungsspannungen zwischen 5 V und 50 V DC über den gesamten Temperaturbereich.

Mit dem Stromversorgungsmanagment der ES421.1-K können Sie eine automatische Stromsparfunktion ("Standby") sowie eine "Wake Up"-Funktion über die Ethernet-Schnittstelle nutzen.

4.6.2 Versorgung der ES400-Module über die Anschlussleitung

Im einfachsten Anwendungsfall sind die Module direkt verkettet. Dabei werden sie über das jeweils vorhergehende Modul mit der Versorgungsspannung verbunden.

4.6.3 Zusätzliche Versorgung der ES400-Module über ein Y-Boostkabel

Sollte am Speisepunkt (Eingang) eines Moduls die Versorgungsspannung durch die Stromaufnahme der vorhergehenden Module zu niedrig sein, kann in längeren Modul-Ketten eine Mehrfacheinspeisung der Versorgungsspannung diesem und den folgenden Modulen eine ausreichende Versorgungsspannung gewährleisten.

In diesem Anwendungsfall müssen Sie die Modulkette auftrennen. Tauschen Sie das vorhandene Verbindungskabel zwischen den beiden Modulen gegen ein Y-Boostkabel zur zusätzlichen, direkten Einspeisung der Versorgungsspannung aus. Die Modulkette ist jetzt wieder geschlossen und die Stromversorgung der folgenden Module ist gewährleistet.

Der spezielle Aufbau des Y-Boostkabels verhindert eine Rückspeisung in den vorderen Teil der Modulkette und dadurch entstehende Potentialunterschiede.

Wann ist es erforderlich, ein Y-Boostkabel zu verwenden?

Eine genaue Berechnung des Stromverbrauchs einer Modulkette ist nur unter Kenntnis zahlreicher Variablen möglich:

- · Versorgungsspannung des ersten Moduls am Speisepunkt
- minimale Versorgungsspannung am letzten Modul der Kette
- Anzahl und Typ der Module
- Verbrauch der Sensorstromversorgung der angeschlossenen Sensoren
- Kabellänge
- Kabeltyp
- Umgebungstemperatur

Die erforderliche Mindestspannung zur Versorgung des Systems ist für jeden Versuchsaufbau extra zu ermitteln.

Beispiel 1:

ETAS empfiehlt für Modulketten, die ausschließlich mit ES410.1, oder ES441.1 bestückt sind, den Einsatz von Y-Boostkabeln, wenn die Länge der Modulkette größer als 10 Module ist.

Beispiel 2:

ETAS empfiehlt für Modulketten, die ausschließlich mit ES411.1 oder ES413.1 oder ES421.1 bestückt sind, den Einsatz von Y-Boostkabeln, wenn die Länge der Modulkette

- größer als 16 Module (ohne Sensorspeisung) oder
- größer als 10 Module (mit Sensorspeisung) ist.

Beispiel 3:

ETAS empfiehlt für Modulketten, die ausschließlich mit ES415.1 oder ES420.1 bestückt sind, den Einsatz von Y-Boostkabeln, wenn die Länge der Modulkette

- · größer als 8 Module (ohne Sensorspeisung) oder
- größer als 5 Module (mit Sensorspeisung) ist.

Beispiel 4:

Bei einer Mindestspannung von 7,7 V wird noch keine Zusatzspeisung mit einem Y-Kabel benötigt, wenn die Modulkette aus folgenden Modulen besteht:

- neun ES420.1 oder ES421.1
- vier ES410.1 oder ES411.1 oder ES413.1 (ohne Sensorspeisung)
- eine ES441.1

Beispiel 5:

Bei einer Mindestspannung von 7,7 V wird noch keine Zusatzspeisung mit einem Y-Kabel benötigt, wenn die Modulkette aus folgenden Modulen besteht:

- fünf ES420.1 oder ES421.1
- zwei ES415.1 (ohne Sensorspeisung)
- eine ES441.1

Beispiel 6:

Bei einer Mindestspannung von 9 V wird noch keine Zusatzspeisung mit einem Y-Kabel benötigt, wenn die Modulkette aus folgenden Modulen besteht:

- neun ES420.1 oder ES421.1
- vier ES410.1 oder ES411.1 oder ES413.1 (mit Sensorspeisung)
- eine ES441.1

Beispiel 7:

Bei einer Mindestspannung von 9 V wird noch keine Zusatzspeisung mit einem Y-Kabel benötigt, wenn die Modulkette aus folgenden Modulen besteht:

- fünf ES420.1 oder ES421.1
- zwei ES415.1 (mit Sensorspeisung)
- eine ES441.1

INFO

Die Beispiele gelten bei einer Umgebungstemperatur von 85 °C.

4.7 Konfiguration

Die Konfiguration der ES421.1-K erfolgt vollständig über die grafische Benutzeroberfläche Ihrer INCA Applikationssoftware.

Die Konfiguration der einzelnen Kanäle wird wahlweise in INCA oder in den einzelnen ES400-Modulen gespeichert. Im ersten Fall können Sie Einstellungen für spezifische Messaufgaben, z. B. im Labor, vorbereiten. Der zweite Fall ist für Anwender von Interesse, die sich gemeinsam einen Versuchsträger mit einem dazugehörigen ES400-Messaufbau teilen. Mehrere Anwender können so die einmal gespeicherte Konfiguration direkt aus den Modulen abrufen.

4.8 Tool-Integration

Die ES400-Module sind im Applikationsprogramm auswählbar und konfigurierbar und unterstützen das offene Protokoll XCP-on-Ethernet. Deshalb ist eine Integration der Module auch in eine andere Messsoftware leicht möglich.

Das Messsystem kann direkt am Ethernet-Port des PCs angeschlossen werden. Es sind keine weiteren Zusatzgeräte oder Schnittstellenwandler erforderlich.

4.9 Firmware-Aktualisierung

Die Firmware des Moduls kann vom Anwender aktualisiert werden, sodass auch künftige Versionen des Moduls eingesetzt werden können. Die Firmware-Aktualisierung geschieht mit Hilfe der Servicesoftware "Hardware Service Pack" (HSP) vom angeschlossenen PC aus.

INFO

Während einer Firmware-Aktualisierung darf weder die Spannungsversorgung noch die Ethernetverbindung unterbrochen werden!

4.10 Kalibrierung

Für dieses Produkt steht Ihnen ein Kalibrierservice zur Verfügung. Lassen Sie das Produkt regelmäßig kalibrieren, um eine zuverlässige Genauigkeit der Messwerte zu gewährleisten.

HINWEIS

ETAS empfiehlt ein Kalibrierungsintervall von 12 Monaten.

Das Prüfsiegel am Produkt zeigt das Datum der letzten Kalibrierung. Im Kalibrierschein finden Sie Informationen zur Messgenauigkeit.

Auskünfte über den Ablauf des Kalibierservice erteilt Ihnen Ihr ETAS Kontaktpartner (siehe Kapitel "Kontaktinformationen" auf Seite 81). Die Bestellinformationen zum Kalibrierservice finden Sie im Kapitel "Kalibrierung" auf Seite 80.

5 Inbetriebnahme

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Allgemeine Einbauempfehlungen" auf Seite 31
- "Montage" auf Seite 32
- "Bohrschablone" auf Seite 35
- · "Applikationen" auf Seite 36
- "Verkabelungsbeispiele" auf Seite 38
- "Verkabelung" auf Seite 43

5.1 Allgemeine Einbauempfehlungen

5.1.1 Montageumgebung und Bauteile zur Befestigung

VORSICHT

Beschädigung oder Zerstörung des Moduls möglich.

Die Module der ES400-Baureihe sind nur für die Montage und den Betrieb an Bauteilen oder an Orten zugelassen, die während ihres Betriebes die Einhaltung der technischen Daten der Module (siehe Kapitel 7 auf Seite 55) gewährleisten

Beachten Sie für den Betrieb die technischen Daten der Module, wie z.B.

- die Vibrationsfestigkeit der Module (Module beispielsweise nur an gefederten Massen, nicht jedoch an Radaufhängungen oder direkt am Motor montieren) und
- die Temperaturfestigkeit der Module (Module beispielsweise nicht an Motor, Turbolader, Auspuffkrümmer oder deren Umgebung montieren).

5.1.2 Potentialausgleich im Fahrzeug und Montage der Module

VORSICHT

Potentialausgleich im Fahrzeug über den Schirm der Ethernetverbindungskabel der Module möglich!

Montieren Sie die Module nur an Bauteile mit gleichem elektrischen Potential oder isolieren Sie die Module von den Bauteilen.

5.1.3 Gewährleistung der Eigenschaften nach IP65

VORSICHT

Verlust der Eigenschaften nach IP65 möglich!

Stehendes Wasser am DAE beschädigt die Membran! Bei senkrechtem Einbau des Moduls Einbaurichtung beachten!

An Einbauorten, an denen sich Wasser oder andere Flüssigkeiten auf den ES400-Modulen sammeln könnte, sind die Module so einzubauen, dass das (schwarze) Druckausgleichselement (DAE) an der Rückseite der Module nicht nach oben zeigt bzw. dass Flüssigkeiten dort ablaufen können.

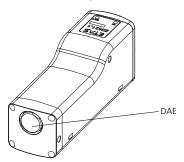


Abb. 5-1 Lage des Druckausgleichelements

Stehende bzw. nicht ablaufende Flüssigkeiten auf dem DAE können dauerhaft die Membran beschädigen. Das Modul verliert die Eigenschaften nach IP65.

5.2 Montage

INFO

Die Module ES421.1-K und ES421.1-K können Sie mechanisch miteinander verbinden oder an anderen Bauteilen befestigen.

Sie benötigen für die Montage der Module zusätzliche Teile (Schrauben oder Gewindestangen mit Muttern, Kabelbinder usw.).

INFO

Die Module ES421.1-K und ES421.1-K können Sie mit anderen ES400-Modulen (Gehäuse mit integrierten Montageelementen) nur an den Durchbrüchen für Kabelbinder mechanisch miteinander verbinden.

5.2.1 Verbindungs- und Befestigungsmöglichkeiten

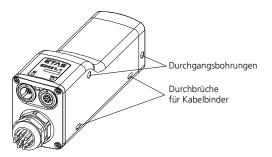


Abb. 5-2 Durchgangsbohrungen und Durchbrüche für Kabelbinder

Durchgangsbohrungen

Jedes ES400-Modul dieser Bauart verfügt über zwei Durchgangsbohrungen für unterschiedliche Anbaumöglichkeiten:

- Werden mehrere Module an einer Stelle benötigt, können sie zu einem Messgeräteblock verbunden werden (Kaskadierung).
- Die Module können mit anderen Bauteilen (Karosserieteile, Aggregate) verbunden werden.

INFO

Die Durchgangsbohrungen des Gehäuses haben einen Durchmesser von 4,4 mm und eine Länge von 40 mm.

Durchbrüche für Kabelbinder

An der rechten und der linken Unterseite der Module sind je zwei Durchbrüche für die Befestigung an anderen Bauteilen mit Kabelbindern vorhanden.

5.2.2 Montagebeispiele

Beispiele für die Montage unter Nutzung der unterschiedlichen Verbindungsund Befestigungsmöglichkeiten von ES421.1-K-Modulen sind:

- mehrere Module mechanisch verbinden (kaskadieren),
- · Module an anderen Bauteilen mit Schrauben befestigen und
- · Module an anderen Bauteilen mit Kabelbindern befestigen.

Mehrere ES400-Module mechanisch verbinden

Bei dieser Befestigungsvariante verbinden Sie mehrere ES400-Module (Gehäuse mit Durchgangsbohrungen) mit Hilfe zweier zusätzlicher, durch die Bohrungen des Moduls gesteckter Schrauben oder Gewindestangen mit Muttern.

INFO

Die Durchgangsbohrungen des Gehäuses haben einen Durchmesser von 4,4 mm und eine Länge von 40 mm.

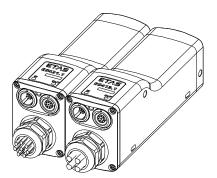


Abb. 5-3 Mehrere ES400-Module mechanisch verbinden (kaskadieren)

ES400-Module an anderen Bauteilen mit Schrauben befestigen

Bei dieser Befestigungsvariante verbinden Sie ES400-Module mit dem Bauteil mit Hilfe zweier zusätzlicher, durch die Bohrungen des Bauteils gesteckter Schrauben mit Muttern.

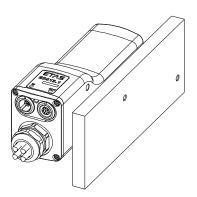


Abb. 5-4 Befestigung an anderen Bauteilen mit zusätzlichen Schrauben

ES400-Module an anderen Bauteilen mit Kabelbindern befestigen

Bei dieser Befestigungsvariante verbinden Sie das ES400-Modul oder ES400-Modul-Blöcke mit dem Bauteil mit Hilfe zusätzlicher, durch die Durchbrüche des Moduls gesteckter Kabelbinder.

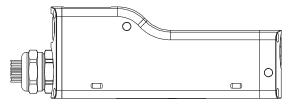


Abb. 5-5 Durchbrüche für Kabelbinder an ES400-Modulen

An der rechten und der linken Unterseite der Module sind Durchbrüche für je zwei Kabelbinder vorhanden (siehe Abb. 5-5 auf Seite 34). Mit Hilfe von Kabelbindern lassen sich die Module problemlos an anderen Bauteilen der Testumgebung in der unmittelbaren Nähe der Messpunkte montieren.

VORSICHT

Beachten Sie bei der Montage der Module den zulässigen Temperaturbereich der von Ihnen verwendeten Kabelbinder!

5.3 Bohrschablone

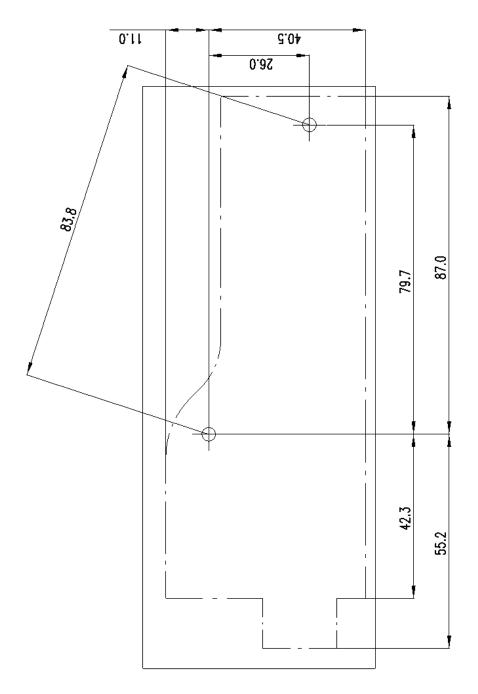
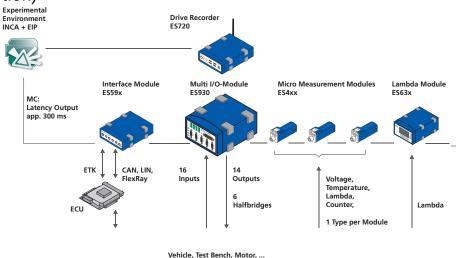


Abb. 5-6 Bohrschablone

5.4 Applikationen

5.4.1 Allgemeines


Die Module ES4xx/ES63x/ES93x können einzeln oder als Bestandteil einer Daisy Chain-Modulkette für folgende Applikationen verwendet werden:

- Messen und Kalibrieren mit INCA
- Rapid Prototyping mit INTECRIO (mit ES910.3 Prototyping Module oder mit RTPRO-PC)

Weitere Steuergeräte- und Busschnittstellenmodule sowie Messmodule werden über Ethernet miteinander vernetzt und mit der Daisy Chain-Modulkette verbunden.

Der Messaufbau kann mit einem Drive Recorder ergänzt werden, um alle Daten, die die angeschlossenen Module erfassen, aufzuzeichnen. Der Drive Recorder ES720.1 unterstützt das simultane Aufzeichnen unterschiedlicher Messungen (Multi-recording). Die Daten werden im ASAM-Standardformat MDF (Measure Data Format) abgespeichert. Sie lassen sich mit dem Measure Data Analyzer MDA von ETAS komfortabel auswerten und einfach mit INCA-Referenzmessungen vergleichen. Der Drive Recorder ES720.1 kann die aufgezeichneten Messdateien verschlüsselt und komprimiert über LAN, WLAN oder Mobilfunk automatisiert an kundenspezifische Datenserver übertragen.

5.4.2 ES400 Module mit weiteren ETAS Modulen (MC-Applikation)

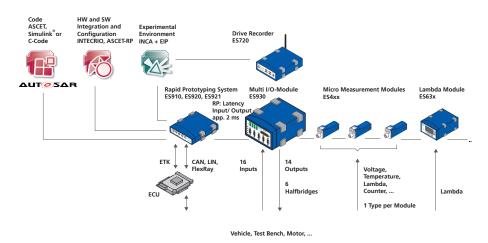


Abb. 5-7 ES400 Module und weitere ETAS Module für MC-Applikationen

Das ETAS Daisy-Chain-Konzept ermöglicht eine einfache Netzwerkarchitektur, weil nur die ES421.1-K bzw. das erste Modul der Modul-Kette mit dem PC oder mit dem Anschluss "ETH" der ES59x.1 zu verbinden ist.

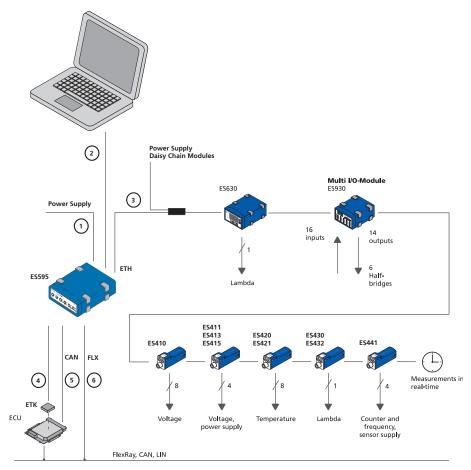
Weitere Busanalysefunktionen auf den Bussen CAN, LIN und FlexRay sowie (X)ETK Bypass-Applikationen mit Messen und Kalibrieren können mit ES59x-Modulen zugänglich gemacht werden.

5.4.3 ES400 Module mit weiteren ETAS Modulen (Rapid Prototyping-Applikation)

Abb. 5-8 ES400 Module mit ES910 und weiteren ETAS Modulen für Rapid Prototyping-Applikationen

Das Konzept der ES4xx/ES63x/ES93x-Produktfamilie, die Module räumlich möglichst nahe an den Sensoren unterzubringen, die Module miteinander zu verketten und nur das erste Modul dieser Kette mit der ES910.3 oder dem RTPRO-PC zu verbinden, ermöglicht eine einfache Netzwerkarchitektur.

Die Kombination aus ES910.3 oder RTPRO-PC mit Daisy-Chain-Modulen kann im Rapid-Prototyping-Modell Informationen von Sensoren verarbeiten und Aktuatoren ansteuern.


Vom Rapid-Prototyping-Modell aus kann auf die angeschlossenen Module zugegriffen werden, deren Signale direkt im Rapid Prototyping Modell behandelt werden.

Die ES910.3 bzw. der RTPRO-PC kann auf alle üblichen ECU-Schnittstellen (ETK, XETK, CAN, LIN, FlexRay) zugreifen und im Bypass die neuen Regelfunktionen berechnen.

Parallel zur Bypass-RP-Funktionalität kann mit INCA auf alle Kontroll- und Diagnostik-Parameter sowie wie auf alle Messsignale des angeschlossenen Steuergerätes zugegriffen werden. Zusätzlich bietet INCA/INCA-EIP Zugang zu allen Bypass- und Modell-Größen, die im ES910.3 Prototyping Modul angelegt sind.

5.5 Verkabelungsbeispiele

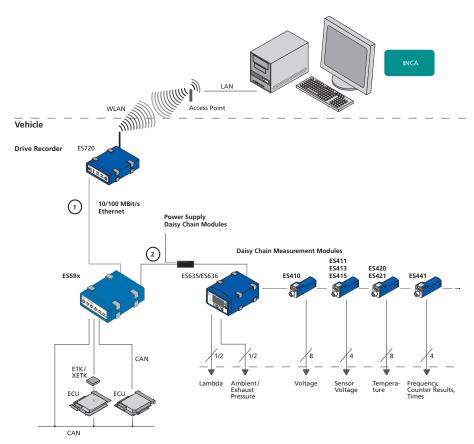

5.5.1 ES400 Module mit weiteren ETAS Modulen (Measurement and Calibration)

Abb. 5-9 ES400 Module mit weiteren ETAS Modulen (Measurement and Calibration)

Kabel in Abb. 5-9	Funktion	Kurzname
1	Stromversorgungskabel	CBP120, CBP1205
2	Host-Anschlusskabel	CBE100
3	Stromversorgungs- und Ethernetkabel Daisy Chain-Module	CBEP430, CBEP4305
4	ETK-Anschlusskabel	CBM150
5, 6	CAN/LIN/FLX-Anschlusskabel (CAN/LIN/FLX kombiniert)	CBCFI100

5.5.2 ES400 Module mit weiteren ETAS Modulen und Drive Recorder (Measurement and Calibration)

Abb. 5-10 ES400 Module mit weiteren ETAS Modulen und Drive Recorder (Measurement and Calibration)

Kabel in Abb. 5-10	Funktion	Kurzname
1	ES520-, ES59x-, ES6xx-, ES1120- oder ES1135-Ethernetkabel	CBE130, CBE140
2	Stromversorgungs- und Ethernetkabel Daisy Chain-Module	CBEP430, CBEP4305

5.5.3 ES400 Module mit ES910.3 (Rapid Prototyping)

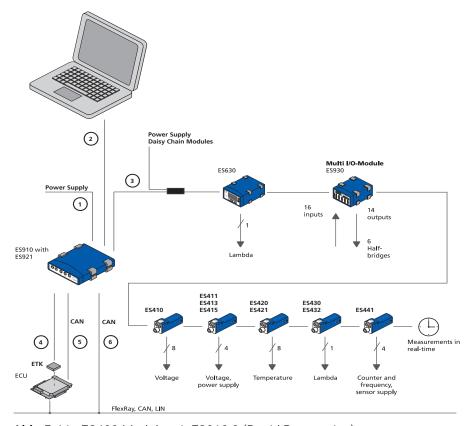


Abb. 5-11 ES400 Module mit ES910.3 (Rapid Prototyping)

Kabel in Abb. 5-11	Funktion	Kurzname
1	Stromversorgungskabel	CBP120, CBP1205
2	PC-Anschlusskabel	CBE200
3	Stromversorgungs- und Ethernetkabel Daisy Chain-Module	CBEP430, CBEP4305
4	ETK-Anschlusskabel	CBM150
5, 6	CAN/LIN/FLX-Anschlusskabel (CAN/LIN/FLX kombiniert), an ES910.3, an ES921.1	CBCFI100
	CAN-Anschlusskabel (nur CAN), an ES910.3, an ES921.1	CBAC130, CBAC140, CBAC150, CBCX130

5.5.4 ES400 Module mit ES910.3 und Drive Recorder (Rapid Prototyping)

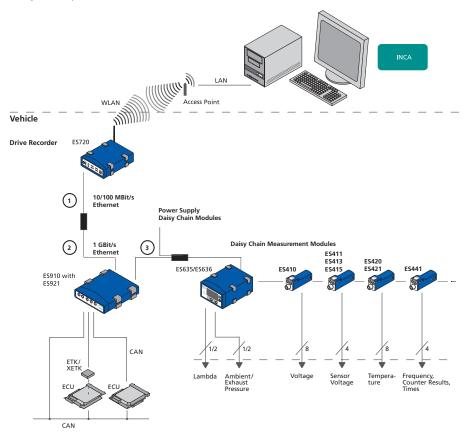
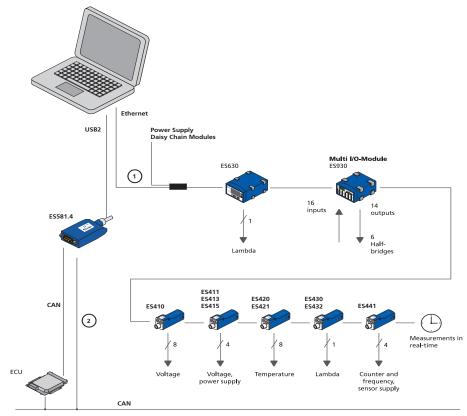



Abb. 5-12 ES400 Module mit ES910.3 und Drive Recorder (Rapid Prototyping)

Kabel in Abb. 5-12	Funktion	Kurzname
1	Ethernet-Adapter-Kabel (100 Mbit/s)	CBAE330 (an Kabel 2 gesteckt)
2	Ethernet-Interface-Kabel (1 Gbit/s)	CBE230 (an Kabel 1 gesteckt)
3	Stromversorgungs- und Ethernetkabel Daisy Chain-Module	CBEP430, CBEP4305

5.5.5 ES400 Module mit ETAS RTPRO-PC (Rapid Prototyping)

Abb. 5-13 ES400 Module mit ETAS RTPRO-PC (Rapid Prototyping)

Kabel in Abb. 5-13	Funktion	Kurzname
1	Stromversorgungs- und Ethernetkabel PC und Daisy Chain-Module	CBEP410, CBEP4105, CBEP415, CBEP4155
2	CAN- und FlexRay-Y-Schnittstellenkabel	CBCF100

5.6 Verkabelung

Die Reihenfolge der Verkabelung der Anschlüsse ist beliebig. Es stehen Ihnen spezielle Anschlusskabel zur Verfügung, die Sie separat bestellen können. Eine Übersicht finden Sie im Kapitel "Kabel und Zubehör" auf Seite 65.

5.6.1 Sensoranschlusskabel

Zur Verbindung der Sensoren mit der ES421.1-K sind keine zusätzlichen Kabel erforderlich.

Die ES421.1-K mit den Sensoren verkabeln

- Verbinden Sie die Sensoren und Messwertaufnehmer mit den Anschlüssen der integrierten Sensoranschlusskabel der ES421.1-K.
- 2. Notieren Sie sich für Ihr Applikationsprogramm die Zuordnung der Sensoren zu den Eingängen der ES421.1-K entsprechend der Verkabelung des Messaufbaus.

5.6.2 Daisy-Chain-Anschlüsse ("IN", "OUT")

Die Verkabelung erfolgt vom ersten Modul in Richtung Ende der Modulkette.

Das erste Modul mit dem darauf folgenden Modul verkabeln

- 1. Verbinden Sie ein Ethernetkabel mit dem Anschluss "OUT" des ersten Moduls.
- 2. Verbinden Sie das Ethernetkabel mit dem Anschluss "IN" des darauf folgenden Moduls

oder

wenn zwei Module mechanisch verbunden sind, verbinden Sie deren nebeneinanderliegende Anschlüsse "IN" und "OUT" mit der ES4xx_BRIDGE.

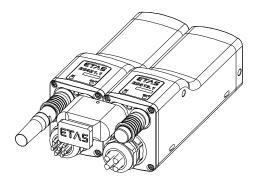


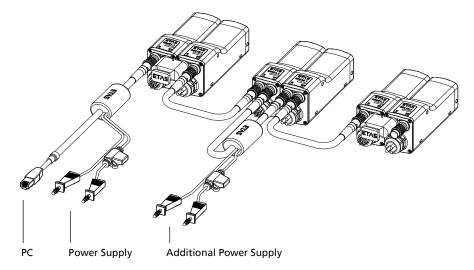
Abb. 5-14 ES421.1-K mit ES4xx_BRIDGE

VORSICHT

Beschädigung der Anschlüsse der Module oder der ES4xx_BRIDGE möglich!

Verbinden Sie die Module ohne sie zu verkanten.

3. Verkabeln oder verbinden Sie weitere Module wie oben beschrieben.


Das erste Modul mit dem PC und der Stromversorgung verkabeln

- 1. Verbinden Sie das kombinierte Ethernet- und Stromversorgungskabel mit dem Anschluss "IN" der ES421.1-K.
- 2. Verbinden Sie den RJ-45-Steckverbinder mit der freien Ethernet-Schnittstelle Ihres PC.
- 3. Verbinden Sie die Spannungsversorgung-Steckverbinder des kombinierten Ethernet- und Stromversorgungskabels mit der gewünschten Stromversorgung.

Beachten Sie die Farbkodierung der Steckverbinder.

Modulkette mit zusätzlicher Stromeinspeisung verkabeln

- Trennen Sie die Modulkette nach dem letzten Modul auf, dessen Stromversorgung im gesamten Betriebsbereich noch gewährleistet ist.
- 2. Verbinden Sie das kombinierte Ethernet- und Stromversorgungskabel mit dem Anschluss "OUT" der ES421.1-K des letzten Moduls der Kette in Richtung PC.

- 3. Verbinden Sie das kombinierte Ethernet- und Stromversorgungskabel mit dem Anschluss "IN" der ES421.1-K des in Richtung Kettenende folgenden Moduls.
- 4. Verbinden Sie die Spannungsversorgung-Steckverbinder des kombinierten Ethernet- und Stromversorgungskabels mit der gewünschten Stromversorgung.
 - Beachten Sie die Farbkodierung der Steckverbinder.

6 Behandlung von Problemen

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Anzeigen der LEDs" auf Seite 45
- "Probleme mit der ES421.1-K" auf Seite 45
- "Allgemeine Probleme und Lösungen" auf Seite 48

6.1 Anzeigen der LEDs

Bitte beachten Sie zur Beurteilung des Betriebszustandes und zur Fehlerbehebung der ES421.1-K die Anzeige der LED, die Informationen über die Funktion der Schnittstellen und der ES421.1-K gibt (siehe Kapitel "LED" auf Seite 18).

6.2 Probleme mit der ES421.1-K

In der Tabelle sind mögliche Probleme mit einem Lösungsansatz aufgelistet. Bei weitergehenden Fragen kontaktieren Sie bitte unseren technischen Service (siehe Kapitel 10 auf Seite 102).

	<u> </u>	
Problem	Diagnosefragen	Mögliche Lösungen
Das Applikations- programm findet keine ES400- Module.	Blinken die LEDs aller Module grün?	Prüfen Sie, ob bei Ihrer PC Card die Funktion zum automatischen Wechsel in den Stromsparmodus deaktiviert ist ¹⁾ . Deaktivieren Sie diese Funktion.
	Haben Sie die Netzwerkkarte richtig konfiguriert?	INCA-, Config Tool- und HSP-Betrieb: Prüfen Sie, ob Ihre Netzwerkkarte ent- sprechend Kapitel 6.3 auf Seite 48 kon- figuriert ist.
		Stand-alone Betrieb: Prüfen Sie, ob die verwendete IP- Adresse zu Ihrem IP-Subnetz gehört und in die A2L-Datei eingetragen ist.
	Haben Sie die erforderliche Applikationssoftware instal- liert?	Prüfen Sie, ob die auf Ihrem PC installierte Applikationssoftware den Anforderungen in Kapitel 7.9.2 auf Seite 59 entspricht.
	Stromversorgung	Prüfen Sie, ob Ihre Stromversorgung und Ihr Messaufbau den Anforderungen nach Kapitel 4.6 auf Seite 27 entsprechen.
	Ist die Hardware am PC angeschlossen?	Prüfen Sie, ob die Verkabelung intakt ist.
	Sind die Module in der Modul- kette richtig angeschlossen?	Prüfen Sie, ob die Verkabelung intakt ist.

Problem	Diagnosefragen	Mögliche Lösungen
Die Messungen werden nicht gestartet.	Werden Sie im INCA-Monitor- log oder im Config-Tool zu einem Update aufgefordert?	Update der Module.
	Liefert das Modul keine Daten?	Prüfen Sie, ob Ihre Stromversorgung und Ihr Messaufbau den Anforderungen nach Kapitel 4.6 auf Seite 27 entsprechen.
		Prüfen Sie, ob die Verkabelung der Hardware zum PC richtig bzw. intakt ist.
		Prüfen Sie, ob die Module in der Modul- kette richtig angeschlossen sind.
	Sie verwenden das ES4xx Configuration Tool und das Modul liefert keine Daten?	Prüfen Sie, ob Sie die Position eines oder mehrerer Module in der Kette geändert haben.
		Prüfen Sie, ob Sie eine falsche A2L- Datei verwenden.
		Prüfen Sie, ob Sie die Messkonfiguration in die Modulkette geladen haben.
		Prüfen Sie, ob Sie zwei Modulketten die gleiche IP-Adresse zugewiesen haben.
	Liefert das Modul keine verwertbaren Daten?	Prüfen Sie, ob der Sensor richtig angeschlossen ist.
Bei der Übertragung treten Datenverluste auf.	Verwenden Sie in Ihrem Messaufbau WLAN?	WLAN ist innerhalb dieses ETAS-Netz- werks nicht zugelassen. Verkabeln Sie Ihren Messaufbau (ETAS-Module und deren Verbindung zum PC) ausschließ- lich mit ETAS-Kabeln.
	Verwenden Sie in Ihrem Lap- top den richtigen Netzwerk- kartentyp?	Prüfen Sie, ob Sie eine PCMCIA-Netz- werkkarte in Ihrem Laptop verwenden. PCMCIA-Karten mit 8- bzw. 16 Bit- Datenbus sind nicht geeignet. Verwen- den Sie nur PCMCIA-Karten mit 32 Bit- Datenbus, Mini-PCI- oder Expres- sCards.

Problem	Diagnosefragen	Mögliche Lösungen
Die LED leuchtet rot.	Haben Sie gerade ein Update durchgeführt?	Anwender INCA: Schalten Sie das Modul ein und wieder aus. Anwender Config-Tool: Schalten Sie das Modul ein und wieder aus. Laden Sie erneut die Messkonfiguration.
		Leuchtet die LED weiterhin, senden Sie das Modul zur Reparatur an ETAS.
Die Firmware eines oder mehrerer Module kann nicht aktualisiert wer- den.	Befindet sich das zu aktuali- sierende Modul in einer Modulkette?	Aktualisieren Sie die Firmware dieser ES400-Module separat.

¹⁾: Die Hersteller der PC Cards bezeichnen diese Funktion unterschiedlich. Beispiel: "Link down Power saving"

6.3 Allgemeine Probleme und Lösungen

6.3.1 Netzwerkadapter kann im Network Manager nicht ausgewählt werden

Ursache: APIPA ist deaktiviert

Der alternative Mechanismus für die IP-Adressierung (APIPA) ist in Windows 7, 8.1 und 10 standardmäßig aktiv. Er wird jedoch in manchen Firmennetzen aus Gründen der Netzwerksicherheit deaktiviert. In diesem Fall können Sie eine Netzwerkkarte, die für DHCP-Adressierung konfiguriert ist, nicht verwenden, um damit auf ETAS-Hardware zuzugreifen. Der ETAS Network Manager gibt eine entsprechende Fehlermeldung aus.

Sie können dieses Problem beheben, indem Sie den APIPA-Mechanismus in der Windows Registry wieder aktivieren. Zum Aktivieren des APIPA-Mechanismus benötigen Sie Administratorrechte auf dem entsprechenden PC. Bevor Sie den Mechanismus wieder aktivieren, sollten Sie sich in jedem Fall mit dem zuständigen Netzwerkadministrator in Verbindung setzen.

APIPA-Mechanismus aktivieren:

- 1. Öffnen Sie den Registrierungs-Editor:
 - Windows 7, 8.1:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Geben Sie regedit in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.
 - Windows 10:
 - 1.1 Rechtsklicken Sie auf das Windows-Symbol.
 - 1.2 Klicken Sie auf **Suchen**.
 - 1.2 Geben Sie regedit in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.

Der Registrierungs-Editor wird geöffnet.

- 2. Wählen Sie im Verzeichnisbaum des Editors den Ordner HKEY_LOCAL_MACHINE\ SYSTEM\CurrentControlSet\ Services\Tcpic\Parameters\.
- Wählen Sie den Menübefehl Bearbeiten → Suchen, um alle Einträge mit dem Schlüssel IPAutoconfigurationEnabled zu suchen.

Wenn Sie keine Einträge mit dem hier genannten Registry-Schlüssel finden, wurde der APIPA-Mechanismus nicht deaktiviert. D.h., es besteht keine Notwendigkeit, ihn zu aktivieren. Andernfalls fahren Sie mit den folgenden Schritten fort:

- 4. Setzen Sie den Wert für den Schlüssel IPAutoconfigurationEnabled auf 1, um den APIPA-Mechanismus zu aktivieren.
 - Die Windows Registry kann mehrere Einträge mit diesem Schlüssel enthalten, da der APIPA Mechanismus sowohl für den TCP/IP Dienst insgesamt als auch separat für jede einzelne Netzwerkkarte deaktiviert werden kann. Sie müssen nur den Wert für den gewünschten Netzwerkadapter ändern.
- 5. Schließen Sie den Registrierungs-Editor.
- 6. Starten Sie das System erneut, damit die Änderungen wirksam werden

6.3.2 Suche nach Ethernet-Hardware schlägt fehl

Ursache: Personal Firewall blockiert die Kommunikation

Für eine detaillierte Beschreibung von Problemen, die durch Personal Firewalls verursacht werden, und mögliche Lösungen siehe Kapitel 6.3.3 auf Seite 51.

Ursache: Client-Software für Fernzugriff blockiert Kommunikation

PCs oder Notebooks, die außerhalb des ETAS Hardware-Netzwerks eingesetzt werden, verwenden manchmal Client-Software für den Fernzugriff, die die Kommunikation zur ETAS Hardware blockieren kann. Das kann folgende Ursachen haben:

- Es wird ein Firewall eingesetzt, der Ethernet-Botschaften blockiert (siehe "Ursache: Personal Firewall blockiert die Kommunikation" auf Seite 49)
- Fälschlicherweise filtert die für das Tunneln verwendete VPN Client-Software Botschaften heraus. So haben beispielsweise Cisco VPN Clients bis zur Version V4.0.x in einigen Fällen bestimmte UDP/IP Broadcasts herausgefiltert.

Trifft dies zu, aktualisieren Sie bitte die Software Ihres VPN Clients.

Ursache: ETAS-Hardware hängt

In Einzelfällen kann es vorkommen, dass die ETAS Hardware hängt. Reinitialisieren Sie in diesem Fall die Hardware, indem Sie sie aus- und wieder einschalten.

Ursache: Netzwerkadapter hat temporär keine IP-Adresse

Wenn Sie von einem DHCP Firmennetzwerk auf ein ETAS Hardware-Netzwerk umschalten, dauert es mindestens 60 Sekunden, bis ETAS-Hardware gefunden wird. Die Verzögerung wird dadurch verursacht, dass das Betriebssystem vom DHCP-Protokoll nach APIPA umschaltet, welches von der ETAS-Hardware verwendet wird.

Ursache: ETAS-Hardware war an anderes logisches Netzwerk angebunden

Greifen Sie von mehr als einem PC oder Notebook auf dieselbe Hardware zu, so müssen die Netzwerkadapter so konfiguriert werden, dass sie dasselbe logische Netzwerk benutzen. Ist dies nicht möglich, so müssen Sie zwischen verschiedenen Sitzungen die ETAS Hardware aus- und wieder einschalten.

Ursache: Treiber für Netzwerkkarte läuft nicht

Es kann vorkommen, dass der Treiber einer Netzwerkkarte nicht läuft. In diesem Fall müssen Sie die Netzwerkkarte deaktivieren und anschließend wieder aktivieren.

Netzwerkkarte deaktivieren und neu aktivieren:

- 1. Öffnen Sie die Systemsteuerung:
 - Windows 7, 10:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Klicken Sie auf **Systemsteuerung.**
 - Windows 8.1:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Geben Sie Systemsteuerung in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.
- 2. Klicken Sie auf Netzwerk- und Freigabecenter.
- 3. Klicken Sie auf Adaptereinstellungen ändern.
- 4. Rechtsklicken Sie auf den verwendeten Netzwerkadapter.
- 5. Wählen Sie im Kontextmenü den Eintrag Deaktivieren.
- 6. Zum Reaktivieren des Netzwerkadapters rechtsklicken Sie ihn erneut.
- 7. Wählen Sie den Eintrag Aktivieren.

Ursache: Energiemanagement des Laptops deaktiviert die Netzwerkkarte

Das Energiemanagement eines Laptops kann die Deaktivierung der Netzwerkkarte verursachen. Schalten Sie daher die Energieüberwachung des Laptops ab.

Energieüberwachung des Laptops abschalten:

- 1. Öffnen Sie die Systemsteuerung:
 - Windows 7, 10:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Klicken Sie auf Systemsteuerung.
 - Windows 8.1:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Geben Sie Systemsteuerung in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.
- 2. Klicken Sie auf Geräte-Manager.
- 3. Öffnen Sie im Geräte-Manager die Baumstruktur des Eintrags **Netzwerkadapter**.

- 4. Rechtsklicken Sie den verwendeten Netzwerkadapter.
- 5. Wählen Sie im Kontextmenü den Eintrag Eigenschaften.
- 6. Schalten Sie die Energieüberwachung ab:
 - i. Wählen Sie die Registerkarte Energieverwaltung.
 - ii. Deaktivieren Sie die Option Computer kann das Gerät ausschalten, um Energie zu sparen.
- 7. Wählen Sie die Registerkarte **Erweitert**.
- 8. Falls die Eigenschaft **Autosense** vorhanden ist, deaktivieren Sie diese.
- 9. Klicken Sie **OK**, um die Einstellungen zu übernehmen.

Ursache: Automatische Unterbrechung der Netzwerkverbindung

Es kann vorkommen, dass die Netzwerkkarte nach einer bestimmten Zeit ohne Datenverkehr die Ethernet-Verbindung automatisch unterbricht. Dieses Verhalten kann durch das Setzen des Registry Key autodisconnect verhindert werden.

Registry Key autodisconnect einstellen

- 1. Öffnen Sie den Registrierungs-Editor:
 - Windows 7, 8.1:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Geben Sie regedit in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.
 - Windows 10:
 - 1.1 Rechtsklicken Sie auf das Windows-Symbol.
 - 1.2 Klicken Sie auf **Suchen**.
 - 1.2 Geben Sie regedit in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.
- Der Registrierungs-Editor wird geöffnet.Wählen Sie unter HKEY_LOCAL_MACHINE\SYSTEM\
 ControlSet001\Services\lanmanserver\paramete rs den Registry Key autodisconnect.
- 3. Ändern Sie den Wert auf 0xffffffff.

6.3.3 Personal Firewall blockiert die Kommunikation

Ursache: Fehlende Freigaben in der Firewall blockieren die ETAS-Hardware

Personal Firewall-Programme können die Hardwarekommunikation über die Ethernetschnittstelle behindern. Dabei werden, obwohl die Schnittstelle richtig konfiguriert ist, beim automatischen Suchen nach Hardware angeschlossene Geräte nicht gefunden.

Einige Aktionen in ETAS-Produkten können zu Problemen führen, wenn die Firewall nicht ordentlich parametrisiert ist, z.B. beim Öffnen der Experimentierumgebung in ASCET oder bei der Hardware-Suche durch INCA oder HSP.

Falls die Kommunikation mit der ETAS-Hardware durch ein Firewall-Programm blockiert wird, müssen Sie entweder die Firewall-Software deaktivieren, während Sie mit ETAS-Software arbeiten, oder Sie müssen den Firewall umkonfigurieren und die folgenden Berechtigungen vornehmen:

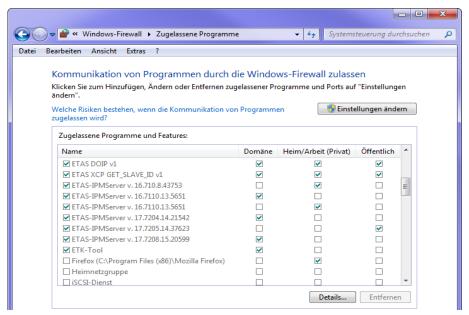
- Ausgehende Limited IP Broadcasts über UDP (Zieladresse 255.255.255.255) für die Ziel-Ports 17099 oder 18001
- Eingehende Limited IP Broadcasts über UDP (Zieladresse 255.255.255, Ausgangsadresse 0.0.0.0) für den Ziel-Port 18001
- Netzspezifische IP Broadcasts über UDP in das für die ETAS-Applikation gewählte Netzwerk für die Ziel-Ports 17099 oder 18001
- Ausgehende IP Unicasts über UDP an jede IP-Adresse im für die ETAS-Applikation gewählten Netzwerk, Ziel-Ports 17099 bis 18020
- Eingehende IP Unicasts über UDP ausgehend von jeder beliebigen IP-Adresse im für die ETAS-Applikation gewählten Netzwerk, Ausgangs-Port 17099 bis 18020, Ziel-Port 17099 bis 18020
- Ausgehende TCP/IP-Verbindungen in das für die ETAS-Applikation gewählte Netzwerk, Ziel-Ports 18001 bis 18020

INFO

Die im konkreten Fall zu verwendenden Ports hängen von der eingesetzten Hardware ab. Für genauere Informationen zu den zu verwendenden Portnummern sei auf die jeweilige Hardware-Dokumentation verwiesen.

In Windows 7, 8.1 und 10 ist ein Personal Firewall-Programm im Lieferumfang enthalten und standardmäßig aktiviert. Auf vielen anderen Systemen finden sich mittlerweile häufig entsprechende Programme von unabhängigen Anbietern wie Symantec, McAffee oder Blacklce. Die Vorgehensweise bei der Konfiguration der Ports kann sich in den verschiedenen Programmen voneinander unterscheiden. Nähere Informationen entnehmen Sie daher bitte der Benutzerdokumentation zu Ihrem Firewall-Programm.

Im Folgenden finden Sie exemplarisch eine Beschreibung, wie Sie die Windows Firewall konfigurieren können, wenn der Hardwarezugriff blockiert wird.


Lösung für Windows Firewall, Benutzer mit Administratorrechten ETAS-Produkte in der Firewall-Steuerung freischalten:

- 1. Öffnen Sie die Systemsteuerung:
 - Windows 7, 10:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Klicken Sie auf Systemsteuerung.
 - Windows 8.1:
 - 1.1 Klicken Sie auf das Windows-Symbol.
 - 1.2 Geben Sie Systemsteuerung in das Eingabefeld ein.
 - 1.3 Drücken Sie < EINGABE>.

2. Klicken Sie auf **Windows-Firewall** (Win 7, 8.1) bzw. **Windows Defender Firewall** (Win 10).

 Klicken Sie auf Ein Programm / App oder Feature durch die Windows (Defender) Firewall zulassen

Dieses Fenster listet die Ausnahmen, die nicht durch die Firewall blockiert werden.

- 4. Klicken Sie auf Einstellungen ändern.
- 5. Setzen Sie die Haken, um das jeweilige Programm für das entsprechende Netzwerk freizugeben.
- Stellen Sie sicher, dass die ETAS-Produkte und
 -Dienste, die Sie verwenden wollen, richtig konfigurierte Ausnahmen sind.
- 7. Klicken Sie auf OK.
- Schließen Sie das Fenster Windows-Firewall.
 Die Firewall blockiert das ETAS-Produkt nicht mehr. Die Einstellung wird beim Neustart des PC beibehalten.

Lösung für Windows Firewall, Benutzer ohne Administratorrechte

Dieses Kapitel richtet sich an Benutzer mit eingeschränkten Rechten, z.B. keine Änderungen am System, eingeschränkte Schreibrechte, lokaler Login.

Die Arbeit mit einem ETAS-Produkt erfordert die Rechte "Write" und "Modify" in den Verzeichnissen ETAS, ETASData und den temporären ETAS-Verzeichnissen. Andernfalls erscheint eine Fehlermeldung, wenn das Produkt gestartet und eine Datenbank geöffnet wird. Ein korrekter Betrieb des Produkts ist nicht möglich, da die Datenbank-Datei sowie verschiedene * .ini-Dateien während der Arbeit geändert werden.

Die ETAS-Software muss in jedem Fall von einem Administrator installiert werden. Es wird empfohlen, dass der Administrator sicherstellt, dass das ETAS-Produkt oder die Prozesse nach der Installation zur Liste der gewählten Ausnahmen der Windows-Firewall hinzugefügt werden.

7 Technische Daten

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Allgemeine Daten" auf Seite 55
- "RoHS-Konformität" auf Seite 57
- "CE-Konformität" auf Seite 57
- "Produktrücknahme und Recycling" auf Seite 58
- "Deklarationspflichtige Stoffe" auf Seite 58
- "Verwendung von Open Source Software" auf Seite 59
- "Systemvoraussetzungen" auf Seite 59
- "Elektrische Daten" auf Seite 60
- "Anschlussbelegung" auf Seite 63

7.1 Allgemeine Daten

7.1.1 Kennzeichnungen auf dem Produkt

Folgende Symbole werden zur Kennzeichnung des Produktes verwendet:

Symbol	Beschreibung
<u>^</u>	Lesen Sie vor der Inbetriebnahme des Produktes unbedingt das Benutzerhandbuch!
	Kennzeichnung des Daisy-Chain-Anschlusses "IN" (Eingang; Ethernet-Verbindung zum vorhergehenden Moduloder zum PC, Stromversorgung des Moduls)
	Kennzeichnung des Daisy-Chain-Anschlusses "OUT" (Ausgang; Ethernet-Verbindung und Stromversorgung des nachfolgenden Moduls)
CH	Anschluss Sensorkabel
SN: 1234567	Seriennummer (7-stellig)
Vx.yz	Hardwareversion des Produktes
F 00K 123 456	Bestellnummer des Produktes (siehe Kapitel 9.1 auf Seite 78)
5-50V === Pmax=3W	Betriebsspannungsbereich (Gleichspannung), Leistungs- aufnahme
CE	Kennzeichnung für CE-Konformität (Kapitel 7.3 auf Seite 57)
UK CA	Kennzeichnung für UKCA-Konformität (Kapitel 7.4 auf Seite 58)

Symbol	Beschreibung
	Kennzeichnung für KCC-Konformität (Kapitel 7.5 auf Seite 58)
	Kennzeichnung für WEEE, siehe Kapitel 7.6 auf Seite 58
(e)	Kennzeichnung für China RoHS, siehe Kapitel auf Seite 57

7.1.2 Standards und Normen

Das Modul entspricht folgenden Standards und Normen:

Norm	Prüfung
EN 61326	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen
EN 61000-6-2	Störfestigkeit (Industriebereich) 1)
EN 61000-6-4	Störaussendung (Industriebereiche)

^{1):} Das Modul muss von einem Gleichspannungsnetzteil oder einer Batterie mit Betriebsspannung versorgt werden. Zwischen Modul und Spannungsquelle sind Kabel mit einer maximalen Länge von 30 m zugelassen.

Das Modul ist nur für den Einsatz in Industriebereichen nach EN 61000-6-4 konzipiert. Vermeiden Sie mögliche Funkstörungen bei Einsatz des Moduls außerhalb der Industriebereiche durch zusätzliche Abschirmungsmaßnahmen!

WARNUNG

Dies ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

7.1.3 Umgebungsbedingungen

Betriebstemperaturbereich	-40 °C bis +120 °C -40 °F bis +248 °F
Lagertemperaturbereich (Modul ohne Verpackung)	-40 °C bis +125 °C -40 °F bis +257 °F
Einsatzhöhe	max. 5.000 m / 16.400 ft
Schutzart	IP65

VORSICHT

Verlust der Eigenschaften nach IP65!

Öffnen oder verändern Sie das Modulgehäuse nicht! Arbeiten am Modulgehäuse dürfen nur von qualifiziertem Fachpersonal ausgeführt werden."

7.1.4 Wartung des Produkts

Öffnen oder verändern Sie das Modul nicht! Arbeiten am Modulgehäuse dürfen nur von qualifiziertem Fachpersonal ausgeführt werden. Senden Sie defekte Module zur Reparatur an ETAS.

7.1.5 Reinigung des Produkts

Wir empfehlen, das Produkt mit einem trockenen Tuch zu reinigen.

7.1.6 Mechanische Daten

Abmessungen (H x B x T)	52 mm x 40 mm x 145 mm 38,5 mm x 40 mm x 130 mm	
	2,05 in x 1,57 in x 5,71 in 1,52 in x 1,57 in x 5,12 in	
Durchgangsbohrungen	Durchmesser: 4,40 mm +0,1/-0 mm / 0,17 in	
	Länge: 40 mm / 1,57 in	
Länge der integrierten Sensoranschlusskabel	2 x 125 mm, 2x 175 mm, 2 x 225 mm, 2 x 275 mm	
	2 x 4,92 in, 2 x 6,89 in, 2 x 8,86 in, 2 x 10,83 in	
Gewicht	450 g / 0,99 lb	

7.1.7 ES4xx Systemeigenschaften

Module je Kette max. 254 Module in einer Kette	
--	--

7.2 RoHS-Konformität

Europäische Union

Die EG-Richtlinie 2011/65/EU schränkt für Elektro- und Elektronikgeräte die Verwendung bestimmter gefährlicher Stoffe ein (RoHS-Konformität).

ETAS bestätigt, dass das Produkt dieser in der Europäischen Union geltenden Richtlinie entspricht.

China

ETAS bestätigt mit der auf dem Produkt oder auf dessen Verpackung angebrachten China RoHS-Kennzeichnung, dass das Produkt den in der Volksrepublik China geltenden Richtlinien der "China RoHS" (Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation) entspricht.

7.3 CE-Konformität

ETAS bestätigt mit der auf dem Produkt oder auf dessen Verpackung angebrachten CE-Kennzeichnung, dass das Produkt den produktspezifisch geltenden Richtlinien der Europäischen Union entspricht.

Die CE-Konformitätserklärung für das Produkt ist auf Anfrage erhältlich.

7.4 UKCA-Konformität

ETAS bestätigt mit der auf dem Produkt oder auf dessen Verpackung angebrachten UKCA-Kennzeichnung, dass das Produkt den produktspezifisch geltenden Normen und Richtlinien Großbritanniens entspricht.

Die UKCA-Konformitätserklärung für das Produkt ist auf Anfrage erhältlich.

7.5 KCC-Konformität

ETAS bestätigt mit der auf dem Produkt und der auf dessen Verpackung angebrachten KC-Kennzeichnung, dass das Produkt entsprechend den produktspezifisch geltenden KCC-Richtlinien der Republik Korea registriert wurde.

7.6 Produktrücknahme und Recycling

Die Europäische Union (EU) hat die Richtlinie über Elektro- und Elektronik-Altgeräte (Waste Electrical and Electronic Equipment - WEEE) erlassen, um in allen Ländern der EU die Einrichtung von Systemen zur Sammlung, Behandlung und Verwertung von Elektronikschrott sicherzustellen.

Dadurch wird gewährleistet, dass die Geräte auf eine ressourcenschonende Art und Weise recycelt werden, die keine Gefährdung für die Gesundheit des Menschen und der Umwelt darstellt.

Abb. 7-1 WEEE-Symbol

Das WEEE-Symbol (siehe Abb. 7-1 auf Seite 58) auf dem Produkt oder dessen Verpackung kennzeichnet, dass das Produkt nicht zusammen mit dem Restmüll entsorgt werden darf.

Der Anwender ist verpflichtet, die Altgeräte getrennt zu sammeln und dem WEEE-Rücknahmesystem zur Wiederverwertung bereitzustellen.

Die WEEE-Richtlinie betrifft alle ETAS-Geräte, nicht jedoch externe Kabel oder Batterien.

Weitere Informationen zum Recycling-Programm der ETAS GmbH erhalten Sie von den ETAS Verkaufs- und Serviceniederlassungen (siehe Kapitel 10 auf Seite 81).

7.7 Deklarationspflichtige Stoffe

Europäische Union

Einige Produkte der ETAS GmbH (z.B. Module, Boards, Kabel) verwenden Bauteile mit deklarationspflichtigen Stoffen entsprechend der REACH-Verordnung (EG) Nr.1907/2006.

Detaillierte Informationen finden Sie im ETAS Downloadcenter in der Kundeninformation "REACH Declaration" (<u>www.etas.com/Reach</u>). Diese Informationen werden ständig aktualisiert.

7.8 Verwendung von Open Source Software

Das Produkt verwendet Open Source Software (OSS). Diese Software ist bei Auslieferung im Produkt installiert und muss vom Anwender weder installiert noch aktualisiert werden. Auf die Verwendung der Software muss zur Erfüllung von OSS Lizenzbedingungen hingewiesen werden. Weitere Informationen finden Sie im Dokument "OSS Attributions List" auf der ETAS-Webseite www.etas.com.

7.9 Systemvoraussetzungen

7.9.1 Hardware

Stromversorgung

Für den Betrieb der Module ist eine Gleichspannungsversorgung von $5\,V$ bis $50\,V$ DC/ $6\,V$ bis $50\,V$ DC notwendig.

PC mit einer Ethernet-Schnittstelle

Für den Betrieb der Module ist ein PC mit einer freien Ethernet-Schnittstelle (100 Mbit/s, Full Duplex) mit RJ-45-Anschluss notwendig.

Voraussetzung zur erfolgreichen Initialisierung des Moduls

INFO

Deaktivieren Sie unbedingt die Funktion des Netzwerkadapters Ihres PCs zum automatischen Wechsel in den Stromsparmodus bei fehlendem Datenverkehr auf der Ethernet-Schnittstelle!

Deaktivieren des Stromsparmodus

Wählen Sie in Systemsteuerung / Geräte-Manager / Netzwerkadapter den verwendeten Netzwerkadapter mit einem Doppelklick aus. Deaktivieren Sie im Register "Energieverwaltung" die Option "Computer kann das Gerät ausschalten, um Energie zu sparen". Bestätigen Sie Ihre Konfiguration.

Die Hersteller der Netzwerkadapter bezeichnen diese Funktion unterschiedlich. Beispiel:

- "Link down Power saving"
- "Allow the computer to turn off this device to save power."

7.9.2 Software

Zur Konfiguration der ES421.1-K sowie zur Steuerung und Datenerfassung benötigen Sie Software in den folgenden Versionen:

- INCA V6.2.1 und höher mit INCA-ES4xx Add-On V1.1.12 und höher oder
- ES4xx Daisy Chain Configuration Tool V1.1.12 und h\u00f6her (stand-alone Betrieb)

oder

- ASCET RP V6.1.0 und höher oder
- INTECRIO V3.2.0 und höher

INFO

Ein Betrieb der ES421.1-K mit älteren Software-Versionen ist nicht möglich.

7.10 Elektrische Daten

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Host-Schnittstelle" auf Seite 60
- · "Spannungsversorgung" auf Seite 61
- "Sensoreingänge" auf Seite 62

INFO

ETAS garantiert die Einhaltung der Messgenauigkeit der ES421.1-K für ein Jahr. Nutzen Sie bitte unseren Kalibrierservice (siehe Kapitel 4.10 auf Seite 30)!

INFO

Soweit nicht anders angegeben, gelten alle Daten bei 25 °C.

7.10.1 Host-Schnittstelle

Anschluss	100Base-T Ethernet; 100 Mbit/s, Full Duplex	
	PC Card 32 bit	
Protokoll	XCP on UDP/IP	
IP-Adresse	Dynamisch über INCA oder über ES4xx Configuration Tool aus ES4xx_DRV_SW (stand-alone Betrieb) (Standard: 192.168.40.44)	

NFO

Beachten Sie zur erfolgreichen Initialisierung der Netzwerkkarte Ihres PCs Kapitel 7.9.1 auf Seite 59.

7.10.2 Spannungsversorgung

Betriebsspannung	Temperaturbereich -40 °C bis +85 °C: 5 V bis 50 V DC	
	Temperaturbereich -40 °C bis +120 °C: 6 V bis 50 V DC	
Leistungsaufnahme (Betrieb)	Typ. 2 W bei 12 V DC	
Leistungsaufnahme (Standby)	Typ. 25 mW bei 12 V DC	
Verpolschutz, Überlastschutz ¹⁾	Mit Kabel CBEP410, CBEP4105, CBEP415, CBEP4155, CBEP420, CBEP4205, CBEP425, CBEP4255, CBEP430, CBEP4305	
Überspannungskategorie (Netzversorgung)	II	

^{1):} Der Einsatz des Moduls ist nur mit zentralem Load Dump Schutz zulässig.

7.10.3 Sensoreingänge

Kanäle	8
Unterstützte Thermoelemente	Тур К
Auflösung	100 mK (16 Bit; Delta-Sigma A/D-Wandler)
Abtastrate	0,1 bis 10 Abtastungen/s, konfigurierbar pro Kanal
Anti-Aliasing Filter (Hardware)	Tiefpass, einstufig, 350 Hz Grenzfrequenz
Messbereich	-200 bis +1372 °C (Typ K)
Eingangsimpedanz	20 MΩ 10 nF
Maximaler Messfehler ΔT_g	±0,1% ±0,5 K
Maximale Temperaturdrift ΔT_d	±0,02 K/K
Maximaler Messfehler der Kaltstellenkompensation ΔT_{cjc}	±0,8 K
Maximale Temperaturdrift der Kaltstellenkompensation ΔT_d	±0,004 K/K
Möglicher erhöhter Messfehler unter Einfluss elektromagnetischer Felder in industriellen Umgebungen ΔT_{emc}	+1 K / -2 K
Maximale Eingangsspannung (trockene Umgebung)	Eingang zu Eingang: 60 V DC / 30 V AC
	Eingang zu Masse Versorgungsspan- nung oder zu Gehäuse: 60 V DC / 30 V AC
Maximale Eingangsspannung (feuchte Umgebung)	Eingang zu Eingang: 35 V DC / 16 V AC
	Eingang zu Masse Versorgungsspan- nung oder zu Gehäuse: 35 V DC / 16 V AC

Bezugstemperatur T $_0$ für Δ T $_g$, Δ T $_d$ und Δ T $_d$ ist 25 °C (entspricht 298,15 K).

7.11 Anschlussbelegung

In diesem Kapitel finden Sie Informationen zu folgenden Themen:

- "Anschluss "IN"" auf Seite 63
- "Anschluss "OUT"" auf Seite 64
- "Sensoranschlusskabel" auf Seite 64

INFO

Alle Anschlüsse werden mit Sicht auf die Vorderseite der ES421.1-K dargestellt.

Alle Schirme liegen auf Gehäusepotential.

7.11.1 Anschluss "IN"

Abb. 7-2 Anschluss "IN"

Pin	Signal	Bedeutung
1	UBatt	Betriebsspannung
2	Masse	Masse
3	RX-	Empfangsdaten, minus
4	TX-	Sendedaten, minus
5	RX+	Empfangsdaten, plus
6	Masse	Masse
7	UBatt	Betriebsspannung
8	TX+	Sendedaten, plus

Am Anschluss "IN" ist folgender Stecker montiert:

LEMO 1B, 8-polig, L-Codierung (Anschluss grün gekennzeichnet)

7.11.2 Anschluss "OUT"

Abb. 7-3 Anschluss "OUT"

Pin	Signal	Bedeutung
1	UBatt	Betriebsspannung
2	UBatt	Betriebsspannung
3	Masse	Masse
4	RX+	Empfangsdaten, plus
5	TX-	Sendedaten, minus
6	RX-	Empfangsdaten, minus
7	Masse	Masse
8	TX+	Sendedaten, plus

Am Anschluss "OUT" ist folgende Buchse montiert:

LEMO 1B, 8-polig, A-Codierung (Anschluss gelb gekennzeichnet)

7.11.3 Sensoranschlusskabel

Abb. 7-4 Anschluss "Sensor"

Das integrierte Sensoranschlusskabel besteht aus acht identischen Kabelsträngen mit Mini-TC-Buchsen, gekennzeichnet mit n=1 bis n=8. Jeder Kabelstrang ist jeweils einem ES421.1-K Messkanal zugeordnet und nach dem selben Schema verkabelt.

Die Zuordnung der Anschlüsse der Buchse eines Kabelstranges zu den Signalen eines Messkanals ist in der Tabelle dargestellt.

Pin	Signal	Bedeutung
1	ln+	Eingang (+)
2	In-	Eingang (-)

ETAS Kabel und Zubehör

8 Kabel und Zubehör

In diesem Kapitel finden Sie Informationen zu folgendem Zubehör:

- "Kombinierte Ethernet- und Stromversorgungskabel" auf Seite 66
- "Ethernetkabel" auf Seite 72
- "Schutzkappen" auf Seite 75
- "ES4xx-Haltewinkel" auf Seite 77

INFO

Verwenden Sie an den Schnittstellen des Moduls ausschließlich ETAS-Kabel! Halten Sie die maximal zulässigen Kabellängen ein!

8.1 Kombinierte Ethernet- und Stromversorgungskabel

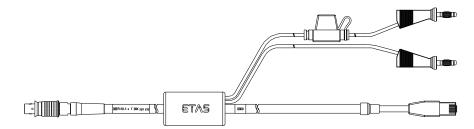
In diesem Kapitel finden Sie Informationen zu folgenden Kabeln:

- "Kabel CBEP410.1" auf Seite 67
- "Kabel CBEP4105.1" auf Seite 67
- "Kabel CBEP415.1" auf Seite 68
- "Kabel CBEP4155.1" auf Seite 68
- "Kabel CBEP420.1" auf Seite 69
- "Kabel CBEP4205.1" auf Seite 69
- "Kabel CBEP425.1" auf Seite 70
- "Kabel CBEP4255.1" auf Seite 70
- "Kabel CBEP430.1" auf Seite 71
- "Kabel CBEP4305.1" auf Seite 71

8.1.1 Übersicht

GEFAHR

Gefährliche elektrische Spannung!


Verbinden Sie das Stromversorgungskabel nur mit einer geeigneten Fahrzeugbatterie oder mit einer geeigneten Laborstromversorgung! Der Anschluss an Netzsteckdosen ist untersagt!

Um ein versehentliches Einstecken in Netzsteckdosen zu verhindern, empfiehlt ETAS, in Bereichen mit Netzsteckdosen die kombinierten Ethernet- und Stromversorgungskabel mit Sicherheits-Bananenstecker einzusetzen.

Sie können kombinierte Ethernet- und Stromversorgungskabel mit Standard-Bananenstecker oder mit Sicherheits-Bananenstecker verwenden:

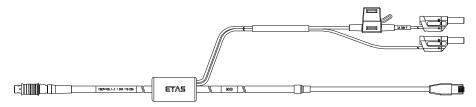
Kabel mit Standard-Bananenstecker	Kabel mit Sicherheits-Bananenstecker
CBEP410.1	CBEP4105.1
CBEP415.1	CBEP4155.1
CBEP420.1	CBEP4205.1
CBEP425.1	CBEP4255.1
CBEP430.1	CBEP4305.1

8.1.2 Kabel CBEP410.1

Abb. 8-1 Kabel CBEP410.1

Anschluss eines ES4xx/ES63x/ES93x-Moduls an PC und Stromversorgung (Standalone-Betrieb). Versorgungsbatterie in der Nähe der Module.

Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.


Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasserdicht und staubdicht (IP67).

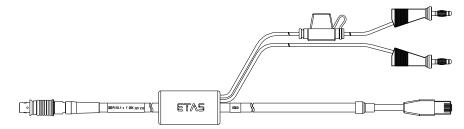
Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEP410.1-3	3 m	F 00K 104 927

8.1.3 Kabel CBEP4105.1

Abb. 8-2 Kabel CBEP4105.1

Anschluss eines ES4xx/ES63x/ES93x-Moduls an PC und Stromversorgung (Standalone-Betrieb). Versorgungsbatterie in der Nähe der Module.


Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasserdicht und staubdicht (IP67).

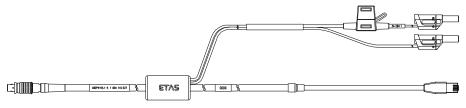
Produkt	Länge	Bestellnummer
CBEP4105.1-3	3 m	F 00K 110 026

8.1.4 Kabel CBEP415.1

Abb. 8-3 Kabel CBEP415.1

Anschluss eines ES4xx/ES63x/ES93x-Moduls an PC und Stromversorgung (Standalone-Betrieb). Versorgungsbatterie am anderen Ende (d.h. im Kofferraum).

Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.


Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V)).

Robust, wasserdicht und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEP415.1-5	5 m	F 00K 105 680

8.1.5 Kabel CBEP4155.1

Abb. 8-4 Kabel CBEP4155.1

Anschluss eines ES4xx/ES63x/ES93x-Moduls an PC und Stromversorgung (Standalone-Betrieb). Versorgungsbatterie am anderen Ende (d.h. im Kofferraum).

Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V)).

Robust, wasserdicht und staubdicht (IP67).

Produkt	Länge	Bestellnummer
CBEP4155.1-5	5 m	F 00K 110 027

8.1.6 Kabel CBEP420.1

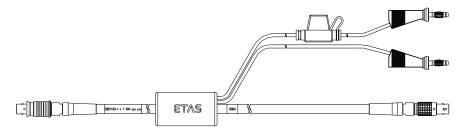
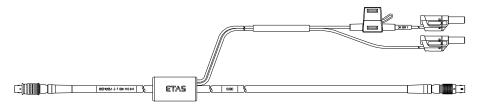


Abb. 8-5 Kabel CBEP420.1

Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls mit einem ES600-Netzwerkmodul oder ES592/ES593-D/ES595-Schnittstellenmodul (falls der Stromverbrauch der angeschlossenen ES4xx/ES63x-Kette 2,5 A übersteigt), einer ES1135 Simulations- / Systemcontroller-Karte oder eines ES720 Drive Recorders.

Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.


Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasser- und staubdicht (IP67).

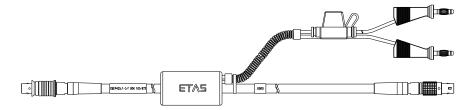
Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEP420.1-3	3 m	F 00K 105 292

8.1.7 Kabel CBEP4205.1

Abb. 8-6 Kabel CBEP4205.1

Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls mit einem ES600-Netzwerkmodul oder ES592/ES593-D/ES595-Schnittstellenmodul (falls der Stromverbrauch der angeschlossenen ES4xx/ES63x-Kette 2,5 A übersteigt), einer ES1135 Simulations-/Systemcontroller-Karte oder eines ES720 Drive Recorders.


Nicht kompatibel mit ES610, ES611, ES620 und ES650. Zur Verbindung dieser Module Kabel CBEP120 verwenden.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

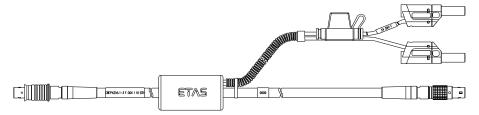
Robust, wasser- und staubdicht (IP67).

Produkt	Länge	Bestellnummer
CBEP4205.1-3	3 m	F 00K 110 041

8.1.8 Kabel CBEP425.1

Abb. 8-7 Kabel CBEP425.1

Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls mit einem ES600-Netzwerkmodul oder ES592/ES593-D/ES595-Schnittstellenmodul (falls der Stromverbrauch der angeschlossenen ES4xx/ES63x/ES93x-Kette 2,5 A übersteigt), einer ES1135 Simulations-/Systemcontroller-Karte oder eines ES720 Drive Recorders.


Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

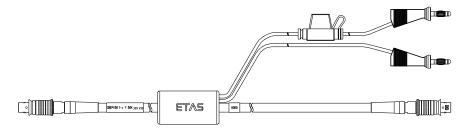
Robust, wasser- und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEP425.1-3	3 m	F 00K 105 972

8.1.9 Kabel CBEP4255.1

Abb. 8-8 Kabel CBEP4255.1


Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls mit einem ES600-Netzwerkmodul oder ES592/ES593-D/ES595-Schnittstellenmodul (falls der Stromverbrauch der angeschlossenen ES4xx/ES63x/ES93x-Kette 2,5 A übersteigt), einer ES1135 Simulations-/Systemcontroller-Karte oder eines ES720 Drive Recorders.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasser- und staubdicht (IP67).

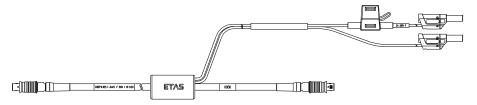
Produkt	Länge	Bestellnummer
CBEP4255.1-3	3 m	F 00K 110 029

8.1.10 Kabel CBEP430.1

Abb. 8-9 Kabel CBEP430.1

Zur Verkettung von ES4xx/ES63x/ES93x-Modulen und zum Anschluss einer ES4xx/ES63x/ES93x-Kette an ein ES910.3 Rapid Prototyping Modul. Zusätzliche Verbindung zur Stromversorgung, um Spannungsverluste in langen Ketten auszugleichen.

Nicht kompatibel mit ES59x, ES6xx und ES11xx. Zur Verbindung dieser Module Kabel CBE130 oder CBE140 verwenden.


Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasserdicht und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEP430.1-0m5	0,5 m	F 00K 104 928

8.1.11 Kabel CBEP4305.1

Abb. 8-10 Kabel CBEP4305.1

Zur Verkettung von ES4xx/ES63x/ES93x-Modulen und zum Anschluss einer ES4xx/ES63x/ES93x-Kette an ein ES910.3 Rapid Prototyping Modul. Zusätzliche Verbindung zur Stromversorgung, um Spannungsverluste in langen Ketten auszugleichen.

Nicht kompatibel mit ES59x, ES6xx und ES11xx. Zur Verbindung dieser Module Kabel CBE130 oder CBE140 verwenden.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasserdicht und staubdicht (IP67).

Produkt	Länge	Bestellnummer
CBEP4305.1-0m5	0,5 m	F 00K 110 030

8.2 Ethernetkabel

In diesem Kapitel finden Sie Informationen zu folgenden Kabeln:

- "Kabel CBE400.2" auf Seite 72
- "Kabel CBE401.1" auf Seite 72
- "Kabel CBE430.1" auf Seite 73
- "Kabel CBE431.1" auf Seite 73
- "Kabel CBEX400.1" auf Seite 73
- "ES4xx_BRIDGE" auf Seite 74

8.2.1 Kabel CBE400.2

Abb. 8-11 Kabel CBE400.2

Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls an ein ES600-Netzwerkmodul oder an ein ES592/ES593-D/ES595-Schnittstellenmodul.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasser- und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBE400.2-3	3 m	F 00K 104 920

8.2.2 Kabel CBE401.1

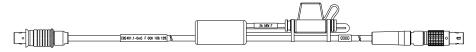


Abb. 8-12 Kabel CBE401.1

Ethernet- und Spannungsversorgungsanschluss eines ES4xx/ES63x/ES93x-Messmoduls an ein ES600-Netzwerkmodul oder an ein ES592/ES593-D/ES595-Schnittstellenmodul.

Im Kabel befindet sich eine auswechselbare Sicherung (MINI Kfz-Flachsicherung, flink, 3 A, 58 V).

Robust, wasser- und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBE401.1-0m5	0,5 m	F 00K 106 128

8.2.3 Kabel CBE430.1

Abb. 8-13 Kabel CBE430.1

Kabel zur Verkettung von ES4xx/ES63x/ES93x-Modulen. Nicht kompatibel mit ES59x, ES6xx, ES11xx. Zur Verbindung dieser Module Kabel CBE130 oder CBE140 verwenden.

Robust, wasserdicht und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBE430.1-0m45	0,45 m	F 00K 104 923

8.2.4 Kabel CBE431.1

Abb. 8-14 Kabel CBE431.1

Hochflexibles Kabel zur Verkettung aneinanderliegender ES4xx/ES63x/ES93x-Module.

Nicht kompatibel mit ES59x, ES6xx, ES11xx. Zur Verbindung dieser Module Kabel CBE130 oder CBE140 verwenden.

Robust, wasserdicht und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge Bestellnummer	
CBE431.1-0m14	0,14 m	F 00K 105 676
CBE431.1-0m3	0,30 m	F 00K 105 685

8.2.5 Kabel CBEX400.1

Abb. 8-15 Kabel CBEX400.1

Verlängerung für ES4xx/ES63x/ES93x Ethernet-Kabel. Dient auch zur Verlängerung des Anschlusses von ES4xx-Modulen an den PC, ein ES600-Modul oder an eine ES1135, z.B. bei Durchführung der Verkabelung durch die Spritzwand.

Robust, wasserdicht und staubdicht (IP67).

Temperaturbereich: -40 °C bis +125 °C / -40 °F bis +257 °F

Produkt	Länge	Bestellnummer
CBEX400.1-3	3 m	F 00K 105 294

8.2.6 ES4xx_BRIDGE

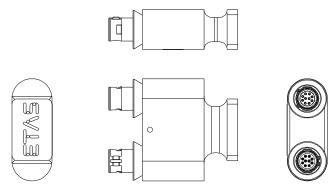


Abb. 8-16 ES4xx Bridge

Brückenstecker zur Ethernetverbindung von aneinander montierten ES400 Modulen. Erlaubt sehr kompakte Messaufbauten. IP67-konform.

Produkt	Bestellnummer	
ES4xx_BRIDGE	F 00K 105 684	

8.3 Schutzkappen

Die Anschlüsse "IN" und "OUT" der ES4xx können mit unterschiedlichen Schutzkappen den Einsatzbedingungen entsprechend geschützt werden.

8.3.1 Mitgelieferte Schutzkappen

Die Anschlüsse "IN" und "OUT" der ES4xx sind im Lieferzustand mit einfachen Staub- und Transportschutzkappen abgedeckt. Diese Kappen sind nur für den eingeschränkten Temperaturbereich von -40 °C bis +70 °C spezifiziert.

Die mitgelieferten Schutzkappen sind kein Ersatz für die Kappen CAP_LE-MO_1B und CAP_LEMO_1B_LC.

8.3.2 Kappe CAP_LEMO_1B

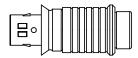


Abb. 8-17 Kappe CAP_LEMO_1B

Die Kappe CAP_LEMO_1B schützt den Anschluss "IN" bzw. "OUT" vor Schmutz nach IP67.

Produkt	Bestellnummer
CAP_LEMO_1B	F 00K 105 298

8.3.3 Kappe CAP_LEMO_1B_LC

Abb. 8-18 Kappe CAP_LEMO_1B_LC

Die Kappe CAP_LEMO_1B_LC schützt den Anschluss "IN" bzw. "OUT" kostengünstig vor Schmutz.Die Kappe CAP_LEMO_1B_LC schützt den Anschluss "IN" bzw. "OUT" kostengünstig vor Schmutz.

Produkt	Bestellnummer
CAP_LEMO_1B_LC	F 00K 105 683

8.3.4 Kappe CAP_SOURIAU_8STA

Abb. 8-19 Kappe CAP_SOURIAU_8STA

Die Kappe CAP_SOURIAU_8STA schützt den Anschluss "Sensor" vor Wasser und Schmutz.

Produkt	Bestellnummer
CAP_SOURIAU_8STA	F 00K 105 303

8.4 ES4xx-Haltewinkel

8.4.1 ES4xx-Haltewinkel links

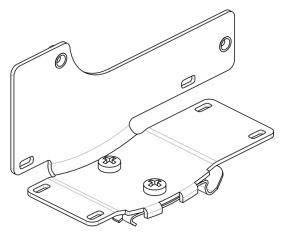


Abb. 8-20 ES4xx-Haltewinkel links

Verbindungswinkel zur Montage von ES4xx Modulen an eine DIN-Schiene 35 x 7,5 (EN 60715 TH35). Rostfreier V2A-Stahl. Zur Montage an die linke Seite eines ES4xx Moduls.

Produkt	Bestellnummer
ES4xx Angle Bracket left	F 00K 107 175

8.4.2 ES4xx-Haltewinkel rechts

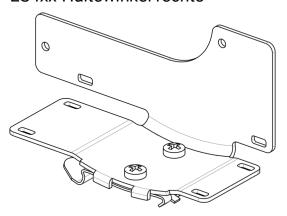


Abb. 8-21 ES4xx-Haltewinkel rechts

Verbindungswinkel zur Montage von ES4xx Modulen an eine DIN-Schiene 35 x 7,5 (EN 60715 TH35). Rostfreier V2A-Stahl. Zur Montage an die rechte Seite eines ES4xx Moduls.

Produkt	Bestellnummer	
ES4xx Angle Bracket right	F 00K 107 176	

ETAS Bestellinformationen

9 Bestellinformationen

9.1 ES421.1-K

Bestellname	Kurzname	Bestellnummer
ES421.1-K Thermo-Modul (8-CH), Typ K	ES421.1-K	F 00K 106 860

Lieferumfang

- ES421.1-K Thermo Module (8-CH), Type K
- CDROM ES4xx_DRV_SW_CD (drivers for ES4xx and documentation)
- List "Content of this Package"
- ES4xx Safety Advice
- China-RoHS-leaflet_Compact_green_cn
- Kalibrier-Zertifikat

INFO

Kabel sind nicht Bestandteil des Lieferumfangs des Moduls und müssen separat bestellt werden (siehe Kapitel 9.2.1 auf Seite 78).

9.2 Zubehör

9.2.1 Kabel

INFO

Wenn Sie maßgeschneiderte Kabel benötigen, wenden Sie sich bitte an Ihren ETAS-Kontaktpartner oder an sales.de@etas.com.

Kabel für die Anschlüsse "IN" und "OUT"

Ethernet-Kabel

Bestellname	Kurzname	Bestellnummer
Ethernet Chain Connection Cable, Lemo 1B FGF - Lemo 1B FGL (8mc-8fc), 3 m	CBE400.2-3	F 00K 104 920
Ethernet Chain Connection Cable, Highly Flexible, Lemo 1B FGF - Lemo 1B FGL (8mc-8fc), 0,5 m	CBE401.1-0m5	F 00K 106 128
Ethernet Chain Connection Cable, Lemo 1B FGA - Lemo 1B FGL (8mc-8fc), 0m45	CBE430.1- 0m45	F 00K 104 923
Ethernet Chain Connection Cable, Highly Flexible, Lemo 1B FGA - Lemo 1B FGL (8mc-8fc, 0m14)	CBE431.1- 0m14	F 00K 105 676
Ethernet Chain Connection Cable, Highly Flexible, Lemo 1B FGA - Lemo 1B FGL (8mc-8fc, 0m30	CBE431.1- 0m30	F 00K 105 685
Ethernet Extension Cable, Lemo 1B PHL - Lemo 1B FGL (8mc-8fc), 3 m	CBEX400.1-3	F 00K 105 294

ETAS Bestellinformationen

Kombinierte Ethernet- und Stromversorgungskabel

Bestellname	Kurzname	Bestellnummer
Ethernet PC Connection and Power Supply Cable, Lemo 1B FGL - RJ45 - Banana (8fc-8mc-2mc), 3 m	CBEP410.1-3	F 00K 104 927
Ethernet PC Connection and Power Supply Cable, Lemo 1B FGL - RJ45 - Safety Banana (8fc-8mc-2mc), 3 m	CBEP4105.1-3	F 00K 110 026
Ethernet PC Connection and Power Supply Cable, Power Feeder close to PC, Lemo 1B FGL - RJ45 - Banana (8fc-8mc-2mc), 5 m	CBEP415.1-5	F 00K 105 680
Ethernet PC Connection and Power Supply Cable, Power Feeder close to PC, Lemo 1B FGL - RJ45 - Safety Banana (8fc-8mc-2mc), 5 m	CBEP4155.1-5	F 00K 110 027
Ethernet Connection and Power Supply Cable, Lemo 1B FGF - Lemo 1B FGL - Banana (8mc-8fc-2mc), 3 m	CBEP420.1-3	F 00K 105 292
Ethernet Connection and Power Supply Cable, Lemo 1B FGF - Lemo 1B FGL - Safety Banana (8mc-8fc-2mc), 3 m	CBEP4205.1-3	F 00K 110 041
Ethernet Connection and Power Supply Cable, Power Feeder close to Interface Module, Lemo 1B FGF - Lemo 1B FGL - Banana (8mc-8fc-2mc), 3 m	CBEP425.1-3	F 00K 105 972
Ethernet Connection and Power Supply Cable, Power Feeder close to Interface Module, Lemo 1B FGF - Lemo 1B FGL - Safety Banana (8mc-8fc-2mc), 3 m	CBEP4255.1-3	F 00K 110 029
Ethernet Chain Connection and Power Supply Cable, Lemo 1B FGL - Lemo 1B FGA - Banana (8fc-8mc-2mc), 0m5	CBEP430.1- 0m5	F 00K 104 928
Ethernet Chain Connection and Power Supply Cable, Lemo 1B FGL - Lemo 1B FGA - Safety Banana (8fc-8mc-2mc), 0m5	CBEP4305.1- 0m5	F 00K 110 030

Ethernet-Brücke

Bestellname	Kurzname	Bestellnummer
Bridge to connect two assembled ES4xx	ES4xx_BRIDGE	F 00K 105 684
Modules		

9.2.2 Schutzkappen

Bestellname	Kurzname	Bestellnummer
Cap to protect open Lemo 1B sockets against dirt	CAP_Lemo_1B	F 00K 105 298
Cap to protect open Lemo 1B sockets against dirt, cost effective	CAP_Le- mo_1B_LC	F 00K 105 683

ETAS Bestellinformationen

9.2.3 ES4xx-Haltewinkel

Bestellname	Kurzname	Bestellnummer
ES4xx Angle Bracket left	ES4xx_AB_L	F 00K 107 175
ES4xx Angle Bracket right	ES4xx_AB_R	F 00K 107 176

9.2.4 Kalibrierung

HINWEIS

ETAS empfiehlt ein Kalibrierungsintervall von 12 Monaten.

9.2.4.1 Werks-Kalibrierung

Werks-Kalibrierservice

- Überprüfung der Messgenauigkeit
- Ausstellung eines standardkonformen Kalibrierscheins

Bestellname	Kurzname	Bestellnummer
Calibration service for ES421	C_ES421	F-00K-112-735

Justageservice

- Überprüfung der Messgenauigkeit
- · Justage der Messgenauigkeit auf die kleinstmögliche Abweichung
- Ausstellung standardkonformer Kalibrierscheine vor und nach der Justage

Bestellname	Kurzname	Bestellnummer
Adjustment service for ES421	A_ES421	F-00K-106-862

ETAS Kontaktinformationen

10 Kontaktinformationen

ETAS Hauptsitz

ETAS GmbH

Borsigstraße 24 Telefon: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Deutschland Internet: www.etas.com

ETAS Regionalgesellschaften und Technischer Support

Informationen zu Ihrem lokalen Vertrieb und zu Ihrem lokalen Technischen Support bzw. den Produkt-Hotlines finden Sie im Internet:

ETAS Regionalgesellschaften Internet: www.etas.com/de/contact.php
ETAS Technischer Support Internet: www.etas.com/de/hotlines.php

Abbildungsverzeichnis

Abb. 3-1	Zentrale und dezentrale Sensorverkabelung	.14
Abb. 3-2	Frontseite	.17
Abb. 4-1	ES421.1-K Gehäuse	.19
Abb. 4-2	Blockdiagramm	.20
Abb. 4-3	Nachrichtenformat "XCP on UDP" (schematisch)	.22
Abb. 4-4	Zeitmultiplexe Datenübertragung zwischen einer ES400-Modulkette und PC	.25
Abb. 4-5	Übertragungsschema für Beispiel 1 (vereinfacht; nicht maßstabsgetreu)	.25
Abb. 4-6	Zeitmultiplexe Datenübertragung zwischen einer ES400-Modulkette und PC	.26
Abb. 4-7	Übertragungsschema für Beispiel 2 (vereinfacht; nicht maßstabsgetreu)	.26
Abb. 5-1	Lage des Druckausgleichelements	.32
Abb. 5-2	Durchgangsbohrungen und Durchbrüche für Kabelbinder	.32
Abb. 5-3	Mehrere ES400-Module mechanisch verbinden (kaskadieren)	.33
Abb. 5-4	Befestigung an anderen Bauteilen mit zusätzlichen Schrauben	.34
Abb. 5-5	Durchbrüche für Kabelbinder an ES400-Modulen	.34
Abb. 5-6	Bohrschablone	.35
Abb. 5-7	ES400 Module und weitere ETAS Module für MC-Applikationen	.36
Abb. 5-8	ES400 Module mit ES910 und weiteren ETAS Modulen für Rapid Prototyping Applikationen	
Abb. 5-9	ES400 Module mit weiteren ETAS Modulen (Measurement and Calibration)	.38
Abb. 5-10	ES400 Module mit weiteren ETAS Modulen und Drive Recorder (Measuremer and Calibration)	
Abb. 5-11	ES400 Module mit ES910.3 (Rapid Prototyping)	.40
Abb. 5-12	ES400 Module mit ES910.3 und Drive Recorder (Rapid Prototyping)	.41
Abb. 5-13	ES400 Module mit ETAS RTPRO-PC (Rapid Prototyping)	.42
Abb. 5-14	ES421.1-K mit ES4xx_BRIDGE	.43
Abb. 7-1	WEEE-Symbol	. 58
Abb. 7-2	Anschluss "IN"	.63
Abb. 7-3	Anschluss "OUT"	.64
Abb. 7-4	Anschluss "Sensor"	.64
Abb. 8-1	Kabel CBEP410.1	.67
Abb. 8-2	Kabel CBEP4105.1	.67
Abb. 8-3	Kabel CBEP415.1	.68
Abb. 8-4	Kabel CBEP4155.1	.68
Abb. 8-5	Kabel CBEP420.1	.69
Abb. 8-6	Kabel CBEP4205.1	.69
Abb. 8-7	Kabel CBEP425.1	.70
Abb. 8-8	Kabel CBEP4255.1	.70

Abb. 8-9	Kabel CBEP430.1	/ 1
Abb. 8-10	Kabel CBEP4305.1	71
Abb. 8-11	Kabel CBE400.2	72
Abb. 8-12	Kabel CBE401.1	72
Abb. 8-13	Kabel CBE430.1	73
Abb. 8-14	Kabel CBE431.1	73
Abb. 8-15	Kabel CBEX400.1	73
Abb. 8-16	ES4xx Bridge	74
Abb. 8-17	Kappe CAP_LEMO_1B	75
Abb. 8-18	Kappe CAP_LEMO_1B_LC	75
Abb. 8-19	Kappe CAP_SOURIAU_8STA	76
Abb. 8-20	ES4xx-Haltewinkel links	
Abb. 8-21	ES4xx-Haltewinkel rechts	

ETAS Index

Index

Α	Н	
Abtastrate	Host-Schnittstelle	60
Anschluss "IN"63	HSP	30
Anschluss "OUT"64	1	
Anschluss "Sensor"	Inbetriebnahme 3	1, 43
Anschlussbelegung63	Initialisierung	
Anschlüsse	K	
Anzeigeelement	Kabel	
Applikationen	CBE400.2	72
Arbeitssicherheit	CBE401.1	
Auflösung62	CBE430.1	
В	CBE431.1	
Bestellinformationen	CBEP410.1	
Betriebszustand	CBEP4105.1	67
Binär-Zähler	CBEP415.1	68
Blockdiagramm	CBEP4155.1	
_	CBEP420.1	
D	CBEP4205.1	
Daisy Chain-Topologie	CBEP425.1	
Daisy-Chain-Anschlüsse 17, 43	CBEP4255.1	
Daten	CBEP430.1	
elektrische	CBEP4305.1	
mechanische	CBEX400.1 Sabelbinder 3	
Dezentrales Verkabelungskonzept	Kalibrierung	
Dokumentation9	Kalibrierung nach ISO/IEC 17025	
Druckausgleichselement32	Kaltstellenkompensation	
Duplex-Betrieb22	Kappe CAP_Lemo_1B	
Durchbrüche für Kabelbinder33	Kappe CAP_Lemo_1B_LC	
Durchgangsbohrungen	Kappe CAP_SOURIAU_8STA	
E	KCC-Konformität	
Eigenschaften19	Kennzeichnung des Produktes	
Eigenschaften nach IP65	Kommunikationsprotokolle	
Eingangsimpedanz62	Konfiguration	30
Eingangsspannung	L	
maximale	LED	18
Elektrische Daten	Lieferumfang	8
Elektrosicherheit10	Lokalisieren des Moduls	15
ES4xx-Haltewinkel	M	
Ethernet-Frame23	MAC-Adresse	23
Ethernet-Kabel79	Master-Funktion	
F	Mechanische Daten	57
Fahrgastzelle16	Mehrfacheinspeisung	27
Firmware-Aktualisierung30	Messbereich	62
Flüssigkeiten32	Messfehler 2	,
Funktionszustand18	Messgenauigkeit, Einhaltung der	
G	Modulkennung	22
Gehäuse16	N	
Generator23	Normen	56
Gerätekalibrierung80	P	
	PC Card	45

ETAS Index

PC Netzwerkadapter	
Haftungsauschluss Produktrücknahme Protokoll, UDP/IP	.58
Protokoll, XCP	
Qualifikation, erforderliche	9
REACH-Verordnung	
RoHS-Konformität China	
Europäische Union	.57
S Sobutzkoppon 75	70
Schutzkappen	.20
grundlegende	9 9
Systemvoraussetzungen	.60
Stromversorgung	60 .27 .24
Synchronisation, Taktgeber	.24
Temperaturdrift	
U UKCA-Konformität	.56
Verkabelung Verkabelung Daisy-Chain Verkabelung, Sensor Verkabelungskonzepte Versorgungsspannung Verwendung, bestimmungsgemäße	.43 .43 .14 .60
W Wasser	.32
Waste Electrical and Electronic Equipmer - WEEE	ent .58
X XCP	

Υ	
Y-Boostkabel2	7
ZZeitscheibenverfahren23Zeitstempel23Zubehör78	2