
ETASEHOOKSv5.3

EHOOKS-DEV

UserGuide

www.etas.com

2 | Copyright

Copyright

The data in this document may not be altered or amended without special notification from
ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this document. The
software described in it can only be used if the customer is in possession of a general license
agreement or single license. Using and copying is only allowed in concurrence with the
specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmitted,
stored in a retrieval system or translated into another language without the express written
permission of ETAS GmbH.

©Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging to the
respective owners.

ETAS EHOOKS v5.3 - User Guide EHUG R5.3 R01 EN - 03-2024

ETAS EHOOKS v5.3 | User Guide

3 | CONTENTS

Contents

1 Introduction 7
1.1 Safety Notice . 8
1.2 Privacy Statement . 10

1.2.1 Data Processing . 10
1.2.2 Technical and organizational measures . 10

1.3 Conventions . 10

2 Getting Started 11
2.1 Installation . 11
2.2 Silent Installation . 12
2.3 Licensing . 12
2.4 Post Installation Setup and Configuration Steps . 12

2.4.1 Installed Versions of EHOOKS Packages . 13
2.4.2 EHOOKS-DEV Simulink Configuration . 13

3 EHOOKS Overview 16
3.1 EHOOKS Workflow . 16

3.1.1 Step 1: EHOOKS Prepared ECU Software . 16
3.1.2 Step 2: Creating the Hook Configuration . 16
3.1.3 Step 3: Running the EHOOKS-DEV ECU Target Support Tools 17
3.1.4 Step 4: EHOOKS-DEV Generated ECU Software 17
3.1.5 Step 5: Working with the EHOOKS-DEV Generated ECU Software 17

3.2 EHOOKS-DEV Features . 18
3.2.1 EHOOKS-DEV Hook Types . 18
3.2.2 EHOOKS-DEV Hook Configuration Properties 20
3.2.3 Service Points . 27

4 EHOOKS-PREP Dependencies 29

5 Configuring EHOOKS-DEV 33
5.1 General Settings Tab . 34

5.1.1 A2L Section . 34
5.1.2 ECU Image . 36
5.1.3 Project Settings . 36
5.1.4 Project Information . 37

5.2 Variable Bypass Tab . 38
5.2.1 Selecting Variables to Be Hooked . 39
5.2.2 Configuring Properties of a Variable Hook . 42
5.2.3 Multi-Select Operation . 48
5.2.4 Copy and Paste . 49

5.3 Function Bypass Tab . 50
5.4 On-Target Bypass Tab . 52

5.4.1 Configuring Properties of an On-Target Bypass Function 54

ETAS EHOOKS v5.3 | User Guide

4 | CONTENTS

5.5 Software Component Bypass Tab . 61
5.5.1 Selecting Software Components for Bypass 61
5.5.2 Software Component Bypass Configuration 61

5.6 Service Points Tab . 64
5.7 Group Tab . 66

5.7.1 Configuring the properties of a Group . 67
5.8 Build Tab . 69

5.8.1 Configuring Build Source Files . 69
5.8.2 Configuring Memory Sections . 71
5.8.3 Configuring pre- and post-build scripting . 73
5.8.4 Configuring macro definitions . 75
5.8.5 Configuring Characteristic Groups . 75

5.9 Configuration Consistency Checking, Building and Options 76
5.9.1 Consistency Checking . 76
5.9.2 Building Hooked ECU Software . 77
5.9.3 Options . 77

5.10 Project Actions . 78
5.10.1 Convert All Paths . 78
5.10.2 Delete all externally configured items . 79
5.10.3 On-target bypass . 79
5.10.4 Filter files . 79
5.10.5 Advanced actions . 81

6 Working with Hooked ECU Software in INCA 82
6.1 Run-Time Hook Control and Monitoring . 82
6.2 Offset Hooks . 85
6.3 Backup Measurement Copies . 86
6.4 Safety Checks . 86
6.5 Using EHOOKS-CAL and EHOOKS-BYP to Work with Hooks in INCA 86
6.6 A2L Function Groups . 89

7 Creating and Working with Simple Internal Bypass 93

8 Creating and Working with External Bypass 95
8.1 Hook based bypass (HBB) . 95
8.2 Service based bypass (SBB) . 96

9 Creating and Working with On-Target Bypass 97
9.1 Introduction . 97
9.2 Step 1: Configure On-Target Bypass Hooks . 97
9.3 Step 2: Configure On-Target Bypass Functions . 98
9.4 Step 3: Develop the On-Target Bypass Software . 98

9.4.1 On-Target Bypass Function Input and Output Parameters 98
9.4.2 On-Target Bypass Function Implementation 99
9.4.3 On-Target Bypass Data Type Conversion .100
9.4.4 Calling ECU functions from On-Target Bypass code101

9.5 Step 4: Add the On-Target Bypass Files to Configuration102
9.5.1 Creating a User Definition File .102
9.5.2 Extending the Example to Include a User Definition File106

9.6 Steps 5: Build and Run the EHOOKS-Created On-Target Bypass Software108
9.7 EHOOKS On-Target Bypass Global Output Buffer Measurements108

10 Creating and Working with On-Target Bypass from Simulink 110

ETAS EHOOKS v5.3 | User Guide

5 | CONTENTS

10.1 Introduction .110
10.2 EHOOKS Blocks for Simulink .110

10.2.1 EHOOKS Configuration Block .110
10.2.2 EHOOKS ECU Trigger Source Block .113
10.2.3 EHOOKS ECU Variable Reads Block .116
10.2.4 EHOOKS ECU Variable Writes Block .118
10.2.5 EHOOKS ECU Backup Variable Reads Block124
10.2.6 EHOOKS ECU Trigger Delegate Block .126
10.2.7 EHOOKS ECU Hook Control Variable Write Block128
10.2.8 EHOOKS ECU Value Parameter Read Block129
10.2.9 EHOOKS ECU Variable Read/Write Blocks .130
10.2.10 EHOOKS ECU Function Call Block .131
10.2.11 EHOOKS RP-Visible Measurement block .132
10.2.12 EHOOKS ECU Complex Calibration Parameter Read block132
10.2.13 EHOOKS ECU Value Block Cal Param Read block135

10.3 Simulink Modelling for On-Target Bypass .136
10.3.1 Adding the EHOOKS Configuration Block .136
10.3.2 Adding the EHOOKS Trigger Blocks .137
10.3.3 Adding the Model and Reading/Writing ECU Variables138
10.3.4 Adding the Simulink model .140

10.4 Building Hooked ECU Software with Simulink On-Target Bypass142
10.4.1 Setting the Simulink Configuration Properties142
10.4.2 Building the Hooked ECU Software .143
10.4.3 Running an Experiment with the Hooked ECU Software using INCA143

10.5 Advanced Simulink Features .144
10.5.1 Creating Model Measurements and Calibration Data144
10.5.2 Reading Existing Scalar and Complex ECU Calibration Data150
10.5.3 Reading from Hooked ECU Variable Backup Copies150
10.5.4 Programmatic Control using Control Variables151
10.5.5 Communication between On-Target Bypass Functions152
10.5.6 Trigger Delegation .152
10.5.7 Calling an ECU function from within a Simulink model154

11 EHOOKS-DEV Reference Guide 156
11.1 EHOOKS-DEV Command Line Usage .156

11.1.1 Back-End Configuration File .157
11.1.2 Front-End Configuration File .157

11.2 EHOOKS-DEV Custom Build Steps .158
11.2.1 Pre-Generate Scripts .159

11.3 EHOOKS-DEV Simulink Integration Scripting Interface159
11.3.1 Adding EHOOKS Blocks .160
11.3.2 EHOOKS Simulink APIs .161

11.4 Special Purpose RAM .192
11.5 Advanced Project Options .192

11.5.1 Cached Register Warning Message .192
11.5.2 Overriding Cached Registers with EHOOKS194
11.5.3 Building EHOOKS Code with an Alternative Compiler196
11.5.4 Enable Elevated Permissions .197

11.6 Variable Initialization .199
11.7 EHOOKS-DEV File Formats .199

11.7.1 EHOOKS-DEV Project Configuration File .199
11.7.2 EHOOKS-DEV User Definition Files .200

ETAS EHOOKS v5.3 | User Guide

6 | CONTENTS

11.7.3 EHOOKS-DEV Filter File .200

12 EHOOKS Limitations 201
12.1 Non-Atomic Writes .201
12.2 Timing .201

13 Contact Information 202

ETAS EHOOKS v5.3 | User Guide

7 | Introduction

1 Introduction

This document describes EHOOKS-DEV version 5.3. EHOOKS is used to add hooks and new
functionality directly into ECU software with access to only the ECU software and A2L file.

The EHOOKS product tool-chain is made up of the following parts:

• EHOOKS-DEV

This is the tool-chain that allows hooks to be inserted into the ECU software.
EHOOKS-DEV consists of three parts:

– EHOOKS-DEV Front-End

This is the graphical configuration tool that enables quick and easy configuration of
EHOOKS projects. The EHOOKS-DEV Front-End is independent of the ECU being
used and supports the generation of EHOOKS configurations for all available
EHOOKS-DEV ECU Targets.

– EHOOKS-DEV ECU Target Support

This is the target-specific tool that processes the EHOOKS project configuration
information and inserts the hooks into the ECU software. For each supported ECU
there is a separate EHOOKS-DEV ECU Target Support package (please see
http://www.etas.com/ehooks for the latest information on supported ECUs).

– EHOOKS-DEV Simulink Integration

This is the EHOOKS Simulink Blockset, this works in combination with EHOOKS-DEV
to enable simple integration of Simulink models with EHOOKS for on-target bypass.

• EHOOKS-CAL / EHOOKS-BYP

This is the EHOOKS hook unlocking tool; it uses the INCA API to enable you to work with
the hooks placed inside the ECU software by EHOOKS. EHOOK-CAL and EHOOKS-BYP are
delivered as a single EHOOKS hook unlocking tool, with the installed license key
determining which features are accessible.

NOTICE
The need to use the EHOOKS hook unlocking tool depends on the license purchased
for EHOOKS-DEV; with certain license keys the EHOOKS hook unlocking tool is not
required to work with the ECU software created by EHOOKS. Please contact your local
ETAS sales office if you require additional details regarding the supported usage and
licensing modes for EHOOKS.

• EHOOKS-PREP

This tool is used by the ECU software provider (i.e. the Tier-1) to prepare the ECU
software for use with the EHOOKS-DEV tool-chain. This tool is neither necessary nor
included with the EHOOKS-DEV package.

This document describes how to install, configure and work with the EHOOKS-DEV,
EHOOKS-CAL and EHOOKS-BYP tools. Details of EHOOKS-PREP are provided in a separate
EHOOKS-PREP user guide and hence it is not discussed further in this document.

The remainder of this document is structured as follows:

ETAS EHOOKS v5.3 | User Guide

http://www.etas.com/ehooks

8 | Introduction

• Section 2 Getting Started describes how to get started with EHOOKS and how to install,
license and configure an EHOOKS setup.

• Section 3 EHOOKS Overview gives a complete overview of the EHOOKS workflow and the
features provided by EHOOKS-DEV.

• Section 3.2.3 Service Points describes which features and capabilities of EHOOKS can be
influenced and controlled by the preparation performed by the ECU software provider
using EHOOKS-PREP.

• Section 5 Configuring EHOOKS-DEV details how to configure EHOOKS using the
EHOOKS-DEV configuration tool, describing all aspects of the configuration tool user
interface.

• Section 6 Working with Hooked ECU Software in INCA describes how to work with hooked
ECU software created by EHOOKS and illustrates this using INCA. This section also
describes how the EHOOKS Hook Unlocker tools (EHOOKS-CAL and EHOOKS-BYP) are
used when the licensing mode makes this necessary.

• Section 7 Creating and Working with Simple Internal Bypass describes how to create
simple internal bypass experiments with EHOOKS.

• Section 8 Creating and Working with External Bypass describes how to create external
bypass experiments with EHOOKS.

• Section 9 Creating and Working with On-Target Bypass describes how to create
on-target bypass experiments manually using C code with EHOOKS.

• Section 10 Creating and Working with On-Target Bypass from Simulink describes how to
create on-target bypass experiments using Simulink and the EHOOKS blockset. This
section describes in detail how EHOOKS is configured via the EHOOKS blockset for
Simulink, how to build the hooked ECU software from within Simulink and how to work
with the hooked ECU software containing the Simulink model on the ECU.

• Section 11 EHOOKS-DEV Reference Guide provides a reference guide for EHOOKS
features such as command line options, custom build steps, Simulink integration
scripting interface and other advanced features

• Limitations and technical support links are included at the end of the document.

1.1 Safety Notice

WARNING
The use and application of this product can be dangerous. It is critical that you
carefully read and follow the instructions and warnings below and in all associated
user manuals.

This ETAS product fulfils standard quality management requirements. If requirements of
specific safety standards (e.g. IEC 61508, ISO 26262) need to be fulfilled, these requirements
must be explicitly defined and ordered by the customer. Before use of the product, customer
must verify the compliance with specific safety standards.

This ETAS product enables a user to influence or control the electronic systems in a vehicle or
in a test-bench. THE PRODUCT IS SPECIFICALLY DESIGNED FOR THE EXCLUSIVE USE BY

ETAS EHOOKS v5.3 | User Guide

9 | Introduction

PERSONNEL WHO HAVE SPECIAL EXPERIENCE AND TRAINING.

Improper use or unskilled application of this ETAS product may alter the vehicle performance
or system performance in a manner that results in death, serious personal injury or property
damage.

• Do not use this ETAS product if you do not have the proper experience and training.

• Also, if a product issue develops, ETAS will prepare a Known Issue Report (KIR) and post
it on the internet. The report includes information regarding the technical impact and
status of the solution. Therefore you must check the KIR applicable to this ETAS product
version and follow the relevant instructions prior to operation of the product.

The Known Issue Report (KIR) can be found here: http://www.etas.com/kir

• Any data acquired through the use of this ETAS product must be verified for reliability,
quality and accuracy prior to use or distribution. This applies both to calibration data and
to measurements that are used as a basis for calibration work.

• When using this ETAS product with vehicle systems that influence vehicle behavior and
can affect the safe operation of the vehicle, you must ensure that the vehicle can be
transitioned to a safe condition if a malfunction or hazardous incident should occur.

• When using this ETAS product with test-bench systems that influence system behavior
and can affect the safe operation of the system, you must ensure that the test-bench can
be transitioned to a safe condition if a malfunction or hazardous incident should occur.

• All legal requirements, including regulations and statutes regarding motor vehicles and
test-benches, must be strictly followed when using this product.

• It is recommended that in-vehicle use of the ETAS product be conducted on enclosed
test tracks.

• Use of this ETAS product on a public road should not occur unless the specific calibration
and settings have been previously tested and verified as safe.

DANGER
IF YOU FAIL TO FOLLOW THESE INSTRUCTIONS, THERE MIGHT BE A RISK OF DEATH,
SERIOUS INJURY OR PROPERTY DAMAGE

THE ETAS GROUP OF COMPANIES AND THEIR REPRESENTATIVES, AGENTS AND AFFILIATED
COMPANIES DENY ANY LIABILITY FOR THE FUNCTIONAL IMPAIRMENT OF ETAS PRODUCTS IN
TERMS OF FITNESS, PERFORMANCE AND SAFETY IF NON-ETAS SOFTWARE OR MODEL
COMPONENTS ARE USED WITH ETAS PRODUCTS OR DEPLOYED TO ACCESS ETAS PRODUCTS.
ETAS PROVIDES NO WARRANTY OF MERCHANTABILITY OR FITNESS OF THE ETAS PRODUCTS IF
NON-ETAS SOFTWARE OR MODEL COMPONENTS ARE USED WITH ETAS PRODUCTS OR
DEPLOYED TO ACCESS ETAS PRODUCTS.

THE ETAS GROUP OF COMPANIES AND THEIR REPRESENTATIVES, AGENTS AND AFFILIATED
COMPANIES SHALL NOT BE LIABLE FOR ANY DAMAGE OR INJURY CAUSED BY IMPROPER USE OF
THIS PRODUCT. ETAS PROVIDES TRAINING REGARDING THE PROPER USE OF THIS PRODUCT.

ETAS EHOOKS v5.3 | User Guide

http://www.etas.com/kir

10 | Introduction

1.2 Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy Statement that
informs you which data are processed in EHOOKS, which data categories EHOOKS uses, and
which technical measure you have to take to ensure the users privacy. Additionally, we
provide further instructions where this product stores and where you can delete personal or
personal-related data.

1.2.1 Data Processing

Note that personal or personal-related data respectively data categories are processed when
using this product. The purchaser of this product is responsible for the legal conformity of
processing the data in accordance with Article 4 No. 7 of the General Data Protection
Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any mishandling of this
data.

When using the ETAS License Manager in combination with user-based licenses, particularly
the following personal or personal-related data respectively data categories can be recorded
for the purposes of license management:

• Communication data: IP address

• User data: UserID, WindowsUserID

1.2.2 Technical and organizational measures

This product does not itself encrypt the personal or personal-related data respectively data
categories that it records. Ensure that the data recorded are secured by means of suitable
technical or organizational measures in your IT system.

Personal or personal-related data in log files can be deleted by tools in the operating system.

1.3 Conventions

The following typographical conventions are used in this document:

OCI_CANTxMessage msg0 = Code snippets are presented in a monospaced font.

Meaning and usage of each command are explained by
means of comments. The comments are enclosed by the
usual syntax for comments.

Choose File -> Open. Menu commands are shown in boldface.

Click OK. Buttons are shown in boldface.

Press <Enter> Keyboard commands are shown in angled brackets.

The "Open File" dialog box
is displayed.

Names of program windows, dialog boxes, fields etc. are
shown in quotation marks.

Select the file setup.exe Text in drop-down lists on the screen, program code, as
well as path- and file names are shown in the Courier font.

A distribution is always
one-dimensional table of
sample points.

General emphasis and new terms are set in italics.

ETAS EHOOKS v5.3 | User Guide

11 | Getting Started

2 Getting Started

Working with EHOOKS first requires the relevant parts to be installed and valid license keys
obtained. After installing EHOOKS, and depending on the use-case and the configuration of
the installation PC, it may be necessary to perform some post-installation setup and
configuration steps. Once this has been accomplished EHOOKS can be used.

This section details how to perform all of these tasks.

2.1 Installation

EHOOKS-DEV V5.3 provides support for Windows 8.1 and 10 operating systems. EHOOKS-DEV
is delivered as three separate packages

• EHOOKS-DEV ECU Target Support

This package provides the command-line tools that actually process the EHOOKS project
configuration and insert the hooks into the ECU software. This is the minimal installation
package necessary to work with EHOOKS-DEV. However, it is typically desirable to work
with EHOOKS via the graphical configuration tool and therefore the package below would
normally be installed as well. If EHOOKS-DEV is to be used with different ECU projects,
then several EHOOKS-DEV ECU Target Support packages will need to be installed – one
for each ECU type with which EHOOKS will be used.

• EHOOKS-DEV Front-End

This is the graphical configuration tool that enables quick and easy construction of an
EHOOKS project configuration. It is possible to use the EHOOKS-DEV Front-End package
on a PC which doesn’t have any EHOOKS-DEV ECU Target Support packages installed,
but then it will only be possible to generate EHOOKS-DEV configuration files – it will not
be possible to perform an EHOOKS build to create new ECU software.

• EHOOKS-DEV Simulink Integration

This is the EHOOKS Simulink Blockset, which works in combination with
EHOOKS-DEV to enable simple integration of Simulink models with EHOOKS
for on-target bypass. To work with the EHOOKS-DEV Simulink Integration package you
must have both the EHOOKS-DEV ECU Target Support and EHOOKS-DEV Front-End
packages installed on the same PC.

The EHOOKS hook unlocking tool (EHOOKS-CAL and EHOOKS-BYP) is delivered as a single
package. The need to use and install the EHOOKS hook unlocking tool depends on the license
purchased for EHOOKS-DEV.

The installation of each of these packages is carried out in the same basic manner. First,
launch the installer for the appropriate package by running Install XXX.exe where XXX is
the component name.

The first step of the installation process is to confirm that the license agreement and safety
hints have been read and are acceptable, and then the path to which the installation should
occur can be chosen. After this is done clicking the Install button will begin the installation
process.

To uninstall EHOOKS choose Control Panel -> Add or Remove Programs from the
Windows Start menu, select the desired EHOOKS package and click Remove.

ETAS EHOOKS v5.3 | User Guide

12 | Getting Started

Figure 2.1: EHOOKS Installer

2.2 Silent Installation

Each EHOOKS package can also be installed ‘silently,’ that is, without requiring user
interaction. This is useful if you wish to create a script or batch file to automate EHOOKS
installation.

Pass the /S flag on the command line to enable silent installation.

If you wish to specify a destination directory, use the /D=<path> command-line flag. This must
be the last flag on the command line, must be an absolute path, and must not contain quotes,
even if the path contains spaces. The installer will use the default path if you do not specify
the /D flag.

For example, to install the EHOOKS-DEV Front-End package silently in C:\\ETAS, run the
following command from an administrator prompt:

"Install EHOOKS-DEV V4.7 Front-End.exe" /S /D=C:\ETAS\EHOOKS-DEV V4.7 Front-End

2.3 Licensing

EHOOKS V5.3 is licensed using electronic licensing via the ETAS License Manager V1.8.2. To
install the license keys you received for EHOOKS launch the ETAS License Manager and select
“Add License File” from the file menu. For further details refer to the included documentation
and on-line help within the ETAS License Manager.

2.4 Post Installation Setup and Configuration Steps

This section describes several setup and configuration steps that are not automatically
performed by the EHOOKS-DEV installers and should be carried out manually after the
installation process.

ETAS EHOOKS v5.3 | User Guide

13 | Getting Started

Figure 2.2: Managing EHOOKS Licenses with the ETAS License Manager

2.4.1 Installed Versions of EHOOKS Packages

Details of the installed versions of EHOOKS packages can be found via the EHOOKS-DEV menu
Help->About EHOOKS-DEV launches the About dialog in which all of the installed EHOOKS
packages are listed.

Figure 2.3: EHOOKS About Dialog

2.4.2 EHOOKS-DEV Simulink Configuration

To work with the EHOOKS-DEV Simulink Integration Package it is necessary to launch Matlab
using a shortcut which will set up your Matlab environment correctly.

This shortcut can be found in the EHOOKS-Dev Front End, in the Simulink menu, all
compatible versions of Matlab will be visible, for each version you have the option to Open or
Create shortcut on desktop. See figure 2.4

• Open launches that version of Matlab with the environment prepared for use with
EHOOKS.

ETAS EHOOKS v5.3 | User Guide

14 | Getting Started

• Create shortcut on desktop adds the same shortcut to the desktop, so Matlab can be
launched with the environment prepared for use with EHOOKS without launching the
Front End.

Figure 2.4: EHOOKS-DEV Front End Simulink Shortcuts

NOTICE
Since EHOOKS version 4.9 it is no longer necessary to run a configuration tool, any li-
braries required by EHOOKS are now built automatically during the EHOOKS/Simulink
build process.

2.4.2.1 Manual EHOOKS-DEV Simulink Integration Library Building

The required Simulink libraries can also be built manually. To do this simply execute the batch
file from the directory <EHOOKS-DEV ECU Target Installation Directory>\Simulink, as
below:

Build_libsrc_MATLAB.bat <matlab-version> <target> <matlab-dir>
<matlab-version>: Matlab version number (e.g 9.4)
<target>: EHOOKS ECU target
<matlab-dir>: MATLAB installation directory, e.g. “C:\Program Files\MATLAB\R2018a”

2.4.2.2 Manual EHOOKS-DEV Simulink Integration Path Settings

To enable EHOOKS to be used from within Simulink without using one of the EHOOKS
generated shortcuts it is necessary to first add the relevant EHOOKS-DEV Simulink Integration
package paths to the MATLAB environment. This can be done using the following commands
within the MATLAB command prompt:

addpath <EHOOKS-DEV Simulink Integration Installation Directory>\MATLAB <ENTER>

add_ehooks_paths <ENTER>

To avoid having to do this each and every time MATLAB is loaded, then these same commands
can be added to the file <MATLAB Installation Directory>\toolbox\ local\startup.m

If the commands are executed correctly you should see the following within the MATLAB
command window:

Successfully added the EHOOKS directories to your MATLAB path.

ETAS EHOOKS v5.3 | User Guide

15 | Getting Started

NOTICE
If the startup.m file does not exist then it can be created using any text editor such
as Microsoft Windows Notepad or the file startupsav.m can be copied to startup.m
and used as a template.

ETAS EHOOKS v5.3 | User Guide

16 | EHOOKS Overview

3 EHOOKS Overview

This chapter gives a brief overview of EHOOKS, including the general workflow and all of the
major features. Each of these features will be discussed in greater detail in subsequent
chapters of this document.

3.1 EHOOKS Workflow

EHOOKS is used to add hooks and new functionality directly into ECU software with access to
only the ECU software and an EHOOKS prepared A2L file.

Figure 3.1: Typical EHOOKS Workflow

Figure 3.1 illustrates the typical EHOOKS workflow for adding hooks and new functionality to
ECU software and then working with the modified software.

3.1.1 Step 1: EHOOKS Prepared ECU Software

The ECU software provider delivers the ECU software in the usual way – an ECU HEX file1 and
an A2L file. The ECU software will have been prepared for EHOOKS-DEV by the ECU software
provider and the A2L file will contain additional information used by EHOOKS-DEV to
accurately place the hooks into the ECU HEX file without the need for ECU source code access.

3.1.2 Step 2: Creating the Hook Configuration

EHOOKS-DEV requires the user to describe the hooks and new functionality to be added to the
ECU software. This consists of an EHOOKS-DEV configuration and depending on the use-case
additional software functionality coming from C source code, ASCET or Simulink®.

Typically the EHOOKS-DEV configuration will be created interactively using the EHOOKS-DEV
Front-End, but it is also possible to create this configuration manually as EHOOKS-DEV
provides a standardized XML file format (see section 11.7.1 EHOOKS-DEV Project
Configuration File). When adding new ECU functionality for on-target bypass, this is typically

1EHOOKS supports both Intel HEX files and Motorola S-Record files.

ETAS EHOOKS v5.3 | User Guide

17 | EHOOKS Overview

created interactively along with the EHOOKS-DEV configuration using either the ASCET-SE
EHOOKS Target (see ASCET-SE EHOOKS Add-on User Guide for full details – this can be found
in the ASCET installation directory within the folder <ASCET INSTALL
DIRECTORY>\target\trg_ehooks\documents) or the EHOOKS-DEV Simulink Integration
package (see section 10 Creating and Working with On-Target Bypass from Simulink). Again it
is also possible to create new functionality by manually providing C source files (see section 9
Creating and Working with On-Target Bypass).

3.1.3 Step 3: Running the EHOOKS-DEV ECU Target Support Tools

EHOOKS-DEV ECU target support tools are then executed to process the ECU’s HEX and A2L
file along with the EHOOKS-DEV configuration. Typically this is done interactively via the
EHOOKS-DEV Front-End, or directly within the ASCET-SE EHOOKS target or the EHOOKS-DEV
Simulink integration package.

3.1.4 Step 4: EHOOKS-DEV Generated ECU Software

EHOOKS-DEV then analyses and modifies the ECU HEX and A2L file in line with the specified
EHOOKS-DEV configuration to generate a new ECU HEX and A2L file containing the requested
hooks and new functionality.

3.1.5 Step 5: Working with the EHOOKS-DEV Generated ECU Software

The EHOOKS-DEV generated ECU software needs to be flashed into the ECU in the normal way.

NOTICE
It is important to ensure that, where necessary, a special purpose calibration data
set is used that disables the standard run-time checksums of ECU memory. As
EHOOKS-DEV has modified the ECU HEX File these checks will fail and may prevent
the ECU from functioning unless they are disabled. Please contact the ECU software
provider for details on the appropriate calibration data set to achieve this necessary
behaviour.

The A2L file can then be used with the following tools:

• INCA: To measure and calibrate the new ECU software

• INTECRIO: To set up an external bypass experiment consisting of ASCET models,
Simulink models and/or C code

• ASCET-RP: To set up an external bypass experiment consisting of ASCET models

To work with the EHOOKS-DEV generated ECU software it is necessary to connect either
EHOOKS-CAL or EHOOKS-BYP to the ECU via INCA to unlock the new functionality. If
EHOOKS-DEV-OPEN is used then the use of EHOOKS-CAL or EHOOKS-BYP is not necessary.

NOTICE
As part of the ECU preparation process, the ECU software supplier can optionally de-
fine additional data to be patched at a specified address into the hooked hex/s19 file
when it is built by EHOOKS-DEV. This information can be useful to help the EHOOKS-
DEV user in identification and management of hooked hex/s19 files. See section 4
EHOOKS-PREP Dependencies for full details. If this capability is required, please ask
your ECU software to enable this for you in the ECU preparation stage.

ETAS EHOOKS v5.3 | User Guide

18 | EHOOKS Overview

3.2 EHOOKS-DEV Features

3.2.1 EHOOKS-DEV Hook Types

3.2.1.1 Constant Bypass Hooks

Figure 3.2 illustrates an EHOOKS-DEV constant value hook. This hook type allows run-time
control of whether the original ECU calculation or a constant bypass value – in this case 60 – is
used for the hooked variable value.

Figure 3.2: Constant Bypass Hook

3.2.1.2 Calibration Value Bypass Hooks

Figure 3.3 illustrates an EHOOKS-DEV calibration hook. This hook type allows run-time control
of whether the original ECU calculation or an EHOOKS-DEV-created calibration characteristic is
used for the hooked variable value.

In this case INCA can be used to modify the EHOOKS-DEV-created calibration characteristic
which in turn directly modifies the hooked ECU variable to a matching value giving the INCA
user direct control over the hooked ECU variable’s value.

Figure 3.3: Calibration Bypass Hook

3.2.1.3 External Bypass Hooks

Figure 3.4 illustrates an EHOOKS-DEV external bypass hook. This hook type allows run-time
control of whether the original ECU calculation or a value calculated on an external rapid
prototyping system is used for the hooked variable value.

In this case INTECRIO or ASCET-RP can be used to create a rapid prototype software system
that runs on ETAS rapid prototyping hardware (e.g. ES900 series systems). The configured
output value from the rapid prototyping software system can be used to modify the hooked
ECU variable via the ECU’s external bypass connection.

3.2.1.4 On-Target Bypass Hooks

Figure 3.5 illustrates an EHOOKS-DEV on-target bypass hook. This hook type allows run-time
control of whether the original ECU calculation or a value calculated by a bypass algorithm

ETAS EHOOKS v5.3 | User Guide

19 | EHOOKS Overview

Figure 3.4: External Bypass Hook

running on the ECU is used for the hooked variable value.

On-target bypass allows the integration of a C-code algorithm, ASCET-RP model code or
Simulink model code into the ECU software. EHOOKS-DEV allows the on-target bypass to be
configured to have access to one or more input variables from the ECU software and to
calculate the bypass value for one or more hooked ECU software variables. EHOOKS-DEV also
enables the introduction of new measurements and calibration characteristics which the
on-target bypass algorithm can then use.

EHOOKS-DEV will automatically compile the provided C-code (or generated C code in the case
of an ASCET or Simulink model) and integrate it correctly into the ECU software.

Figure 3.5: On-Target Bypass Hooks

3.2.1.5 No-Operation Bypass Hooks

This hook type allows run-time control of whether any value is written to the hooked variable.
The use of this hook type will remove any writes to the hooked variable from the ECU
software, effectively replacing each write with a NOP instruction.

On-target bypass code can be used to write directly to any variable which has been
No-Operation hooked. For this purpose, macros are generated in the UserBypassFuncs.h
header file of the form:

EH_ARG_DIRECT_PUT_<measurement_name>(<context>, <value>)

Where <context> is the context argument of the On-target bypass function.

3.2.1.6 Function Bypass Hooks (ECU Process Hooks)

Figure 3.6 illustrates an EHOOKS-DEV function bypass hook.

EHOOKS-DEV allows arbitrary ECU processes to be hooked. A hooked process can then be
prevented from executing within the ECU by setting the hook enabler. This functionality will
typically be used in conjunction with on-target bypass. In such cases the original ECU process

ETAS EHOOKS v5.3 | User Guide

20 | EHOOKS Overview

is replaced with a new implementation (an on-target bypass function) and it may be
necessary to disable the execution of the original ECU process to make enough CPU resources
available to execute the new implementation.

WARNING
Additional caution must be taken when disabling ECU processes; it may be possible
to cause serious side-effects by preventing certain ECU processes from executing.
This should not be done without ensuring that additional precautions are in place to
prevent any failure from causing mechanical damage or personal injury.

Figure 3.6: Function Bypass Hook

3.2.1.7 Autosar Software Component Bypass Hooks

Autosar Software Components (SWCs) contain any number of “runnables”. Runnables are
functions that implement the behaviour of a SWC. EHOOKS-DEV allows permitted SWC,
present on the ECU, to be hooked such that a Function Bypass will be created for each
runnable belonging to the SWC. Enabled runnables in the original ECU software are replaced
with a new implementation provided by the user. Individual enablers allow the user to control
at run-time whether each runnable bypass is active.

3.2.2 EHOOKS-DEV Hook Configuration Properties

3.2.2.1 Hook Enablers

Hooks placed into the ECU software by EHOOKS-DEV can be controlled at run-time using
calibration characteristics which EHOOKS-DEV creates. These enabler characteristics are
regular calibration characteristics whose values can be adjusted at run time using a
calibration tool (e.g. INCA). EHOOKS-DEV allows three kinds of enablers to be configured:

1. Global enabler

This is a system wide calibration characteristic which, if configured, can be used to
enable or disable all of the hooks and changes made to the ECU software by
EHOOKS-DEV.

2. Group enabler

Groups can be freely created in the configuration and each has its own enabler
calibration characteristic. This then allows a group of related hooks to be enabled or
disabled altogether with the change of the single group enabler characteristic.

ETAS EHOOKS v5.3 | User Guide

21 | EHOOKS Overview

Figure 3.7: Autosar Software Component Bypass Hook

3. Hook enabler

Each individual hook can also be configured to have its own enabler calibration
characteristic associated. This allows an individual hook to be enabled or disabled
independently from the other hooks added to the ECU software by EHOOKS-DEV.

When EHOOKS-DEV creates the new ECU software, by default the initial values of all
hook enabler calibration characteristics are set to disabled. This ensures that all
changes to the ECU software implemented by EHOOKS-DEV are disabled by default at
ECU startup. However, the initial value of the hook enablers can be changed to enabled
by the EHOOKS-DEV user, which allows hooks to be turned on at startup.

The logic to control whether a specific hook is enabled or disabled is as follows:

• If a global enabler is configured and is set to disabled, then all hooks are disabled.

• If a global enabler is configured and is set to enabled, or a global enabler is not
configured; then

– If any group enabler associated with the hook is enabled, or the hook specific
enabler is enabled, or the hook specific control variable (see section 3.2.2.3 Control
Variables) is true, then the hook is enabled.

– If all group enablers associated with the hook are disabled and the hook specific
enabler is disabled and the hook specific control variable is disabled, then the
hook is disabled.

3.2.2.2 Indicators

Indicators are measurement variables that EHOOKS-DEV can place into the ECU software to
shadow the value of hook enablers. When the hook code added to the ECU software by
EHOOKS-DEV evaluates the status of a hook enabler, the associated indicator measurement

ETAS EHOOKS v5.3 | User Guide

22 | EHOOKS Overview

variable (if configured) is updated to match this status.

Indicator measurement variables can be measured at run time using a measurement tool
(e.g. INCA) and give feedback on whether the associated hook is enabled or disabled.

NOTICE
Indicators can be a very useful diagnostic aid when working with EHOOKS. Some-
times it can appear that a hook is not functioning as expected. In many cases, this
can be down to the hook code added by EHOOKS-DEV not actually executing on the
ECU, resulting in the bypass value not being written into the hooked ECU variable.
This can be due to certain rasters within the ECU not executing (this is especially
likely if the ECU is being run in a reduced hardware environment) or due to condi-
tional code within the ECU software structure.

If an indicator variable is not updated (i.e. changes between true and false) in
synchronization with changes to the associated hook enabler, then the most likely
cause is that the hook code is not actually being executed. In such situations the
EHOOKS feature of forced-writes (see section 3.2.2.6 Forced-Write Mechanisms) can
still allow the ECU variable to be successfully hooked and updated with the desired
bypass value.

When indicator measurement variables are configured, additional hook diagnostic counter
measurement variables are automatically created. These provide a deeper insight into the
execution of the EHOOKS hook code see section 6.1 Run-Time Hook Control and Monitoring for
more details.

3.2.2.3 Control Variables

In addition to hook enablers, EHOOKS-DEV supports control variables to control at run-time
whether a specific hook is enabled or disabled. While hook enablers are calibration
characteristics which must be controlled via a calibration tool, control variables are regular
ECU variables and therefore can be controlled programmatically by on-target or external
bypass code. This means that new software logic can be introduced into the ECU via the
bypass code which in turn can determine whether specific variable hooks should be enabled
or disabled based on certain ECU conditions.

NOTICE
To set a control variable to true, i.e. to indicate that the associated hook should be
enabled, the control variable should be assigned a value of 0x12.

To set a control variable to false, i.e. to indicate that the associated hook should be
disabled, the control variable should be assigned a value of 0x0 (although any value
other than 0x12 is acceptable).

The reason for these special values is to overcome the fact EHOOKS-DEV cannot
depend on the ECU to initialize variables it creates within the ECU software when
the ECU is powered-on or reset.

The interaction of control variables with hook enablers is described in Hook Enablers.

ETAS EHOOKS v5.3 | User Guide

23 | EHOOKS Overview

NOTICE
When setting the value from external bypass, the value of the control variable will
not be updated in the ECU memory. The control variable is retried from the bypass
buffer and is not written back to the control variable for data consistency reasons.

3.2.2.4 Replacement, Offset and Multiply Hooks

EHOOKS-DEV supports replacement bypass, offset bypass and multiply bypass. Figure 3.8
illustrates a replacement hook; in this configuration the EHOOKS-DEV inserted hook
completely replaces the ECU value with the bypass value.

Figure 3.8: Replacement Hooks

Figure 3.9 illustrates an offset hook; in this configuration the EHOOKS-DEV inserted hook is
used as an offset to the original ECU value. An EHOOKS-DEV control characteristic is
introduced to allow run-time control over whether the value is added to or subtracted from the
original ECU value.

Figure 3.9: Offset Hooks

NOTICE
The control characteristic name is based on the hooked variable name prefixed with
EH_ctrl_.

Figure 3.10 illustrates a multiply hook; in this configuration the EHOOKS-DEV inserted hook is
used as a multiplier of the original ECU value.

ETAS EHOOKS v5.3 | User Guide

24 | EHOOKS Overview

Figure 3.10: Multiply Hooks

WARNING
Offset and multiply hooks should not be used with hooks that are configured to use a
forced-write. This is because when the hook is triggered at the forced-write location,
there is no currently calculated ECU value to be used in the offset calculation and
therefore the bypass value will simply be added or subtracted from 0

WARNING
Offset and multiply hooks should not be used with ECU variables which have non-
linear COMPU_METHODS or linear COMPU_METHODS which do not intersect the origin
(i.e. a COMPU_METHOD of y = mx + c where c is not 0). Currently EHOOKS-DEV
does not check the COMPU_METHODS of variables selected for hooking.

3.2.2.5 Backup Measurement Copies

For each hook configured, EHOOKS-DEV allows the creation of a new measurement variable to
store the original ECU-calculated variable value. Figure 3.11 illustrates a backup
measurement copy. This allows measurement and easy comparison of the bypass value and
the original ECU value via a measurement tool (e.g. INCA).

Figure 3.11: Backup Measurement Copy

Additionally, backup measurement copies can be used as input arguments to on-target bypass
functions. This allows simple implementation of new algorithms that refine the existing ECU
calculation of a variable, e.g. calculate an offset, add noise, implement filtering, etc.

ETAS EHOOKS v5.3 | User Guide

25 | EHOOKS Overview

3.2.2.6 Forced-Write Mechanisms

Figure 3.12: EHOOKS Forced writes mechanisms

Figure 3.12 shows the EHOOKS forced-write mechanisms. In this example, the default EHOOKS
behaviour (Mechanism 1 in figure 3.12) is for the hooked variables X and Y to be updated with
the current bypass value at the point where the ECU variable would have originally been
written by the delivered ECU software (in ‘ECU Function A’). The bypass values of X and Y are
taken from the EHOOKS global buffer and written to the addresses for X and Y in RAM.

In addition to this default mechanism, EHOOKS-DEV allows the configuration of Forced-write
mechanisms whereby the hooked ECU variable is forcibly updated with the bypass value.
Forced-writes can be configured in 3 ways:

1. Inline Forced-Writes (see 5.2.2 Configuring Properties of a Variable Hook)

An inline forced-write means that the bypass value for a hooked variable will be updated
at the beginning of each ECU process which contains a write to the original ECU variable
(Mechanism 2 in figure 3.12).

2. Common Forced-Writes (see 5.2.2 Configuring Properties of a Variable Hook)

Common forced-writes allow the selection of any bypass containers to be used to update
the hooked ECU variable with the current bypass value (Mechanism 3 in figure 3.12)

3. Forced-writes at the output of On-Target bypass function dispatch point (see 10.2.2
EHOOKS ECU Trigger Source Block)

Forced-writes can also be applied to on-target bypass functions. In the context of an
on-target bypass function a forced-write means that, directly after the on-target bypass
function has executed, the calculated values will be immediately and forcibly written
into the ECU measurement variables configured as outputs to the on-target bypass

ETAS EHOOKS v5.3 | User Guide

26 | EHOOKS Overview

function (Mechanism 4 in figure 3.12).

These forced-write mechanisms can be very helpful to enable a successful bypass experiment,
and can help in the following circumstances:

• Hook code not being executed

In some situations the EHOOKS-DEV place hooks aren’t executed on the ECU. There are
two common situations where this can be the case:

1. Certain processes/rasters are not being executed within the ECU, perhaps due to
the ECU being used in a reduced hardware environment (i.e. not being used within
the vehicle) or due to certain processes/rasters only executing during certain ECU
modes of operation (e.g. during initialization, shutdown, limp-home-mode, etc)

2. Conditional code means that the original ECU variable write instruction is not being
executed. As it is this instruction that EHOOKS uses to place the hook code, it will
mean that the hook code also won’t be executed.

In such situations, if an indicator measurement variable is configured for the hook (see
section 3.2.2 EHOOKS-DEV Hook Configuration Properties – Indicators) then it becomes
easy to observe that the hook code is not being executed. If the indicator variable is not
updated to mirror the value of the hook enabler, this is a clear sign that the hook code is
not being executed and that a forced-write configuration may be necessary.

• Need to change resolution/update frequency

For some experiments it may be necessary to increase the frequency at which a specific
ECU variable is updated with the bypass value. This effectively allows a signal’s
resolution to be increased. By selecting a forced-write within a specific bypass container,
the resolution of the hooked ECU variable can be controlled.

3.2.2.7 Safety Checks

For each hook configured, EHOOKS-DEV allows the creation of safety check code to monitor
the hook for run-time errors. This safety check code detects some failures of the
EHOOKS-DEV-inserted hooks (for example, if a hook placement has failed to patch all writes to
an ECU variable). When triggered, this safety detection code will flag the error using a
measurement and automatically disable the specific hook.

NOTICE
The safety check failure measurement name is based on the hooked variable name
prefixed with EH_err_xxx. An error is indicated when this measurement has the
value 0x12. The safety check shutoff override calibration characteristic name is
based on the hooked variable name prefixed with EH_eovd. Setting this characteris-
tic to true will allow the hook to continue to function even if the safety checks have
failed.

NOTICE
The safety check feature requires additional ECU resources (code space and RAM)
and therefore it is advisable to use the feature sparingly to avoid disrupting the
original ECU behaviour.

ETAS EHOOKS v5.3 | User Guide

27 | EHOOKS Overview

3.2.2.8 Default Project Configuration Settings

The Tools -> Options menu can be used to configure default settings for all EHOOKS
projects. Using the Default Settings tab in the Options dialog, the EHOOKS-DEV user can
configure default settings for the project and tab-specific settings shown in figure 3.13. When
the user configuration is complete, clicking the Save button will save and apply this default
configuration to the current project and all subsequently created EHOOKS projects. Clicking
the Restore Default button will cancel these user default settings and restore the default
configuration to it’s previous state.

Figure 3.13: Setting default project configuration options

NOTICE
The default settings are not saved with the EHOOKS project file, rather they are
saved globally as part of the EHOOKS-DEV tool settings. They will therefore remain
the same between different projects unless specifically changed within this dialog.

3.2.3 Service Points

EHOOKS provides support for bypassing an original ECU process or function group with a
Service Point to enable Service Based Bypass experiments to be performed. EHOOKS also
allows run-time control of whether the original ECU process or the Service Point is executed. A
schematic representation of how Service Points work is shown in figure 3.14.

ETAS EHOOKS v5.3 | User Guide

28 | EHOOKS Overview

Figure 3.14: Service Based Bypass functionality

The Service Point can be used to send data to, and receive data from an external rapid
prototyping system before and after the original ECU function. Wait-points can also be
configured for the service point to allow for additional round-trip times to and from the RP
system, and the original ECU function can be configured to be either executed or skipped.

Configuration of the Service Point properties must be performed from within INTECRIO or
ASCET RP (service point configuration cannot be performed by EHOOKS). Please refer to the
INTECRIO or ASCET RP user manual for details of how to do this.

NOTICE
EHOOKS provides support for SBB V2.0, V2.1, V3.0 and V3.1

NOTICE
Some types of ECU do not provide support for SBB. You should check with your ECU
supplier that SBB is supported before attempting to implement SBB with EHOOKS

ETAS EHOOKS v5.3 | User Guide

29 | EHOOKS-PREP Dependencies

4 EHOOKS-PREP Dependencies

As seen in figure 3.1 (see section 3.1 EHOOKS Workflow), the first step in using EHOOKS is to
receive an EHOOKS-prepared ECU software delivery. The functionality available with
EHOOKS-DEV is somewhat determined by this preparation step. The following features of
EHOOKS-DEV are controlled or influenced by the specifics of the EHOOKS preparation steps:

• Variable Hooks

The variables EHOOKS-DEV can hook within the ECU are determined as part of the ECU
preparation. Each hook-type and hook-property can be used freely with all variables that
have been allowed for EHOOKS hooking during the ECU preparation.

Access to additional variables for hooking can only be achieved by asking the ECU
software provider to allow access and deliver a new EHOOKS-prepared ECU A2L file.

• Function Bypass Hooks (Process Hooks)

The ECU processes that EHOOKS can hook are determined as part of the ECU
preparation. During this ECU preparation the ECU software provider can control whether
an ECU process can be hooked and whether the ECU process should be visible within the
EHOOKS-DEV GUI. If an ECU process can be hooked but is not made visible to the
EHOOKS-DEV GUI, you must know the full name of the ECU process to be able to add a
hook for it.

Access to additional ECU processes for hooking can only be achieved by asking the ECU
software provider to allow access and deliver a new EHOOKS-prepared ECU A2L file.

• External Bypass

As part of the ECU preparation process, the ECU supplier can optionally specify whether
it is possible for EHOOKS to create external bypass hooks.

Creation of external bypass hooks by EHOOKS is therefore only possible by asking your
ECU supplier to support this.

• Service Points

The ECU processes and Function Groups that EHOOKS can bypass with a Service Point
are determined as part of the ECU preparation. During this ECU preparation the ECU
software provider can control whether an ECU process/Function Group can be hooked for
this purpose and whether the ECU process/Function Group should be visible within the
EHOOKS-DEV GUI. If an ECU process/Function Group can be hooked but is not made
visible to the EHOOKS-DEV GUI, you must know its full name to be able to add a hook for
it.

Access to additional ECU processes/Function Groups for hooking can only be achieved by
asking the ECU software provider to allow access and deliver a new EHOOKS-prepared
ECU A2L file.

• Service Based Bypass over XCP

As part of the ECU preparation process, the ECU supplier can optionally specify whether
it is possible for EHOOKS to support external service based bypass over an XCP
connection. If this option is not specified then external service based bypass is only
possible over an ETK connection.

• Forced Writes

ETAS EHOOKS v5.3 | User Guide

30 | EHOOKS-PREP Dependencies

The ECU processes available within EHOOKS for forced writes are determined as part of
the ECU preparation. During this ECU preparation, the ECU software provider can control
whether an ECU process can be used and whether the ECU process should be visible
within the EHOOKS-DEV GUI. If an ECU process can be used but is not made visible to the
EHOOKS-DEV GUI, you must know the full name of the ECU process to be able to use it
as a process within which to force a write.

Access to additional ECU processes for forced writes can only be

achieved by asking the ECU software provider to allow access and deliver a new
EHOOKS prepared ECU A2L file.

• On-Target Bypass Code Bypass Containers

The ECU processes available within EHOOKS for calling on-target bypass code are
determined as part of the ECU preparation. During this ECU preparation, the ECU
software provider can control whether an ECU process can be used and whether the ECU
process should be visible within the EHOOKS-DEV GUI. If an ECU process can be used but
is not made visible to the EHOOKS-DEV GUI, you must know the full name of the ECU
process to be able to use it as a process within which to call on-target bypass code.

Access to additional ECU processes for calling on-target bypass code can only be
achieved by asking the ECU software provider to allow access and deliver a new
EHOOKS prepared ECU A2L file.

• Post dispatch of On-Target Bypass Code using Bypass Containers

During the ECU preparation process, the ECU supplier can specify bypass containers that
can be used to dispatch on-target bypass code after the execution of the bypass
container in addition to the default behavior which is to dispatch the on-target bypass
code before the bypass container.

• EHOOKS Memory Within ECU

The available ECU memory which may be used by EHOOKS when creating hooked ECU
software is determined as part of the ECU preparation. During each EHOOKS build, the
available, used and remaining EHOOKS memory space within the ECU will be reported.

Access to additional ECU memory for EHOOKS can only be achieved by asking the ECU
software provider to allocate more memory and deliver a new EHOOKS prepared ECU
A2L file (and, optionally, a new ECU HEX file).

Resource usage of EHOOKS can be reduced by reducing the configuration complexity –
reducing the number of hooked ECU variables and eliminating unnecessary indicator
variables, enablers, etc.

• Array Variables

Sometimes, variables implemented as arrays in the ECU software are described in the
A2L file as a number of scalar variables. In this case EHOOKS may not be able to
successfully hook the variables unless the ECU software provider provides additional
information in the EHOOKS preparation to indicate that these variables are actually part
of an array.

• On-Target Access to Scalar Characteristics

The ECU software provider must provide specific support to enable EHOOKS to make

ETAS EHOOKS v5.3 | User Guide

31 | EHOOKS-PREP Dependencies

existing scalar calibration characteristics available for use within on-target bypass
code/models. If such support is not included, EHOOKS-DEV will attempt to provide a
default implementation, but this may not work in the context of a specific ECU.

Change to this support can only be achieved by asking the ECU software provider to
provide such support and deliver a new EHOOKS-prepared ECU A2L file.

• Special Purpose RAM

Any ECU RAM areas that EHOOKS can use for special purposes (such as NVRAM) are
determined as part of the ECU preparation. During this ECU preparation the ECU
software provider can define which areas of RAM can be used for special purposes along
with associated regular expressions that can be used in EHOOKS-DEV to define which
variables are placed into the special purpose RAM areas.

Note: To allow the ASCET non-volatile flag feature to be used by EHOOKS, a special
purpose RAM section must be defined by the ECU supplier explicitly as an NVRAM
section as part of the ECU preparation.

Changes to the amount and type of special purpose RAM available for use by EHOOKS
can only be achieved by asking the ECU software provider to provide this and deliver a
new EHOOKS-prepared ECU A2L file.

• Binary hex/s19 file patching

As part of the ECU preparation process, the ECU software supplier can optionally define
additional data to be patched at a specified address into the hooked hex/s19 file when it
is built by EHOOKS-DEV. This information can be useful to help the EHOOKS-DEV user in
identification and management of hooked hex/s19 files.

The types of data that can be inserted into the hooked hex/s19 file in this way are:

– A byte with a specified hex value
– The date in YYYY-MM-DD format
– The day
– The month
– The year
– The time in HH:MM:SS format
– The hour
– The minute
– The second
– The EHOOKS-DEV user’s name
– The EHOOKS-DEV version
– A description field provided by the ECU software supplier
– The name of the EHOOKS-DEV configuration XML file
– The name of the input A2L file
– The name of the input binary hex/s19 file
– The name of the output A2L file
– The name of the output binary hex/s19 file
– The project description from the EHOOKS-DEV project

Patching any of the above data into the hooked hex/s19 file can only be achieved by
asking the ECU software provider to enable this and deliver a new EHOOKS-prepared
ECU A2L file

• Save Password option

ETAS EHOOKS v5.3 | User Guide

32 | EHOOKS-PREP Dependencies

During the ECU preparation process, the ECU supplier can permanently disable the ‘Save
Password’ option in the EHOOKS-DEV user interface. If this option is disabled, it is not
possible for an EHOOKS-DEV user to save the a2l file’s password in the EHOOKS project
configuration file, and they must therefore manually enter the password every time a
project using the a2l file is loaded.

This feature can only be achieved by asking the ECU software provider to provide such
support and deliver a new EHOOKS-prepared ECU A2L file.

• Additional A2L information

During the ECU SW preparation process, the ECU supplier has the option to insert a
comment in the A2L file produced by the EHOOKS-PREP tool. When this option is set, it
will also cause a comment to be inserted into the A2L file created by EHOOKS-DEV.
EHOOKS-DEV will then insert information into the A2L file about the time and date of the
EHOOKS-DEV run, any variables which have been hooked, any On-Target Bypass
functions and any service points along with the description entered into the
EHOOKS-DEV front-end tool. This functionality is provided such that A2L files are easily
identifiable by having the EHOOKS information near the top of the file.

This feature can only be achieved by asking the ECU software provider to provide such
support and deliver a new EHOOKS-prepared ECU A2L file.

• ECU Function Calling

During the ECU SWpreparation process, a list of available ECU functions that can be
called from a Simulink or ASCET model is defined by the ECU software supplier as part of
the EHOOKS preparation process. Calling ECU functions from a Simulink or ASCET model
can only be achieved by asking the ECU software provider to enable this functionality
during the preparation of the ECU SW for use with EHOOKS.

This feature can only be achieved by asking the ECU software provider to provide such
support and deliver a new EHOOKS-prepared ECU A2L file.

• EPK Patching

During the ECU SW preparation process, the ECU supplier can specify if, and how, the
EPK information should be patched when an EHOOKS-DEV build is performed. If
specified, matching information will be patched into both the hooked a2l and hex files.
This patched information can then be used to easily identify matching a2l and hex files
that are loaded into INCA.

This feature can only be achieved by asking the ECU software provider to provide such
support and deliver a new EHOOKS-prepared ECU A2L file.

• Embedded Build Scripts

During the ECU SW preparation process, the ECU software supplier can optionally embed
build scripts into the A2L file. These scripts can later be run by the EHOOKS-DEV user to
perform pre-build and/or post-build actions. This feature can only be achieved by asking
the ECU software provider to provide such support and deliver a new EHOOKS-prepared
ECU A2L file.

ETAS EHOOKS v5.3 | User Guide

33 | Configuring EHOOKS-DEV

5 Configuring EHOOKS-DEV

The EHOOKS-DEV Front-End is a graphical configuration tool that makes adding hooks into the
ECU software as simple as selecting some variables from a list and pressing the build button.

Figure 5.1: EHOOKS-DEV Front-End

When the EHOOKS-DEV Front-End is initially launched it will be started with a new empty
EHOOKS-DEV project configuration. The project configuration can be saved by selecting File
-> Save and selecting a location and file name for the project configuration. A new project can
be created at any time by selecting File -> New. An existing project can be reloaded by
selecting File -> Open.

The EHOOKS-DEV Front-End has a tabbed user interface. The tabs give a typical workflow
through the EHOOKS-DEV configuration process:

• General Settings

Allows the basic EHOOKS-DEV project settings to be configured, such as the input ECU
HEX and A2L files, project-wide default settings and general project information.

• Variable Bypass

Allows the selection of ECU variables that are to be hooked by EHOOKS-DEV and allows
the setting of the hook properties.

• Function Bypass

Allows the selection of ECU functions (or processes) that will be hooked by EHOOKS-DEV.

• On-Target Bypass

ETAS EHOOKS v5.3 | User Guide

34 | Configuring EHOOKS-DEV

Allows the creation and configuration of on-target bypass functions.

NOTICE
If ASCET or Simulink are used to create the on-target bypass function, then the
ASCET-SE EHOOKS Target or the EHOOKS-DEV Simulink Integration package are
used to create the on-target bypass function. In these cases the on-target bypass
function should not be configured directly within the EHOOKS-DEV Front-End, but
rather within the ASCET-SE EHOOKS Target or the EHOOKS-DEV Simulink Integra-
tion package.

For details of using ASCET for on-target bypass with EHOOKS, please refer to
the ASCET-SE EHOOKS Add-on User Guide for full details (this can be found
in the ASCET installation directory within the folder <ASCET INSTALL DIREC-
TORY>\target\trg_ehooks\documents).

For details of using Simulink for on-target bypass with EHOOKS, please see section
10 Creating and Working with On-Target Bypass from Simulink.

• Service Points

Allows the creation of service points in the ECU software for external bypass experiments

• Groups

Allows the creation of groups of hooks which can then be enabled and disabled together
at run-time.

• Build

Allows the build options to be configured.

The EHOOKS-DEV Front-End creates an EHOOKS configuration file (with the extension .ehcfg)
which is a standardized XML file. For details of the XML configuration file format for
EHOOKs-DEV please see section 11.7.1 EHOOKS-DEV Project Configuration File.

5.1 General Settings Tab

Various general project-wide settings can be configured from within the General Settings tab
of the EHOOKS-DEV Front-End. This tab is divided into four sections – A2L, ECU Image, Project
Settings and Project Information.

5.1.1 A2L Section

The A2L section allows the input and output A2L files to be used by EHOOKS-DEV to be
configured. Clicking on the Browse button brings up a standard file-selection dialog allowing
selection of A2L files.

Figure 5.2: Input and Output A2L Files

The input (and output) A2L files can also be quickly configured by dragging and dropping from
Windows Explorer. The input A2L file must include the additional EHOOKS information

ETAS EHOOKS v5.3 | User Guide

35 | Configuring EHOOKS-DEV

included by the ECU software provider when they prepared the ECU software for use with
EHOOKS (see section 3.1.1 Step 1: EHOOKS Prepared ECU Software). This additional EHOOKS
information will typically be embedded inside the A2L file. However, the ECU software
provider may optionally provide this information in a separate EHOOKS ECU internals file.
EHOOKS-DEV will prompt for a password when importing the EHOOKS information – this
password should be obtained from the ECU software provider.

NOTICE
Where the EHOOKS information is provided in a separate EHOOKS ECU internals file
this will have an extension .ECUINTERNALS. To allow EHOOKS-DEV to load the A2L
file and its associated ECU internals file it is necessary that both the A2L file and the
ECU internals file have identical file names and that only the file extensions differ.

If the small drop-arrow on the browse button is selected, a pop-up menu allows the selection
of whether the A2L files are specified via absolute path (which is the default behaviour of the
browse button) or a relative path (relative to the saved EHOOKS project configuration file or,
if specified, the --base-dir command-line option to EHOOKS-DEV command-line tools). See
figure 5.3.

Figure 5.3: Absolute and Relative Path Specification

Selecting to configure the A2L files via a relative path brings up the dialog shown in figure 5.4.
The relative path can be configured using '.' to refer to the current directory and '..' to
refer to the parent directory. As the relative path is entered, EHOOKS will automatically
complete it based on the file names available within the file system.

NOTICE
Before the Choose relative path… command can be selected, the project configu-
ration must first be saved. If the option is disabled, check that the project has been
saved.

Figure 5.4: Adding an A2L file via a Relative Path

To provide help with the management of multiple generated files, EHOOKS provides three

ETAS EHOOKS v5.3 | User Guide

36 | Configuring EHOOKS-DEV

macros, $INPUT$, $DATE$ and $TIME$, that can be inserted into the output filenames using
both the relative or absolute path dialogs. When these macros are used, $INPUT$ is replaced
by the input filename, $DATE$ is replaced by the current date in YYYYMMDD format, and
similarly $TIME$ is replaced by the current time in HHMMSS format. The example shown in
figure 5.4 would therefore result in an output filename that looks like
inputfilename_hooked_YYYYMMDD_HHMMSS.a2l. The three macros can be inserted at any
position in the filename to provide maximum flexibility with file naming conventions.

When the check-box Save Password in Project is checked, the EHOOKS A2L password is
stored in the EHOOKS-DEV project configuration file and will not need to be re-entered when
the EHOOKS-DEV project configuration file is re-loaded. If the password is not saved in the
EHOOKS-DEV project configuration file, then it is necessary to provide the EHOOKS A2L file
password as a command-line option when using EHOOKS-DEV from the command line. See
section 11.1 EHOOKS-DEV Command Line Usage, for details. When Save Password in
Project is unchecked, the password is encrypted and stored locally on the PC, and the same
user will not need to re-enter the password for the same project on the same PC.

5.1.2 ECU Image

The ECU Image section allows the input and output ECU HEX files to be used by EHOOKS-DEV
to be configured. Clicking on the “Browse” button brings up a standard file-selection dialog
allowing selection of ECU Hex files.

Figure 5.5: Input and Output HEX files

The input (and output) ECU hex files can also be quickly configured by dragging and dropping
from Windows explorer. Relative paths can be configured for the ECU image in exactly the
same way as described in the previous section for A2L files, and the $INPUT$, $DATE$ and
$TIME$ macros can also be used to customize the output .hex filenames.

5.1.3 Project Settings

The Project Settings section allows a number of project-wide default options to be configured
along with the associated names/naming prefixes:

Figure 5.6: Default Project Settings

• Licensing Mode

This determines whether EHOOKS will generate ECU software that requires the usage of
EHOOKS-CAL or EHOOKS-BYP to work with the EHOOKS-created hooks. If Locked Hooks
mode is selected then the use of EHOOKS-CAL or EHOOKS-BYP is necessary in order to
be able to use the hooks placed into the ECU software. If Open Hooks mode is selected
then the hooked ECU software can be used independently of EHOOKS-CAL and
EHOOKS-BYP. For more details see section 6 Working with Hooked ECU Software in INCA.

ETAS EHOOKS v5.3 | User Guide

37 | Configuring EHOOKS-DEV

NOTICE
A special licence is required to be able to work with Open Hooks. Please contact your
local ETAS sales region (see section [ETAS Contact Addresses]) for details.

• Create Backup Copies by Default

If selected, EHOOKS-DEV will by default create backup measurement copies (see section
6.3 Backup Measurement Copies) of all hooked ECU variables, unless specifically
overridden in the hook configuration. The value of the project default for Create Backup
Copies will be displayed in the Variable Bypass Tab

• Create Safety Checks by Default

If selected, EHOOKS-DEV will by default insert additional safety check code (see section
6.4 Safety Checks) for all ECU variable hooks, unless specifically overridden in the hook
configuration.

• Create Global Enabler

If selected, EHOOKS-DEV will create a global hook enabler (see section 3.2.2.1 Hook
Enablers). The initial value of the global hook enabler is set to disabled by default, which
will cause all hooks to be turned off at ECU startup. The initial value of the global hook
enabler can be changed to enabled from the Project Settings section, which will allow
hooks to be turned on at ECU startup.

• Create Global Indicator

If selected, EHOOKS-DEV will create a global indicator measurement (see section 3.2.2.2
Indicators).

5.1.4 Project Information

The Project Information section allows a project version and description to be recorded in the
EHOOKS-DEV configuration file. This information is not processed by EHOOKS-DEV in any way;
it is simply stored in the EHOOKS-DEV configuration file. This may be useful for configuration
management of projects or some other purpose.

Figure 5.7: Project Information

When the General Settings tab is selected and an input A2L file containing EHOOKS
information is loaded, the EHOOKS-DEV property browser will show some basic information
about the EHOOKS preparation performed by the ECU software provider. This includes:

• ECU Info Contains any message/documentation provided by the ECU software

ETAS EHOOKS v5.3 | User Guide

38 | Configuring EHOOKS-DEV

developer about the EHOOKS preparation as a string. If the string is long then it is
possible to cut-and-paste the text into another application to make it easier to read.

• EHOOKS-PREP Version The version number of EHOOKS-PREP used to prepare the ECU
software for use by EHOOKS-DEV.

EPK address and string

If the A2L file contains an EPK string, the address and value of the string are displayed.
EHOOKS uses the EPK string information in 2 ways. Firstly, it will raise a warning message if
a2l and hex files are loaded into EHOOKS for which the EPK strings do not match. Secondly,
when merging DCM/hex/s-record files, EHOOKS uses the EPK string for consistency checking
as described in section 5.8.1 Configuring Build Source Files.

• Reserved Memory:

– Calibration parameters: The amount of free memory reserved in the prepared
ECU software for calibration parameters created by EHOOKS.

– Code: The amount of free memory reserved in the prepared ECU software for code
created by EHOOKS and used for on-target bypass.

– Constant Data: The amount of free memory reserved in the prepared ECU
software for constant data created by EHOOKS and used for on-target bypass.

– Code/Constant Data: The amount of free memory reserved in the prepared ECU
software for code and/or constant data created by EHOOKS and used for on-target
bypass.

– RAM: The amount of free memory reserved in the prepared ECU software for (RAM)
variables created by EHOOKS and used for on-target bypass.

• Target:

– Back-end

Gives the path to the EHOOKS-DEV Back-End installation that will be used to
process the configuration.

– Name

Gives the name of the EHOOKS-DEV Back-End ECU Port being used with the
configuration.

NOTICE
The target information is determined automatically from the loaded input A2L file
and cannot be changed.

5.2 Variable Bypass Tab

Using the Variable Bypass Tab, ECU variables can be selected to be hooked and the hook
configuration properties can be set. This section details how to set the configuration options.
For details on the functionality of each of the configuration items please see section
EHOOKS-DEV Features, and for details on how to work with hooked ECU software created with
the various configuration options please see section 6 Working with Hooked ECU Software in
INCA.

ETAS EHOOKS v5.3 | User Guide

39 | Configuring EHOOKS-DEV

Figure 5.8: EHOOKS-Prepared ECU Properties shown in the General Settings Tab

The interface for adding and configuring an ECU variable hook follows a simple three step
workflow.

How to add and configure an ECU variable hook

• Step 1: Select the ECU variable to be hooked (see red highlight in figure 5.9). Selecting
an ECU variable to hook will cause EHOOKS-DEV to add it to the list in step 2.

• Step 2: Provides a list of ECU variables selected to be hooked within the EHOOKS-DEV
project configuration (see blue highlight in figure 5.9). Selecting a hooked variable (or
several hooked variables) from this list allows the associated hook properties to be
configured in step 3. To remove a variable hook from the configuration simply select it
and press the Delete key or right-click -> Delete.

• Step 3: Configure the properties to provide the desired ECU variable hook information
for the selected ECU variable hooks (see green highlight in figure 5.9)

5.2.1 Selecting Variables to Be Hooked

The Variable Bypass Tab provides two ways to add an ECU variable to the list of hooked
variables: a variable section dialog and a quick-add field.

Selecting the Variable Selection… button will display a new variable selection dialog (figure
5.10). The left-hand column allows the displayed variable list to be filtered by the A2L file
function groups (including filtering by the input, output and local measurements to a
function). To quickly move to the desired function group, click on an entry in the function
group list to move focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into

ETAS EHOOKS v5.3 | User Guide

40 | Configuring EHOOKS-DEV

Figure 5.9: Variable Bypass Configuration

the text box. The filter string can include the wildcard characters ? and *. ? will match any
single character and * will match any number of characters. Note that the filter string contains
an implicit * wildcard at the end of the string. The character $ can be used to match the end
of a variable name. As the filter string is updated, the variable list will dynamically update to
show any matching ECU variables that can be hooked.

The right-hand column shows the ECU variables that have been selected for hooking. ECU
variables can be moved in and out of this list using the >> and << buttons, or by pressing
Ctrl+right-arrow and Ctrl+left-arrow, respectively. Additionally, double clicking on an entry in
either list will move it to the other list. If an array variable has been selected for hooking then
the elements of the array to be hooked can be configured by clicking on the … button, the
number of hooked elements is then shown in the right-hand column. Multiple elements can
also be quickly selected or deselected by using either Shift+click to select a block of variables
or array elements or Ctrl+click to select multiple individual variables.

The Show Display Identifiers check box allows the list of variable names to be changed to
show the DISPLAY_IDENTIFIER fields from the A2L file.

The variable selection dialog (figure 5.10) also supports the Export and Import of lists of
variables to be hooked. This feature is useful for either reusing a list of hooked variables in
more than one EHOOKS project, or for exporting lists of hooked variables to an INCA
experiment. Clicking on the Export button brings up a new Windows Explorer dialog that
allows the currently selected list of variables to be exported to an EHOOKS-DEV Measurement
(*.mst) file or to a *.lab file as used by INCA. Clicking the Import allows an existing *.mst or
*.lab file to be imported. The variables listed in the imported file will then be added to the
selected variables list in the variable selection dialog. A warning message will be displayed in
the EHOOKS-DEV Log if any of the variables imported from the file are not available for
hooking in loaded A2L file.

ETAS EHOOKS v5.3 | User Guide

41 | Configuring EHOOKS-DEV

Figure 5.10: Variable Selection Dialog

The quick-add field allows you to directly enter the name of an ECU variable. EHOOKS-DEV will
immediately offer auto-completion suggestions from the list of available ECU variables. Once
the desired ECU variable has been selected, clicking the Add button (or pressing Enter) will
move the variable into the list of ECU variables selected for hooking.

Figure 5.11: ”Quick Add” A Variable Hook By Name

5.2.1.1 Viewing Write-Points for Variables

If your ECU software supplier has configured the A2L file to allow EHOOKS-DEV to show the
write-points in the software for each variable, an additional view will be present in the variable
bypass tab (figure 5.12).

This view will show, for each variable highlighted in the variable list, the points in the ECU
software where that variable is written. Each write-point will show the name of the OS process
writing to the variable (even if the write is actually performed by a sub-function).

ETAS EHOOKS v5.3 | User Guide

42 | Configuring EHOOKS-DEV

Figure 5.12: Table showing variable write-points

You can view extra information about each write-point via the two checkboxes:

• "Display Service Points" will show the name of the service-point (if present)
corresponding to each ECU process. This allows you to select that service-point in other
tools such as INTECRIO.

• "Display Copies" will show the name of the message-copy variable written by the ECU
process (if the write is not directly to the A2L measurement)

Text in each field can be copied to the clipboard for use elsewhere.

5.2.2 Configuring Properties of a Variable Hook

Once some ECU variables have been selected for hooking, they will appear in the hooked
variable list within the Variable Bypass tab. Selecting a variable (or many variables) from
within the hooked variable list allows its (their) properties to be configured on the right-hand
side. For full details on the hook properties see section 3.2.1 EHOOKS-DEV Hook Types and
section 3.2.2 EHOOKS-DEV Hook Configuration Properties.

NOTICE
The hooked variable list is actually two lists that can be viewed independently us-
ing the tab control at the bottom of the grid view control. The EHOOKS-DEV list
contains a list of the ECU variables that have been selected for hooking and config-
ured within the EHOOKS-DEV tool itself. The Modeling Tool list contains a list of
the ECU variables that have been selected for hooking by an external modeling tool
(such as ASCET or Simulink). The list of variables in the Modeling Tool list cannot
be changed directly within the EHOOKS-DEV user interface; the EHOOKS configura-
tion environment of the modeling tool should be used to achieve this. However, the
configuration properties for these variable hooks can and should be set within the
EHOOKS-DEV user interface.

NOTICE
When a variable is selected the property pane displays information about the vari-
able from the loaded A2L file.

The Hook Type dropdown allows the type of hook to be configured. Once the hook type is

ETAS EHOOKS v5.3 | User Guide

43 | Configuring EHOOKS-DEV

Figure 5.13: Setting Variable Hook Properties

configured the corresponding Source section should be defined. The hook type can be:

• Constant bypass

The hooked ECU variable will be bypassed by the fixed constant value configured in the
Constant Bypass Source section.

• Calibration bypass

The hooked ECU variable will be bypassed by the current value of the newly created
calibration characteristic defined in the Calibration Bypass Source section. This
effectively allows calibration control over any ECU variables (measurements) that can be
hooked with EHOOKS. In addition to defining the name of the newly created calibration
characteristic to be used to bypass the hooked ECU variable, the initial value for this
characteristic is configured. EHOOKS-DEV places this value into the calibration reference
page of the generated hooked ECU software.

ETAS EHOOKS v5.3 | User Guide

44 | Configuring EHOOKS-DEV

• External bypass

The hooked ECU variable will be bypassed by a value calculated on external
rapid-prototyping hardware. EHOOKS-DEV will add the necessary information to the
hooked ECU A2L file so that when it is loaded into an external rapid prototyping tool
(e.g. INTECRIO or ASCET-RP), the ECU variable can be set up for external bypass. For an
external bypass hook, no information needs to be configured in the External Bypass
Source section. This section will provide a read-only display of the A2L name of the
externally bypassed variable.

NOTICE
If the ECU software prepared for EHOOKS by the ECU supplier does not support
External Bypass then the External Bypass hook type will be greyed-out and cannot
be selected.

• On-target bypass

The hooked ECU variable will be replaced by a newly provided function as defined in the
On-Target Bypass Tab. For an on-target bypass hook, no information needs to be
configured in the On-Target Bypass Source section, as this information is configured
within the On-Target Bypass Tab (see section 5.4 On-Target Bypass Tab). This section
will display a read-only display of the on-target bypass functions that are configured to
write to the hooked ECU variable.

ETAS EHOOKS v5.3 | User Guide

45 | Configuring EHOOKS-DEV

NOTICE
If the on-target bypass is being configured using ASCET or Simulink, the hook should
not be added to the variable bypass tab manually. ASCET or Simulink should be used
to add the corresponding hooks and configuration directly (see section 10 Creating
and Working with On-Target Bypass from Simulink or the ASCET-SE EHOOKS Add-
on User Guide for full details – this can be found in the ASCET installation directory
within the folder <ASCET INSTALL DIRECTORY>\target\trg_ehooks\documents).
These hooks will appear within the Variable Bypass Tab under the Modeling Tool
list available at the bottom of the hooked variable list.

• No-Operation bypass

The hooked ECU variable will not be written to when No-operation bypass is configured.
When the No-operation hook is enabled, all writes to the hooked variable from the ECU
software are replaced with a No-operation instruction.

The Hook Mode drop down allows the way in which the bypass value is used by the hook to

be configured. The Hook Mode can be:

• Replacement Bypass

The configured bypass value will be used by the hook to completely replace (overwrite)
the ECU calculation for the hooked ECU variable.

• Offset Bypass

The configured bypass value will be added or subtracted to the ECU calculation for the
hooked ECU variable.

• Multiply Bypass

The configured bypass value will be multiplied with the ECU calculation for the hooked
ECU variable.

The Create Backup Copy drop down allows the configuration of whether EHOOKS will create
new ECU measurement variables to record a copy of the ECU calculation for the hooked ECU
variables. The drop down allows the selection from three options:

• Project Default

The creation of the backup copy ECU measurements will be determined based on the

ETAS EHOOKS v5.3 | User Guide

46 | Configuring EHOOKS-DEV

project-wide setting configured on the General Settings Tab (see section 5.1.3 Project
Settings). The Project Default value is displayed by the grey icon.

• Yes

This means EHOOKS will create a new measurement variable and keep it up to date with
the most recent ECU calculation for the hooked ECU variable.

• No

This means EHOOKS will not create a backup copy measurement.

The Create Safety Check drop down allows the configuration of whether EHOOKS will add
additional run-time code to monitor the run-time performance of the hook. This code will
determine if the hook is running correctly and, if not, will disable the hook and indicate that an
error has been detected. The drop down allows the section from three options:

• Project Defaults

The addition of safety-checking code will be determined based on the project wide
setting configured on the General Settings Tab (see section 5.1.3 Project Settings). This
makes it quick and easy to change the setting for all the hooks together.

• Yes

This means EHOOKS will create safety checking code for the hooked ECU variable to
monitor its performance at run-time.

• No

This means EHOOKS will not monitor the performance of the hooked ECU variable at
run-time.

The Enabler settings allow the configuration of whether EHOOKS will add a calibration
characteristic that can then be used at run-time to control whether the hook is activated or
not. To configure an enabler, the checkbox must be ticked and then the name of the enabler
calibration characteristic can be set in the text field. The initial value of the hook enabler is
set to disabled by default, which causes the hook to be turned off at ECU startup. The initial
value of the hook enabler can be changed to enabled, which will cause the hook to be turned
on at ECU startup.

If an enabler is configured, it is also possible to configure an indicator. The Indicator setting
allows the configuration of whether EHOOKS will add a measurement variable that will mirror
the current value of the enabler characteristic at run-time. To configure an indicator, the
checkbox must be ticked and then the name of the indicator measurement variable can be set
in the text field.

A hook control variable can also be added to the configuration by ticking the Create checkbox
in the relevant section and setting the name to be used for the control variable. The Initial
State of the hook control variable is set to disabled by default, which causes the hook to be
turned off at ECU startup. The Initial State of the hook control variable can be changed to
enabled, which will cause the hook to be turned on at ECU startup. The hook control variable

ETAS EHOOKS v5.3 | User Guide

47 | Configuring EHOOKS-DEV

Figure 5.14: Configuring Variable Bypass Enabler, Indicator, Hook Control Variables and Forced
write

can also be configured to allow it to be updated from bypass software running on external
rapid prototyping hardware by ticking the Visible to RP checkbox.

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target or external bypass function. Therefore the
configured name should be a valid C identifier. However, EHOOKS will automatically
convert the name into a valid C identifier if the name isn’t a valid C identifier. This
is done by converting any characters that aren’t allowed in a C identifier into double
underscores (__). For example, a variable name of AccPed_stNSetP.control will
be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted to
cyl_pres__2__.

The converted C name will need to be used in any on-target or external bypass
function that manages a control variable at run-time.

The Common Forced Write box displays a read-only list of the configured ECU processes in
which an update of the bypass value for the hooked ECU variable will be performed. The set of
write locations can be updated by clicking the Edit button. This will display the Select
Forced Write Locations dialog. In the left column a list of the available ECU processes is
displayed. EHOOKS can be configured to force the update of the bypass value in one or more
of these processes by moving them into the right column: select them and use the >> button.
To remove a forced write location from the configuration, select it and click the << button. The
dialog offers a filter to help locate the desired ECU process; this behaves in the same way as
variable selection (see section 5.2.1 Selecting Variables to Be Hooked).

The Elevated Permissions checkbox allows the hook to be written with elevated memory
access permissions to bypass memory protection. The advanced project option for Elevated
Permissions must be first enabled (see section 11.5.4 Enable Elevated Permissions).

In some situations the ECU software provider may have prepared some ECU processes to
allow their use as forced write locations, but indicated that their names should not be

ETAS EHOOKS v5.3 | User Guide

48 | Configuring EHOOKS-DEV

Figure 5.15: Selecting Forced Write Locations

displayed in the EHOOKS-DEV user interface. In this case, such forced write locations can be
added to the configuration by typing their name into the Manual Add text field and clicking
the Add button.

The Inline Forced Write check box allows the configuration of a forced write that EHOOKS
will automatically insert at the start of every ECU process where the hooked ECU variable is
updated within the original ECU software.

5.2.3 Multi-Select Operation

It is possible to select more than one hooked variable; this allows all the selected hooks’
properties to be updated together. For properties that are the same for all selected hooks, the
EHOOKS-DEV configuration tool will display the configured property. For properties that differ
between the selected hooks, the EHOOKS-DEV configuration tool will display a blank selection.
A special feature is available for the enabler, indicator and control variable names: if the
naming convention is consistent for the selected hooks then the macro <name> is used to
represent the name of the hooked A2L variable. It is possible to use the <name> macro when
updating the desired enabler or indicator names and the EHOOKS-DEV configuration tool will
automatically replace this with the A2L name of each hooked variable.

When multiple hooks are selected, changing a hook property will immediately apply the
change to all selected hooks.

NOTICE
EHOOKS-DEV provides full undo-redo support which can be very helpful if the use of
the multi-select feature has accidentally caused an undesirable change of a property
for a large number of hooks.

ETAS EHOOKS v5.3 | User Guide

49 | Configuring EHOOKS-DEV

Figure 5.16: Setting Configuration Items for Multiple Hooks

NOTICE
It is possible to edit the forced write location when multiple hooks are selected. In
this case, if the selected variables have different forced write locations configured
then a dialog will prompt whether the existing configuration should be discarded for
all the selected variables and replaced with the new configuration.

5.2.4 Copy and Paste

EHOOKS-DEV supports copy-and-paste functionality that allows hooks to be copied between
separate instances of the user interface. This is particularly useful when parts of an existing
EHOOKS project configuration are to be reused in another new or modified EHOOKS project.

To use this feature two instances of the EHOOKS-DEV user interface must be open at the same
time. The first instance (Project 1) must contain the EHOOKS configuration information to be
copied from. The second instance (Project 2) will contain the EHOOKS project to be pasted
into, and must use the same input hex and a2l files (defined in the General Settings tab) as
Project 1.

From the Variable Selection tab of the Project 1, one or more hooked variables can be copied
by selecting those variables in the Hooked variables pane and copying them in the usual way.
These hooked variables can then pasted into Project 2 by clicking in the Hooked variables
pane of the Variable bypass tab in the second EHOOKS-DEV instance and pasting in the usual
way. Using this method the hooked variables and all of their existing configuration properties
from Project 1 are copied into Project 2.

Copy-and-paste functionality is also supported in the Function Bypass, On-target Bypass,
Service Points and Group tabs described in the following sections.

ETAS EHOOKS v5.3 | User Guide

50 | Configuring EHOOKS-DEV

5.3 Function Bypass Tab

Using the Function Bypass tab, existing ECU functions can be selected to be bypassed and the
associated configuration properties can be set. This section details how to set the
configuration options; for details on the functionality of each of the configuration items please
see section EHOOKS-DEV Features, and for details on how to work with hooked ECU software
created with the various configuration options please see section 6 Working with Hooked ECU
Software in INCA.

Clicking the Function Selection… button displays an ECU process selection dialog. In the
left-hand column is a list of the ECU processes that can be bypassed (i.e. prevented from
executing). In the right hand column is a list of ECU processes that have been configured for
bypass. ECU processes can be moved between the two columns using the buttons >> and <<,
or by pressing Ctrl+right-arrow and Ctrl+left-arrow. Additionally, double clicking on an entry
in either list will move it to the other list.

Figure 5.17: Configuring Functions to Bypass

The dialog offers a filter to help locate the desired ECU process; this behaves in the same way
as variable selection (see section Selecting Variables to Be Hooked).

In some situations, the ECU software provider may have prepared some ECU processes to
allow them to be bypassed, but indicated that their names should not be displayed in the
EHOOKS-DEV user interface. In this case, such functions can be bypassed by typing their
name into the Manual Add text field and clicking the Add button.

The Properties section of the tab allows the Function bypass to be configured. Firstly, the type
of the function bypass can be specified as either Dynamic Function Bypass or Static Function
Bypass as shown in figure 5.18.

Choosing Dynamic Function Bypass from the Type drop-down menu allows Enablers,
Indicators and Control Variables to be configured for the function bypass. The Enabler
settings allow the configuration of whether EHOOKS will add a calibration characteristic that
can be used at run-time to control whether or not the hook is activated. To configure an
enabler, the checkbox must be ticked and then the name of the enabler calibration

ETAS EHOOKS v5.3 | User Guide

51 | Configuring EHOOKS-DEV

Figure 5.18: Properties configuration showing Function Bypass type dropdown menu

characteristic can be set in the text field. The initial state of the enabler is set to disabled by
default, which causes the function bypass hook to be turned off at ECU startup. The initial
state of the enabler can be changed to enabled, which allows the function bypass hook to be
turned on at ECU startup.

If an enabler is configured then it is also possible to configure an indicator. The Indicator
setting allows the configuration of whether EHOOKS will add a measurement variable that will
mirror the current value of the enabler characteristic at run-time. To configure an indicator,
the checkbox must be ticked and then the name of the indicator measurement variable can
be set in the text field.

A hook control variable can also be added to the configuration by ticking the Create checkbox
in the relevant section and setting the name to be used for the control variable. The initial
value of the hook control variable is set to disabled by default, which causes the Dynamic
function bypass to be turned off at ECU startup. The initial value of the hook control variable
can be changed to enabled, which will cause the Dynamic function bypass to be turned on at
ECU startup. The hook control variable can also be configured to allow it to be updated from
bypass software running on external rapid prototyping hardware by ticking the Visible to RP
checkbox.

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target or external bypass function. Therefore the
configured name should be a valid C identifier. However, EHOOKS will automatically
convert the name into a valid C identifier if the name isn’t a valid C identifier. This
is done by converting any characters that aren’t allowed in a C identifier into double
underscores (__). For example, a variable name of AccPed_stNSetP.control will
be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted to
cyl_pres__2__.

The converted C name will need to be used in any on-target or external bypass
function that manages a control variable at run-time.

If the bypass type is configured to be Static Function Bypass, then the original function being
bypassed can never execute, and it is therefore not possible to configure enablers, indicators

ETAS EHOOKS v5.3 | User Guide

52 | Configuring EHOOKS-DEV

or control variables. When Static Function Bypass is chosen, EHOOKS will re-use the Flash
occupied by the original process being bypassed if possible. This can therefore be a useful
option for on-target bypass systems where the ECU ROM resources are limited.

NOTICE
If the ECU software prepared for EHOOKS by the ECU supplier does not support
Function Bypass then the Function Bypass tab will be greyed-out and cannot be
used.

NOTICE
The re-use of ECU flash resources for Statically bypassed functions is not supported
for all ECU types. In this case the Static Bypass option will be greyed out and cannot
be used. You should check support for this feature with your ECU supplier.

5.4 On-Target Bypass Tab

Using the on-target bypass tab, new software functions can be defined and configured that
EHOOKS will integrate into the hooked ECU software. These on-target bypass software
functions would typically be used to calculate bypass values for hooked ECU variables, but
they can also perform other functions, such as managing hook control variables (see sections
3.2.2 EHOOKS-DEV Hook Configuration Properties - Control variables and 5.2.2 Configuring
Properties of a Variable Hook).

NOTICE
If the on-target bypass is being configured using ASCET or Simulink, the on-target
bypass function cannot be added to the on-target bypass tab manually. ASCET
or Simulink should be used to directly add the corresponding hooks and configu-
ration (see section 10 Creating and Working with On-Target Bypass from Simulink
or the ASCET-SE EHOOKS Add-on User Guide for full details – this can be found
in the ASCET installation directory within the folder <ASCET INSTALL DIREC-
TORY>\target\trg_ehooks\documents). These on-target bypass functions will ap-
pear within the On-Target Bypass tab under theModeling Tool list available at the
bottom of the on-target bypass list.

The interface for adding and configuring an on-target bypass function follows a simple three
step workflow.

How to Add and Configure an On-Target Bypass Function

• Step 1: Add an on-target bypass function (see red highlight in figure 5.19). The name
must match the name of the C function provided to implement the on-target bypass
function. The C file(s) which provide the implementation of the on-target bypass function
must be added to the information on the Build tab (see section 5.8 Build Tab). Once
added, the on-target bypass function will appear in the list in step 2.

• Step 2: Provides a list of the on-target bypass functions that have been added to the
configuration (see blue highlight in figure 5.19). Selecting one from this list allows the
associated configuration properties to be set in step 3. To remove an on-target bypass
function from the configuration, simply select it and press the Delete key or right-click
-> Delete. To rename an existing on-target bypass function, first select the row in the

ETAS EHOOKS v5.3 | User Guide

Figure 5.19: On-Target Bypass Configuration

54 | Configuring EHOOKS-DEV

list containing the on-target bypass function and then click a second time on the name.
The name field within the list grid view will then become editable. To change the
properties of an on-target bypass function, simply select it in the list and then proceed
with step 3.

• Step 3: Configure the properties to provide the desired on-target bypass configuration
for the selected on-target bypass function (see green highlight in figure 5.19).

5.4.1 Configuring Properties of an On-Target Bypass Function

Once an on-target bypass function has been added, it will appear within the list of on-target
bypass functions on the On-Target Bypass tab. Selecting an on-target bypass function (or
many on-target bypass functions) from within the on-target bypass list allows its (their)
properties to be configured on the right-hand side.

NOTICE
The on-target bypass list is actually two lists that can be viewed independently us-
ing the tab control at the bottom of the grid view control. The EHOOKS-DEV list
contains a list of the on-target bypass functions that have been created and config-
ured within the EHOOKS-DEV tool itself. The Modeling Tool list contains a list of
the on-target bypass functions that have been created and configured by an exter-
nal modeling tool (such as ASCET or Simulink). The list of on-target bypass functions
and their configurations in theModeling Tool list cannot be changed directly within
the EHOOKS-DEV user interface; the EHOOKS configuration environment of the mod-
eling tool should be used to achieve this.

The Inputs section allows the configuration of the ECU variables that should be made
available as inputs to the on-target bypass function. This consists of two types of inputs:

• Measurements

Measurement inputs are ECU measurement variables. The current value of the selected
ECU measurement variables will be used as the input to the on-target bypass function.
This means that, where a bypass hook has been configured (and is activated) for an ECU
variable, the current bypass value will be used as the input value.

• Backup Copies

Backup copy inputs allow the original ECU calculations to be used as inputs for ECU
variables that have been hooked. The backup copy inputs provide the original ECU
calculation as stored in a backup copy. To use this type of input, a backup copy
must have been configured for the associated hooked ECU variable (see section
3.2.2 EHOOKS-DEV Hook Configuration Properties).

Both types of inputs are added using the same variable selection interface. Selecting the Edit
button will display a new variable section dialog, see figure 5.21. The left-hand column allows
the displayed variable list to be filtered by the A2L file function groups (including filtering by
the input, output and local measurements to a function). To quickly move to the desired
function group, click on an entry in the function group list to move focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into
the text box. The filter string can include the wildcard characters ? and *. ? will match any
single character and * will match any number of characters. Note that the filter string contains
an implicit * wildcard at the end of the string. The character $ can be used to match the end

ETAS EHOOKS v5.3 | User Guide

Figure 5.20: Setting On-Target Bypass Function Properties

56 | Configuring EHOOKS-DEV

of a variable name. As the filter string is updated, the variable list will dynamically update to
show any matching ECU variables that can be used as inputs to an on-target bypass function.

The right-hand column shows the ECU variables that have been selected as inputs to the
on-target bypass function. ECU variables can be moved in and out of this list using the >> and
<< buttons, or by pressing Ctrl+right-arrow and Ctrl+left-arrow, respectively. Additionally,
double clicking on an entry in either list will move it to the other list. If an array variable has
been selected as an input to an on-target bypass function, the elements of the array to be
accessed can be configured by clicking on the … button. The number of hooked elements is
then shown in the right-hand column.

The Show Display Identifiers check box allows the list of variable names to be changed to
show the DISPLAY_IDENTIFIER fields from the A2L file.

The variable selection dialog (figure 5.21) also supports the Export and Import of lists of
variables to be used as inputs to an on-target bypass model. This feature is useful for reusing
lists of variables in more than one EHOOKS project. Clicking on the Export button brings up a
new Windows Explorer dialog that allows the currently selected list of variables to be exported
to an EHOOKS-DEV Measurement (*.mst) file. Clicking the Import allows an existing .mst file
to be imported. The variables listed in the selected .mst file will then be added to the selected
variables list in the variable selection dialog. A warning message will be displayed in the
EHOOKS-DEV Log if any of the variables imported from the .mst file are not available for use in
the loaded A2L file as an input to an on-target bypass model.

Figure 5.21: Configuring Input Variables for an On-Target Bypass Function

The Output section allows the configuration of the ECU variables that should be hooked by
EHOOKS and which will have bypass values calculated by the on-target bypass function. The
outputs are configured using a variable selection dialog box in the same manner as described
above and shown in figure 5.21.

The Dispatch Point Properties box allows the configuration of when the on-target bypass
function should be executed at run-time. EHOOKS provides two different methods for
controlling the run-time execution of an on-target bypass function.

• Bypass Containers / Hooks

ETAS EHOOKS v5.3 | User Guide

57 | Configuring EHOOKS-DEV

Figure 5.22: Configuring the Dispatching of an On-Target Bypass Function

Dispatching an on-target bypass function within one or more bypass containers and/or
one or more hooks allows the configuration of the exact ECU processes or EHOOKS
hooks within which the on-target bypass function should be called. Once the Dispatch
Type is set to Configured Bypass Containers / Hooks, the configured bypass
containers and hooked variable lists are shown in the read-only Bypass Containers and
Hooked Variables text fields.

The configuration can be changed by clicking one of the Edit buttons. This will display
the Select Bypass Containers or Select Hook Dispatch Points dialog as
appropriate.

In the Select Bypass Containers dialog the left column displays a list of the available
ECU processes. EHOOKS can be configured to call the on-target bypass function in one
or more of these processes by moving them into the right column by first selecting them
and then using the >> button. To remove a dispatch process from the configuration,
select it and click the << button. The dialog offers a filter to help locate the desired ECU
process; this behaves in the same way as variable selection (see section 5.2.1 Selecting
Variables to Be Hooked).

In some situations the ECU software provider may have prepared some ECU processes to
allow their use as bypass containers, but indicated that their names should not be
displayed in the EHOOKS-DEV user interface. In this case, such bypass containers can be
added to the configuration by typing their name into the Manual Add text field and
clicking the Add button.

Once the Bypass Containers have been configured as described above, they will then be
shown in the Bypass Containers section of the main On-Target Bypass Tab. The
On-Target bypass function can then be configured to be dispatched before the Bypass
Container runs (Pre-Dispatch) and/or after the Bypass container has run
(Post-Dispatch) by using the checkboxes, as shown below.

ETAS EHOOKS v5.3 | User Guide

58 | Configuring EHOOKS-DEV

Figure 5.23: Configuring Pre/Post dispatch of the On-Target Bypass Function

NOTICE
All Bypass containers can be used to dispatch an On-target bypass function before
the Bypass Container (Pre-Dispatch) runs. Some Bypass Containers may also be
capable of dispatching the On-target bypass function after the Bypass Container
(Post-Dispatch) has run, but this option has to be specifically configured by the ECU
software provider as part of their EHOOKS preparation process. If this Post-Dispatch
option is required you should therefore discuss this with your ECU supplier.

Figure 5.24: On-Target Bypass Force Writes

The Force Writes to Outputs at Dispatch Points checkbox enables forced writes of the
on-target bypass function’s output values, after it has executed.

If the user needs to bypass memory protection, the Force Writes with Elevated
Permissions option can be selected. The Force Writes to Outputs at Dispatch Points
option must be enabled first, as well as enabling the advanced project option for elevated
permissions (see section 11.5.4 Enable Elevated Permissions). At the dispatch point, forced
writes are performed with elevated permissions.

In the Select Hook Dispatch Points dialog the left column displays a list of the available
EHOOKS hooked ECU measurement variables. EHOOKS can be configured to call the on-target
bypass function in one or more of these hooks by moving them into the right column by first
selecting them and then using the >> button. To remove a dispatch hook from the
configuration, select it and click the << button. The dialog offers a filter to help locate the
desired ECU process; this behaves in the same way as variable selection (see section 5.2.1
Selecting Variables to Be Hooked).

• All Function Output Variables

Dispatching an on-target bypass function at the variable hook means that, each and
every time any of the ECU variables configured as outputs to the on-target bypass
function are written within the ECU software, the on-target bypass function will first be
executed.

ETAS EHOOKS v5.3 | User Guide

59 | Configuring EHOOKS-DEV

WARNING
Dispatching an on-target bypass function at all function output variable hooks, es-
pecially where more than one output variable is configured for the on-target bypass
function, means that the function will likely be executed multiple times, potentially
in multiple different ECU processes. It is therefore necessary to take additional care
and ensure that such a configuration doesn’t overload the computational abilities of
the ECU. Also, as the on-target bypass function may be called from several different
ECU processes which may be able to pre-empt one another, it is also necessary to
ensure that the function is implemented in a safe, re-entrant manner.

A typical use-case for variable dispatch of an on-target bypass function is to implement some
simple filtering (or perhaps noise injection) to a single ECU variable. In this case, the same
single ECU variable would be configured as both an input and an output of the on-target
bypass function. For this specific use-case, where the same single ECU variable is configured
as both an input and an output for an on-target bypass function dispatched at the variable
hook, it is not necessary read from the backup copy of the hooked variable. The input will
always be the current calculation just performed by the original ECU software.

The Enabler settings allow the configuration of whether EHOOKS will add a calibration
characteristic that can then be used at run-time, to control whether the on-target bypass
function is activated or not. If an enabler is configured for an on-target bypass function, it will
only ever be executed according to the following logic:

• If a global enabler is configured and is set to disabled, the on-target bypass function will
not be executed.

• If a global enabler is configured and is set to enabled, or a global enabler is not
configured:

– If any group enabler associated with the on-target bypass function is enabled, or
the on-target bypass function specific enabler is enabled, or the on-target bypass
function specific control variable (see below) is enabled, the on-target bypass
function is executed.

– If all group enablers associated with the on-target bypass function are disabled, the
on-target bypass function specific enabler is disabled, and the on-target bypass
function specific control variable is false, the on-target bypass function is not
executed.

To configure an enabler, the checkbox must be ticked and then the name of the enabler
calibration characteristic can be set in the text field. The initial state of the enabler is set to
disabled by default, which causes the on-target bypass function to be turned off at ECU
startup. The initial state of the enabler can be changed to enabled, which will cause the
on-target bypass function to be turned on at ECU startup if the above conditions are valid.

If an enabler is configured, it is also possible to configure an indicator. The Indicator setting
allows the configuration of whether EHOOKS will add a measurement variable that will mirror
the current value of the enabler characteristic at run-time. To configure an indicator, the
checkbox must be ticked and then the name of the indicator measurement variable can be set
in the text field.

A hook control variable can also be created for the On-target bypass function by ticking the

ETAS EHOOKS v5.3 | User Guide

60 | Configuring EHOOKS-DEV

Figure 5.25: Configuring On-Target Bypass Function Enabler and Indicator Settings

Create checkbox in the relevant section and setting the name to be used for the control
variable. The initial value of the hook control variable is set to disabled by default, which
causes the On-target bypass function to be turned off at ECU startup. The initial value of the
hook control variable can be changed to enabled, which will cause the On-target bypass
function to be turned on at ECU startup. The hook control variable can also be configured to
allow it to be updated from bypass software running on external rapid prototyping hardware
by ticking the Visible to RP checkbox.

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target or external bypass function. Therefore the
configured name should be a valid C identifier. However, EHOOKS will automatically
convert the name into a valid C identifier if the name isn’t a valid C identifier. This
is done by converting any characters that aren’t allowed in a C identifier into double
underscores (__). For example, a variable name of AccPed_stNSetP.control will
be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted to
cyl_pres__2__.

The converted C name will need to be used in any on-target or external bypass
function that manages a control variable at run-time.

Finally, the Example Code section presents an overview of how the on-target bypass function
implementation should be structured. This is a read-only display, but it can be copied
(right-click Select All then right-click Copy, or select the text and Ctrl+C) and pasted
(Ctrl+V) into a text editor to form the basis for the on-target bypass function implementation.
Once the implementation has been created for each configured on-target bypass function, the
associated implementation files (C files, object files and library files) should be added to the
Build tab so that EHOOKS can include them in the build process (see section 5.8 Build Tab).

On-Target Bypass Example Code

/* Include EHOOKS-DEV generated header file */
#include "UserBypassFuncs.h"

EH_USER_BYPASS_FUNC(MyOTBFunc)
{

EH_ARG_PUT_AC_trqDes(EH_ARG_GET_AccPed_stNSetP(EH_context) +

ETAS EHOOKS v5.3 | User Guide

61 | Configuring EHOOKS-DEV

EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context));

EH_ARG_PUT_InjCrv_qPiI1Des__0__(EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context) -
EH_ARG_GET_AccPed_stNSetP(EH_context));

/* Bypass values valid for use */
return 1;

}

5.5 Software Component Bypass Tab

For Autosar based ECU software the Software Component Bypass tab (see figure) allows
users to configure Runnables belonging to supported Software Components that will be
replaced with local versions.

On the left is a list of Software Components that have been configured for bypass. Clicking on
one of those shows the configuration options for the bypass in the middle panel including a list
of Runnables that belong to the Software Component. Clicking on one of the listed Runnables
shows, via the panel on the right, the Ports and Inter-Runnable-Variables that the runnable
(and therefore the Runnable’s bypass function) has access to.

ARXML files and new C source code implementations of Runnables may be added to the build
via the Source Files selector under the Build tab (see section 5.8.1 Configuring Build Source
Files.)

Configuration may be done in a modelling tool such as Ascet or Simulink, in which case
bypassed Software Components are listed via the Modelling Tool lower tab.

5.5.1 Selecting Software Components for Bypass

Clicking on Software Component Selection at the top left of the Software Component
Bypass Tab (figure) displays a list of all supported Autosar Software Components on the left
and all selected Software Components on the right.

The Autosar short-name of the software component is listed. Items may be added or removed
from the list of Software Component Bypasses by selecting the Software Component
short-name and clicking on >> or <<. OK confirms the changes.

5.5.2 Software Component Bypass Configuration

Clicking on one of the bypassed Software Components shows the configuration options for the
bypass in the middle panel (see figure).

The Type may be Dynamic which means that control variables (enablers) are used at
run-time to determine whether the bypass runnable runs (enabled) or whether the runnable in
the original ECU software runs (disabled).

In addition to the global EHOOKS enabler an enabler and indicator may be created via the
Enabler panel. There the enabler and indicator can be renamed and the initial statae of the
enabler can be configured.

The Type may be Static which means that the selected Runnables are permanently bypassed
in the hooked ECU. In this case there are no control variables (enablers) and the global RAM
space associated with the permanently disabled Runnables in the orignal ECU software is
made avaiable for reuse.

The lower section of the middle panel shows a list of Runnable (short-names) that belong to
the Software Component. Clicking on one of the listed Runnables shows, via the panel on the

ETAS EHOOKS v5.3 | User Guide

Figure 5.26: The Software Component Bypass tab.

Figure 5.27: Selection of Software Components for Bypass.

63 | Configuring EHOOKS-DEV

right, the Ports and Inter-Runnable-Variables that the runnable (and therefore the Runnable’s
bypass function) has access to. A check-box next to the runnable short-name allows the
Runnable to be selected for bypass. By default all Runnables are selected for bypass when the
Software Component is added to the EHOOKS list of Bypassed Software Components.

When the Software Component Bypass has been configured with an Enabler then each
bypassed runnable also has an enabler the name of which will be <runnable-name>.enabler.
At run-time a Runnable is bypassed when either its Software Component enabler or its
Runnable enabler is true:

if ((ComponentA__enabler) || (RE_ComponentA_Runnable1__enabler))
{

...
G270_A_Runnable1();

}

if ((ComponentA__enabler) || (RE_ComponentA_Runnable2__enabler))
{

...
G270_A_Runnable2();

}

Runnable enablers are therefore initially disabled allowing the Software Component enabler to
control at run-time whether all of the Runnables in a Software Component use the original
ECU code (false) or the bypass code (true).

To control runnables individually, the Software Component enabler should be set to false and
then the individual runnable enablers can be used to control whether to use the original
runnable code or the bypass runnable code.

Figure 5.28: Bypassed Software Component detail.

ETAS EHOOKS v5.3 | User Guide

64 | Configuring EHOOKS-DEV

5.6 Service Points Tab

Using the Service Points tab shown in figure 5.29, processes to be bypassed by service points
can be selected and their associated configuration properties can be set.

Figure 5.29: The Service Points tab showing the Process Selection dialog

Clicking the Process Selection… button from within the Service Points tab will display a
process selection dialog. In the left-hand column is a list of the ECU processes that can be
bypassed by a service point. These processes are specified by the ECU supplier during their
EHOOKS preparation process. In the right hand column is a list of ECU processes that have
been configured to be bypassed by service points. ECU processes can be moved between the
two columns using the buttons >> and <<, or by pressing Ctrl+right-arrow and Ctrl+left-arrow.
Additionally, double clicking on an entry in either list will move it to the other list.

The dialog offers a filter to help locate the desired ECU process; this behaves in the same way
as variable selection (see section Selecting Variables to Be Hooked).

In some situations, the ECU software provider may have prepared some ECU processes to
allow them to be bypassed as service points, but indicated that their names should not be
displayed in the EHOOKS-DEV user interface. In this case, such functions can be bypassed by
typing their name into the Manual Add text field and clicking the Add button.

Service points can also be added by clicking the Function Group Selection… button from
within the Service Points dialog. This provides a faster way to add service points for all
processes within a function. The Function Group Selection… dialog works in a similar way
to the Process Selection… dialog described above (but without the Manual Add text field).
When a Function Group is selected a service point will be added for every process in that
Function Group. If the group is called Func1 then the service points will be named Func1_1,
Func1_2, Func1_2….

The total number of configured service points is indicated in the Service Points tab. Also

ETAS EHOOKS v5.3 | User Guide

65 | Configuring EHOOKS-DEV

indicated is the maximum number of service points that is allowed to be configured, as
defined by the ECU software supplier during the preparation of the EHOOKS-ready ECU
software. In the event that the total number of configured service points exceeds the
maximum allowed number of service points, an error icon is displayed to inform the user. If
this situation occurs, the number of configured service points must be reduced to be less than
or equal to the maximum allowed number.

NOTICE
If the ECU software prepared for EHOOKS by the ECU supplier does not support
Service Based Bypass then the Service Points tab will be greyed-out and cannot be
used.

The Enabler settings in the Service Points tab allow the configuration of whether EHOOKS will
create a new calibration characteristic that can be used at run-time to control whether or not
the Service Point is activated. To create an enabler, the Create checkbox must be ticked and
then the name of the enabler characteristic can be set in the text field. The initial state of the
enabler is set to disabled by default, which causes the Service point to be turned off at ECU
startup. The initial state of the enabler can be changed to enabled, which allows the Service
point to be turned on at ECU startup.

If an enabler is configured then it is also possible to configure an indicator. The Indicator
setting allows the configuration of whether EHOOKS will add a measurement variable that will
mirror the current value of the enabler characteristic at run-time. To configure an indicator,
the checkbox must be ticked and then the name of the indicator measurement variable can
be set in the text field.

Figure 5.30: Configuring Service Point properties

A hook control variable can also be added to the configuration by ticking the Create checkbox
in the relevant section and setting the name to be used for the control variable. The initial
value of the hook control variable is set to disabled by default, which causes the Service point
to be turned off at ECU startup. The initial value of the hook control variable can be changed
to enabled, which will cause the Service point to be turned on at ECU startup. The hook
control variable can also be configured to allow it to be updated from bypass software running
on external rapid prototyping hardware by ticking the Visible to RP checkbox.

ETAS EHOOKS v5.3 | User Guide

66 | Configuring EHOOKS-DEV

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target or external bypass function. Therefore the
configured name should be a valid C identifier. However, EHOOKS will automatically
convert the name into a valid C identifier if the name isn’t a valid C identifier. This
is done by converting any characters that aren’t allowed in a C identifier into dou-
ble underscores (__). For example, a variable name of AccPed_stNSetP.control will
be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted to
cyl_pres__2__.

The converted C name will need to be used in any on-target or external bypass
function that manages a control variable at run-time.

For a function group ‘Func1’ an individual enabler, indicator and control variable will be
created for each service point Func1_1, Func1_2, Func1_2… within the group when the
checkboxes shown in figure 5.30 are ticked.

The initial state of the enabler is set to disabled by default, which causes the Service Point to
be disabled at ECU startup. The initial state of the enabler can be changed to enabled, which
will cause the Service Point to be enabled at ECU startup according to the following conditions:

• If a global enabler is configured and is set to disabled, then all Service Points are
disabled.

• If a global enabler is configured and is set to enabled, or a global enabler is not
configured; then

– If any group enabler associated with the Service Point is enabled, or the Service
Point specific enabler is enabled, or the Service Point specific control variable (see
section 3.2.2.3 Control Variables) is enabled, then the Service Point is enabled.

– If all group enablers associated with the Service Point are disabled and the Service
Point specific enabler is disabled and the Service Point specific control variable is
false, then the Service Point is disabled.

If a service point is disabled then the service point does not run and the original ECU process
runs as normal. If a service point is enabled then the behavior of the service point is
controlled via INTECRIO and the standard Service Based Bypass control characteristics
provided by the ECU supplier. Please refer to the INTECRIO user guide for more information.

5.7 Group Tab

Using the group tab allows hook groups to be defined and configured. Hook groups allow
entire groups of hooks to be enabled/disabled with a single group enabler characteristic
(according to the logic stated in Hook Enablers), and monitored with a single group indicator
measurement. The interface for adding and configuring groups follows a simple three step
workflow.

How to Add and Configure a Group

• Step 1: Add a group (see red highlight in figure 5.31) by specifying a group name and
click Create Group.

• Step 2: Provides a list of the configured groups (see yellow highlight in figure 5.31). To

ETAS EHOOKS v5.3 | User Guide

67 | Configuring EHOOKS-DEV

Figure 5.31: Group Configuration

remove a group from the configuration simply select it and press the Delete key or
right-click -> Delete. To rename an existing group, first select the row in the list
containing the group and then click a second time on the name. The name field within
the list view will then become editable. To change the properties of a group, simply
select it in the list and then proceed with step 3.

• Step 3: Configure the properties to provide the desired group configuration for the
selected group (see green highlight in figure 5.31).

5.7.1 Configuring the properties of a Group

The Enabler settings allow the configuration of the enabler calibration characteristic that
EHOOKS will create, which can be used at run-time to control whether the hook group is
activated or not. The initial value of the group enabler is set to disabled by default, which
causes the group to be deactivated at ECU startup. The initial value of the group enabler can
be changed to enabled, which will cause the group to be activated at ECU startup.

The Indicator setting allows the configuration of whether EHOOKS will add a measurement
variable that will mirror the current value of the group enabler characteristic at run-time. To
configure an indicator, the checkbox must be ticked and then the name of the indicator
measurement variable can be set in the text field.

A Group Hook control variable can also be added to the configuration by ticking the Create
checkbox in the relevant section and setting the name to be used for the control variable. The
Initial State of the Group hook control variable is set to Disabled by default, which causes
the hook to be turned off at ECU startup. The Initial State of the hook control variable can be
changed to Enabled, which will cause the hook to be turned on at ECU startup. The hook
control variable can also be configured to allow it to be updated from bypass software running
on external rapid prototyping hardware by ticking the Visible to RP checkbox.

ETAS EHOOKS v5.3 | User Guide

68 | Configuring EHOOKS-DEV

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target or external bypass function. Therefore the
configured name should be a valid C identifier. However, EHOOKS will automatically
convert the name into a valid C identifier if the name isn’t a valid C identifier. This
is done by converting any characters that aren’t allowed in a C identifier into double
underscores (__). For example, a variable name of AccPed_stNSetP.control will
be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted to
cyl_pres__2__.

The converted C name will need to be used in any on-target or external bypass
function that manages a control variable at run-time.

Figure 5.32: Configuring Group Enablers, Indicators and Control Variables

In the Group Members section, it is possible to display the currently configured status of group
membership and to edit this configuration. To edit the configuration click Edit items… to
open the group membership dialog. The group membership dialog has two columns: the left
hand column displays all the possible items that can be included in a group and the right hand
column displays the items that are included within the current group. Items can be moved
between the two columns using the >> and << buttons, by pressing Ctrl+right-arrow and
Ctrl+left-arrow, or by double-clicking on entries.

Figure 5.33: Configuring Group Membership

ETAS EHOOKS v5.3 | User Guide

69 | Configuring EHOOKS-DEV

5.8 Build Tab

The Build tab allows the EHOOKS build configuration to be customized. The five sub-tabs in
the main Build tab allow the configuration of Source Files, Memory Sections, Build Scripts,
Build Macro Definitions and Characteristics Groups, as described in the following sections.

5.8.1 Configuring Build Source Files

The Source Files tab allows the specification of include directories and source files that
EHOOKS should use during the build process.

NOTICE
The Source Files tab items are only relevant for the configuration of on-target by-
pass. If the EHOOKS configuration doesn’t make use of on-target bypass, it is not
necessary to configure anything in this tab.

Figure 5.34: Build Configuration

The Source Files tab consists of four sections:

• Include Directories

Specifies one or more folders that EHOOKS will add to the compiler search path when
compiling on-target bypass functions. To add a folder to the include path, click the Add
button. This will add a new row to the table. Within the row, the folder can be configured
by either clicking the … button in the Browse column and using the resulting folder
browser or clicking on path text within the Directory Path column and typing in the
folder path. The include path can also be quickly added by dragging and dropping from
Windows explorer. To remove a folder, first click on the corresponding row and then click
the Remove button.

ETAS EHOOKS v5.3 | User Guide

70 | Configuring EHOOKS-DEV

• Files to Build

Specifies the files that should be used by EHOOKS when building the new hooked ECU
software. To add a file to the build list, click the Add button. This will add a new row to
the table. Once a new row is added, the file path should be edited to locate the
associated build file. This can be done either clicking the … button in the File Path
column and using the resulting file browser or clicking on path text within the File Path
column and typing in the folder path. The files to be built can also be quickly added by
dragging and dropping from Windows Explorer.

Once the file path has been configured, the file type should be set. EHOOKS supports the
following four file types:

– C Source File

This type should be used for C source code files that need to be compiled by
EHOOKS as part of the hooked ECU software build process.

– Object File

This type should be used for object code files that have already been compiled and
are available as .o files that EHOOKS simply needs to link with during the hooked
ECU software build process.

– Library File

This type should be used for library files that are available as .lib or .a files that
EHOOKS simply needs to link against during the hooked ECU software build process.

– User Definitions File

This type should be used for EHOOKS User Definition files. These files allow the
specification of new measurements and calibrations to support the new on-target
bypass algorithm. In addition, one can specify that existing ECU calibration data
should be made available for reuse within an on-target bypass algorithm, and
define new conversion formulae (COMPU_METHODs). For user definition files, EHOOKS
offers a built-in editor. This can be launched by clicking the Edit button within the
Edit column of the Files to Build section. For more details see sections 9 Creating
and Working with On-Target Bypass and 11.7.2 EHOOKS-DEV User Definition Files.

– DCM File

This type should be used for DCM (data calibration) files that are available as .dcm
files. EHOOKS will merge the contents of the DCM file into the hooked ECU software
during the build process.

– ARXML File

ARXML files describe the bypass copy of any Autosar Software Component that is
hooked.

– HEX/S-record File

This type should be used for hex/s-record files. EHOOKS will merge the contents of
the hex/s-record file into the hooked ECU software during the build process. By
default, EHOOKS will only merge data contained within data memory sections,
however the --merge-all command line option can be used to merge all sections

ETAS EHOOKS v5.3 | User Guide

71 | Configuring EHOOKS-DEV

(code, const and data) of hex/s19 files into the build process.

NOTICE
By default, EHOOKS will only merge data sections when merging hex files. The
command line option --merge-all can be used to override this default behaviour
and allow merging of data, code and constant sections.

NOTICE
EHOOKS performs consistency checking when merging hex and s-record files as fol-
lows:

If the A2L has no EPK specified no checking will be done.

If the original A2L file includes an EPK, any file merged using the Hex/s-record merge
feature will be checked for the correct EPK. If the EPK in the merged file is incorrect,
the build will fail with an error.

If the original A2L file includes an EPK and if the merged file does not contain any
data in the EPK region, the default behaviour is for the build to fail with an error,
however the ‘–consistency-warn’ option may be used to override the error and allow
the build to continue.

• Embedded Files to Build

Similar to Files to Build enter the name of any files that are embedded in the EHOOKS
A2L file and that should be included in the build process. Only filenames (not paths)
need to be specified.

• Externally Managed Source Files & Include Directories

If on-target bypass is being configured from an external tool (such as ASCET or Simulink),
this list will display a read-only list of the files associated with the external configuration.

NOTICE
The availability of the read-only externally managed file source file & include direc-
tory list depends on the implementation of the external tool and when it synchronizes
data with EHOOKS. It is therefore possible that no data will be displayed. This does
not imply that the configuration is not being managed correctly.

5.8.2 Configuring Memory Sections

The Memory Sections tab allows the EHOOKS memory sections defined by the ECU software
provider to be updated or overridden.

ETAS EHOOKS v5.3 | User Guide

72 | Configuring EHOOKS-DEV

DANGER
When changing the provided memory section information, additional caution must
be taken as incorrect specification can easily corrupt the memory of the ECU leading
to run-time failures. No changes should be made without reference to the ECU soft-
ware provider to ensure that the specified memory sections are available, unused in
the ECU software and valid for use.

Typically there is no need to change the provided memory section information. However, if
the EHOOKS build fails due to insufficient space for code, constant data, calibration
parameters or RAM, then it may be possible to update the memory section information to
provide more space for EHOOKS to use. For reference, the ECU software providers configured
memory sections are displayed in the Tier-1 Memory Section area of the dialog.

Figure 5.35: Configuring EHOOKS Memory Sections

The new memory section information can be configured by clicking the Add button. Then the
start address, size and purpose should be defined. The Purpose indicates to EHOOKS that the
memory section should be used for either code, constant data, code/constant data, calibration
parameters, or as RAM or Non-Volatile RAM. EHOOKS will display a warning message if
user-defined memory sections overlap with each other or if the HEX file contains data in the
range of a user-defined memory section.

NOTICE
For Calibration Parameters, only one single memory section is allowed. However,
for Code, Constant Data, RAM and Non-Volatile RAM it is possible to add as many
memory sections as necessary, including specifying several memory sections for the
same purpose.

ETAS EHOOKS v5.3 | User Guide

73 | Configuring EHOOKS-DEV

Priority indicates the priority of each memory section. EHOOKS will use memory sections
with the highest priority first. Memory section priority can be changed using the editor shown
in figure 5.30. The default priority is setting is 0, with positive numbers indicating higher
priority and negative numbers indicating lower priorities. Where possible, EHOOKS will try to
divide the usage across the defined memory sections.

A memory section can be removed simply by selecting it within the table and clicking the
Remove button.

The memory sections finally used by EHOOKS will be determined by the following rules:

• If Replace Tier-1 Memory Sections is checked, all memory sections displayed in the
Tier-1 memory sections list will be ignored and only the user defined memory sections
will be used.

• If Replace Tier-1 Memory Sections is unchecked:

– All memory sections displayed in the user memory sections list will be used.

– Any Tier-1 memory sections that don’t overlap in any way with any user memory
sections will be used.

– If an address in a user defined memory section overlaps in any way (even by just 1
byte) with a Tier-1 memory section, that Tier-1 memory section will be ignored.

The Match field allows the EHOOKS-DEV user to assign specific memory sections to be used
as Special Purpose or Non-Volatile areas of RAM for example. When a regular expression (for
example ‘SPRAM.*’ or ‘NVRAM.*’) is defined in the Match field for a specific memory section,
any variable name that matches that regular expression will then be assigned to the
corresponding section of memory. For example, variables named like NVRAM_Var1,
NVRAM_Var2, NVRAM_Var3 in on-target bypass code would be placed into a Non-Volatile RAM
section if the regular expression ‘NVRAM.*’ is defined in the Match field. The benefit is that
when running on-target bypass experiments, the value of an EHOOKS-created variables
sometimes have to be retained when the ECU is powered off. In such cases the Match feature
can be used to explicitly place the variable into an area of non-volatile RAM.

5.8.3 Configuring pre- and post-build scripting

EHOOKS-DEV allows for custom build steps to be inserted into the EHOOKS build process by
supporting the execution of Ruby scripts immediately before and after the hooked ECU files
are built. There are six possible types of Ruby scripts that may be executed in the following
order:

• tier1_prebuild.rb

• prebuild_global.rb

• <project prebuild>

• Build of hooked ECU files.

• <project postbuild>

• postbuild_global.rb

• tier1_postbuild.rb

The tier1_prebuild.rb and tier1_postbuild.rb scripts are embedded in the A2L file by the Tier1

ETAS EHOOKS v5.3 | User Guide

74 | Configuring EHOOKS-DEV

as part of their EHOOKS ECU SW preparation process. The EHOOKS-DEV user has no control
over these scripts.

The prebuild_global.rb and postbuild_global.rb scripts are contained in the
<install-dir>\Build directory. These scripts are used for every build. These scripts may
be used to run scripts that should run for every EHOOKS-DEV project.

The <project prebuild> and <project postbuild> are project-specific scripts that can be
specified in the Build Scripts tab, as shown in figure 5.36.

Figure 5.36: Build tab showing the pre- and post- build script configuration dialog

The Build Scripts tab includes separate sections for project specific Pre-build and Post-build
script selection. Clicking one of the Add buttons will allow the addition of a project-specific
pre-build or post-build script. Once the Add button has been clicked, the selection of a
project-specific pre-build or post-build script can be done in one of two ways. Firstly, clicking
the Browse button allows any project specific build script file to be selected. Alternatively,
clicking on the drop-down arrow next to each browse button gives the option to ‘Choose
Embedded’. When this option is selected, the dialog shown in figure 5.36 allows a script to be
chosen from a list of files that have been embedded in the A2L file by the ECU software
provider.

If additional project-specific pre-build and/or post-build scripts are required the Add button
can clicked again and the selection process repeated. If multiple scripts are configured, the
scripts will run in the order shown in the dialog. The Move Up and Move Down buttons can
be used to change the execution order as required.

Pre-build and post-build scripts are passed a Ruby hash as an argument. This contains
information about the project. See the prebuild_global.rb and postbuild_global.rb scripts for
information about the contents of the hashes.

Example: Assume that you want to run a tool called chksumgen.exe to update a checksum in
a hooked .hex/.s19 file. This could be done in either global_postbuild.rb or a project

ETAS EHOOKS v5.3 | User Guide

75 | Configuring EHOOKS-DEV

specific postbuild script. For example:

def postbuild(params)
output_hex_file = params[:output_hex]
chksumgen = “d:\\temp\\chksumgen.exe”
puts "Postbuild script: #{chksumgen} #{output_hex_file}”
system(“#{chksumgen} #{output_hex_file}”)

end

EHOOKS will apply the following naming convention to messages emitted by scripts:

• If the message text in the script is prefixed by the "ERROR:" tag, the emitted message
will also be prefixed by "ERROR:"

• If the message text in the script is prefixed by the "WARNING:" tag, the emitted message
will also be prefixed by "WARNING:"

• If the message text in the script does not contain either a "WARNING:" or an "ERROR:"
tag, an information message will be emitted by EHOOKS

5.8.4 Configuring macro definitions

EHOOKS allows for macro definitions to be added to the build process using the Build Macro
Definitions tab, accessed from the main Build tab as shown in figure 5.37.

Figure 5.37: Build Macro Definitions Tab

To add new macros to the EHOOKS build click the Add button and then type in the symbol
names for all macros that are to be added. Values can optionally be added for any of the
defined macros.

5.8.5 Configuring Characteristic Groups

Having multiple characteristic groups can be useful if the total number of characteristics
created by EHOOKS is too large to be calibrated in a single step, due to RAM restrictions for
example. In this case it can be useful to split the characteristics into groups and then calibrate
each group separately.

On ECU targets for which multiple characteristic groups are supported, EHOOKS-DEV allows
the user to configure a mapping of EHOOKS generated characteristics to specific named

ETAS EHOOKS v5.3 | User Guide

76 | Configuring EHOOKS-DEV

groups. This can be done using the Characteristic Groups tab shown in figure 5.38.

Figure 5.38: Characteristic Groups tab

If the ECU software supplier has prepared their ECU software to have multiple characteristic
groups, the Characteristic Groups tab will be active. Otherwise, this tab will be greyed out.

In the example shown in figure 5.38, the ECU software has been prepared with three
characteristic groups, and so three lines are available for the user to enter their characteristic
group information. In the Group Name column, the user can enter up to three Group Names.
For each of these groups, the user must also enter a corresponding regular expression in the
Pattern column. When EHOOKS creates a new characteristic with a name that matches one of
these regular expressions, the characteristic will be placed into the corresponding group.

5.9 Configuration Consistency Checking, Building and Options

5.9.1 Consistency Checking

When using the EHOOKS-DEV configuration tool, it continuously monitors the configuration for
consistency and any errors. If errors are detected these will be indicated by an error indicator
next to the relevant configuration item. See figure 5.39.

Figure 5.39: Error Indicators

Placing the mouse pointer over an error indicator will display a popup tool-tip with details
about the source of the error and how it can be corrected, as shown in figure 5.40.

The EHOOKS-DEV configuration tool can automatically correct inconsistencies in the
configuration of on-target bypass hooks. These features can be accessed from the Project
On-Target Bypass menu as shown in figure 5.41.

• Remove inconsistent outputs

ETAS EHOOKS v5.3 | User Guide

77 | Configuring EHOOKS-DEV

Figure 5.40: Error Indicator Details

Figure 5.41: On-Target Bypass Automatic Consistency Correction

Any ECU variables added as outputs for an on-target bypass function that are already hooked
with a hook type other than on-target bypass will be removed from the on-target bypass
configuration.

• Fix inconsistent outputs

Any ECU variables added as outputs for an on-target bypass function that are already
hooked with a hook type other than on-target bypass will have their hook type changed
to on-target bypass.

5.9.2 Building Hooked ECU Software

Once the EHOOKS configuration has been completed, the hooked ECU software can be built
using the Project Build menu command or by clicking the build button on the tool bar. After
the build has started the build button is displayed as a cancel button, allowing the build to be
cancelled before completion if required.

A full consistency and error check will be performed on the configuration when building the
hooked ECU software. Errors, warnings and information messages will be displayed in the
Application Log window. This can be displayed via the View Application Log menu
command. Additionally, the output log of all build messages can be seen within the Output
window. This can be displayed via the View Output menu command.

5.9.3 Options

The Tools Options menu brings up a dialog (see figure 5.42) that allows additional command
line options to the EHOOKS ECU Target Support tools to be specified. This dialog is useful for
quickly modifying default EHOOKS-DEV build options such as output file naming, error and
warning messages and other commonly used options. Additional information on these options
can be found in section 11.1 EHOOKS-DEV Command Line Usage. Clicking the Restore
Default button will cancel these additional command line options and restore to the previous
default options.

NOTICE
The build options are not saved with the EHOOKS project file, rather they are saved
globally as part of the EHOOKS-DEV tool settings. They will therefore remain the
same between different projects unless specifically changed within this dialog.

ETAS EHOOKS v5.3 | User Guide

78 | Configuring EHOOKS-DEV

Figure 5.42: EHOOKS-DEV Options Dialog

5.10 Project Actions

The Project menu provides some useful options for managing an EHOOKS project. Using this
menu, the following actions can be performed on the current EHOOKS project.

5.10.1 Convert All Paths

All paths within a project can be converted to be absolute or relative by clicking the relevant
menu item in Project Convert All Paths, as shown in figure 5.43.

Figure 5.43: Convert All Paths Menu Item

The following paths will be modified using this action:

• A2L Input File

• A2L Output File

• ECU Image Input File

• ECU Image Output File

• All Include Directories

ETAS EHOOKS v5.3 | User Guide

79 | Configuring EHOOKS-DEV

• All Files to Build

• All Pre- and Post-Build Scripts

5.10.2 Delete all externally configured items

By clicking on Project -> Delete all externally configured items, the user can delete all
items that have been configured externally, for example by using a tool such as ASCET or
Simulink to create an On-target bypass configuration.

5.10.3 On-target bypass

The use of the Project -> On-Target bypass options is described in detail in section 5.9.1
Consistency Checking.

5.10.4 Filter files

Project filter files provide a way to exclude certain ECU variables and ECU processes from
appearing within the EHOOKS configuration tool for hooking. This feature is designed to
enable a project to implement specific rules to enforce that EHOOKS is not used to hook
certain specified variables.

A project filter file can be created by selecting the Project -> Filter -> New Filter File…
menu item. In the resulting file selection dialog, the name and location for the filter file should
be specified. EHOOKS will then create a new empty project filter file using the specified file
and load it into the project configuration.

A project filter file can be loaded by selecting the Project -> Filter -> Load Filter File…
menu item. In the resulting file selection dialog, the required project filter file should be
selected. EHOOKS will then load the specified project filter file into the project configuration.

A project filter file can be unloaded by selecting the Project Filter Unload Filter File menu
item.

Once a project filter file has been loaded into the project configuration, its contents can be
edited by selecting the Project -> Filter -> Edit ‘<Filename>’ menu item. This will launch
the filter-file editor summary dialog as shown in figure 5.44. This displays the number of ECU
measurements and ECU process that have been filtered out of the EHOOKS project within the
specified filter file.

Figure 5.44: Filter File Editor Summary Dialog

To change the ECU measurements (variables) specified in a filter file click the associated Edit
button. This launches the filter file variable selection editor as shown in figure 5.45.

The left-hand column allows the displayed variable list to be filtered by the A2L file function
groups (including filtering by the input, output and local measurements to a function). To

ETAS EHOOKS v5.3 | User Guide

80 | Configuring EHOOKS-DEV

Figure 5.45: ECU Measurements Filter File Editor

quickly move to the desired function group, click on an entry in the function group list to move
focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into
the text box. The filter string can include the wildcard characters ? and *. ? will match any
single character and * will match any number of characters. Note that the filter string contains
an implicit * wildcard at the end of the string. The character $ can be used to match the end
of a variable name. As the filter string is updated, the variable list will dynamically update to
show any matching ECU variables that can be added to the filter file.

The right-hand column shows the ECU variables that have been added to the filter file. ECU
variables can be moved in and out of this list using the >> and << buttons, or by pressing
Ctrl+right-arrow and Ctrl+left-arrow, respectively. Additionally, double clicking on an entry in
either list will move it to the other list. If an array variable has been added to the filter file, the
elements of the array to be filtered can be configured by clicking on the … button. The
number of filtered elements is then shown in the right-hand column.

The Show Display Identifiers check box allows the list of variable names to be changed to
show the DISPLAY_IDENTIFIER fields from the A2L file.

To change the ECU processes specified in the filter file, click the associated Edit button. This
launches the filter file ECU process selection editor as shown in figure 5.46.

The left-hand column contains a list of the ECU processes that can be filtered, while the right
hand column contains a list of ECU processes that have been added to the filter file. ECU
processes can be moved between the two columns using the buttons >> and <<. Additionally,
double clicking on an entry in either list will move it to the other list.

The dialog offers a filter to help locate the desired ECU process; this behaves in the same way
as for the variable selection dialog.

In some situations, the ECU software provider may have prepared some ECU processes to
allow them to be bypassed, but indicated that their names should not be displayed in the
EHOOKS-DEV user interface. In this case, such functions can be added to the filter file by

ETAS EHOOKS v5.3 | User Guide

81 | Configuring EHOOKS-DEV

Figure 5.46: ECU Processes Filter File Editor

typing their name into the Manual Add text field and clicking the Add button.

Once edits to the filter file have been made, they can be committed by clicking the Save
button within the filter file editor summary dialog.

NOTICE
The loaded filter file saved with the EHOOKS project configuration, it is not saved
globally as part of the EHOOKS-DEV tool settings. To configure a standard filter file
to be used for all projects it is recommended to use the --filterfile command-line
option. This can be specified as a global tool setting within the build options dialog,
see 5.9.3 Options.

5.10.5 Advanced actions

The use of the Project Advanced options is described in detail in section 11.5 Advanced
Project Options.

ETAS EHOOKS v5.3 | User Guide

82 | Working with Hooked ECU Software in INCA

6 Working with Hooked ECU Software in INCA

This section provides general details on how to work with the EHOOKS-created hooked ECU
software. This section also includes details on how to use EHOOKS-CAL and EHOOKS-BYP to
enable the usage of the EHOOKS-created hooks within the ECU software. Depending on the
EHOOKS license in use and the setting for Licensing Mode within the EHOOKS project
settings configuration, the use of EHOOKS-CAL or EHOOKS-BYP may or may not be required.

In general, EHOOKS produces a standard ECU HEX and A2L file and therefore the usage of the
hooked ECU software with INCA is little changed from the original software. The software must
be flashed to the ECU in the normal manner and the experiment setup is basically unchanged.

NOTICE
As EHOOKS changes the ECU software, it is often necessary to ensure that the code-
space checksums of the ECU software are disabled or at least do not trigger an ECU
reset. This is sometimes done by the ECU software provider when they prepare the
ECU software for EHOOKS.

However, these checksums are more often disabled by specific calibration data set-
tings. In this case, please contact the ECU software provider for details of which
calibration parameters to set and which values to use.

If applying the calibration data set from a non-EHOOKS project to an EHOOKS-created
hooked ECU software project, ensure that the necessary calibration data settings to
disable the checksums are set correctly again after the copy of the calibration data
set.

6.1 Run-Time Hook Control and Monitoring

If enablers have been configured, hooks or service points added to the ECU software can be
controlled at run-time. Enablers can be added to the INCA experiment in the normal manner
for any calibration parameter (using the variable selection). For convenience, EHOOKS creates
A2L function groups to make locating the hook enablers easy and efficient (see section 6.6
A2L Function Groups)

The status of the enablers can be managed at run-time simply by switching their values
between TRUE and FALSE as necessary in the INCA experiment environment.

The run-time behavior of the enablers is as follows:

• Variable bypass

If enabled, the bypass value will be written to the hooked ECU variable. Otherwise, the
original ECU calculation is written to the hooked ECU variable.

• Function bypass

If enabled, the ECU function is bypassed (i.e. not executed). Otherwise, the ECU function
is executed as normal.

• On-target bypass function

If enabled, the on-target bypass function is executed on the ECU to calculate bypass
values. Otherwise, the user provided bypass function is not executed on the ECU.

ETAS EHOOKS v5.3 | User Guide

Figure 6.1: Adding Hook Enablers to the INCA Experiment

Figure 6.2: Managing Enabler Calibration Characteristics in INCA

84 | Working with Hooked ECU Software in INCA

In the case that the on-target bypass function is not executed:

– If the variable bypass enablers are set to true, the most recent valid return values
from the on-target bypass function are written to the hooked ECU variables
associated with the on-target bypass function.

– If the variable bypass enablers are set to true and there has not been a valid return
value from the on-target bypass function, the original ECU calculations are written
to the hooked ECU variables associated with the on-target bypass function

• Service Points

If a service point is enabled, the selected ECU process is bypassed and the service point
is executed instead. If the service point is disabled, the ECU process is executed as
normal.

The logic to control whether a specific hook/service point is enabled or disabled is as follows:

• If a global enabler is configured and is set to false, all hook/service point are disabled.

• If a global enabler is configured and is set to true, or a global enabler is not configured:

– If any group enabler associated with the hook/service point is true, or the
hook/service point specific enabler is true, or the hook/service point specific control
variable (see section 3.2.2.3 Control Variables) is true, the hook is enabled.

– If all group enablers associated with the hook/ service point are false, the hook/
service point specific enabler is false, and the hook/ service point specific control
variable is false, the hook/ service point is disabled.

If configured, the status of the enablers can be monitored using the indicator measurements
created by EHOOKS. For convenience, EHOOKS creates A2L function groups to make locating
the indicator measurements easy and efficient (see section 6.6 A2L Function Groups).

NOTICE
If an enabler is changed but the associated indicator does not mirror the change,
the most likely reason is that the ECU software is not currently executing the hook
code inserted by EHOOKS. When this situation is observed, it is possible to use the
advanced write location functionality within the associated hook to force the hook
code to be executed (see sections 3.2.2.6 Forced-Write Mechanisms, Configuring
Properties of a Variable Hook, and [Properties of an On-Target Bypass Function].

When indicators are configured, EHOOKS automatically creates the following additional
diagnostic counters for use at run-time.

• <indicator>.hookDiag

This counter is incremented every time the EHOOKS-inserted hook code runs.

• <indicator>.matchDiag

This counter is incremented every time the EHOOKS-inserted hook code runs and the
address passed by the hook matches that of the hooked measurement variable. I.e. it is
incremented when a write to a hooked variable is correctly detected.

• <indicator>.bypassDiag

ETAS EHOOKS v5.3 | User Guide

85 | Working with Hooked ECU Software in INCA

Figure 6.3: Adding Indicators to the INCA Experiment

This counter is incremented every time the bypass value is written into the hooked ECU
measurement variable.

6.2 Offset Hooks

When a hook has been configured as an offset hook, EHOOKS creates an additional calibration
characteristic to allow run-time control over whether the bypass value is added or subtracted
to the ECU calculated value. Offset control characteristic names are based on the hooked ECU
variable name prefixed with EH_ctrl_.

For convenience, EHOOKS creates an A2L function group, called EH__Offset_Controls,
containing all the offset control calibration characteristics (see section 6.6 A2L Function
Groups).

Figure 6.4: Managing an Offset Hook in INCA

NOTICE
For a constant bypass hook, an offset control characteristic is not created as the
constant is a signed value and therefore the constant value is always added to the
ECU calculation. Subtraction is achieved by using a negative constant value.

ETAS EHOOKS v5.3 | User Guide

86 | Working with Hooked ECU Software in INCA

6.3 Backup Measurement Copies

When a hook has been configured to include a backup measurement copy, EHOOKS will create
a new measurement variable. EHOOKS will ensure that this measurement variable is kept up
to date with the current value of the original ECU calculation for the hooked variable. This
allows the comparison of the original ECU calculation and the bypass value. The backup
measurement copy names are based on the hooked ECU variable name prefixed with
EH_copy_.

For convenience, EHOOKS creates an A2L function group, called EH__Copies, containing all
the backup measurement copies (see section 6.6 A2L Function Groups).

Figure 6.5: Monitoring Backup Measurement Copies in INCA

6.4 Safety Checks

When a hook has been configured to include safety checks, EHOOKS adds additional code to
monitor the hook for run-time errors. If a run-time error is detected by this code, it will be
indicated via a safety detection failure measurement. One safety detection failure
measurement is created for each hooked ECU variable configured to include safety checks. Its
name will be based on the hooked ECU variable name prefixed with EH_err. An error is
indicated if this measurement has the value of 0x12.

When EHOOKS detects a run-time error in a hook, it will be automatically disabled so that the
associated hooked ECU variable is no longer bypassed. This can be overridden using the error
override calibration characteristic that EHOOKS creates. An error override characteristic will
be created for each hooked ECU variable configured to include safety checks. Its name will be
based on the hooked ECU variable prefixed with EH_eovd_. Setting an error override
characteristic to TRUE means that the associated hook will continue to be enabled even if
errors are detected by the safety checks. Setting an error override characteristic to FALSE
means that the associated hook will be automatically disabled if errors are detected by the
safety checks.

Figure 6.6: Monitoring and Managing Safety Checks in INCA

6.5 Using EHOOKS-CAL and EHOOKS-BYP to Work with Hooks in INCA

To work with hooked ECU software created by EHOOKS using the locked licensing mode the
EHOOKS Hook Un-locker tool (EHOOKS-CAL/EHOOKS-BYP) must be used. The original
functionality of the ECU software is unaffected by this requirement. Without using

ETAS EHOOKS v5.3 | User Guide

87 | Working with Hooked ECU Software in INCA

EHOOKS-CAL or EHOOKS-BYP, the modified features of the hooked ECU software added by
EHOOKS will be disabled and cannot be used.

NOTICE
After the ECU is reset, the modified features of the hooked software added by
EHOOKS will function for a brief period (typically the first 3 - 5 minutes). This pro-
vides time to connect EHOOKS-CAL/EHOOKS-BYP to the ECU (via INCA) to enable the
functionality to be continuously unlocked. This also allows experiments that need to
bypass hooked ECU variables during ECU start-up, initialization and cranking to be
easily performed.

The EHOOKS-CAL and EHOOKS-BYP are implemented via the single EHOOKS Hook Un-locker
product. The operation mode depends on the license key installed. EHOOKS-CAL and
EHOOKS-BYP allow different types of hooks within the hooked ECU software to be unlocked as
follows:

• EHOOKS-CAL: Enables the use of constant, calibration and NOP hooks within the
EHOOKS-created hooked ECU software, but will not unlock any external or on-target
bypass hooks nor any service points.

• EHOOKS-BYP: Enables the use of all hook types within the EHOOKS-created hooked
ECU software.

The EHOOKS Hook Un-locker is implemented as an INCA add-on and must therefore be used in
conjunction with a running INCA experiment.

How to work with EHOOKS-CAL/EHOOKS-BYP

• Create hooked ECU software using EHOOKS with the licensing mode set to Locked
Hooks.

• Import the EHOOKS-created hooked ECU software (both A2L and HEX file) into INCA.

• Flash the ECU with the hooked ECU software in the normal manner, typically using
INCA/ProF.

• Set up an INCA experiment and connect to the ECU.

• Begin measurement and switch to the working page.

• Launch the EHOOKS hook un-locker.

• Click Start Unlocking.

• The hooks will be unlocked and it is then possible to continue working with INCA in the
normal way using the modified features of the hooked ECU software.

The EHOOKS Hook Unlocker interface consists of two major elements. The Status section
gives feedback to indicate whether the hooks have been unlocked. The Log section gives
feedback about each step of the interaction between the EHOOKS Hook Unlocker and INCA.

In addition, the EHOOKS Hook Unlocker will place an icon in the system tray to indicate the
current status. Different icons indicate each different status as shown in figure 6.8.

The Start Unlocking button will initiate the hook unlocking process. Prior to clicking this,
INCA should be loaded with an experiment with measurement running and the working page

ETAS EHOOKS v5.3 | User Guide

88 | Working with Hooked ECU Software in INCA

Figure 6.7: EHOOKS Hook Unlocker (EHOOKS-CAL/EHOOKS-BYP)

Figure 6.8: EHOOKS Hook Unlocker System Tray Icons

selected. The Log window will give feedback if any of these conditions are not met.

The Start Unlocking button will change to a Cancel button once clicked. The Cancel button
allows the EHOOKS Hook Unlocker to be cleanly disconnected from INCA.

NOTICE
After the EHOOKS Hook Unlocker has been used to enable hooks in the ECU, it is
possible to disconnect the EHOOKS Hook Unlocker (via the Cancel button). The
hooks will remain enabled until the ECU is rebooted, after which the EHOOKS Hook
Unlocker must be used again to re-enable the hooks.

This can be important as the EHOOKS Hook Unlocker uses the INCA COM API which
allows one client to be connected at a time. By disconnecting the EHOOKS Hook
Unlocker it is therefore possible to connect other tools to the INCA COM API to work
with the EHOOKS-created hooks.

The Device Config button allows the selection of the INCA raster to be used for acquisition of
measurement data by the EHOOKS Hook Unlocker. If no feedback is received after clicking the
Start Unlocking button, it may be necessary to change the ECU raster used for acquisition of
measurement data.

To change the device configuration measurement should first be stopped in INCA. Once the
device configuration is set up, measurement can be started again within INCA.

ETAS EHOOKS v5.3 | User Guide

89 | Working with Hooked ECU Software in INCA

NOTICE
It is important to ensure that the A2L file loaded into the INCA database is the one
created by EHOOKS at the same time the hooked HEX file was created. If this is not
the case then it is likely that the EHOOKS-created hooks in the hooked ECU software
will not be successfully unlocked.

To ensure the correct A2L file is loaded, select the A2L entry in the INCA database
and then right-click Update and then select the correct A2L file to be loaded into
the INCA database.

For hooked ECU software created with the Open Hooks licensing mode of EHOOKS, it is not
necessary to use the EHOOKS Hook Unlocker.

6.6 A2L Function Groups

The EHOOKS-created hooked ECU software A2L file contains a number of new function groups
to make it easy and efficient to locate the new EHOOKS measurements and calibration
parameters, so they can be quickly added into the INCA experiment.

Table 1: EHOOKS Hooked Software A2L Function Groups

Group Name Group Contents

EH_EHOOKS

EH__All Contains all of the measurements and
calibration characteristics created by
EHOOKS-DEV

EH__Copies Contains all backup measurement copies
created for hooked ECU variables

EH__Enablers Contains all hook enabler calibration
characteristics

EH__Error_Flags Contains all safety detection failure
measurement for hooked ECU variable
configured with safety checks

EH__Error_Overrides Contains all error override calibration
characteristics for hooked ECU variable
configured with safety checks

EH__External_Enablers Contains all enabler calibration
characteristics for hooked ECU variables
configured for external bypass

EH__External_Hooks Contains all calibration characteristics and
measurements related to hooked ECU
variables configured for external bypass –
includes enablers, indicators, offset
control, safety checks and the hooked ECU
variable itself

EH__External_Indicators Contains all indicator measurements for
hooked ECU variables configured for
external bypass

ETAS EHOOKS v5.3 | User Guide

90 | Working with Hooked ECU Software in INCA

Group Name Group Contents

EH__External_Variables Contains the hooked ECU variables
configured for external bypass

EH__Global Contains the global enabler and indicator,
if configured, and a hook count calibration
characteristic.
Note: The hook count calibration
characteristic can be used to indicate how
many ECU variable hooks are placed into
the ECU software. Changing the value of
this calibration characteristic has no effect.

EH__Group_Enablers Contains enabler characteristics created
for hook/service point/OTB function groups

EH_Group.<group> Contains the enabler characteristic created
for the group called <group> and the per
hook/service point/OTB function enabler
characteristics for the things in the group
called <group>

EH__Hooked_Measurements Contains all hooked ECU variables

EH__Internal_Enablers Contains all enabler calibration
characteristics for hooked ECU variables
configured for internal bypass
(i.e. constant, calibration or on-target
bypass)

EH__Internal_Hooks Contains all calibration characteristics and
measurements related to hooked ECU
variables configured for internal bypass
(i.e. constant, calibration or on-target
bypass) – includes enablers, indicators,
offset control, safety checks and the
hooked ECU variable itself

EH__Internal_Indicators Contains all indicator measurements for
hooked ECU variables configured for
internal bypass (i.e. constant, calibration or
on-target bypass)

EH__Internal_Variables Contains the hooked ECU variables
configured for internal bypass
(i.e. constant, calibration or on-target
bypass)

EH__Offset_Controls Contains the offset control calibration
characteristics for hooked ECU variables
hooked for offset bypass

EH__OTB_Function_Outputs Contains the on-target bypass output
variable buffer measurements for each ECU
variable configured for on-target bypass.

EH__Remote_Control Contains all indicator measurements

ETAS EHOOKS v5.3 | User Guide

91 | Working with Hooked ECU Software in INCA

Group Name Group Contents

EH__Service_Points Contains the enabler characteristics and
indicator measurements configured for
service points.

EH__Source_Characteristics Contains the new calibration
characteristics to be used as the bypass
value for hooked ECU variables configured
for calibration bypass

EH_Hook.<ECU Variable> For each hooked ECU variable, contains all
measurements and calibration
characteristics related to the hook –
includes enablers, indicators, offset
control, safety checks and the hooked ECU
variable itself

EH_User_Func.<OTB-Function> For each on-target bypass function
(whether coming from Simulink, ASCET or
manually integrated on-target bypass
functions), contains all measurements and
calibration characteristics related to the
function - includes enablers, indicators and
the associated hooked ECU variables

EH_EHOOKS_OnTargetBypass This group contains measurements and
calculation parameters created from any
User Definitions Files and by the
EHOOKS-DEV Simulink Integration
Package.

EH_OTH_BypassModelControl Contains all enablers calibration
characteristics and indicator
measurements configured for Simulink
based on-target bypass hooks

EH_OTB_FunctionEnablers Contains the enablers calibration
characteristics for the Simulink configured
on-target bypass functions

EH_OTB_FunctionIndicators Contains the indicator measurements for
the Simulink configured on-target bypass
functions

EH_VariableEnablers Contains the enablers calibration
characteristics for the variables hooked for
bypass by Simulink configured on-target
bypass functions

EH_VariableIndicators Contains the indicator measurements for
the variables hooked for bypass by
Simulink configured on-target bypass
functions

EH_OTB_Charactersitics Contains all new calibration characteristics
introduced within on-target bypass
functions

ETAS EHOOKS v5.3 | User Guide

92 | Working with Hooked ECU Software in INCA

Group Name Group Contents

EH_OTB_ScalarCharacteristics Contains all new scalar calibration
characteristics introduced within the
Simulink models used for on-target bypass

EH_OTB_ComplexCharacteristics Contains all new axis, map, curve and
value block calibration characteristics
introduced within the Simulink models
used for on-target bypass.

EH_OTB_AxisCharacteristics Contains all new axis calibration
characteristics introduced within the
Simulink models used for on-target bypass

EH_OTB_CurveCharactersitics Contains all new curve calibration
characteristics introduced within the
Simulink models used for on-target bypass

EH_OTB_MapCharacteristics Contains all new map calibration
characteristics introduced within the
Simulink models used for on-target bypass

EH_OTB_ValueBlockCharacteristics Contains all new value block calibration
characteristics introduced within the
Simulink models used for on-target bypass

EH_OTB_Measurements Contains all new measurements introduced
within on-target bypass functions

EH_OTB_ScalarMeasurements Contains all new scalar measurements
introduced within the Simulink models
used for on-target bypass

EH_OTB_ArrayMeasurements Contains all new array measurements
introduced within the Simulink models
used for on-target bypass

ETAS EHOOKS v5.3 | User Guide

93 | Creating and Working with Simple Internal Bypass

7 Creating and Working with Simple Internal Bypass

There are two kinds of simple internal bypass – constant and calibration.

Figure 7.1: Simple Internal Bypass Configuration

A constant value bypass uses a fixed, build-time, constant as the bypass value for a hooked
ECU variable. In this case, when the set of configured hook enablers evaluate to true (and
assuming no safety check failure) the configured constant value is used as the bypass value
for the hooked ECU variable. Figure 7.2 shows a constant value bypass running in the INCA
experiment environment where the variable AccPed_stNSetP is being hooked by EHOOKS
with a constant value bypass of 12.

Figure 7.2: Constant Value Bypass

A calibration characteristic bypass allows a calibration characteristic created by EHOOKS-DEV
to be used to provide the bypass value for a hooked ECU variable. In this case, when the set
of configured hook enablers evaluate to true (and assuming no safety check failure), the
current value of the configured calibration characteristic is used as the bypass value for the
hooked ECU variable. Figure 7.3 shows a calibration bypass running in the INCA experiment
environment, where the variable AirCtl_dmAirDeskMax_mp is being hooked by EHOOKS and
bypassed with the new calibration parameter AirCtl_dmAirDesMax_mp.source being used as
an offset bypass (rather than a replacement bypass).

ETAS EHOOKS v5.3 | User Guide

Figure 7.3: Calibration Bypass

95 | Creating and Working with External Bypass

8 Creating and Working with External Bypass

8.1 Hook based bypass (HBB)

Configuring a variable for external hook based bypass causes EHOOKS-DEV to add the
necessary ASAP1B annotation to the associated entry in the A2L file. The steps to work with
external bypass hooks with EHOOKS are as follows (for full details on the usage of INTECRIO
please refer to the INTECRIO user documentation – EHOOKS does not change the usage of
INTECRIO at all):

1. Configure the EHOOKS-DEV project to hook the desired ECU variables for external
bypass (it is, of course, possible to hook other variables for other types of bypass –
constant, calibration or on-target – within the same project configuration).

2. Use EHOOKS-DEV to build the new ECU software.

3. Load the EHOOKS-DEV-generated A2L file for the ECU software into the INTECRIO
hardware item to allow the newly hooked variables to be selected from the signal
selection configuration.

4. Configure the bypass experiment in the usual way and build the bypass software with
INTECRIO.

5. Load the EHOOKS-DEV-generated A2L/HEX file into INCA.

6. Re-flash the ECU with the EHOOKS-DEV-generated HEX file.

7. Perform the bypass experiment in the usual way, either using INCA-EIP or INCA and the
INTECRIO experiment environment. The EHOOKS-DEV-created bypass hooks must be
unlocked using the EHOOKS Hook Unlocker.

Figure 8.1: External Bypass

External bypass hooks perform the same as other types of hooks: when the set of configured
hook enablers evaluates to true (and assuming no safety check failure), the current value

ETAS EHOOKS v5.3 | User Guide

96 | Creating and Working with External Bypass

being calculated on the external rapid prototyping hardware is used as the bypass value for
the hooked ECU variable.

Figure 8.2: External Bypass Experiment in INCA

8.2 Service based bypass (SBB)

Configuring a process or function group for service based bypass (bypassing the original ECU
process or function group with a services point), causes EHOOKS-DEV to add the necessary
service point information to the A2L file. The steps to work with external service based bypass
with EHOOKS are as follows:

1. Configure the EHOOKS-DEV project to insert the desired service points into the ECU
software as described in section 5.6 Service Points Tab

2. Follow steps 2 to 7 described in section 8.1 Hook based bypass (HBB)

ETAS EHOOKS v5.3 | User Guide

97 | Creating and Working with On-Target Bypass

9 Creating and Working with On-Target Bypass

9.1 Introduction

Configuring on-target bypass enables new bypass algorithms to be introduced directly into the
ECU software. EHOOKS provides a standardized interface to make it easy to integrate bypass
algorithms directly into the ECU software, along with measurement and calibration
capabilities for the new bypass algorithm.

How to configure on-target bypass

• Step 1: Configure On-Target Bypass Hooks

Configure the EHOOKS-DEV project to hook the desired ECU variables for on-target
bypass [Optional].

• Step 2: Configure On-Target Bypass Functions

Configure the EHOOKS-DEV project to add the desired on-target bypass functions and
the associated input and output ECU variables. [Any output variables configured will be
automatically configured by EHOOKS-DEV as on-target bypass hooks if they are not
already configured with the above step].

• Step 3: Develop the On-Target Bypass Software

Develop the C code (and any associated C header, library and object files) to implement
the configured on-target bypass functions. Optionally, create one or more user definition
files to define new measurements and calibration characteristics needed to measure and
calibrate the on-target bypass functions.

• Step 4: Add Build Files to the EHOOKS-DEV project configuration

Add the associated on-target bypass files to the EHOOKS-DEV project configuration.

• Step 5: Build and Run the EHOOKS-Created Software

Use EHOOKS-DEV to build the new ECU software, load the EHOOKS-DEV-generated
A2L/HEX file into INCA, re-flash the ECU with the EHOOKS-DEV generated HEX file and
finally perform the bypass experiment in the usual way using INCA.

The key steps will now be described in more detail. To illustrate the process, a consistent
example will be used throughout this section. This example involves using an on-target
bypass called MyOTBFunc to calculate the bypass value for AC_trqDes and InjCrv_qPiI1Des[0]
using as inputs the ECU variables AccPed_stNSetP and AirCtl_mDesBasEOM0.

9.2 Step 1: Configure On-Target Bypass Hooks

The variables to be hooked for on-target bypass should be added to the variable bypass
configuration tab within EHOOKS-DEV, with a hook type of On-Target Bypass. This can be
achieved in one of two ways.

First, the variable can be added to the variable bypass configuration tab as described in
section 5.2.1 Selecting Variables to Be Hooked. Then the hook-type should be set to
On-Target Bypass. Any on-target bypass functions that include the variable as an output will
be displayed in the read-only On-Target Bypass Source field.

ETAS EHOOKS v5.3 | User Guide

98 | Creating and Working with On-Target Bypass

NOTICE
EHOOKS-DEV allows one on-target bypass function to be used to calculate the by-
pass values for an arbitrary number of ECU variables. It is not necessary to have a
separate on-target bypass function for each ECU variable.

Second, any variables configured using Step 2 below will automatically be added to the
variable bypass configuration tab with the correct properties, unless they are already hooked.

9.3 Step 2: Configure On-Target Bypass Functions

Each on-target bypass function must be added to the on-target bypass tab and the associated
inputs, outputs and properties configured as described in section 5.4 On-Target Bypass Tab.

NOTICE
If the on-target bypass is being configured using ASCET or Simulink, the on-target
bypass function should not be added to the on-target bypass tab manually. ASCET
or Simulink should be used to directly add the corresponding hooks and configu-
ration (see section 10 Creating and Working with On-Target Bypass from Simulink
or the ASCET-SE EHOOKS Add-on User Guide for full details – this can be found
in the ASCET installation directory within the folder <ASCET INSTALL DIREC-
TORY>\target\trg_ehooks\documents). These on-target bypass functions will ap-
pear within the On-Target Bypass tab under theModeling Tool list available at the
bottom of the on-target bypass list.

9.4 Step 3: Develop the On-Target Bypass Software

EHOOKS-DEV creates a simple C interface for each on-target bypass function, to make
development and integration straightforward. This interface abstracts the details of when/how
the on-target bypass function is executed allowing EHOOKS to take complete responsibility for
the details of providing input parameters to the function and using the output parameters for
bypass values.

EHOOKS-DEV will display an example code template that can be used as a reference for the
creation of the on-target bypass implementations. The following provides details regarding
this code structure.

9.4.1 On-Target Bypass Function Input and Output Parameters

The on-target bypass interface data structures are generated by EHOOKS-DEV in a file called
"UserBypassFuncs.h". This file should therefore be included in any on-target bypass function
code.

The signature of an on-target bypass function in EHOOKS is of the form:

int MyOTBFunc(int EH_context)

ETAS EHOOKS v5.3 | User Guide

99 | Creating and Working with On-Target Bypass

However, it is more convenient to use the macro:

EH_USER_BYPASS_FUNC()

If this macro is used the declaration of the on-target bypass function becomes:

EH_USER_BYPASS_FUNC(MyOTBFunc)

To read an input, an on-target bypass function should use:

EH_ARG_GET_<input-var-name>(EH_context)

Where <input-var-name> is the name of an input variable read by the on-target bypass
function.

To write an output, the on-target bypass function should use:

EH_ARG_PUT_<output-var-name>(<value>)

Where <output-var-name> is the name of an output variable written by the on-target bypass
function and is the value to be written.

NOTICE
The EHOOKS on-target bypass interface described in sections 9.4.1 and 9.4.2 was up-
dated in EHOOKS V3.0. Any on-target bypass functions created for use with EHOOKS-
DEV V2 should therefore be modified accordingly for use with EHOOKS-DEV V3.0 on-
wards.

9.4.2 On-Target Bypass Function Implementation

The on-target bypass function simply has to read from the input parameters, perform its
calculation and write the results to the output parameters. EHOOKS will take care of all other
details (such as initializing the input parameters and using the output values to bypass ECU
variables).

The final step of the on-target bypass function is to return a value to indicate whether or not
EHOOKS should use the calculated output values for bypass. If the on-target bypass function
returns a non-zero value, EHOOKS will use the output values to bypass the associated ECU
variables. If the on-target bypass function returns zero, EHOOKS will not use the output values
to bypass the associated ECU variable.

Source Code 1 shows a simple implementation of an on-target bypass function for the
example configuration.

Source Code 1: Example Simple On-Target Bypass Function Implementation

/* Include EHOOKS-DEV generated header file */

#include "UserBypassFuncs.h"

EH_USER_BYPASS_FUNC(MyOTBFunc)
{

EH_ARG_PUT_AC_trqDes(EH_ARG_GET_AccPed_stNSetP(EH_context) +
EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context));

EH_ARG_PUT_InjCrv_qPiI1Des__0__(EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context) –

ETAS EHOOKS v5.3 | User Guide

100 | Creating and Working with On-Target Bypass

EH_ARG_GET_AccPed_stNSetP(EH_context));

/* Bypass values valid for use */
return 1;

}

This source code illustrates the following key points:

• Line 2: Include UserBypassFuncs.h

The header file UserBypassFuncs.h provides access to the EHOOKS data types including the
data type for the on-target bypass input / output data structure and therefore should be
included in all files that implement on-target bypass functions.

• Line 4: On-Target Bypass Function Prototype

EHOOKS provides a macro in the header file, UserBypassFuncs.h, to ensure the correct
function prototype implementation for on-target bypass functions. This macro,
EH_USER_BYPASS_FUNC, takes the name of an on-target bypass function as its only parameter
and this name must match a name configured within the EHOOKS-DEV project configuration -
for our example MyOTBFunc. The exact form of this macro is EHOOKS port-dependent but it
will expand line 4 to something similar to:

int MyOTBFunc(int EH_context)

• Lines 6 to 12: Access to on-target bypass function input and output variables
The input and output arguments are used to read values from variables
AccPed_stNSetP, AirCtl_mDesBasEOM0 and write values to variables AC_trqDes and
InjCrv_qPiI1Des__0__

NOTICE
A2L variables can contain characters that are not legal characters for C variables –
in such cases the illegal characters are replaced by a double underscore by EHOOKS-
DEV. E.g. InjCrv_qPil1Des[0] would become InjCrv_qPil1Des__0__.

• Line 13: Return the Status of the On-Target Bypass Function

A return value of 1 (or in fact any non-zero value) indicates to EHOOKS that the on-target
bypass function has executed successfully and the calculated output values should be used
for bypass. A return value of zero would indicate that the calculated output values should not
be used for bypass.

9.4.3 On-Target Bypass Data Type Conversion

The input and output parameters of an on-target bypass function are in ECU implementation
form (not in physical form). Any necessary type conversions between different A2L data types
/ quantization formulae must be performed by the on-target bypass function itself. EHOOKS
provides functions to do this as follows, see also the header file ConversionFuncs.h.

• EH_<type>_PHYS_TO_IMPL_<name>

Converts from physical form to ECU implementation form, where the physical form is in a
variable of type <type>. <type> can be double, float or single.

• EH_IMPL_TO_<type>_PHYS_<name>

Converts from ECU implementation form to physical form, where the returned physical

ETAS EHOOKS v5.3 | User Guide

101 | Creating and Working with On-Target Bypass

form is of type <type>. Where <type> can be double, float or single.

• EH_<type>_TO_IMPL_<name>

Convert a variable of type <type> to the correct ECU data type for <name>. Where
<type> can be double, float, single, uint64, int64, uint32, int32, uint16, int16,
uint8, int8

• EH_IMPL_TO_<type>_<name>

Converts from the ECU data type for <name> to a variable of type <type>. Where <type>
can be double, float, single, uint64, int64, uint32, int32, uint16, int16, uint8,
int8

The following source code example demonstrates how to use the type conversion functions to
convert the inputs to physical form for use in calculation, and how to use the type conversion
functions to convert the physical output values into ECU implementation type for use as
bypass values.

#include "ConversionFuncs.h"
#include "UserBypassFuncs.h"

EH_USER_BYPASS_FUNC(MyOTBFunc)
{

/* Convert the input arguments into physical form. */
float local_AccPed_stNSetP =
EH_IMPL_TO_float_PHYS_AccPed_stNSetP(EH_ARG_GET_AccPed_stNSetP(EH_context));

float local_AirCtl_mDesBasEOM0 =
EH_IMPL_TO_float_PHYS_AirCtl_mDesBasEOM0(EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context));

/* Write the output values in internal form. */
EH_ARG_PUT_AC_trqDes(EH_float_PHYS_TO_IMPL_AC_trqDes(local_AccPed_stNSetP +

local_AirCtl_mDesBasEOM0));

EH_ARG_PUT_InjCrv_qPiI1Des__0__(EH_float_PHYS_TO_IMPL_InjCrv_qPiI1Des__0__(
local_AirCtl_mDesBasEOM0 –

local_AccPed_stNSetP));

/* Bypass values valid for user */
return 1;

}

9.4.4 Calling ECU functions from On-Target Bypass code

It is possible to call functions that exist in the original ECU software from on-target bypass
code. If the ECU software supplier has defined ECU functions for use (See section 4
EHOOKS-PREP Dependencies), those functions can be called from on-target bypass code by
including EH_CallableFunctionMacros.h in the source file. The name and prototype of the
function must be provided by the ECU software supplier.

If the ECU software supplier has defined the function “Func1”, and it has a single floating point
argument, it may be called by inserting the following code into an on-target bypass function:

/* header included for use of existing ECU functions */

#include " EH_CallableFunctionMacros.h"

ETAS EHOOKS v5.3 | User Guide

102 | Creating and Working with On-Target Bypass

#include "UserBypassFuncs.h"

EH_USER_BYPASS_FUNC(MyOTBFunc)
{

/* Convert the input arguments into physical form. */
float local_AccPed_stNSetP = EH_IMPL_TO_float_PHYS_AccPed_stNSetP(

EH_ARG_GET_AccPed_stNSetP(EH_context));

/* call existing ecu function */
EH_Func1(local_AccPed_stNSetP);

return 1;
}

NOTICE
Functions will be prefixed with EH_ in order to avoid name clashes with other mech-
anisms available to the ECU software supplier for function inclusion.

9.5 Step 4: Add the On-Target Bypass Files to Configuration

To allow EHOOKS-DEV to compile, link and merge the on-target bypass code with the ECU HEX
file, additional build information must be provided. The files related to the on-target bypass
implementation must be added to the EHOOKS-DEV configuration using the build tab, as
explained in section 5.8.1 Configuring Build Source Files.

EHOOKS allows on-target bypass functions to be measured and calibrated in the same way as
the normal ECU software. However, EHOOKS must be informed about the measurements and
calibration characteristics that are needed. User definition files can be added to the EHOOKS
configuration to enable the creation of the measurements and calibration characteristics.
EHOOKS supports the creation of scalar measurements and scalar, array, map and curve
calibration characteristics.

Once defined in a user definition file, EHOOKS will create the necessary code and A2L file
entries to implement the required measurements and calibration characteristics. EHOOKS will
include implementation details about the calibration characteristics in the header file
Characteristics.h; this file must be included by any on-target bypass files that want to access
the created calibration characteristics.

9.5.1 Creating a User Definition File

A user definition file can be created either by hand (see section EHOOKS-DEV User Definition
Files) or using the built-in user definition file editor within the Build Tab.

NOTICE
If the on-target bypass is being configured using ASCET or Simulink then it is not
necessary to manually create a user definition file. Instead, ASCET or Simulink
should be used to directly specify the new measurements and calibration param-
eters (see section 10 Creating and Working with On-Target Bypass from Simulink,
or the ASCET-SE EHOOKS Add-on User Guide for full details – this can be found
in the ASCET installation directory within the folder <ASCET INSTALL DIREC-
TORY>\target\trg_ehooks\documents).

To launch the user definition editor the Edit button should be clicked next to the associated

ETAS EHOOKS v5.3 | User Guide

103 | Creating and Working with On-Target Bypass

user definition file as shown in figure 9.1

Figure 9.1: Launching the User Definition File Editor

The user definition file editor will then launch in a modal window as shown in figure 9.2. Each
tab in the user definition editor allows a different object type to be created/edited.

• Measurements: Allows new scalar measurements to be introduced for measuring
intermediate values of an on-target bypass algorithm

– Name: The name of the measurement variable

– Description: Textual description of the measurement. Will be added to the A2L file
as a Long Identifier

– Type: The A2L data type of the measurement variable

– Conversion Method: The name of the A2L COMPU_METHOD for the measurement
variable

– Minimum: The minimum value

– Maximum: The maximum value

– Bit Mask: The bit mask to be applied to the underlying value when displayed in a
measurement/calibration tool such as INCA

– Create?: Determines if EHOOKS should create the measurement implementation. If
this is not specified then the on-target bypass code should create the
implementation of the measurement as a global variable.

ETAS EHOOKS v5.3 | User Guide

104 | Creating and Working with On-Target Bypass

Figure 9.2: User Definition Editor

– Visible to RP?: Determines if EHOOKS will add an ASAP1b annotation to the
measurement to enable it to be bypassed by an external rapid prototyping system.
This can be useful, for example, to allow an external rapid prototyping system to be
used to add a new hardware sensor and provide its value into an on-target bypass
algorithm.

NOTICE
EHOOKS will not add the code to update the measurement value with the value
from the rapid prototyping system. Therefore, this code must be manually added
to the on-target bypass code. This can be done by reusing the functions EHOOKS
creates in the header files Characteristics.h and Tier1ExternalBypass.h. The func-
tions EH_GetExt<type> (handle, default) can be called. Where <type> is Byte,
Word, Long or Float32. The handle is the EHOOKS-created ASAP1b channel/vector
structure, which will always be named EH_chanvec_<name>, where name is the mea-
surement variable name and default is the value that should be returned if the rapid
prototyping system reports it is not properly connected, i.e. the default value. So, for
example, to update a 16-bit measurement called Injection_Manifold_Pressure:

Inject_Manifold_Pressure =

EH_GetExtWord(EH_chanvec_Inject_Manifold_Pressure, 0);

• Scalar Values: Allows new scalar calibration parameters to be created, enabling the
calibration of an on-target bypass algorithm

– Name: The name of the calibration parameter

– Description: Textual description of the calibration parameter. Will be added to the
A2L file as a Long Identifier

– Type: The A2L data type of the calibration parameter

– Conversion Method: The name of the A2L COMPU_METHOD for the calibration
parameter

ETAS EHOOKS v5.3 | User Guide

105 | Creating and Working with On-Target Bypass

– Minimum: The minimum value

– Maximum: The maximum value

– Bit Mask: The bit mask to be applied to the underlying value when displayed in a
measurement/calibration tool such as INCA

– Initial Value: The initial physical value to be used with the reference page of the
ECU software created by EHOOKS for the calibration parameter

• Array Values: Allows new arrays of calibration parameters to be created, enabling the
calibration of an on-target bypass algorithm

As per Scalar Values, but with the addition of:

– Array Size: The number of elements in the array of calibration parameters

– Initial Values: The initial physical values for each array element. Within the table
editor, the initial values can all be quickly set to a common default value. To set
each initial value separately, click the Edit XML button and change the values
directly in the XML file.

• Curves: Allows new curves to be created, enabling the calibration of an on-target bypass
algorithm

– Name: The name of the curve

– Description: Textual description of the curve. Will be added to the A2L file as a
Long Identifier

– Format: Defines the layout format of the curve data structure in memory. EHOOKS
supports the use of both ASCET and Simulink formats for maps and curves.

– X-Axis Number of Points: The number of entries on the curve’s X-axis

– X-Axis Type for the Number of Points: The A2L data type for the number of data
points on the curve’s X-axis

– X-Axis: Data Point Type: The A2L data type for the curve’s X-axis values

– X-Axis Conversion Method: The A2L COMPU_METHOD for the curve’s X-axis data points

– X-Axis Minimum: The minimum value for the curve’s X-axis data points

– X-Axis Maximum: The maximum value for the curve’s X-axis data points

– Input Quantity: If a measurement is used as the input to the curve, then the
measurement name can be given here. This is an optional element and is typically
blank.

– X-Axis Initial Values: The physical initial values for the curve’s X-axis data points.
Within the table editor, the initial values can all be quickly set to a common default
value. To set each initial value separately, click the Edit XML button and change
the values directly in the XML file.

– Data Type: The A2L data type for the curve’s data entries

– Data Conversion Method: The A2L COMPU_METHOD for the curve’s data entries

ETAS EHOOKS v5.3 | User Guide

106 | Creating and Working with On-Target Bypass

– Data Minimum: The minimum value for the curve’s data entries

– Data Maximum: The maximum value for the curve’s data entries

– Data Initial Values: The physical initial values for the curve’s data entries. Within
the table editor, the initial values can all be quickly set to a common default value.
To set each initial value separately, click the Edit XML button and change the
values directly in the XML file.

• Maps: Allows new maps to be created, enabling the calibration of an on-target bypass
algorithm

As per curves, but with the addition of Y-axis entries to correspond to the curve’s X-axis
entries.

• Rational Functions: Allows new A2L COMPU_METHODS (type conversion functions /
quantization formulae) to be defined

– Name: The name of the new COMPU_METHOD

– Description: Textual description of the rational function. Will be added to the A2L
file as a Long Identifier

– Format: The A2L data format, indicating how many digits should be displayed

– Unit: The physical unit string to be displayed in a measurement/calibration tool
such as INCA

– Coefficient A-F: The specification of the A2L conversion formulae using the standard
A2L approach

• Verbal Conversion Tables: Allows new A2L TAB_VERB COMPU_METHODS to be defined

– Name: The name of the new TAB_VERB COMPU_METHOD

– Description: Textual description of the verbal conversion table. Will be added to the
A2L file as a Long Identifier

– Format: The A2L data format, indicating how many digits should be displayed

– Unit: The physical unit string to be displayed in a measurement/calibration tool
such as INCA

– Pairs: The table of how to associate ECU values with descriptive labels

– Default Value: The value to be displayed when the ECU value doesn’t match any
values specified in the Pairs list.

• Use ECU Values: Defines existing ECU scalar calibration parameter which can then be
reused and accessed enabling calibration of an on-target bypass algorithm

– Name: The name of an existing ECU scalar calibration parameter to be made
available for reuse by on-target bypass code.

9.5.2 Extending the Example to Include a User Definition File

The example will be extended to introduce two scalar calibration characteristics, User_Char_1
and User_Char_2, and two scalar measurements, User_Measurement_1 and
User_Measurement_2.

ETAS EHOOKS v5.3 | User Guide

107 | Creating and Working with On-Target Bypass

<OEMUserDefines xmlns="http://www.etas.com/EHOOKS/1.0/OEMUserDefines">
<Measurement>

<Name>User_Measurement_1</Name>
<Type>ULONG</Type>
<CompuMethod>OneToOne</CompuMethod>
<Minimum>0</Minimum>
<Maximum>4.2949673E+09</Maximum>

</Measurement>
<Measurement>

<Name>User_Measurement_2</Name>
<Type>ULONG</Type>
<CompuMethod>OneToOne</CompuMethod>
<Minimum>0</Minimum>
<Maximum>4.294967E+09</Maximum>
<Create />

</Measurement>
<ValueParameter>

<Name>User_Char_1</Name>
<Type>ULONG</Type>
<CompuMethod>OneToOne</CompuMethod>
<Minimum>0</Minimum>
<Maximum>4.2949673E+09</Maximum>
<InitialValues>
<Value>1</Value>
</InitialValues>

</ValueParameter>
<ValueParameter>

<Name>User_Char_2</Name>
<Type>ULONG</Type>
<CompuMethod>OneToOne</CompuMethod>
<Minimum>0</Minimum>
<Maximum>4.294967E+09</Maximum>
<InitialValues>

<Value>1</Value>
</InitialValues>

</ValueParameter>
</OEMUserDefines>

NOTICE
The measurement User_Measurement_2 uses the <Create/> element. This in-
forms EHOOKS that themeasurement variable associated with User_Measurement_2
should be created by EHOOKS-DEV itself. If this element is not present then it is
necessary for the on-target bypass code to provide the implementation of the mea-
surement variable as a global variable.

The example on-target bypass code could then be updated to make use of these
measurements and calibration characteristics as shown here:

On-Target Bypass Function with Measurement and Calibration Parameters

#include "ConversionFuncs.h"
#include "UserBypassFuncs.h"
#include "Characteristics.h"

float User_Measurement_1; /* User_Measurement_2 is created by EHOOKS */

ETAS EHOOKS v5.3 | User Guide

108 | Creating and Working with On-Target Bypass

EH_USER_BYPASS_FUNC(MyOTBFunc)
{

/* Convert the input arguments into physical form. */
float local_AccPed_stNSetP =
EH_IMPL_TO_float_PHYS_AccPed_stNSetP(EH_ARG_GET_AccPed_stNSetP(EH_context));

float local_AirCtl_mDesBasEOM0 =
EH_IMPL_TO_float_PHYS_AirCtl_mDesBasEOM0(EH_ARG_GET_AirCtl_mDesBasEOM0(EH_context)));

User_Measurement_1 = (EH_ULONG) (local_AccPed_stNSetP +
local_AirCtl_mDesBasEOM0);

User_Measurement_2 = (EH_ULONG) (local_AirCtl_mDesBasEOM0 -
local_AccPed_stNSetP);

/* Write the output values in internal form. */
EH_ARG_PUT_AC_trqDes(User_Measurement_1 + User_Char_1);
EH_ARG_PUT_InjCrv_qPiI1Des__0__(User_Measurement_2 + User_Char_2);

/* Bypass values valid for user */
return 1;

}

No special implementation details are required within the on-target bypass code to make use
of the measurements and calibration characteristics. EHOOKS provides the necessary macros
and implementation details within the Characteristics.h header file.

NOTICE
If map/curve calibration characteristics are created, the on-target bypass code must
provide the necessary interpolation functions to perform themap/curve look-up func-
tions. The ECU software provider may optionally provide an embedded header-file
as part of the EHOOKS preparation of the ECU software to enable access to the inter-
polation routines built into the ECU software from within the on-target bypass code.
If this is the case, details will be provided by the ECU software provider.

9.6 Steps 5: Build and Run the EHOOKS-Created On-Target Bypass Software

Once the on-target bypass function has been configured and implemented, EHOOKS can be
used to implement the hooks in the original ECU software, compile the user provided
on-target bypass functions, and create the new measurements and calibration characteristics.
The resulting HEX/s19 and a2l file can then be flashed to the ECU. The result of running an
experiment in INCA is shown in figure 9.3.

9.7 EHOOKS On-Target Bypass Global Output Buffer Measurements

When on-target bypass is used in EHOOKS, a global output buffer is created to store the
results coming from the on-target bypass functions. EHOOKS makes this buffer available as
measurement values in the created hooked A2L file. For each variable hooked for on-target
bypass (whether the on-target bypass is created manually, in Simulink or in ASCET), a
measurement variable of the form EH_gbvar_<name> will be created, where is the name of the
hooked ECU variable.

Using the on-target bypass global output buffer measurements can be very useful to enable
the results of an on-target bypass function to be monitored before those bypass values are

ETAS EHOOKS v5.3 | User Guide

109 | Creating and Working with On-Target Bypass

Figure 9.3: On-Target Bypass Experiment

written to the ECU variables. If the hooked ECU variable enablers are disabled, the output
values from the on-target bypass will not be used, but they can still be monitored using these
measurements. Figure 9.3 shows an example of measuring the on-target bypass global output
buffer.

ETAS EHOOKS v5.3 | User Guide

110 | Creating and Working with On-Target Bypass from Simulink

10 Creating and Working with On-Target Bypass from Simulink

10.1 Introduction

The EHOOKS-DEV Simulink Integration package makes it efficient and easy to configure
EHOOKS and integrate Simulink models for on-target bypass. Using the EHOOKS-DEV Simulink
Integration package adds new Simulink blocks and system targets that allow the entire
EHOOKS configuration and build process to be managed directly from within Simulink. This
section details how to use the EHOOKS-DEV Simulink Integration package to create an
EHOOKS on-target bypass configuration, how to integrate EHOOKS blocks with your Simulink
model and how to build the hooked ECU software. While the focus of this section is on
Simulink model-based on-target prototyping, the EHOOKS-DEV Simulink Integration package
gives access to the full EHOOKS environment and therefore all EHOOKS features can be used.
It is, therefore, perfectly possible to create configurations mixing Simulink based on-target
bypass with constant, calibration, external and manual C code external bypass using the
EHOOKS-DEV Simulink Integration package.

NOTICE
The EHOOKS Simulink blockset is designed to support on-target-bypass experiments
only. The Simulink blockset should not be used for simulation experiments as the
behavior of the blocks is not neutral in a simulation environment and will therefore
lead to unexpected results.

10.2 EHOOKS Blocks for Simulink

The EHOOKS-DEV Simulink Integration package introduces a number of Simulink blocks to be
used both to configure EHOOKS and to establish the connection between the ECU software
and the Simulink model.

When the EHOOKS-DEV Simulink Integration package is installed and configured, an EHOOKS
block library folder will appear within the Simulink Library Browser. Within the EHOOKS folder
the main EHOOKS configuration block can be found.The EHOOKS built-in block folder contains
some standard Simulink blocks pre-configured for use with the EHOOKS module. The EHOOKS
library blocks folder shown in figure 10.1 contains the EHOOKS block-set that enables the
configuration of EHOOKS and the integration of the ECU software and the Simulink model.

In the following sections each of the EHOOKS blocks for Simulink will be introduced and the
functionality outlined. For the details of how to use these blocks within Simulink for on-target
bypass modelling see section Simulink Modelling for On-Target Bypass.

NOTICE
EHOOKS V4.9 introduced an upgraded Simulink blockset. Existing Simulink models
that include blocks created with earlier versions are automatically migrated to use
the new EHOOKS V4.9 blockset. It should be noted however that Simulink models
created with EHOOKS V4.9 blocks cannot be used with earlier Simulink blocksets.

10.2.1 EHOOKS Configuration Block

The EHOOKS configuration block (see figure 10.2) adds EHOOKS support to a Simulink model.
This block must be added to the top level of the Simulink model and must be configured
before attempting to work with the other EHOOKS blocks.

To manage the EHOOKS configuration represented by the EHOOKS configuration block, simply

ETAS EHOOKS v5.3 | User Guide

Figure 10.1: EHOOKS Blockset for Simulink On-Target Bypass

Figure 10.2: EHOOKS Configuration Block

112 | Creating and Working with On-Target Bypass from Simulink

double-click it. This will launch an initial Simulink interface (see figure 10.3) to manage
which EHOOKS configuration file is associated with the configuration block.

Figure 10.3: EHOOKS Configuration Block Simulink Interface

The EHOOKS-DEV configuration section allows the Simulink model (and the EHOOKS
configuration block) to be associated with an EHOOKS configuration file.

• To use an existing EHOOKS configuration file, click the Import button to locate the
EHOOKS configuration file (or simply type the file name/path into the text field) and then
click OK. A relative path to the EHOOKS configuration file will be generated if possible.

• To create a new EHOOKS configuration file, simply click the New button to define the
new file name and location, and then click OK.

NOTICE
It is recommended that the EHOOKS configuration file is created in the same direc-
tory as the Simulink model (default behaviour) to allow the model directory to be
easily copied from one computer to another without needing to reconfigure the path
names. The base directory for relative paths to the EHOOKS configuration file is al-
ways the model directory.

Please ensure that the model file can always be located by MATLAB, either by chang-
ing the current working directory or by updating the MATLAB search path.

Once an EHOOKS configuration file has been assigned to the EHOOKS configuration block, its
path is displayed in the Simulink model directly below the EHOOKs configuration block as
shown in figure 10.2 along with the EHOOKS project identifier. Creating a new EHOOKS
configuration or opening the existing EHOOKS configuration will launch the main EHOOKS-DEV
front-end (see figure 5.1, in section 5 Configuring EHOOKS-DEV). Once the EHOOKS-DEV
front-end is loaded, it is recommended to simply minimize it rather than close it to make
interaction with the other EHOOKS Simulink blocks more efficient.

NOTICE
If the EHOOKS-DEV front-end is not opened then, when an EHOOKS Simulink block
is configured, the EHOOKS-DEV front-end will first have to be launched, taking sev-
eral seconds. To prevent this, it is recommended to simply keep the EHOOKS-DEV
front-end opened in the background (or minimized) all the time when working with
a Simulink model using EHOOKS blocks.

ETAS EHOOKS v5.3 | User Guide

113 | Creating and Working with On-Target Bypass from Simulink

NOTICE
When EHOOKS-DEV (or one of its dialog boxes) is launched from within Simulink
by double-clicking on a Simulink block, sometimes the EHOOKS-DEV window will not
always come to the front. Therefore, it may be hidden from view behind the Simulink
window. It is therefore necessary to check behind the Simulink window to find the
EHOOKS-DEV dialogs.

When an EHOOKS-DEV dialog is present on the screen, the Simulink user interface
may become unresponsive (the actual behaviour depends on the used MATLAB ver-
sion). Simply close the EHOOKS-DEV dialog to return control to Simulink to continue
working.

Two additional checkboxes are provided to complete the configuration process:

• The Use Display ID as project default portname checkbox causes all ECU variables
displayed by the various parts of the EHOOKS Simulink Integration package to display by
default the A2L DISPLAY_IDENTIFIER for the variable rather than the A2L ECU variable
name. The usage of display identifiers can then still be disabled on a per-block basis.

• The Use Floating point port types checkbox causes all ECU variable/parameter
read/write block ports to use the floating point data type (i.e. data type double) if signal
conversion is turned off. If the option is disabled, the original A2L variable/parameter
data-type is used for ECU variable/parameter read/write block ports if signal conversion
is turned off. For a Simulink model created with the EHOOKS V3.0 blockset (or later) the
option is disabled by default. When a Simulink model created with the EHOOKS V2.0
blockset is imported, the option is enabled by default to ensure backwards compatibility.
This checkbox therefore allows the user to choose between using EHOOKS V2.0 or V3.0
default behavior.

10.2.2 EHOOKS ECU Trigger Source Block

The EHOOKS ECU trigger source block (ECU trigger block), shown in figure 10.4, allows
Simulink model code to be integrated into the execution of the ECU software.

The ECU trigger block is a function-call generator block that should be attached to a Simulink
function-called triggered subsystem. An ECU trigger block effectively represents a single
on-target bypass function to be integrated into the ECU software by EHOOKS.

NOTICE
The name of the created on-target bypass function will match the name of the ECU
trigger block (the name will be made C conformant though). If a specific on-target
bypass function name is desired, the block should be renamed to contain this name.

NOTICE
The ECU trigger block only provides a scalar trigger signal. If multiple trigger sources
for the same on-target bypass function are required then a de-multiplexer block can
be used to create them via forking out the signal.

To configure the ECU trigger block, simply double-click it. This will launch the EHOOKS
configuration interface for the ECU trigger block, as shown in figure 10.5. The Dispatch Point

ETAS EHOOKS v5.3 | User Guide

114 | Creating and Working with On-Target Bypass from Simulink

Figure 10.4: EHOOKS ECU Trigger Source block

section of the dialog allows the selection of an existing ECU process or the EHOOKS hook (of
an associated measurement variable) to be selected to trigger the execution of the on-target
bypass function. The list displays the set of ECU processes that have been prepared by the
ECU software provider for the purposes of dispatching on-target bypass functions, and the set
of hooked ECU measurement variables. If the list is very long, then it can be filtered using the
filter text box. The filter string can include the wildcard characters ? and *. ? will match any
single character and * will match any number of characters. Note that the filter string contains
an implicit * wildcard at the end of the string. The character $ can be used to match the end
of a variable name. As the filter string is updated, the variable list will dynamically update to
show any matching ECU process.

In some situations, the ECU software provider may have prepared some ECU processes to
allow their use to dispatch on-target bypass functions, but indicated that their names should
not be displayed in the EHOOKS-DEV user interface. In this case, the bypass container can be
added to the configuration by typing its name into the Manual Add text field and clicking the
Add button.

The Dispatch Type drop-down allows configuration of whether the Simulink model code will
be executed before (Pre-Dispatch, default) or after (Post-Dispatch) the bypass container

By default, hooked variables are updated with the current bypass value at the point where the
ECU variable would have originally been written by the delivered ECU software. Additionally,
by checking the Force Writes to Outputs at Dispatch Point checkbox, EHOOKS enables
the configuration of forced-writes directly after the on-target bypass function has executed.
When this option is configured, the calculated bypass values will be immediately and forcibly
written into the ECU measurement variables configured as outputs to the on-target bypass
function.

Elevated Permissions may be enabled from the configuration interface, by checking Force
Writes to Output Dispatch Point followed by Elevated Permissions for Force Writes.
To enable the checkbox, the Enable Elevated Permissions project option must be enabled
from EHOOKS-DEV Front-End (see 11.5.4 Enable Elevated Permissions).

The General Properties section allows the use of an Enabler and Indicator to be

ETAS EHOOKS v5.3 | User Guide

Figure 10.5: EHOOKS ECU Trigger Source Configuration

116 | Creating and Working with On-Target Bypass from Simulink

configured, and displays a read-only list of the groups which include this ECU trigger block.
The Enabler settings allow the configuration of whether EHOOKS will add a calibration
characteristic that can then be used at run-time to control whether or not the on-target
bypass function is activated. To configure an enabler, the checkbox must be ticked and then
the name of the enabler calibration characteristic can be set in the text field. If an enabler is
configured, it is also possible to configure an indicator. The Indicator setting allows the
configuration of whether EHOOKS will add a measurement variable that will mirror the current
value of the enabler characteristic at run-time. To configure an indicator, the checkbox must
be ticked and then the name of the indicator measurement variable can be set in the text field.

NOTICE
To deselect a dispatch point, press the Ctrl button while selecting the highlighted
item. An undefined dispatch point is particularly useful if the OTB function shall be
the subject of manual dispatching (see ECU trigger delegation block (see section
10.2.6 EHOOKS ECU Trigger Delegate Block).

Finally, a hook control variable can be added to the configuration by ticking the Create
checkbox in the Hook Control Variable section and setting the name to be used for the control
variable. This control variable can then be managed at run-time to determine if the on-target
bypass function is enabled or disabled. The control variable can be managed via a C-code
on-target bypass function, or by the Simulink model using the ECU hook control variable write
block (see section 10.2.7 EHOOKS ECU Hook Control Variable Write Block).

The Initial Value of the hook control variable can be set to either Disabled (default) or
Enabled. Setting the Initial Value to Enabled allows the hook to be enabled when the ECU is
first powered up.

Finally, the hook control variable can be configured to Visible to RP. If this option is
configured, it is possible to use INTECRIO to write to the hook control variable from bypass
code running on external rapid prototyping hardware.

NOTICE
The configured control variable name will be created as a C variable that can then be
managed at run-time by an on-target bypass function. The configured name should
therefore be a valid C identifier. However, EHOOKS will automatically convert the
name into a valid C identifier if the name isn’t a valid C identifier. This is done by con-
verting any characters that aren’t allowed in a C identifier into double underscores
(__). For example, a variable name of AccPed_stNSetP.controlwill be converted to
AccPed_stNSetP__control, and cyl_pres[2] will be converted to cyl_pres__2__.

The converted C name will need to be used in any on-target bypass function that
wants to manage a control variable at run-time.

Once configured, EHOOKS will ensure that the hooked ECU software will execute the model
code contained within the attached function-called subsystem whenever the ECU process
associated with the EHOOKS ECU function trigger source block is executed.

10.2.3 EHOOKS ECU Variable Reads Block

The EHOOKS ECU Variable Reads block, shown in figure 10.6, allows Simulink models to read
from multiple existing ECU variables.

ETAS EHOOKS v5.3 | User Guide

117 | Creating and Working with On-Target Bypass from Simulink

Figure 10.6: EHOOKS ECU Variable Reads Block

The ECU Variable Reads block is effectively a data source block that can be attached to the
Simulink model to provide access to ECU data. An ECU Variable Reads block must only be
placed inside a subsystem that is connected to an ECU trigger block; the ECU Variable Reads
block can be used at any hierarchical level in the model as necessary provided this condition
is maintained. The model can contain as many ECU Variable Reads blocks as required to help
structure the model.

NOTICE
Since the ECU variable read assignments are placed globally, the ECU Variable Reads
blocks don’t work with the code reuse concept of Simulink. If you plan to use code
reuse subsystems (or similar constructs) please place the ECU Variable Reads blocks
outside of the model parts that shall be subject of code reuse.

To configure the ECU Variable Reads block, simply double-click it. This will launch the
EHOOKS configuration interface for the ECU Variable Reads block, as shown in figure 10.7.
The left-hand column allows the displayed variable list to be filtered by the A2L file function
groups (including filtering by the input, output and local measurements to a function). To
quickly move to the desired function group, click on an entry in the function group list to move
focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into
the Filter String text box. The filter string can include the wildcard characters ? and *. ? will
match any single character and * will match any number of characters. Note that the filter
string contains an implicit * wildcard at the end of the string. The character $ can be used to
match the end of a variable name. As the filter string is updated, the variable list will
dynamically update to show any matching ECU variables that can be read.

The right-hand column shows the ECU variables that have been selected for reading. ECU

ETAS EHOOKS v5.3 | User Guide

118 | Creating and Working with On-Target Bypass from Simulink

variables can be moved in and out of this list using the >> and << buttons, or by pressing
Ctrl+right-arrow and Ctrl+left-arrow, respectively. Additionally, double-clicking on an entry
in either list will move it to the other list. If an array variable has been selected for reading,
the elements of the array to be hooked can be configured by clicking on the … button. The
number of elements to be read is then shown in the right-hand column. For each variable, the
Convert checkbox indicates whether the variable should be read in ECU implementation form
or if it should first be converted to physical representation before being passed into the
Simulink model. If the check box is ticked, the associated variable will be converted by
EHOOKS to physical representation. The Convert All checkbox allows all selected variables to
be quickly changed between being read in ECU implementation or physical representations.

Finally, the order in which the selected variables will be displayed with the ECU variable read
block will match the order of the variables in the selected variable list. This can be adjusted by
selecting a variable and using the and buttons.

Figure 10.7: EHOOKS ECU Variable Reads Block Configuration

Once the OK button is selected, the ECU Variable Reads block will be updated to contain an
output port for each selected variable. The name of each port will match the associated ECU
variable name and will indicate whether the variable is being accessed in ECU implementation
or physical representation.

NOTICE
It is possible to read the same ECU variable in more than one ECU variable read
block. This can be used to allow the same ECU variable to be read in both ECU
implementation and physical representation.

10.2.4 EHOOKS ECU Variable Writes Block

The EHOOKS ECU Variable Writes block, shown in figure 10.8, allows Simulink models to write
to multiple existing ECU variables (i.e. write to ECU variables that EHOOKS will hook within the

ETAS EHOOKS v5.3 | User Guide

119 | Creating and Working with On-Target Bypass from Simulink

ECU software).

Figure 10.8: EHOOKS ECU Variable Writes Block

The EHOOKS ECU Variable Writes block is effectively a data sink block that can be attached to
the Simulink model to allow it to bypass existing ECU variables. An EHOOKS ECU Variable
Writes block must only be placed inside a subsystem that is connected to an ECU trigger
block; the ECU Variable Writes block can be used at any hierarchical level in the model as
necessary provided this condition is maintained. The model can contain as many ECU variable
write blocks as required to help structure the model.

To configure the ECU Variable Writes block, simply double-click it. This will launch the
EHOOKS configuration interface for the ECU Variable Writes block, as shown in figure 10.9.
The left-hand column allows the displayed variable list to be filtered by the A2L file function
groups (including filtering by the input, output and local measurements to a function). To
quickly move to the desired function group, click on an entry in the function group list to move
focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into
the Filter String text box. The filter string can include the wildcard characters ? and *. ? will
match any single character and * will match any number of characters. Note that the filter
string contains an implicit * wildcard at the end of the string. The character $ can be used to
match the end of a variable name. As the filter string is updated, the variable list will
dynamically update to show any matching ECU variables that can be hooked.

The right-hand column shows the ECU variables that have been selected for being written to.
ECU variables can be moved in and out of this list using the >> and << buttons, or by pressing
Ctrl+right-arrow and Ctrl+left-arrow, respectively. Additionally, double-clicking on an entry
in either list will move it to the other list. If an array variable has been selected for being
written to, the elements of the array to be written can be configured by clicking on the …
button. The number of elements to be written to is then shown in the right-hand column. For
each variable, the Convert checkbox indicates whether the variable coming from the
Simulink model is in ECU implementation form or if it is in physical representation and
EHOOKS should convert it to implementation form before writing it back to the ECU variable. If
the check box is ticked, the associated variable will be converted by EHOOKS from physical
representation. The Convert All checkbox allows all selected variables to be quickly changed

ETAS EHOOKS v5.3 | User Guide

120 | Creating and Working with On-Target Bypass from Simulink

between being provided in ECU implementation or physical representations.

Finally, the order in which the selected variables will be displayed with the ECU variable write
block will match the order of the variables in the selected variable list. This can be adjusted by
selecting a variable and using the ^ and v buttons.

Figure 10.9: EHOOKS ECU Variable Writes Block Configuration

Once the OK button is selected, the ECU Variable Writes block will be updated to contain an
input port for each selected variable. The name of each port will match the associated ECU
variable name and will indicate whether the variable is being accessed in ECU implementation
or physical representation.

NOTICE
It is possible to write the same ECU variable in more than one ECU variable writes
block. Typically this is useful if the on-target bypass experiment requires a different
calculation for a variable depending on the ECU operation mode. Care should be
taken if writing to the same ECU variable to avoid the case where the ECU variable
flip-flops between the provided values. This can be achieved by ensuring the correct
conditional code is introduced into the model or through the use of EHOOKS control
variables to programmatically enable/disable on-target bypass functions (to ensure
that only one of the on-target bypass functions that writes to a specific variables is
enabled at any one time).

Once an ECU variable has been added to an ECU Variable Writes block, EHOOKS will create a
hook of type on-target bypass for this ECU variable. The additional properties of the variable
hooks added via the ECU Variable Writes block can be configured in the main EHOOKS-DEV
user interface. If EHOOKS-DEV is not already running, simply double-click on the EHOOKS
configuration block to launch it. To configure the additional properties of a hook added via the
ECU variable write block switch to the Variable Bypass tab, and then select the Modeling

ETAS EHOOKS v5.3 | User Guide

121 | Creating and Working with On-Target Bypass from Simulink

Tool hooked variable list using the tab at the bottom of the window.

Figure 10.10: Configuring Hook Properties for an ECU Variable Writes Block

The interface for configuring the hook properties is identical to that for ECU variable hooks as
described in section 5.2.2 Configuring Properties of a Variable Hook, with the exception that
the Hook Type cannot be modified from the selected On-Target Bypass type and hence
there is no need to configure the corresponding Source section.

The Hook Mode drop down allows the way in which the bypass value is used by the hook to
be configured. The Hook Mode can be:

• Replacement Bypass

The configured bypass value will be used by the hook to completely replace (overwrite)
the ECU calculation for the hooked ECU variable.

• Offset Bypass

The configured bypass value will be added or subtracted to the ECU calculation for the
hooked ECU variable.

• Multiply Bypass

The configured bypass value will be multiplied with the ECU calculation for the hooked
ECU variable.

The Create Backup Copy drop down allows the configuration of whether EHOOKS will create
new ECU variables to record a copy of the ECU calculation for the hooked ECU variables. The
drop down allows the selection from three options:

• Project Default

The creation of the backup copy ECU measurements will be determined based on the
project wide setting configured on the General Settings Tab (see section 5.1.3 Project
Settings). This makes it quick and easy to change the setting for all the hooks together.

ETAS EHOOKS v5.3 | User Guide

122 | Creating and Working with On-Target Bypass from Simulink

Figure 10.11: Configuring the Hook Mode

• Yes

This means EHOOKS will create a new measurement variable and keep it up to date with
the most recent ECU calculation for the hooked ECU variable.

• No

This means EHOOKS will not create a backup copy measurement.

Figure 10.12: Configuring the Backup Copy Setting

The Create Safety Check drop down allows the configuration of whether EHOOKS will add
additional run-time code to monitor the run-time performance of the hook. This code will
determine if the hook is running correctly and, if not, will disable the hook and indicate that an
error has been detected. The drop down allows section from three options:

• Project Defaults

The addition of safety-checking code will be determined based on the project wide
setting configured on the General Settings Tab (see section 5.1.3 Project Settings). This
makes it quick and easy to change the setting for all the hooks together.

• Yes

This means EHOOKS will create safety checking code for the hooked ECU variable to
monitor its performance at run-time.

• No

This means EHOOKS will not monitor the performance of the hooked ECU variable at
run-time.

Figure 10.13: Configuring the Safety Checks Setting

The Enabler settings allow the configuration of whether EHOOKS will add a calibration

ETAS EHOOKS v5.3 | User Guide

123 | Creating and Working with On-Target Bypass from Simulink

characteristic that can then be used at run-time to control whether or not the hook is
activated. To configure an enabler, the checkbox must be ticked and then the name of the
enabler calibration characteristic can be set in the text field. The initial value of the hook
enabler is set to disabled by default, which will cause the hook to be turned off at ECU
startup. The initial value of the hook enabler can be changed to enabled from the General
Properties section, which will allow the hook to be turned on at ECU startup.

If an enabler is configured, it is also possible to configure an indicator. The Indicator setting
allows the configuration of whether EHOOKS will add a measurement variable that will mirror
the current value of the enabler characteristic at run-time. To configure an indicator, the
checkbox must be ticked and then the name of the indicator measurement variable can be set
in the text field.

Figure 10.14: Configuring Variable Bypass Enabler and Indicator Settings

In the Advanced section of the hook property configuration, there are three configuration
options.

Figure 10.15: Configuring Variable Bypass Advanced Settings

The first two of these relate to forcing the update of a bypass value for a hooked ECU variable.
TheWrite Locations displays a read-only list of the configured ECU processes in which an
update of the bypass value for the hooked ECU variable will be performed. The set of write
locations can be updated by clicking the Edit button. This will display the Select Forced
Write Locations dialog. In the left column, a list of the available ECU processes is displayed.
EHOOKS can be configured to force the update of the bypass value in one or more of these
processes by moving them into the right column by first selecting them and then using the >>
button. To remove a forced write location from the configuration, first select it and click the <<
button. The dialog offers a filter to help locate the desired ECU process; this behaves in the
same way as for variable selection (see section 5.2.1 Selecting Variables to Be Hooked).

In some situations, the ECU software provider may have prepared some ECU processes to
allow their use as forced write location, but indicated that their names should not be displayed
in the EHOOKS-DEV user interface. In this case, such forced write locations can be added to
the configuration by typing their name into the Manual Add text field and clicking the Add
button.

The Inline Forced Write check box allows the configuration of a forced write that EHOOKS
will automatically insert at the start of every ECU process where the hooked ECU variable is
updated within the original ECU software.

ETAS EHOOKS v5.3 | User Guide

124 | Creating and Working with On-Target Bypass from Simulink

Figure 10.16: Selecting Forced Write Locations

Finally, a control variable can be added to the configuration by ticking the Control checkbox
and setting the name to be used for the control variable.

NOTICE
The configured control variable name will be created as a C variable that can then
be managed at run-time by an on-target bypass function. Therefore the configured
name should be a valid C identifier. However, EHOOKS will automatically convert the
name into a valid C identifier if the name isn’t a valid C identifier. This is done by con-
verting any characters that aren’t allowed in a C identifier into double underscores
(__). For example, a variable name of AccPed_stNSetP.controlwill be converted to
AccPed_stNSetP__control, and cyl_pres[2] will be converted to cyl_pres__2__.

The converted C name will need to be used in any on-target bypass function that
wants to manage a control variable at run-time.

10.2.5 EHOOKS ECU Backup Variable Reads Block

The EHOOKS ECU Backup Variable Reads block, shown in figure 10.17, allows Simulink to read
from the ECU calculated values for multiple hooked ECU variables (i.e. the values calculated by
the original ECU software before the ECU variables were hooked and bypassed by EHOOKS).

The ECU Backup Variable Reads block is effectively a data source block that can be attached
to the Simulink model to provide access to ECU data. An ECU Backup Variable Reads block
must only be placed inside a subsystem that is connected to an ECU trigger block; the ECU
Backup Variable Reads block can be used at any hierarchical level in the model as necessary,
provided this condition is maintained. The model can contain as many ECU backup variable
read blocks as required to help structure the model.

ETAS EHOOKS v5.3 | User Guide

125 | Creating and Working with On-Target Bypass from Simulink

Figure 10.17: EHOOKS ECU Backup Variable Reads Block

To configure the ECU Backup Variable Reads block, simply double-click it. This will launch
the EHOOKS configuration interface for the ECU Backup Variable Reads block, as shown in
figure 10.18. The left-hand column allows the displayed variable list to be filtered by the A2L
file function groups (including filtering by the input, output and local measurements to a
function). To quickly move to the desired function group, click on an entry in the function
group list to move focus and then begin typing.

The middle-column displays a variable list which can be filtered by typing a filter string into
the Filter String text box. The filter string can include the wildcard characters ? and *. ? will
match any single character and * will match any number of characters. Note that the filter
string contains an implicit * wildcard at the end of the string. The character $ can be used to
match the end of a variable name. As the filter string is updated, the variable list will
dynamically update to show any matching ECU variables that have backup variables that can
be selected for reading.

The right-hand column shows the EHOOKS-created backup variables that have been selected
for reading. Backup variables can be moved in and out of this list using the >> and << buttons
respectively. Additionally, double-clicking on an entry in either list will move it to the other
list. For each backup variable, the Convert checkbox indicates whether the variable should
be read in ECU implementation form or if it should first be converted to physical
representation before being passed into the Simulink model. If the check box is ticked, the
associated variable will be converted by EHOOKS to physical representation. The Convert All
checkbox allows all selected variables to be quickly changed between being read in ECU
implementation or physical representations.

Finally, the order in which the selected variables will be displayed with the ECU Backup
Variable Reads block will match the order of the variables in the selected variable list. This
can be adjusted by selecting a variable and using the ^ and v buttons.

Once the OK button is selected, the ECU Backup Variable Reads block will be updated to
contain an output port for each selected variable. The name of each port will match the

ETAS EHOOKS v5.3 | User Guide

126 | Creating and Working with On-Target Bypass from Simulink

Figure 10.18: EHOOKS ECU Backup Variable Reads Block Configuration

associated ECU variable name and will indicate whether the variable is being accessed in ECU
implementation or physical representation.

NOTICE
It is possible to read the same backup measurement in more than one ECU Backup
Variable Reads block. This can be used to allow the same backup variable to be read
in both ECU implementation and physical representation.

10.2.6 EHOOKS ECU Trigger Delegate Block

The EHOOKS ECU Trigger Delegate Block, shown in figure 10.19, allows a Simulink model to
trigger the execution of an EHOOKS on-target bypass function.

The ECU Trigger Delegate Block is effectively a function-call sink and should be connected to a
function-call generator. The source of the connected function-call generator must be
contained within a subsystem hierarchy that is connected to an EHOOKS trigger block.

To configure the ECU Trigger Delegate Block it should simply be double-clicked. This will
launch the EHOOKS configuration interface for the EHOOKS trigger delegation block as shown
in figure 10.20.

WARNING
The use of the ECU Trigger Delegate Block means that any timing information pro-
vided by EHOOKS to the Simulink model will be incorrect. The ECU Trigger Delegate
Block should therefore never be used when time-dependent Simulink blocks are used
within the model.

ETAS EHOOKS v5.3 | User Guide

Figure 10.19: EHOOKS ECU Trigger Delegate Block

Figure 10.20: EHOOKS ECU Trigger Delegate Block Configuration

128 | Creating and Working with On-Target Bypass from Simulink

10.2.7 EHOOKS ECU Hook Control Variable Write Block

The EHOOKS ECU hook control variable write block, shown in figure 10.21, allows a Simulink
model to easily write to an EHOOKS hook control variable (see Control Variables) to control
whether or not an associated hook or on-target bypass function should be enabled.

Figure 10.21: EHOOKS ECU Hook Control Variable Write Block

The control variable write block is effectively a data sink block providing a single input port. If
a value of 0x12 (18 in decimal) is written to this port, the hooks/on-target bypass functions
associated with the configured hook control variable will be enabled. If any other value is
written, the hooks/on-target bypass functions associated with the configured hook control
variable will be disabled.

To configure the control variable write block, simply double-click it. This will launch the
EHOOKS configuration interface for the control variable write block, as shown in figure 10.22.
Within the text box, the name of the required control variable should be specified to match
the name configured within the main EHOOKS-DEV user interface.

Figure 10.22: EHOOKS ECU Hook Control Variable Write Block Configuration

ETAS EHOOKS v5.3 | User Guide

129 | Creating and Working with On-Target Bypass from Simulink

NOTICE
The name configured must match the C name of the EHOOKS hook control variable.

It is important to remember that EHOOKS will automatically convert the name into a
valid C identifier if a configured hook control variable name isn’t a valid C identifier.
This is done by converting any characters that aren’t allowed in a C identifier into dou-
ble underscores (__). For example, a variable name of AccPed_stNSetP.control
will be converted to AccPed_stNSetP__control, and cyl_pres[2] will be converted
to cyl_pres__2__.

The converted C name will need to be used when configuring the control variable
write block.

10.2.8 EHOOKS ECU Value Parameter Read Block

The EHOOKS ECU Value Parameter Read Block, shown in figure 10.23 allows a Simulink model
to read from a scalar calibration parameter that exists within the original ECU software.

Figure 10.23: EHOOKS ECU Value Parameter Read Block

The ECU Value Parameter Read Block is effectively a data source block providing a single
output port. The output port will provide the Simulink model with the current run-time value of
a configured ECU scalar calibration parameter.

To configure the ECU Value Parameter Read Block, simply double-click it. This will launch the
EHOOKS ECU characteristic selection window shown in

Figure 10.24. This window lists all of the available scalar ECU characteristics that can be
selected for use in the Simulink model. The name of the ECU characteristic currently used by
the block is automatically displayed as the default selection. The list of ECU characteristics

ETAS EHOOKS v5.3 | User Guide

130 | Creating and Working with On-Target Bypass from Simulink

displayed in the window can be filtered by typing a string within the Filter String text field.
The filter string can include the wildcard characters ? and *. ? will match any single character
and * will match any number of characters. Note that the filter string contains an implicit *
wildcard at the end of the string. The character $ can be used to match the end of a
charcteristic name. As the filter string is updated, the characteristic list will dynamically
update to show any matching ECU characteristics that can be read.

The convert check-box indicates whether the ECU characteristic value should be converted
into physical representation before being provided to the Simulink model or if it should be left
in ECU implementation representation. If the check-box is ticked, the associated ECU scalar
characteristic value will be converted by EHOOKS to physical representation.

Figure 10.24: EHOOKS ECU Value Parameter Read Block Configuration

Once the OK button is selected, the ECU parameter read block will be updated to contain an
output port and the name will be updated to match the selected ECU scalar characteristic.

10.2.9 EHOOKS ECU Variable Read/Write Blocks

EHOOKS provides three blocks that have a single (fixed) read or write port. These blocks are
useful when the ECU variables to be read from or written to for particular Simulink signals are
changed frequently. The available blocks are:

• ECU Variable Read block

• ECU Variable Write block

ETAS EHOOKS v5.3 | User Guide

131 | Creating and Working with On-Target Bypass from Simulink

• ECU Backup Variable Read block

The configuration process for these blocks is identical to that described in sections 10.2.3,
10.2.4 and 10.2.5 for the ECU variable multiple read/write blocks.

The advantage of using one of the ECU single variable read or write blocks is that the single
port is static and so is never disconnected for these new blocks. This attribute is useful for
providing a robust mechanism when automated, script- based configuration of statically
provided EHOOKS blocks is required.

10.2.10 EHOOKS ECU Function Call Block

When using EHOOKS to perform on-target prototyping experiments, it is often useful to be
able to call a function that exists in the original ECU software from a Simulink model. This can
be easily achieved by using the EHOOKS ECU Function Call block as shown in figure 10.18.

Figure 10.25: EHOOKS ECU Function Call Block

Double clicking on the EHOOKS ECU Function Call block brings up a configuration dialog that
includes a list of all of the available ECU functions that it is possible to call from the Simulink
model. Select an ECU function to be called from the model by clicking on the name of the
function in the list and then click the OK button. The name of the ECU function and the
correct number of input and output ports are then automatically added to the ECU Function
Call block allowing inputs and outputs to be connected.

NOTICE
The list of available ECU functions that can be called from a Simulink model is defined
by the ECU software supplier as part of the EHOOKS preparation process.

NOTICE
The EHOOKS ECU Function Call block provides support for passing scalar arguments
to the ECU function being called. Passing of pointers, arrays and structures is NOT
supported. Additionally the use of floating point arguments is not supported for
some Renesas SH2 based ECUs.

ETAS EHOOKS v5.3 | User Guide

132 | Creating and Working with On-Target Bypass from Simulink

10.2.11 EHOOKS RP-Visible Measurement block

When performing prototyping experiments, it is sometimes useful to be able to feed external
signals into a model running on the ECU. To support this use case, it is necessary to write to a
measurement inside the model running on the ECU from some code running on external Rapid
Prototyping (RP) hardware.

To do this in EHOOKS, an RP-Visible measurement must be created in the Simulink model
using the EHOOKS RP-Visible Measurement block as shown in figure 10.26.

Figure 10.26: EHOOKS RP-Visible Measurement block

The EHOOKS RP-Visible Measurement block is added to the Simulink model. Double clicking
on the block will then bring up the dialog shown in figure 10.26, allowing the measurement
name, data type and other properties to be configured. The EHOOKS RP-Visible Measurement
block is derived from the Simulink ‘Data Store Memory’ block and hence the configuration
parameters and behaviour are the same for both blocks.

When a Simulink model that includes an RP-Visible Measurement is built, EHOOKS will create
additional information in the A2L file that allows a Rapid Prototyping tool such as INTECRIO to
see and configure a write to the measurement from code running on external RP hardware.

10.2.12 EHOOKS ECU Complex Calibration Parameter Read block

The EHOOKS ECU Complex Calibration Parameter Read Block, shown in figure 10.27 allows a
Simulink model to read from complex calibration parameters (Maps, Curves, Cuboids) that
exist within the original ECU software.

The ECU Complex Calibration Parameter Read Block is effectively a data source block
providing a single output port. The output port will provide the Simulink model with the
current run-time value of a configured ECU complex calibration parameter.

To configure the ECU Complex Calibration Parameter Read Block, simply double-click it. This
will launch the Block Parameters dialog shown in figure 10.27. This Block Parameters dialog
allows the complex characteristic to be selected, and relevant Similink options to be
configured. By clicking Select Complex Characteristics, the dialog shown in figure 10.28
will be displayed.

The EHOOKS Select Complex Characteristics dialog lists all of the available complex ECU
characteristics that can be selected for use in the Simulink model. The name of the ECU
characteristic currently used by the block is automatically displayed as the default selection.

ETAS EHOOKS v5.3 | User Guide

Figure 10.27: EHOOKS ECU Complex Calibration Parameter Read block

Figure 10.28: EHOOKS Select Complex Characteristics dialog

134 | Creating and Working with On-Target Bypass from Simulink

The list of ECU characteristics displayed in the window can be filtered by typing a string within
the Filter String text field. The filter string can include the wildcard characters ? and *. ? will
match any single character and * will match any number of characters. Note that the filter
string contains an implicit * wildcard at the end of the string. The character $ can be used to
match the end of a charcteristic name. As the filter string is updated, the characteristic list will
dynamically update to show any matching ECU characteristics that can be read.

The convert check-box indicates whether the ECU characteristic value should be converted
into physical representation before being provided to the Simulink model or if it should be left
in ECU implementation representation. If the check-box is ticked, the associated ECU scalar
characteristic value will be converted by EHOOKS to physical representation.

The number of inputs to the ECU Complex Calibration Parameter Read block will depend on
the type of complex characteristics selected. The number of inputs to the block will be in 1 for
a Curve, 2 for a Map and 3 for a Cuboid.

The Block Parameters dialog shown in figure 10.27 also allows the configuration of the
Interpolation method, Extrapolation Method, Index search method and Diagnostic for
out-of-range input. These are Simulink properties of a lookup table which are used when
reusing the complex characteristic data.

NOTICE
Some limitations apply to the use of the ECU Complex Calibration Parameter Read
Block.

10.2.12.1 Limitations

The limitations to the use of the ECU Complex Calibration Parameter Read Block are as follows.

• The ECU Complex Calibration Parameter Read Block is only supported with versions of
Matlab from 2016b onwards

• Reuse of Complex ECU Characteristics is only supported when both of the below
parameters are present in the Record layout of a given Characteristic in the a2l file.

AXIS_PTS_X / _Y / _Z / _4 / _5
FNC_VALUES

• Reuse of Complex ECU Characteristics is only supported when one of the following
parameters are present in the Record Layout of the complex characteristics in the a2l
file.

STATIC_ADDRESS_OFFSETS
STATIC_RECORD_LAYOUT
FNC_VALUES as [ROW_DIR|COLUMN_DIR]
FIX_NO_AXIS_PTS_X / _Y / _Z / _4 / _5

• Reuse of MAP and CUBOID characteristics is only supported when the FNC_VALUES are
ROW_DIR.

• Reuse of CURVE characteristics is supported when the FNC_VALUES are either ROW_DIR
and COLUMN_DIR.

• Reuse of Complex ECU Characteristics is not supported when one or more of the below
parameters are available in the Record layout of the complex characteristics in the a2l
file.

ETAS EHOOKS v5.3 | User Guide

135 | Creating and Working with On-Target Bypass from Simulink

AXIS_RESCALE_X
DIST_OP_X / _Y / _Z / _4 / _5
NO_RESCALE_X
OFFSET_X / _Y / _Z / _4 / _5
RESERVED
RIP_ADDR_W
RIP_ADDR_X / _Y / _Z / _4 / _5
SHIFT_OP_X / _Y / _Z / _4 / _5
SRC_ADDR_X / _Y / _Z / _4 / _5
STATIC_RECORD_LAYOUT without FNC_VALUES as COLUMN_DIR

10.2.13 EHOOKS ECU Value Block Cal Param Read block

The EHOOKS ECU Value Block Cal Param Read block, shown in figure 10.29 allows a Simulink
model to read from complex calibration parameters of type VAL_BLK that exist within the
original ECU software.

Figure 10.29: EHOOKS ECU Value Block Cal Param Read block

The ECU Value Block Cal Param Read Block is effectively a data source block providing a
single output port. The output port will provide the Simulink model with the current run-time
value of a configured ECU complex calibration parameter.

To configure the ECU Value Block Cal Param Read Block, simply double-click it. This will
launch the Block Parameters dialog shown in figure 10.29. This Block Parameters dialog
allows the Value-Block Characteristic to be selected. By clicking Select Complex
Characteristics, the dialog shown in figure 10.28 will be displayed, here you can select the
Value-Block Characteristic you wish to re-use.

ETAS EHOOKS v5.3 | User Guide

136 | Creating and Working with On-Target Bypass from Simulink

NOTICE
Some limitations apply to the use of the ECU Value Block Cal Param Read block.
These are the same limitations as are applied to the reuse of MAP characteristics.
Refer to EHOOKS ECU Complex Calibration Parameter Read block for details.

10.3 Simulink Modelling for On-Target Bypass

This section describes how to use the EHOOKS blocks to integrate a Simulink model into the
ECU software for on-target bypass and build the new ECU software.

10.3.1 Adding the EHOOKS Configuration Block

The first step is to create a new Simulink model for our on-target bypass configuration. Next,
an EHOOKS configuration block should be added to the top level of the new Simulink model,
as shown in figure 10.30.

Figure 10.30: A New Simulink Model with an EHOOKS Configuration Block

Next, the EHOOKS configuration block should be double-clicked to launch the EHOOKS-DEV
configuration interface. Initially the Simulink interface will be displayed to highlight which
EHOOKS configuration is associated with the model. At this point a new model can be created
and assigned to the model, or an existing EHOOKS configuration can be opened and assigned
to the model. After clicking the Open assigned project… or Create and assign project…,
the EHOOKS configuration interface will be launched.

Before continuing with any further modelling or configuration tasks, it is important that at
least the input A2L file is configured within the General Settings tab, but at this stage it is
usually a good idea to complete the necessary configuration of the input HEX file and output
HEX/A2L file, and to configure the other general project settings to fit the needs of the
experiment (see figure 10.31).

To speed up the subsequent configuration steps it is recommended to simply switch back to
the Simulink modeling window and not to close the EHOOKS configuration interface
(alternatively the EHOOKS configuration interface could be minimized).

ETAS EHOOKS v5.3 | User Guide

137 | Creating and Working with On-Target Bypass from Simulink

Figure 10.31: Configuring the General Settings

10.3.2 Adding the EHOOKS Trigger Blocks

The next step is to consider how the Simulink model for the on-target bypass experiment will
be executed within the existing schedule of the ECU software. For simple on-target bypass
experiments, it may be sufficient to run the entire Simulink model at once each time a
specified ECU process (known as a bypass container) is executed. For more complex
experiments, however, it may be necessary to have different model parts execute at different
rates within the ECU – perhaps to avoid overloading the processing power of the ECU (by
running some complex parts of the model within a slower raster) or perhaps to obtain the
desired behavior (by running parts of the model within the raster necessary to achieve the
desired functional behavior). Within this chapter, the example will make use of two different
rates to execute different parts of the Simulink model to give an idea how this can be
achieved. It is, of course, perfectly possible to have significantly more complex experiments
where many more rates are used.

For each model part that needs to be integrated into the existing schedule of the ECU
software, an EHOOKS ECU trigger block is needed. As the name suggests, an EHOOKS ECU
trigger block will trigger the execution of parts of the Simulink model each and every time a
specified ECU process is executed. In effect, each EHOOKS ECU trigger block represents a
single EHOOKS on-target bypass function. Each EHOOKS ECU trigger block should be
connected to a Simulink function-called subsystem (this can be found within the Simulink
library browser in the Ports & Subsystems folder). The function-called subsystem is used
as the container for the Simulink model parts that shall be executed when the ECU process
associated with the EHOOKS trigger block is executed.

In figure 10.32, the two EHOOKS ECU trigger blocks can be seen. One is configured to run
within the ECU process Byp_100ms_Proc and another to run within the ECU process
Byp_1000ms_Proc.

ETAS EHOOKS v5.3 | User Guide

138 | Creating and Working with On-Target Bypass from Simulink

Figure 10.32: Adding ECU Trigger Source Blocks to the Model

NOTICE
As can also be seen in figure 10.32, the names of the EHOOKS ECU trigger blocks
have been changed from the defaults to give more meaningful names. This can be
helpful as the name of an EHOOKS ECU trigger block will be used by EHOOKS as the
name for the on-target bypass function.

Figure 10.33 shows the configuration interface for the EHOOKS ECU trigger block,
BypEHOOKS_10ms_Proc. As can be seen, enablers and indicators have also been configured, so
that the execution of these on-target bypass functions can be controlled at run-time via
calibration.

10.3.3 Adding the Model and Reading/Writing ECU Variables

Typically, the Simulink model parts within the function-called subsystems will now need to be
connected into the ECU software by allowing the model to read from and write to ECU data. To
do this, EHOOKS ECU variable read and EHOOKS ECU variable write blocks are used.

EHOOKS allows the Simulink model to read and write ECU data either directly in ECU
representation or after automatic conversion to physical representation. In the ECU
representation case, the port (signal) data type will be the same as the ECU variable data type
as specified in the A2L file (if the global option to use floating-point data types described in
section 10.2.1 EHOOKS Configuration Block is not set). In the physical representation case,
the EHOOKS read and write blocks use the floating-point port (signal) data type.

EHOOKS ECU variable read and write blocks can only be used within a function-called
subsystem that is attached to an EHOOKS trigger block. However, as many EHOOKS read and

ETAS EHOOKS v5.3 | User Guide

Figure 10.33: Configuring the EHOOKS ECU Trigger Blocks

140 | Creating and Working with On-Target Bypass from Simulink

write blocks can be used within the model as necessary and at any level in the model
hierarchy below the function-called subsystem.

In figure 10.34, two EHOOKS ECU variable read blocks and two EHOOKS ECU variable write
blocks can be seen. The ports on the blocks indicate the ECU variables being read and written.
The annotations on the ports indicate whether the data is being converted between logical or
physical representations.

Figure 10.34: Adding EHOOKS ECU Variable Read and Write Blocks to the Model

Figure 10.35 shows the configuration interface for setting the EHOOKS properties associated
with the hooks that EHOOKS will create for each variable contained in an EHOOKS ECU
variable write block. For example, the variable EH_G314_sbyte3 has been configured to
include a backup copy measurement.

10.3.4 Adding the Simulink model

Once the EHOOKS ECU variable read and write blocks are added to the model, all that remains
is to connect them with the functional Simulink model to perform the desired new control
strategy. Figure 10.36 shows an example with a very simple model (the model shown is just a
dummy model to illustrate the usage – typically the functional Simulink model may be much
more complex and include the use of additional subsystems).

NOTICE
The direct connection of an EHOOKS ECU variable read block to a Simulink merge
block is not supported by default. A Simulink merge block compatible block should
be placed between the ECU Variable Read block and the Merge block.

If storage reuse is required directly for the EHOOKS ECU variable read block then it
must be enabled via the EHOOKS block automation interface as described in section
11.3.2 EHOOKS Simulink APIs. Enabling storage reuse is at your own risk because it
may lead to data corruption due to over-aggressive signal variable reuse by Simulink.

ETAS EHOOKS v5.3 | User Guide

Figure 10.35: Configuring the Hook Properties for ECU Variable Writes

Figure 10.36: Adding the Functional Simulink Model

142 | Creating and Working with On-Target Bypass from Simulink

10.4 Building Hooked ECU Software with Simulink On-Target Bypass

This section describes how to configure Simulink to allow the EHOOKS on-target bypass model
set-up to be built, how to perform the build of the newly hooked ECU software and how to
perform an experiment on the ECU with the newly hooked ECU software using INCA.

10.4.1 Setting the Simulink Configuration Properties

To be able to build the on-target bypass model, it is necessary to first set some configuration
options. To display the configuration options, the Simulink model explorer should be launched
from the View -> Model Explorer (Ctrl+H) menu within Simulink. Then the active
configuration should be modified as follows and as shown in figure 10.37.

Configuring the Simulink Model for use with EHOOKS

• Configuration Solver

Within the Solver options section, the Type should be set to Fixed-Step and the
Solver set to discrete (no continuous states). EHOOKS only supports the discrete
solver in the current version. If the solver type is not manually set to
Fixed-step/discrete, then EHOOKS will automatically configure it to be
Fixed-step/discrete.

• Configuration Optimization

Within the Simulation and code generation section, it is recommended (but not
absolutely necessary) to tick the Inline parameters check-box. This can significantly
reduce the RAM requirements of the generated code and, as the model will need to
execute within the constrained environment of the ECU, this is a good idea.

• Configuration Real-Time Workshop General Tab

Within the Target selection section, the System target file should be changed to one
of:

– ehooks_grt.tlc / EHOOKS Real-Time Target

Selecting this target will use the Simulink Real-Time Workshop code generator to
create the necessary C code from the Simulink model.

– ehooks_ert.tlc / EHOOKS Real-Time Target for Embedded Coder

Selecting this target will use the Simulink Real-Time Workshop Embedded Coder
code generator to create the necessary C code from the Simulink model. This code
can be significantly more efficient and more suitable for running within the
constrained environment of the ECU. However, a valid MATLAB / Simulink Real-Time
Workshop Embedded Coder license is required to use this target.

• Configuration Real-Time Workshop Interface Tab

Within the Software environment, the Utility function generation must be changed
to Shared Location. If the utility function generation is not set to Shared Location,
then EHOOKS will automatically configure it to be Shared Location.

• Configuration Real-Time Workshop EHOOKS Tab

If necessary, any additional command-line options to the EHOOKS ECU Target Support
tools can be specified here.

ETAS EHOOKS v5.3 | User Guide

143 | Creating and Working with On-Target Bypass from Simulink

Figure 10.37: Setting the Simulink Configuration Properties

NOTICE
Simulink will generate some warnings when building a model with EHOOKS blocks.
Generally, these warnings are benign and can be ignored. However, all warnings
should first be reviewed to ensure that important build problems aren’t indicated.
The benign warnings due to the use of the EHOOKS blocks can be disabled by set-
ting the following diagnostic options within the Diagnostic page of the Simulink
Configuration Properties (additional caution should be taken when doing this to
ensure valid warnings aren’t hidden from view):

• Tasks with equal priorites: None
• Source block specifies -1 sample time: None

NOTICE
When supplying additional command line arguments to EHOOKS, any paths (e.g. for
the --logdir option) must use either '/' (forward slash) or '\\' (double backslash)
as path separators – e.g. D:\\logdir or D:/logdir

10.4.2 Building the Hooked ECU Software

Once the configuration options have been set, the standard Simulink build process will fully
integrate EHOOKS and create the new hooked ECU software. To begin the build process,
simply select the Tools Real-Time Workshop Build Model menu item or press Ctrl+B. The
progress of the build will be logged in the MATLAB command window, including the output
from all the EHOOKS build steps. All information, warnings and errors will be reported in this
log.

10.4.3 Running an Experiment with the Hooked ECU Software using INCA

The first step in running the experiment is to flash the hooked ECU software to the ECU. This
should be carried out in the usual manner (typically using INCA ProF). Once the ECU has been

ETAS EHOOKS v5.3 | User Guide

144 | Creating and Working with On-Target Bypass from Simulink

flashed with the newly created hooked ECU software, an INCA experiment can be started.
Figure 10.38 shows an INCA experiment for the example Simulink model created in this
section.

To work with the new Simulink functionality added into the hooked ECU software, the
configured enablers first have to be activated. In the example setup, it can be seen that we
have a global enabler, an enabler for the two on-target bypass functions modelled with
Simulink and an enabler for each variable written to by an EHOOKS ECU variable write block in
the Simulink model. These can all be managed separately. Of course, if the global enabler is
false, all of the software changes introduced by EHOOKS into the hooked ECU software will be
inactive. If a variable hook enabler is true but the corresponding on-target bypass function
enabler is false, the variables will not be bypassed as the new function (model) will not be
executed.

In figure 10.38, it can be seen that the value of the AFS_dmDrft variable has been bypassed
by the Simulink model to contain the value coming from the variable AFS_dm. The sequence
counter which was modeled (but not shown in this section) in the OTP_1000ms on-target
bypass function is executing and is counting the number of executions.

Figure 10.38: INCA Experiment

10.5 Advanced Simulink Features

This section details some of the more advanced features that are available when using
Simulink for on-target bypass within the EHOOKS-DEV Simulink Integration Package.

10.5.1 Creating Model Measurements and Calibration Data

For all but the simplest Simulink models it will be helpful and important to be able to create
new measurement and calibration data for the model contents. This allows the new
functionality added through a Simulink model to be measured and calibrated in the same way
as the existing parts of the ECU software.

ETAS EHOOKS v5.3 | User Guide

145 | Creating and Working with On-Target Bypass from Simulink

10.5.1.1 Creating New Measurement Data

To make a Simulink signal measurable in the hooked ECU software is simply a matter of giving
the signal a name and setting its Real-Time Workshop storage class to ImportedExtern.
Figure 10.39 shows how to do this. A signal can be assigned a name in Simulink either by
double-clicking on the signal line and entering the name or via Right-Click -> Signal
Properties and completing the Signal name text field.

Once a name has been defined the storage class can be changed to ImportedExtern via the
Right-Click -> Signal Properties dialog on the Real-Time Workshop tab.

Figure 10.39: Making a Simulink Signal into an ECU Measurement

It is also possible to define Simulink signals in the MATLAB base workspace as described later
for Simulink parameters and shown in figure 10.40. In this case, the Simulink signal must
resolve to a global Simulink signal object (see according checkbox in figure 10.39). The global
Simulink signal object must also be configured to use the Real-Time Workshop storage class
ImportedExtern.

10.5.1.2 Creating New Calibration Data

To make a Simulink parameter available as a calibration parameter in the hooked ECU
software, set the storage class of the associated MATLAB variable or Simulink parameter
defined in the MATLAB base workspace to ImportedExtern. The process to achieve this is a
little different depending whether MATLAB variables or Simulink parameters are used. Using
Simulink parameters is recommended as they offer the ability to control the data-type used in
the implementation, whereas MATLAB variables are always floating point values. However,
both MATLAB variables and Simulink parameters are fully supported.

As a first example, a simple scalar in our model will be made into a calibration parameter. In
figure 10.36, the gain block used has a fixed static gain of 0.95. To make this gain a
calibration parameter that can then be controlled at run-time via INCA, the following steps
should be performed:

ETAS EHOOKS v5.3 | User Guide

146 | Creating and Working with On-Target Bypass from Simulink

Figure 10.40: Configure a Simulink Signal as a Measurement Variable

10.5.1.2.1 Creating a Simple Scalar Calibration Parameter

• Open the parameter dialog for the gain block via double-click or right-click -> Gain
Parameters….

• Within the gain parameter, enter the name of the new calibration parameter to be
created, as shown in figure 10.41.

Figure 10.41: Configuring the Gain Block

The subsequent steps vary depending on whether a MATLAB variable or Simulink parameter is
used:
10.5.1.2.2 Using a MATLAB Variable as a Calibration Parameter

ETAS EHOOKS v5.3 | User Guide

147 | Creating and Working with On-Target Bypass from Simulink

• Within the Simulink Model Explorer (Ctrl+H) Base Workspace, create a new MATLAB
variable via the Add -> MATLAB Variable (Ctrl+M) menu.

• Set the name of the MATLAB variable to match the calibration parameter name
configured above, as shown in figure 10.42.

• Set the initial value for the MATLAB variable. This will be used by EHOOKS as the initial
value for the created calibration parameter within the calibration data reference page.

• Within the active configuration select the Optimization setting.

• Ensure that the Default parameter behaviour is set to Inlined within the Signals
and Parameters section and click Configure….

• Within the Model Parameter Configuration dialog that is displayed, select the
created MATLAB variable and click Add to table >>.

• Change the Storage class of the MATLAB variable to ImportedExtern, as shown in
figure 10.43.

Figure 10.42: Adding the MATLAB Variable

10.5.1.2.3 Using a Simulink Parameter as a Calibration Parameter

• Within the Simulink Model Explorer (Ctrl+H) Base Workspace, create a new Simulink
parameter via the Add -> Simulink Parameter (Ctrl+P) menu.

• Set the name of the Simulink parameter to match the calibration parameter name
configured above.

• Set the initial value for the Simulink parameter. This will be used by EHOOKS as the initial
value for the created calibration parameter within the calibration data reference page.

ETAS EHOOKS v5.3 | User Guide

148 | Creating and Working with On-Target Bypass from Simulink

Figure 10.43: Configure a MATLAB Variable as a Calibration Parameter

• Within the active configuration select the Optimization setting.

• Ensure that the Inline parameter check-box is ticked within the Simulation and code
generation section.

• Set the data type as required.

• Set the Storage class to ImportedExtern, as shown in figure 10.44.

The same basic steps are followed when creating more complex types of calibration
parameters such as maps and curves – represented in Simulink with Lookup Table Blocks.
For example, figure 10.45 shows how to create a map calibration parameter called Batt_LUT.
Provided that MATLAB variables/Simulink parameters used for the row, column and data
elements are all marked as having the ImportedExtern storage class, EHOOKS will
automatically create a map calibration parameter in the created A2L file for the hooked ECU
software.

NOTICE
EHOOKS fully supports sharing map/curve axis data between several maps/curves.
To do this, simply ensure the same MATLAB variable/Simulink parameter is used for
the row/column data of the associated Lookup Table blocks.

10.5.1.3 Using Prefixes and Suffixes for Measurement and Calibration Data

The arguments --a2lname-prefix=<prefix> and --a2lname-suffix=<suffix> can be used
to work around name conflicts with elements that are already present in the ECU project (see
also section 11.1 EHOOKS-DEV Command Line Usage).

These arguments can be specified at Configuration Parameters -> Real-Time Workshop
-> EHOOKS -> Additional back-end arguments. Automated setup of the arguments can
be done via an M script that sets the EHOOKS specific model configuration set parameter

ETAS EHOOKS v5.3 | User Guide

Figure 10.44: Configure a Simulink Parameter as a Calibration Parameter

Figure 10.45: Adding a Map Calibration Parameter

150 | Creating and Working with On-Target Bypass from Simulink

EHAdditionalBackEndArguments , e.g.

set_param(bdroot, 'EHAdditionalBackEndArguments', ...
' --a2lname-prefix=EH_ --a2lname-suffix=_RP').

NOTICE
The --use-cids-as-a2lnames option has been removed due to a change in the
nature of A2L element naming from Matlab Simulink integration. Global elements
are no longer generated with complex paths, and as such, this option is redundant
in such cases. Using this option will no longer have any affect on the generated A2L,
and ALL A2L elements will be named according to the C identifier specified in the
modelling tool directly.

10.5.2 Reading Existing Scalar and Complex ECU Calibration Data

The EHOOKS-DEV Simulink Integration Package provides the EHOOKS ECU parameter read
block to allow scalar calibration parameters within the existing ECU software to be reused
within the Simulink model. To do this, simply add an ECU parameter read block to the model.
Double-click the EHOOKS ECU parameter read block and enter the name of the existing ECU
calibration parameter to be read and configure whether it should be converted to physical
representation or provided directly in implementation representation. Then connect the
output port of the EHOOKS ECU parameter read block into the model, as shown in figure 10.46.

Figure 10.46: Using EHOOKS ECU Value Parameter Read Blocks

The same process can also be used to reuse complex calibration parameters within the
existing ECU software by replacing the EHOOKS ECU parameter read block in the example
above with the EHOOKS ECU complex calibration parameter read block.

10.5.3 Reading from Hooked ECU Variable Backup Copies

It can often be helpful to access the original ECU calculation for a variable that is being
hooked and bypassed by EHOOKS. This can be useful if, for example, you want to filter or
calculate an offset to the original ECU calculation for the variable. For this, the ECU backup
variable read block can be used. First, a variable hooked by EHOOKS (either directly in
EHOOKS or via an EHOOKS ECU variable write block) must be configured to Create Backup
Copy, as shown in figure 10.47.

ETAS EHOOKS v5.3 | User Guide

151 | Creating and Working with On-Target Bypass from Simulink

Figure 10.47: Configuring EHOOKS to Create a Backup Copy

Then the EHOOKS ECU backup variable read block can be used to provide access to the
original ECU calculation for a variable before the bypass value was applied as shown in figure
10.48.

Figure 10.48: Example Use of EHOOKS ECU Backup Copy Variable Read Block

10.5.4 Programmatic Control using Control Variables

Sometimes it can be necessary to control whether specific hooks or on-target bypass
functions are enabled, not only by calibration parameters but also programmatically at
run-time. EHOOKS provides this ability via control variables that act just like the calibration
enablers, apart from the fact that they are managed at run-time by C-code or Simulink model
code rather than INCA.

Using control variables is straight-forward. First, the control variable must be defined and
associated with a specific variable hook or on-target bypass function. For example, figure

ETAS EHOOKS v5.3 | User Guide

152 | Creating and Working with On-Target Bypass from Simulink

10.49 shows a control variable, OTP_1000ms_control, being defined for the on-target bypass
function OTP_1000ms.

Figure 10.49: Defining a Control Variable for an On-Target Bypass Function

This control variable can then be used by an EHOOKS ECU control variable write block to allow
the Simulink model to control whether or not this on-target bypass function is activated.
Figure 10.50 shows an example of this, where a Simulink if block is used to check a condition
before enabling or disabling the control-variable.

10.5.5 Communication between On-Target Bypass Functions

Most reading and writing of ECU data and model calculations will typically occur within the
function-called subsystems which are attached to EHOOKS ECU trigger blocks. It can
sometimes be necessary, however, to allow communication between the different on-target
bypass functions represented by the EHOOKS ECU trigger blocks.

As each EHOOKS trigger block represents an asynchronous trigger, signals cannot be directly
connected between the attached function-called systems. Instead, rate transition blocks
should be used. Figure 10.51, shows how these blocks can be used to successfully allow state
calculated by one on-target bypass function to be communicated to another.

10.5.6 Trigger Delegation

On-target bypass functions are typically triggered by an ECU process known as a bypass
container. It can sometimes be useful, however, to have one on-target bypass function trigger
the execution of another on-target bypass function directly. The EHOOKS ECU trigger
delegation block allows such direct triggering. To configure trigger delegation, simply add an
EHOOK ECU trigger delegation block into the Simulink model and connect it to a standard
function-call generator block, as shown in figure 10.52. This will then directly trigger the
execution of the configured on-target bypass function when this part of the Simulink model

ETAS EHOOKS v5.3 | User Guide

Figure 10.50: Using the EHOOKS ECU Hook Control Variable Write Block

Figure 10.51: Using Rate Transition Blocks

154 | Creating and Working with On-Target Bypass from Simulink

code is executed.

Figure 10.52: Using a EHOOKS ECU Trigger Delegation Block

10.5.7 Calling an ECU function from within a Simulink model

It is often useful to be able to call an existing ECU function from within a Simulink model. This
is possible by either using an EHOOKS ECU function Call block in the Simulink model (see
section 10.2.10 EHOOKS ECU Function Call Block), or by using the Simulink Legacy-Code
feature.
To call an existing ECU function called ExampleFunc using the Simulink Legacy-Code feature,
the following steps should be taken:

Step 1) Create a header file (for example: myfunction.h) containing the prototype of
ExampleFunc and a function pointer to it. This allows the C code generated by Simulink/RTW
to call through the function pointer to the function ExampleFunc inside the .hex/s19 file. The
file myfunction.h would therefore contain the following:

typedef EH_FLOAT32_IEEE (*EH_ExampleFunc_type)(EH_FLOAT32_IEEE, EH_FLOAT32_IEEE);
#define EH_ExampleFunc ((EH_ExampleFunc_type)(0x800B38A0))

The above code defines a function pointer type for the function ExampleFunc and then defines
the address in the ECU hex/s19 file for this function.

This header file should be updated each time the application code is rebuilt as the address of
the function is likely to change during each build.

Step 2) Use the Simulink Legacy Code Tool to generate and compile an S-function block to call
this code. The following Matlab command line options can be used to do this:

ETAS EHOOKS v5.3 | User Guide

155 | Creating and Working with On-Target Bypass from Simulink

def = legacy_code ('initialize');
def.HeaderFiles = {'myfunction.h'};

Tells RTW to #include this header file when this s-function block is used.

def.SFunctionName = 'ExampleFunc';

defines the name of the generated s-function.

def.OutputFcnSpec = 'float y1 = EH_ExampleFunc (float u1, float u2)';

provides the function prototype. Simulink data types must be used.

legacy_code('sfcn_cmex_generate', def);
legacy_code('compile', def,

'-IC:\Program Files\MATLAB\R2015a\simulink\include');

generates and compiles the S-function block implementation.

legacy_code('slblock_generate', def);

creates a new model file which contains the s-function block that has been generated to
represent the ECU function to be called.

legacy_code('sfcn_tlc_generate', def);

generates the TLC code to allow code-generation for the new block

Step 3) The generated block from step 2 can then be used in a Simulink model so that when
code is generated a function call is made (via the function pointer) into the original ECU code
that implements the function ExampleFunc.

NOTICE
For further details on the use of the Simulink Legacy Code Tool please refer to the
Matlab/Simulink documentation and search for legacy_code.

ETAS EHOOKS v5.3 | User Guide

156 | EHOOKS-DEV Reference Guide

11 EHOOKS-DEV Reference Guide

11.1 EHOOKS-DEV Command Line Usage

The EHOOKS-DEV ECU Target Support tools allow the EHOOKS build process to be completely
executed from the command line rather than via the EHOOKS-DEV graphical user interface.

toolchaindriver.exe --prjfile=<project-xml-file> [--basedir=<base-dir>]
[--a2lfile=<a2l-file>] [--hexfile=<hex-file>]
[--sixfile=<scoop-ix-file>]
[--userdeffile=<userdef-file>] [--filterfile=<filter-file>]
[--a2lfileout=<a2l-file-out>] [--hexfileout=<hex-file-out>]
[--make-support-file]
[--a2lname-prefix=<a2lname-prefix>] [--a2lname-suffix=<a2lname-suffix>]
[--otb-conversion-warn] [--logdir=<logging-dir>] [--password=<password>]
[--prebuild=<prebuild-script>] [--postbuild=<postbuild-script>]
[--consistency-warn] [--verbosity=<level>] [--errorlimit=<limit>] [--nobuild]
[--licmode=<license-mode>] [--help] [--version] [--merge-all]
[--compiler-name=<name> --compiler-gcc=<gcc> --compiler-objcopy=<objcopy>]

Where:

<project-xml-file> The path to the EHOOKS project file. This path must be specified on
command line.

<base-dir> The path that is used as the base directory for all relatively paths elsewhere on
the command line or within the project file. The base directory applies to any relative
paths used except for the project file, where the current working directory is used
instead. If the base directory is not specified then it defaults to the same directory
where the project file is located.

<a2l-file> The path to the ECU’s ASAM-MCD 2MC file for input. This path can also be
specified in the project file.

<hex-file> The path to the ECU’s binary image file for input. This path can also be specified
in the project file.

<scoop-ix-file> The path to SCOOP-IX software interface file for input. This path can also
be specified in the project file.

<userdef-file> The path to user provided data definitions file for input. This path can also
be specified in the project file.

<filter-file> The path to measurement/process hook filter file. This path can also be
specified in the project file.

<a2l-file-out> The path for the output ASAM-MCD 2MC file. This path can also be specified
in the project file.

<hex-file-out> The path for the output binary (HEX) image file. This path can also be
specified in the project file.

<logging-dir> The path to the tool-chain driver logging directory. Default is no logging.
<prebuild-script> The path of a pre-build script.
<postbuild-script> The path of a post-build script.
<a2lname-prefix> A valid C identifier used as a prefix for the A2L names of measurements

and characteristics created on behalf of Simulink or ASCET (i.e. specified in the
SCOOP-IX software interface definition file).

<a2lname-suffix> A valid C identifier used as a postfix for the A2L names of measurements
and characteristics created on behalf of Simulink or ASCET (i.e. specified in the
SCOOP-IX software interface definition file).

<level> The message verbosity level (0 = debug, 1 = verbose, 2 = info, 3 = warning, 4 =
error, 5 = fatal). Default is 3.

ETAS EHOOKS v5.3 | User Guide

157 | EHOOKS-DEV Reference Guide

<limit> The number of errors that can occur until the driver stops execution. Default is 1
(stop immediately on first error).

<password> The password used for ASAM-MCD 2MC Tier-1 IF_DATA decryption. This option
can also be specified in the project file. If no password is specified either on the
command-line or within the project file, then it is assumed that the Tier-1 data is
unencrypted.

<license-mode> The licensing mode to use - locked or unlocked. This option can also be
specified in the project file. If no licensing mode is specified either on the command line
or within the project file, then the default is locked.

--consistency-warn Generate warnings instead of errors if inconsistencies are found in the
input files.

--otb-conversion-warn If it is not possible to generate a reversible conversion function for
an OTB function input or output then instead of generating an error generate a warning
and use the identity conversion.

--nobuild Performs configuration consistency checking without building a binary (HEX)
image.

--help Displays help information on the command line usage
--version Displays version information only
--make-support-file This creates a file called EHOOKSSupport.7z that can be sent to your

ETAS support team to help with technical support issues.
--merge-all Allows merging of code, constant and data sections of hex files. If this is not

specified the default behavior is to merge data sections only.

The following three arguments allow the user to specify an alternative compiler that will be
used to compile the EHOOKS code. To use this option the named compiler must have been
specified during prep and all three arguments must be specified on the command line (see
section 11.5.3 for more detail.)

--compiler-name= the compiler name as specified by the ECU SW provider.
--compiler-gcc= the path to the gcc compiler (including the executable file name.)
--compiler-objcopy= the path to the objcopy executable.

11.1.1 Back-End Configuration File

It is possible to create an optional configuration file to apply build options for every build. This
file should be named “ehooks.cfg” and should be placed in the Back-End install path. The
configuration file specifies a set of build options which will be applied for any build.

The build options are stored in a file in the following format:

Each line in the configuration file contains one option only.

Lines starting with the character # are used to add comments and thus ignored.

Example:

options file for project
--verbosity=1
--make-support-file

11.1.2 Front-End Configuration File

It is possible to create an optional configuration file to contain the default options for the
Front-End. This file should be named “ehooks-default.cfg” and should be placed in the
Front-End install path. The configuration file specifies the default options used by the EHOOKS
Front-End (as shown in the options dialog).

ETAS EHOOKS v5.3 | User Guide

158 | EHOOKS-DEV Reference Guide

The default options are stored in a file in the following format:

Each line in the configuration file contains one option only.

Lines starting with the character # are used to add comments and thus ignored.

Example:

options file for project
--verbosity=1
--make-support-file

11.2 EHOOKS-DEV Custom Build Steps

EHOOKS-DEV allows for custom build steps to be inserted into the EHOOKS build process by
supporting the execution of Ruby scripts immediately before and after the hooked ECU files
are built. There are 7 possible Ruby scripts that may be executed in the following order:

• pregenerate_global.rb

• Generation of EHOOKS code.

• tier1_prebuild.rb

• prebuild_global.rb

• <project prebuild>

• Build of hooked ECU files.

• <project postbuild>

• postbuild_global.rb

• tier1_postbuild.rb

The tier1_prebuild.rb and tier1_postbuild.rb scripts are provided by the Tier-1 and
embedded in the A2L file. The EHOOKS-DEV user has no control over these scripts.

The pregenerate_global.rb, prebuild_global.rb and postbuild_global.rb scripts are
contained in the <install-dir>\Build directory. These scripts are used for every build.
These scripts may be used to run scripts that should run for every EHOOKS-DEV project.

<project prebuild> and <project postbuild> are project specific scripts specified in the
EHOOKS-DEV GUI.

ETAS EHOOKS v5.3 | User Guide

159 | EHOOKS-DEV Reference Guide

Prebuild and postbuild scripts are passed a Ruby hash as an argument. This contains
information about the project. See the prebuild_global.rb and postbuild_global.rb
scripts for information about the contents of the hashes.

Example: assume that one wants to run a tool called chksumgen.exe to update a checksum in
a hooked .hex/.s19 file. This could be done in either global_postbuild.rb or a project
specific postbuild script. For example:

def postbuild(params)
output_hex_file = params[:output_hex]
chksumgen = “d:\\temp\\chksumgen.exe”
puts "Postbuild script: #{chksumgen} #{output_hex_file}”
system(“#{chksumgen} #{output_hex_file}”)

end

11.2.1 Pre-Generate Scripts

EHOOKS-DEV supports a pregenerate_global.rb script, which is executed at the start of the
EHOOKS-DEV process, before the EHOOKS-generated source files are created.

This script may be used to run scripts that should run for every EHOOKS-DEV project.

The behavior of this script is the same as that of the pre- and post-build scripts, although the
pre-generate script has access to fewer parameters. For a detailed description of the
parameters available, see the pregenerate_global.rb script deployed with your
EHOOKS-DEV Back-End installation.

11.3 EHOOKS-DEV Simulink Integration Scripting Interface

The EHOOKS-DEV Simulink Integration package comes with full support for scripting using
Matlab M scripts. This allows complete control over the configuration of the EHOOKS block to
be performed via this scripting interface.

ETAS EHOOKS v5.3 | User Guide

160 | EHOOKS-DEV Reference Guide

11.3.1 Adding EHOOKS Blocks

EHOOKS blocks can be added to the model via the MATLAB ADD_BLOCK function. For details of
this function see the MATLAB/Simulink user documentation or type help add_block <Enter>
at the MATLAB command prompt. The ADD_BLOCK function requires the source and destination
block path and can then take pairs of block properties and values for the block.

Table 3: EHOOKS Block Source Paths

EHOOKS Block Block Source Path
============ =================
Configuration Block ehooks_lib/Library Blocks/Configuration
ECU Trigger Source Block ehooks_lib/Library Blocks/ECU Trigger Source
ECU Variable Multiple Read Block ehooks_lib/Library Blocks/ECU Variable Reads
ECU Variable Single Read Block ehooks_lib/Library Blocks/ECU Variable Read
ECU Variable Multiple Write Block ehooks_lib/Library Blocks/ECU Variable Writes
ECU Variable Single Write Block ehooks_lib/Library Blocks/ECU Variable Write
ECU Backup Variable Multiple Read Block ehooks_lib/Library Blocks/ECU Backup Variable Reads
ECU Backup Variable Single Read Block ehooks_lib/Library Blocks/ECU Backup Variable Read
ECU Trigger Delegation Block ehooks_lib/Library Blocks/ECU Trigger Delegate
ECU Hook Control Variable Write Block ehooks_lib/Library Blocks/ECU Hook Control Variable Write
ECU Value Parameter Read Block ehooks_lib/Library Blocks/ECU Value Parameter Read
ECU Function Call Block ehooks_lib/Library Blocks/ECU Function Call

ETAS EHOOKS v5.3 | User Guide

161 | EHOOKS-DEV Reference Guide

11.3.2 EHOOKS Simulink APIs

This section provides information on each of the API calls provided by the EHOOKS-DEV
Simulink Integration Package, including the function names, parameters and examples of
usage.

ETAS EHOOKS v5.3 | User Guide

162 | EHOOKS-DEV Reference Guide

11.3.2.1 ehooks_add_port_to_msmtvariable_block(block, argStruct)

Adds an ECU measurement variable read or write data port to a given ECU measurement
variable multi-read/write block.

Syntax:

ehooks_add_port_to_msmtvariable_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_add_port_to_msmtvariable_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU Measurement Variable Reads', block)

or
handle = add_block(...

'ehooks_lib_slx/Library Blocks/ECU Measurement Variable Writes', block)

ehooks_add_port_to_msmtvariable_block(handle, argstruct)

The input argument structure argstruct may contain the following fields:

Name ASAM-MCD-2MC name of the measurement being read or written.
DisplayId ASAM-MCD-2MC display ID of the measurement being read or written.
DataType ASAM-MCD-2MC data type name of the measurement being read or

written. Defaults to 'FLOAT64_IEEE'.
Conversion Boolean specifying whether to perform data conversion.

Defaults to true. DataType is set to 'double' in this case.
Index Index into the array. Should only be used for array elements.

For a scalar measurement, this argument shouldn't be specified.

'Name' is mandatory while all other fields are optional.

If the argument structure is an array with N number of arguments then N ports will get added
to the block.

Usage examples:

Example 1 - adding a write to the scalar measurement ecu_var_x:

argstruct = struct('name', 'ecu_var_x', ...
'datatype', 'SLONG', ...
'conversion', false)

ehooks_add_port_to_msmtvariable_block(...
'model/xyz/ECU_MsmtVariable_Writes', argstruct)

Example 2 - adding a write to array elements 1-3 of ecu_array_z:

argstruct(1) = struct('name', 'ecu_array_var_z', 'index', 1)
argstruct(2) = struct('name', 'ecu_array_var_z', 'index', 2)
argstruct(3) = struct('name', 'ecu_array_var_z', 'index', 3)

ehooks_add_port_to_msmtvariable_block(...
'model/xyz/ECU_MsmtVariable_Writes', argstruct)

ETAS EHOOKS v5.3 | User Guide

163 | EHOOKS-DEV Reference Guide

11.3.2.2 ehooks_add_to_msmtvariable_reads_block(block, argStruct)

Adds an ECU measurement variable read data port to a given ECU measurement variable
multiple read block.

Syntax:

ehooks_add_to_msmtvariable_reads_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_add_to_msmtvariable_reads_block(block, argstruct)

Or:

handle = add_block_slx('ehooks_lib/Library Blocks/ECU Measurement Variable Reads', block)

ehooks_add_to_msmtvariable_reads_block(handle, argstruct)

The input argument structure argstruct may contain the following fields:

Name ASAM-MCD-2MC name of the measurement being read.
DisplayId ASAM-MCD-2MC display ID of the measurement being read.
Conversion Boolean specifying whether to perform data conversion.
Index Index into the array. Should only be used for array elements.

For a scalar measurement, this argument shouldn't be specified.

Name is mandatory while all other fields are optional.

Usage examples:

Example 1 - adding a read of the scalar measurement ecu_var_x:

argstruct = struct('name', 'ecu_var_x', ...
'conversion', false)

ehooks_add_to_msmtvariable_reads_block(...
'model/xyz/ECU_MsmtVariable_Reads', argstruct)

Example 2 - adding a read of array element ecu_array_z[4]:

argstruct = struct('name', 'ecu_array_z', ...
'index', 4)

ehooks_add_to_msmtvariable_reads_block(...
'model/xyz/ECU_MsmtVariable_Reads', argstruct)

ETAS EHOOKS v5.3 | User Guide

164 | EHOOKS-DEV Reference Guide

11.3.2.3 ehooks_add_to_msmtvariable_writes_block(block, argStruct)

Adds an ECU measurement variable write data port to a given ECU measurement variable
multiple write block.

Syntax:

ehooks_add_to_msmtvariable_writes_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_add_to_msmtvariable_writes_block(block, argstruct)

Or:

handle = add_block_slx('ehooks_lib/Library Blocks/ECU_MsmtVariable_Writes', block)

ehooks_add_to_msmtvariable_writes_block(handle, argstruct)

The input argument structure argstruct can contain the following fields:

Name ASAM-MCD-2MC name of the measurement being written.
DisplayId ASAM-MCD-2MC display ID of the measurement being written.
Conversion Boolean specifying whether to perform data conversion.
Index Index into the array. Should only be used for array elements.

For a scalar measurement, this argument shouldn't be specified.

Name is mandatory while all other fields are optional.

Usage examples:

Example 1 - adding a write to the scalar measurement ecu_var_x:

argstruct = struct('name', 'ecu_var_x', ...
'conversion', false)

ehooks_add_to_msmtvariable_writes_block(...
'model/xyz/ECU_MsmtVariable_Writes', argstruct)

Example 2 - adding a write to array element ecu_array_z[4]:

argstruct = struct('name', 'ecu_array_z', ...
'index', 4)

ehooks_add_to_msmtvariable_writes_block(...
'model/xyz/ECU_MsmtVariable_Writes', argstruct)

ETAS EHOOKS v5.3 | User Guide

165 | EHOOKS-DEV Reference Guide

11.3.2.4 argStruct = ehooks_get_callable_function_properties(arg1, arg2)

Gets the property values of an ECU callable function.

Syntax:

argstruct = ehooks_get_callable_function_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an ECU trigger process:

argstruct = ehooks_get_callable_function_properties(name)

Or:

argstruct = ehooks_get_callable_function_properties(pid, name)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

Usage examples:

Example - getting the properties for ECU callable function ‘ecu_proc_x’

var = ehooks_get_callable_function_properties('ecu_proc_x')

returns e.g.

var =

ETAS EHOOKS v5.3 | User Guide

166 | EHOOKS-DEV Reference Guide

11.3.2.5 argStruct = ehooks_get_calparameter_properties(arg1, arg2)

Gets the property values of an ECU calibration parameter (characteristic).

Syntax:

argstruct = ehooks_get_calparameter_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an ECU calibration parameter:

argstruct = ehooks_get_calparameter_properties(name)

Or:

argstruct = ehooks_get_calparameter_properties(pid, name)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

Name A2L element name.
LongId A2L long identifier.
DisplayId A2L visible name (DISPLAY_IDENTIFIER).
DataType A2L data type name.
Conversion A2L conversion name (COMPU_METHOD name).
Deposit A2L deposit name (RECORD_LAYOUT name).
BitMask A2L bit mask integer value (BIT_MASK).
LowerLimit A2L lower limit value.
UpperLimit A2L upper limit value.
Type A2L characteristic type [VALUE|VAL_BLK|MAP|CURVE|CUBOID|ASCII].
MatrixDim A2L sizes array for matrix dimensions X, Y and Z (MATRIX_DIM).

Contains [0 0 0] for scalar parameters.

Usage examples:

Example - getting the properties for ECU parameter ‘ecu_param_x’:

argstruct = ehooks_get_calparameter_properties('ecu_param_x')

returns e.g.

argstruct =
Name: 'ecu_param_x'

LongId: 'ecu_param_x description'
DisplayId: ''
DataType: 'UBYTE'

Conversion: 'OneToOne'
Deposit: ''
BitMask: 0

MatrixDim: [0 0 0]
UpperLimit: 255
LowerLimit: 0

Type: 'VALUE'

ETAS EHOOKS v5.3 | User Guide

167 | EHOOKS-DEV Reference Guide

11.3.2.6 argStruct = ehooks_get_complex_calparameter_properties(arg1, arg2)

Gets the property values of an ECU calibration parameter (characteristic).

Syntax:

argstruct = ehooks_get_complex_calparameter_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an ECU calibration parameter:

argstruct = ehooks_get_complex_calparameter_properties(name)

ETAS EHOOKS v5.3 | User Guide

168 | EHOOKS-DEV Reference Guide

11.3.2.7 argStruct = ehooks_get_msmtvariable_hook_properties(arg1, arg2)

Gets the property values of an EHOOKS measurement variable hook.

Syntax:

argstruct = ehooks_get_msmtvariable_hook_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an EHOOKS measurement variable
hook created for writes to an ECU measurement variable:

argstruct = ehooks_get_msmtvariable_hook_properties(name)

Or:

argstruct = ehooks_get_msmtvariable_hook_properties(pid, name)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

Enabler Name of the enabler calibration parameter to create.
Indicator Name of the indicator measurement variable to create.
Control Name of the control variable to create.
RoutingMode Signal routing mode (can be 'replacement', 'offset' or 'multiply').
Groups Comma-separated list of groups to add the hook to.
BackupCopy Backup copy option (can be 'default', 'enabled',

or 'disabled').
SafetyCheck Safety check option (can be 'default', 'enabled',

or 'disabled').
ForcedWrites Comma-separated list of processes that should forcedly

trigger the variable hook.
InlineForcedWrites

Inline forced process writes option (can be 'enabled'
or 'disabled').

Usage examples:

Example - getting the properties for variable hook ‘ecu_var_x’:

argstruct = ehooks_get_variable_hook_properties('ecu_var_x')

returns e.g.

argstruct =
Enabler: 'EH_enabler_ecu_var_x'

Indicator: 'EH_indicator_ecu_var_x'
Control: 'EH_control_ecu_var_x'
Groups: 'G1,G2'

ForcedWrites: ''
RoutingMode: 'replacement'
BackupCopy: 'enabled'
SafetyCode: 'disabled'

InlineForcedWrites: 'disabled'

ETAS EHOOKS v5.3 | User Guide

169 | EHOOKS-DEV Reference Guide

11.3.2.8 argStruct = ehooks_get_msmtvariable_properties(arg1, arg2)

Gets the property values of an ECU measurement variable.

Syntax:

argstruct = ehooks_get_msmtvariable_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an ECU measurement variable:

argstruct = ehooks_get_msmtvariable_properties(name)

Or:

argstruct = ehooks_get_msmtvariable_properties(pid, name)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

Name A2L name.
LongId A2L long identifier.
DisplayId A2L visible name (DISPLAY_IDENTIFIER).
DataType A2L data type.
Conversion A2L conversion name (COMPU_METHOD name).
LowerLimit A2L value lower limit.
UpperLimit A2L value upper limit.
Hookable Boolean indicating whether the measurement variable

can be hooked by EHOOKS or not.
Readable Boolean indicating whether the measurement variable

can be read by EHOOKS or not.

Usage examples:

Example - getting the properties for ECU variable ‘ecu_var_x’:

argstruct = ehooks_get_msmtvariable_properties('ecu_var_x')

returns e.g.

argstruct =
Name: 'ecu_var_x'

LongId: 'ecu_var_x description'
DisplayId: ''
Hookable: 1
Readable: 1
DataType: 'UBYTE'

Conversion: 'OneToOne'
UpperLimit: 255
LowerLimit: 0

ETAS EHOOKS v5.3 | User Guide

170 | EHOOKS-DEV Reference Guide

11.3.2.9 projectFilePath = ehooks_get_project_file_path(block)

Gets the current EHOOKS project file path used by a model.

Syntax:

arg = ehooks_get_project_file_path(arg1)

Usage:

Given a variable ‘system’ containing the model name:

projectFilePath = ehooks_get_project_file_path(system)

Or:

projectFilePath = ehooks_get_project_file_path()

will return the EHOOKS-DEV hook project file path, e.g. the string ‘C:\temp\my_system.ehcfg’.
If no argument is passed then the current model (bdroot) is used.

ETAS EHOOKS v5.3 | User Guide

171 | EHOOKS-DEV Reference Guide

11.3.2.10 projectId = ehooks_get_project_identifier(block)

Gets the current EHOOKS project identifier used by a model.

Syntax:

arg = ehooks_get_project_identifier(arg1)

Usage:

Given a variable ‘system’ containing the model name:

projectId = ehooks_get_project_identifier(system)

Or:

projectId = ehooks_get_project_identifier()

will return the EHOOKS-DEV hook project identifier, e.g. the string
‘7296bb82-0185-4cc0-8e71-d6543c973402’.If no argument is passed then the current model
(bdroot) is used.

ETAS EHOOKS v5.3 | User Guide

172 | EHOOKS-DEV Reference Guide

11.3.2.11 argStruct = ehooks_get_project_properties(arg1)

Gets the property values of an EHOOKS project.

Syntax:

argstruct = ehooks_get_project_properties(arg1)

Usage:

Given a string variable ‘pid’:

argstruct = ehooks_get_project_properties(pid)

Or:

argstruct = ehooks_get_project_properties()

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

ProjectId Hook project identifier.
ProjectFile Path to the hook project file.
InputA2lFile Path to the input A2L file.
OutputA2lFile Path to the output A2L file.
InputBinFile Path to the input binary image file.
OutputBinFile Path to the output binary image file.
BackendDir Path to the back-end installation directory.
BackendTarget Back-end target identifier.

Usage examples:

Example - getting the properties of the currently open project:

argstruct = ehooks_get_project_properties()

returns e.g.

argstruct =
ProjectId: '7296bb82-0185-4cc0-8e71-d6543c973402'

ProjectFile: 'C:\\temp\\project.ehcfg'
InputA2lFile: 'C:\\temp\\ecu.a2l'

OutputBinFile: 'C:\\temp\\ecu_hooked.a2l'
InputBinFile: 'C:\\temp\\ecu.hex'

OutputBinFile: 'C:\\temp\\ecu_hooked.hex'
BackendDir: 'C:\\ETAS\\EHOOKS Back-Ends\\xyzSH2'

BackendTarget: 'xyzSH2:Default'

ETAS EHOOKS v5.3 | User Guide

173 | EHOOKS-DEV Reference Guide

11.3.2.12 argStruct = ehooks_get_triggerprocess_properties(arg1, arg2)

Gets the property values of an ECU trigger process.

Syntax:

argstruct = ehooks_get_triggerprocess_properties(arg1, arg2)

Usage:

Given a string variable ‘name’ containing the name of an ECU trigger process:

argstruct = ehooks_get_triggerprocess_properties(name)

Or:

argstruct = ehooks_get_triggerprocess_properties(pid, name)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

Name Visible name of the dispatch process.
Period Activation period of the trigger process in

milliseconds (0 for asynchronous activation).

Usage examples:

Example - getting the properties for ECU process ‘ecu_proc_x’

var = ehooks_get_triggerprocess_properties('ecu_proc_x')

returns e.g.

var =
Name: 'ecu_proc_x'

Period: 100

ETAS EHOOKS v5.3 | User Guide

174 | EHOOKS-DEV Reference Guide

11.3.2.13 argStruct = ehooks_get_versions(arg1)

Gets the versions of the EHOOKS-DEV Front-End, EHOOKS-DEV Back-End and the EHOOKS-
Simulink integration package.

Syntax:

argstruct = ehooks_get_versions(arg1)

Usage:

Given a string variable ‘pid’:

argstruct = ehooks_get_versions(pid)

Or:

argstruct = ehooks_get_versions()

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The function will return a structure containing the following fields:

FrontendVersion Version of the EHOOKS-DEV Front-end
BackendVersion Version of the EHOOKS-DEV Back-end for the current target,

or an empty string if no back-end could be found.

Usage examples:

Example - getting the properties of the currently open project:

argstruct = ehooks_get_versions()

returns e.g.

argstruct =
FrontendVersion: '3.0.0.42'
BackendVersion: '3.0.0.42'

ETAS EHOOKS v5.3 | User Guide

175 | EHOOKS-DEV Reference Guide

11.3.2.14 variableNames = ehooks_lookup_display_identifier(arg1, arg2)

Gets the ECU variables names for a specified A2L display identifier.

Syntax:

retval = ehooks_lookup_display_identifier(arg1, arg2)

Usage:

Given a string variable ‘dispName’ containing the an ECU measurement variable display
identifier:

variableNames = ehooks_lookup_display_identifier(dispName)

Or:

variableNames = ehooks_lookup_display_identifier(pid, dispName)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

Will return an array of identifiers of measurements whose display identifier is ‘ecu_var_x_disp’.

Usage examples:

Example - getting the variable names for a display identifier ‘ecu_var_x_disp’:

variableNames = ehooks_lookup_display_identifier('ecu_var_x_disp')

returns e.g.

variableNames = { 'ecu_var_1', 'ecu_var_2' }

ETAS EHOOKS v5.3 | User Guide

176 | EHOOKS-DEV Reference Guide

11.3.2.15 ehooks_open_configuration_block(block, visible)

Opens an EHOOKS configuration block (i.e. opens the attached EHOOKS project).

Syntax:

ehooks_open_configuration_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_open_configuration_block(block, visible)

Or:

handle = add_block_slx('ehooks_lib/Configuration', block)

ehooks_open_configuration_block(handle, visible);

where visible is an integer value specifying the EHOOKS-DEV front-end visibility:

visible is 0: Explicitly hide the EHOOKS-DEV GUI.
visible is 1: Explicitly show the EHOOKS-DEV GUI.

ETAS EHOOKS v5.3 | User Guide

177 | EHOOKS-DEV Reference Guide

11.3.2.16 ehooks_open_frontend(projectFilePath, visibility)

Starts the EHOOKS-DEV configuration tool with the specified EHOOKS project configuration file.

Syntax:

ehooks_open_frontend(arg1, arg2)

Usage:

Given a string variable ‘filePath’ containing the path an EHOOKS configuration file
(e.g. ‘c:\temp\model.ehcfg’):

ehooks_open_frontend(filePath)

Or:

ehooks_open_frontend(filePath, visibility)

where visible is an integer value specifying the EHOOKS-DEV front-end visibility:

visibility is 0: Explicitly hide the EHOOKS-DEV GUI.
visibility is 1: Explicitly show the EHOOKS-DEV GUI.
visibility has other value or is absent: Don't explicitly hide or show.

ETAS EHOOKS v5.3 | User Guide

178 | EHOOKS-DEV Reference Guide

11.3.2.17 updated = ehooks_set_msmtvariable_hook_properties(arg1, arg2, arg3)

Sets the property values of an EHOOKS measurement variable hook.

Syntax:

ehooks_set_msmtvariable_hook_properties(arg1, arg2, arg3)

Usage:

Given a string variable ‘name’ containing the name of an EHOOKS measurement variable
hook created for writes to an ECU measurement variable:

ehooks_set_msmtvariable_hook_properties(name, argstruct)

Or:

ehooks_set_msmtvariable_hook_properties(pid, name, argstruct)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The input argument argstruct may contain the following fields:

Enabler Name of the enabler calibration parameter to create.
Indicator Name of the indicator measurement variable to create.
Control Name of the control variable to create.
RoutingMode Signal routing mode (can be 'replacement', 'offset' or 'multiply').
Groups Comma-separated list of groups to add the hook to.
BackupCopy Backup copy option (can be 'default', 'enabled',

or 'disabled').
SafetyCheck Safety check option (can be 'default', 'enabled',

or 'disabled').
ForcedWrites Comma-separated list of processes that should forcedly

trigger the variable hook.
InlineForcedWrites

Inline forced process writes option (can be 'enabled'
or 'disabled').

All fields are optional.

Usage examples:

Example - defining an enabler parameter for variable hook ‘ecu_var_x’:

argstruct = struct('enabler', 'ecu_var_x.enabler');

ehooks_set_variable_hook_properties('ecu_var_x', argstruct);

ETAS EHOOKS v5.3 | User Guide

179 | EHOOKS-DEV Reference Guide

11.3.2.18 ehooks_set_project_properties(arg1, arg2)

Sets the property values of an EHOOKS project.

Syntax:

ehooks_set_project_properties(arg1, arg2)

Usage:

ehooks_set_project_properties(argstruct)

Or:

ehooks_set_project_properties(pid, argstruct)

where pid is the identifier of the hook configuration project, determined via the function
ehooks_get_project_identifier(). If the project identifier is not passed then the identifier for the
current model (bdroot) is used.

The input argument argstruct may contain the following fields:

InputA2lFile Path to the A2L file to import.
OutputA2lFile Path to the A2L file to create.
InputBinFile Path to the binary image file to import.
OutputBinFile Path to the binary image file to create.
DecryptPassword Password used to decrypt the input A2L file.
RememberPassword True or false - should the password be stored

in the ehcfg file? Default is true.
LicenseMode Licensing mode used, 'locked' or 'unlocked'.
CreateBackupCopies true or false
CreateSafetyChecks true or false
Version String to place in the project version field.
Description String to place in the project description field.
GlobalEnabler Name of the parameter to create for the global

enabler. No enabler is created if missing.
GlobalIndicator Name of the measurement to create for the global

indicator. No indicator is created if missing.

Note that all settings beside the current A2L input file path are cleared if the corresponding
structure fields are empty or absent.

Usage examples:

Example 1:

argstruct = struct('decryptpassword', 'abc123', ...
'rememberpassword', 0, ...
'inputa2lfile', 'c:\\input.a2l', ...
'outputa2lfile', 'c:\\output.a2l', ...
'inputbinfile', 'c:\\input.hex', ...
'outputbinfile', 'c:\\output.hex');

ehooks_set_project_properties(argstruct);

Example 2:

argstruct = struct('licensingmode', 'unlocked', ...
'createbackupcopies', true, ...
'createsafetychecks', false, ...

ETAS EHOOKS v5.3 | User Guide

180 | EHOOKS-DEV Reference Guide

'globalenabler', 'GlobalEnabler', ...
'globalindicator', 'GlobalIndicator', ...
'version', 'Version 3.14159', ...
'description', 'Hello world');

ehooks_set_project_properties(argstruct);

ETAS EHOOKS v5.3 | User Guide

181 | EHOOKS-DEV Reference Guide

11.3.2.19 ehooks_update_complexcalparam_block(block, argStruct)

Updates the (port) parameters of a given ECU Complex Calibration block

Syntax:

ehooks_update_complexcalparam_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_complexcalparam_block(block, argstruct)

ETAS EHOOKS v5.3 | User Guide

182 | EHOOKS-DEV Reference Guide

11.3.2.20 ehooks_update_configuration_block(block, argStruct)

Updates the properties of an EHOOKS configuration block.

Syntax:

ehooks_update_configuration_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_configuration_block(block, argstruct)

Or:

handle = add_block_slx('ehooks_lib/Configuration', block)

ehooks_update_configuration_block(handle, argstruct)

The input argument argstruct may contain the following fields:

ProjectFile Path of the EHOOKS configuration project file to use.
UseFloatTypedPorts Whether floting-point data type shall always be used

for the ECU measurement variable read/write block ports.
Ensures backwards compatibility with EHOOKS V2.0. The
default value is false.

UseDisplayIds Whether to use ASAM-MCD-2MC display identifiers instead
of ASAM-MCD-2MC names for the generation of port labels.
The default value is false.

Usage examples:

Example - using a non-default project file path ‘c:\temp\my_config.ehcfg’:

argstruct = struct('ProjectFile', 'c:\\temp\\my_config.ehcfg', ...
'UseFloatTypedPorts', false);

ehooks_update_configuration_block(argstruct);

ETAS EHOOKS v5.3 | User Guide

183 | EHOOKS-DEV Reference Guide

11.3.2.21 ehooks_update_ecu_call_block(block, argStruct)

Updates the properties of an ECU function-call block.

Syntax:

ehooks_update_ecu_call_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_ecu_call_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU_Function_Call', block)

ehooks_update_ecu_call_block(handle, argstruct)

The input argument argstruct may contain the following fields:

Process Name of the process that will act as dispatch point.

Usage examples:

Example - setting the enabler name, the ECU dispatch process name

and enabling forced writes:

argstruct = struct(...
'Process', 'ecu_proc')

ehooks_update_ecu_call_block(...
'my_system/OTB1SubSys/FuncCall', argstruct)

ETAS EHOOKS v5.3 | User Guide

184 | EHOOKS-DEV Reference Guide

11.3.2.22 ehooks_update_fcncalltrigger_delegate_block(block, argStruct)

Updates the properties of an ECU function-call trigger delegation block.

Syntax:

ehooks_update_fcncalltrigger_delegate_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_fcncalltrigger_delegate_block(block, argstruct)

Or:

handle = add_block(
'ehooks_lib_slx/Library Blocks/ECU_FcnCallTrigger_Delegate', block)

ehooks_update_fcncalltrigger_delegate_block(handle, argstruct)

The input argument argstruct may contain the following fields:

FunctionToCall Name of the function-call trigger source block (im-
plemented EHOOKS OTB function) that is manually dispatched.

'FunctionToCall' is mandatory while all other fields are optional.

Usage examples:

Example - setting the OTB function to manually call:

argstruct = struct('FunctionToCall', 'OTB2')

ehooks_update_fcncalltrigger_delegate_block(...
'my_system/OTB1SubSys/TrigDelegate', argstruct)

ETAS EHOOKS v5.3 | User Guide

185 | EHOOKS-DEV Reference Guide

11.3.2.23 ehooks_update_fcncalltrigger_source_block(block, argStruct)

Updates the properties of an ECU function-call trigger source block.

Syntax:

ehooks_update_fcncalltrigger_source_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_fcncalltrigger_source_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU_FcnCallTrigger_Source', block)

ehooks_update_fcncalltrigger_source_block(handle, argstruct)

The input argument argstruct may contain the following fields:

Enabler Name of the enabler characteristic to create.
Indicator Name of the indicator measurement to create.
Control Name of the control variable to create.
Groups Comma-separated list of groups to add the hook to.
Process Name of the process that will act as dispatch point.
Period The bypass container's period in milliseconds,

or 0 if it is not periodic.
ForceWrites Set the flag specifying whether the OTB function's

outputs should have forced writes at its dispatch
point. 0 = false, 1 = true.

'Process' is mandatory while all other fields are optional.

Usage examples:

Example - setting the enabler name, the ECU dispatch process name

and enabling forced writes:

argstruct = struct(...
'Enabler', 'OTB1.enabler', ...
'Process', 'ecu_proc', ...
'ForceWrites', 1)

ehooks_update_fcncalltrigger_source_block(...
'my_system/OTB1SubSys/TrigSource', argstruct)

ETAS EHOOKS v5.3 | User Guide

186 | EHOOKS-DEV Reference Guide

11.3.2.24 ehooks_update_hookctrlvariable_write_block(block, argStruct)

Updates the properties of an EHOOKS hook control variable write block.

Syntax:

ehooks_update_hookctrlvariable_write_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_hookctrlvariable_write_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU_HookCtrlVariable_Write', block)

ehooks_update_hookctrlvariable_write_block(handle, argstruct)

The input argument argstruct may contain the following fields:

Variable Name of the created EHOOKS hook control variable (mea-
surement) that is written.

'Variable' is mandatory while all other fields are optional.

Usage examples:

Example - setting the control variable name:

argstruct = struct('Variable', 'my_hook_control_var')

ehooks_update_hookctrlvariable_write_block(...
'my_system/OTB1SubSys/ECU_HookCtrlVariable_write', argstruct)

ETAS EHOOKS v5.3 | User Guide

187 | EHOOKS-DEV Reference Guide

11.3.2.25 ehooks_update_msmtvariable_block(block, argStruct)

Updates the (port) parameters of a given ECU measurement variable single or multi read/write
block. If a multi read/write block is passed then the data port configuration gets reset to a
single port having property values assigned according to the arguments passed to this
function.

Syntax:

ehooks_update_msmtvariable_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_msmtvariable_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU Measurement Variable Read', block)

or
handle = add_block(...

'ehooks_lib_slx/Library Blocks/ECU Measurement Variable Write', block)

ehooks_update_msmtvariable_block(handle, argstruct)

The input argument argstruct may contain the following fields:

Name ASAM-MCD-2MC name of the measurement being read or written.
DisplayId ASAM-MCD-2MC display ID of the measurement being read or written.
DataType ASAM-MCD-2MC data type name of the measurement being read or

written. Defaults to 'FLOAT64_IEEE'.
Conversion Boolean specifying whether to perform data conversion.

Defaults to true. DataType is set to 'double' in this case.
Index Index into the array. Should only be used for array elements.

For a scalar measurement, this argument shouldn't be specified.
StorageReuse Boolean specifying whether to allow reuse of the data port storage.

Defaults to false.

'Name' is mandatory while all other fields are optional.

Usage examples:

Example 1 - setting up a write to the scalar measurement ecu_var_x:

argstruct = struct('name', 'ecu_var_x', ...
'datatype', 'SLONG', ...
'conversion', false)

ehooks_update_msmtvariable_block(...
'model/xyz/ECU_MsmtVariable_Write', argstruct)

Example 2 - setting up a write to array element ecu_array_z[4]:

argstruct = struct('name', 'ecu_array_var_z', ...
'index', 4)

ehooks_update_msmtvariable_block(...
'model/xyz/ECU_MsmtVariable_Writs', argstruct)

ETAS EHOOKS v5.3 | User Guide

188 | EHOOKS-DEV Reference Guide

11.3.2.26 ehooks_update_scalarcalparam_read_block(block, argStruct)

Updates the properties of an ECU scalar parameter read block.

Syntax:

ehooks_update_scalarcalparam_read_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_scalarcalparam_read_block(block, argstruct)

Or:

handle = add_block(...
'ehooks_lib_slx/Library Blocks/ECU_ScalarCalParam_Read', block)

ehooks_update_scalarcalparam_read_block(handle, argstruct)

The input argument argstruct may contain the following fields:

Parameter Name of the scalar ECU calibration parameter (char-
acteristic) that is read.

DisplayId Display name of the characteristic being read.
Conversion Boolean specifying whether to perform type conversion.
DataType ASAM-MCD-2MC data type name of the measurement being read or

written. Defaults to 'FLOAT64_IEEE'.
'Parameter' is mandatory while all other fields are optional.

Usage examples:

Example - setting the ECU parameter name:

argstruct = struct('Parameter', 'ecu_param_x')

ehooks_update_scalarcalparam_read_block(...
'my_system/OTB1SubSys/ECU_ ScalarParamRead', argstruct)

ETAS EHOOKS v5.3 | User Guide

189 | EHOOKS-DEV Reference Guide

11.3.2.27 ehooks_update_valueblockcalparam_block(block, argStruct)

Updates the (port) parameters of a given ECU Value Block Calibration block

Syntax:

ehooks_update_valueblockcalparam_block(arg1, arg2)

Usage:

Given a string variable ‘block’ containing the path to the EHOOKS block:

ehooks_update_valueblockcalparam_block(block, argstruct)

ETAS EHOOKS v5.3 | User Guide

190 | EHOOKS-DEV Reference Guide

11.3.2.28 paramAdded = irt_register_custom_parameter(argStruct)

Appends a parameter to the global IRT parameter registry.

Usage:

To register a parameter:

irt_register_custom_parameter(argStruct)

The argument argStruct may contain the following fields:

For characteristics of all types (type == 'value|value_blk|map|curve')
generically:

'type' string('value') ['value', 'value_blk', 'curve', 'map']
'usage' string('') ['values', 'axis'; for type=='value_blk']
'identifier' string('')
'model_id' string('')
'model_name' string('')
'description' string('')
'phys_min' double(-1.7e+305)
'phys_max' double(+1.7e+305)
'resolution' uint32(1)
'unit' string('')
'index_mode' string('column_dir') ['comumn_dir', 'row_dir']

For look-up table characteristics (type == 'map' || type == 'curve')
additionally:

'x_axis' string('') [for type=='curve' || type=='map']
'y_axis' string('') [for type=='map']

'identifier' and 'type' are mandatory while all other fields are
optional.

Example - adding a read of the scalar measurement ecu_var_x

argstruct = struct('identifier', 'NC_CBK_EX_NR', 'type', 'value',
'phys_min', -100, 'phys_max', 100);

irt_register_custom_parameter(argstruct);

ETAS EHOOKS v5.3 | User Guide

191 | EHOOKS-DEV Reference Guide

11.3.2.29 paramAdded = irt_register_custom_signal(argStruct)

Appends a global signal (variable) to the global IRT signal registry.

Usage:

To register a signal:

irt_register_custom_signal(argStruct)

The argument argStruct may contain the following fields:

'identifier' string('')
'model_id' string('')
'model_name' string('')
'description' string('')
'phys_min' double(-1.7e+305)
'phys_max' double(+1.7e+305)
'unit' string('')

'name' is mandatory while all other fields are optional.

Example - adding a read of the scalar measurement ecu_var_x

argstruct = struct('identifier', 'signal1', 'model_name', 'prefix.signal1',
'phys_min', -100, 'phys_max', 100);

irt_register_custom_signal(argstruct);

ETAS EHOOKS v5.3 | User Guide

192 | EHOOKS-DEV Reference Guide

11.4 Special Purpose RAM

It is possible for the Tier-1 to reserve sections of RAM for special purposes. The EHOOKS-DEV
user might want (for example) to place specific variables in non-volatile RAM where the value
of the variable must be retained when the ECU is powered off. Each such special RAM section
has an associated regular expression. The Tier-1 must provide the EHOOKS-DEV user with
information on the special purpose RAM available and the regular expressions used.

When EHOOKS is assigning a variable (also called a measurement or signal) it has created to
RAM it compares the name of the variable to the regular expressions associated with special
purpose RAM sections. If the name of the variable matches a regular expression, the variable
is located in the corresponding RAM section. If the variable does not match any regular
expressions it is located in ordinary RAM.

For example:

Consider three RAM sections: two special purpose RAM sections NVRAM and ECC, and ordinary
RAM C

RAM Regular Expression

NVRAM “_NVRAM$”

ECC “^ECC_”

Ordinary RAM -

The following variables will be located in the sections indicated:

Variable Name Location

MyVariable_NVRAM NVRAM

MyVariable Ordinary RAM

ECC_Variable ECC

Variables located in special purpose RAM are not automatically initialised by EHOOKS (either
zeroed or given an initialisation value) since this would not make sense for non-volatile RAM.

11.5 Advanced Project Options

11.5.1 Cached Register Warning Message

This section provides an explanation of the cached register warning message:

”Any variables calculated from the value of X may not use the hooked value, as the
original ECU-calculated value is cached in a register. If you don’t see the hooked
value being used, you may also need to hook these additional variables. See the
EHOOKS-DEV User Guide for more details.”

If you see the cached register warning and also get unexpected hook behaviour you probably
need to change your hook configuration. For example, assume that the ECU contains program
code like:

Assign V to X

Assign F(X) to Y

ETAS EHOOKS v5.3 | User Guide

193 | EHOOKS-DEV Reference Guide

Where X and Y are variables, V is a value (e.g. another variable, a calibration parameter or a
constant), and F() is a function. If you get the cached register warning for a hook of X and
when you run your bypass experiment it appears that the bypass value for X is not being used
in the calculation of Y then you would need to hook Y as well as X and generate a bypass value
for Y.

To understand this warning message it is necessary to consider how an optimizing compiler
converts program code (hand written or generated by a tool like ASCET or MATLAB/Simulink)
into the instructions executed by the processor in the ECU. Assume that the ECU software
contains some program code that does the following:

Program Code Example A:

Assign V to X

Assign V to Y

The compiler may convert these assignments into a sequence of processor instructions
something like:

Instruction Sequence A:

1. Load V into processor register R

2. Store register R in X

3. Store register R in Y

Now consider some different program code:

Program Code Example B:

Assign V to X

Assign X to Y

One may expect a compiler to convert this program code into a sequence of instructions
something like:

Instruction Sequence B1:

1. Load V into processor register R

2. Store register R in X

3. Load X into processor register R

4. Store register R in Y

However, an optimizing compiler will notice that in step 2 it stores the value in register R into
X and therefore step 3 is redundant. The compiler will therefore omit step 3 and generate the
instruction sequence:

Instruction Sequence B2:

1. Load V into processor register R

2. Store register R in X

3. Store register R in Y

ETAS EHOOKS v5.3 | User Guide

194 | EHOOKS-DEV Reference Guide

Note that instruction sequence B2 is the same as instruction sequence A. That is, although
program code example A is different to program code example B the sequence of processor
instructions generated is the same.

EHOOKS is only able to analyse the processor instructions for ECU software (i.e. the hex or s19
file). Therefore in the above example EHOOKS cannot tell if it is analysing program code
example A or program code example B. When EHOOKS hooks a variable it modifies the
memory cell containing the variable. If EHOOKS is told to hook variable X and is given the
instruction sequence A/B2 it will effectively modify the sequence as follows:

1. Load V into the processor register R

2. Store bypass value in X

3. Store register R in Y

If the instruction sequence was the result of compiling program code example A then this
would result in the expected behaviour. However, if the instruction sequence was the result of
compiling program code example B then this would not produce the correct behaviour
because one would expect the bypass value for X to be stored in Y as well. If EHOOKS were to
store the bypass value in register R as well as X then one would get the expected behaviour
for program code example B but not for program code example A. If EHOOKS could tell which
program code had been used it could take the correct approach. Unfortunately the optimizing
compiler has discarded the information that would allow EHOOKS to tell which program code
had been used.

The above examples are deliberately very simple to illustrate the problem. Real ECU program
code is much more complex, but the same principal applies, an optimizing compiler removes
redundant loads of variables and unfortunately EHOOKS cannot tell that this has happened.
EHOOKS attempts to identify instruction sequences where the compiler might have removed
redundant loads and generates the cached register warning. However EHOOKS can only
identify an instruction sequence like A/B2, it cannot tell whether it comes from program code
like example A or from program code like example B.

11.5.2 Overriding Cached Registers with EHOOKS

If a Cached Register warning message, as described in the previous section, is generated for a
specific hook and that hook also exhibits unexpected behaviour, it might be useful under
some circumstances to apply an override to the hook. This override can be achieved in
EHOOKS by optionally updating the value stored in the source register in addition to updating
the value stored in the memory address of the hooked variable.

WARNING
The use of the Cached Register Override feature in EHOOKS should be used with ex-
treme caution. Updating the source register for a hooked variable could also modify
the value of other, unhooked variables. This option should therefore only be enabled
when the EHOOKS build log warns about register caching and the hook is not behav-
ing as expected.

The cached register override feature can be accessed from the EHOOKS Project menu as
shown in figure 11.1:

From the Project menu select Advanced and then click on Cached Register Overrides.

ETAS EHOOKS v5.3 | User Guide

Figure 11.1: Cached Register Overrides in EHOOKS

196 | EHOOKS-DEV Reference Guide

This brings up a dialog listing all hooked variables with two checkboxes that allow updates to
the source register to be configured. The first of these checkboxes is labelled ‘Startup State’.
When this checkbox is ticked the register update will be enabled at ECU startup. The second
checkbox is labelled ‘Create Enablers’. If this checkbox is ticked EHOOKS will create a new
enabler characteristic that allows the register update to be turned on or off at runtime using
INCA.

In the example shown in figure 11.1, the following behaviours have been configured:

1) Variable AC_trqDes: Neither checkbox is ticked. No register > updates will be
performed for this hooked variable.

2) Variable Brk_stRed: Only the ‘Startup State’ checkbox is ticked. > Register updates
will be enabled at ECU startup, but they cannot > be controlled at runtime using INCA.

3) Variable CEngDsT_dt: Only the ‘Create Enablers’ checkbox is > ticked. An enabler
called CEngDsT_dt.ru_enabler is created that > allows the register updates to be
turned on or off at runtime > using INCA. At ECU startup, the register updates are
disabled.

4) Variable DFES_ctEntry: Both the ‘Startup State’ and ‘Create > Enablers’ checkboxes
are ticked. An enabler called > DFES_ctEntry.ru_enabler is created that allows the
register > updates to be turned on or off at runtime using INCA. At ECU > startup, the
register updates are enabled.

11.5.3 Building EHOOKS Code with an Alternative Compiler

EHOOKS-DEV uses a GCC toolchain when compiling C code generated by EHOOOKS for
integration into the ECU software. This toolchain is distributed along with the EHOOKS-DEV
Back-End.

During ECU software preparation the Tier-1 software provider may specify alternative
compilers (and compiler options) that can be used for the EHOOKS build. Information about
the permitted alternative compilers will be embedded in the prepared A2L file during ECU
software preparation.

One of the permitted compilers may be selected by name via a menu item in the EHOOKS-DEV
front-end or via command line arguments to the toolchain-driver (described above in 11.1).

In the EHOOKS-Dev Front-End navigate to the Project menu select Advanced and then click
on Select Toolchain (figure 11.2). The option will be enabled if alterative compilers are
permitted. Selection is then via a dialog-box (figure 11.3) which will also prompt the user to
locate the gcc compiler and objcopy executables on the local machine. The name and
selected paths are saved as part of the DEV project.

NOTICE
EHOOKS always requires gcc, math and C standard libraries (libc.a, libm.a and
libgcc.a) So, in the linking stage EHOOKS will point to these libraries inside the in-
stalled version of EHOOKS-DEV directory. If the users want to provide their own
libraries, they can do this by using the Build tab in EHOOKS-DEV Front-End (see
5.8.1 Configuring Build Source Files).

ETAS EHOOKS v5.3 | User Guide

197 | EHOOKS-DEV Reference Guide

WARNING
The user is responsible for ensuring that the appropriate compiler executables are se-
lected. Ehooks is tested with the default compiler and options and therefore changes
to the compiler and options are not guaranteed by ETAS to work. When using an al-
ternative compiler, in-case of problems related to the build or problems that do not
occur with the default compiler and options, please seek support from the Tier-1
software provider before contacting the Ehooks support team.

Figure 11.2: Alternative compilers menu location.

Figure 11.3: Alternative compilers selection dialog.

11.5.4 Enable Elevated Permissions

EHOOKS allows Forced Writes with Elevated Permissions and can be used if the Tier-1 has
supported it. Elevated Permissions may be needed when the bypass container doesn’t have
the correct memory access privileges to perform the forced write. The majority of cases will
not need to use Elevated Permissions.

To enable Elevated Permissions, in the EHOOKS-Dev Front-End navigate to Project menu,
select Advanced and then click on Enable Elevated Permissions. A warning will appear
regarding the feature overriding memory protection, which needs to be accepted to continue.

With the option selected, Variable Bypass hooks and On-Target Bypass functions can be
configured to use Elevated Permissions, as described in sections 5.2.2 Configuring Properties
of a Variable Hook and Configuring Properties of an On-Target Bypass Function.

ETAS EHOOKS v5.3 | User Guide

Figure 11.4: Elevated Permissions menu location.

Figure 11.5: Elevated Permissions warning dialog.

199 | EHOOKS-DEV Reference Guide

11.6 Variable Initialization

When working with EHOOKS-DEV, you may need to define variables that are explicitly
initialized. These could be hook control variables or variables defined in on-target bypass
functions for example. Since the ECU startup code doesn’t know about these variables,
EHOOKS provides an initialization function called EH_InitRam for this purpose.

As part of the EHOOKS ECU SW preparation process, your ECU supplier may have provided
processes in which this initialization function can be run. If this is not the case, and there are
variables that need to be initialized, you will see the following warning:

“WARNING: Data initialization is required but no initialization processes exist.
Initialisation must be performed from an on-target bypass function in order for data
to be initialized properly. See the EHOOKS-DEV User Guide for more details.”

In this case, the initialization function must be called manually from an on-target bypass
function in order for data to be initialized properly. The initialization function is defined as
below:

EH_OPTIMAL_RETURN EH_InitRam(EH_ULONG maxBytesToCopy)

The argument maxBytesToCopy tells this function how many bytes of initialization data to copy
per-call. If this argument is less than the number of bytes of data that need initializing, the
function needs to be called in a bypass function that runs enough times to completely
initialize all data. If the argument passed is 0, a default value will be used.

The function returns a code indicating whether initialization has completed. As it is not safe
for a bypass function using the initialized values to run before the initialization has completed,
the bypass function needs to check whether initialization has completed before running.
Therefore, the function should be called as below:

EH_USER_BYPASS_FUNC(my_bypass_function)
{

// Initializes some data and returns
// if the initialization does not complete
if (!EH_InitRam(0))
{

return 0;
}
// Bypass function body
...
// End of function
return result;

}

11.7 EHOOKS-DEV File Formats

11.7.1 EHOOKS-DEV Project Configuration File

Each EHOOKS-DEV project configuration file must contain a target identifier indicating the
EHOOKS-DEV Back-End target to be used.

This identifier is in the form:

<Hardware identifier="<target>:<variant>" name="<target>" vendor="<vendor>"/>

where:

ETAS EHOOKS v5.3 | User Guide

200 | EHOOKS-DEV Reference Guide

• <target> is the name of the EHOOKS ECU target
• <variant> is the name of the ECU variant used (or Default if the ECU has no variants)
• <vendor> is the name of the organization that supplies the ECU.

The EHOOKS-DEV Front-End will automatically generate the correct target identifier in the
project configuration file when an A2L file is loaded.

The EHOOKS-DEV Project Configuration XML file format is fully documented in
<install-dir>\Schemas\OEMProjectDoc.zip as part of the EHOOKS product installation.

11.7.2 EHOOKS-DEV User Definition Files

The EHOOKS-DEV User Definition XML file format is fully documented in
<install-dir>\Schemas\OEMUserDefinesDoc.zip as part of the EHOOKS product
installation.

11.7.3 EHOOKS-DEV Filter File

The EHOOKS-DEV project filter file is a simple ASCII file format containing the names of ECU
variables and processes that EHOOKS-DEV should not allow for hooking. Each ECU
variable/process must be separated by whitespace or end-of-line tokens. Hash (#) tokens can
be used to include comments in the file, a hash token causes all characters from the hash
token to the end-of-line token to be ignored.

Source Code 7: Example Project Filter File

Filter file for project Wibble

Prohibited measurements are as follows:
AirCtl_dmAirDesMax_mp # Comment Text
PFltPOp_stEngPOp
InjCrv_qPiI1Des AirCtl_mDesBasEOM0 # Two on one line!

Prohibited processes:
Proc_1
Proc_2

ETAS EHOOKS v5.3 | User Guide

201 | EHOOKS Limitations

12 EHOOKS Limitations

Although powerful, there are some things that EHOOKS is not able to do. This section
describes some situations where EHOOKS might have shortcomings.

12.1 Non-Atomic Writes

A non-atomic write is encountered when the instruction writing to a hooked variable does not
match the size of the hooked variable. There are two variations:

1. The instruction targets a data type smaller than the variable; and

2. The instruction targets a data type larger than the variable.

The first case is typically seen when a block-copy function is used to write to a variable
(e.g. the C library’s memcpy function). In this situation, the block-copy function is likely to write
to memory one byte at a time in a loop. Storing data to variables larger than a byte will
therefore fail. This can typically be seen when structures are copied, and hooking of individual
elements of the structure is attempted.

The second case is seen in some compiler optimizations, where writes to consecutive address
locations are combined into a single store instruction – e.g. writing four consecutive byte
variables with a single 32-bit store.

In both cases, EHOOKS will recognize that a hooked variable is being written to but, because
the size of the write does not match the size of the variable, no hook will be placed. This
usually causes EHOOKS-DEV to emit a warning to the user.

12.2 Timing

One of the powerful features of EHOOKS is the ability to add new code (OTB) to the ECU
software. Where time-critical operations are taking place, it must be remembered that adding
new code may break the timing properties of the ECU code. This is especially relevant when
using dynamic function bypass where it is possible to run ‘old’ and ‘new’ code side by side in
order to compare the results of a new algorithm for example.

ETAS EHOOKS v5.3 | User Guide

202 | Contact Information

13 Contact Information

Technical Support

For details of your local sales office as well as your local technical support team and product
hotlines, take a look at the ETAS website: www.etas.com/hotlines

ETAS Headquarters

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

ETAS EHOOKS v5.3 | User Guide

www.etas.com/hotlines
www.etas.com

	1 Introduction
	1.1 Safety Notice
	1.2 Privacy Statement
	1.2.1 Data Processing
	1.2.2 Technical and organizational measures

	1.3 Conventions

	2 Getting Started
	2.1 Installation
	2.2 Silent Installation
	2.3 Licensing
	2.4 Post Installation Setup and Configuration Steps
	2.4.1 Installed Versions of EHOOKS Packages
	2.4.2 EHOOKS-DEV Simulink Configuration

	3 EHOOKS Overview
	3.1 EHOOKS Workflow
	3.1.1 Step 1: EHOOKS Prepared ECU Software
	3.1.2 Step 2: Creating the Hook Configuration
	3.1.3 Step 3: Running the EHOOKS-DEV ECU Target Support Tools
	3.1.4 Step 4: EHOOKS-DEV Generated ECU Software
	3.1.5 Step 5: Working with the EHOOKS-DEV Generated ECU Software

	3.2 EHOOKS-DEV Features
	3.2.1 EHOOKS-DEV Hook Types
	3.2.2 EHOOKS-DEV Hook Configuration Properties
	3.2.3 Service Points

	4 EHOOKS-PREP Dependencies
	5 Configuring EHOOKS-DEV
	5.1 General Settings Tab
	5.1.1 A2L Section
	5.1.2 ECU Image
	5.1.3 Project Settings
	5.1.4 Project Information

	5.2 Variable Bypass Tab
	5.2.1 Selecting Variables to Be Hooked
	5.2.2 Configuring Properties of a Variable Hook
	5.2.3 Multi-Select Operation
	5.2.4 Copy and Paste

	5.3 Function Bypass Tab
	5.4 On-Target Bypass Tab
	5.4.1 Configuring Properties of an On-Target Bypass Function

	5.5 Software Component Bypass Tab
	5.5.1 Selecting Software Components for Bypass
	5.5.2 Software Component Bypass Configuration

	5.6 Service Points Tab
	5.7 Group Tab
	5.7.1 Configuring the properties of a Group

	5.8 Build Tab
	5.8.1 Configuring Build Source Files
	5.8.2 Configuring Memory Sections
	5.8.3 Configuring pre- and post-build scripting
	5.8.4 Configuring macro definitions
	5.8.5 Configuring Characteristic Groups

	5.9 Configuration Consistency Checking, Building and Options
	5.9.1 Consistency Checking
	5.9.2 Building Hooked ECU Software
	5.9.3 Options

	5.10 Project Actions
	5.10.1 Convert All Paths
	5.10.2 Delete all externally configured items
	5.10.3 On-target bypass
	5.10.4 Filter files
	5.10.5 Advanced actions

	6 Working with Hooked ECU Software in INCA
	6.1 Run-Time Hook Control and Monitoring
	6.2 Offset Hooks
	6.3 Backup Measurement Copies
	6.4 Safety Checks
	6.5 Using EHOOKS-CAL and EHOOKS-BYP to Work with Hooks in INCA
	6.6 A2L Function Groups

	7 Creating and Working with Simple Internal Bypass
	8 Creating and Working with External Bypass
	8.1 Hook based bypass (HBB)
	8.2 Service based bypass (SBB)

	9 Creating and Working with On-Target Bypass
	9.1 Introduction
	9.2 Step 1: Configure On-Target Bypass Hooks
	9.3 Step 2: Configure On-Target Bypass Functions
	9.4 Step 3: Develop the On-Target Bypass Software
	9.4.1 On-Target Bypass Function Input and Output Parameters
	9.4.2 On-Target Bypass Function Implementation
	9.4.3 On-Target Bypass Data Type Conversion
	9.4.4 Calling ECU functions from On-Target Bypass code

	9.5 Step 4: Add the On-Target Bypass Files to Configuration
	9.5.1 Creating a User Definition File
	9.5.2 Extending the Example to Include a User Definition File

	9.6 Steps 5: Build and Run the EHOOKS-Created On-Target Bypass Software
	9.7 EHOOKS On-Target Bypass Global Output Buffer Measurements

	10 Creating and Working with On-Target Bypass from Simulink
	10.1 Introduction
	10.2 EHOOKS Blocks for Simulink
	10.2.1 EHOOKS Configuration Block
	10.2.2 EHOOKS ECU Trigger Source Block
	10.2.3 EHOOKS ECU Variable Reads Block
	10.2.4 EHOOKS ECU Variable Writes Block
	10.2.5 EHOOKS ECU Backup Variable Reads Block
	10.2.6 EHOOKS ECU Trigger Delegate Block
	10.2.7 EHOOKS ECU Hook Control Variable Write Block
	10.2.8 EHOOKS ECU Value Parameter Read Block
	10.2.9 EHOOKS ECU Variable Read/Write Blocks
	10.2.10 EHOOKS ECU Function Call Block
	10.2.11 EHOOKS RP-Visible Measurement block
	10.2.12 EHOOKS ECU Complex Calibration Parameter Read block
	10.2.13 EHOOKS ECU Value Block Cal Param Read block

	10.3 Simulink Modelling for On-Target Bypass
	10.3.1 Adding the EHOOKS Configuration Block
	10.3.2 Adding the EHOOKS Trigger Blocks
	10.3.3 Adding the Model and Reading/Writing ECU Variables
	10.3.4 Adding the Simulink model

	10.4 Building Hooked ECU Software with Simulink On-Target Bypass
	10.4.1 Setting the Simulink Configuration Properties
	10.4.2 Building the Hooked ECU Software
	10.4.3 Running an Experiment with the Hooked ECU Software using INCA

	10.5 Advanced Simulink Features
	10.5.1 Creating Model Measurements and Calibration Data
	10.5.2 Reading Existing Scalar and Complex ECU Calibration Data
	10.5.3 Reading from Hooked ECU Variable Backup Copies
	10.5.4 Programmatic Control using Control Variables
	10.5.5 Communication between On-Target Bypass Functions
	10.5.6 Trigger Delegation
	10.5.7 Calling an ECU function from within a Simulink model

	11 EHOOKS-DEV Reference Guide
	11.1 EHOOKS-DEV Command Line Usage
	11.1.1 Back-End Configuration File
	11.1.2 Front-End Configuration File

	11.2 EHOOKS-DEV Custom Build Steps
	11.2.1 Pre-Generate Scripts

	11.3 EHOOKS-DEV Simulink Integration Scripting Interface
	11.3.1 Adding EHOOKS Blocks
	11.3.2 EHOOKS Simulink APIs

	11.4 Special Purpose RAM
	11.5 Advanced Project Options
	11.5.1 Cached Register Warning Message
	11.5.2 Overriding Cached Registers with EHOOKS
	11.5.3 Building EHOOKS Code with an Alternative Compiler
	11.5.4 Enable Elevated Permissions

	11.6 Variable Initialization
	11.7 EHOOKS-DEV File Formats
	11.7.1 EHOOKS-DEV Project Configuration File
	11.7.2 EHOOKS-DEV User Definition Files
	11.7.3 EHOOKS-DEV Filter File

	12 EHOOKS Limitations
	12.1 Non-Atomic Writes
	12.2 Timing

	13 Contact Information

