
Optimisation of Gasoline Engines 
�Automation and Machine Learning 
Techniques in Calibration 

For vehicle emissions and fuel consumption testing, the WLTP (Worldwide-Harmonised  

Light-Duty Vehicles Test Procedure) and RDE (Real Driving Emissions) regulations will  

enter into force in Europe this September for type testing. In order to fulfill the strict new  

test conditions, the behavior of engines must be optimised throughout the speed-load range 

(“globally”). Etas uses machine learning methods amongst others. 
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REASONS FOR EFFICIENT 
CALIBRATION PROCESSES

In order to meet the high requirements 
with respect to performance, fuel con-
sumption, and pollutant emissions, 
increasingly efficient engines and sys-
tems are being developed. Current gaso-
line engines from Hyundai are equipped 
with systems such as dual continuous 
variable valve timing, continuous varia-
ble valve lift, gasoline direct injection, a 
variable intake system, and electrically 
actuated variable turbine geometry. The 
many degrees of freedom afforded by the 
large number of systems are reflected in 
the wide range of parameters that have 
to be adjusted and optimised in the 
course of calibration. Simultaneously, 
companies must fulfill a huge variety of 
customer requirements in order to com-
pete internationally. Consequently, man-
ufacturers are bringing out new vehicle 
models and engine variants at an accel-
erating rate. In order to efficiently cali-
brate the complex engines in all their 
variety with regards to production 
ramp-up deadlines, available engine test 
beds, and acceptable man-hour invest-
ment, conventional approaches are no 
longer adequate. 

In its research and development 
center in Namyang, South Korea, the 
Hyundai Motor Cooperation (HMC) 
therefore introduced a new, mod-
el-based calibration process that is  
both efficient and covers the engine’s 
operating range globally. The new pro-
cess is based on advanced modelling  
and automation methods, which are 
supported by the Etas Ascmo [1] and 
Inca-Flow [2] software tools. In this 
article, we present Hyundai’s new cali-
bration process, describe how the meth-
ods work, and set out the advantages  
of the tools used.

PROJECT SCENARIO

Hyundai determined the measurement 
effort saved compared to the previous 
process and the quality of the results 
based on standard calibration packages 
for gasoline engines. The target engine 
was a naturally-aspirated V6-3.0-l GDI 
engine with a three-stage intake system, 
dual continuously variable valve timing, 
and a Continental engine control unit. To 
this end, the following elements were 
optimised: 

–– intake and exhaust camshaft timing 
–– injection timing
–– ignition angle.

In addition, the models for the following 
elements were pre-calibrated in the ECU:
–– air charge
–– torque
–– exhaust temperature.

CONVENTIONAL METHOD 

For basic calibration of the individual 
models and functions, the engine used to 
be measured on the test bed for all com-
binations of relevant parameter values at 
various speed-load points. For example, 
in order to pre-calibrate the air charge 
model, measurements had to be per-
formed at 16 engine speeds, ten engine 
torques, eight intake camshaft settings, 
six exhaust camshaft settings, and three 
settings of the intake system. When we 
multiply these settings, we arrive at a 
total number of approximately 23,000 
individual measurements. Assuming 
that each measurement takes an average 
of two minutes, the basic calibration of 
the air charge model alone used to take a 
total of some 800 h, or 80 measurement 
days. 

NEW CALIBRATION PROCESS

When redesigning its calibration pro-
cess, Hyundai introduced two new meth-
ods, namely design of experiments (DoE) 
and the fully automated measuring of 
the engine on the test bed. Using 
machine learning techniques, models 
that simulate the behavior of engines 
with high accuracy on computers are 
generated on the basis of the measure-
ment results. The test plans and the 
models based on measurement data are 
generated using the Etas Ascmo tool. 
The measurement points for the test 
plans can be worked through fully auto-
matically on the test bed with the aid of 
a newly developed measurement control 
system based on the Inca-Flow tool.

DESIGN OF EXPERIMENTS

With a test plan generated using the DoE 
method, a maximum amount of informa-
tion can be obtained from the smallest 
possible number of individual measure-
ments. To this end, the measuring points 
are distributed in a statistically optimum 
manner through the space formed by the 
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measurement parameters. FIGURE 1 
shows the DoE input variables along 
with two-dimensional projections of the 
test plan generated using Etas Ascmo. 

To accelerate the test run, Etas Ascmo 
can be used to cluster speed-load meas-
uring points while leaving unchanged 
the distribution of the measuring points 
in relation to the other parameters. 

MEASUREMENT AUTOMATION

High-performance measurement 
automation is the key to efficient 
measurement of engines on the test 
bed. Hyundai’s new automation 
solution based on Inca-Flow is 
illustrated in FIGURE 2. It shows the 
interplay between ECU, test bed 

controller, AVL IndiCom combustion 
analysis, Etas Inca, and Inca-Flow. 

The flow diagram from Inca-Flow,  
a graphically programmable control 
sequence, determines the measurement 
procedure based on the individual meas-
uring point and the sequence in which 
the measuring points of the test plan are 
processed on the test bed. During the 

FIGURE 1 Test planning with Etas Ascmo. Relevant input variables (above left). Distribution of measuring points for speed and load, which are 
clustered into a reduced number of operating points and concentrated in the low rpm range (see red ellipse) (below left); even distribution of 
measuring points across two further input variables (below right) (© Etas)

FIGURE 2 Diagrams for measurement automation (left) and sequence control using Inca-Flow (right) (© Etas)
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measurement run, the values of the rele-
vant calibration parameters and meas-
urement variables are automatically set 
or recorded using Inca. The automation 
protects the engine against knock and 
excessively high exhaust temperatures. 
Knock is prevented by adjusting the 
ignition timing. The exhaust tempera-
ture is limited by adjusting the injected 
fuel mass.

MACHINE LEARNING TECHNIQUES 
FOR GLOBAL ENGINE MODELLING: 
GAUSSIAN PROCESSES

Based on the data measured on the 
engine test bed, a machine learning 
technique is used to define a mathemat-
ical model that simulates the engine 
behavior across the entire operating 
range. To do this, Etas Ascmo uses 
Gaussian processes. The basic idea 
behind Gaussian processes is to simu-
late measurement data by means of a 
probabilistic model with maximum 
probability. Unlike conventional meth-
ods based on minimising squares of 
errors, the values of the variables cal-
culated using the model are assigned 
via a probability distribution. Accord-

ingly, the method is very robust in its 
handling of outliers and is very suitable 
in practice for modelling noisy engine 
measurement data [3, 4]. The model 
structure is determined by the number 
of measurement data, which means 
that users do not have to specify any 
model parameters from outside. As  
the number of measurement data 
increases, so the ability of Gaussian 
processes to model complex non-linear 
relationships grows. The model struc-
ture adapts to the number of measure-
ment data. Unlike traditional methods, 
the technique is free from the risk of 
overfitting. In this way, it always guar-
antees optimum model quality and gen-
erates plausible models, even for small 
data sets. The computing overhead for 
the model training of standard Gauss-
ian processes scales at the rate of the 
cube of the number of measurement 
points, in a way that the use of Gauss-
ian processes for data volumes > 8000 
ceases to be practicable. For this rea-
son, an advanced version of Gaussian 
processes was implemented in Etas 
Ascmo. Using special approximations, 
these algorithms can model even very 
large data sets quickly. The mathemati-

cal foundations of Gaussian processes 
are elaborated extensively in the litera-
ture [5].

CALIBRATION BASED ON  
ENGINE MODEL

The engine model created from the  
test bed measurements simulates the 
behavior of the engine with high accu-
racy across the entire parameter space, 
FIGURE 3. On the basis of the model, 
both the fuel consumption and the full-
load torque were optimised, FIGURE 4. 
At the same time, the knocking limit 
and the maximum exhaust temperature 
were observed. Pre-calibration of the 
air charge, torque, and exhaust temper-
ature model in the ECU requires large 
volumes of data. Unlike standard prac-
tice with conventional methods, this 
data was not laboriously measured at 
the engine test bed, but derived by Etas 
Ascmo from the empirical engine 
model (“screening”). When compared 
against validation measurements, the 
deviation of the results that were cal-
culated using the models pre-calibrated 
in this way amounted to under 5 % for 
the air charge model, under 5 % – or a 

FIGURE 3 Graphs showing the  
dependencies between output  
and input variables; the Etas Ascmo 
model simulates the dependencies  
very well across the entire parameter 
space (© Etas)
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maximum of 5 Nm – for the torque 
model, and under 15 °C for the exhaust 
temperature model. Consequently, the 
physical behavior is simulated very 
well by the models in the ECU in each 

case. TABLE 1 and FIGURE 5 show the sim-
ulation accuracy of curves for selected 
physical variables by ECU models. The 
second column shows the variance 
(RMSE) of the model calculations, 

while the third column shows their 
coefficient of determination (R2). R2 is 
a relative measure that indicates the 
proportion of measuring points 
explained by the model. 

CONCLUSION AND SUMMARY

By introducing the global, model-based 
process in the research and develop-
ment center in Namyang in South 
Korea, Hyundai achieved a dramatic 
efficiency increase in engine calibra-
tion. In a specific calibration project, 
the company was able to reduce the 
measurement effort on the test bed 
using the new process to a quarter of 
what it was using the conventional 
method, FIGURE 6. At the same time, it 
achieved the project goals defined at 
the outset. A new measurement auto-
mation system created on the basis of 
Etas Ascmo and Inca-Flow facilitated 
the fast, easy implementation of the 
measurements on the test bed. Gener-
ated from the test bed measurement 
data using Etas Ascmo with the aid of 
Gaussian processes, the empirical 
model of the gasoline engine simulates 
the dependencies of measurements of 
the input variables very well. The same 
applies for the models for calculating 
physical variables in the ECU, whose 

FIGURE 4 Optimisation of parameter values of models in ECU (“optimisation 
function”) by adjusting (“fitting”) the output of these models to data derived 
from the empirical engine model using Etas Ascmo (“screening”) (© Etas)

FIGURE 5 The difference 
between modeled and 
measured mass air flow  
in the induction cycle is  
less than ±5 % across  
the entire operating range  
(© Etas)
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parameters were optimised very effi-
ciently using the engine model. 

In summary, we conclude that the 
global, model-based process enables 
engineers to efficiently calibrate complex 
engines with high-quality results.
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FIGURE 6 Using design of experiments (DoE) methodology, the total number of test points and the 
total test time can be reduced by 76 % (© Etas)

TABLE 1 The simulation accuracy of curves for selected physical variables by ECU models; the second 
column shows the variance (RMSE) of the model calculations, while the third column shows their coeffi
cient of determination (R2); R2 is a relative measure that indicates the proportion of measuring points 
explained by the model

Measurement variable RMSE R2

Torque [Nm] 0.679 0.999

Intake manifold pressure (MAP) [hPa] 0.854 0.999

Brake specific fuel consumption (BSFC) [g/kWh] 2.445 0.999

Exhaust temperature (ExT) [°C] 1.885 0.999

Coefficient of variation of indicated mean effective 
pressure in combustion chamber (IMEP COV) [%]

0.171 0.990
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