
ETAS ASCET-SE V6.4

User Guide

Copyright
The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation
in relation to this document. The software described in it can only be used if
the customer is in possession of a general license agreement or single
license. Using and copying is only allowed in concurrence with the specifica-
tions stipulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another
language without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or
brands belonging to the respective owners.

ASCET-SE V6.4 | User Guide R09 EN | 06.2024

3 | Contents

Contents

1 Introduction . 8

1.1 Intended Use . 8

1.2 Target Group . 8

1.3 Classification of Safety Messages . 8

1.4 Safety Information. 9
1.4.1 Interpolation Routines . 10
1.4.2 FPU Usage . 10
1.4.3 Non-Volatile Elements . 11
1.4.4 Provision of Customized Data Types . 11

1.5 Data Protection. 11

1.6 Data and Information Security . 12
1.6.1 Data and Storage Locations . 12
1.6.2 Technical and Organizational Measures . 13

2 About ASCET-SE . 14

2.1 Components of ASCET-SE. 14

2.2 Basic Stages from Model to Executable. 15
2.2.1 Code Generation . 18
2.2.2 Compilation and Linking. 18
2.2.3 ASAM-MCD-2MC Generation . 18

2.3 Configuring ASCET-SE for Code Generation . 19
2.3.1 Target Selection . 19
2.3.2 Path Settings for External Tools . 20
2.3.3 Code Generation Settings . 21
2.3.4 Operating System Configuration. 22
2.3.5 Memory Class Configuration. 22
2.3.6 Target Initialization Code . 23
2.3.7 Customizations for Compiling and Linking . 23
2.3.8 Generating the Executable File and Running it on the Target. 24

2.4 Finding Out More . 27

3 ASCET-SE Installation. 28

3.1 Installation Contents . 29

3.2 Licensing . 35

4 Implementation Configuration . 36

4.1 Implementations for Basic Model Types . 36
4.1.1 Implementation Data Types. 38
4.1.2 Conversion Formula. 39
4.1.3 Value Range (Only for Numerical Quantities). 40
4.1.4 Implementation Master . 40
4.1.5 Implementation Types . 41
4.1.6 Value Range Limitation. 41
ETAS ASCET-SE V6.4 | User Guide

4 |
4.1.7 Zero Containedness in the Value Range . 42
4.1.8 Memory Locations . 42
4.1.9 Consistency Check . 43
4.1.10 Additional Information . 43
4.1.11 Sizes of Composite Model Types . 43
4.1.12 Summary of Element Implementation . 43

4.2 Implementations for Classes . 44
4.2.1 Optimized Method Calls . 46
4.2.2 User-Defined Service Routines . 47
4.2.3 Prototype Implementations . 51
4.2.4 Implementation of Methods, Processes and Runnables. 54

4.3 Implementation of Records . 56

4.4 Implementations for Temporary Variables . 57

4.5 Implementations for Implementation Casts. 57

4.6 Implementations for Method- and Process-Local Variables . 57

4.7 Migration of Operator Implementations. 58

5 Configuring ASCET for Code Generation . 59

5.1 codegen[_*].ini Files . 59

5.2 target.ini File . 61

5.3 memorySections.xml File . 64
5.3.1 Defining a Memory Class. 65
5.3.2 Defining Memory Segments . 67
5.3.3 Defining Memory Classes for Variable Array/Matrix References 68

5.4 Build System Control & Configuration Settings . 69
5.4.1 Project Settings – Make File project_settings.mk . 71
5.4.2 Target and Compiler Settings – Make Files target_settings.mk and

settings_<compiler>.mk . 71
5.4.3 Code Generation – Make File generate.mk . 71
5.4.4 Compilation – Make File compile.mk . 72
5.4.5 Build – Make File build.mk . 72

5.5 Customizing Code Generation. 73
5.5.1 Banners. 73
5.5.2 Formatting Generated Code – .indent.pro Configuration File 73
5.5.3 Code Post-Processing . 73
5.5.4 Common Subexpression Elimination . 74

5.6 Customizing the Build Process . 75
5.6.1 Including Your Own Make Files . 75
5.6.2 Including User-Defined C and H Files . 75
5.6.3 Special Makefile Variables Provided by ASCET . 76

5.7 Controlling What is Compiled Using ASCET Header Files . 77
5.7.1 Include File a_basdef.h . 77
5.7.2 Include File proj_def.h . 77
ETAS ASCET-SE V6.4 | User Guide

5 |
6 Memory Segments . 79

6.1 Default Memory Class Per Category and Segment. 79

6.2 Propagating Memory Segments . 80

7 Interpolation Routines . 81

7.1 Use of Interpolation Routines. 82

7.2 The Interpolation Procedure . 82

7.3 Accuracy and Allowed Range of Values . 83

8 Operating System Integration . 84

8.1 Scheduling and the Priority Scheme . 84

8.2 Setting Up the Project . 86
8.2.1 Generating ASCET’s OS Configuration File . 86
8.2.2 Providing Additional OS Configuration . 87

8.3 Providing the Main Program. 89

8.4 The dT Variable . 89
8.4.1 Dynamic dT . 91
8.4.2 Static dT . 92
8.4.3 Implementing Your Own dT Routines . 94

8.5 Template-Based OS Configuration Generation . 94

8.6 Interfacing with an Unknown Operating System . 96
8.6.1 Configuration of Tasks. 96
8.6.2 Interfacing with the OS API . 97

8.7 Template Language Reference . 98
8.7.1 Templating Basics . 98
8.7.2 Object Reference . 101

9 Measurement and Calibration with ASAM-MCD-2MC . 107

9.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File). 107

9.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File) . 107

9.3 ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l and
if_data_template.a2l) . 108

9.4 Generation of an ASAM-MCD-2MC Description File . 108

9.5 Suppressing Exported Elements and Parameters . 111

9.6 Working with SERAP . 113

10 Integration with External Code . 114

10.1 Calling C Functions from an ASCET Model . 114
10.1.1 Use of Prototypes . 114
10.1.2 Invocation by C Code Specified in ASCET . 117
10.1.3 Including C Source Files in the ASCET Make Process . 117

10.2 Calling ASCET-Generated Functions from External C Code . 117

10.3 Using External Global Variables/Parameters in ASCET Code . 117

10.4 Generating Code for Use with External Data Structures . 118
ETAS ASCET-SE V6.4 | User Guide

6 |
10.5 Configuring the ASCET Optimization Features. 120
10.5.1 Configuring Method Calls . 120
10.5.2 Configuring Message Copies . 121

10.6 Working with Variant Parameters . 122

11 Modeling Hints . 123

11.1 Implementations . 123
11.1.1 Definition of Conversion Formulas . 123
11.1.2 Definition of the Value Intervals . 124
11.1.3 Defining Implementations for Related Variables. 125
11.1.4 Multiplication of Large Results . 127

11.2 Model Structure . 129
11.2.1 Division . 129
11.2.2 Multiple Calculations . 130
11.2.3 Concatenated Calculations. 132
11.2.4 Logical Operators . 133
11.2.5 Classes and Modules . 133
11.2.6 State Machines . 134

12 Migrating an Existing Project to a New Target . 135

13 Understanding Quantized Arithmetic. 138

13.1 Degrees of Freedom and Optimization . 138

13.2 Numerical Aspects of Integer Arithmetic. 139
13.2.1 Quantization Errors . 139
13.2.2 Errors from Integer Division . 139
13.2.3 Error Propagation . 140

13.3 Rules of Integer Code Generation . 140
13.3.1 Assignments. 141
13.3.2 Addition and Subtraction . 143
13.3.3 Multiplication . 144
13.3.4 Division . 145
13.3.5 Comparisons . 147
13.3.6 Switches and Multiplexers . 147
13.3.7 Literals. 147
13.3.8 Treatment of Operators With Multiple Inputs . 148
13.3.9 Optimization of Mathematical Expressions . 148

14 Understanding Generated Code . 152

14.1 Modularity . 152

14.2 Distribution of Generated Code to Files. 152
14.2.1 Include Hierarchy . 153

14.3 Software Architecture . 156
14.3.1 Naming Conventions. 157
14.3.2 Storage Systems, Data Structures, Initialization of Primitive Objects. 158
14.3.3 Data Structures and Initialization for Complex (User-Defined) Objects . . . 182
ETAS ASCET-SE V6.4 | User Guide

7 |
14.3.4 Local Variables and Parameters . 184
14.3.5 Variant-Coded Data Structures . 184
14.3.6 Exported and Imported Variables . 187
14.3.7 Method Declarations and Calls. 187
14.3.8 Constants and Literals. 188
14.3.9 System Constants . 189
14.3.10 Virtual Parameters . 190
14.3.11 Dependent Parameters . 190

14.4 Real-Time Constructs . 191
14.4.1 Tasks . 191
14.4.2 Processes . 191
14.4.3 Messages . 191
14.4.4 Resources . 193
14.4.5 Application Modes . 194

15 Inside ASCET-SE . 195

15.1 Structure of the Code Generator . 197
15.1.1 Front-End Transformation . 197
15.1.2 MDL and MDL Builder. 197
15.1.3 Code Generator . 198

15.2 Code Administration. 199
15.2.1 Make Mechanism . 200
15.2.2 Code Manager . 200

15.3 Directory Structure of Code Production Rules . 201

16 ASCET-SE — Restrictions . 203

16.1 General Restrictions. 203
16.1.1 Interval Arithmetic . 203
16.1.2 No Quantization for Literals . 203
16.1.3 ASCET Direct Access and Characteristic Lines/Maps . 203

16.2 Restrictions in Using ASCET-SE . 204
16.2.1 Inputs of Characteristic Lines and Maps . 204
16.2.2 No Separate Search for Interpolation Nodes and Interpolation 205
16.2.3 No Choice for Interpolation Method. 205
16.2.4 Uniqueness of Component Names. 205
16.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic. 206

16.3 Known Errors in the ASCET-SE Code Generation. 206
16.3.1 Build Executable Code After Exiting ASCET . 206

17 Contact Information . 207

Glossary . 208

Figures . 213

Tables . 214

Index . 215
ETAS ASCET-SE V6.4 | User Guide

8 | Introduction
1 Introduction
In this chapter, you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (accessible via Help > Product
Disclaimer) and to the safety information given in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information.

1.1 Intended Use
The ASCET tools support model-based software development. In model-based
development, you construct an executable specification – the model – of your
system and establish its properties through simulation and testing in early stages
of development. When a model behaves as required, it can be converted automat-
ically to production-quality code.

ASCET-SE is a tool for the following purposes:

- generating AUTOSAR code

- generating target-specific C code for selected microcontrollers

- integrating the code with a target operating system or run-time environ-
ment

- (optionally) invoking the target-specific compiler and linker to generate an
executable application and calibration configuration file (e.g. for use with
ETAS INCA)

1.2 Target Group
This ASCET-SE User Guide is a supplement to the ASCET documentation (Getting
Started and online help). You should be familiar with the basic features and opera-
tion of ASCET before attempting to understand code generation.

This guide assumes you have the following knowledge:

A a basic understanding of the C programming language

B experience of compiling and linking C programs for embedded microcontrol-
lers

C knowledge of the target microcontroller

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

DANGER
DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.
ETAS ASCET-SE V6.4 | User Guide

9 | Introduction
1.4 Safety Information
ASCET and ASCET-SE provide numerous mechanisms to ensure safe and consis-
tent microcontroller code. Some details, however, cannot be checked by the code
generator. This may be the case due to technical reasons or because the correct-
ness of an implementation cannot be clearly determined in certain cases (e.g.
because the correctness is related to the usage of a model).

Observe the following safety information when using ASCET-SE to avoid injury to
yourself and others as well as damage to property:

Adhere to the ETAS Safety Advice and the safety information given in the online
help and user guides of the ASCET product family. You can open the ETAS Safety
Advice from the main ASCET window with Help > Product Disclaimer. A PDF ver-
sion is available on the installation medium: Documentation\ETAS Safety
Advice.pdf

In addition, take all information on environmental conditions into consideration
before setup and operation (see the documentation of your computer, hardware,
etc.).

WARNING
WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

CAUTION
CAUTION indicates a hazardous situation that, if not avoided, could result in
minor or moderate injury.

NOTICE
NOTICE indicates a situation that, if not avoided, could result in damage to prop-
erty.

CAUTION
Harm or property damage due to unpredictable behavior of vehicle or test
bench

Wrong word size and/or compiler division lead to wrong compilable code. Wrong
compilable code may lead to unpredictable behavior of a vehicle or test bench.
This behavior can cause harm or property damage.

When working with the EHOOKS target, you must ensure that word size and
compiler division match the selected EHOOKS-DEV back end to avoid wrong
compilable code.

See also the ASCET-SE V6.4 EHOOKS User Guide.
ETAS ASCET-SE V6.4 | User Guide

10 | Introduction
Further safety advice for this ETAS product is available in the ASCET V6.4 safety
manual, available at ETAS upon request.

1.4.1 Interpolation Routines
Each ASCET-SE target is supplied with a pre-compiled interpolation routine library.

The interpolation routine library is provided for example only. It is not permitted to
use the library in production code or within ECUs running in vehicles. The libraries
are signed. Any use of them in a project will give the following warning:

WARNING(): Disclaimer for interpolation routines.txt(1):
Invalid interpolation library linked. THE ETAS GROUP OF COMPA-
NIES AND THEIR REPRESENTATIVES, AGENTS AND AFFILIATED COMPA-
NIES SHALL NOT BE LIABLE FOR ANY DAMAGE OR INJURY CAUSED BY USE
OF THIS ROUTINES
ASCET-SE is also supplied with the source code and scripts required to re-build
the library. By re-building the library, you take full responsibility for ensuring the
correctness of the source code, the build process and the interpolation routines in
the library.

1.4.2 FPU Usage
ASCET-SE supports floating-point code generation. This is especially advanta-
geous for microcontrollers with an on-chip floating-point unit (FPU).

However, if an application does not use floating-point, run time and stack con-
sumption can be saved by not saving and restoring the FPU’s floating point regis-
ters over task context switches. RTA-OSEK provides this type of optimization, and
ASCET-SE will automatically enable the optimization in the OS configuration if all
processes and methods in a task do not use the FPU.

The information about whether or not a process or method uses the FPU is pro-
vided by a flag in the implementation information. By default, this flag is enabled,
indicating the FPU is used. If the process or method does not use the FPU then the
flag can be disabled.

It is the users’ responsibility to ensure the FPU flag is only disabled when they are
certain that no floating-point code is used in the process or method.

If the flag is disabled and the process or method uses the FPU, then the floating-
point context will not be saved and may be corrupted over a context switch, result-
ing in unpredictable application behavior.

If in doubt, leave the FPU flag enabled.

NOTE
The ETAS group of companies and their representatives, agents and affiliated
companies shall not be liable for any damage or injury caused by use of these
routines.
ETAS ASCET-SE V6.4 | User Guide

11 | Introduction
1.4.3 Non-Volatile Elements

ASCET-SE supports the handling of different memory classes, as described in
chapter 5.3 "memorySections.xml File". Each memory area can either be volatile
or non-volatile. For this reason, ASCET-SE checks the uniform usage of each mem-
ory class either for volatile elements or for non-volatile elements. If both properties
are mixed within one memory class, an error message is generated.

Non-volatile variables are intended to remain in the ECU memory persistently, also
after a re-boot of the ECU. For this reason, variables specified as non-volatile are
not initialized, even if an initialization value can be entered in the respective data
editor.

It is the users’ responsibility to care for a correct explicit initialization of non-vola-
tile variables as a part of the function specification.

1.4.4 Provision of Customized Data Types
If customized data types are used, then it is important to ensure that the types
declared in a_user_def.h are sufficiently wide to hold values of the associated
ASCET data type. For example, a customized data type which replaces sint8 must
be wide enough to hold the value range -128..127.

ASCET cannot check for correct customized data type width, so it is essential that
declarations are checked during other stages of the development process (for
example by code review).

1.5 Data Protection
If the product contains functions that process personal data, legal requirements
of data protection and data privacy laws shall be complied with by the customer.
As the data controller, the customer usually designs subsequent processing.
Therefore, he must check if the protective measures are sufficient.

WARNING
Harm or property damage due to unpredictable behavior of vehicle or test
bench

Wrongly initialized NVRAM variables (NV variables) can lead to unpredictable
behavior of a vehicle or a test bench. This behavior can cause harm or property
damage.

ASCET projects that use the NVRAM possibilities of the ASCET-SE targets
(including AUTOSAR) expect a user-defined initialization that checks whether
all NV variables are valid for the current project, both individually and in combina-
tion with other NV variables. If this is not the case, all NV variables have to be ini-
tialized with their (reasonable) default values.

Due to the NVRAM saving concept, this is absolutely necessary when projects
are used in environments where any harm to people and equipment can happen
when unsuitable initialization values are used (e.g. in-vehicle-use or at test
benches).
ETAS ASCET-SE V6.4 | User Guide

12 | Introduction
1.6 Data and Information Security
To securely handle data in the context of this product, see the next sections
about data and storage locations as well as technical and organizational mea-
sures.

1.6.1 Data and Storage Locations
The following sections give information about data and their respective storage
locations for various use cases.

License Management
When using the ETAS License Manager in combination with user-based licenses
that are managed on the FNP license server within the customer's network, the fol-
lowing data are stored for license management purposes:

Data

- Communication data: IP address

- User data: Windows user ID

Storage location

- FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses
that are provided as FNE machine-based licenses, the following data are stored for
license management purposes:

Data

- Activation data: Activation ID

Used only for license activation, but not continuously during license usage

Storage location

- FNE trusted storage

C:\ProgramData\ETAS\FlexNet\fne\license\ts

Problem Report
When an error occurs, ASCET offers to send an error report to ETAS for trouble-
shooting. ETAS uses the personal information to have a contact person in case of
system errors.

The problem report may contain the following personal data or data category:

Data

- Communication data: IP address

- User data: Windows user ID, user name

Storage location:

- EtasLogFiles<index number>.zip in the ETAS-specific log files direc-
tory,
ETAS ASCET-SE V6.4 | User Guide

13 | Introduction
Additionally to the problem information that is entered by the users themselves,
ASCET collects the available product-related log files in a zip archive to support
the bug fixing process at ETAS. The zip file is named according to the pattern
EtasLogFiles<index number>.zip.

This automatically created zip file contains the following:

- product-related log files created at installation time (necessary for uninstall
action)

- ETAS log files stored in the ETAS log files directory matching the file name
pattern *.log

- recursive registry export of ETAS (32bit)-key (and sub keys):
HKEY_CURRENT_USER\Software\ETAS

- registry export of ETAS (32bit)-key (and sub keys):
HKEY_LOCAL_MACHINE\Software\ETAS

All ETAS-related log files in the ETAS-specific log files directory and the zip
archives created by the Problem Report feature can be removed after closing all
ETAS applications if they are no longer needed.

1.6.2 Technical and Organizational Measures
We recommend that your IT department takes appropriate technical and organi-
zational measures, such as classic theft protection and access protection to
hardware and software.

Locations for Generated Files
The names and paths of files generated by ASCET paths may contain personal
data, if they refer to the current user's personal directory or subdirectories (e.g.,
C:\Users\<UserId>\Documents\...).

If you do not want personal information to be included in the generated files, make
sure of the following:

- The workspace of the product points to a directory without personal refer-
ence.

- All settings in the product (accessed via the menu function Tools > Options
in the product) refer to directories and file names without personal refer-
ence.

- All project settings in the projects (accessed via the menu function File >
Properties in the ASCET project editor) refer to directories and file names
without personal reference.

- Windows environment variables (such as the temporary directory) refer to
directories without personal reference because these environment vari-
ables are used by the product.

In this case, please also make sure that the users of this product have read and
write access to the newly set directories.
ETAS ASCET-SE V6.4 | User Guide

14 | About ASCET-SE
2 About ASCET-SE
ASCET-SE is a tool for generating software for embedded microcontrollers from an
ASCET-MD model. ASCET-SE uses the project to hold configuration information.

Each ASCET project includes target-neutral code generation settings, an integra-
tion of ASCET modules and configuration settings for one or more targets as
shown below:

Fig. 2-1 ASCET project

The ASCET online help provides more information about how to create ASCET proj-
ects.

To generate code using ASCET-SE, you need to configure a target. In ASCET-SE, a
target is a specific combination of a microcontroller, a computing platform and a
compiler.

Code generation produces C source code files that implement your ASCET proj-
ect, and also produces configuration files for an underlying operating system (OS)
or run-time environment (RTE). These configuration files capture the real-time
requirements of the model, such as sampling rates and communication between
models. These configuration files define what ASCET requires from the OS or RTE.

ASCET-SE supports code generation for:

A OSEK Operating Systems (OSEK OS).

B AUTOSAR Run-Time Environments (AUTOSAR RTE)

ASCET-SE provides dedicated OSEK OS support for ETAS’ RTA-OSEK, however,
code can be generated for use with any OSEK operating system and optionally for
any OS with a similar scheduling model to OSEK OS.

2.1 Components of ASCET-SE
The ASCET-SE delivery includes the following components:

- The ASCET-SE code generator tools

- A set of configuration files for each supported target

- A hex file reader

These components have the following functions:

Project

Modules

Classes

Target #N

Target #2

Target #1

Project
Settings

Option 1

Option 2

Option N

...
ETAS ASCET-SE V6.4 | User Guide

15 | About ASCET-SE
- The ASCET-SE code generator tools extend the ASCET system with target-
neutral C code generation, OS/RTE configuration file generation and
optional invocation of the compiler toolchain to build the ECU executable. All
targets use the same core code generator.

- The configuration files hold all the target-specific information needed by
the ASCET-SE code generator to produce code for a particular embedded
microcontroller that interfaces with a specific OS/RTE. In addition, the con-
figuration files contain information on how to build the complete system
with a supported compiler to produce an executable to run on an ECU.

- The Hex file reader extracts address information from the executable so
that ASCET-SE can generate an ASAM-MCD-2MC file for measurement and
calibration.

2.2 Basic Stages from Model to Executable
The main stages in ASCET-SE code generation are:

A Generation of C code by the code generator

B Invocation of the compiler toolchain to compile and link the code to create
an executable ready for the ECU

C Generation of an ASAM-MCD-2MC file for measurement and calibration

NOTE
The modeling capabilities of ASCET are not included in the ASCET-SE
shipment. They are subject to separate orders.

NOTE
The RTA-OSEK operating system configuration tools and target plug-ins
are not included in the ASCET-SE shipment.

Please contact your local ETAS sales office for a quotation

NOTE
Target compilers and linkers are not included in the ASCET-SE shipment.
They are subject to separate orders from the compiler vendor.

The release notes included in the ASCET-SE installation describe the
compiler and linker versions that are supported.

NOTE
This applies only to the addresses of elements declared as ASCET ele-
ments.
ETAS ASCET-SE V6.4 | User Guide

16 | About ASCET-SE
The following figure shows these stages in outline:

Fig. 2-2 Main stages of ASCET-SE code generation

A more detailed view of what happens is shown in Fig. 2-3.The next three sections
explain what happens in each stage

COMPILER
Host: PC
Target:

Embedded μC

ASCET-SE
Object-based

Controller
Implementation

Model
Behavioral

and
Implementation

C Code

C Code

TOOL

Input Ouput

Key:
Executable

μC hosted A2L File

Executable
μC hosted

ASCET-SE
Object-based

Controller
Implementation
ETAS ASCET-SE V6.4 | User Guide

17 | About ASCET-SE
.

Fig. 2-3 Basic stages in ASCET-SE code generation

User-provided linker

User C
code

[*.h, *.c]

ASCET Model
[BD, SM, ESDL, C]

User
Libraries
[*.<lib>]

Object Files
[*.o]

Executable
[*.hex]

Invoke
Compiler

Invoke
Linker

Target
Configuration

[*.ini , *.xml , *.mk,
conf*.oil ,*.lnk]

Compilation and Linking

Key

Control flow

Data flow

Automatically
Generated

Supplied by
ASCET

user configurable

User-created
with

ASCET-MD
User-provided

User-provided C compiler

Invoke
A2L
file

generation

Compilation and Linking

ASCET code
[*.h, *.c]

OS config
[temp.oil]

OS code
[*.h, *.c, *.asm]

RTA-OSEK
[or other OS tool]

Invoke
OS

Generator

Code Generation

ASCET-SE
Code Generator

ASCET -SE
[HEX File Reader]

ASAM-MCD-2MC Generation

ASAM2-MCD-2MC
[*.a2l]
ETAS ASCET-SE V6.4 | User Guide

18 | About ASCET-SE
2.2.1 Code Generation
The main function of ASCET-SE is the conversion of the ASCET model into C code.
Code generation in ASCET-SE always uses a complete model, i.e. a project in
ASCET, for the chosen target. C source code files are generated for

- the project itself,

- each module,

- each class,

- each OS task body.

The software architecture, or mapping of model structures into code, is identical
for all ASCET-SE targets. However, the code generator uses target-specific infor-
mation provided by target configuration files to optimize code generation or cus-
tomize the code where necessary. For example, the target configuration files can
be used to tell ASCET-SE to generate compiler-specific pragmas to place code or
data into specific memory sections, whether the hardware provides bit-address-
able memory that can be used to optimize bit-fields for space etc.

ASCET-SE also generates an OS configuration file that defines all the OS objects
required by the ASCET configuration and then runs the OS generator tools to gen-
erate the data structures required by the operating system.

The combination of the ACSET and OS code includes all variable and data defini-
tions required to make the ASCET system work.

Code generated in this way will need to be built to produce a final executable.
ASCET-SE supports two use cases for this process:

A additional programmer, where the generated C code is exported to external
files and can be used in an external (to ASCET) build process.

B integration platform, where ASCET-SE uses your compiler toolchain to build
the executable. This is described in the next section.

More detailed information about how the ASCET-SE code generator works can be
found in chapter 15.

2.2.2 Compilation and Linking
In the integration platform use case the target toolchain, comprising compiler,
linker and locator, is driven from ASCET, so that the complete project can be built
in a similar way to developing software with an Integrated Development Environ-
ment (IDE). The integration platform capabilities of ASCET-SE allow you to include
non-ASCET C source code and/or libraries in the build process.

ASCET uses a "make"-based system to control the build process, but interaction is
similar to the build for experimental targets. On selecting a menu option, the build
is started, and when it completes without error, a complete executable program
for the project has been created. The executable can be flashed to the ECU.

2.2.3 ASAM-MCD-2MC Generation
At the end of the build process, ASCET-SE uses the hex file reader to extract the
addresses of all variables and parameters declared in the ASCET model from the
generated hex file.
ETAS ASCET-SE V6.4 | User Guide

19 | About ASCET-SE
An ASAM-MCD-2MC description (commonly called an A2L file) can be generated,
using a separate menu item, to supply information about the system to calibration
systems like ETAS’ INCA.

2.3 Configuring ASCET-SE for Code Generation
The following sections explain how to configure ASCET-SE for target code gener-
ation.

2.3.1 Target Selection
During installation, the user chooses the target(s) to install. ASCET-SE can gener-
ate code for any installed target.

Each target is installed in a directory named by the target microcontroller family
<install_dir>\target\trg_<targetname>, for example:

<install_dir>\target\trg_c16x
<install_dir>\target\trg_mpc55xx

A special microcontroller-independent target, called the ANSI-C target, is also
provided that generates portable ANSI-C code. This is installed in the following
directory:

<install_dir>\target\trg_ansi
Unlike embedded targets, the generated code does not include any compiler-spe-
cific intrinsics for memory mapping and data access on segmented or paged hard-
ware architectures.

ANSI-C code can be used as a basis for supporting targets not supported by
ASCET-SE.

In some cases, the supplied target will need to be customized for your specific
microcontroller and/or operating system. Please observe the hints provided in this
manual at the appropriate places. You are referred to the following sections in par-
ticular:

- section 2.3.5 "Memory Class Configuration"

- section 5.2 "target.ini File"

- section 5.3 "memorySections.xml File"

- section 8.6 "Interfacing with an Unknown Operating System"
ETAS ASCET-SE V6.4 | User Guide

20 | About ASCET-SE
2.3.2 Path Settings for External Tools
ASCET needs to know where the compiler and OS tool chains are installed before it
can use them to build ASCET applications. The paths for compiler and operating
system must therefore be set in ASCET. If these tools have been installed before
ASCET, then the ASCET installation process may be able to find them if they have
been installed on the same host PC.

To set Compiler and OS toolchain paths

1. In the ASCET Component Manager, select Tools > Options.

The "Options" dialog window opens.

2. Go to the "External Tools\Compiler" node.

3. Go to the subnode of your compiler, e.g., "Tasking Vx V2.x for C16x".

4. Click the button next to the "Tool Root Path" field.

5. In the "Path Selection" window, select the path for the compiler/linker and
close the window.

6. In the "Options" dialog window, go to the "Operating System" node.

NOTE
It is recommended that automatically identified toolchain paths are checked for
correctness before building an ASCET project. In particular, check that the ver-
sions of the tools are compatible with the versions expected by ASCET.
ETAS ASCET-SE V6.4 | User Guide

21 | About ASCET-SE
7. Go to the subnode of the OS you want to use and select the OS Installation
Path.

8. Click OK to accept the changes.

2.3.3 Code Generation Settings
Code generation settings are specified on a per-project basis in ASCET’s Project
Editor. The settings control which compiler and OS are used for the build process.

To set the project options

1. In the project editor, click the Project Properties button.

The "Project Properties" window opens in the "Build" node.

2. Select the target and the corresponding compiler.

3. Select a code generator.

The "Code Generator" combo box offers the entries Object Based
Controller Implementation and Object Based Controller
Physical.

4. Select the operating system.

A selection of the following operating systems is available:

RTA-OSEK Vx.y Code and configuration data are generated to
interface with version x.y of ETAS’ OSEK operating
system.

GENERIC-OSEK Code and configuration data are generated for a
Generic OSEK. Additional vendor-specific configu-
ration may be required outside of ASCET.

RTE-AUTOSAR x.y Code and configuration data are generated to
interface with Version x.y of the AUTOSAR RTE.

NOTE
The RTE-AUTOSAR x.y operating systems are only available for the
ANSI-C target.
ETAS ASCET-SE V6.4 | User Guide

22 | About ASCET-SE
5. Set the code generation options in the various subnodes.

6. Click OK to accept the changes.

More details on code generation settings are given in the ASCET online help.

2.3.4 Operating System Configuration
Operating system configuration is used to configure how the OS is integrated with
ASCET. OS integration includes mapping processes into tasks, defining task attri-
butes settings, defining interrupt attributes, etc.

Configuration is done in the "OS" tab of the Project Editor (see the ASCET online
help for additional details about the Project Editor).

ASCET assumes a priority-based pre-emptive operating system like OSEK OS. It is
important to understand how the OS schedules tasks at runtime because this
influences how ASCET processes (mapped into tasks) are scheduled. Some basic
guidance, including the restrictions which apply to OS integration, is provided in
section 8.1 "Scheduling and the Priority Scheme". Code generation errors will be
issued if the restrictions mentioned there are not observed.

2.3.5 Memory Class Configuration
Unlike a PC, embedded microcontrollers usually require that data and code is
located in specific sections of memory, often at specific addresses. Program code
and static data (e.g. constants) is usually located in ROM. Dynamic data (i.e. vari-
ables) must be located in RAM.

Some microcontrollers also allow memory sections that can be addressed in dif-
ferent ways. For example, some sections might be addressable with an 8 or 16-bit
address and other sections may only be accessible with a 32-bit address.

The arrangement of elements in the controller memory is determined by the mem-
ory classes they are assigned to in the implementation. In the ASCET data model,
memory classes are represented simply by abstract names, freely selected by the
user. Example names might be:

- IRAM - Internal RAM

- IFLASH1 - First bank of internal Flash ROM memory

- IFLASH2 - Second bank of internal Flash ROM memory

- NEAR_RAM - RAM addressable with an 8-bit address

- FAR_ROM - ROM addressable with a 32-bit address

The definition of the names and the conversion to compiler-specific conventions
for marking up the C code correctly is stored in a file called memorySections.xml
in the target directory. ASCET-SE supplies a typical file for each target.

NOTE
For the RTE-AUTOSAR "operating system", only ANSI-C code generation is sup-
ported and no operating system settings are required. Any settings you make in
the "OS" tab for a newly created project that uses RTE-AUTOSAR are removed
together with the "OS" tab itself when you close the project editor.
ETAS ASCET-SE V6.4 | User Guide

23 | About ASCET-SE
The section names defined in memorySections.xml are selectable in the imple-
mentation editor for each ASCET element.

During the second phase of code generation, ASCET-SE uses the conversion
information in memorySections.xml to add the correct compiler intrinsics (usu-
ally #pragma statements) to the generated C code.

The use of memory classes is described in detail in section 5.3
"memorySections.xml File".

The assignment of actual memory addresses to these locations is done in the
linker control file.

2.3.6 Target Initialization Code
Each ASCET target includes an example application which provides simple target
configuration. By default, ASCET-SE uses the target configuration and the main
program from this example when building a project. The following files are used:

<install_dir>\target\example\target.[hc]
<install_dir>\target\example\system_counter.c

These files contain a main program and the code required to initialize the target
hardware to provide a 1ms periodic timer interrupt used to drive task scheduling.
The interrupt handler itself is provided in system_counter.c. This code must
be reviewed for suitability in production projects.

If additional interrupts are defined in ASCET, then additional target code is
required to configure the interrupt sources and (possibly) to initialize interrupt pri-
ority registers. You should consult your OS documentation for further information.

Note that ASCET assumes that memory sections have been initialized correctly for
executing C programs. By default, ASCET uses the C start-up code (the code
which executes before the main program is entered) provided by the compiler
vendor for initializing the C environment.

2.3.7 Customizations for Compiling and Linking
The following settings are required in the linker/locator control file to customize
for a specific hardware target:

- Locate the ASCET memory classes defined in memorySections.xml to
the applicable physical memory space (see section “Linker/Locator Control”
on page 72).

- Locate the memory sections for the operating system into the physical
memory space. Note that it may be necessary to tell the OS the location of
the stack pointer. For specific instructions, refer to the OS documentation
(for RTA-OSEK this information is given in the RTA-OSEK Binding manual for
the target).

Compiler and linker invocation can be customized in the project_settings.mk
make file (see section 5.4.1). For example, special supplementary header files and
pre-compiled objects can be integrated via this make file, as well as user-provided
libraries (e.g. for drivers, external code, interpolation routines), compiler, assem-
bler and linker options and some settings concerning the build process.
ETAS ASCET-SE V6.4 | User Guide

24 | About ASCET-SE
On some targets, additional configuration for time measurements may be
required.

- Enter the input frequency and timer prescale factor in the
project_settings.mk file (see section 5.4.1).

Modifications are also possible in the target_settings.mk configuration make
file (see section 5.4.1), which contains compiler-specific configurations. However,
changes in this file should be avoided, if possible.

2.3.8 Generating the Executable File and Running it on the Target
Before an application can be executed on the target microcontroller an execut-
able file must be created. If a measurement and calibration tool will be used, then
an ASAM-MCD-2MC file also needs to be generated. This section reviews the
steps for generating source code, the executable, and the ASAM-MCD-2MC file.

Depending on the target, the following modifications may be necessary:

- Enter the memory layout into the ASAM-MCD-2MC data file mem_lay.a2l
(see section 9.2).

- Enter global blobs for the ETK (TP and QP blobs) into the ASAM-MCD-2MC
data files aml_template.a2l and if_data_template.a2l (see
section 9.3).

The following sections explain each stage.

To generate the source code

1. In the project or component editor, select Build > Generate Code to gener-
ate source code.

Code can be generated for the entire project or any component (i.e., module
or class). All the necessary components are generated automatically.

2. Select File > Export > Generated Code > * to save the source code to a file.

Until this step is performed, the code only exists internally within the ASCET
code manager.

NOTE
Code can be generated and simulated for an ASCET module without a project
context when using the code generator in physical experiment mode only.

Using other modes of the code generator require that modules are integrated
into a project.
A default project can be defined for each class or module for that purpose. This is
the only way to access the implementation information. Without project context,
the conversion formulas as well as all implementations of imported entities are
missing.
ETAS ASCET-SE V6.4 | User Guide

25 | About ASCET-SE
To generate executable code for the project

1. In the project editor, select Build > Build to create an executable file.

Code for the complete project is generated, compiled, and linked. If no errors
occur, an executable file in hexadec. format, named temp.*, is created. The
source and object code created during the code generation is stored in the
ASCET database/workspace.

When generating an executable file, all files (including the source code) are cre-
ated by default in the <install_dir>\CGen directory. If the Keep files in Code
Generation Directory option in the "Build" node of the ASCET options is deacti-
vated (see the ASCET online help), the content of the <install_dir>\CGen
directory is deleted whenever you exit your ASCET session.

ASCET’s make mechanism does not take all dependencies (e.g., formula changes,
etc.) into account for efficiency reasons. Some global side effects from changes in
the model are therefore not recognized. After changes in the model structure, a
complete regeneration should therefore be enforced via Build > Touch >
Recursive before the generation of important code is started.

Once the executable is being generated, the ASAM-MCD-2MC data for the inter-
face to the application system needs to be created.

To write the ASAM-MCD-2MC file

1. In the project editor, select Tools > ASAM-2MC > Write to generate the
ASAM-MCD-2MC file.

The "Write ASAM-2MC To:" dialog window is displayed.

2. In the dialog window, enter the specific file name and select the specific
storage directory.

At this point, the user has everything that is needed to run the program on the tar-
get. The executable program can be loaded onto the controller or evaluation
board, for instance, using a debugger or calibration system. The ASAM-MCD-2MC
file is used by the calibration system (e.g., INCA) for calibration and measurement.

NOTE
To retain any of these files, they should be copied into another directory before
ASCET is closed. Retrospectively activating the option has no effect for the run-
ning session.

The files generated in <install_dir>\CGen are not compilable C source files.
If only the source code needs to be saved, then the code should be exported
using File > Export > Generated Code > *. These menu options prompt you for a
location in which to save the generated code provided the code was previously
stored in the database/workspace during the code generation process.

NOTE
If the ASAM-MCD-2MC file is to be stored, be careful when placing in the direc-
tory .\CGen\. The files in this directory may be deleted upon exiting ASCET,
depending on the settings in the ASCET options (see the ASCET online help).
ETAS ASCET-SE V6.4 | User Guide

26 | About ASCET-SE
Other tools (e.g., logic analyzer, source level debugger) can be used if necessary,
based on the user's preference.

2.3.8.1 Differences for the ANSI-C Target
Linking is suppressed for the ANSI-C target due to undefined behavior for e.g.
startup code, memory layout etc. This suppression is controlled by the
noLinking option in the target.ini file; this option contains a list of all compil-
ers for which linking is disabled.

If you use a compiler listed after the noLinking option, Build > Build All and
Build > Rebuild All stop after the creation of the *.obj files and the following error
message is shown in the monitor window:

Selected target "ANSI-C" / compiler "<compiler name>" combi-
nation does not support "Link Code" --- please refer to
target description file ("c:\ETAS\ASCETx.y\ Tar-
get\trg_ansi\target.ini")

For compilers as Microsoft Visual C++ , the calculation of physical addresses is
meaningless. To suppress map file generation for these compilers, target.ini
offers the noMapFileGeneration option which contains a list of compilers for
which no map files shall be generated.

Similarly, generation of an ASAM-MCD-2MC description needs access to the exe-
cutable program file. As ANSI-C code generation usually does not produce an exe-
cutable (because linking does not happen) the generation of an ASAM-MCD-2MC
file is not possible.

It is recommended that the code generation option Generate Map File (see the
"Project Properties" window or the ASCET online help for details) is deactivated in
order to avoid the generation of the Virtual Address Table and the etas.map file.
See also the notes in section 9.4.

The following table show which ASCET-SE features are supported by a default
installation for which combinations of target and operating system.

Target

Operating System Embedded ANSI-C
RTA-OSEK Code Generation

Compile
Link
A2L generation

Code Generation
Compile

Generic OSEK Code Generation
Compile
Link
A2L generation

Code Generation
Compile

RTE-AUTOSAR --- Code Generation
Compile
ETAS ASCET-SE V6.4 | User Guide

27 | About ASCET-SE
2.4 Finding Out More
If not specified otherwise during installation, the following PDF manuals are avail-
able in the ETAS\ETASManuals folder after installing ASCET and ASCET-SE:

- ASCET Getting Started (ASCET V6.4 Getting Started.pdf)

- ASCET Installation Guide (ASCET V6.4 Installation.pdf)

- ASCET Icon Reference Guide (ASCET V6.4 Icon Reference
Guide.pdf)

- ASCET AUTOSAR User Guide (ASCET V6.4 AUTOSAR User Guide.pdf)

- AUTOSAR to ASCET Importer User Guide (ASCET V6.4 AUTOSAR To
ASCET Converter User Guide.pdf)

- ASCET-SE User Guide (this manual; ASCET-SE V6.4 User Guide.pdf)

- EHOOKS Add-On User Guide (ASCET-SE V6.4 EHOOKS Add On User
Guide.pdf)

When you install ASCET-RP, ASCET-SCM, or ASCET-DIFF, further documentation
is available:

- ASCET-RP

• user guide (ASCET-RP V6.4 User Guide.pdf)

• separate online help; accessible via the Help menu and <F1> in the hard-
ware configurator

- ASCET-SCM

• online help (integrated in the main ASCET online help)

- ASCET-DIFF

• ASCET-DIFF installation guide

• separate online help; accessible via the Help menu and <F1> in the
ASCET-DIFF windows

NOTE
The cooperation of ASCET and AUTOSAR requires the installation of the
ASCET-SE target ANSI-C.
ETAS ASCET-SE V6.4 | User Guide

28 | ASCET-SE Installation
3 ASCET-SE Installation
The installation of ASCET-SE is described in the ASCET installation guide.

Like all ETAS products, ASCET-SE requires a valid license file. The entitlement let-
ter provides an URL from where a license file can be obtained. Licenses are
installed and managed using the ETAS License Manager.

You can choose to install ASCET-SE in the Silent mode; see the ASCET installation
guide, section "Command Line Installation/Uninstallation". To select the target(s)
to be installed, you can either define environment variables or edit the
[SilentInstallation] section of the install.ini file.

If you want to use environment variables, you must define them in your environ-
ment before running the ASCET-SE installation program. The easiest way to do
this is to write a batch file like this:

setlocal
set TRG_ANSI=true
set TRG_C16X_CLASSIC=false
set TRG_C16X_VX=false
set TRG_XCV2_VX=false
set TRG_TRICORE=false
set TRG_FFMC16LX=true
set TRG_HC12M=false
set TRG_HCS12XM=false
set TRG_HCS12XC=false
set TRG_MPC55XX=true
set TRG_MPC56X=false
set TRG_NEC850=false
set TRG_SH2A=false
set TRG_TMS470=false
set TRG_EHOOKS=false
set TRG_SELF_CONTAINED_MODE=true
ASCET-SE.exe /S
endlocal
Each variable denotes an ASCET-SE target. If set to true, the target will be
installed. If set to false, the target will not be installed. If a target is not specified,
then true is assumed by default.

TRG_SELF_CONTAINED_MODE controls whether or not targets share common
files. If set to true, each installed target directory (trg_*) will include a copy of
all the common target files. You should choose this option if you plan to make tar-
get-specific changes to the common files.

If set to false, the common target files are installed in a shared common directory
called common-se. You should choose this option if you want any changes in the
common files to apply for all installed targets.
ETAS ASCET-SE V6.4 | User Guide

29 | ASCET-SE Installation
Instead of setting environment variables, you can configure installation parame-
ters in the install.ini file. To do so, define the following entries in the
[SilentInstallation] section:

[SilentInstallation]
TRG_ANSI=true
TRG_C16X_CLASSIC=false
TRG_C16X_VX=false
TRG_XCV2_VX=false
TRG_TRICORE=false
TRG_FFMC16LX=true
TRG_HC12M=false
TRG_HCS12XM=false
TRG_HCS12XC=false
TRG_MPC55XX=true
TRG_MPC56X=false
TRG_NEC850=false
TRG_SH2A=false
TRG_TMS470=false
TRG_EHOOKS=false
TRG_SELF_CONTAINED_MODE=true
Values set in install.ini override environment variables.

3.1 Installation Contents
Some important ASCET-SE files are listed and shortly described below. They are
located in a subdirectory of the ASCET installation, i.e., relative to the
<install_dir>\ETAS\ASCET6.4 directory. The subdirectory is called
.\target\trg_<targetname>.

Directory .\target\trg_<targetname>
File Meaning / Explanation
.indent.pro Configuration file for the "Indent" code format-

ting utility.
aml_template.a2l Template file with type descriptions of global

configuration BLOBs for the ETK. This file must be
customized by the user (see section 9.3 on
page 108).

build.mk Makefile for the linker/locator phase (see
section 5.4.5).

clean.mk Makefile to customize the Build > Clean Code
Generation Directory menu option in the project
editor.
ETAS ASCET-SE V6.4 | User Guide

30 | ASCET-SE Installation
codegen.ini File with macro definitions for code generation.
The individual entries are explained in the file
itself.

codegen_<targetname>.
ini

File with target-specific settings for code gener-
ation. The individual entries are explained in the
file itself.

codegen_ecco.ini File with ECCO settings for code generation. It is
read by ECCO each time code generation for a
specific target is started. The entries are
explained in the file.

compile.mk Makefile for the compiler phase.
custom_settings.mk Makefile for customizing the Make process.
depend.mk Makefile for generating the dependencies of the

generated files.
do_compile.mk Make file for actual compiler invocation.
generate.mk Makefile only for code generation via ECCO. After

execution of this makefile, all project modules are
generated as C and H files and are written in the
directory .\CGen of the ASCET installation (see
section 5.4.3 "Code Generation – Make File
generate.mk").

global_settings.mk ASCET-SE internal makefile.
if_data_template.a2l Template file with type descriptions of global

configuration BLOBs for the ETK. This file must be
customized by the user (see section 9.3 on
page 108).

mem_lay.a2l Example data file defining the memory layout of
the controller in ASAM-MCD-2MC format. This file
must be customized by the user (see section 9.2
on page 107).

memorySections.xml Contains XML definitions of memory classes. See
section 5.3 "memorySections.xml File" for
more information.

The ANSI-C target (trg_ansi) contains addi-
tional memory class definitions files
memorySections_Autosar.xml and
memorySections_Autosar4.xml.

OS_<osname>_<version>.
template

OS template file for <osname> (and optionally
<version>) used by ASCET-SE to generate an
OS congfiguration file.

os_settings.mk Makefile for general OS settings.
postasap.mk Makefile for post-processing ASAM-MCD-2MC

files.
prj_def.a2l Example ASAM-MCD-2MC file to define the

MOD_PAR section (see section 9.1).

File Meaning / Explanation
ETAS ASCET-SE V6.4 | User Guide

31 | ASCET-SE Installation
Directory .\target\trg_<targetname>\cp_rules
This subdirectory contains the Perl macros, know as the Code Production Rules,
that are used by ECCO during C code generation.

Directory .\target\trg_<targetname>\docco
This subdirectory contains the stylesheets and definitions files used in by the
DOCCO automatic code documentation tool.

project_settings.mk Contains project-specific configuration settings
like included libraries or special compiler and
linker settings (see section 5.4.1).

services.ini File containing arithmetic services (see the
"Arithmetic Services" section in the ASCET online
help).

settings_<compiler>.mk Defines compiler- and target-specific settings
valid for all projects, such as file extensions, call
conventions for precompiler, compiler, linker and
other programs, as well as paths for program
calls, include files and libraries (see
section 5.4.4).

smart_compile.mk Makefile for SmartCompile control.
target.ini Target-specific settings for ASCET for the

default variant of the target microcontroller; the
individual entries are described in more detail in
section 5.2.

target_<variant>.ini Target-specific settings for ASCET for alterna-
tive variants of the target microcontroller; the
individual entries are described in more detail in
section 5.2.

target_settings.mk Makefile to specify target specific settings (see
section 5.4.1).

File Meaning / Explanation
ETAS ASCET-SE V6.4 | User Guide

32 | ASCET-SE Installation
Directory .\target\trg_<targetname>\example
This directory contains files with target-specific settings for a small ASCET-SE
example project.

Directory .\target\trg_<targetname>\include
This directory contains the C include files for ASCET-SE.

File Meaning / Explanation
confV50.oil A template OIL file, which is the entry point for the

example project. This file contains definitions of OIL
objects like CPU, OS, COUNTER (system counter, for
the time raster), an ISR (which drives the system
counter) and COM.

example_rta.exp ASCET export file containing the example project.
ReadMe_Example.html HTML file that describes the further content of this

directory and explains what the example application
does and how to build it in ASCET.

<targetname>_user
.<lnk>

Example linker/locator control file; see also section
“Linker/Locator Control” on page 72. The <lnk>
extension depends on the target.

File Meaning / Explanation
a_basdef.h Central header file with ASCET controller definitions;

the file is to be included by all ASCET project files.
a_limits.h Definitions of the upper and lower boundaries for

standard ASCET types.
a_sect.h Header file with memory section definitions. Not

required for all targets.
a_std_type.h Contains definitions of ASCET standard types, e.g.,

uint16.
a_user_def.h Used to define customized data types. By default,

this file contains no compilable code.
message_scheme.h Header file for the selection of the message variant

(for more information, see section 14.4.3 "Mes-
sages").

os_inface.h Header file containing OS interface definitions; the
file is included by all generated component C files.

os_rta_inface.h Header file containing OS interface adaptations for
RTA-OSEK.

os_unknown_inface.h Template header file containing OS interface adap-
tations that allows customization to an OSEK-like
OS.

proj_def.h Header file for application-specific adaptations (see
section 5.7.2 "Include File proj_def.h").

tipdep.h Header file for target-specific declarations.
ETAS ASCET-SE V6.4 | User Guide

33 | ASCET-SE Installation
Directory .\target\trg_<targetname>\Intpol

NOTE
The interpolation routines provided with ASCET are examples, not intended to be
used in production or in ECUs running in a vehicle. See also the safety hints in
section 1.4.1.

File Meaning / Explanation
a_intpol.h interface definitions of the interpolation routines
build_cmd.bat Batch file used during the build process of the

interpolation library.

NOTE
This file must not be called directly. It is to be called
only by intpol_<target>_ <compiler>.bat
files.

customize.pm Perl macro with functions that can be customized
to generate desired type combinations for inter-
polation routines.

intpol_<target>_ <com-
piler>.bat

Batch file to start the build process for an interpo-
lation library for the target <target> and the
compiler <compiler>. The source files must be
located in the .\target\trg_<targetname>\
intpol\src subdirectory.

makeintpol.pl Perl script to generate the type combinations of
interpolation routines.

makeintpol_ header.pl Perl script to generate a header file with proto-
types of interpolation routines, used by ASCET-SE
for characteristic lines/maps.

path_settings.bat Batch file to set compiler paths for all targets.
Called by intpol_<target>_<compiler>.bat.

ReadMe_Interpolation.
html

Instructions on handling of interpolation routines.

settings_
<compiler>.mk

Make file for compiler-specific settings.
ETAS ASCET-SE V6.4 | User Guide

34 | ASCET-SE Installation
Directory .\target\trg_<targetname>\Intpol\lib

For further details see chapter 7 "Interpolation Routines"; if in doubt, please con-
tact ETAS.

Directory .\target\trg_<targetname>\Intpol\Src
This directory contains all source code templates for interpolation routines.

Directory .\target\trg_<targetname>\scripts
This directory contains several Perl scripts. The table lists the most important
ones.

File Meaning / Explanation
Disclaimer for
interpolation
routines.txt

NOTE
Important information regarding the provided interpo-
lation routines. Read carefully!

intpol_<target>_
<compiler>.<lib>

Library of interpolation routines, which is linked to the
project in project_settings.mk (included in
build.mk, see section 5.4.5).
The library does not contain all possible interpolation
routines. Further routines can be generated automati-
cally on demand via the customized.pm file.
The extension <lib> is the target-specific extension
for libraries defined by the target compiler. Typical
examples are *.lib, *.h12, *.a.

File Meaning / Explanation
cctolog.pl Perl script that transforms error/warning messages gener-

ated by a compiler into a format readable by ASCET. Thus,
errors/warnings can be automatically displayed in the ASCET
monitor window.

lltolog.pl Perl script that transforms error/warning messages gener-
ated by a linker into a format readable by ASCET. Thus, errors/
warnings can be automatically displayed in the ASCET monitor
window.

ostolog.pl Perl script that transforms error/warning messages gener-
ated by an OS configuration tool (like rtabuild.exe) into a
format readable by ASCET. Thus, errors/warnings can be
automatically displayed in the ASCET monitor window.
ETAS ASCET-SE V6.4 | User Guide

35 | ASCET-SE Installation
Directory .\target\trg_<targetname>\source

3.2 Licensing
The ASCET product family uses the following licenses:

Tab. 3-1 Licenses used by the ASCET product family

A valid license is required to use the software. You can obtain a license in one of the
following ways:

- from your tool coordinator

- via the self-service portal on the ETAS website at
 www.etas.com/support/licensing

- via the ETAS License Manager

To activate the license, you must enter the Activation ID that you received from
ETAS during the ordering process.

For more information about ETAS license management, see the ETAS License
Management FAQ or the ETAS License Manager help.

To open the ETAS License Manager help

The ETAS License Manager is available on your computer after the installation of
any ETAS software.

1. From the Windows Start menu, select E > ETAS > ETAS License Manager.

The ETAS License Manager opens.

2. Click in the ETAS License Manager window and press <F1>.

The ETAS License Manager help opens.

File Meaning / Explanation
msgcopy.c Contains methods for copying non-atomic messages (i.e.,

messages larger than one machine word).
upmsgcp.c unprotected message copy - used to allow communication

between two processes via messages.

License name Functionality
ASCET-MD ASCET Modeling and Design
ASCET-RP ASCET Rapid Prototyping

ASCET-SE ASCET Software Engineering (includes, among others, the
EHOOKS target and the ANSI-C target required for AUTOSAR)

ASCET-DIFF Difference Viewer
ASCET-VIEW ASCET Model Viewer (part of the ASCET-DIFF software)
ASCET-SCM ASCET Software Configuration Management
ETAS ASCET-SE V6.4 | User Guide

https://www.etas.com/support/licensing
https://www.etas.com/en/downloadcenter/37717.php
https://www.etas.com/en/downloadcenter/37717.php

36 | Implementation Configuration
4 Implementation Configuration
When modeling with ASCET, the physical model’s functional behavior can be
tested. Then, the embedded control software can be refined gradually up to the
production stage of development. This is done by specifying the implementation
information in conjunction with the code generation.

The task of the implementation consists of mapping the physical model, repre-
sented by continuous, discrete and logical entities, to the implementation layer in
a semantically correct way. A major part of this task is to decide how to map con-
tinuous real arithmetic of the model into the discrete integer (fixed-point) arith-
metic supported by embedded target microcontrollers. The transformation
requires a quantized representation of all entities. Quantization introduces
numerical error that cannot be avoided. The behavior of the generated code will
always differ slightly from the physical specification.

In the context of the user’s specifications, the implementation code generators
create a compromise between numerical precision, RAM and stack requirement,
code size, and code performance.

Implementations are a refinement (the addition of detail) of the physical model
and are necessary to create embedded control software in ASCET. They deter-
mine how the physical functionality is mapped to an implementation in an ECU. The
separation of the physical model and its corresponding implementation in ASCET
helps to support a structured development process.

All of the settings described in this chapter are ignored for the physical experi-
ment, the quantized experiment and the physical code generation for controller
targets. This includes the arithmetic parts of the implementation as well as the
memory locations, symbols and implementations of complex model types.

For classes with a service routine or prototype implementation, as well as for
externally defined records, it is possible to mark them as "Production code only". In
this case, these components or records are treated as regular model elements in
the implementation experiment and only refer to external C code for implementa-
tion code generation for microcontroller targets. This can be useful, because the
data structures in the experiment are different from the microcontroller data
structures, or because some libraries interface to special hardware components
that are only available for microcontroller targets.

4.1 Implementations for Basic Model Types
To edit an element implementation

1. Right-click the element you want to implement, e.g. the parameter P_Gain
in the following example.

NOTE
In ASCET, "Implementation code generator" serves as a generic term for the
code generators used for the "implementation experiment" and "controller
implementation" (or "object-based controller implementation", respectively).
They resemble each other closely in terms of structure and mode of operation.
ETAS ASCET-SE V6.4 | User Guide

37 | Implementation Configuration
2. Select Implementation from the context menu.

The implementation editor shown below opens.

In this example, P_Gain is the proportional gain for a PID controller. It has a physi-
cal range of 0.0 to 50.0 and a quantization of 0.015625, i.e.

Ximpl = 0 + 64*xphys
The implementation of the variable has type uint16 with a range of 0 to 3200. The
following table shows how physical values are mapped onto implementation val-
ues:

xphys Ximpl

Integer Binary
0.000000 0 00000000_00000000
0.015625 1 00000000_00000001
0.031250 2 00000000_00000010
...
0.984375 63 00000000_00111111
1.000000 64 00000000_01000000
1.015625 65 00000000_01000001
...
ETAS ASCET-SE V6.4 | User Guide

38 | Implementation Configuration
Since this is a calibration parameter (the parameters are typically located in a ROM
memory area), the memory class IROM is selected.

The following sections describe the various aspects of element implementation.

4.1.1 Implementation Data Types
Unlike the abstract data types used for quantities in the physical model (i.e., con-
tinuous, discrete, logical), a concrete data type is used in the implementation.
ASCET uses the following implementation data types:

The following special cases apply:

- When a variable of model data type udisc is mapped to an implementation
data type of sint*, the lower limit of the implementation interval is not set
to the corresponding negative value, but to zero.

- When a variable of model data type sdisc is mapped to an implementation
data type uint*, the upper limit of the model interval is not set to
2147483647, but to the maximum value of the implementation data type.
This is valid even for the uint32 implementation data type.

- When you edit a variable of model data type cont or sdisc and implemen-
tation data type uint*, the lower limit of the model interval is not set to the
corresponding negative value, but to zero.

49.968750 3198 00001100_01111110
49.984375 3199 00001100_01111111
50.000000 3200 00001100_10000000

Type Contents Comment
sint8 8-bit signed integer -128 to +127
uint8 8-bit unsigned integer 0 to +255
sint16 16-bit signed integer -32768 to +32767
uint16 16-bit unsigned integer 0 to +65536
sint32 32-bit signed integer -2147483648 to +2147483647
uint32 32-bit unsigned integer 0 to +4294967296
real32 32-bit IEEE Floating-Point unavailable for some targets
real64 64-bit IEEE Floating-Point unavailable for some targets
bit directly addressable single bit unavailable for some targets
bool

NOTE
On certain processors, the floating-point implementation is only possible with
software libraries that are capable of emulating floating-point arithmetic. In such
cases, it is not recommended for typical applications in electronic control units
because it requires considerable more execution time and memory.

xphys Ximpl

Integer Binary
ETAS ASCET-SE V6.4 | User Guide

39 | Implementation Configuration
The code generation allows a combination of floating-point and integer arithmetic
in the software for assignment only:

- The assignment of non-quantized floating-point to quantized integer quan-
tities and vice versa is valid.

- The code generator creates the necessary code for the conversion and
automatic limits.

- The same holds true regarding method calls for the implicit mapping
between formal and actual arguments.

4.1.2 Conversion Formula
A conversion formula transforms the physical value of a model quantity into its
implementation value in the software. This transformation must be invertible in the
valid interval (i.e. value range) for the quantity. In ASCET, the conversion formula is
always specified from physical model to implementation, i.e.

Ximpl = f(xphys)
Conversion formulas are required:

- for physical quantities of type cont that are to be mapped to integer in the
generated code.

The identity conversion formula (Ximpl = xphys) must be used in the following
cases:

- for logical (Boolean) quantities, there is no possibility to specify conversion
formulas.

- for discrete physical quantities, those of type udisc or sdisc, the identity
conversion formula is mandatory.

- for physical quantities of type cont with floating-point implementation, the
identity conversion formula is mandatory.

In the following discussion, physical quantities are generally represented in lower-
case characters. The corresponding implementation values are written in upper-
case characters.

Conversion formulas can be defined globally for an entire project in the "Formulas"
tab of the Project Editor. There, select Global Formulas > Add in order to define a
new formula. Afterwards, you can use the defined conversion formulas in the
implementation editors.

ASCET knows different types of conversion formulas (i.e., linear, linear rational,
square rational, tabular and verbal formulas). However, the code generation sup-
ports only simple linear formulas of the following form:

X = ax+b
Here, a and b are called the scale value and offset, respectively. The quantiza-
tion of a value is the reciprocal of the scale value:

NOTE
The combination of floating-point and integer implementations in mathematical
operations or comparisons is invalid and results in an error message.
ETAS ASCET-SE V6.4 | User Guide

40 | Implementation Configuration
q = 1/a
In the following, it is assumed that scale values and offsets are rational numbers.
This is not a substantial restriction because real values can be approximated with
a given level of precision using rational numbers. Note also that only rational num-
bers can be used in for integer arithmetic anyway.

Non-linear conversion formulas can be used in the specification. However, an
automatic conversion between non-linear formulas in the code generation is not
supported.

Arithmetic with non-linear quantizations is not possible. They can only be used for
inputs of characteristics and methods, e.g., as a time constant of an integrator.
The user is responsible for ensuring that non-linearly quantized quantities are
used only in such a way. There is no further tool support of this, including the code
generation.

4.1.3 Value Range (Only for Numerical Quantities)
The range of values for a quantity is simply its valid numerical interval. The speci-
fied value ranges are then used by the code generator to calculate the intervals of
intermediate results. In doing so, the occurrence of overflows can be detected.
The code generator decides through this how to generate intermediate results
and calculations in the software. If necessary, the use of limiters must be enabled.

Both the physical and implementation value ranges can be specified. Then, the lin-
ear, invertible conversion formula updates the other value range. Therefore, the
user can choose which environment (physical or implementation environment) to
work in.

In the following cases, however, the specification of a value range is not possible or
will be ignored:

- For logical (Boolean) quantities and enumerations, there is no possibility to
specify a value range.

- Continuous physical quantities with floating-point implementation are
mapped without limits to the specified implementation data type. Though
you can enter a value range in the ASCET editors, it will be ignored. A
pseudo-infinite interval is used instead.

4.1.4 Implementation Master
Either the physical model specification or the implementation specification can be
chosen as implementation master. The values entered by the user for the imple-
mentation master will be used to adapt the opposite, non-master side according
to the master specification and the formula.

NOTE
The code generation treats non-linear conversion formulas internally like iden-
tity so that no automatic conversions are performed.
ETAS ASCET-SE V6.4 | User Guide

41 | Implementation Configuration
After the global change of a formula in the project editor, all affected implementa-
tions can be updated automatically by means of the Extras > Update
Implementations option in the project editor. In this context, the "Master" options
in the implementation editor can be used to specify whether to preserve the value
range on the model side or the implementation side. If the model side is selected as
the master, the settings of the model side will remain unchanged and the imple-
mentation side will be updated. If the implementation side is the master, the model
side will be updated.

4.1.5 Implementation Types
To be able to edit the implementations of individual variables more easily and to be
able to easily assign the same implementations to elements with comparable
physical significance, you can define what are referred to as implementation
types in the project context. This is also true of the default project of a class or a
module. These implementation types contain the implementation parts described
in chapters 4.1.1 to 4.1.4; they can be assigned to individual elements in their imple-
mentation editors.

How to create and set up implementation types is described in the ASCET online
help, section "Implementation Types". How these are used during implementation
is described in the instruction "Using Implementation Types" of the ASCET online
help.

4.1.6 Value Range Limitation
The Limit Assignments option can be used to specify for each element individu-
ally if its value range shall be limited to the defined range. Calculated values which
are less than the lowest permitted value are set to the lowest value. Similarly, cal-
culated values that are higher than the highest permitted value are set to the high-
est value. This is called saturated arithmetic – the highest (lowest) value in the
type range is "saturated" with all higher (lower) values. Saturated arithmetic pre-
vents underflow and overflow at runtime.

If the option is activated, additional code is generated for each assignment opera-
tion to check and ensure that the specified range is kept. If the option is deacti-
vated, it is the user’s responsibility to keep the value range. Continuos physical
quantities with floating-point implementation are generated with the selected
implementation data type and without limitation.

By means of the option Limit to maximum bit length the user can specify individ-
ually for each element, whether and how ASCET checks and avoids potential over-
flows during assignments. In addition, the user can define the way by which
overflow is avoided.

NOTE
In previous ASCET versions, the "Integer Arithmetic" node of the "Project Proper-
ties" dialog window contained an option Generate Limiters, which had to be
activated for the element-specific limiter configuration to become active.

Since ASCET V6.3, this option is always true. It can no longer be edited and has
been removed from the "Project Properties" dialog window.
ETAS ASCET-SE V6.4 | User Guide

42 | Implementation Configuration
- Reduce Resolution: potential overflows are avoided by a suitable re-quanti-
zation. This results in a loss of precision.

- Keep Resolution: potential overflows are avoided by means of limitation. The
resolution remains unchanged. This option can only be used in connection
with arithmetic services.

- Automatic: ASCET treats potential overflows according to the option Keep
Resolution if the usage of arithmetic services is active, and according to the
option Reduce Resolution otherwise.

4.1.7 Zero Containedness in the Value Range
The code generation assumes that the implementation interval can include zero. It
is checked whether the denominator of a division contains zero. You can switch off
the check in the Project Properties window, "Code Generation" node, Protected
against Division by Zero option.

If required, C code is generated that prevents a possible division by zero at run-
time. The Result on Division by Zero option in the "Code Generation" node of the
"Project Properties" window can be used to determine the behavior upon division
by zero.

4.1.8 Memory Locations
Memory locations (selected in the "Memory Location of *" combo boxes) specify
the name of the abstract memory section where a quantity (and its reference
where applicable) is placed in the memory of the ECU. The code generator uses
this information to generate C code data structures according to the required lay-
out of elements in the control unit memory. Besides, the memory classes are used
for the generation of corresponding compiler intrinsics, typically #pragma state-
ments. The locator uses these #pragma statements to map the memory classes
to certain address ranges in the control unit. This is done with the help of a trans-
formation table specified by the user.

The code generation checks whether all elements in a certain memory class have
the same setting assigned in the Non-Volatile option of the properties editor or
not. In the latter case, an error message is generated because one memory class
cannot refer to both volatile and non-volatile memory at the same time.

Depending on the activation status of the Non-Volatile option, variables are
treated differently by the code generation: only volatile elements are automati-
cally initialized.

NOTE
The option Zero not included (available in ASCET V5.0 - V6.3) is no longer avail-
able in ASCET V6.4. When working with older models that contain this flag, Zero
not included is always treated as deactivated, i.e. code generation assumes
that zero is included in the interval.
ETAS ASCET-SE V6.4 | User Guide

43 | Implementation Configuration
For databases, ASCET provides an easy way to get rid of the error message: the
Component Manager menu functions Tools > Database > Convert > Variables to
Volatile and Tools > Database > Convert > Parameters to Nonvolatile. The for-
mer function assigns the attribute volatile to all variables in the database, while
the latter assigns the attribute non-volatile to all parameters.

For workspaces, these conversion functions are available as Tools > Workspace >
Convert > *.

4.1.9 Consistency Check
If the implementation editor contains inconsistent data, ASCET will notify the user
by means of the Consistency check list in the implementation editor. The user can
highlight single inconsistencies in the list and correct them automatically means
of the Auto Correction button, if desired.

4.1.10 Additional Information
Further implementation information can be entered in the "Additional Information"
tab, if required. This can be necessary for a specific electronic control unit. They
can also be used for supporting special infrastructures (e.g., DAMOS and MSR-
DOC). Depending on the application, this field may contain the following:

- Code syntax, address scheme

- Bit base address and binary position for bit packets

This field is not used in the ASCET basic system. Its syntax and semantics are not
defined here. The field definition is application-specific. Through the open inter-
face it is possible to add further implementation information.

4.1.11 Sizes of Composite Model Types
The size of composite model types, i.e. arrays, matrices, distributions, characteris-
tic lines and maps, are not part of the implementation specification. Instead, this
information is part of the data sets in ASCET.

4.1.12 Summary of Element Implementation
The table below summarizes the implementation information required for each
basic model type used in ASCET. Note that only logicals (log type) and enumera-
tions do not require all of the implementation information, e.g., no conversion for-
mula. The other scalar types (i.e. continuous and signed/unsigned
discrete) require all of the implementation constituents. This is also true for the
array, matrix, and distribution composite types.

NOTE
For continuous model types with floating-point implementation, the Identity
Conversion Formula (identity, i.e., multiplication with the factor 1.0) is required.
For discrete data types, the Identity Conversion Formula is required, too.

In both cases, a warning is displayed when another formula is selected.
ETAS ASCET-SE V6.4 | User Guide

44 | Implementation Configuration
Characteristic lines and maps have special treatment. For these composite types,
separate implementation data types, conversion formulas, and value ranges may
be specified for the independent and dependent axes. Besides, the access type
(linear, rounded, user-defined) can be specified in the properties editor of a char-
acteristic.

4.2 Implementations for Classes
The implementation of a complex model type (i.e. class, module or project)
involves the following steps:

- Enter the implementations for all the basic model types included in that
component.

- Enter the implementations for any other complex model types (i.e., other
classes, modules or projects) contained in that component.

- Only if an individual memory class or other component-specific settings (e.
g. for the use of user-provided service routines, or for calling hand coded
functions) are necessary for the data structures of the component: Acti-
vate the respective settings in the "Settings" tab of the implementation edi-
tor for components.

The implementation of an entire project defines the implementation of all ele-
ments within that project.

In ASCET, it is possible to indicate a number of different implementation alterna-
tives for complex model types. For the code generation, however, only one of the
indicated alternatives is activated for each instance.

Scalars Enu-
mera-
tions

Arrays,
Matrices,
Distribu-
tions

Characteristics

logical dis-
crete

cont. Line Maps

Implementation
Type

+ + + + 2*(x,y) 3*(x,y,z)

Formula o + + 2*(x,y) 3*(x,y,z)
Implementation
Data Type

+ + + + 2*(x,y) 3*(x,y,z)

Value Range + + + 2*(x,y) 3*(x,y,z)
Data
Representation*

+ + + + +

Memory Loca-
tion

+ + + + + + +

"Additional Infor-
mation" tab

+ + + + + + +

Access Type
(linear / rounded
/ userdef)

+ +
ETAS ASCET-SE V6.4 | User Guide

45 | Implementation Configuration
Changing between the alternatives can be done in the implementation editor of
the specific element (e.g., on project level). Due to the hierarchic linking of the
implementations of a model, the implementations of all child elements are also
adapted.

To edit a project or component implementation

1. In the project or component editor, select Edit > Component >
Implementation.

The implementation editor of the component or project opens.

2. In the "Elements" pane, double-click on one of the elements.

The implementation editor for that element opens.

This process can be repeated to access the implementation editor for any element
in the project or component. The above example only allows selecting a standard
implementation. However, it is also possible to define target-specific implementa-
tion alternatives that can be selected.

To copy and paste element implementations

In the implementation editor of complex model elements, implementations of
basic model elements can be copied and pasted easily.

1. In the component/project implementation editor, right-click on a basic ele-
ment and select Copy Implementation To Buffer.

The complete implementation information of the selected element is copied
into a buffer.

2. Right-click on another basic element and select Paste Implementation
From Buffer.

The entire implementation information from the buffer is assigned to the
selected element.
ETAS ASCET-SE V6.4 | User Guide

46 | Implementation Configuration
4.2.1 Optimized Method Calls
For methods defined in classes, ASCET is able to handle multiple instances using
identical code but different data structures (see chapter 14.3.3 "Data Structures
and Initialization for Complex (User-Defined) Objects"). In these cases, a pointer
to the data structure is passed to the generated C function, the so-called self-
pointer. As an example, a respective method declaration has the form:

sint16 PIDT1_IMPL_out (
const struct PIDT1_IMPL *self,
sint16 in);

For classes using only one data structure (so-called single instances), ASCET
automatically optimizes the method call and the data elements are accessed
directly, e. g.

sint16 PIDT1_IMPL_out (sint16 in);
This optimization is done by default.

If a user intends to call ASCET-generated methods from code created manually,
however, it is not desirable to have the self-pointer optimization done by the tool
automatically, as the calling conventions for a method may change unexpectedly
due to model changes. For this purpose, ASCET offers the possibility to deactivate
the single method optimization, class-wise in the "Settings" tab of the class imple-
mentation editor, and target-wise in the ASCET options window, "Targets\<your
target>\Build" node..
ETAS ASCET-SE V6.4 | User Guide

47 | Implementation Configuration
If the target option Force no self pointer optimization is activated for a particular
target, the class implementation option Optimize method calls is irrelevant for all
classes whose parent projects use that target.

In this case, the self pointer will always be generated, no matter if the class is mul-
tiply instantiated or not.

If the target option Force no self pointer optimization is deactivated for a partic-
ular target, the setting of Optimize method calls determines if the self pointer is
generated.

If a class will only be single instantiated in a model, a method interface that does
not use a self pointer can be attained by deactivating the target option Force no
self pointer optimization and activating the Optimize method calls option.

4.2.2 User-Defined Service Routines
The code generator offers the possibility to implement class methods and pro-
cesses as user-defined service routines. The method body is then no longer gen-
erated by ASCET, but must be provided by the user, for example, by adding the
code during the link process. This makes it possible, e.g., to implement highly opti-
mized methods in assembler code. In particular, service routines have the follow-
ing properties:

- No method bodies are generated for class methods implemented as service
routines. The functionality modeled in ASCET (as block diagram, ESDL or
C code) will be ignored for the implementation experiment and/or microcon-
troller code generation. The user must provide the respective code in other

NOTE
When calling ASCET-generated methods or using ASCET-generated variable
and parameter definitions from handcoded functions, you must observe the
data type definitions generated by ASCET carefully. It is not recommended to
use types other than the ones generated by ASCET. This is especially empha-
sized for the self pointer.

The function interfaces provided by the ASCET-generated code might change in
successor versions of the tool.
ETAS ASCET-SE V6.4 | User Guide

48 | Implementation Configuration
sources. However, ASCET still offers the possibility to specify method con-
tents as they could be needed in simulation experiments executed in ASCET
or for physical code generation for microcontroller targets.

- Methods and method arguments specified for service routines can be used
from the enclosing ASCET model. If a class has local elements, self-pointers
will be used and will not be optimized (see section 4.2.1), i.e. for service rou-
tines multiple class instances are supported.

Since the function signature is defined by ASCET, a header file containing
the function prototype is generated. This facilitates the check if the signa-
ture of the function definition as provided by the hand-written C code is
consistent.

- The following types can be used as method arguments and return values in
service routines:

• scalar and enumeration types

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is activated for the service routine

• record types with activated Use external struct or Use external
typedef implementation setting, provided the records do not contain
forbidden types (see page 48)

- The following types are forbidden for method arguments and return values
in service routines:

• arrays and matrices with variable size

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is deactivated for the service routine

• classes

• records with activated Generate struct implementation setting

If one of these types is used for an argument or return value, a warning
(WMdl105) is issued during code generation. By default, this warning is pro-
moted to an error.

ERROR(WMdl105): method <method_name> in service/prototype
class has element <element_name> of type <type> - the layout
is generated by ASCET (maybe only for experiments) and should
therefore not be used externally

- Array arguments to methods are usually checked for compatibility: if the
method argument has a fixed or variant size, the array that is passed in must
have the same size. Only for array arguments that are specified to have a
variable size is it allowed to pass arrays of any size.

Since the ASCET code generator uses special auxiliary structures to gener-
ate the arguments of variable size, and external libraries often cannot be
adapted to these types, there is the exception to the rule: array arguments
of service routines with a fixed size of one accept arrays of any size. This is
indicated by a warning WMdl68. The actual size of the array should then be
passed as an extra argument.
ETAS ASCET-SE V6.4 | User Guide

49 | Implementation Configuration
- Variables exported from the service routine can be used from the enclosing
ASCET model. The generated code does not provide "extern" declarations
for the methods at the respective locations. The user must provide the
respective declarations in his hand-coded sources.

- The following types are allowed for variables and parameters in service rou-
tines:

• scalar and enumeration types

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is activated for the prototype implementation

• record types with activated Use external struct or Use external
typedef implementation setting, provided the records do not contain
forbidden types (see page 49)

- The following types are forbidden for variables and parameters in service
routines:

• characteristic lines/maps

• distributions

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is deactivated for the prototype implementation

• classes

• records with activated Generate struct implementation setting

If one of these types is used for a variable or parameter, a warning
(WMdl106) is issued during code generation. By default, this warning is pro-
moted to an error.

ERROR(WMdl106): element <element_name> in service/prototype
class is of type <type> - the layout is generated by ASCET
(maybe only for experiments) and should therefore not be used
externally

- Local instance variables and parameters are generated as a part of the local
data structure and passed to the service routine by means of the self-
pointer. Imported variables and method-local variables are not regarded in
the code generated for service routines, as they do not concern the method
interfaces.

- If desired, you can use the service routines in an implementation experiment
with an experimental target.

NOTE
To avoid nested structures as argument types for service routines, it is
highly recommended to assign the respective class itself as well as its
local variables to the same memory class. Using multiple memory classes
is reported by a code generator warning WMdl153.

In addition, the class using service routines should not contain any local
parameters. Parameters should be specified globally, or passed as
method arguments, if necessary.
ETAS ASCET-SE V6.4 | User Guide

50 | Implementation Configuration
To specify service routines

Service routines are specified as follows:

1. Open the ASCET options window and go to the "Targets\<your target>\
Build" node.

2. Set the "Generate Method Body" option to Use Component Settings,
then close the ASCET options window.

3. Open the class you want to use as service routine in its editor.

4. Open the implementation editor for the class.

5. In the "Settings" tab, activate the Service Routine option.

With that, Generate Method Body is automatically deactivated.

6. If you want to use arrays/matrices with fixed or variant size as arguments or
variables/parameters, activate Production code only.

In this case, the class is generated as service routine only for ASCET-SE tar-
gets.

The name of the service routine is created as specified in the name templates of
the target settings or taken from the "Symbol" field in the method implementation.
If the implementation name itself includes underscores (e.g., U8_MASSFLO_INT),
it is used in the name of the service routine only up to the first underscore.

For example: Assume a class instance with the name MassFlow_Integ of type
INTEGRATORK. The class contains a specification for a method with the name
compute. The class was implemented as U8_MASSFLO_INT.

The data type prefix of the implementation leads to the call

INTEGRATORK_U8_compute(…),
i.e., for the name of the implementation, only the data type prefix is taken into the
generated function call. Hence there is no need to specify a service routine for
every concrete implementation, but only for every data type.

To work with multiple implementations, the following naming convention is recom-
mended (not mandatory): Choose a name after the data type prefix correspond-
ing to the name of the class instance. If necessary, append a consecutive
sequence number (e.g., U8_MASSFLO_INT1).

These naming conventions can also be met by means of preprocessor commands
(#define).

NOTE
If the "Generate Method Body" option in the "Targets\<your target>\Build"
node of the ASCET options window is set to Yes for All Components,
the Service Routine option in the component implementation editor is
ignored.

NOTE
The user must be sure to observe the naming convention.
ETAS ASCET-SE V6.4 | User Guide

51 | Implementation Configuration
Service routines are called from the generated code in the same way as "normal"
class methods. This means that the user must observe all conventions regarding
arguments, return values, and local elements in the specification of the routine
(see section 14.3.7 "Method Declarations and Calls").

The Make mechanism does not generate, compile and link any code for the corre-
sponding class. Instead, the user must provide the respective code (function
code, variable and parameter definitions) another way. Within ASCET, service rou-
tines can also be defined in the external C code.

4.2.3 Prototype Implementations
Especially for the use of hand-coded functions, ASCET and ASCET-SE provide the
possibility to declare class prototypes. Like function prototypes in the context of a
programming language, class prototypes can be used in the ASCET context to
declare function interfaces without defining the function contents. In particular,
this has the following consequences:

- No method bodies are generated for a class implemented as prototype. The
functionality modeled in ASCET (as block diagram, ESDL or C code) will be
ignored for implementation experiment or microcontroller code generation
of prototype classes. You must provide the respective method code in your
hand-coded sources.

However, ASCET still offers the possibility to specify method contents as
they could be needed in simulation experiments executed in ASCET, or for
physical code generation for microcontroller targets.

- Methods and method arguments specified in the ASCET prototype class
can be used from the enclosing ASCET model. The code generated for the
surrounding model does not provide "extern" declarations of the prototype
methods. No function prototype is generated. No self-pointers will be used
(see section 4.2.1), i.e. for prototype classes no multiple instances are sup-
ported. You must provide the respective function declarations and defini-
tions in your hand-coded sources.

- The following types can be used as method arguments and return values in
prototype implementations:

• scalar types,

• enumeration types

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is activated for the prototype implementation

NOTE
When calling hand-coded functions or using hand-coded variable and parameter
definitions from ASCET, the user must be sure to observe the data type defini-
tions generated by ASCET carefully. It is not recommended to use types other
than the ones generated by ASCET. This is especially emphasized for the self-
pointer.
ETAS ASCET-SE V6.4 | User Guide

52 | Implementation Configuration
• record types with activated Use external struct or Use external
typedef implementation setting, provided the records do not contain
forbidden types (see page 52)

- The following types are forbidden for method arguments and return values
in prototype implementations:

• arrays and matrices with variable size

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is deactivated for the prototype implementation

• classes

• records with activated Generate struct implementation setting

If one of these types is used for an argument or return value, a warning
(WMdl105) is issued during code generation. By default, this warning is pro-
moted to an error.

ERROR(WMdl105): method <method_name> in service/prototype
class has element <element_name> of type <type> - the
layout is generated by ASCET (maybe only for experiments)
and should therefore not be used externally

- Array arguments to methods are usually checked for compatibility: if the
method argument has a fixed or variant size, the array that is passed in must
have the same size. Only for arrays arguments that are specified to have a
variable size is it allowed to pass arrays of any size.

Since the ASCET code generator uses special auxiliary structures to gener-
ate the arguments of variable size, and external libraries often cannot be
adapted to these types, there is the exception to the rule: array arguments
of prototype classes with a fixed size of one accept arrays of any size. This
is indicated by a warning WMdl68. The actual size of the array should then be
passed as an extra argument.

- Variables and parameters exported from the prototype class can be used
from the enclosing ASCET model. The code generated for the surrounding
model provides "extern" declarations for the prototype methods at the
respective locations. As these declarations are embraced by preprocessor
commands, they can be deactivated if required. The user must provide the
respective definitions in his hand coded sources.

The init values of exported elements in a prototype class are not checked,
because the initialization is done by the external code. It is therefore, e.g.,
possible to define a reference to an array without providing an instance for
initialization.

- The following types are allowed for variables and parameters in prototype
implementations:

• scalar types

• enumeration types

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is activated for the prototype implementation
ETAS ASCET-SE V6.4 | User Guide

53 | Implementation Configuration
• record types with activated Use external struct or Use external
typedef implementation setting, provided the records do not contain
forbidden types (see page 53)

- The following types are forbidden for variables and parameters in prototype
implementations:

• characteristic lines/maps

• distributions

• arrays and matrices with fixed or variant size if the Production code only
implementation setting is deactivated for the prototype implementation

• classes

• records with activated Generate struct implementation setting

If one of these types is used for a variable or parameter, a warning
(WMdl106) is issued during code generation. By default, this warning is pro-
moted to an error.

ERROR(WMdl106): element <element_name> in service/prototype
class is of type <type> - the layout is generated by ASCET
(maybe only for experiments) and should therefore not be used
externally

- Local instance variables, imported variables and method-local variables are
not regarded in the code generated for a prototype class, as they do not
concern the method interfaces. Direct access (whether optimized or not) to
local elements of prototype classes is not supported.

If local elements are specified for a prototype class with multiple instances,
a code generator warning WMdl107 is reported. In addition, if a reference to
a prototype instance is created, an error MMdl213 is reported.

- If desired, you can use the prototype implementations in an implementation
experiment with an experimental target.

To specify method prototypes

Method prototypes are specified as follows:

1. Open the ASCET options window and go to the "Targets\<your target>\
Build" node.

2. Set the "Generate Method Body" option to Use Component Settings,
then close the ASCET options window.

3. Open the class you want to use as prototype in its editor.

4. Open the implementation editor for the class.

NOTE
If the "Generate Method Body" option in the "Targets\<your target>\Build"
node of the ASCET options window is set to Yes for All Components,
the Prototype Implementation option in the component implementation
editor is ignored.
ETAS ASCET-SE V6.4 | User Guide

54 | Implementation Configuration
5. In the "Settings" tab, activate the Prototype Implementation option.

With that, Generate Method Body is automatically deactivated.

6. If you want to use arrays/matrices with fixed or variant size as arguments or
variables/parameters, activate Production code only.

In this case, the class is generated as prototype implementation only for
ASCET-SE targets.

The name of the C function is created as specified in the name templates of the
target settings or taken from the symbol in the method implementation. The sym-
bol may also contain the same template parameters as the entry in the target set-
tings. Unlike service routines, no special naming conventions apply for prototypes.
The naming conventions can also be met by means of preprocessor commands
(#define).

The Make mechanism does not generate, compile and link any code for the corre-
sponding class. Instead, the user must provide the respective code (function
code, variable and parameter definitions) another way (see chapter 10 for possibil-
ities).

4.2.4 Implementation of Methods, Processes and Runnables
Processes, methods and runnables can be implemented as well. Their implemen-
tation editors provide the following options:

- The memory location of the process or method code can be defined. See
also chapter 6 "Memory Segments" on page 79 if you want to automatically
propagate the memory location.

- The usage of the microcontroller’s floating point unit (FPU) can be specified.

This option is used during OS configuration generation to work out whether
or not the FPU context needs to be saved during a task context switch. If all
the processes and methods used in an OS task have this option disabled,

NOTE
When calling hand-coded functions or using hand-coded variable and parameter
definitions from ASCET, be sure to observe the data type definitions generated
by ASCET carefully, especially for element types like arrays, matrices, character-
istic lines and maps and classes. It is not recommended to use types other than
the ones generated by ASCET.

The function interfaces provided by the ASCET-generated code might change in
successor versions of the tool.
In these cases, a code generation warning WMdl105 or WMdl106 is reported. This
warning is promoted to an error by default (this may be changed in the ASCET
options window, "Build" node; see the online help for details).
ETAS ASCET-SE V6.4 | User Guide

55 | Implementation Configuration
then the OS does not need to save and restore the FPU context as there is
no code in the task than can corrupt the current FPU context. This optimiza-
tion reduces execution time and stack RAM consumption at runtime.

The default setting is to support FPU usage.

If the process or method does not use the FPU and this option is enabled,
then the FPU will not be used for calculation but the FPU context will be
saved unnecessarily.

- For methods, the user can define whether function inlining should be
applied by the compiler. This option only has an affect if the configuration of
the compiler defines an appropriate keyword in the "Inline Directive". See the
entries in the "External Tools\Compiler\<compiler>" node of the ASCET
options dialog for the current settings for your compiler.

- It is also possible to define a method as suitable for Preprocessor
evaluation in the "Inlining" combo box. This option tells the code genera-
tor that the C preprocessor is able to evaluate the function, if all arguments
can also be evaluated by the C preprocessor. The effect is that such
method calls can be placed in conditions of #if directives, e.g. when system
constants are evaluated at compile time. This configuration requires the
method to be defined as a macro. Note that not all macros can be evaluated
by the processor (e.g., if they contain casts).

- The text entered in the "Symbol" field is the C function name used for the
process or method in the currently selected implementation of the compo-
nent.

To open the implementation editor for processes and methods

1. In the "Outline" tab of the component editor, select the process or method.

2. Select Edit > Implementation to open the implementation editor.

NOTE
If the microcontroller does not have an FPU, then this option has no effect.

NOTE
Setting a method to Preprocessor evaluation also requires the
method to be declared as Side effect free in the "Settings" tab of the sig-
nature editor.
ETAS ASCET-SE V6.4 | User Guide

56 | Implementation Configuration
4.3 Implementation of Records
Using values of a scalar or array type in the external C code (global variables, argu-
ments in function signatures) is covered by the existing implementation settings
for such elements. Libraries may also use values of a structure type and also define
the structures. To use such structures in an ASCET model, the records can be
implemented as defined externally. Syntactically, there are two alternatives:

- A plain structure definition

- A typedef of a (possibly anonymous) structure definition

For records with an external definition, no header file is generated. The name of the
struct or typedef is either created using the name templates in the target set-
tings or taken literally from the "Struct name" field in the record implementation (if
not empty).

To specify an external record

External records are specified as follows:

1. In the record editor, select Edit > Component > Implementation to open
the record implementation editor.

2. In the "External Struct" tab, activate the option Use external struct or Use
external typedef.

3. Optionally, activate Production code only.

In this case, ASCET generates the data structures by itself for the experi-
mental targets, and uses the external definition only for microcontroller tar-
gets.

4. Close the record implementation editor with OK.

An externally defined record can be used in the following ways:

- Create instances of the record

Instances of externally defined records can be created in the same way as
for regular records. To initialize the record fields, the order of elements must
be known to ASCET. It is therefore required to have a user-defined order of
elements in the record. Non-compliance with this rule is indicated by the
error MMdl510.

- Access to external instances of the record

Exported elements inside of classes with a prototype implementation are
not generated by ASCET, but must be defined in external C code. This also
applies to records. For externally defined records, there is one special case:
regular records must have at least one element (because it is illegal to
define an empty struct in C). Exported records in prototype classes may be
empty. The ASCET model cannot access the record fields, but the record
object can still be passed as a method argument etc. The same applies to
exported records defined as a reference.

Externally defined records can also be nested. It is, however, not allowed to nest
an ASCET-generated record into an externally defined record.
ETAS ASCET-SE V6.4 | User Guide

57 | Implementation Configuration
4.4 Implementations for Temporary Variables

Temporary variables can be specified at the outputs of operators and complex
model elements in block diagrams if the Disable BDE Temp Variable Generation
option in the "Optimization" node of the parent project properties is deactivated. In
order to do this, right-click onto the desired element and select Temporary
Variable from the context menu. These temporary variables cannot be imple-
mented explicitly. Instead, method-local variables can be implemented as
described in section 4.6.

For temporary variables, the code generator determines the implementation auto-
matically: when a temporary variable is assigned an implemented quantity for the
first time, it obtains the corresponding conversion formula and value range. The
implementation data type is chosen so that it is appropriate for the conversion for-
mula and value range.

The insertion of a temporary variable in a mathematical expression does not affect
the generation of mathematical operations for this expression. Temporary vari-
ables should not be used in different branches of the control flow (e.g., in the
branches of an If statement). The result and the implementation (e.g., quantiza-
tion) may be different for the separate branches. This could cause serious arith-
metical errors in the generated code.

4.5 Implementations for Implementation Casts
Implementation casts (see the ASCET online help) provide the user with the ability
to specify the implementation in a targeted manner at any chosen position of a
calculation or a data stream. Unlike variables and parameters, implementation
casts do not allocate any memory, and thus have no storing effect in the model
and cannot be calibrated.

Implementation casts do not have data; they are always of the cont model type,
always have a scalar dimension and a local range of validity (see section 3.3).
Unlike other elements, the properties of implementation casts cannot be edited.
The implementation of an implementation cast is edited the same way as imple-
mentations of basic model types (cf. chapter 4.1).

4.6 Implementations for Method- and Process-Local Variables
For methods and processes, local variables can be created. For this purpose, dou-
ble-click on the method or process name in the corresponding class or module edi-
tor and then select Edit from the context menu. In the "Locals" tab of the signature
editor, click Add to create a local variable.

After creating these variables, you can provide them with an implementation as
described in section “Implementations for Basic Model Types” on page 36. If you do
not specify an implementation, the code generator determines the implementa-
tion automatically: when a local variable is assigned an implemented quantity for

NOTE
Temporary variables in block diagrams are deprecated; they will be
removed in a future ASCET version.
ETAS ASCET-SE V6.4 | User Guide

58 | Implementation Configuration
the first time, it obtains the corresponding conversion formula and value range.
The implementation data type is chosen so that it is appropriate for the conversion
formula and value range.

4.7 Migration of Operator Implementations

You can delete operator implementations in older models or replace them auto-
matically by the newly introduced implementation casts. Automatic replacing,
however, applies to the entire database/workspace, not to individual components.

Details are given in the ASCET online help, section "Editing Implementations", top-
ics "Operator Implementations" and "Dealing with Operator Implementations" and
references therein.

NOTE
Since ASCET V5.0, the implementation options Limit to maximum bit length and
Zero not included (available until ASCET V6.3) replace operator implementa-
tions. In addition, implementation casts can be used to insert requantizations in
concatenated arithmetic operations without creating additional storage space
requirements.

Existing operator implementations in old (i.e. ASCET-SD V4.2 or older) projects
can be viewed, replaced by implementation casts or removed, but not edited.

NOTE
Implementation Casts are described in sections "Implementation Casts", "Imple-
mentation Casts in ESDL" and "Implementation casts in Block Diagrams" in the
ASCET online help.
ETAS ASCET-SE V6.4 | User Guide

59 | Configuring ASCET for Code Generation
5 Configuring ASCET for Code Generation
The properties of generated code are controlled in three different ways in ASCET:

A Globally for all projects ("Build" node and subnodes in the ASCET options
dialog window, opened via Tools > Options).

B For a specific project ("Project Properties" dialog window, opened via File >
Properties in the Project Editor).

C For all projects on a specific target by configuring *.ini, *.mk and *.xml
files in the corresponding target directory.

The first two ways are described in the ASCET online help. This chapter describes
the third way.

Code generation for all projects on a specific target is controlled by three types of
configuration file:

A codegen[_*].ini files control the core code generator.

B target.ini provides the target specific information to the Project Editor
for OS configuration.

C memorySections.xml defines memory class names for use in the Imple-
mentation Editors in ASCET and the mapping between these names and the
target-specific compiler intrinsics to provide them.

How code is compiled by ASCET is controlled by a set of GNU makefiles (with the
extension .mk). The make process is run by ASCET to build a project.

The following sections describe these aspects of configuration file in more detail.

5.1 codegen[_*].ini Files
ASCET uses three files to control the code generator:

- .\target\trg_<targetname>\codegen.ini

Contains macro definitions defining the naming conventions of objects
generated by code generator and additional settings for some aspects
of code generation. This file is read only by the ASCET base system.

- .\target\trg_<targetname>\codegen_<target>.ini

Contains target-specific settings for code generation. This file is refer-
enced by the CODEGEN_INI make file variable in
project_settings.mk. By default, ASCET-SE uses
codegen_example.ini in preference to this file. The EXAMPLE_MODE
make file variable in project_settings.mk must be set to FALSE to
change this behavior.

- .\target\trg_<targetname>\codegen_ecco.ini

Contains target-independent settings for code generation. This file is
included in by codegen_<target>.ini. This file is read only by ECCO.

Together, these files control the following properties:

- code appearance, e.g., the naming of variables

- code generation, e.g., initialization of variables, and use of #pragma state-
ments
ETAS ASCET-SE V6.4 | User Guide

60 | Configuring ASCET for Code Generation
- inclusion of operating system, e.g., selection of message semantic, creation
of hook routines, and generation of the OIL description file

The first section of codegen_<target>.ini offers the possibility to include
other *.ini files. codegen_ecco.ini is inserted automatically, other files can
be added. Since [INCLUDE] is the first section, the settings in the included file(s)
are made first, and afterwards, the settings defined in codegen_<target>.ini
are made. Thus, codegen_<target>.ini can be used to make specific settings
that override those in the other two files.

The options are described in detail in the codegen[_*].ini files themselves.

Including a user-defined *.ini file

In a user-defined *.ini file, the include mechanism can be used to set specific
options without changing the original codegen_*.ini files. Proceed as follows:

1. Create the <MyIniFile>.ini file and place it in the target directory.

2. In the project_settings.mk file, include the <MyIniFile>.ini file.

###################################
CODEGEN SETTINGS (ECCO)
###################################
complete path to codegen.ini (ECCO options)
CODEGEN_INI =$(P_TARGET)/<MyIniFile>.ini

3. In the <MyIniFile>.ini file, add the [INCLUDE] section at the first place.

4. Include the codegen_<target>.ini file to set the target-specific default
options.

5. If necessary, include further *.ini files.

[INCLUDE]
File1=codegen_<target>.ini
File2=<path>\<filename>.ini
...

6. Add the [ECCO] section with your individual settings.

[ECCO]
<option1>=<value>
<option2>=<value>
...

These settings override settings in the included files.

The codegen_*.ini file which ASCET-SE V6.4 uses during code generation is
defined in project_settings.mk.

NOTE
The configuration files are always read at the start of code generation; there-
fore, changes take effect immediately. However, it is usually necessary to force
code generation for all components in the current project to ensure that
changes are applied. For this purpose it is recommended to call Build > Touch >
Recursive before code generation is started.
ETAS ASCET-SE V6.4 | User Guide

61 | Configuring ASCET for Code Generation
A default installation of ASCET-SE V6.4 is configured to build projects using the
codegen_example.ini file provided in the examples directory. Use of
codegen_example.ini can be disabled by defining the EXAMPLE_MODE make
variable EXAMPLE_MODE as FALSE. The following fragment of
project_settings.mk shows the first part that must be changed.

EXAMPLE_MODE=TRUE
EXAMPLE_PATH=$(P_TARGET)/example
EXAMPLE_CONF_OIL=$(EXAMPLE_PATH)/confV50.oil

##
CODEGEN SETTINGS (ECCO)
##
complete path to codegen.ini (ECCO options)
ifeq ($(strip $(EXAMPLE_MODE)),TRUE)

CODEGEN_INI =$(EXAMPLE_PATH)/codegen_example.ini
else

CODEGEN_INI =$(P_TARGET)/codegen_tricore.ini
endif
The other parts that use EXAMPLE_MODE require adaptation, too.

5.2 target.ini File
Each ASCET-SE target is supplied with a target description file called
target.ini. The contents of this file are used to configure the OS editor (see
ASCET online help). In addition, the file contains internal configuration settings for
ASCET-SE that must not be altered by the user.

Additional settings can be made in the ASCET options window, "Target\<your tar-
get>" node and subnodes. See the ASCET online help and he option descriptions
in the ASCET options window for further information.

The entries allowed in target.ini are described in this section. The file must fol-
low the Windows *.ini format.

By default, target.ini includes definitions that match the generic or default tar-
get microcontroller variant provided with RTA-OSEK. A target directory may pro-
vide additional target_<variant>.ini files, where <variant> is the name of
a corresponding RTA-OSEK microcontroller target variant.

All variants of a microcontroller share the same CPU architecture but differ in
peripherals. This often means that each variant of a microcontroller has a different
number of interrupt vectors and/or mapping between vector addresses and
peripheral interrupt sources. The correct variant is required if interrupts need to be
configured in the ASCET Project Editor.

To use a different target variant

1. Rename target.ini as target_default.ini
2. Choose the variant required.

3. Rename target_<variant>.ini as target.ini
ETAS ASCET-SE V6.4 | User Guide

62 | Configuring ASCET for Code Generation
The following tables describe the contents of a target.ini file.

Section [Target]:

Compiler settings can be made via the "External Tools\Compiler\<compiler
name>" node in the ASCET options window.

OS settings:

NOTE
Modifications to the target.ini file are effective only after restarting ASCET.
This is also true for a change between different targets or target variants.

type=<target type> Unique identifier for the target. Do not change
this setting.

label=<target name> A label to be shown in the ASCET user interface.
compilerTools=<compiler
list>

List of compilers available for the target. The
entries are separated by blanks.

osTools=<OS list> List of operating systems available for the tar-
get. The entries are separated by blanks.

maxCoopLevels=<n> Max. allowed number of cooperative priority lev-
els. For OSEK OS, maxCoopLevels is set to 6 by
default.

maxPreempLevels=<n> Max. allowed number of preemptive priority lev-
els. Equal to numHWlevels + numSWLevels -
maxCoopLevels.

numHWLevels=<n> Number of hardware levels, equal to the number
of hardware interrupt priorities on the target.
(Further information about interrupt levels can
be found in the RTA-OSEK User Guide or RTA-
OSEK Binding Manual for the target.)

numSWLevels=<n> Number of software levels, defined by the OS.
For RTA-OSEK this will usually be n=16 or 32
depending on the target.

event:<n>=<identifier>,
<x>,<y>,<address>a)

a) These entries are usually not changed by the user.

Description of an interrupt source, n is the event
number, identifier denotes the event, x and
y are min. and max. priority, address is the
interrupt vector address.
ETAS ASCET-SE V6.4 | User Guide

63 | Configuring ASCET for Code Generation
Sections [<osname>]
The target.ini file contains one section [<osname>] for each operating sys-
tem that can be used with the target.

The settings define the default paths, library names and options for each OS sup-
ported by the ASCET-SE target.

The values are automatically included in the "OS Configuration" node in the "Proj-
ect Properties" dialog in the ASCET project editor. It is not necessary to adapt
these settings in target.ini to suit an individual project. Instead, project-spe-
cific changes are best entered as overrides in the "OS Configuration" node by
selecting Enable OS Configuration. The configuration options are described in
the ASCET online help.

Default OS settings are specified relative to $(P_OS_ROOT) which defines the
root installation directory of the OS. This is set globally in ASCET for each sup-
ported OS in the respective subnode of the "External Tools\Operating System"
node in the ASCET Options window.

NOTE
For the purposes of target.ini files, an AUTOSAR RTE is handled in the same
way as an operating system.

P_OS_INCLUDE Comma-separated list of path names for OS header
files.

P_OS_LIBRARY Comma-separated list of path names for OS-specific
libraries.

OS_LIBS Comma-separated list of OS libraries to be linked with
the project.

OS_CONFIG_TOOL_CMD Command line options to be passed to the OS config-
uration tool.

PROJ_OIL_FILE An OIL file which is the entry point for the example proj-
ect. Only required for integration with an OSEK OS.

Default:

$(EXAMPLE_CONF_OIL) which refers to the
conf_<version>.oil file in <install_dir>\
target\trg_<targetname>\example.
ETAS ASCET-SE V6.4 | User Guide

64 | Configuring ASCET for Code Generation
5.3 memorySections.xml File
ASCET models allow data and code to be assigned to different memory classes.
Memory classes are defined abstractly and given unique names, for example sec-
tions might be IROM (Internal ROM), EXT_RAM (EXTernal RAM), FLASH (FLASH
memory). In addition, the ASCET code generator automatically creates certain
memory class names depending on the context, e.g., for references or virtual
parameters.

During the code generation process, the memory class names need to be con-
verted into actual names, compiler-specific pragmas and type qualifiers. Both the
memory class names and the conversion of memory class names are defined in an
XML-based memory section definition file called memorySections.xml.

A sample configuration file of that name is provided for each target, it can be found
in the target directory. If you need different section names or settings then the file
needs to be modified. Details on how to write memorySections.xml files are
provided in the file ReadMe_memorySections.html located in the target direc-
tory.

The ANSI C target includes three sample configuration files:

- memorySections.xml
Defines the memory sections for standard code generation. It is used when
non-AUTOSAR code generation is selected.

- memorySections_Autosar.xml

Defines the memory sections for AUTOSAR code generation. It is used by
ASCET automatically when AUTOSAR code generation is selected. The sec-
tions are compatible with AUTOSAR Memory Mapping (MemMap.h) and
Compiler Abstraction (Compiler.h, Compiler_Cfg.h) concepts.

NOTE
The default settings for RTA-OSEK are:

P_OS_INCLUDE = $(P_OS_ROOT)\<targetname>\inc
P_OS_LIBRARY = $(P_OS_ROOT)\<targetname>\lib
OS_LIBS = rtk_s.<lib>
OS_CONFIG_TOOL_CMD = -ds

These settings use the RTA-OSEK Standard Status library (indicated by the s
after rtk_) and force the RTA-OSEK configuration tool to generate Standard
Status data structures regardless of the setting in the OIL file (indicated by the -
ds command line option).
If a different library and/or build level is required then both the library and the tool
options must be modified. The library designator must match the -d parameter
and can be one of s, t, e, ts, tt, te, att, ate.
For example, to use Extended (debug) status, use rtk_e.<lib> and -de.
ETAS ASCET-SE V6.4 | User Guide

65 | Configuring ASCET for Code Generation
- memorySections_Autosar4.xml

Defines the memory sections for AUTOSAR code generation, assuming
AUTOSAR Release R4.x conventions (function parameters passed by refer-
ence use a pointer instead of a const pointer). The file can be used instead
of the standard memorySections_Autosar.xml by renaming it to
memorySections_Autosar.xml.

5.3.1 Defining a Memory Class
The definition of memory classes depends on the target and compiler. Refer to the
compiler documentation when adjusting the sample file to your needs.

At the beginning of the memorySections.xml file, the default memory classes
for the following memory class categories are defined:

- Code – memory classes for code (e.g. methods, processes etc.)

- Variable – memory classes for variables

- Characteristic – memory classes for parameters

- ConstData – memory classes for structural data (type descriptor informa-
tion for components)

- DistSearchResult – memory classes for distribution search results

The default memory classes for the categories depend on the target; an example
for such a definition can look like this:

<MemClassCategories>
<Code defaultMemClass="ICODE"/>
<Variable defaultMemClass="IRAM"/>
<Characteristic defaultMemClass="IFLASH"/>
<ConstData defaultMemClass="IFLASH"/>
<DistSearchResult defaultMemClass="DISTRRAM"/>

</MemClassCategories>
The definitions of individual memory classes appear in the <MemClasses> sec-
tion.

The following steps must be performed to define a memory class and assign
ASCET variables to it:

5.3.1.1 Step 1
The required memory classes must be defined in the <MemClasses> section of
memorySections.xml. A memory class definition looks like this:

<MemClass>
<name>string</name>
<guiSelectable>Boolean</guiSelectable>
<prePragma>string</prePragma>
<postPragma>string</postPragma>
<typeDef>string</typeDef>
ETAS ASCET-SE V6.4 | User Guide

66 | Configuring ASCET for Code Generation
<typeDefRef>string</typeDefRef>
<funcSignatureDef>string</funcSignatureDef>
<constQualifier>Boolean</constQualifier>
<volatileQualifier>Boolean</volatileQualifier>
<storageQualifier>string</storageQualifier>
<description>string</description>
<category>1)string</category>
<readCosts>2)non-negative integer</readCosts>

< /MemClass>
Element definitions set in italics have to be replaced by appropriate values. The
elements are described in the file ReadMe_memorySections.html file in your
target directory (e.g., ...\ETAS\ASCET6.4\target\trg_mpc55xx\
ReadMe_memorySections.html).

String elements may contain line breaks, entered as \n. Some string elements can
use macros. The macros available for template definitions are also described in the
ReadMe_memorySections.html file in your target directory.

5.3.1.2 Step 2
Variables are assigned to the required memory class (in the "Memory Location *"
combo box) in the ASCET implementation editor. The class names available are
those defined in the target-specific configuration file memorySections.xml (cf.
section 5.3 on page 64).

To provide a different set of names, or to add new memory classes, you need to
edit the classes in the <MemClassCategories> declaration of memorySec-
tions.xml. Each memory class category you define must have a corresponding
<MemClass> definition.

5.3.1.3 Step 3
After compilation, the memory sections present in the object files must be located
in the microcontroller’s memory space. The linker control file defines the mapping
of memory sections to address ranges. An example linker control file can be found
in the .\target\trg_<targetname>\example\ directory of each target. The
example can be modified to the needs of your project, or you can provide your own
file.

If you choose to write your own linker control file, then the MEM_LAYOUTFILE vari-
able in project_settings.mk needs to be modified to reference the name and
path of your file, e.g.:

MEM_LAYOUTFILE = my_layout_file.inv
When you change the memory layout file or linker invocation file, make sure that
the following constraints are met:

1) A memory class definition can contain several <category> parameters.
2) See section 5.5.4 "Common Subexpression Elimination" on page 74 for more infor-

mation.
ETAS ASCET-SE V6.4 | User Guide

67 | Configuring ASCET for Code Generation
- VIRT_PARAM section

This memory section should be placed beyond your real memory range,
since virtual parameters are only important for calibration tools like INCA.

- VATROM section

This memory section should be placed beyond your real memory range, and
VATROM should not interfere with the placement strategy of other memory
sections. This memory section is only used to collect virtual address tables
used by the hex file reader to extract correct addresses of all project ele-
ments (ASAM-MCD-2MC generation). Therefore all other objects should be
placed in memory independent of whether the VATROM section is used or
not.

For MPC55xx and MPC56x targets only, the a_sect.h file has to be adapted, too.
Details can be found in the compiler toolset manual.

5.3.2 Defining Memory Segments
The required memory segments must be defined in the <MemorySegments> sec-
tion of memorySections.xml. That section looks like this:

<MemorySegments>
<MemorySegment id="string_ID" label="string_L"

priority="n"/>
... <!-- more <MemorySegment /> lines -->

</MemorySegments>
Code parts set in italics have to be replaced by appropriate values. A higher
value of n means a higher priority.

The following rules apply:

- The ID string_ID must be a valid ANSI-C identifier. It must not start with a
number.

- Each ID string_ID must be unique.

- Each label string_L must be unique.

- Each priority n must be unique.

If one of these rules is violated, e.g., if a priority, label or ID is used twice, or if an ID
starts with a number, an error is issued during code generation.

If memorySections.xml does not exist or does not contain the
<MemorySegments> element (compatibility use case), ASCET will assume the
existence of the following definition:

<MemorySegments>
<MemorySegment id="Off" label="Global"

priority="1"/>
<MemorySegment id="On" label="Cache"

priority="2"/>
</MemorySegments>
ETAS ASCET-SE V6.4 | User Guide

68 | Configuring ASCET for Code Generation
If desired, you can specify a default memory class per memory class category (cf.
page 65) and memory segment. For that purpose, the category definition can be
enhanced as follows:

<MemClassCategories>
<category defaultMemClass="memClassName1">

<MemorySegment id="string_IDd"
defaultMemClass="memClassName2" />

... <!-- more <MemorySegment /> lines -->
</category>
...

</MemClassCategories>
Code parts set in bold italics have to be replaced by appropriate values.

With this definition, model parts of category category and memory segment
string_IDd use the default memory class memClassName2. See section 6.2
"Propagating Memory Segments" on page 80 for more details.

The following rules apply:

- string_IDd must be an existing memory segment, i.e. one that appears in
the <MemorySegments> section (cf. page 67).

- memClassName2 must be an existing memory class, i.e. one that appears in
the <MemClasses> section (cf. page 65)

If one of these rules is violated, an error is issued during code generation.

5.3.3 Defining Memory Classes for Variable Array/Matrix References
If desired, you can specify, for each memory class category (cf. page 65), a default
memory class for array/matrix references with variable size. For that purpose, the
category definition can be enhanced as follows:

<MemClassCategories>
<category defaultMemClass="memClassName1">

<varStructMemClass>memClassName3
</varStructMemClass>

</category>
...

</MemClassCategories>

EXAMPLE

<Code defaultMemClass="CODE">
<MemorySegment id="PWM" defaultMemClass="FASTCODE"/>

</Code>
ETAS ASCET-SE V6.4 | User Guide

69 | Configuring ASCET for Code Generation
Code parts set in bold italics have to be replaced by appropriate values.

With this definition, array/matrix references with variable size of category
category use the memory class memClassName3. If no <varStructMemClass>
is specified, array/matrix references with variable size use the default memory
class of their category.

memClassName3 must be an existing memory class, i.e. one that appears in the
<MemClasses> section (cf. page 65). Otherwise, an error is issued during code
generation.

5.4 Build System Control & Configuration Settings
ASCET-SE uses a "make"-based build system for running the code generator, the
compiler and the linker. The basic control is shown in Fig. 5-1:

EXAMPLE

<Variable defaultMemClass="RAM">
<varStructMemClass>REFRAM</varStructMemClass>
...

</Variable>

NOTE
ASCET does not check if the <varStructMemClass> entries are consistent. No
warning is issued if entries are unused or could not be used.
ETAS ASCET-SE V6.4 | User Guide

70 | Configuring ASCET for Code Generation
Fig. 5-1 Build system – basic control

The make process is managed using GNU Make. All make files and build scripts
support paths with spaces.

- If a path containing spaces is to be used in a makefile, ASCET converts it to
a Windows shortname format (for example, c:\Documents and
Settings would be converted to c:\DOCUME~1).

- If a path containing spaces is to be used in a batch file, ASCET generates it
encapsulated in ", or converts it to Windows shortname format.

The makefile file itself is generated and run whenever you select an option from
the Build menu, using the information you specify in the project properties. The
following is an excerpt from the makefile file, using the MPC56x with RTA-OSEK
as example:

path definitions
P_TGROOT = C:\etas\ascet6.4\target
P_TARGET = c:\etas\ascet6.4\target\trg_mpc56x

ASCET-SE
[Code Generation]

generate.mk
Controls

postGenerateHook

Compiler
[User-provided]

compile.mk

build.mk

Controls

Controls

postCompileHook

postBuildHook

ASCET Model
[BD, SM, ESDL, C]

Source Code
[*.h, *.c, *.asm]

Linker
[User- provided]

Object Code
[*.h, *.c, *.asm]
ETAS ASCET-SE V6.4 | User Guide

71 | Configuring ASCET for Code Generation
...
P_CCROOT = c:\compiler\diab\5.0.3
...
phase definition
include $(P_TARGET)\compile.mk

The following sections describe how these phases are controlled and explain how
each one can be customized via configuration files that are located in the target-
specific subdirectory.

5.4.1 Project Settings – Make File project_settings.mk
This make file defines project-wide configuration settings and can be found in the
target directory (e.g., .\target\trg_<target>\project_settings.mk).

The file project_settings.mk can be modified by the user and thus be
adjusted to the project requirements, and it is included by the make files
compile.mk and build.mk.

project_settings.mk is shipped with example mode switched on, i.e. the vari-
able EXAMPLE_MODE is set to TRUE. This means that the settings given in the
example files (cf. “Directory .\target\trg_<targetname>\example” on
page 32) are used for the build process. To use your own configuration files, set
EXAMPLE_MODE=FALSE and adapt further settings in project_settings.mk.

The parameter STOPWATCH_TICK_DURATION tells ASCET the length of a single
tick of the dT time reference in nanoseconds. The value specified must match your
target hardware configuration for dT timings in ASCET to be accurate.

5.4.2 Target and Compiler Settings – Make Files target_settings.mk
and settings_<compiler>.mk
The make file target_settings.mk is included by the two make files controlling
compiling and linking (compile.mk and build.mk respectively) and includes, in
turn, settings_<compiler>.mk.

The settings_<compiler>.mk file defines file extensions, call conventions for
precompiler, compiler, linker and other programs, as well as paths for program
calls, include files and libraries. Command line parameters for compiler and linker
calls are defined here, too.

You can change the values set in the COMPILER SETTINGS section to include
another compiler than the preset one selected in the project properties. If you do
so, make sure that all compiler-specific settings are correspondingly modified as
well.

5.4.3 Code Generation – Make File generate.mk
This make file should not be modified by the user. It controls the ECCO generation
process. All project and target-specific files are passed to ECCO here. For exam-
ple, the Make variable FILES_HEADERS_PROJ is defined here, which contains all
generated header files of a project.
ETAS ASCET-SE V6.4 | User Guide

72 | Configuring ASCET for Code Generation
5.4.4 Compilation – Make File compile.mk
This make file controls the translation process. All files corresponding to the proj-
ect are compiled and assembled here using the appropriate options. As a result, all
object files are written into the cgen directory. Additionally, all compiler errors are
evaluated and transferred to ASCET, if necessary. If an error occurs during compi-
lation, the generation process is terminated and an error window is displayed.

"Smart-Compile"
ASCET-SE supports the option to re-compile only those C source files that have
changed since the last build. The code is compared explicitly to find out whether a
re-compilation is necessary.

Smart-Compile is controlled by two make variables:

- COMPILE_MODE in compile.mk specifies whether Smart-Compile is active
or not. COMPILE_MODE is either smartCompile (smart compilation – check
code explicitly for changes) or compile (conventional compilation behavior
– only check timestamps). Smart compile is enabled by default.

- SMART_COMPILE_COMPARE in smart_compile.mk specifies the file com-
parison and is either smart (ignore only time and date of generation within
comments, default), strict (do not ignore anything), or relaxed (ignore
anything within arbitrary C comments).

When using Smart-Compile, several intermediate files are generated during com-
pilation. These files are of no relevance for the user.

The "Smart-Compile" feature has led to an increased complexity and number of
make files with respect to earlier versions. Not all details can be described here. To
avoid problems, it is thus highly recommended to change the project_set-
tings.mk file and, if necessary, the target_settings.mk file only.

5.4.5 Build – Make File build.mk
The link process is controlled by build.mk. The compiled object files and the
required libraries are integrated into an executable program file which is written to
the CGen directory.

The build process can be customized be editing project_settings.mk. Edits to
build.mk itself should not be required.

Linker/Locator Control
The build process controlled by build.mk uses the Linker/Locator provided by
the compiler toolchain to allocate parts of the executable program (code, static
data, dynamic data etc.) to physical memory areas (RAM, ROM etc.) on the micro-
controller. This process is controlled by linker/locator control file. The file format is
specifc to the compiler toolchain. The file contents are specific to your microcon-
troller variant (i.e. different devices with different memory layouts or sizes will
need different linker/locator control files.

The linker/locator file ASCET uses is specified by the MEM_LAYOUTFILE variable in
project_settings.mk file (see section 5.4.1). The variable must reference a
valid linker/locator control file for your microcontroller.
ETAS ASCET-SE V6.4 | User Guide

73 | Configuring ASCET for Code Generation
A sample linker/locator file is supplied with each ASCET-SE target. and can be
found in the .\target\trg_<targetname>\example folder.

You will need to consult both your compiler documentation and your microcontrol-
ler documentation to make changes to the file.

5.5 Customizing Code Generation

5.5.1 Banners
Banners in the generated code are described in the "Project Editor" section of the
ASCET online help.

5.5.2 Formatting Generated Code – .indent.pro Configuration File
The code formatting utility "Indent" can be used to re-format generated code. The
properties of the code format can be widely influenced this way. The
.indent.pro file, found in the target directory, serves for the configuration. You
can find a detailed documentation of Indent’s capabilities in the indent.html file,
which is available in the ...\ToolsAndUtilities\ OpenSourceSoftware\
OSS_Sources_ASCET\ident <x>.<y>.<z>\doc folder on the installation disk.

Indent is redistributed under the "GNU Public License".

5.5.3 Code Post-Processing
ASCET-SE offers the user the possibility to modify the generated code by means
of Perl scripts. The called scripts must be specified in the make variable POST_C-
GEN_PERL_MODS in project_settings.mk, e.g.:

POST_CGEN_PERL_MODS = postCGenIndent postCGenSample
A sample file called postCGenSample.pm is included in the ASCET-SE delivery, in
the .\target\trg_<targetname>\scripts directory. The calling conven-
tions can be derived from that file easily. All scripts implemented by the user must
comply with these conventions:

- Provision of a Perl macro called process
- Utilization of three invocation arguments. These arguments represent the

path to the source code, a list of the C files and a list of H files to be pro-
cessed.

In the delivered version, ASCET-SE uses the code formatting utility "Indent", which
is called through the described mechanism as well. By specifying

POST_CGEN_PERL_MODS =
the execution of Indent can thus be suppressed. See also “Formatting Generated
Code – .indent.pro Configuration File” on page 73 for more details on "Indent".

EXAMPLE

sub process ($$$) {
my $src_path,$c_files, $h_files) = @_;
...

}

ETAS ASCET-SE V6.4 | User Guide

74 | Configuring ASCET for Code Generation
5.5.4 Common Subexpression Elimination
In block diagrams, it is easy to connect operator outputs, method return values,
etc. multiple times if the value is used more than once. However, in this case the
calculation is also generated multiple times, requiring multiple calculations at run-
time and also consuming code size multiple times.

Until ASCET V6.4, manually adding a temporary variable (cf. section 4.4 on
page 57) to these outputs was the only way to eliminate redundant code.

In ASCET V6.4, common subexpression elimination is provided as optimization.
To use common subexpression elimination, you must activate the Common
Subexpression Elimination option in the project properties window, "Optimiza-
tion" node. The functional behavior of the generated code does not change, and
the runtime for any path in the control flow of the method does not increase.

Common subexpression elimination is a method-scoped optimization, which aims
to optimize the costs of a method. The idea of common subexpression elimination
is to find identical parts of the syntax tree, calculate these only once and assign
the result to a temporary variable. The temporary variable can then be used to
compute the rest of the syntax tree.

If the transformed syntax tree has lower costs than the original syntax tree, the
transformed syntax tree will be used.

Details:

- Common subexpression elimination respects variant conditions, i.e. the
temporary variable is only assigned if there is at least one read access.

- To ensure that no optimizations improving accuracy get lost, common sub-
expression elimination is performed after the accuracy-related optimiza-
tions.

- Common subexpression elimination takes care that side-effects are still
executed in the same way, i.e. the number of calls to a function (not side-
effect free) is not changed.

- Common subexpression elimination is allowed to extract expressions from a
possible undefined evaluation order, although another branch may have a
side-effect leading to a change in the expression. If this happens, a warning
(WMdl83 or WMdl84) is issued:

WMDL83: Evaluation order may not be preserved in the
compiled code and lead to unexpected behaviour
WMDL84: Evaluation order may not be preserved in the
compiled code and possibly lead to unexpected behaviour

It is important for common subexpression elimination to decide whether the code
with or without temporary variable is better. One criterion is that the costs of mul-
tiple computations of the expression are bigger than the costs of assignment to a
temporary variable. The general cost function is some combination of the execu-
tion time and the code size of the method.
ETAS ASCET-SE V6.4 | User Guide

75 | Configuring ASCET for Code Generation
You can influence the cost function used by common subexpression elimination
by specifying additional costs for reading a value from a memory class. The costs
are specified in memorySections.xml (described in section 5.3 on page 64) in
the <readCosts> element. Only non-negative integer values are allowed; all
other values lead to an error message:

EMake67: Unreadable read costs for memory section <%1> -- see
memorySections.xml in your target directory
If <readCosts> is not specified in a memory class definition, the additional costs
for this memory class are assumed to be zero.

The costs of a temporary variable assignment are typically 10; specifying
<readCosts> of, e.g., 100 should guarantee that multiple read accesses are
always extracted to a temporary variable assignment.

5.6 Customizing the Build Process

5.6.1 Including Your Own Make Files
The make process in ASCET can be customized to run user-provided make rules at
selected points in the overall build process. For this purpose ASCET-SE provides
special make targets:

- PRE_GENERATE_HOOK is executed before code generation

- POST_GENERATE_HOOK is executed after code generation

- PRE_COMPILE_HOOK is executed before compilation

- POST_COMPILE_HOOK is executed after compilation

- PRE_BUILD_HOOK is executed before linking.

- POST_BUILD_HOOK is executed after linking.

- POST_FILEOUT_HOOK is executed after file out

The hooks can be defined in custom_settings.mk.

Your make file must conform to GNU make syntax. Documentation for GNU make
can be found in the ...\ToolsAndUtilities\OpenSourceSoftware\
OSS_Sources_ASCET\Gnu Make V3.81\gnu_make\doc folder of the installa-
tion data. Additional information can be found in the GNU-Make Manual (ISBN:
1-882114-80-9, not supplied).

5.6.2 Including User-Defined C and H Files
ASCET-SE can include additional C source files in the make process. Lists of file
names can be defined in the project_settings.mk file. In addition, lists of path
names can be indicated to specify where the compiler searches for the defined
files. The following make variables can be used:
ETAS ASCET-SE V6.4 | User Guide

76 | Configuring ASCET for Code Generation
- C_INTEGRATION indicates, whether additional C source files are to be con-
sidered by the make process. Possible values are FALSE or TRUE.

- P_C_SRC_FILES indicates a list of one or more paths for additional C source
files, separated by blanks.

- C_SRC_FILES indicates a list of one or more additional C source file names,
separated by blanks. If a file of a list of files is specified in C_SRC_FILES, a
valid path must be provided in P_C_SRC_FILES and C_INTEGRATION must
be set to TRUE.

- P_H_SRC_FILES indicates a list of one or more paths for additional H
(header) files, separated by blanks.

- LIBS_USER contains a list of user-defined libraries. The respective path
names have to be specified as parts of the file names.

- P_ASM_SRC_FILES indicates a list of one or more paths for additional
assembler files, separated by blanks.

- ASM_SRC_FILES indicates a list of one or more additional assembler file
names, separated by blanks.

The following example illustrates how the make file variables can be used (extract
from project_settings.mk):

...
P_H_SRC_FILES = $(P_TARGET) $(P_DATABASE)/math
C_INTEGRATION = TRUE
P_C_SRC_FILES = $(P_DATABASE) $(P_DATABASE)/math
C_SRC_FILES = mathop.c hwdriver.c errhndl.c
...

The files from the C_SRC_FILES list are compiled and linked by the ASCET make
process.

5.6.3 Special Makefile Variables Provided by ASCET
Some special make variables can be used to access files at locations predefined by
the system. These are:

- $(P_TARGET), the specific path of the current target installation, e.g.,
.\target\trg_mpc56x,

- $(P_TGROOT), the .\target path in the ASCET installation,

- $(P_DATABASE), the specific path of the currently used ASCET data base,

- $(P_CGEN), the CGen directory.

More information on the make variables is provided by the comments in
project_settings.mk.

NOTE
For RTA-OSEK integration, C_INTEGRATION must be set to TRUE because
task and ISR bodies generated by ASCET-SE are placed in separate files
which are compiled via the C code integration mechanism.
ETAS ASCET-SE V6.4 | User Guide

77 | Configuring ASCET for Code Generation
5.7 Controlling What is Compiled Using ASCET Header Files
The C code generated by ASCET-SE includes various C pre-processor directives
that allow compile-time configuration using ASCET-SE header files. The header
files are located in .\trg_<targetname>\include unless indicated otherwise.

5.7.1 Include File a_basdef.h
The a_basdef.h file is included by all files generated by ASCET. It provides
access, through further header files, to:

- the standard ASCET types (a_limits.h, a_std_type.h)

- target-dependent definitions (tipdep.h)

- the operating system interface (os_inface.h)

- project specific configuration (proj_def.h)
Project-specific configuration definitions for a project can be provided via the
proj_def.h file. A template proj_def.h file can be found in the same include
folder as a_basdef.h; the template shall be adapted by the user.

The a_basdef.h file itself should not be modified by the user.

5.7.2 Include File proj_def.h
The supplied version of this file contains some macro definitions and an empty
section that can be used for application-specific adaptations.

In particular, the file offers the possibility to include preprocessor commands that
are valid throughout the complete code generated by ASCET. The switches noted
below have a particular meaning in the code:

- COMPILE_UNUSED_CODE: This switch can be defined to compile code that is
generated from the ASCET model, but not used by the model itself, e.g., a
method that is never called.

Example:

#define COMPILE_UNUSED_CODE
- DECLARE_PROTOTYPE_METHODS: In ASCET, classes can be implemented as

prototypes (see section 4.2.3 "Prototype Implementations"). This switch
defines, whether (extern-)declarations shall be generated for the respec-
tive methods. This may become relevant, if the user intends to map method
names to macros by means of pre processor commands (#define).

Example:

#define DECLARE_PROTOTYPE_METHODS
- DECLARE_INLINE_METHODS: For methods implemented as inline (see

section 4.2.4 "Implementation of Methods, Processes and Runnables"),
function declarations can be made visible for the compiler via this switch, if
desired. Extern declarations for inline functions are usually not required,
since the functions are expanded textually, so that their definitions must be
known before they are used. ASCET takes care of that.

Example:

#define DECLARE_INLINE_METHODS
ETAS ASCET-SE V6.4 | User Guide

78 | Configuring ASCET for Code Generation
- Model-specific switches for the individual deactivation of single extern-
declarations and type definitions.

- Switches for message configuration: the default optimization of message
copies based on the operating system’s priority scheme is not suited for all
applications. The message handling can thus be configured, provided the
modularMessageUse option is activated in the codegen_ecco.ini file.
Four different variants exist:

• Default message optimization

As a default, messages are optimized based on the operating system’s
priority scheme. In this case, the compiler switch

#define __MESSAGES __OPT_COPY
is used. It can be set by the user explicitly as well.

• No message copies

Messages are used like global variables in this case. No copies are gener-
ated. This can be achieved using the compiler switch:

#define __MESSAGES __NO_COPY

• No message optimization (copy always)

Messages are always copied using the compiler switch:

#define __MESSAGES __NON_OPT_COPY
In this case, no optimization takes place.

• If supported by the respective operating system, the OSEK COM mes-
sage definition can be used:

#define __MESSAGES __OSEK_COM

NOTE
For methods in modules, only __OPT_COPY and __NO_COPY are avail-
able. Other optimizations are not supported.
ETAS ASCET-SE V6.4 | User Guide

79 | Memory Segments
6 Memory Segments
In a multi-core ECU with NUMA architecture, each core has a local memory seg-
ment that it can access with low latency. A global memory segment is available to
all cores, and each core can access the local memory segments of the other cores.

To improve the efficiency of high-speed runnables or processes, all code and data
that is used by these runnables/processes can be placed in the low-latency mem-
ory segment of a particular core via the "Memory Segment" combo boxes in the
implementation editors.

These combo boxes offer a set of available memory segments provided by the
user (see also section 5.3.2 "Defining Memory Segments" on page 67) and the set-
ting Automatic. Automatic means that the object inherits the memory segment
of its parent object; see also section 6.2 "Propagating Memory Segments" on
page 80.

If no memory segments are provided by the user, the settings Cache (= low-
latency local memory segment) and Global (= higher-latency memory segment)
are available.

6.1 Default Memory Class Per Category and Segment
By default, one default memory class is defined for each memory class category. If
desired, you can specify one default memory class per category and memory seg-
ment (see also page 68), e.g., as follows:

<Code defaultMemClass="CODE">
<MemorySegment id="PWM" defaultMemClass="FASTCODE"/>

</Code>
These default memory classes are used to resolve memory locations set to
Default in the "Memory Location of Instance" fields of the implementation edi-
tors (see, e.g., section 2.3.5 on page 22).

This Default setting is resolved by the combination of memory class category
and memory segment.

The memory class category is determined from the model:

- Methods, processes and runnables are of category Code.

- Variables and messages are of category Variable.

- Parameters are of category Characteristic.

- Components are of category ConstData.

- Variables that hold the result of a distribution search are of category
DistSearchResult.

If the memory segment is set to Automatic, or if no special default memory class
is defined for the combination of category and memory segment (cf. page 68), the
default memory class for the category is selected.

If the memory segment is set to a value ≠ Automatic, and if a special default mem-
ory class is defined for the combination of category and memory segment
(FASTCODE in the above example), this special memory class is selected.
ETAS ASCET-SE V6.4 | User Guide

80 | Memory Segments
6.2 Propagating Memory Segments
To allow easy allocation of all model parts that belong to a top-level process or run-
nable, the memory segment is propagated. The following rules apply to memory
segment propagation:

A Automatic memory segment

If the memory segment of a method, element or included component is set
to Automatic, the item inherits the memory segment of the parent process
or runnable.

B User-defined memory segment

If the memory segment of a method, element or included component is not
set to Automatic, the item’s memory segment is not changed.

C Propagation through the call tree

If an item with memory segment Automatic is called by callers with differ-
ent memory segments, the caller memory segment with the highest priority
is used for the called item.

D Propagation to data elements

Each element of a class, module, or software component, uses the memory
segment with the highest priority of all methods, processes, and runnables,
where the element is used (read or written).

E Propagation to record instances

Records and record elements do not have own memory segments; they
inherit the memory segment. A record instance inherits the memory seg-
ment with the highest priority of all record elements.

If the instance is not known, a warning shall be generated and nothing is
changed.

F Propagation to component

The memory segment of a component is the memory segment with the
highest priority of all elements inside this component.

This avoids the additional indirection through a substruct pointer when
accessing the elements in the highest priority memory segment.
ETAS ASCET-SE V6.4 | User Guide

81 | Interpolation Routines
7 Interpolation Routines

If your project uses characteristic lines/maps, then it is necessary to provide inter-
polation routines. Suitable interpolation routine libraries named
intpol_<target>_<compiler>.<libext>1) and the header file
a_intpol.h2) are delivered with ASCET-SE. These files contain several routines
for the interpolation of characteristic lines and maps for various combinations of
data types.

For characteristic lines and maps, over 500 possible combinations of input and
output data types exist, each of which must have its own interpolation routine.
However, since only a few of these combinations are actually used in a real project
(usually less than 10), it does not make sense to deliver all 500 additional routines
with ASCET-SE or to always integrate them into the code. The library, therefore,
does not include the entire set of interpolation routines.

Further routines can be generated automatically at need. This is done by using the
batch file intpol_<target>_<compiler>.bat2) and a Perl interpreter provided
with the system. The generated files are then compiled into the new library.

Interpolation routines use the following naming convention:

- Distributions: RoutineName_<Distribution-Type>
- 1d Tables: RoutineName_<X-Axis-Type><Y-Value-Type>
- 2d Tables: RoutineName_<X-Axis-Type><Y-Axis-Type><Z-Value-

Type>

The following type combinations are supported by these libraries for normal char-
acteristic lines and maps as well as group characteristic lines and maps (for fixed
characteristic lines and maps, interpolation is performed without calling interpola-
tion routines).

Distributions: All <Distribution-Type>s (e.g. u8, s16, r32 etc.).

1d Table Routines: All combinations of <X-Axis-Type><Y-Value-Type> for
all integer types (e.g. u8u8, s8s8, u16s32 etc.) plus r32r32 and r64r64 values.

NOTE
The interpolation routines provided with ASCET are for example only. They are
not intended for use in production ECUs or development ECUs running in a vehi-
cle. See chapter 1.4.1 for further details.

1) In the .\target\trg_<targetname>\intpol\lib directory. Possible library
extensions are *.lib, *.a, *.h12.

2) In the .\target\trg_<targetname>\intpol directory.

NOTE
The generation of interpolation routines is described in the
ReadMe_Interpolation.html file in the .\target\trg_<targetname>\
Intpol interpolation routine directory.
ETAS ASCET-SE V6.4 | User Guide

82 | Interpolation Routines
2d Table Routines: All combinations of <X-Axis-Type><Y-Axis-Type> <Z-
Value-Type> for all integer types (e.g. u8u8u8, s8s8s8, u16s32u8 etc.) plus
r32r32r32 and r64r64r64 values.

High-Resolution interpolation routines: In many cases, memory space can be
saved by using a less accurate representation for the data values, but calculating
the interpolation value with high accuracy. For this purpose, ASCET offers high-
resolution interpolation routines. See the ASCET online help for more details.

7.1 Use of Interpolation Routines
For each target, ETAS provides some example interpolation routines in a pre-com-
piled library. The library is not intended for production projects without additional
assessment and quality assurance. Nevertheless the routines contained in the
library demonstrate how interpolation routines are generated, referenced and
linked to a project and can serve as a starting base for customer specific improved
routines.

After ASCET-SE has been installed, a directory \intpol is located in the target
directory of each installed target, e.g., in the following folder:

C:\ETAS\ASCET6.4\target\trg_<targetname>\intpol
The ASCET online help describes the callbacks to interpolation routines required
by ASCET.

The following example describes how ASCET uses interpolation routines assuming
an interpolation routine for GetAt() for characteristic lines.

For uint8 values, the GetAt() call logically required by ASCET is replaced by a call
to the CharTable1_getAt_u8u8() method. ASCET accesses the routines via
the a_intpol.h header file. Yon need to implement a method with the same C
signature in your interpolation routine library. The library must be linked with the
application.

When using the example source code provided by ASCET, follow the instructions
of the included ReadMe_Interpolation.html file to generate the related
library and link it during the make process.

7.2 The Interpolation Procedure
The interpolation procedure for all variants consists of two steps:

A Searching the proper interval of interpolation points and deriving the offset,
i.e. the distance between the interpolation point and the x-axis value to be
interpolated.

B Calculating the linearly interpolated value at the desired position.

For group characteristic lines/maps, the search result is stored in intermediate
variables to avoid multiple calculations of the values for the various characteristic
lines/maps.

For characteristic lines with equidistant interpolation node distribution (fixed
characteristic lines), less memory is required because an offset and a distance are
stored instead of a list of interpolation points. Instead of the search procedure, the
nearest fixed interpolation node to the x-axis value is used.
ETAS ASCET-SE V6.4 | User Guide

83 | Interpolation Routines
7.3 Accuracy and Allowed Range of Values
The supplied interpolation routines do calculation in the integer implementation to
within ± 1.0 of the exact integer result.

The distance of interpolation nodes, and the difference between consecutive
characteristic values cannot be arbitrarily large, due to a possible overflow during
the interpolation.

Fig. 7-1 Interpolating a characteristic line

The condition to avoid overflows is as follows:

(dv * dx) < 231 [dv > 0, a positive slope]

(dv * dx) ≥ -231 [dv < 0, a negative slope]

For very steep characteristic lines (large differences between consecutive char-
acteristic values), the number of interpolation nodes has therefore to be
increased.

Within the current implementation, all routines are affected that use the data
types uint16, sint16, uint32 and sint32. To avoid wrong results in case of a
possible overflow, the calculated value is checked by these routines. If the charac-
teristic value does not fall within the value range of the two adjacent interpolation
nodes, the value from the lower interpolation node is returned.

The algorithm for floating-point value interpolation differs only slightly from the
one for integer value interpolation. In theory, an overflow can occur for floating-
point values, too.

0

v

x

dv

delta

dx

v(x)

v1/x1

v0/x0

v(x) = v0 + (dv * delta) / dx
ETAS ASCET-SE V6.4 | User Guide

84 | Operating System Integration
8 Operating System Integration
This chapter describes how ASCET-SE integrates with an operating system to pro-
vide real-time scheduling of ASCET processes.

The focus is primarily on integration with OSEK OS, in particular with ETAS’ RTA-
OSEK operating system. Integration with other OSEK-compatible operating sys-
tems is similar, but specific details will differ.

To integrate with the OS, ASCET-SE generates:

- an OS configuration file fragment that configures the OS to run the ASCET
tasks and interrupts; and

- C code implementations of OS task and interrupt bodies that will be invoked
by the OS

To integrate with the OS, ASCET-SE requires:

- an OS configuration file for system as a whole which must at least configure
the OS objects required to schedule ASCET’s tasks

- an implementation of a "main" program which configures the target hard-
ware and starts the OS in the required application mode

- an implementation of a callback function to provide the dT model variable

8.1 Scheduling and the Priority Scheme
Tasks in OSEK OS are statically assigned a priority at configuration time. Zero rep-
resents the lowest priority task and higher numbers indicate higher priorities.

Tasks in OSEK can be scheduled preemptive and non-preemptively. These are
configured by the "Scheduling" options FULL and NON respectively in ASCET task
configuration (see the ASCET online help for details).

In addition to the standard OSEK OS scheduling modes, ASCET uses features of
OSEK OS to support cooperative scheduling. This is configured by the "Schedul-
ing" option COOPERATIVE in ASCET task configuration (see the ASCET online help
for details).

Preemptive tasks can be preempted at any point during their execution by tasks
with higher priority or any interrupt.

Non-preemptive tasks can preempt both preemptive and cooperative tasks, but
once they are executing they cannot be preempted by any other task. Any higher
priority task that becomes ready to run while a non-preemptive task is executing
must wait until the non-preemptive task completes execution. However, non-pre-
emptive tasks can be preempted by interrupts.

Cooperative tasks can be preempted at any point during their execution by pre-
emptive and non-preemptive tasks and by interrupts. However, they can only be
preempted by other cooperative tasks between processes.

To support these models, ASCET apparitions the OSEK OS task priority space into
two parts:
ETAS ASCET-SE V6.4 | User Guide

85 | Operating System Integration
A Priorities used for cooperative scheduling

The number of priority levels used for cooperative scheduling is defined by
the configuration option Coop. Levels (in the "OS" tab of the project editor).
Cooperative tasks can therefore be assigned priorities in the range
0..Coop. Levels-1.

The maximum value that the option can take is defined by maxCoopLevels
in target.ini. The value of maxCoopLevels is defined to be 6 by default.

B Priorities used for preemptive and non-preemptive scheduling

The number of priority levels is equal to the maximum number of tasks sup-
ported by RTA-OSEK on the target minus the maximum number of coopera-
tive levels. The value is equal to numSWLevels - maxCoopLevels in
target.ini.

Preemptive and non-preemptive tasks can therefore be assigned priorities
in the range 0..numSWLevels - 1.

The ASCET partitioning is overlaid onto the OSEK OS priority scheme when the OS
configuration is generated.

For interrupts, ASCET uses the Interrupt Priority Level (IPL) model of RTA-OSEK. In
this model, RTA-OSEK standardizes IPLs across all target microcontrollers, with IPL
0 indicating user level, where all tasks execute, and an IPL of 1 or more indicating
interrupt level1). The maximum IPL which can be assigned is equal to the priority of
the highest priority OSEK OS Category 2 ISR supported by the microcontroller. The
maximum level is target dependent; it is equal to the setting of numHWlevels in
the target.ini file in the target directory.

Fig. 8-1 shows the relationship between task and interrupt priorities in the OS and
ASCET.

1) The IPL concept is explained in more detail in the RTA-OSEK User Guide. Specific
details about how IPLs are mapped onto target hardware interrupt priorities are pro-
vided in the RTA-OSEK Binding Manual for the microcontroller.

NOTE
Do not confuse IPLs with task priorities. An IPL of 1 is higher than the highest task
priority used in your application.
ETAS ASCET-SE V6.4 | User Guide

86 | Operating System Integration
Fig. 8-1 Priority Levels

8.2 Setting Up the Project

8.2.1 Generating ASCET’s OS Configuration File
During code generation for either RTA-OSEK or Generic OSEK, an OS configuration
file called temp.oil is generated automatically using the configured OS template
file. This file contains an OSEK Implementation Language (OIL) configuration for
the OS objects declared in ASCET, e.g. tasks, ISRs, resources, messages, alarms
and application modes.

ASCET-SERTA-OSEK

Type: Interrupt

[OSEK OS Category 2
Interrupts]

Type: Software|Alarm

Scheduling:
COOPERATIVE

[OSEK OS Tasks]

Not supported
by ASCET-SE

[OSEK OS Category 1
Interrupts]

Type: Software|Alarm

Scheduling:
FULL|NON

[OSEK OS Tasks]

IPL i+1

IPL i

IPL 1

IPL 0

IPL Max

In
te

rr
up

t P
rio

rit
y

Le
ve

ls
 (I

PL
s)

0

Coop.Levels-1
0

Max

Pr
ee

m
pt

iv
e

an
d

N
on

pr
ee

m
pt

iv
e

Ta
sk

Pr

io
rit

ie
s

C
oo

pe
ra

tiv
e

Ta
sk

Pr

io
rit

ie
s

0

2
1

Max

Coop.LevelsO
SE

K
 T

as
k

Pr
io

rit
ie

s

ETAS ASCET-SE V6.4 | User Guide

87 | Operating System Integration
Fig. 8-2 Selecting the OS and the template on project settings

8.2.2 Providing Additional OS Configuration
The temp.oil file does not contain a complete OS configuration. Additional OS
configuration is required to integrate ASCET with the OS. The following definitions
are required:

- An OSEK OS object that defines global OS settings, including the build sta-
tus, error logging modes and any hook routines required.

- An OSEK COUNTER that defines the counter used to drive the alarm tasks
generated by ASCET. By default, ASCET expects the name to be
SYSTEM_COUNTER. The name of the COUNTER is defined in the OS template
file.

- An OSEK Category 2 ISR that provides the real-time "tick" for the COUNTER.

This additional configuration is provided as a framework OIL file. The framework file
to be used for a project is specified in the Project Properties in the "OIL File" field of
the "OS Configuration" node as shown in Fig. 8-2. Further details about configura-
tion can be found in the ASCET online help.

An example framework OIL file for integration with RTA-OSEK is provided with the
example application that can be found in ..\target\trg_<targetname>\
example\conf<version>.oil. This can be referenced using the macro
$(EXAMPLE_CONF_OIL).

It is recommended that you copy the example framework OIL file and adapt it
according to your specific project needs.

The conf<version>.oil file supplied works with RTA-OSEK. RTA-OSEK uses
smart comments (OIL comments with the form //RTAOILCFG or //RTAOSEK)
to provide additional OS configuration that is required but not defined in OIL (for
example, the interrupt priority level and the interrupt vector address).

The following objects are defined:

- CPU - The container for all other objects.

- OS - Defines the OS properties.
ETAS ASCET-SE V6.4 | User Guide

88 | Operating System Integration
- COUNTER - The system counter defines the time base for the triggering of
alarm tasks. By default, ASCET-SE expects this counter to be called
SYSTEM_COUNTER.

- ISR - The Category 2 interrupt that "ticks" the SYSTEM_COUNTER. The name
of the ISR is not important, but by convention ASCET-SE uses
system_counter.

- COM - Defines properties for message communication using OSEK COM.

Other OIL objects can be defined here, too, as well as additional RTA-OSEK config-
uration information (see the RTA-OSEK User Documentation for details).

The generated temp.oil file is included using RTA-OSEK’s auxiliary OIL file mech-
anism. The inclusion must be placed after the OIL CPU clause as shown below:

CPU rta_cpu {
OS RTAOS {

...

EXAMPLE

COUNTER SYSTEM_COUNTER {
MINCYCLE = 1;
MAXALLOWEDVALUE = 4294967295;
TICKSPERBASE = 1;
//RTAOILCFG OS_TIMEBASE ts_SYSTEM_COUNTER;
//RTAOILCFG OS_SYNC FALSE;
//RTAOILCFG OS_PRIMARY_PROFILE ISR

system_counter OS_PROFILE default_profile;
};

EXAMPLE

ISR system_counter {
CATEGORY = 2;
//RTAOILCFG PRIORITY = 1;
//RTAOILCFG ADDRESS = 0x170;
//RTAOILCFG OS_EXECUTION_BUDGET OS_UNDEFINED;
//RTAOILCFG OS_BEHAVIOUR OS_SIMPLE;
//RTAOILCFG OS_USES_FP FALSE;
//RTAOILCFG OS_STACK {OS_UNDEFINED };
//RTAOILCFG OS_PROFILE default_profile { };
//RTAOILCFG OS_PROFILE default_profile {

OS_BASE OS_WCSU {OS_UNDEFINED }; };
//RTAOSEK OS_TRACE 0;

};

EXAMPLE

COM RTACOM {
USEMESSAGERESOURCE = FALSE;
USEMESSAGESTATUS = FALSE;

};
ETAS ASCET-SE V6.4 | User Guide

89 | Operating System Integration
};
...

};
//RTAOILCFG OS_SETTING "AuxOIL" "1";
//RTAOILCFG OS_SETTING "AuxOIL0" "temp.oil";

The system_counter ISR must be implemented in external C code. An example is
provided for each ASCET target in ..\target\trg_<target>\example\
target.c. Additional information can be found in the RTA-OSEK User Guide.

The duration of each SYSTEM_COUNTER counter tick in nanoseconds (which will
usually equal the rate of the system_counter ISR) must to be entered into the
"Tick Duration" field of the ASCET OS editor prior to code generation. For RTA-OSEK
based systems, the value should be identical to the value of the macro
OSTICKDURATION_SYSTEM_COUNTER in the generated oscomn.h file.

ASCET uses the value of Tick Duration for tick/time conversion for alarm tasks only.
The value is unrelated to dT calculation.

8.3 Providing the Main Program
The main program, usually called main, is responsible for target hardware initial-
ization and starting the OS in the required application mode.

By default, a build of an ASCET project will use an external main program provided
in ..\target\trg_<targetname>\example\main.c. The example main pro-
gram for an embedded target configures the hardware to generate the
system_counter interrupt every 1 ms and starts RTA-OSEK in the active appli-
cation mode.

A different main program can be used by setting the makefile variable
EXAMPLE_MODE in project_settings.mk to FALSE and either:

- configuring ASCET-SE to generate the main program in conf.c automati-
cally (Os-Config-C_gen_main=TRUE in ..\target\
trg_<targetname>\codegen_ecco.ini.); or

- ensuring that ASCET-SE is configured to not generate the main program
(Os-Config-C_gen_main=FALSE) and setting the variables
P_C_SRC_FILES (and/or P_ASM_SRC_FILES) to refer to your own source
code.

8.4 The dT Variable
ASCET provides each project with a model variable called dT (delta time). dT pro-
vides each task and interrupt with the time, in microseconds, which has elapsed
since the start of the previous execution.
ETAS ASCET-SE V6.4 | User Guide

90 | Operating System Integration
You can choose to scale the value of dT to represent a different time unit by pro-
viding an implementation formula (in the same way as for other ASCET variables).
ASCET handles the scaling automatically.

In generated code, a special variable called dT is created globally for each project.
dT holds the time elapsed between since the previous execution of a task/inter-
rupt started.

dT is normally a dynamic value that holds the actual time that has elapsed between
executions. The value of dT will change depending on how much interference (due
to preemption) and blocking (due to resources being held or interrupt being dis-
abled) a task or interrupt suffers.

To provide dT, ASCET needs to be provided with a free-running timer and must be
told the duration of a tick of the timer in nanoseconds. This configuration is
described in section 8.4.1.

In some use-cases, it is sufficient for dT to hold the configured period for alarm
tasks. In ASCET this is called "static dT" and configuration is described in
section 8.4.2.

The difference between dynamic and static dT (and the difference between a
scaled and non-scaled dynamic dT) is shown below.

Fig. 8-3 Static and dynamic dT

dT = 7μs
(7x1000ns)

dT = 3μs
(3x1000ns)

dT =7μs
(7x1000ns)dT

(unscaled)

dT
(f(phys) = 0 + (1000

x phys))

Static dT
(unscaled)

dT = 5μs
(5x1000ns)

dT = 5μs
(5x1000ns)

dT = 5μs
(5x1000ns)

dT = 7000ns
(7x1000ns)

dT = 3000ns
(3x1000ns)

dT = 7000ns
(7x1000ns)

Task A (low prio.)
5μs period,
0μs offset

Task B (high prio.)
10μs period,

5μs offset

1110 1413

STOPWATCH Ticks
1 tick = 1μs = 1000ns

STOPWATCH_TICK_DURATION = 1000

12 1615 1817 19 20 232221

Task A Task A Task A

Task B

Task A

24 25 26 292827

Task B
ETAS ASCET-SE V6.4 | User Guide

91 | Operating System Integration
8.4.1 Dynamic dT
To use dynamic dT, the option Generate Access Methods for dT (Alternative:
use OS dT directly) must be enabled in the Project Properties. ASCET-SE will gen-
erate the code to use and calculate dT at runtime. However, to do this ASCET-SE
must be given access to a free-running 32-bit timer source (see below).

ASCET generates a function called setDeltaT() that is used in each generated
task body to update the ASCET model element dT (generated as dT_PRO-
JECT_IMPL in the code). If the model element dT is scaled (i.e. it does not use the
identity implementation) then ASCET-SE automatically ensures that the scaling is
handled correctly. For example, if the model variable dT is implemented in millisec-
onds, the following code is generated:

void setDeltaT (void)
{

TimeType dTMicroSeconds =
(STOPWATCH_TICK_DURATION*dT)/(TickType)1000;

(dT_PROJECT_IMPL = ((dTMicroSeconds/1000)));
}

8.4.1.1 Providing a Time Reference for Dynamic dT Calculation
ASCET uses a callback function called GetSystemTime() to get access the time
reference for the dT value used by in ASCET models. The implementation of the
callback must provide the current value of a free-running hardware timer on your
target microcontroller.

The following steps are required to provide dynamic dT.

A Enable the Generate Access Methods for dT * code generation option.

Fig. 8-4 Production Code options

B Enable the following options in codegen_ecco.ini:

Os-Config-C_gen_process_container=1
Os-Config-C_gen_dt_calc=1

C Ensure that the following line is not commented out in .\target\
trg_<targetname>\include\os_inface.h:

extern TimeType GetSystemTime(void);
ETAS ASCET-SE V6.4 | User Guide

92 | Operating System Integration
D Provide an implementation of the GetSystemTime() callback function. The
implementation of this function must return the value of a free running 32-
bit hardware timer.

When integrating ASCET-SE with RTA-OSEK, GetSystemTime() can be
mapped onto RTA-OSEK’s GetStopwatch()callback automatically by set-
ting ASD_OS_INTEGRATION in project_settings.mk as follows.

ASD_OS_INTEGRATION = ASD_OS_INTEGRATION_RTA ↵
MAP_TO_GETSTOPWATCH

RTA-OSEK’s GetStopwatch()callback is required by the OS in timing or
extended build. It provides the OS with access to a free-running 32-bit hard-
ware timer for time measurement (see the RTA-OSEK documentation for
details) – i.e. the RTA-OSEK callback provides identical functionality to that
required by ASCET-SE for GetSystemTime(). Note that the implementa-
tion of GetStopwatch() must be provided in external C code. An example
implementation is supplied in .\trg_<targetname>\example\
target.c in your target directory; here, the implementation from
..\example\trg_tricore\target.c is shown.

OS_NONREENTRANT(osStopwatchTickType)
GetStopwatch(void)
{

/* Get the current value of the lowest 32 bits of
the STM timer. */
return (osStopwatchTickType)_STM_TIM0;

}
E ASCET is told the duration of a dT tick in nanoseconds by the macro

STOPWATCH_TICK_DURATION defined in project_settings.mk (see
section 5.4.1):

Free-running HW counter for GetSystemTime()
has a tick every 50ns
STOPWATCH_TICK_DURATION = 50

These settings allow ASCET to calculate dT at runtime for use in the code gener-
ated from your ASCET model.

8.4.2 Static dT
ASCET-SE can be configured to provide alarm tasks with their configured inter-
arrival time as a static dT.

To configure static dT, you must do the following:

A Disable the Generate Access Methods for dT * code generation option in
Project Settings (see Fig. 8-4).

B Enable the static dT option in codegen_ecco.ini:

NOTE
The value of static dT is only defined for alarm tasks. Other types of tasks and
interrupts must not include processes that use dT.
ETAS ASCET-SE V6.4 | User Guide

93 | Operating System Integration
Os-Config-C_gen_dt_static=1

C Enable USE_ASD_CALC_SCALED_DT in project_settings.mk
When these settings are made, ASCET generates a macro called
_ASD_TICKS_PER_TASK_PERIOD in each task body that defines the task's con-
figured period in ticks of the System Counter. For example:

TASK(task_100ms)
{

#define _ASD_TICKS_PER_TASK_PERIOD 10
...
/* Rest of task body */
...
#undef _ASD_TICKS_PER_TASK_PERIOD

}
In this case, SYSTEM_COUNTER is being ticked every 10 ms, so the macro is set to 10
ticks (i.e. 10 ticks X 10 ms = 100 ms).

To convert the ticks into time for use in runtime calculations, or to handle any scal-
ing of the model dT by an implementation formula, you must modify the macro
ASD_CALC_SCALED_DT in proj_def.h. By default, the macro assumes an iden-
tify scaling and converts DT ticks into VAR time VAR assuming 1 DT tick = 1 VAR us as
shown below:

#define ASD_CALC_SCALED_DT(VAR,DT) \
do {\

VAR = DT; \
}while(0);

#endif
With static dT, a DT tick has the same duration in nanoseconds as a
SYSTEM_COUNTER tick (i.e. it is equal to the "Tick Duration" value configured in the
ASCET OS editor). To convert _ASD_TICKS_PER_TASK_PERIOD into microsec-
onds, the macro would need to be modified to multiply DT by TickDuration
(DT*10000000) and then divide the result by 1000 to convert from nanoseconds
to microseconds (DT*10000000/1000=DT*10000), for example:

#define ASD_CALC_SCALED_DT(VAR,DT) \
do {\

VAR = DT*10000; \
}while(0);

#endif

NOTE
When doing any re-scaling you must ensure that any intermediate results do not
result in overflow or underflow. It is your responsibility to ensure that this does
not occur.
ETAS ASCET-SE V6.4 | User Guide

94 | Operating System Integration
8.4.3 Implementing Your Own dT Routines
If you require any special functionality from dT then you can provide your own
implementation. In this case, the option Generate Access Methods for dT
(Alternative: use OS dT directly) must be disabled (see Fig. 8-4).

ASCET-SE will not generate setDeltaT() or defined the dT variable. You must
provide definitions of these externally in your own code. ASCET expects the func-
tion and the variable to correspond to the following C extern definitions:

extern TickType dT;
extern void setDeltaT();

Your implementation of TickType must be at least uint32. The unit of TickType
variables is one tick (i.e. one increment) of the free-running hardware timer
accessed through GetSystemTime().

extern TickType GetSystemTime()
Your implementation of setDeltaT() should be a void/void function that
updates the global dT variable, taking account of any scaling defined in your
model.

ASCET-generated code uses C macros to access dT functionality. Default imple-
mentations of the macros are provided in .\trg_<targetname>\include\
os_inface.h. If you want to provide an alternative implementation of dT, the
following macros in os_inface.h should be modified:

- DEF_GLB_DT_MEASURE — This macro is used in conf.c. It provides global
variables or extern declarations necessary for the dT calculation.

- DEF_TASK_DT_MEASURE — This macro is used at the beginning of each
task. It can be used to define task-local variables necessary for the dT calcu-
lation.

- PRE_TASK_DT_MEASURE — This macro is also used at the beginning of each
task, after DEF_TASK_DT_MEASURE. Here, code can be inserted that calcu-
lates dT at the beginning of the task.

- POST_TASK_DT_MEASURE — This macro is used at the end of each task.
Here, code can be inserted that restores the global dT variable for the other
tasks.

8.5 Template-Based OS Configuration Generation
OSEK OS configuration files are generated by ASCET using a template-based
mechanism. Templates (*.template files) are supplied for all supported operat-
ing systems and can be found in the <installation directory>\
target\trg_<targetname> directories.

NOTE
Templates are only used for generating OSEK-based Operating System configu-
rations. The templating mechanism is not used for AUTOSAR RTE configuration.
ETAS ASCET-SE V6.4 | User Guide

95 | Operating System Integration
When an OS is selected in the "Project Properties" window, "Build" node, ASCET-SE
will automatically select the default template for the chosen OS. The template in
use is shown in the "Project Properties" window, "OS Configuration" node. No addi-
tional configuration is necessary.

Fig. 8-5 shows these two parts of configuration.

Tab. 8-1 shows which template is used for which OS, where %TARGET% is the path
to the target directory.

The template for a chosen OS can be changed by entering the full path to the tem-
plate file or by selecting a template file by clicking the Open File button.

When OS configurations are changed in the "Project Properties" window, Build
node, ASCET-SE will remember which template file is in currently in use for the
selected OS.

At code generation time, ASCET-SE uses the template together with the configu-
ration settings specified for the OS in the project editor to generate a configura-
tion file for the chosen OS. The configuration file is always called temp.oil.
The template mechanism is highly flexible and OS configurations can be changed
simply by modifying one of the supplied templates or by providing a customized
template. This is of most use when an OS configuration that works with a specific
3rd party OSEK OS configuration tool is required.

Tab. 8-1 Default templates for supported Operating Systems

Operating System Default Template
RTA-OSEK 5.0 %TARGET%\OS_RTA-OSEK_V50.template
GENERIC-OSEK %TARGET%\OS_Generic-OSEK.template
RTE-AUTOSAR <x.y.z> <empty>
ETAS ASCET-SE V6.4 | User Guide

96 | Operating System Integration
Fig. 8-5 Selecting the OS and the template in the "Project Settings" window (a:
"Build" node, b: "OS Configuration" node)

8.6 Interfacing with an Unknown Operating System
ASCET-SE can be interfaced to an unknown operating system. This is particularly
useful when working with the ANSI-C target. The generated code accesses the OS
interface through the definitions in the os_unknown_inface.h file in the target
directory.

8.6.1 Configuration of Tasks
ASCET generates task bodies with the following structure:

- Task definitions start with the TASK keyword and the task name, e.g.,

TASK(t10ms){
- A list of processes assigned to the task in the form of function calls, e.g.,

MODULE1_IMPL_process1();
MODULE2_IMPL_process1();
MODULE2_IMPL_process2();
...

NOTE
The templating mechanism customizes the generation of OS configuration files
only. It does not modify the properties of generated C code.

(a)

(b)
ETAS ASCET-SE V6.4 | User Guide

97 | Operating System Integration
- A function call to terminate the task:

TerminateTask();
}

The supplied os_unknown_inface.h file contains the following definitions of the
TASK macro and TerminateTask().

#define TASK(x) void task_ ## x (void)
#define TerminateTask()

These must be modified to the appropriate definitions for your OS.

The following code is obtained from the C preprocessor when using the default
definitions

void task_t10ms (void)
{

MODULE1_IMPL_process1();
MODULE2_IMPL_process1();
MODULE2_IMPL_process2();

}
It is recommended that the trigger mode setting for ASCET tasks is set to either
Software or Init when interfacing with an unknown OS. Trigger modes Interrupt and
Alarm require special OS support and should not be used unless you are confident
that your OS can provide this.

8.6.2 Interfacing with the OS API
Calls to the OS use the OSEK OS naming conventions, but their implementation is
not defined. All operating system calls are mapped to empty character strings
using #define statements.

Example:

#define GetResource(x)
With this, the GetResource call in the generated code is removed by the precom-
piler, and ignored during compilation.

By changing the #define statements, function calls can be mapped onto those
provided by the your OS. e.g.:

#define GetResource(x) lock(x)

NOTE
When the ANSI-C target is used, by default no ASCET features are supported
that rely on OSEK OS functions (e.g. resources). This applies also to OSEK func-
tion calls used in the C code.
ETAS ASCET-SE V6.4 | User Guide

98 | Operating System Integration
8.7 Template Language Reference
This section describes how templates can written and provides a reference to the
OS objects to which ASCET-SE provides access.

8.7.1 Templating Basics
A template is an ASCII text file. When the template is processed by ASCET-SE V6.4,
any content that is not enclosed by template tags [% and %] is written to the out-
put temp.oil file.

The template mechanism uses the "Template Toolkit" as the templating engine
and any construct supported by the toolkit can be used in custom template. This
section provides an overview of the template language constricts used in
ASCET-SE templates. For a complete description of the capabilities of the templat-
ing engine, see https://template-toolkit.org/.

Listing A shows a template that contains no tags. When this is processed by
ASCET-SE, the resulting temp.oil file contains identical content as shown in
Listing B.

A Content of MyFile.template

CPU MyCPU {
...

};
B Content of generated temp.oil file

CPU MyCPU {
...

};

8.7.1.1 Directives
The text between template tags is processed as a directive to the templating
engine to do some kind of action. Directives can be placed anywhere in a line of
text and can be split across several lines.

Expressions
Expression directives are replaced by the result of the evaluation in the output
temp.oil file.

Expressions are typically used to evaluate the value of OS object properties pro-
vided by ASCET-SE. A complete list of objects and properties made available is pro-
vided in section 8.7.2.

The following example shows how to add a comment into the template that shows
the number of interrupt and task priority levels by reading the
numOfHardwareLevels and numOfSoftwareLevels attributes from the OS
object.

NOTE
Templates must have the extension .template to be recognized by ASCET-SE
V6.4 as such.
ETAS ASCET-SE V6.4 | User Guide

https://template-toolkit.org/

99 | Operating System Integration
// There are [% OS.numOfHardwareLevels %] interrupt
priority levels

// There are [% OS.numOfSoftwareLevels %] task priority
levels

Conditionals
The templating language provides a conditional construct. The following example
shows how to add a comment into temp.oil depending on whether or not there
are any OSEK COM messages defined.

[% IF OS.isEnabledOSEKCOM %]
// OS message objects need to appear here
[% ELSE %]
// No OS message objects need to be added
[% END %]

Iteration
The majority of OS configuration generation requires adding a configuration ele-
ment for each object declared in the ASCET-SE V6.4 project configuration.
ASCET-SE provides access to most configuration objects as a list that can be iter-
ated over, writing out the correct configuration for each object.

The following example shows how to write out the correct configuration for an
OSEK OS application mode.

[% FOREACH appmode IN AppModes %]
APPMODE [% appmode.name %];
[% END %]

Assuming that the list AppModes contains the items Normal, Diagnostic and
LimpHome, the effect of processing the directive in the this example would be this
OIL language fragment:

APPMODE Normal;
APPMODE Diagnostic;
APPMODE LimpHome;

Sub-Routines
Common operations can be placed in subroutines called BLOCKS. A block can con-
tain any template text, including other directives. Each block must be uniquely
named.

[% BLOCK Greeting %]
[% parameter %] World!
[% END %]

A block can be called from the main template using the PROCESS command. Vari-
ables that are used inside the block need to be passed in as parameters:

[% arg=’Hello’ %]
[% PROCESS Greeting parameter=arg %]

Blocks do not need to be defined before use, but they must be placed in the same
file as the calls.
ETAS ASCET-SE V6.4 | User Guide

100 | Operating System Integration
Including Other Files
External files can be included using the INCLUDE directive. The directive will add
the contents of the specified file into the output.

Path can be absolute or relative. Relative paths are relative to the location of the
template code generation path.

[% INCLUDE ’..\RelativeDir\Relative.txt’ %]
[% INCLUDE ’C:\MyFiles\Absolute.txt’ %]

Comments
Comments in a directive are marked using the # symbol. Comments can span mul-
tiple lines. The following examples show single and multi-line comments respec-
tively.

Chomping Whitespace
When a directive is placed on its own line and it evaluates to null, the templating
engine will insert a blank line into the output. This includes any control flow direc-
tives that are placed on their own lines.

This can be avoided by "chomping" whitespace using an equals sign (=) as the first
character after the open directive tag. A directive like this:

AAAA
[%= IF ConditionWhichIsFalse %]
BBBB
[%= END %]
CCCC

will result in an output like this

NOTE
The content of included files is not processed by the templating engine.

NOTE
It is recommended that path names are quoted using single quotes.

EXAMPLE

Single-line comment

[%# This is a single-line comment %]
Multi-line comment

[%# This
is a
multiple-line
comment
%]
ETAS ASCET-SE V6.4 | User Guide

101 | Operating System Integration
AAAA
CCCC

Note that blank lines have not been inserted.

8.7.2 Object Reference
The template can assess the OS configuration using pre-defined objects. The
objects generally correspond to configuration items in an OSEK OS, though there
are some non-OS objects provided to support legacy operating systems.

The following objects are accessible:

Each object has a set of properties. Object properties are accessed using the "dot"
notation, <object_name>.<property_name>, e.g. task.prio.

Object Type Description
OS Structure Contains general OS properties.
AppModes List of AppMode objects All application modes defined in

current project.
Tasks List of Task objects All tasks (both software and alarm

tasks) defined in current project.
InitTasks List of InitTask objects All init tasks.
ISRs List of ISR objects All interrupt service routines.
Alarms List of Alarm objects All alarms used to activate tasks.
Resources List of Resource objects All resources used within current

project.
Messages List of Message objects All messages used within current

project.
UsedMessages List of UsedMessage

objects
All messages used by a Task or ISR.

Processes List of Process objects All processes used within current
project.

Functions List of Function objects All functions used within current
project.

NOTE
Object and property names are case-sensitive.
ETAS ASCET-SE V6.4 | User Guide

102 | Operating System Integration
The following example shows how to iterate over a list of task objects, extracting
properties.

The following sections describe the properties available for each object.

8.7.2.1 OS
An OS object defines the global properties of the OS. Exactly one OS object is
defined.

EXAMPLE

[% FOREACH task IN Tasks %]
TASK [% task %] {

PRIORITY = [% task.prio %];
SCHEDULE = [% task.schedule %];
ACTIVATION = [% task.activation %];
...

}
[% END %]

Property Type Description
numOfCoopLevels integer Defines the number of cooperative priority

levels.
numOfHardwareLevels integer Defines the number of hardware priority lev-

els supported by the target.
tickDuration integer Defines the duration of a tick of the ASCET-SE

system counter in nanoseconds.
numOfSoftwareLevels integer Defines number of software priority levels

supported by the target. For embedded tar-
gets, this is equal to the number of tasks the
target supports (as defined in target.ini).

For experimental targets, this value is equal
to the priority of the highest priority software
task plus the number of cooperative levels.

numOfPreempLevels integer Defines number of all preemptive levels. It is
defined as
numOfHardwareLevels
+ numOfSoftwareLevels
- numOfCoopLevels

isEnabledOSEKCOM boolean Defines if OSEK-COM messages, rather than
ASCET messages, are used for inter-process
communication. It is true if OSEK COM mes-
sages are used and false otherwise. If the
value is true, then the generated OIL file
shall include message definitions.
ETAS ASCET-SE V6.4 | User Guide

103 | Operating System Integration
8.7.2.2 AppMode
The AppMode object defines an OSEK-like application mode.

8.7.2.3 Task
A Task object defines the properties of an OS task defined in the ASCET project.

Property Type Description
name string Name of the application mode.
initTask string Name of the init task to activate when the OS is

started in this application mode.

Property Type Description
name string Name of the task.
id string ASCET-SE internal identifier for the task.
prio integer Priority of current task. Higher integers

are higher priorities.
schedule NON / FULL Defines whether the task can be pre-

empted by other tasks or not.
Equivalent to the OSEK OIL property
SCHEDULE.

activation integer Defines the maximum number of queued
activation requests for the task.

autostart TRUE / FALSE Defines if the task shall be autostarted.
autostartAppModes list List of application mode names in which

the task shall be autostarted.
usedResources list List of resource names representing the

resources used by the task.
usedMessages list List of OSEK COM message names used

by the task.
usesFPU TRUE / FALSE Specifies whether the task uses floating

point registers which will need to be
saved and restored during an OS context
switch. The value is TRUE if a floating
point context save is required and FALSE
otherwise.

usedProcesses list List of ASCET processes that shall be
called by the task.

hook MONITORING /
NONE

The (non-OSEK) hooks used by the task.

deadlineMicroSec-
onds

integer The maximum allowed time in microsec-
onds between task activation and com-
pletion.

usesTerminateTask TRUE / FALSE Defines whether the task uses OSEK
TeminateTask() API.
ETAS ASCET-SE V6.4 | User Guide

104 | Operating System Integration
8.7.2.4 InitTask

8.7.2.5 ISR

Property Type Description
name string Name of the init task.
id string ASCET-SE internal identifier for the init task.
autostartAppModes list List of application mode names in which the task

shall be autostarted.
usedProcesses list List of ASCET-SE processes that are called by

the task.

Property Type Description
name string Name of current ISR.
prio integer Priority of current ISR. Priorities are tar-

get-independent and take values in the
range 1 to OS.numHWlevels. Priority 1 is
the lowest priority.

autostartAppModes list List of application mode names for which
the ISR shall be autostarted.

Not used in OSEK.
usedResources list List of resource names used by the ISR.
usedMessages list List of OSEK COM message names used

within this ISR.
usesFPU TRUE / FALSE Specifies whether the ISR uses floating

point registers which will need to be
saved and restored during an OS con-
text switch. The value is TRUE if a float-
ing point context save is required and
FALSE otherwise.

usedProcesses list List of ASCET processes called by the
ISR.

category 1 / 2 The OSEK interrupt category. ASCET-SE
V6.4 only uses Category 2 ISRs.

source string The symbolic name of the ISR as shown
in the ASCET-SE V6.4 OS editor. Sym-
bolic names use the same convention as
RTA-OSEK.
ETAS ASCET-SE V6.4 | User Guide

105 | Operating System Integration
8.7.2.6 Alarm

8.7.2.7 Resource

8.7.2.8 Message

vectorAddress string The interrupt vector address. The
address is target dependent and will be
an absolute address for non-relocatable
vector tables, or a vector location for
relocatable vector tables. Addresses
use the same convention as RTA-OSEK.

hook MONITORING /
NONE

The (non-OSEK) hooks used by the ISR.

minPeriodMicroSec-
onds

integer The minimum inter-arrival time between
two subsequent instances of this ISR in
microseconds.

This is ERCOSEK specific.

Property Type Description
name string Name of the alarm.
taskToActivate string The name of the task to be activated

when the alarm expires.
autostart TRUE / FALSE Defines whether or not the alarm shall be

autostarted.
autostartAppModes list List of application mode names in which

the alarm shall be autostarted.
delay integer The number of ticks that must elapsed

before the alarm expires for the first time.
period integer The period of the alarm in ticks.
delayMicroSeconds integer The value of the delay property in micro-

seconds instead of ticks.
periodMicroSeconds integer The value of the period property in micro-

seconds instead of ticks.

Property Type Description
name string Name of the resource.
property STANDARD /

LINKED /
INTERNAL

The type of the resource. ASCET-SE generates
only STANDARD resources.

ceilingPrio TRUE / FALSE The ceiling priority of this resource.

Property Type Description
name string Name of the message.
CDATAType string C-type used for message definition.

Property Type Description
ETAS ASCET-SE V6.4 | User Guide

106 | Operating System Integration
8.7.2.9 UsedMessage

8.7.2.10 Process

8.7.2.11 Function

Property Type Description
name string Name of the message.
sentAccessor string Accessor name used by the task to send this

message.
recvAccessor string Accessor name used by the task to receive this

message.

Property Type Description
name string Name of the process.
usedRessources list List of resource names used by the process.
usedFunctions list List of function names called from the pro-

cess.
usedMessages list List of OSEK COM messages used by the pro-

cess.
usesFPU TRUE / FALSE Specifies whether the process uses floating

point registers which will need to be saved
and restored during an OS context switch.
The value is TRUE if a floating point context
save is required and FALSE otherwise.

Property Type Description
name string Name of the function.
usedRessources list List of resource names used by the function.
usedFunctions list List of function names called from this func-

tion (i.e. functions that are nested inside the
current function).

usesFPU TRUE / FALSE Specifies whether the function uses floating
point registers which will need to be saved
and restored during an OS context switch.
The value is TRUE if a floating point context
save is required and FALSE otherwise.
ETAS ASCET-SE V6.4 | User Guide

107 | Measurement and Calibration with ASAM-MCD-2MC
9 Measurement and Calibration with ASAM-MCD-2MC
ASCET provides support for measurement and calibration by generating ASAM-
MCD-2MC (A2L) files. Generated files rely on a set of statically defined configura-
tion files that are supplied with ASCET. This chapter describes the content of the
static files and then the generation of the ASAM-MCD-2MC data.

9.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File)
The MOD_PAR section of the ASAM-MCD-2MC file (see ASAM-MCD-2MC specifi-
cation) can be defined by the user in the prj_def.a2l configuration file, which is
located in the directory of the ASCET-SE installation (.\target\
trg_<targetname>). At delivery of ASCET-SE the file contents are as follows:

VERSION "000"
ADDR_EPK 0x0
EPK ""
SUPPLIER "xxx"
CUSTOMER "xxx"
CUSTOMER_NO "000"
USER "xxx"
PHONE_NO "000"
ECU "NO_ECU"
CPU_TYPE ""

Edit the file to suit your requirements.

9.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File)
The data file mem_lay.a2l is used to define the memory layout of the controller in
ASAM-MCD-2MC format (i.e. MEMORY_LAYOUT, compare with the ASAM-MCD-
2MC standard for syntax and semantics). Its content is inserted unchanged in the
generated ASAM-MCD-2MC data file. This file is located in the target directory
(.\target\trg_<targetname>); it modified to match the controller hardware
and the memory layout defined in the locator invocation file.

NOTE
The alignment definitions in ASAM-MCD-2MC are determined automatically by
ASCET-SE. The formerly necessary align.a2l file is obsolete.

NOTE
This file is provided as an example only. You must edit the file and adjust it to your
target system.
ETAS ASCET-SE V6.4 | User Guide

108 | Measurement and Calibration with ASAM-MCD-2MC
9.3 ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l
and if_data_template.a2l)
The file aml_template.a2l contains type descriptions of global configuration
BLOBs—e.g., IF_DATA, TP_BLOB—for the ETK.

The file if_data_template.a2l contains global configuration BLOBs for the
ETK (TP and QP BLOB) in ASAM-MCD-2MC format.

Both files are located in the target directory1). The syntax is taken from the
description of ASAM-MCD-2MC standards, the semantics from the documenta-
tion of the respective application system.

Both files are copied into the generated ASAM-MCD-2MC file. To generate a useful
result, you must make sure that the IF_DATA configuration in the
if_data_template.a2l file matches the type descriptions in
aml_template.a2l. For that purpose, you can either update the content of the
files in the target directory or replace the content with a reference (containing
complete path and file name) to a suitable file stored elsewhere.

9.4 Generation of an ASAM-MCD-2MC Description File
ASCET-SE provides the possibility to generate project-specific ASAM-MCD-2MC
description files that can be used for calibration using an appropriate calibration
tool (e.g., INCA). For this purpose, a so-called Virtual Address Table (VAT) is gener-
ated by ASCET-SE on demand as a part of the project-specific C file.

To generate a Virtual Address Table

To generate a Virtual Address Table as a prerequisite for ASAM-MCD-2MC gener-
ation, proceed as follows.

1. In the project editor, click the Project Properties button.

The "Project Properties" window opens.

2. In the "Production Code" node, activate the Generate Map File option.

3. Click OK to close the "Project Properties" window.

4. In the project editor, select Build > Build or Build > Rebuild All to generate
code including the VAT

If you select Build > Generate Code, you generate only C code that
includes the VAT.

1) i.e. .\target\trg_<targetname>

NOTE
The files aml_template.a2l and if_data_template.a2l contain only
examples. To adopt the description to your application hardware you have to
edit or replace the file content.

NOTE
For the Additional Programmer use case, it is important to ensure that all
code is consistent and free of VATs.
ETAS ASCET-SE V6.4 | User Guide

109 | Measurement and Calibration with ASAM-MCD-2MC
The VAT consists of various C structures. It mainly contains the names of all quan-
tities of the generated code that are part of the ASAM-MCD-2MC description, as
well as pointers to these quantities.

After compiling and linking a project containing a VAT, the resulting hex file
(temp_vat.*, the extension depends on target controller and compiler), as well
as all other result files, contains all address information needed for ASAM-MCD-
2MC generation.

By means of a special hex-file reader, this address information is extracted from
the hex file. Additional information about element sizes, alignment, byte order, etc.
is read from the Virtual Address Table as well. An intermediate file called etas.map
is generated that contains the names and the memory addresses of all elements
as ASCII text.

As the VAT is not intended to be part of the program running on the ECU, another
hex file (temp.*) and the respective result files containing no VAT are linked.

To generate an ASAM-MCD-2MC file

1. In the project editor, select Tools > ASAM-2MC > Write to generate the
ASAM-MCD-2MC file.

The "Write ASAM-2MC To:" window opens.

2. In that window, enter the desired file name and select the specific storage
directory.

3. Click Save.

The ASAM-MCD-2MC file is saved to the selected directory, with the name
you entered.

The ASAM-MCD-2MC file contains a SYMBOL_LINK entry for each element
described in a MEASUREMENT, CHARACTERISTIC, or AXIS_PTS block. This entry
provides a mapping between the label used in the ASCET specification and the
symbols in the generated C code.

The code example shows a MEASUREMENT block with SYMBOL_LINK. Comments
have been added manually.

/begin MEASUREMENT limitInt.SWC_BDE /* ASCET label */
""
SWORD
ident
1
100
-32768.0

NOTE
If the ASAM-MCD-2MC file is to be stored, be careful when placing in the
directory .\cgen\. The files in this directory may be deleted upon exiting
ASCET, depending on the settings in the Options window (see the ASCET
online help).
ETAS ASCET-SE V6.4 | User Guide

110 | Measurement and Calibration with ASAM-MCD-2MC
32767.0
SYMBOL_LINK "SWC_BDE_RAM.limitInt" /* C symbol name */

0x0 /* offset */
/begin FUNCTION_LIST Project
/end FUNCTION_LIST

/end CHARACTERISTIC
Fig. 9-1 MEASUREMENT block with SYMBOL_LINK entry

The offset parameter in the SYMBOL_LINK entry defines the offset of the element
defined in the A2L file relative to the address of the corresponding symbol of the
linker map file.

The diagram below shows the code generation process with and without ASAM-
MCD-2MC generation.

Fig. 9-2 Code generation with and without ASAM-MCD-2MC and VAT genera-
tion

*.h, *.c

executable
with VAT

temp.oil

*.h, *.c
RTA-OSEKCode Generation

ASCET project

Compiler/Linkervirtual address
table file

Hex File Reader

etas.map

ASAM-MCD-
2MC Generation

ASAM-MCD-
2MC file

executable file

conf.oil

... generate Map file = true
ETAS ASCET-SE V6.4 | User Guide

111 | Measurement and Calibration with ASAM-MCD-2MC
You must ensure that the Virtual Address Table is mapped to a memory section
that is not part of the ECU’s physical memory. For details, refer to section 2.3.5
"Memory Class Configuration". If the VAT is located in the ECU’s physical memory,
then addresses in the ASAP2-MCD-2MC file may not be correct (and the mapped
section of memory will be wasted).

9.5 Suppressing Exported Elements and Parameters
ASCET allows the generation of ASAP2-MCD-2MC information for elements and
parameters with scope Exported to be suppressed. This allows you to provide the
definitions of these elements outside of ASCET (for example, with 3rd party tool-
ing). This is configured in the Project Properties.

The behavior of suppression differs between ASCET objects (modules, classes
and prototype classes) as shown in the following table. A plus (+) indicates that
the element or parameter is generated in the A2L file. A minus (-) indicates that the
element or parameter is not generated in the A2L file.

NOTE
In order not to waste ECU memory, it is recommended that the Virtual Address
Table is located outside the physical ECU memory.
ETAS ASCET-SE V6.4 | User Guide

112 | M
easurem

ent and C
alibration w

ith ASAM
-M

C
D

-2M
C

ETAS ASC
ET-SE V6.4 | U

ser G
uide

ses Prototype Classes

Exported
Parameters

Exported
Elements

Exported
Parameters

+ - -
+ - -
- - -
- - -
Suppress exported Modules Clas

Parameters Elements Exported
Elements

Exported
Parameters

Exported
Elements

Not set Not set + + +
Not set Set + + -
Set Not set + - +
Set Set + - -

113 | Measurement and Calibration with ASAM-MCD-2MC
9.6 Working with SERAP
SERAP is a serial calibration concept that uses 2 pages of calibration parameters
as follows:

A A reference page that is located in non-writable memory (ROM, FLASH) as
usual for parameters. This page holds the default values configured by the
application

B A working page that is located in writable memory (RAM). This page is used
at calibration time to modify values.

By switching back and forth between the reference and the working page, the
impact of parameter modifications can be easily observed. This document
assumes that you know how to use and deploy SERAP-based calibration in an
application. Additional information on the correct use of SERAP is outside the
scope of this document.

ASCET-SE can generate the data structures and code required to support SERAP
calibration by:

A Generating parameter data as two tables, one for the reference page and
one for the working page. The tables have identical structure and values.

B Modifying all parameter access in the generated code to include an indirec-
tion that allows selection of the reference or working page as appropriate at
runtime.

Each ASCET method that needs to where to find its associated parameters within
the table (conceptually this is the offset into the table). ASCET provides two alter-
native models of how methods find the offset that allow you to make a space/time
trade-off when using SERAP.

A Embedded SERAP: ASCET embeds (hence "embedded SERAP") the pointer
to the SERAP data structure in the component data structure.

B Non-Embedded SERAP: the offset is passed as a parameter to each method
that needs parameter access

SERAP is enabled by setting the serap option in codegen_ecco.ini to true:

serap = true
Embedded SERAP is generated by default. To use non-embedded SERAP, the
serapEmbedded option in codegen_ecco.ini must be set to false:

serapEmbedded = false
The serapEmbedded option has no effect unless the serap option is set to true.

Additional information about enabling SERAP functionality during the ASCET build
process is provided in proj_def.h.
ETAS ASCET-SE V6.4 | User Guide

114 | Integration with External Code
10 Integration with External Code
ASCET-SE provides powerful features that allow the combination of ASCET-gen-
erated code with external C code (either written by hand or generated by third-
party tools). There are two main use cases:

- ASCET as an integration platform, supporting the complete make process
from the model to the executable file and the ASAM-MCD-2MC description.

- The use of ASCET-generated code in an external make tool chain provided
by the user.

This chapter describes the features that ASCET and ASCET-SE offer to support
these use cases, in particular, the following features:

- User defined C- and H-files can easily be included in the ASCET make tool
chain.

- Global declarations of functions, variables, and parameters provided out-
side ASCET can be easily accessed from the ASCET model. For this purpose,
a special "prototype" model element has been introduced, comparable with
a C function prototype.

- The optimizations concerning messages and method interfaces (signa-
tures) can be configured by the user to ensure a stable interface for exter-
nal code.

- Special header files are provided by the code generation that can be used as
interfaces between ASCET and the user defined files.

The following sections describe some of the possibilities available.

10.1 Calling C Functions from an ASCET Model
ASCET offers different possibilities to call external functions from an ASCET
model, which are described in this chapter.

10.1.1 Use of Prototypes
ASCET-SE provides a special interface to use C code functions, parameters and
variables that are defined outside the ASCET environment (e. g. externally pro-
vided software). For this purpose, the ASCET implementation editor for classes
provides the user the option to generate a "Prototype". Like a C function proto-
type, an ASCET prototype implementation provides the interface description for
external C code. Similar to the use of service routines, this option can be set in the
implementation editor of a class. See section 4.2.3 "Prototype Implementa-
tions"for details on the usage of the feature and the properties of the generated
code.

Only extern declarations are generated for a class implemented as prototype. The
code generated for a prototype contains neither variable and parameter defini-
tions nor method definitions. The environment of the prototype element modeled
in ASCET, however, refers to the prototype by means of extern declarations, wher-
ever methods or global variables and parameters of the prototype are used. This
way, it is the user’s task to provide the global variables and parameters expected
by the ASCET model in the external C code.
ETAS ASCET-SE V6.4 | User Guide

115 | Integration with External Code
The following example shows how to call a function using a global variable from an
ASCET model. Assume a file with the following content:

#include ".\include\a_std_type.h"

sint16 i;

void my_calc(void)
{

i++;
}

To call the function my_calc from ASCET, the user can provide a class in the
ASCET model that defines the global variable i and a method definition my_calc.
The following example shows a possible implementation.

By setting the prototype flag in the implementation editor of the class, the user
can specify that the actual content specified in the BDE shall not be used for code
generation.

Instead, the code generated for the environment of the class in ASCET contains
only the interfaces to the class, e. g.

#define _Class
#define _i i

#ifndef NO_DECLARE_i
ETAS ASCET-SE V6.4 | User Guide

116 | Integration with External Code
extern sint16 i;
#endif

extern void CLASS_IMPL_my_calc (void);
...
void MODULE_IMPL_process (void)
{

CLASS_IMPL_my_calc ();
}

As the example shows, the names of the "prototype" methods are still generated
according to the ASCET naming convention (e.g.,
<Class>_<Impl>_<Methodname>, see “Data Structures and Initialization for
Complex (User-Defined) Objects” on page 182). To adapt the interfaces of the
external code and the ASCET-generated code, an include file named proj_def.h
is provided in the target directory of the ASCET-SE installation. This file is included
in the ASCET generated code by default and offers the user the possibility to map
the ASCET names to external code names using preprocessor directives
("#define"). In the example, the following adaptation of proj_def.h is suitable:

#define CLASS_IMPL_my_calc() my_calc()
For prototypes, the extern declarations of global variables and parameters are
enclosed by #ifndef preprocessor directives (see code example above). This
allows you to provide your own extern declarations if required by #define NO_-
DECLARE_<variablename>.

For example, assume that the ASCET variable i needs to be mapped to your exter-
nally declared variable i_usr. The respective extern declaration could look as fol-
lows:

#define NO_DECLARE_i
#define i i_usr
extern uint16 i_usr;

Again, this code can be provided in proj_def.h.

NOTE
Pay attention: all of these changes modify ASCET code generation. You must
provide adequate macro definitions for elements and methods or own declara-
tions for exported elements.

You assume full responsibility of the consequences for your external code, as
well as for the correct inter-operation with ASCET-generated code.
Problems may arise with respect to the ASAM-MCD-2MC generation (see below)
and similar. Note that the interfaces to ASCET-generated code may be changed
in future product versions.
ETAS ASCET-SE V6.4 | User Guide

117 | Integration with External Code
ASCET does not generate A2L file entries for exported parameters or exported
elements of prototype classes. If entries are required, then you must provide them
externally and merge them with ASCET-generated A2L files outside of the ASCET
development process.

10.1.2 Invocation by C Code Specified in ASCET
As well known from previous versions, of course ASCET V6.4 also offers the possi-
bility to specify C code in internal or external editors. C functions specified outside
ASCET can be called by this code using extern declarations.

10.1.3 Including C Source Files in the ASCET Make Process
To include C source files in the make process controlled by ASCET, ASCET-SE
allows the definition of a list of file names in project_settings.mk. In addition, a
list of path names can be defined to specify where ASCET-SE searches for the
defined files.

See section 5.6 "Customizing the Build Process" for further details.

10.2 Calling ASCET-Generated Functions from External C Code
ASCET generates a function_declarations.h file, containing extern declara-
tions of all functions of the ASCET model. This file can be included in the user soft-
ware to easily access ASCET-defined methods or processes in external code.

For classes implemented as prototypes, these extern declarations can be disabled
by means of the preprocessor switch. The switch is named DECLARE_PROTO-
TYPE_METHODS, as the following example (extract from function_declara-
tions.h) shows:

#ifdef DECLARE_PROTOTYPE_METHODS
extern void CLASS_IMPL_my_calc (void);
#endif

10.3 Using External Global Variables/Parameters in ASCET Code
As described in section 10.1.1, global variables and parameters can be defined in
external C code and accessed by ASCET-SE generated code model by means of a
prototype implementation. The proj_def.h file, which is provided by the installa-
tion in the target-specific directory, can be used to map the external code name
space to ASCET’s symbolic names by means of preprocessor directives
("#define").

In addition, ASCET generates a variable_declarations.h file, containing
extern declarations of all global variables of the ASCET model. This file can be
included in the user software to easily access ASCET model elements from the
external code.

For classes implemented as prototypes, the extern declarations are configurable
by means of special preprocessor directives, as the subsequent example shows:

#ifdef DECLARE_PROTOTYPE_ELEMENTS
#ifndef NO_DECLARE_i
ETAS ASCET-SE V6.4 | User Guide

118 | Integration with External Code
extern sint16 i;
/* min=-32768.0, max=32767.0, ident, limit=yes */
#endif
#endif

The switch DECLARE_PROTOTYPE_ELEMENTS can be used to globally disable the
extern declarations of all prototype elements in the file variable_declara-
tions.h. Individual switches are provided for single variables and parameters
exported by prototypes, as described in section 10.1.1 "Use of Prototypes".

10.4 Generating Code for Use with External Data Structures
By default, ASCET-SE generates alldata structures it needs so that a project is
always internally consistent. However, if you have many projects that use the
same logical model and differ only in the data values used, then it is desirable to
generate the code in ASCET and supply the data sources externally (usually with a
3rd party tool).

Such a workflow can offer processes benefits, for example the code can be veri-
fied once and re-used without the risk of it being "touched" with each minor data
change.

ASCET-SE provides support for this workflow by allowing the generation of ASCET
data structures to be disabled.

Data structure generation is configured in the "Project Properties" window, "Pro-
duction Code" node. The following modes of operation are available:

A Generate for every component.

B Generate for no components.

C Use component settings. By default, components are configured for data
structure generation. Component settings are overridden by the other two
options. This mode allows you to generate some data structures using
ASCET and provide other by external code.

NOTE
It is expected that users working with externally generated data structures are
also building their systems outside of ASCET (i.e. you are not using ASCET as an
integration platform).
ETAS ASCET-SE V6.4 | User Guide

119 | Integration with External Code
Fig. 10-1 shows a configuration where data structure generation has been disabled
for all components.

Fig. 10-1 Disabling data structure generation for all components

For the Use Component Settings mode, each component implementation can
specify whether or not data structures are generate as shown in Fig. 10-2.

Fig. 10-2 Selecting data structure generation on a per-component basis
ETAS ASCET-SE V6.4 | User Guide

120 | Integration with External Code
10.5 Configuring the ASCET Optimization Features
When using ASCET with external code it is important that the interface remains
stable. ASCET’s default optimization strategies are designed to produce the
smallest and fastest code and, consequently, may result in changes to the exter-
nal interface when changes are made to the model.

The default optimizations that can have this side-effect can be deactivated to
guarantee a stable interface.

10.5.1 Configuring Method Calls
For methods of classes which can be multiply instantiated, ASCET passes a
pointer to the instance’s data structures as the first element of the method argu-
ment list. This is called the self pointer in ASCET (and is analogous to the this
pointer in C++) (see section 14.3.3).

For methods of classes that are only instantiated once, this pointer is not needed
as there is only one data instance and that can be accessed directly without ambi-
guity. Optimizing away the self pointer increases the run-time performance and
reduces the stack space requirements on ASCET-SE generated code. This optimi-
zation is done by default during code generation.

However, combining ASCET-generated code with external C code requires a soft-
ware interface that is widely invariant to changes of the ASCET model. The optimi-
zation of single-instance classes can therefore be switched off to avoid
unexpected changes of calling conventions for methods due to model modifica-
tions. The single method optimization can be deactivated class-wise in the "Set-
tings" tab of the class implementation editor, and target-wise in the ASCET
options window, "Targets\<your target>\Build" node..
ETAS ASCET-SE V6.4 | User Guide

121 | Integration with External Code
If the target option Force no self pointer is activated for a particular target, the
class implementation option Optimize method calls is irrelevant for all classes
whose parent projects use that target. In this case, the self pointer will always be
generated, no matter if the class is multiply instantiated or not.

If the target option Force no self pointer is deactivated for a particular target,
deactivate Optimize method calls to ensure that the self pointer is generated.

If you are certain that a class will only be single instantiated in a model, then gener-
ation of a method interface without the self-pointer can be re-enabled by deacti-
vating the target option Force no self pointer and re-activating the Optimize
method calls option.

10.5.2 Configuring Message Copies
ASCET uses the configured OS task types and priorities to generate message cop-
ies only where needed to ensure data consistency (see section 14.4.3 on
page 191). However, this optimization relies on ASCET knowing about all data
accesses at code generation time.

ASCET cannot know about any data access of scheduling issues that are defined
outside of the ASCET model. To prevent data consistency problems when using
external OS configuration or external C code, ASCET-SE allows the generation and
the use of message copies to be defined. See section 14.4.3 "Messages" for
details.

NOTE
When calling ASCET-generated methods or using ASCET-generated variable
and parameter definitions from external C code, you must observe the data type
definitions generated by ASCET carefully. It is not recommended to use types
other than those generated by ASCET. This is especially true for the self pointer.

The function interfaces provided by the ASCET- generated code might change in
successor versions of the tool.
ETAS ASCET-SE V6.4 | User Guide

122 | Integration with External Code
10.6 Working with Variant Parameters
When parameters are configured in ASCET, it is possible to set the Variants attri-
bute in the Properties editor of a parameter to control whether access to multiple
variants of the parameter is available.

When the option is enabled, ASCET assumes that all parameters with the variant
attribute set are grouped into a single memory section. This set of parameters
defines a "variant". Furthermore, ASCET assumes that multiple sets of parameters,
each set representing a specific variant, exist and generates code to access
parameters using an indirection (through an externally defined offset).

This feature is EXPERIMENTAL in ASCET. Please contact ETAS for further details on
its use.
ETAS ASCET-SE V6.4 | User Guide

123 | Modeling Hints
11 Modeling Hints
This section provides some general guidelines for structuring models and specify-
ing implementations with an emphasis on efficient and numerically correct imple-
mentation code.

The requirements to the model are often contradictory. An optimization of the
memory requirement can be achieved at the expense of execution time and accu-
racy. If execution time is optimized, increased memory requirement and a worse
readability of the code may be the consequences. Finally, high accuracy is con-
nected with increased memory requirement as well.

11.1 Implementations
The different requirements have to be considered during implementation. The
implementation of single entities thus depends on

- the physically possible value range,

- the required accuracy,

- the properties of hardware and sensors.

11.1.1 Definition of Conversion Formulas
Offset: Conversion formulas should have an offset of zero. A nonzero offset has
little advantage, and results in additional code for mathematical operations. Possi-
ble exceptions include:

- Entities which already have an offset represented in the system, e.g.,
results from sensors.

- Arrays, matrices, distributions, or characteristic lines and maps, where a
more compact representation (i.e. with smaller word length) is enabled with
an offset, to save memory space.

For example: Assume a temperature from -50 to +150° C and a resolution of 1° C.
Without an offset, a word length of 16 bits is required; with an offset, 8 bits suffice.
One byte per quantity (e.g., an array element) is saved. Here, one should weigh
between memory requirements and run-time/code overhead.

Usually, using an offset for a single value to save memory space is not justified.

Scale values: The approximate range of a scale value depends on the physics of
the overall system. Such numerical requirements must be determined theoreti-
cally or experimentally. However, within the given order of magnitude, one has
many possibilities when choosing the actual scale value.

- Scale values should be simple, rational numbers. For example, fractions
should have simple coefficients that are small numbers, powers of two or
ten, and not larger prime numbers, e.g., 8/3, 256/100, 50. In general, fractions
(e.g., 3/16) should be preferred over decimals (e.g., 0.1875) when entering a
scale value. The following rules should be observed:

- Scale values of the form 2K/n are best suitable for unsigned results, and
2K-1/n for signed results. K is the corresponding word length in bits, and n is
a suitable number slightly greater than the maximum representable value.
This assures usage of nearly the entire value range.
ETAS ASCET-SE V6.4 | User Guide

124 | Modeling Hints
- Simple coefficients should have priority over using the entire available range
of values.

Example: The given range of values is [0,9.1]. To implement in 8 bits, a simple
scale value of 28/10=25.6 should be used. The resulting quantization and inter-
val are 0.039 and [0,9.96], respectively.

If, in this example, the aim would be the highest possible precision (for 8 bits), the
scale value would be 255/9.1=28.02=2550/91. This has only an insignificantly
higher resolution of 0.036, and hence no visible numerical improvement in the
control algorithm. On the other hand, considerable run-time and loss of precision
are probable if users must convert between this complex scale value and a differ-
ent one in the generated code. For instance, if a conversion of this unfavorable
scale value into the above-mentioned simple scale value is necessary, the unfa-
vorable rational rescaling factor (256/10)/(5824/6375)=2550/91 emerges,
which causes numerical inaccuracies and requires a 32-bit intermediate result.

To view a formula

1. In the project editor, you can view the conversion formulas by clicking on the
"Formulas" tab.

2. View a formula by double-clicking on it.

The advantage of using scale values that are a power of two has already been
demonstrated in several examples. Re-scale operations are simply reduced to bit
shifts. Therefore, these should be used whenever possible.

11.1.2 Definition of the Value Intervals
When specifying value intervals, their use by the code generator to transform
mathematical expressions must be considered. Thus, two goals are important
when creating the value interval:

- Avoid overflow protection (i.e. right shifts) which results in the unnecessary
loss of numerical precision.

- Avoid clippings which result in additional overhead in the code.

Hence, only the range of values that are physically relevant should be selected for
an implementation.

Example: { A ∈ [0.. 40] } + {B ∈ [0,10]} = C
If the same value interval is chosen for A and for B, i.e. Aphys[0,40], Bphys[0,40],
a scale S = 0.25 for all quantities will result in the following implementations:

Auint8[0, 160], Buint8[0, 160], Cuint16 [0, 320]
The result uses the double bit length as the two addends.

If, however, the interval Bphys[0, 10] is chosen, the same bit length is sufficient
for all three quantities:

Auint8[0, 160], Buint8[0, 40], Cuint8 [0, 200]
Therefore, the common practice of using the default value range for a given imple-
mentation type (e.g. [-128, 127] for int8), is never recommended, especially
if this default exceeds the relevant range by a factor of 2 or more.
ETAS ASCET-SE V6.4 | User Guide

125 | Modeling Hints
11.1.3 Defining Implementations for Related Variables
Conversion formulas and implementation types for variables (or method argu-
ments) assigned to each other or connected mathematically should, if possible,
be chosen to match each other. The following are examples of this concept:

- Choose offset 0 if possible.

EXAMPLE

Definition of formula and interval for a throttle position measurement

Regard the following example.

The throttle position measurement is converted from voltage to degrees using a
characteristic line.

For the Interpolation node distribution ("X Distribution" tab), the implementation
editor of Meas_v2deg looks as follows:

Here, the throttle position measurement is the difference of two signals that are
both 0 – 5 volts. Each signal is converted using a 10-bit A/D converter. As a result,
the finest resolution of this signal is 5 V/210 bits, giving the scale value of
1024/5. The interval, [-5,5], results from the subtraction of the two signals.
ETAS ASCET-SE V6.4 | User Guide

126 | Modeling Hints
- For addition or subtraction, variables should be assigned the same, or at
least similar, scale values.

Scale values are called "similar" if their quotient is a power of two, a small
integer number, or a simple fraction. The first case is preferred for efficiency,
whereas the simple fraction is the least favorable solution.

- For multiplications and divisions the scale should ideally be the product or
the quotient of the operands, respectively. The result type has to be
extended if necessary.

- For more complex classes, the following scales are recommended:

The input arguments and the quantities assigned to them have the same
scales, as well as the return value and the value it is assigned to. The scale of
the return value depends on the scales of the arguments and the internal
elements of the class.

- Assignments:

• Re-scaling should be avoided in the model, as it involves additional multi-
plications and divisions. These result in additional run time and memory
consumption.

For the generated code in the above example, e.g., the generated code
for different scales shows the following differences:

Sd = Se (e = d);
Sd=1/5, Se=1/3 (e = ((d*3)/5);

• Quantizations with a fix base (mantissa) allow re-scaling by means of
one single multiplication or division.

Sd=10-1, Se=10-2 (e = (d*10));
• Quantizations with a base of 2 allow re-scaling by shifts:

Sd=2-2, Se=2-1 (e = (d>>1));
- By using dependent parameters,

Sa = Sb = Sc
(S: scale factor)

Sa = Sb * Sc Sa = Sb / Sc

Sa = Sin1; Sb = Sin2; Sc = Scalc
Sout = f(Sin1,Sin2,Sp_int)

(p_int: internal quantities)
ETAS ASCET-SE V6.4 | User Guide

127 | Modeling Hints
• re-scaling can be avoided, e. g. for comparators or concatenated calcu-
lations with parameters;

• "odd scale factors" can be cancelled, e. g. when converting different
units;

• run time and code can be optimized. By using virtual parameters, mem-
ory can be saved.

Disadvantageous is, however, the use of an additional parameter.

- Internal intermediate memories in which results are accumulated (i.e., in
integrators, filters, low-passes, etc.) should be represented with at least
twice the word size of the accumulated result to assure precision.

11.1.4 Multiplication of Large Results
If two quantities with large intervals are multiplied, numerical precision may be lost.
This happens when the code generator avoids a possible overflow via right shifts.

Example 1: Compute X*Y, where X and Y both have implementation type
uint32 and use the full 32-bit range. To avoid overflows, the following code is
generated:

(X>>16)*(Y>>16)
This may be numerically inaccurate; if, e.g., X or Y<65536, the result is 0.

The problem is particularly critical when several multiplication operations are exe-
cuted in a sequence.

Example 2: Consider an integrator that computes X*K*DT, where X (input), K
(integration constant) and DT (time difference) have type uint16 and use the
full 16-bit range. Assuming the intermediate result is stored in a 32-bit memory, a
total of 16 right shifts are needed. This leads, e.g., to the following:

((X>>5)*(K>>5))*(DT>>6)
However, a small value for any of the three variables will yield zero, causing the
integrator to stay at zero. This is entirely a result of the automatic overflow protec-
tion.

To avoid such problems, the following rules should be adhered to during the mod-
eling stage:

- Do not represent operands for multiplication more precisely than required,
i.e. with smallest possible word size.

NOTE
Of course these effects are not special problems caused by the code generator,
but common problems occurring with quantized arithmetic with limited word
size. The effects occur in the same way for manual coding.

Sin1=1/10

SParameter=1/16 SParameter_dep=1/10

Sin1=1/10
ETAS ASCET-SE V6.4 | User Guide

128 | Modeling Hints
- Reduce the operand’s value range to that which is physically relevant only.
For example, the time difference, DT, in the integrator can be represented
in 16 bits with a quantization of 10 µs. This gives a range to 655 ms, which
should suffice for a typical vehicle application.

- If several multiplication operations must be performed in sequence, the
quantizations and the interval have to be carefully selected using the above
criteria. This portion of the model should be tested in detail. If floating point
arithmetic is possible for the target, it should be considered.

- For integrators, low-pass and similar filters, expressions of the following
type occur:

in * k * dT
If this computation runs in a static time frame, the variable dT should be
replaced with a fixed value which is included (with the aid of the conversion
formula) in the constant k, i.e.

in * (k * dTfix) = in * kfix
In doing so, the multiplication sequence and the possible inaccuracy arising
from the sequence are avoided.

To study the effects of dT in the PID derivative term calculation

1. Look at the derivative term calculation in the PIDT1 controller (see
section 13.3.9 on page 148).

To study the effects of dT, we will focus on the calculation of Temp2.

The calculation of Temp2 consists of dT*t3, where t3 is the expression assigned
to D_term also discussed in “To optimize the derivative term calculation” on
page 150. The implementations are dT=214*dt ∈[0,0.1], and for the interme-
diate result t3, a scale of 213 and interval [-42000,42000] (see example on
page 150).

- The multiplication dT*t3 results in an overflow of 9 bits (i.e., 7 right-shifts
for t3 and 2 for dT).

- Since this calculation occurs in a static time frame, dT can be represented
with a literal or parameter. With a parameter, a much smaller interval can be
specified to reduce the overflow.

2. Replace dT with the parameter delta as shown below. Assign to it a value of
0.001, a scale value of 214, and an interval of [0,0.001].

3. Generate new code for the example and examine the changes.
ETAS ASCET-SE V6.4 | User Guide

129 | Modeling Hints
Because of the smaller interval, dT*t3 results in an overflow of only 2 bits, even
though the time step is represented with the same precision. Using a literal in this
case also produces better results than using dT, but not as good as those
obtained when using a parameter. The reason comes from the accuracy criteria for
literals (see section 13.3.7 on page 147). This criterion produces the representation
of a literal with a relative error of less than 0.1%. For 0.001, this requires a scale
value of 217, and therefore an overflow of 5 bits occurs.

11.2 Model Structure
This section contains considerations of the optimal design of ASCET models with
respect to efficient code generation.

11.2.1 Division
Division leads to many numerical problems which have already been described
elsewhere, and should be avoided, if possible. This can be achieved by, e.g.,

- introducing dependent parameters with the reciprocal value,

- temporarily storing the result of a division and reusing it.

The following rules concerning division should be adhered to:

- Divisions within mathematical expressions should be performed as late as
possible.

- In integer representation, the numerator should always be considerably
larger than the denominator (double word size if possible).

- The denominator should not use the highest valid word size. For example, if
a word length of 32 bits is valid, the denominator should have no more than
16 bits.

- The denominator interval must be restricted from 0.
ETAS ASCET-SE V6.4 | User Guide

130 | Modeling Hints
11.2.2 Multiple Calculations
Multiple calculations like the ones shown below should be avoided, where possi-
ble. They require additional runtime and can cause wrong results, e.g. when used
in timers or integrators.

The generated code (ANSI-C target, Object Based Controller Physical) looks as
follows; multiple calculations are shown in bold.

_out_Mult = ((_variable_1 * _variable_2)
 + _parameter) * 12.2F;

_out_Log = ((_variable_1 * _variable_2)
 + _parameter) > 3.5F;

_out_Add = (_variable_1 * _variable_2)
+ _parameter + _variable_3;

There are several possibilities to avoid multiple calculations:

A By using common subexpression elimination (see also section 5.5.4 on
page 74).

The visible difference to the original model is in the generated code. The
common subexpression is shown in bold.

real32 _t1real32;
_t1real32 = (_variable_1 * _variable_2) + _parameter;
_out_Mult = _t1real32 * 12.2F;
_out_Log = _t1real32 > 3.5F;
_out_Add = _t1real32 + _variable_3;
ETAS ASCET-SE V6.4 | User Guide

131 | Modeling Hints
B By inserting temporary variables.

On the one hand, this realization allows quick access to the intermediate
result without additional memory consumption. On the other hand, the tem-
porary variable can neither be implemented nor measured with a calibration
system. It cannot be used in another context and the sequencing cannot be
influenced. Stack management becomes more expensive.

C By inserting process-/method-local variables.

This way the intermediate result can be accessed quickly. The method-/
process-local variable can be implemented and multiply used in different
contexts, and the sequencing can be specified. Like the temporary variable,
the method-local variable can neither be measured nor be assigned a mem-
ory class. Additional expenses for stack management are necessary.

D By inserting variables.

A variable can be implemented and measured. It has a unique memory loca-
tion in the ECU and can thus be assigned a memory class. It can be multiply
used, and is simultaneously available in different methods or processes. The
sequencing information can be explicitly specified. On the other hand, intro-
ducing a variable causes additional permanent use of RAM.

NOTE
Temporary variables in block diagrams are deprecated; they will be
removed in a future ASCET version.
ETAS ASCET-SE V6.4 | User Guide

132 | Modeling Hints
E If a send message is used as an intermediate result, it can be changed to a
send&receive message.

This does not cause additional RAM consumption. Only the RAM amount for
the already existing message is needed. The element can be implemented
and measured, it has a unique address in the ECU and can be assigned a
memory class. It is simultaneously available in different processes. However,
this approach is restricted to a limited number of cases, the more so since
the sequencing has to be kept in mind for the whole model.

11.2.3 Concatenated Calculations
Intermediate variables (method-/process-local variables) should be inserted into
long concatenated calculations. Otherwise, the overflow handling (i.e. right shifts)
for the temporary intermediate results generated by the code generation can
cause a loss of precision.

Introducing intermediate variables allows the specification of the desired preci-
sion for partial results.
ETAS ASCET-SE V6.4 | User Guide

133 | Modeling Hints
11.2.4 Logical Operators
The code generator maps the inputs of a logical operator in descending order to a
catenation from the left to the right.

During runtime, the code is processed from left to the right as well; if the result can
be determined before the calculation is complete (e.g. Express_1 = false), the
evaluation is interrupted. It is thus recommended to arrange the inputs of logical
operators top down in the order of calculation time and probability. For the AND-
operator,

- expressions with short calculation time,

- unlikely expressions;

for the OR-operator,

- expressions with short calculation time,

- likely expressions

are specially recommended for the upper inputs of the operator.

11.2.5 Classes and Modules
When using classes, keep the following in mind:

- A dead beat response (z-1) can be replaced by a single variable (mind the
sequencing!).

- Unnecessary nesting of classes causes nested function calls and additional
consumption of stack and run time. It should be avoided.

- If multiple instances of a class are used, all instances use the same program
code, but each instance has its own data sets. This saves code space
(ROM) but requires an extra indirection for each data element access.

EXAMPLE

Express_1

Express_2

Express_3 results_log =
((Express_1)&&(Express_2)&&(Express_3))
ETAS ASCET-SE V6.4 | User Guide

134 | Modeling Hints
- Classes should be decoupled, i.e. the return value should be separated from
the calculation by means of separate return methods or direct access.
Direct access methods should be preferred.

Where applicable, the code generation options optimize direct access
methods * (a description is given in the ASCET online help) can be activated.
Thus, no special function call is necessary for return.

With this approach, the class is calculated only once, even if the return value
is used several times; this means runtime saving. The calculation of the
internal algorithms and the return values do not have to take place at the
same rate. Both the old and the new return value can be accessed. The
downside is the use of an additional variable, which is needed as intermedi-
ate memory for the results of the calculation.

- When inlining of methods is used, the method program code is written
directly into the module program code by the compiler; no function call is
needed. Runtime is optimized thereby, but additional memory is required
when the method is used more than once.

- ASCET creates separate program code for each implementation of a class. If
an implementation is used repeatedly, the memory requirement is reduced;
however, the usability of this approach is restricted.

When using methods in modules, keep the following in mind:

- You can access messages and resources in a method in a module. However,
only the message optimizations _OPT_COPY and _NO_COPY are supported
during code generation for messages in modules. If you use another variant
(_NON_OPT_COPY, _OSEK_COM, or _OSEK_COM_STACK_BUFFER), code
generation produces an error message.

- If a method in a module uses a message, this method may be called from one
task only; a static assignment is required between task priority and the
place in the code where the message is accessed.
Calls from other tasks are forbidden; they produce an error message.

11.2.6 State Machines
You can optimize a state machine under three aspects:

- Response time

- Runtime

- Code size

The various optimization options are described in detail in the ASCET online help.
ETAS ASCET-SE V6.4 | User Guide

135 | Migrating an Existing Project to a New Target
12 Migrating an Existing Project to a New Target
ASCET-SE allows a project that was originally developed for one target to be
migrated to a new target by copying the C code and OS settings from the old tar-
get, experiment type or implementation to the new target.

To copy the C code for an entire project

To copy the C code for all classes and modules of a project from another target,
experiment type, or implementation, proceed as follows.

1. In the project editor, select the appropriate target and code generation
options for your controller.

2. Select Extras > Copy C-Code From.

The "Selection Required" window opens.

3. Select the target you want to copy the code from, and click OK.

To copy C code for single classes or modules

To copy existing C code of a single class or module to another target, experiment
type, or implementation, use one of the two possibilities described here.

A Use the menu item Tools > Code Variants > Copy To.

1. Open the module/class in the C code editor.

2. In the "Target" combo box, select the target the C code was written for.

3. In the "Arithmetic" combo box, select the experiment type the C code was
written for.

4. In the "Implementation" combo box, select the implementation the C code
was written for.

 2. 3. 4.
ETAS ASCET-SE V6.4 | User Guide

136 | Migrating an Existing Project to a New Target
5. Select Tools > Code Variants > Copy To.

The "Copy C-Code To:" selection window opens.

6. In the "Code for Target" field, select the target you are using.

7. In the "Code Gen. Arithmetic" field, select the appropriate experiment type.

8. In the "Implementation" field, select the desired implementation.

When you completed the selection, the OK button is activated.

9. Click OK to close the window.

B Use the menu item Tools > Code Variants > Copy From.

1. In the C code editor, use the "Target", "Arithmetic", and "Implementation"
combo boxes to set up the target you want to use with the appropriate
experiment type and implementation.

2. Now select Tools > Code Variants > Copy From.

The "Selection Required" window opens.

3. Choose the target, experiment type, and implementation you want to copy
the code from, and click OK.

To copy the operating system settings

1. In the project editor, select the "OS" tab.

2. Select Operating System > Copy From Target.

3. In the "Selection Required" window, choose the target you want to copy the
OS configuration from.
ETAS ASCET-SE V6.4 | User Guide

137 | Migrating an Existing Project to a New Target
4. Click OK to close the window.

The operating system settings are copied to the current target.

Further possibilities of target-specific adaptation of code generation are provided
in chapter 5 "Configuring ASCET for Code Generation".
ETAS ASCET-SE V6.4 | User Guide

138 | Understanding Quantized Arithmetic
13 Understanding Quantized Arithmetic
This chapter provides a detailed description of how the code generator produces
code for algorithms specified in ASCET. The rules of this transformation are
described in more detail in later sections. Examples are used to illustrate how the
base operations are first transformed and how the mathematical expressions are
then optimized using the implementation specifications. One section is devoted
to an overview of the numerical aspects of integer arithmetic.

The most essential task of implementation code generation is the automatic
transformation of the arithmetic in the physical model into the quantized arithme-
tic for the target implementation. Necessary conversions and correction factors
are generated and overflows avoided or corrected automatically. In the traditional
manual coding process, this step has proven to be unreliable. Thus, a reliable auto-
matic generation improves software quality.

The generated integer arithmetic could further be optimized.

Logical (Boolean) operations, control structures, and method calls are converted
the same way in both the implementation and physical code generations. The main
difference between the two is that implementation code generation produces
integer arithmetic, while physical generation does not.

The main goal of the implementation code generation is the semantically correct
transformation of the physical specification while considering the implementa-
tions given by the user. Numerical errors are inevitable due to quantization and
integer division. However, these errors are minimized. The generated code is
robust, e.g. no overflows occur at run-time.

13.1 Degrees of Freedom and Optimization
The variable/parameter implementations defined by the user are mandatory for
the code generator. However, even in a mathematical expression containing sev-
eral of these "fixed" implementations, there usually exist some degrees of free-
dom. The degrees of freedom are the choices of implementations for intermediate
results. These can be defined by the code generator. However, restrictions for the
target must be taken into account, particularly the maximum available bit length
for integer quantities.

The degrees of freedom are used by the code generator for optimization based on
the following criteria:

- Minimizing numerical errors.

- Avoiding or correcting overflows.

- Minimizing run-time and memory requirement, i.e. code size, RAM and stack
space.

These optimization goals partially contradict each other. A complete optimization
program cannot be created with acceptable overhead. The code generator, there-
fore, uses a heuristic procedure that has two essential components:

- Local rules for good transformation of the individual base operations.

- Global control strategy with which the local transformations are coordi-
nated for more optimal mathematical expressions.
ETAS ASCET-SE V6.4 | User Guide

139 | Understanding Quantized Arithmetic
This procedure may produce unsatisfactory results in individual cases. In these
cases, the user must intervene manually and reduce the degrees of freedom
allowed to the generator. This is done by introducing temporary variables with
defined implementations at strategic points in the mathematical expressions.

Further potential for optimization exists by selecting special fixed point code gen-
eration options (see the description of the "Integer Arithmetic" node in the ASCET
online help).

13.2 Numerical Aspects of Integer Arithmetic
When physical arithmetic is transformed to integer arithmetic, numerical errors
arise. Two different sources for these errors exist: quantization and integer divi-
sion.

13.2.1 Quantization Errors
When a real quantity is mapped to a quantized representation, an error arises
which is, at most, half the quantization.

This representation error cannot be avoided. It can, theoretically, be made arbi-
trarily small by choosing a finer quantization. However, the smaller the quantiza-
tion chosen, the larger the corresponding integer results become. Of course, in
practice only a restricted range of values (i.e., 32-bit numbers) is available for the
quantized representations of both the quantities and the computations per-
formed on them (i.e. the intermediate results).

Therefore, the achievable precision depends on the selection of those quantized
representations (i.e. value range and quantization). While choosing the quantiza-
tions, a compromise must be found between numerical precision and memory
space requirements. In addition, available word sizes for the target must be taken
into account.

13.2.2 Errors from Integer Division
In integer arithmetic, addition, subtraction and multiplication are, in principle, cal-
culated exactly – provided no overflows occur. But for integer division, errors occur
because the fractional remainder is truncated. For example, 2/3 equals 0 and 9/5
equals 1. Principally, the result could be rounded-up, thus reducing the error (max.
by half). Division results in particularly unfavorable behavior with respect to error
propagation.

As to not impair the numerical precision unnecessarily, obey the following rules
when using integer division:

- Completely avoid division if possible.

- The numerator should be noticeably larger than the denominator, e.g., 32
bits/16 bits. Numerators should be typically twice the word size and use
these additional bits.

- In mathematical chain operations, perform the division as late as possible.
For example, (x*y)/z usually allows higher precision than (x/z)*y pro-
vided that x*y may be calculated without overflow.
ETAS ASCET-SE V6.4 | User Guide

140 | Understanding Quantized Arithmetic
13.2.3 Error Propagation
Quantization and division errors will be propagated through mathematical opera-
tions. They can grow quickly. This also applies to operations like addition, which is
normally calculated correctly in integer arithmetic if the input quantities do not
contain errors.

During the practical realization of embedded control software, investigate
whether or not the resulting numerical precision will suffice after choosing the
quantizations. If not, use the following possibilities:

- Select finer quantizations, if possible in the context of available word sizes.

- Select "strategic" quantizations to avoid automatically generated divisions
during the re-scaling operations for expressions.

- Convert/simplify/approximate the mathematical expressions to reduce
divisions or error propagation from multiplications.

- Modify algorithms altogether to make them numerically more stable.

An example for reducing error propagation

1. Consider the calculation of I_term as shown below.

In a PID controller, the expression for the integral term is commonly written as:

I_term = fintegral(in*(K/Ti)*dT)
where the function in and the factor K/Ti are computed before taking the inte-
gral. Doing so in the above expression causes numerical errors not only due to
dividing first (which are then magnified by a multiplication), but also from overflow
protection (i.e., due to the left shift of K before the division – this is explained later).
Thus, the algorithm shown in the block diagram provides much better precision
than the usual mathematical representation.

An even better solution is to remove the division completely by placing the inverse
of Ti in the characteristic map in the PIDT1_MOD module. In doing this, however,
the direct relation to the usual parameters gets lost.

13.3 Rules of Integer Code Generation
This section describes the local rules by which the code generator maps basic
operations specified physically in the model to quantized integer arithmetic for the
target. It also discusses the optimization of complex mathematical expressions.

The following principles are used for the transformation of base operations:

- Keep numerical precision: Numerical precision is sacrificed only if required
due to overflows.
ETAS ASCET-SE V6.4 | User Guide

141 | Understanding Quantized Arithmetic
- No overflows in intermediate results: A priority of the code generator is to
prevent overflows in the intermediate results. When required, a coarser
quantization is selected automatically, even at the expense of numerical
precision.

- Minimize the number of additional operations: When customizing quanti-
zations for intermediate results, the number of added operations must be
minimized.

- Compliance of specified value ranges: The code generator guarantees
compliance to the value ranges specified by the user. When required, an
explicit limit is generated.

The rules for transformation of base operations are derived from these principles.

13.3.1 Assignments
How is an assignment of physical quantities, e.g. y := x, transformed to C code
with the corresponding quantized representation? To illustrate this, let us assign
a quantized source value X to a target value Y with, perhaps, a different quantiza-
tion:

assignment (phys.): y := x
source: X = ax+b
target: Y = cy+d

If source and target have the same conversion formula, the implementation value
can be assigned directly.

Y := X
The source must otherwise be transformed into the conversion formula of the tar-
get before the assignment.

Y := fx,y(X)
One of the substantial advantages of the code generator is the automatic produc-
tion of this transformation. In the first step, the source is re-scaled to match the
target by multiplying with the correct conversion factor, i.e. the quotient of the tar-
get and source scales.

X1 := X*(c/a)
The offset is then adapted in a way suitable for the target.

Y = X2 := X1 + d - b*(c/a)
Re-scaling, i.e. multiplication by a rational but generally not integer conversion fac-
tor, is problematic. This multiplication can, in principle, be converted into integer
arithmetic in different ways. For the following alternatives, the factor c/a is
assumed to be a simple fraction.

- Multiply first: (X*c)/a
This is the most correct variant and should always be chosen if the interme-
diate result is calculable without overflow.

- Divide first: (X/a)*c
This possibility causes very large numerical errors, because the division
error is inflated by the following multiplication.
ETAS ASCET-SE V6.4 | User Guide

142 | Understanding Quantized Arithmetic
- Approximate: (X*c’)/a’
Here, c´/a´ should be a "simple" rational approximation of c/a, i.e., with
smaller coefficients. It is generally quite difficult to design such an approxi-
mation with an algorithm. The attempt used by the code generation is the
so-called continued fraction expansion.

The approach is clarified now with an example:

Suppose that X*(20/13) is to be calculated, with X bound by the interval
[0,80], only numbers with 8 bits (0-255) are allowed, and the current value
of x is 73.
Calculation in floating point yields 112.31.

In integer arithmetic, the following emerges:

- Multiplying first to get (73*20)/13=112 is not feasible because the inter-
mediate result 73*20=1460 is far too large.

- Dividing first yields too imprecise a result, namely
(73/13)*20=5*20=100.

On the other hand, if the user chooses the approximation 3/2=1.5 for the
needed division 20/13=1.538, this becomes (73*3)/2=19/2=109. This result
is reasonably precise, and no overflow occurs in the intermediate result.

The code generator tries to reach the highest possible numerical precision in the
context of available word size. Therefore, the following algorithm is used for re-
scalings:

A The scales of the individual quantities are generally approximated by simple
quotients. In doing so, it is assured that the re-scaling factor of c/a does not
have any large coefficients.

B If the intermediate result is representable in the available word size, then
the multiplication comes first:

(X*c)/a
C Otherwise, a check is made for the amount of overflow (in bits) in the inter-

mediate result. Then, the more numerically correct approach of the two fol-
lowing possibilities is selected for each individual case:

• Divide first, then multiply:

(X/a)*c
• Right-shift by s places, then proceed as in step 2 above:

(((X>>s)*c))/a)<<s)
This variant is mainly used if the scale can be specified as a multiple of a
power of two. The final shift operation is then dropped.

To summarize the overall process, assignments are generated in the following
steps:

A Re-scale the source to the target scale.

B Adjust the offset.

C Limit the value interval of the result, if necessary.

D Assign the converted implementation value to the variable.
ETAS ASCET-SE V6.4 | User Guide

143 | Understanding Quantized Arithmetic
The assignments between actual and formal arguments for method calls are
treated the same.

13.3.2 Addition and Subtraction
Since addition and subtraction are treated analogously, only the addition is
described here.

When adding two quantities, the quantizations must be brought to the same scale
value first. The offset is added thereafter. For example, you can not add two
lengths in meter and kilometer without re-scaling one or the other first.

The code generation for addition is carried out in the following steps:

Re-scaling: Both operands are brought to the same scale. To avoid unnecessary
loss in precision, the scale with the finer quantization is selected. If this is not pos-
sible, the less accurate representation is used. This may be the case if the coarser
quantized value is not representable in the finer quantization using the available
bit length.

Addition: The re-scaled operands are added including the offsets, if present.

Overflow Handling: If a possible overflow because of the specified value ranges is
detected, then one or both operands are right-shifted before the addition. This
reduces resolution but eliminates the overflow.

For example: Compute x+y, given

X = 3*x and
Y = 5*y,

both within the interval [0,100]. Assume only 8-bit results are valid.

- First, X is re-scaled to the finer scale of Y (5). Division is done first (loss of
precision) because the intermediate result X*5 does not fit in a byte:

X’:=(X/3)*5

EXAMPLE

Assignment

Consider the calculation of P_term shown below.

Here, the intermediate result, in*K, is assigned to P_term. The implementa-
tions are:

in = 2048*in ∈[-2,2],
K = 64*k ∈[0,50],
P_term = 256*pterm ∈[-100,100]

Therefore, the intermediate result has a scale of 2048*64 and a range of
[-100,100]. Assigning this to P_term requires a re-scaling of

1/512 = 256/2048/64 (i.e. 2-9 = 28-11-6)
Since all scale values are powers of two, this is simply done with a right-shift. No
limits are required, and the resulting code is:

P_term = ((in * K) >> 9);
ETAS ASCET-SE V6.4 | User Guide

144 | Understanding Quantized Arithmetic
- The intermediate result, X' has the value range [0,165]. The addition of
X'+Y results in an overflow. Both operands are therefore down-scaled
using a right shift before they are added.

- The generated code for the complete addition operation looks like this:

((X/3)*5)>>1)+(Y>>1)

13.3.3 Multiplication
Unlike addition, multiplication of two quantities with different quantizations is pos-
sible. For example, multiplying X=ax+b and Y=cy+d gives

X*Y = acxy + adx + bcy + bd
However, the integer result is simplified if both operands are represented with off-
sets b=d=0. Then, the integer result is simply a linear scale of the physical result.

X*Y = (a*c)*(x*y)
As a result, the code is generated for multiplication in the following steps:

Offset brought to zero: Both operands are brought to an offset of 0.

Multiplication: The results are then multiplied.

Overflow Handling: If a possible overflow due to the specified value ranges is
detected, both operands are right-shifted until the multiplication is possible with-
out overflow. This necessary loss of resolution is divided up proportionally based
on the number of significant bits in each operand.

For example: Compute x*y, given

X = 50x+3 ∈ [3,203] and
Y = 4y ∈ [0,10],

with only 8-bit arithmetic possible.

- First, X is shifted to offset 0:

X’= X-3 ∈ [0,200].
- The multiplication X’*Y would result in an overflow, i.e. new interval ∈

[0,2000]. In order to stay within 8 bits, a right shift of three positions is
necessary. The larger value X’, is shifted two positions, while Y is shifted by
one.

- The generated code for the multiplication is:

((X-3)>>2)*(Y>>1)

NOTE
Addition is usually seen as a commutative operation with mutually interchange-
able inputs. This is not true for the target code generation, due to the application
of different shift operations. Consider the specific situation, especially in com-
plex arithmetic expressions.
ETAS ASCET-SE V6.4 | User Guide

145 | Understanding Quantized Arithmetic
- The result has a scale value of 200/8=25 and an offset of 0.

13.3.4 Division
As with multiplication, operands of different scales may be divided. Here as well,
the operands must first be brought to an offset of 0. The result of the division is
then scaled with the quotient of the two scale values:

X=ax, Y=cy and X/Y=(a/c)*(x/y)
Unlike multiplication, no overflow can occur here. The denominator can never
become 0 at run-time. This is guaranteed with a check of the value range by the
code generator. If the denominator’s interval contains 0, an error message is given.

Integer division can result in considerable numerical errors, as already discussed.
To reduce these, the code generator uses the following rules:

- The numerator must, as far as possible, have twice the word size of the
denominator (for example, for 8-bit denominators, the numerator must be
represented using 16 bits). This corresponds to the usual assembler
instructions used for division in microcontroller targets.

- The numerator must make full usage of the word size.

If, at first, this is not the case, the numerator is increased with a left shift.

The code for division, correspondingly specified physically, is generated in the fol-
lowing steps.

Offset brought to zero: Both operands are brought to an offset of 0.

Test for zero in the denominator: If the range of values for the denominator con-
tains 0, the code generator stops with an error message.

Increase numerator: Through some suitable left shifts, the numerator is
increased so that it has twice the word size of the denominator, if possible, and
makes full use of this word size.

Division: The division is finally performed.

For example: Compute x/y, given

X = 3x ∈[0,255] and
Y = y ∈[2,10].

- X is left shifted eight positions to fully use its 16-bit word size.

- Next, the division of 16-bit by 8-bit is performed. The generated code looks
like this:

(X<<8)/Y

NOTE
The avoidance of overflows by performing right-shifts reduces resolution and
can easily result in unsatisfactory numerical precision, especially with
sequences of several multiplications using large values. However, this is not an
error caused by the code generator, but an inherent problem of the limited avail-
able word length. Chains of multiplication should, therefore, only be used with
caution. If required, intermediate results must be forced to a given scale value
with the help of inserted variables.
ETAS ASCET-SE V6.4 | User Guide

146 | Understanding Quantized Arithmetic
- The result has a scale of 3*256, an offset of 0, and the value range [0,
32640].

To calculate the integral term in the PID controller

1. Consider the calculation of I_term shown below.

It combines assignment, addition, multiplication, and division operations.

The implementations are:

in = 2048*in ∈[-2,2],
K = 64*k ∈[0,50],
dT = 214*dt ∈[0,0.1],
Ti = 1024*ti ∈[0.005,2],
temp_1 = 1024*temp1 ∈[-2,2],
I_term = 256*iterm ∈[-100,100]

Intermediate results may be 32 bits long. Since there is an additional variable,
Temp1, the expression is calculated in two parts:

- The first multiplication, K*dT, has the scale value 64*214 and the interval
[0,5]. This result has no overflow as only 23 bits are needed.

- The next multiplication, K*dT*in, has the scale value 26*214*211=231 and the
interval [-10,10], which creates an overflow of 4 bits. Therefore, the right-
shift is divided proportionally based on the number of significant bits
between in (12 bits) and K*dT (24 bits, signed).

- Next, the result is divided by Ti. The numerator is already using the full word
size so no left-shift is required. Assigning the result to temp_1 requires a re-
scaling of 1/128=2-7=210+10-6-14-11+4. The generated code looks like this
(note that clipping is required but not shown):

temp_1 = (((in>>1)*((K*dT)>>3))/Ti)>>7;
- The second part is the addition of temp_1 + I_term. Normally, the finer

quantization (that of temp_1) would be used to re-scale, but since the
result must be assigned back to I_term, a re-scaling of
1/4=2-2=28-10 is used. This saves one re-scale operation – see more on
this in section 13.3.9 on page 148. The generated code looks like this (again,
clipping is not shown):

I_term = ((temp_1>>2) + I_term);
2. Re-examine the generated code to verify the above expressions. Note how

the limiters are implemented.
ETAS ASCET-SE V6.4 | User Guide

147 | Understanding Quantized Arithmetic
13.3.5 Comparisons
Inputs for comparison operators must be transformed to a common conversion
formula. Customizing of the conversion formulas occurs in two steps. First the
scaling is adapted, and then the offset is adjusted.

Normally, the comparison is executed using the finer of the two quantizations, to
avoid unnecessary loss of precision. If this is not possible because the re-scaled
representation exceeds the available word size, the coarser quantization is used.

13.3.6 Switches and Multiplexers
As in comparisons, all inputs for switches and multiplexers must also be trans-
formed to a common conversion formula. This is carried out analogously to the
comparison operators. The selection is then executed via the usual control struc-
tures in C, i.e. if/else, case, (a?b:c).

13.3.7 Literals
Literals cannot have an implementation specified in ASCET. The code generator
transforms literals automatically using a conversion formula matching the respec-
tive context.

For example: The computation of x+1.0 in a model is transformed to X+10 if X
is scaled with 10.

The automatically adapting quantization of the environment can result in unsatis-
factory results if, through this, the literal is represented too coarsely. This can
occur particularly if literals are multiplied or divided in the midst of mathematical
expressions with intermediate results. For example, consider the expression

y := x*1.049,
where x and y are quantized with 0.1. Depending on the value range for x, the lit-
eral 1.049 could get approximated by the integer 10 (i.e., physical value 1.0). If
this is the case, it vanishes from the expression completely:

y := (x*10)/10 = x
In order to suppress this effect, the literal gets a refined scale value. The goal is to
keep the relative error lower than 0.1%. In the example above, the literal
1.049*10=10.49 is represented as 671/64=10.484. Hence the expression
from above reads:

y := (x*671)/640,
and the factor is reasonably approximated.

NOTE
The precision threshold of 0.001 is hard-coded and cannot be adjusted by the
user. The quantization of the automatically refined literal can, therefore, become
too inaccurate in rare cases. In such cases, the literal can be replaced by a con-
stant in the model. In this case, the user can provide a conversion formula.
ETAS ASCET-SE V6.4 | User Guide

148 | Understanding Quantized Arithmetic
13.3.8 Treatment of Operators With Multiple Inputs
Mathematical operators with multiple inputs are dissolved into sequences of
binary operations for which code is then generated in succession.

Subsequently, the result in the picture below is always True.

13.3.9 Optimization of Mathematical Expressions
The code generator uses a heuristic control strategy for optimizing mathematical
expressions. The control strategy works in two phases. Optimization data is col-
lected during the bottom-up semantic analysis for each intermediate result in a
mathematical expression. Then, a target-scaling is defined for each result in the
top-down generation phase from this data. The available degrees of freedom (see
section “Degrees of Freedom and Optimization” on page 138) allow the selection of
optimal scales for the overall mathematical expression. The goal is to minimize the
number of additional calculations used during re-scaling.

The optimal scale values are determined using a normalized scale, i.e., the factor in
the total scale value that is not a power of 2.

For example, a normalized scale of 3 indicates that the intermediate result can be
scaled with 3*2N-1, i.e. with 3/2, 3, 6, 12 etc. This is important for the following
reasons:

- The range of the scale must be variable, so that customizing the numerical
precision to avoid overflows is possible.

- Such customizations are executed by shifts.

- The basis for this is the assumption that shift operations are more efficient
than multiplications or divisions. This is true for most targets.

A simple example is presented to illustrate this approach.

Example: Compute the addition of four variables v, w, x, y and assign the
result to z.

z := ((v+w)+x)+y

NOTE
Usually, addition is seen as a commutative operation with mutually interchange-
able inputs. This is not true for the target code generation due to the application
of different shift operations.

Consider the specific situation, especially in complex arithmetic expressions.
ETAS ASCET-SE V6.4 | User Guide

149 | Understanding Quantized Arithmetic
Assume the variables are scaled as follows:

First, during the bottom-up semantic analysis, a set of optimal scale values is col-
lected using the normalized scale values (i.e. excluding the power-of-two factor)
for every intermediate result.

Then, in the generation phase, this local data is used to select the best scale value
for each result by downward back tracing (top-down) through the entire expres-
sion.

These scale values are then inserted according to the necessary re-scalings and
shift operations. Under the assumption that no overflow can occur for the inter-
mediate results, the code represented below is compiled for the expression.

For clarity, the intermediate results are shown separately. During the code gener-
ation, one lengthy mathematical expression is produced for the C code. The gen-
eration of the individual operations is performed locally, according to the control
strategy. No global optimization is carried out for these operations.

Variable Scale Value Normalized
v 4 1
w 3 3
x 8 1
y 5 5
z 10 5

Intermediate Result Optimum
Scale Value

Comment

v+w 1 or 3 Either scale value works equally well
because only one re-scaling is required. In
any other case, both inputs would have to
be re-scaled.

(v+w)+x 1 Since x has the scale value of 1, it is best to
scale v+w also with 1. This saves one addi-
tional re-scaling. Hence, 1 is better than 3
here.

((v+w)+x)+y 1 or 5 Here again both choices work equally well.
At least one side needs to be re-scaled.

z:= ((v+w)+x)+y 5 The entire expression should be generated
with the scale value of 5, because then a re-
scaling is not necessary before the assign-
ment.

Intermediate Result Scale valuea)

a) not normalized

t1 := v+((w>>2)/3) 4
t2 := (t1<<1)+x 8
z := ((t2*5)>>2)+(y<<1) 10
ETAS ASCET-SE V6.4 | User Guide

150 | Understanding Quantized Arithmetic
So far all examples from the PID controller have used scale values that are a power
of two. Therefore, all re-scaling has been performed with shift operations. This
makes it less evident when optimization does occur. For example, in the calcula-
tion of the integral term (see above), the final addition temp1+I_term was per-
formed with the less refined scale value in order to save one shift operation in the
final assignment to I_term.

In the next example, a scale value that is not entirely a power of two is introduced.

To optimize the derivative term calculation

1. Consider the derivative term calculation in the example of a PID-controller
shown below:

This example will focus on the calculation of D_term only.

2. Verify the implementations of quantities in the expression. They are sum-
marized below.

The implementations are:

in = 2048*in ∈[-2,2],
K = 64*k ∈[0,50],
Td = 640*td ∈[0,2],
Tv = 640*tv ∈[0.005,2],
D_memory = 1024*dmem ∈[-10,10],
D_term = 256*dterm ∈[-100,100]

Again, intermediate results may be 32 bits. The calculation of D_term occurs as
follows:

- As in the integral term calculation, the first two multiplications, K*Td*in,
result in an overflow of 3 bits (i.e. 3 right-shifts). The result has a scale
26*640*211*2-3 = 5*221 and interval [-200,200].

- Next, D_memory is subtracted from the result, but first the operands must
be brought to the same scale. Here is where the optimization occurs. The
following scale values must be considered:

Operand Scale Value Normalized
K*Td*in 5*221 5
D_memory 210 1
Tv 5*27 5
D_term 28 1
ETAS ASCET-SE V6.4 | User Guide

151 | Understanding Quantized Arithmetic
- Either normalized scale, 5 or 1, could be used for the subtraction result,
K*Td*in-D_memory. If 1 is used, the next step of dividing by Tv re-intro-
duces the scale value of 5. This result would have to be re-scaled for the
final assignment to D_term, requiring a total of three re-scalings.

Thus, the normalized scale of 5 is the better choice. The division by Tv then
cancels the 5-scale out so that no rescaling is needed for the final assign-
ment. Only one rescaling (i.e. Dmem to scale value 5) is then required.

- Subsequently, for the subtraction, Dmem is rescaled to 5*221 (not normal-
ized). However, both operands must be right-shifted to avoid an overflow,
resulting in an actual scale value of 5*220.

- Finally, this result is divided by Tv. The numerator is already using the full 32
bits, so no left-shift is required. Assigning the result to Dterm requires a re-
scaling (i.e. right-shift) of 5*27*28/(5*220)=2-5.

The intermediate results are summarized below:

Again, the intermediate results are shown separately for clarity. One lengthy
expression is generated in the actual C code.

3. Re-examine the generated code for the example to verify the above expres-
sions. Note how the limiters are implemented.

Intermediate Result Scale Value
t1 := (in>>1)*((K*Td)>>2) 5*221

t2 := (t1>>1) - D_memory*5120 5*220

D_term := (t2/Tv)>>5 28
ETAS ASCET-SE V6.4 | User Guide

152 | Understanding Generated Code
14 Understanding Generated Code
This chapter describes the properties of the code generated by ASCET-SE. The
basic rules of converting the ASCET model contents and structures into C code
are described to help you understand what is generated and to ease a code
inspection of formal review if required by your development process.

14.1 Modularity
The code generation of ASCET-SE is modular. C code and header files are created
separately for each individual complex ASCET element (project, module, or class).
One nested data structure is generated for each ASCET module and its element
hierarchy. Knowledge of the entire system is not required for this purpose. How-
ever, the code for a module and its hierarchy can be created correctly only if, for all
dependent modules, the public interface (exported variables, public methods) is
known. Thus, the code generator creates an internal structure, referred to as a
class interface, for the project and every class or module. The code generation of
an element only needs the class interfaces of all referenced elements. This is anal-
ogous to the strategy frequently used for manual programming: using a header file
with prototype declarations in C.

14.2 Distribution of Generated Code to Files
When you generate code (e.g., via Build > Generate Code), the generated C code
is divided into several files for each element (class, module, or project). The file
names are automatically generated using Windows file format allowing a maximum
of 255 characters. File names can optionally be generated in MS-DOS-compatible
8.3 format.

The following rules apply:

- A separate header file is created for each class and each module in the proj-
ect. A separate C code file is created for each component.

- All generated header files of a project are included by the code generation
via the FILES_HEADER_PROJ variable (see section 5.4.3 on page 71).

- For elements with external C code, two additional files (*E.c and *E.h) are
generated that contain the external code.

- A function_declarations.h file is generated, containing extern decla-
rations of all functions of the ASCET model.

- A variable_declarations.h file is generated, containing extern decla-
rations of all variables and parameters of the ASCET model.

When you export generated code via File > Export > Generated Code > *, the fol-
lowing rules apply:
ETAS ASCET-SE V6.4 | User Guide

153 | Understanding Generated Code
- C source code files (*.c) and C header files (*.h) are generated according
to the setting of the "Header/C Code Structure" configuration option in the
"Build" node of the "Project Properties" window.

• Component (default):

A separate header file is created for each class and each module in the
project.

A separate C code file is created for each component.

• Project:

A single header file is created for the entire project. This file contains all
information from the modules and classes in the project; it is included in
all *.c files created for the components.

A separate C code file is created for each component.

• Project Header and Source:

A single header file is created for the entire project. This file contains all
information from the modules and classes in the project.

A single C code file is created for all generated components.

- For elements with external C code, the files (*E.c and *E.h) that contain
the external code are exported as separate files.

- The files function_declarations.h and variable_declarations.h,
are exported as separate files.

14.2.1 Include Hierarchy
The include hierarchy of the exported code depends upon the setting of the
"Header/C Code Structure" configuration option in the "Build" node of the "Project
Properties" window.

NOTE
The selection Module, available in ASCET versions prior to V6.4.8, has
been removed,

Headers and C code files of internal and external C code classes and of
the OS component are not affected by this option (exception: use header
global is activated for an external C code class).
ETAS ASCET-SE V6.4 | User Guide

154 | Understanding Generated Code
The following figures (Fig. 14-1, Fig. 14-2, Fig. 14-3) show the differences between
the different values of that option. They use the same key:

Fig. 14-1 Include Hierarchy: "Header/C Code Structure"= Component

Key

C Source File
Generated by ASCET

C Header File
Generated by ASCET

C Header File
Supplied by ASCET target

C Header File
Example supplied by ASCET
target – user editable

#include

conditional #include

OS Header File
Supplied/Generated by OS

<Project>.c

<Project>.h

conf.h

a_basdef.h

conf.c <Module>.c

function_declarations.h

variable_declarations.h

<Class>.c <Task>.c

<Task>.h

<Class>.h

<Module>.h
ETAS ASCET-SE V6.4 | User Guide

155 | Understanding Generated Code
Fig. 14-2 Include Hierarchy: "Header/C Code Structure" = Project

Fig. 14-3 Include Hierarchy: "Header/C Code Structure" = Project Header and
Source

<Task>.c<Class>.c<Module>.c<Project>.c

<Project>.h

conf.h

a_basedef.h

conf.c

function_declarations.h

variable_declarations.h

<Task>.h

<Project>.c

<Project>.h

conf.h

a_basdef.h

conf.c

function_declarations.h

variable_declarations.h

<Task>.c

<Task>.h
ETAS ASCET-SE V6.4 | User Guide

156 | Understanding Generated Code
The include hierarchy of a_basdef.h itself is identical for all variants and is shown
in Fig. 14-4.

Fig. 14-4 Include Structure of a_basdef.h

14.3 Software Architecture
Software architecture means all the basic rules by which the ASCET model data
and function structures are converted into C code. This includes, among other
things, naming conventions, supported storage systems, and the conversion of
data structures. A common Base Software Architecture is used for all ASCET-SE
targets. Its essential parts will be described in this section.

The major design criteria of this software architecture are the following:

- The instantiation of data, and thus the reservation of memory, in the con-
troller is completely static. The use of dynamic allocation is not allowed. For
example, memory and run-time overhead for variables caused by pointer
management and malloc calls are intolerable.

- The chosen data structure must allow a static multiple instantiation of
classes, whereby the same code is to be used for all instances with the
same implementation. It would waste memory to duplicate the same code.

- Optimization occurs throughout the system.

- Data storage in user-defined memory classes is supported.

- All static data, such as parameters, must also be initialized statically.

The following design decisions were made based on the above criteria:

a_basdef.h

asd_dyn_osinface.h

tipdep.h

os_inface.h

os_unknown_inface.h

os_rta_inface.h

osek.h

a_limits.hmessage_scheme.h

proj_def.h

a_std_type.ha_intpol.h

Rte_Type.h

a_user_def.h

AUTOSAR RTERTA-OSEK
ETAS ASCET-SE V6.4 | User Guide

157 | Understanding Generated Code
- Exported parameters are statically created and initialized as global
C variables in the exporting C file; they are declared as external in the
importing files. Parameters are assigned to a ROM area.

- Exported and imported variables are treated similarly, but created and ini-
tialized statically in a RAM area. Variables specified as non-volatile are not
initialized statically. If this is required, then you must write the initialization
code yourself.

- The local elements of classes and modules are stored in specific
C structures. If they pertain to different memory classes, C structures are
added for each memory class. They can be accessed by using C pointers.
Based on the model structure, for each module a so-called instance tree is
created by nesting (modules contain classes that may contain instances of
other classes as elements). Besides embedding instances into a structure,
access by pointer is also possible if the "as reference" option has been
selected in the model. This is necessary in cases where two objects are to
mutually reference each other (e.g., the wheels of a vehicle axle).

- A pointer to the memory area of the receiving instance is passed in each
method call allowing the same code of the methods to be used also for the
instances of all classes having the same implementation (The so called self-
pointer. This applies only to multiple instance generation or if explicitly con-
figured in the element’s implementation).

- For each memory area, the elements of a component are grouped in a struc-
ture. For each component (provided it contains data), a structure exists
from which the memory class structures are referenced.

- All implicit initializations are static.

- Only one fixed storage system (record layout) for characteristic lines and
maps is supported.

14.3.1 Naming Conventions
The C name for an ASCET component (i.e., class, module, or project) is built
according to the following convention:

<name of component>_<name of implementation>

The addition of the implementation name is required for classes because several
instances of a class can occur in the model along with different implementations.
This name is called the classIdentifier in the following sections.

Modules and projects have a single instance, so the addition of the implementa-
tion name could be avoided for these components. For consistency, however, the
above convention is followed for these components as well.

In contrast to code generation for experimental targets, this naming convention
produces the restriction that class, module, and project names have to be unique
within the project. Otherwise, malfunctions or compiler/linker errors could occur.
The uniqueness of the name is, therefore, checked in the make mechanism at the
start of the code generation.
ETAS ASCET-SE V6.4 | User Guide

158 | Understanding Generated Code
The user can partially modify the rules for producing class and variable names in
the expander configuration file codegen.ini (see chapter 5.1
"codegen[_*].ini Files" for more details).

14.3.2 Storage Systems, Data Structures, Initialization of Primitive
Objects
A generic object structure, which allows the recording and changing of data at
arbitrary locations during simulation, is used for supporting experimental targets.
The dynamic memory allocation associated with it would have memory and run-
time requirements which are too high for use in the controller. The supplementary
data used in the simulation are not needed in the controller. They are replaced by
condensed structures which are preset by this base software architecture and
cannot be modified by users.

The generic definitions for implementation types (e.g., uint16, etc.) are also used
in the controller and are defined in a global system header file.

14.3.2.1 Scalar and Logical Values
Global scalar and logical values are directly realized by a C variable of specified
implementation type:

uint16 scalarVariable;
The initialization of global scalar parameters and variables occurs statically in the
definition:

const uint16 scalarParameter = 123;
Local values are defined and initialized as parts of data structures. Non-volatile
variables are not initialized, no matter if they are local or exported.

NOTE
In the following examples, global elements are shown for clarity because their
data structures are created isolated (i.e. not embedded in the instance tree).
Thus, the generated data structures for declaration and initialization can be
documented. For local elements, declaration and initialization are generated
accordingly, but embedded in the instance tree.

NOTE
Variables specified as non-volatile are not initialized at all.
ETAS ASCET-SE V6.4 | User Guide

159 | Understanding Generated Code
14.3.2.2 Enumerations

Enumerations are mapped onto a primitive integer data type in the C code. In con-
trast to the C type enum, usually less than 1 machine word is necessary in this way
to represent an enumeration.

uint8 Lights;
The symbolic names (red and green in the example) are mapped onto integer
values. In the ASAM-MCD-2MC description file generated by ASCET, the respec-
tive symbolic name is assigned again to each integer value so that these names
are visible in the application system:

/begin COMPU_VTAB enum_Lights_tab_ref
""
TAB_VERB
2
0 "red" 1 "green"
DEFAULT_VALUE "Error"

/end COMPU_VTAB

14.3.2.3 Arrays and Matrices of Scalar or Enumeration Type
Arrays and Matrices of scalar or enumeration type are directly realized as C arrays
of the specified implementation type.

Arrays and matrices can be created as variables, parameters, or messages. They
cannot be created as constants or system constants because these are gener-
ated as #define. In case of a migration from older ASCET versions, possibly exist-
ing system constants have to be switched to parameters manually.

By default, the array/matrix size is fixed and, therefore, cannot be modified at exe-
cution time. It corresponds to the size in the model. Matrices are generated as
one- or two-dimensional arrays in the C code, depending on the "Number of
dimensions for fixed matrixes" option in the ASCET options window, "Targets\
<your target>\Build" node.

- One-dimensional:

sint32 array[size];
uint16 matrix[size];

- Two-dimensional:

uint16 matrix[size_x][size_y];
To determine array/matrix sizes at code generation or compilation time, you must
use system constants for size definition (see the ASCET online help for details on
variant size for arrays/matrices) and set the "Resolve System Constants" option1)
ETAS ASCET-SE V6.4 | User Guide

160 | Understanding Generated Code
in the ASCET options window, "Targets\<your target>\Build" node. If an array or
matrix uses one or two system constants as size definition, the declaration
includes the system constants:

sint32 array[SysConst_x];
uint16 matrix[SysConst_x][SysConst_y];1)

uint16 matrix[SysConst_x * SysConst_y];2)

It is also possible that a matrix uses a system constant for one dimension, and a
fixed value for the other dimension:

uint16 matrix[SysConst_x][3];1)
uint16 matrix[SysConst_x * 3];2)

Arrays/matrices specified as explicit references are generated as pointers:

sint32 * array;
uint16 * matrix;

Arrays used as parameters or variables are initialized in the generated C code, and
stored in the memory, in order of increasing index. Matrices used as parameters or
variables are initialized and stored in column-major order or row-major order,
depending on the "Matrix Orientation" option in the ASCET options window, "Tar-
gets\ <your target>\Build" node.

Exported arrays/matrices are defined and initialized individually. Local arrays/
matrices are defined and initialized as parts of nested data structures. Non-vola-
tile variables are not initialized, no matter if they are local or exported.

In the ASAM-MCD-2MC description file generated by ASCET, an array or matrix of
scalar or enumeration type is represented by a MEASUREMENT or
CHARACTERISTIC block:

/begin MEASUREMENT <array_matrix>3).<parent_component>
...
<ident>4)
...
/begin FUNCTION_LIST <parent_component>

1) If you set "Resolve System Constants" to GenerationTime, the init values of the
system constants are used.
"Resolve System Constants" = RunTime produces an error.

1) "Number of dimensions for fixed matrixes" = Two-dimensional
2) "Number of dimensions for fixed matrixes" = One-dimensional

NOTE
For multiple instances, the size of an array or matrix must be the same in all
instances since the same object definition is used for all data records. The size is
not stored with it. It is not required because the array size cannot be accessed in
the model.

3) array or matrix of scalar or enumeration type
4) COMPU_METHOD used by the array/matrix; for arrays/matrices of enumeration type,

the enumeration determines the COMPU_METHOD
ETAS ASCET-SE V6.4 | User Guide

161 | Understanding Generated Code
/end FUNCTION_LIST
...
LAYOUT <order>1)

MATRIX_DIM2) <x_size> <y_size> 1
/end MEASUREMENT

/begin CHARACTERISTIC
<array_matrix>.<parent_component>

...
<ident>
...
/begin FUNCTION_LIST <parent_component>
/end FUNCTION_LIST

...
MATRIX_DIM <x_size> <y_size> 1

/end CHARACTERISTIC

Example 1 – Normal Matrix
The following image shows a normal matrix,

This matrix would be stored as follows:

With the "Number of dimensions for fixed matrixes" option3) set to One-
dimensional, the matrix will be initialized as follows:

1) only present for matrices; shows the order (COLUMN-DIR or ROW-DIR) used by the
matrix

2) size of the array or matrix; for arrays, y_size = 1

column-major order row-major order
1 4 7 2 5 8 3 6 9 1 2 3 4 5 6 7 8 9

3) located in the ASCET options window, "Targets\ <your target>\Build" node

column-major order row-major order
{

1, 4, 7,
2, 5, 8,
3, 6, 9

}

{
1, 2, 3,
4, 5, 6,
7, 8, 9

}

matrixNormal
1 2 3

4 5 6

7 8 9

=

ETAS ASCET-SE V6.4 | User Guide

162 | Understanding Generated Code
Example 2 – Matrix with System Constants
The matrix matrixVariant is specified with a numerical max size of 3 x 3, and the
system constants SC_x and SC_y are assigned as X and Y variant size. 3 x 3 values
can be entered; they are set as follows:

In column-major-order, and with "Number of dimensions for fixed matrixes" set to
Two-dimensional, the matrix initialization is generated as follows:

{
{

1
#if SC_y >= 2
, 4
#endif
#if SC_y >= 3
, 7
#endif

}
#if SC_x >= 2
,
{

2
#if SC_y >= 2
, 5
#endif
#if SC_y >= 3
, 8
#endif

}
#endif

#if SC_x >= 3
,
{

3
#if SC_y >= 2
, 6
#endif

matrixVariant
1 2 3

4 5 6

7 8 9

=

ETAS ASCET-SE V6.4 | User Guide

163 | Understanding Generated Code
#if SC_y >= 3
, 9
#endif

}
#endif

}
In row-major-order, the matrix initialization is generated as follows:

{
{

1
#if SC_x >= 2
, 2
#endif
#if SC_x >= 3
, 3
#endif

}
#if SC_y >= 2
,
{

4
#if SC_x >= 2
, 5
#endif
#if SC_x >= 3
, 6
#endif

}
#endif
#if SC_y >= 3
,
{

7
#if SC_x >= 2
, 8
#endif
#if SC_x >= 3
, 9
ETAS ASCET-SE V6.4 | User Guide

164 | Understanding Generated Code
#endif
}
#endif

}

Example 3 – Arrays
Initialization of an array occurs statically in the C code definition:

- array without system constants

{ 10,1,4,9 };
- array with system constant SC_x

{
10
#if SC_x >= 2
, 1
#endif
#if SC_x >= 3
, 4
#endif
#if SC_x >= 4
, 9
#endif

};

14.3.2.4 Optimized Initialization for Arrays and Matrices
The initializations of arrays and matrices can become very long, especially for
arrays and matrices with variant size and large a large max. size. This is a challenge
for compilers, code comparison tools, etc. In the worst case, the initializations can
become so long that the ECCO aborts with an out-of-memory error.

To solve these problem, ASCET V6.4.8 contains a target option, Generating
Sparse Arrays, that optimizes initialization code generation for sparse arrays and
matrices (i.e., most values are 0) of scalar or enumeration type. This option is avail-
able for experimental targets and ASCET-SE targets. If activated, only array/matrix
elements with values ≠ 0 are initialized.

See the ASCET online help, topic "Initialization of Arrays and Matrices", for details.

NOTE
Some compilers cannot process the optimized initialization code generated with
activated Generating Sparse Arrays.

The information whether or not a particular compiler supports the optimized ini-
tialization code is given in the ASCET options window, "External Tools\Compiler\
<compiler name>" node, Supports Generation of Sparse Arrays option.
ETAS ASCET-SE V6.4 | User Guide

165 | Understanding Generated Code
Example 4 – Sparse Array and Matrix with System Constants
The array arrayVariantSparse is specified with a numerical max. size of 4, and
the system constant SC_a is assigned as X variant size. The array values are set as
follows:

With activated Generating Sparse Arrays option, the array is initialized as follows:

{
#if SC_a >= 2
[1] = 1
#endif

}
The matrix matrixVariantsparse is specified with a numerical max size of 3 x 3,
and the system constants SC_x and SC_y are assigned as X and Y variant size. 3 x
3 values can be entered; they are set as follows:

In column-major-order, with "Number of dimensions for fixed matrixes" set to
One-dimensional, and with activated Generating Sparse Arrays option, the
matrix is initialized as follows:

{
#if MODULE_ARRAYS_MN_IMPL_SC_x >= 2
[3] = 2
#endif
#if MODULE_ARRAYS_MN_IMPL_SC_x >= 3
,

#if MODULE_ARRAYS_MN_IMPL_SC_y >= 2
[7] = 6
#endif

#endif
}

14.3.2.5 Arrays and Matrices of Record Type
Arrays and Matrices of record type use the data sets of the record as array/matrix
elements. Such arrays/matrices are generated as arrays of record component
structures.

arrayVariantSparse 0 1 0 0=

matrixVariantSparse
0 2 0

0 0 6

0 0 0

=

ETAS ASCET-SE V6.4 | User Guide

166 | Understanding Generated Code
Access and initialization are identical to other arrays and matrices, except that the
Generating Sparse Arrays option has no effect. See also “Arrays and Matrices of
Scalar or Enumeration Type” on page 159. For the generation of a virtual address
table, the array/matrix will be unrolled.

In the ASAM-MCD-2MC description file generated by ASCET, arrays and matrices
of record type are unfolded, too. Each element of the record used in the array/
matrix definition gets a separate MEASUREMENT or CHARACTERISTIC block for
each array/matrix element:

/begin MEASUREMENT
<recEl_n>1).<array>2)[<i>3)].<parent_component>

...
/begin FUNCTION_LIST <array>[<i>].<parent_component>
/end FUNCTION_LIST
...

/end MEASUREMENT

/begin CHARACTERISTIC
<recEl_n>.<matrix>4)[<i>][<j>5)].<parent_component>

...
/begin FUNCTION_LIST

<matrix>[<i>][<j>].<parent_component>
/end FUNCTION_LIST

/end CHARACTERISTIC

Example – Array of Record Type
The array array_record is specified with a size of 3 and with record type.
array_record uses the record Record_b with the elements cont, limitInt
and wrapInt.

The following data sets of Record_b are used in the array:

1) nth element of the record used in the array/matrix definition
2) array of record type
3) 0 ≤ i ≤ array_size - 1 or matrix_x_size - 1
4) matrix of record type
5) 0 ≤ j ≤ matrix_y_size - 1

record elements

data set cont limitInt wrapInt
Data 3.14159265 99 13
Data_1 67.15 8 4
Data_2 9.81 17 4
ETAS ASCET-SE V6.4 | User Guide

167 | Understanding Generated Code
The array looks as follows:

The array would be initialized as follows:

- without system constants

The comments have been added manually for clarity.

{
{

/* array element [0] - data set Data */
3,
99,
13U

},
{

/* array element [1] - data set Data_1 */
67,
8,
4U

},
{

/* array element [2] - data set Data_2 */
10,
17,
4U

}
}

- with system constant sysConst_X

The comments have been added manually for clarity.

{
{

/* array element [0] - data set Data */
3,
99,
13U

},
ETAS ASCET-SE V6.4 | User Guide

168 | Understanding Generated Code
#if (MODULE_IMPL_SYSCONST_X >= 2)
{
/* array element [1] - data set Data_1 */

67,
8,
4U

},
#endif
#if (MODULE_IMPL_SYSCONST_X >= 3)

{
/* array element [2] - data set Data_2 */

10,
17,
4U

}
#endif

},

Example – Matrix of Record Type
A 3x2 matrix of record type is defined; it uses a record named Record_b with the
elements cont, limitInt and wrapInt.

The following data sets of the record are used in the matrix:

The matrix looks as follows::

The matrix would be initialized as follows:

record elements

data set cont limitInt wrapInt
Data 3.14159265 99 13
Data_1 67.15 8 4
Data_2 9.81 17 4
Data_3 2.71828 47 11
Data_4 6.674 -11 10
Data_5 6.626 -34 10
ETAS ASCET-SE V6.4 | User Guide

169 | Understanding Generated Code
- column-major order, without system constants

The comments have been added manually for clarity.

{
{

/* matrix element [0][0] - data set Data */
3,
99,
13U

},
{

/* matrix element [0][1] - data set Data_3 */
3,
47,
11U

},
{

/* matrix element [1][0] - data set Data_1 */
67,
8,
4U

},
{

/* matrix element [1][1] - data set Data_4 */
7,
-11,
10U

},
{

/* matrix element [2][0] - data set Data_2 */
10,
17,
4U

},
{

/* matrix element [2][1] - data set Data_5 */
7,
-34,
10U
ETAS ASCET-SE V6.4 | User Guide

170 | Understanding Generated Code
}
},

- column-major order, with system constants SConst_X and SConst_Y

The comments have been added manually for clarity.

{
{

{
/* matrix element [0][0] - data set Data */
3,
99,
13U

},
#if (MODULE_SE_DOKU_IMPL_SCONST_Y >= 2)
{

/* matrix element [0][1] - data set Data_3 */
3,
47,
11U

}
#endif

},
#if (MODULE_SE_DOKU_IMPL_SCONST_X >= 2)
{

{
/* matrix element [1][0] - data set Data_1 */
67,
8,
4U

},
#if (MODULE_SE_DOKU_IMPL_SCONST_Y >= 2)
{
/* matrix element [1][1] - data set Data_4 */

7,
-11,
10U

}
#endif

},
ETAS ASCET-SE V6.4 | User Guide

171 | Understanding Generated Code
#endif
#if (MODULE_SE_DOKU_IMPL_SCONST_X >= 3)
{

{
/* matrix element [2][0] - data set Data_2 */
10,
17,
4U

},
#if (MODULE_SE_DOKU_IMPL_SCONST_Y >= 2)
{

/* matrix element [2][1] - data set Data_5 */
7,
-34,
10U

}
#endif

}
#endif

}

14.3.2.6 Characteristic Lines
The following simple storage system is used for characteristic lines:

Tab. 14-1 Storage system – characteristic line

The number of nodes is stored in one byte if both the nodes and the characteristic
values (X or W) are represented in one byte. Otherwise, two bytes are used.

For such a storage system, no generic structure definition can be used in C
because the number of nodes and the implementation types of nodes and values
can vary. A separate structure definition must therefore be produced by code gen-

Value Stored Description Number of Bytes
n (start address) No. of interpolation nodes 1 or 2 bytes (see below)
X1

interpolation nodes n*x bytes, increasing
index

X2
...
Xn
W1

characteristic values n*w bytes, increasing
index

...
Wn
ETAS ASCET-SE V6.4 | User Guide

172 | Understanding Generated Code
eration for every individual characteristic line. This definition must be named and
entered into the C header code because of the separate generation of module and
initialization code.

Characteristic line – example:

KL has three nodes. The input and output data types are both sint16.

In the C code, the structure is defined as follows (component header file
<component>.h):

struct PIDT1_MOD_IMPL_KL_TYPE {
uint16 xSize;
sint16 xDist [3];
sint16 values [3];

};
The static initialization of the global element KL occurs in the declaration:

const struct PIDT1_MOD_IMPL_KL_TYPE KL =
{

3,
{

-2, 1, 4
},
{

5, 6, 7
}

};/*** KL ***/

Local characteristic lines are defined and initialized as parts of nested data struc-
tures.

The initialization of characteristic lines can be affected by the Generating Sparse
Arrays option; see section 14.3.2.4 "Optimized Initialization for Arrays and Matri-
ces" on page 164.

The storage system makes no distinction between the current and maximum
number of nodes. An adjustment of the number of nodes during calibration is not
planned. The dimensions of the vectors in struct correspond to the current num-
ber of nodes set at generation time.

Access occurs with the help of access routines. There are two possibilities of
accessing characteristic lines: "linear", i.e. by means of interpolation routines, or
"rounded", i.e. using the characteristic line as a look-up table. Both kinds of access
routines are shipped with ASCET-SE. For the above example, linear access looks
like this:

pwm_out = CharTable1_getAt_s16s16
((void *)&KL, xin);

Code for rounded access is generated as follows:
ETAS ASCET-SE V6.4 | User Guide

173 | Understanding Generated Code
pwm_out = CharTable1_getAtR_s16s16
((void *)&KL, xin);

In the data editor of a characteristic line/map, you can specify whether to use lin-
ear or rounded access.

14.3.2.7 Characteristic Maps
The storage system for characteristic maps is illustrated in the following table. It is
similar to characteristic lines:

Tab. 14-2 Storage system – characteristic map

Here, the number of X and Y nodes (n and m) are both stored in one byte if all of the
nodes and characteristic values (X, Y, or W) are represented in one byte. Other-
wise, two bytes are used.

As in case of characteristic lines, code generation produces a separate struct
definition for every individual characteristic map.

Characteristic map – example:

KF has three nodes on the x axis and four on the y axis. Both input data types are
sint16, and the outputs are uint16.

In the C code, the structure is defined as follows (component header file
<component>.h):

NOTE
When creating access routines, be aware that the storage of the structure ele-
ments in the memory ("Alignment") is defined by the compiler.

Value Stored Description Number of Bytes
n (start address) No. of X interpolation nodes 1 or 2 bytes (see below)
m No. of Y interpolation nodes 1 or 2 bytes (see below)
X1

X interpolation nodes n*x bytes, increasing
index

...
Xn
Y1

Y interpolation nodes m*y bytes, increasing
index

...
Yn
W1,1

characteristic values

(n*m)*w bytes, column-
major ordering (Y index m
increases faster than X
index n)

W1,2
...
Wn,m-1
Wn,m
ETAS ASCET-SE V6.4 | User Guide

174 | Understanding Generated Code
struct PIDT1_MOD_IMPL_KF_TYPE {
uint16 xSize;
uint16 ySize;
sint16 xDist [3];
sint16 yDist [4];
sint16 values [3 * 4];

};
The static initialization of the global element KF occurs again in the declaration:

const struct PIDT1_MOD_IMPL_KL_TYPE KF =
{

3,
4,
{ 1, 3, 5 },
{ 0, 1, 8, 15 },
{ -5, -3, 0, 1,
 0, 1, 4, 6,

8, 5, 4, 4 }
};/*** KF ***/

Local characteristic maps are defined and initialized as parts of nested data struc-
tures.

The initialization of characteristic maps can be affected by the Generating
Sparse Arrays option; see section 14.3.2.4 "Optimized Initialization for Arrays and
Matrices" on page 164.

Nodes and values are stored by increasing index; the respective storage space is
reserved for the number of nodes currently set at generation time. The storage of
the value matrix is column-by-column. Everything else is the same as for charac-
teristic lines. Access takes place in an analog way, too, as the following example
for linear access (i.e. an interpolation routine call) shows:

pwm_out
= CharTable2_getAt_s16s16s16(

(void *)&KF, xin, yin);
Also the rounded access (i.e. look-up functionality) is similar to characteristic
lines:

pwm_out
= CharTable2_getAtR_s16s16s16(

(void *)&KF, xin, yin);
In the data editor of a characteristic map, you can specify whether to use linear or
rounded access.
ETAS ASCET-SE V6.4 | User Guide

175 | Understanding Generated Code
14.3.2.8 Interpolation Node Distributions, Group Characteristic Lines and
Maps
For group characteristic lines and maps, only the values are stored as an array with
increasing index.

Tab. 14-3 Storage system – group characteristic line

The respective interpolation nodes are saved in separate objects, the interpola-
tion node distributions.

Tab. 14-4 Storage system – interpolation node distribution

An interpolation node distribution can thus be used for several group characteris-
tic lines or maps.

The initialization of distributions and group characteristic lines/maps can be
affected by the Generating Sparse Arrays option; see section 14.3.2.4 "Optimized
Initialization for Arrays and Matrices" on page 164.

Example for interpolation node distributions and group characteristic lines:

PWM1 and PWM2 have six interpolation nodes each, as defined in pwm_in. pwm_in
has an input data type of uint16. Both lines have an output data type of uint16.

The static definitions in the C code have the following form (component header
file <component>.h):

struct PIDT1_MOD_IMPL_pwm_in_TYPE {
uint16 size;
uint16 dist [6];

};

Value Stored Number of Bytes
W1 (start address)

n*w bytes, increasing index...
Wn

Value Stored Description Number of Bytes
n (start address) number of interpolation nodes 2 Bytes
X1

interpolation nodes
n*x bytes, increasing
index

X2
...
Xn
ETAS ASCET-SE V6.4 | User Guide

176 | Understanding Generated Code
struct PIDT1_MOD_IMPL_PWM1_TYPE {
sint16 values [6];

};
struct PIDT1_MOD_IMPL_PWM2_TYPE {

sint16 values [6];
};

Additionally, three variables are generated for each interpolation node distribu-
tion, as intermediate memory for the interpolation results. They are then used to
access the group characteristic line.

uint16 pwm_in_index;
uint16 pwm_in_offset;
uint16 pwm_in_distance;

Because these elements are exported in the example, the initialization of the data
structures is again performed in separate structures. The intermediate variables
are not initialized separately.

const struct PIDT1_MOD_IMPL_pwm_in_TYPE pwm_in =
{

6,
{

0, 4, 8, 10, 12, 13
}

};/*** pwm_in ***/
const struct PIDT1_MOD_IMPL_PWM1_TYPE PWM1 =
{

{
1584, 16, 16, 0, 0, 0

}
};/*** PWM1 ***/
const struct PIDT1_MOD_IMPL_PWM2_TYPE PWM2 =
{

{
16, 16, 1584, 0, 0, 0

}
};/*** PWM2 ***/

Local distributions and group characteristic lines are defined and initialized as
parts of nested data structures.

Access occurs in two steps, analog to the model. First, a search for the interpola-
tion nodes is performed.

Distribution_search_u16(
(void*)&pwm_in.dist,
(uint16)pwm_in.size,
(uint16)out,
(void *)&pwm_in_index,
(void *)&pwm_in_offset,
(void *)&pwm_in_distance);
ETAS ASCET-SE V6.4 | User Guide

177 | Understanding Generated Code
The results of the search for interpolation nodes are stored in the intermediate
variables pwm_in_index, pwm_in_offset and pwm_in_distance. After that,
these results can be accessed with the help of special interpolation routines.
Thus, several different characteristic lines and maps can be evaluated based on
one search for interpolation nodes.

pwm_out
= GroupTable1_getAt_u16s16(

(void*)&PWM1,
pwm_in_index,
pwm_in_offset,
pwm_in_distance);

pwm_out
= GroupTable1_getAt_u16s16(

(void*)&PWM2,
pwm_in_index,
pwm_in_offset,
pwm_in_distance);

Example for interpolation node distributions and group characteristic map:

GKF1 has four X interpolation nodes (defined in pwm_in1) and three Y interpola-
tion nodes (defined in pwm_in2). pwm_in1 and pwm_in2 have an input data type
of uint16, the characteristic map has the output data type sint16.

The static definitions in the C code have the following form (component header
file <component>.h):

struct PIDT1_MOD_IMPL_pwm_in1_TYPE {
uint16 size;
uint16 dist [4];

};
struct PIDT1_MOD_IMPL_pwm_in2_TYPE {

uint16 size;
uint16 dist [3];

};
struct PIDT1_MOD_IMPL_GKF1_TYPE {

sint16 values [4 * 3];
};

Again, the three intermediate variables are generated for each interpolation node
distribution.

uint16 pwm_in1_index;
uint16 pwm_in1_offset;
uint16 pwm_in1_distance;
ETAS ASCET-SE V6.4 | User Guide

178 | Understanding Generated Code
uint16 pwm_in2_index;
uint16 pwm_in2_offset;
uint16 pwm_in2_distance;

Initialization of data structures:

struct PIDT1_MOD_IMPL_pwm_in1_TYPE pwm_in1 =
{

4,
{

0, 4, 8, 12
}

};/*** pwm_in1 ***/
struct PIDT1_MOD_IMPL_pwm_in2_TYPE pwm_in2 =
{

3,
{

1, 2, 3
}

};/*** pwm_in2 ***/
struct PIDT1_MOD_IMPL_GKF1_TYPE GKF1 =
{

{
-5, -3, 0,
0, 1, 4,
8, 5, 4,
19, 7, 0

}
};/*** GKF1 ***/

Local group characteristic maps are defined and initialized as parts of nested data
structures.

The search for interpolation nodes is done separately for each interpolation node
distribution:

Distribution_search_u16(
(void *)&pwm_in1.dist,
(uint16)pwm_in1.size,
(uint16)xin,
(void *)&pwm_in1_index,
(void *)&pwm_in1_offset,
(void *)&pwm_in1_distance);

Distribution_search_u16(
(void *)&pwm_in2.dist,
(uint16)pwm_in2.size,
(uint16)yin,
(void *)&pwm_in2_index,
(void *)&pwm_in2_offset,
(void *)&pwm_in2_distance);
ETAS ASCET-SE V6.4 | User Guide

179 | Understanding Generated Code
The results of the search for interpolation nodes are stored in the intermediate
variables. After that, these results can be accessed with the help of special inter-
polation routines.

pwm_out
= GroupTable2_getAt_u16u16s16(

(void *)&GKF1,
pwm_in1_index,
pwm_in1_offset,
pwm_in1_distance,
(uint16)pwm_in1.size,
pwm_in2_index,
pwm_in2_offset,
pwm_in2_distance,
(uint16)pwm_in2.size);

14.3.2.9 Fixed Characteristic Lines and Maps
Fixed characteristic lines and maps have equidistant axis points, so there is no
need to store the axis points extensionally in a distribution array. Instead, the data
structure can store the intensional description based on the number of axis
points, the offset to the first point and the distance between points.

Tab. 14-5 Storage system – fixed characteristic line

Value Stored Description Number of Bytes
n (start address) No. of interpolation nodes 2 Byte
Xoff offset of the first interpola-

tion node
2 Byte

Xdist distance between interpola-
tion nodes

2 Byte

W1
characteristic values n*w bytes, increasing index...

Wn
ETAS ASCET-SE V6.4 | User Guide

180 | Understanding Generated Code
Tab. 14-6 Storage system – fixed characteristic map

The initialization of fixed characteristic lines/maps can be affected by the
Generating Sparse Arrays option; see section 14.3.2.4 "Optimized Initialization for
Arrays and Matrices" on page 164.

Fixed characteristic line – example:

The fixed characteristic line FKL1 has five interpolation nodes with the distance 2.
The offset of the first interpolation node is 0.

In the C code, the declaration for this exported characteristic line has the following
form (component header file <component>.h):

struct PIDT1_MOD_IMPL_FKL1_TYPE {
uint16 xSize;
sint16 xOffset;
uint16 xDistance;
sint16 values [5];

};
The definition and static initialization of the fixed characteristic line look like this:

const struct PIDT1_MOD_IMPL_FKL1_TYPE FKL1 =
{

5,
0,
2,

Value Stored Description Number of Bytes
n (start address) No. of X interpolation nodes 2 Byte
m (start address) No. of Y interpolation nodes 2 Byte
Xoff offset of the first X interpola-

tion node
2 Byte

Xdist distance between X interpola-
tion nodes

2 Byte

Yoff offset of the first Y interpola-
tion node

2 Byte

Ydist distance between Y interpola-
tion nodes

2 Byte

W1,1
characteristic values

(n*m)*w bytes, column-
major ordering (Y index m
increases faster than X
index n)

...
Wn,m
ETAS ASCET-SE V6.4 | User Guide

181 | Understanding Generated Code
{
0, 1, 2, 3, 4

}
};/*** FKL1 ***/

Local fixed characteristic lines are defined and initialized as parts of nested data
structures.

Fixed characteristic lines and maps can be evaluated by direct calculations of indi-
ces, without special subroutines (search routines), because they have constant
and equidistant interpolation nodes. In the example, the C code has the following
form:

pwm_out = CharTableFixed1_getAt_s16s16(&FKL1,xin);

Fixed characteristic map – example:

The fixed characteristic map FKF1 has four interpolation nodes on the x-axis and
five on the y-axis. The X interpolation nodes have an offset of 2 and a distance of 2,
The Y interpolation nodes have an offset of -3 and a distance of 3.

In the C code, the declaration for this exported characteristic map has the follow-
ing form (component header file <component>.h):

struct PIDT1_MOD_IMPL_FKF1_TYPE {
uint16 xSize;
uint16 ySize;
sint16 xOffset;
sint16 yOffset;
uint16 xDistance;
uint16 yDistance;
sint16 values [4 * 5];

};
The definition and static initialization of this global fixed characteristic map look
like this:

const struct PIDT1_MOD_IMPL_FKF1_TYPE FKF1 =
{

4,
5,
2,
-3,
2,
3,
{

23, 23, 24, 25, 26,
23, 15, 16, 17, 18,
23, 7, 8, 9, 10,
ETAS ASCET-SE V6.4 | User Guide

182 | Understanding Generated Code
23, -1, 0, 1, 2
}

};/*** FKF1 ***/
Local fixed characteristic maps are defined and initialized as parts of nested data
structures.

The call in the C code has the following form:

pwm_out =
CharTableFixed2_getAt_s16s16s16(&FKL1,xin,yin);

14.3.3 Data Structures and Initialization for Complex (User-Defined)
Objects

14.3.3.1 Classes
A C structure is defined for each user-defined class. It contains the instance vari-
ables of the classes, ordered in terms of memory classes. The name of the struc-
ture is the C name of the class (class + implementation name; see also section
14.3.1 "Naming Conventions"). For each memory class, an individual structure is
generated and referenced. All instance variables can be accessed directly via this
structure. There are no exceptions. From the PID controller example, the structure
definition for the class PIDT1 is:

struct PIDT1_IMPL_RAM_SUBSTRUCT {
sint16 temp_1;
sint16 temp_2;

};
struct PIDT1_IMPL {

struct PIDT1_IMPL_RAM_SUBSTRUCT *PIDT1_IMPL_RAM;
sint16 memory_D_term;
sint16 D_term;
sint16 P_term;
sint16 I_term;

};
An instance of a user-defined class is created in the C code by creating a structure
with the type of the class PIDT1_IMPL.

To access class instance variables in methods, you can usually directly access the
values stored in the structure. However, this is not so when multiple instances of
the same class are allowed. In this case, an additional receiver argument (self
pointer) is used. This way, the same code for the method can be used for all
instances of the class. Again using the PIDT1 class as an example, the call for the
compute method looks like the following:

void PIDT1_IMPL_compute (const struct PIDT1_IMPL
*self, sint16 in, uint16 K,
uint16 Tv, uint16 Ti, uint16 Td) {
sint32 _t1sint32;
sint16 _t1sint16;
ETAS ASCET-SE V6.4 | User Guide

183 | Understanding Generated Code
...(the rest of code for method "compute")

};

Prototype Classes

- encapsulation of extern declarations with define
- no function bodies

- no local data structures

Service Routines

- no function bodies

- local data structures

- special naming convention

14.3.3.2 Modules
Modules are treated like classes by the code generator. In addition, each module
contains the root for its so-called instance tree, the nested data structure for all
local elements located in the module’s hierarchical element structure.

Only one instance can be defined for each module. It is therefore possible to
directly access all instance variables and parameters of the module. Different from
classes, a self pointer is not required. Processes are implemented as void-void
functions. The normal process in PIDT1_MOD looks like this (with most of the
code left out):

void PIDT1_MOD_IMPL_normal (void) {
...
PIDT1_MOD_IMPL_TP_cmd_d =

CharTable1_getAt_s16u16((CharTable1*)&
(PIDT1_MOD_IMPL_Cmd_pct2deg),
(sint16)_t1sint16);

...(the rest of code for process "normal")

};

14.3.3.3 Boolean Tables
Boolean tables are treated like classes during code generation. They are special
only in so far that they may not include parameters.

The logical dependencies defined in the table are converted into sequences of
logical operators, as shown in the following example:

NOTE
The receiver is omitted if only one instance is used per class. The respective
components are determined in the global analysis.
The optimization of the self pointer can be switched off in the class implementa-
tion editor.
ETAS ASCET-SE V6.4 | User Guide

184 | Understanding Generated Code
sint8 CLASS_BOOLTAB_Y1
(struct CLASS_BOOLTAB_Obj *self)

{
return ((sint8) ((

((!_X1) && _X2)
|| (_X1 && (!_X2)))
|| ((_X1 && _X2)

&& _X3)));
}

14.3.3.4 Conditional Tables
Conditional tables are transformed into ESDL classes internally and processed by
the code generation accordingly. See the ASCET online help for a description of
their functionality.

14.3.4 Local Variables and Parameters
Local elements are realized in the code as parts of data structures (see
section 14.3.2 on page 158). In the generated code, these elements are accessed
via the path name provided by their respective data structure. To increase the
readability of the generated code, the complex hierarchical names are mapped to
simple names via preprocessor definitions.

Example:

#define _a ModuleA_IRAM.Class.a
#define _b ModuleA_IRAM.Class.b
...
void CLASS_IMPL_calc (void)
{

_a = _b;
}

14.3.5 Variant-Coded Data Structures
Variant management is an important topic for ASCET users. It is added to the
model by defining so-called system constants. The value of a system constant
can be resolved either at generation time or at compile time. To work with variant-
coded data structures, system constants have to be resolved at compile time.

You can select the resolution time in the target options of your target; see A in
Fig. 14-5. If you set the "Resolve System Constants" option to Compile Time, a
system constant is generated as a preprocessor #define directive, and condi-
tional execution of code is generated using #if..#elif..#else..#endif
directives.

The data structures are affected in two ways:

- If an element is only used for a specific variant, the definition of that element
in the data structures can also be conditional.
ETAS ASCET-SE V6.4 | User Guide

185 | Understanding Generated Code
- If the size of an array or matrix is defined by a system constant, the declara-
tion uses the value of the system constant. See also section 14.3.2 "Storage
Systems, Data Structures, Initialization of Primitive Objects" on page 158.

The conditional definition of an element needs to be enabled by activating the
Variant Coded Data Structures option in the settings of the target used for code
generation; see B in Fig. 14-5.

Fig. 14-5 Target-specific Build options

With activated Variant Coded Data Structures, the code generator analyzes for
each element or method/process:

- For which variant is the element used in each method?

- For which variant is each method/process called?

The code generator then combines all those conditions for each element in the
complete project and uses them for the declaration of the data structures. This
means that the definition of a single element can be conditional, or the declaration
of a complete structure can be conditional. In addition, the functions are also
declared and defined conditionally.

In the following example, a module M contains two elements a and b, where b is
only used for one variant connected to the system constant SY. The defined data
structures in the header are as follows:

struct M_IMPL_RAM_SUBSTRUCT {
real64 a; /* min=-oo, max=+oo, ident, limit=yes */
#if (SY) /* b */

real64 b; /* min=-oo, max=+oo, ident, limit=yes */
#endif /* b */

};

A

B

ETAS ASCET-SE V6.4 | User Guide

186 | Understanding Generated Code
The initialization of the structure is also conditional:

struct M_IMPL_RAM_SUBSTRUCT M_RAM = {
/* struct element:'M_RAM.a' (modeled as:'a.M') */
0.0,

#if (SY) /* b */
/* struct element:'M_RAM.b' (modeled as:'b.M') */
0.0

#endif
};

The combination of conditions can lead to the situation that a system constant is
used in a component where it is not defined in the model. To avoid the resulting
#include dependencies, a special header file, named sysconsts.h, is gener-
ated for all system constants. All system constants are defined lazily in this file as
usual:

/* system constant 'SY' */
#ifndef SY
#define SY false

/* min=0, max=1, Identity, limit=yes */
#endif

You can change the name of this file in the target settings of your target, "Filename
Templates" node, "system constant file" option.

Fig. 14-6 Target-specific Filename Templates
ETAS ASCET-SE V6.4 | User Guide

187 | Understanding Generated Code
The conditional data structures have the following restrictions:

- The argument list of a function is not changed, even if an argument is
unused. If the argument type is a structure, then the structure also must be
defined.

- The C language does not allow empty structure definitions. If the situation
occurs that a structure may be empty, but is still used, a dummy element is
defined in the structure. This can, e.g., occur if a structure is used as an
argument (see above).

- ASCET assumes that methods of C code classes and modules, classes with
service routine (cf. section 4.2.2) or prototype (cf. section 4.2.3) implemen-
tation, and externally defined records (cf. section 4.3), always use all ele-
ments and their defined methods.

In addition, there are the following diagnostics:

- An info IMdl570 is reported if an element is never used, e.g., if the usage is
enclosed in contradicting conditions.

- An info IMdl571 is reported if a method, process or runnable is never used,
e.g., if the calls are enclosed in contradicting conditions,

- A warning WMdl570 is reported if a structure is used even if it may be empty.

14.3.6 Exported and Imported Variables
Exported variables and messages are implemented as global C variables defined in
the code of the exporting module.

In ASCET, exported variables are commonly referred to as class variables in the
sense that they only exist once for all instances of a class.

An imported variable is accomplished by using its global C-variable name directly in
the importing module's generated code. To do so, the variable is declared as
external in the header of the importing module. The code for the importing mod-
ule thus has a direct reference into the exporting module code, and is therefore
not completely modular at this point. A pointer assignment for the linkage, as in the
simulation code, does not exist.

Also in this case, the element names are mapped via preprocessor definitions.

14.3.7 Method Declarations and Calls
A method's C name results from concatenating the class identifier and method
name with an underscore in between:

classIdentifier_methodName()
The C name of a method's formal argument agrees with the model name:

NOTE
After changes, such as renaming or converting of exported variables, the user
needs to explicitly regenerate the entire model in the export/import structure.
This is achieved by choosing Build > Touch > Recursive prior to code genera-
tion.
ETAS ASCET-SE V6.4 | User Guide

188 | Understanding Generated Code
returnType classIdentifier_methodName(argType1
argName1, argType2 argName2)

The passing of parameters, such as arguments and return values, depends on
whether the type is a value or a pointer.

- Scalar and Boolean parameters are passed directly as value of the corre-
sponding implementation type.

- Characteristic lines and maps pass a pointer to the structure of the charac-
teristic line/map.

- Arrays and Matrices pass a pointer to the first element.

- Complex objects pass a pointer to the corresponding class structure.

This corresponds with the semantics which is generally defined in ASCET, and
which also holds in the physical experiment: scalar and Boolean parameters are
passed by value, all other types by reference.

To handle multiple instances correctly, an additional parameter with the C name
self is inserted into the first location of the parameter list. A pointer to the
receiver of the method call or its instance variable structure is passed in this
parameter. This parameter is eliminated in the following cases where it is not
needed:

- Processes of modules because they can have only one instance.

- Methods of classes without instance variables because in this case the
receiver is irrelevant.

However, the generation of this parameter can be forced by means of the respec-
tive setting in the implementation editor of a class.

As an example, the out method in the PIDT1 class has the form:

sint16 PIDT1_IMPL_out
(const struct PIDT1_IMPL *self);

14.3.8 Constants and Literals
Literals are represented as such, namely literals, in the C code. They are trans-
formed depending on the implementation context when needed. The same holds
true for constants. Both cannot be implemented. In addition, constants are cre-
ated in the C code using #define.

Example:

The constant used in the example is represented in the generated C code as fol-
lows:

/**** constants defined by module MOD_IMPL ****/
#ifndef MOD_IMPL_X
#define MOD_IMPL_X 2.0
#endif
ETAS ASCET-SE V6.4 | User Guide

189 | Understanding Generated Code
The following code is generated for the example:

void MOD_IMPL_process (void) {
dist = ((dist + (sint16)2));
/* min=-10, max=10, hex=1phys+0 */
/* end of process MOD_IMPL_process */

Constants created as global elements are generated without the appended proj-
ect and implementation names, according to the naming convention for other
global elements.

Example:

/**** exported constant ****/
#ifndef X_GLOBAL
#define X_GLOBAL 5.0
#endif

The generated code is equivalent to that for a local constant:

void MOD_IMPL_process (void) {
output = ((dist + (sint16)5));
/* min=-20, max=20, hex=1phys+0 */
/* end of process MOD_IMPL_process */

14.3.9 System Constants
System constants are created in the C code via #define, and used symbolically.
They can be implemented. In the following example, the system constant was cre-
ated with a quantization of 1/2.

The following code is generated for the definition of the system constant:

#ifndef MOD_IMPL_SYS_C
#define MOD_IMPL_SYS_C 2
#endif

The system constant is used symbolically in the function definition:

void MOD_IMPL_process (void) {
dist = ((((sint16)MOD_IMPL_SYS_C << 1) + dist));
/* min=-10, max=10, hex=1phys+0 */
/* end of process MOD_IMPL_process */

System constants created as global elements are generated without the
appended project and implementation names, like global constants (see
page 189). The names are generated in capital letters in each case. ASCET model
names are adapted, if necessary.
ETAS ASCET-SE V6.4 | User Guide

190 | Understanding Generated Code
14.3.10 Virtual Parameters
Virtual parameters are parameters that do not exist physically in the control unit
memory. Instead, they can be used to define real (i.e., non-virtual) dependent
parameters. In combination with a calibration system supporting this mechanism
(e.g., INCA), it is then sufficient to calibrate a virtual parameter in order to affect
several real parameters at the same time.

Example: Suppose the radius of a wheel is defined as a virtual parameter. There-
fore, it cannot be used in the ASCET model directly. The diameter and circumfer-
ence of the wheel are defined as parameters dependent on the radius, and they
are used in various locations of the model.

For the use of virtual parameters, a separate memory class VIRT_PARAM is defined
in the memorySections.xml file. All parameters defined as virtual are assigned to
this memory class.

When creating the C structure for a class or module, a separate substructure for
virtual parameters is created for the memory class, the same as for all other mem-
ory classes (see section “Classes” on page 182). Unlike the substructures for nor-
mal memory classes, this substructure is not referenced in the main structure
(MOD_IMPL).

struct MOD_IMPL_IRAM_SUBSTRUCT {
uint16 cont;

};
struct MOD_IMPL_VIRTPAR_SUBSTRUCT {

uint16 radius;
};

struct MOD_IMPL {
struct MOD_IMPL_IRAM_SUBSTRUCT *MOD_IMPL_IRAM;
uint16 diameter;

};
The reason for this special treatment is because the memory area for virtual
parameters is allocated physically outside of the control unit memory. Conse-
quently, it may not be referenced by the code. To achieve this, the memory config-
uration simply specifies a memory area that does not exist in the control unit (see
also chapter 2.3.5 "Memory Class Configuration").

14.3.11 Dependent Parameters
Regarding the generated code, dependent parameters do not differ from normal
parameters. However, their initialization value is not specified directly by the user,
but determined indirectly by the code generator due to the defined dependency.
Beyond that, the dependency is not reflected in any other way in the code. It is
included in the ASAM-MCD-2MC file where it is used by the calibration system.

NOTE
Virtual parameters cannot be used directly in the ASCET model, because they do
not physically exist in the control unit.
ETAS ASCET-SE V6.4 | User Guide

191 | Understanding Generated Code
14.4 Real-Time Constructs

14.4.1 Tasks
Task are ordered collections of processes that can be activated by the application
or the operating system. The activation of a task does not imply its immediate exe-
cution. The start of the task, i.e. the beginning of its execution, is scheduled by the
operating system. Attributes of a task are e.g. its operating modes, its activation
trigger, its priority and the mode of scheduling. On activation the processes of a
task are executed in the given order.

For OSEK operating systems, tasks are marked in C source code using the TASK()
macro. The expansion of this macro is OS-vendor dependent. It ensures that the
task body can be called in the correct way by your OS.

ASCET and ASCET-SE support the following task scheduling modes:

- Alarm tasks

- Interrupt tasks

- Software tasks

- Init tasks

Only one Init task may exist for each application mode.

14.4.2 Processes
Processes are concurrently executable pieces of functionality. Processes are
mapped into tasks, i.e. a task can call a sequence of processes.

Processes have no arguments or return value. For all targets (including ANSI C),
processes are generated as void/void functions, as the following simple exam-
ple shows:

void MOD_IMPL_process (void) {
CL_IMPL_calc();

}
The only purpose of this example process is to call method calc from the class CL.

14.4.3 Messages
Messages should be used to ensure data consistency at any time during the pro-
gram execution under real-time conditions. The use of "normal" global variables
bears the risk of data inconsistency if, for example, a variable may be changed
during its use in a process because another process with higher priority accesses
the same entity.

When using messages, message copies are generated in all required cases as a
result of the global analysis. This does not require any user intervention.
ETAS ASCET-SE V6.4 | User Guide

192 | Understanding Generated Code
The user should ensure, however, that each message is sent by one process only.
If different processes write to the same message in a real time environment, there
is no deterministic way to define from which sender a receiver will receive the mes-
sage.

As the default optimization of message copies is not suited for all applications, the
message handling can be configured extensively by the user. Four different vari-
ants exist.

14.4.3.1 Selection of Message Copy Variants at Compilation Time
The codegen[_*].ini files can be configured so that all supported message
copy variants are generated in C code at once (modularMessageUse=true).
Each variant is separated in generated code by pre-compiler directives #if ...
#endif.

This allows you to choose the message copy variant at compilation time (rather
than at code generation time).

The choice of message copy variant is made by defining the C macro __MESSAGES
that can be included in the user-defined header file message_scheme.h or
defined in the compiler options (see make variable PROJECT_DEFINES in
project_settings.mk).

The following options are available:

- Optimize message copies (default):

Messages copies are optimized by exploiting knowledge about the operat-
ing system’s priority scheme. This variant is enabled by the C macro defini-
tion:

#define __MESSAGES __OPT_COPY
Prerequisite: For this message copy variant, it is essential that ASCET knows
the priorities of every Task and ISR in the OS that uses messages. If this
information is not complete then the generated code for message copies
can be erroneous and there is a risk of data corruption at runtime.

- No message copies:

Messages are used like global variables in this case. No copies are gener-
ated. This variant is enabled by the C macro definition:

NOTE
The optimization of message copies is based on the priority scheme of an OSEK
operating system. Therefore, it must be ensured that ASCET knows all tasks
used on your ECU, and their priorities.

If this cannot be ensured – because, e.g., the operating system you use is not
OSEK compliant, or messages are accessed from outside (hand-coded
sources) –, it cannot be ensured that the optimization of message copies is per-
formed an appropriate way. This may even endanger the safety of the generated
code. It is highly recommended to switch message optimization off in these
cases.
ETAS ASCET-SE V6.4 | User Guide

193 | Understanding Generated Code
#define __MESSAGES __NO_COPY

- No message optimization (always copy the message):
Messages are always copied. This variant is enabled by the C macro defini-
tion:

#define __MESSAGES __NON_OPT_COPY
In this case, no optimization takes place. This variant is most flexible and can
be used even if ASCET does not know the whole OS configuration ("Addi-
tional Programmer" use case).

- Use OSEK COM:
Use OSEK COM for message communication. This is only possible if the the
operating system supports OSEK-COM messaging. This variant is enabled
by the C macro definition:

#define __MESSAGES __OSEK_COM
OSEK_COM assumes that all messages and their copies are defined by the
underlying OSEK operating system. The OSEK-COM1) API calls
ReceiveMessage() and SendMessage() are used to access current val-
ues of messages before and after each process respectively.

14.4.3.2 Selection of Message Copy Variant at Generation Time
If only one specific message copy variant shall be generated, the
codegen[_*].ini option modularMessageUse must be set to false. Addition-
ally, the option messageUsageVariant must be defined to specify the required
message copy variant (see descriptions in codegen_ecco.ini for more informa-
tion). In this case, C code will be generated only for the specified message copy
variant, so there is no need to define the compiler macro __MESSAGES.

14.4.4 Resources
The resources are protected by the OSEK operating system mechanisms
GetResource and ReleaseResource. The code is suited for the use with other
operating systems or in combination with handcoded sources without restric-
tions.

RTA-OSEK supports the OSEK resource RES_SCHEDULER (see OSEK specifica-
tion). The ceiling priority of this resource corresponds with the OS scheduler prior-
ity. In ASCET, this resource can be used only in C code. To do so, you first have to
define the resource in the C code module by clicking the button Resource ()
and name the resource e.g., RES_SCHEDULER).

You can then access the resource in the C code editor via the corresponding
ASCET macros, e.g.,

NOTE
If messages are accessed in methods in modules, only __OPT_COPY and
__NO_COPY are available. Other optimizations are not yet supported.

1) OSEK Communication Specification
ETAS ASCET-SE V6.4 | User Guide

194 | Understanding Generated Code
ASD_RESERVE(RES_SCHEDULER);
/* user code */
...

ASD_RELEASE(RES_SCHEDULER)
The code generated by ASCET will then look like this:

...
DeclareResource(RES_SCHEDULER);
...
void process(void)

{
...
GetResource(RES_SCHEDULER);
/* user code */
...
ReleaseResource(RES_SCHEDULER);
...

}

14.4.5 Application Modes
Application modes are designed to support different runtime configurations of the
whole system at different times. This allows an easy and flexible design and a man-
agement of system states with completely different function. Examples of such
modes are Startup, Normal Operating Mode, Shutdown, Diagnosis and EEPROM
Programming. Each application mode can be defined with its individual tasks, prior-
ities, timer configuration etc.

ASCET supports OSEK OS’s application mode concept. The application mode
required is passed as a parameter to the OS’s StartOS() API call. Control of
modes and mode switching is outside the scope of ASCET.

When integrating ASCET with RTA-OSEK V5.x is possible to re-start the OS in a dif-
ferent application mode. However, such functionality is not part of the OSEK OS
standard and may not be supported by other implementations of OSEK OS.
ETAS ASCET-SE V6.4 | User Guide

195 | Inside ASCET-SE
15 Inside ASCET-SE
This chapter provides an overview of the key parts of the ASCET-SE code genera-
tor. It describes the process by which an ASCET model is converted to an execut-
able program when the Build > Compile / Build All / Rebuild All menu options are
selected.

This is background material for the interested reader. It is not necessary to read
this chapter in order to work successfully with ASCET-SE.

Fig. 15-1 Structure of the program generation process for ASCET-SE

Code generation in ASCET-SE is similar to compilation and has two phases.

RTA-OSEK
[or other OS tool]

.h,.c

Intermediate
code

conf.oil

temp.oil

OSEK OIL file
defining
objects
generated by
ASCET code

Base OS configuration
OS objects for ASCET
Other OS objects

.h,.c
rtk_*.<lib>

ASCET-SE

BD ESDL SM CASCET model
BD: Block Diagrams
ESDL: Embedded
Systems Development
Language
SM: State Machines
C: C code

generate.mk

Expander

ECCO

*.h.pl
*.c.pl

Controls

.h,.cpostGenerateHook

Executable

*.o

User provided C compiler

User provided linker

compile.mk

build.mk

Controls

Controls

postCompileHook

postBuildHook
ETAS ASCET-SE V6.4 | User Guide

196 | Inside ASCET-SE
A Expander

In the first phase, a "front-end" called the expander converts the ASCET
model specified in the block diagrams, ESDL and C code editors into inter-
mediate code. During this phase, the physical model is transformed into the
quantized model. Each module and each class are treated separately, and
optimizations are done locally.

The expander writes the ASCET data model into the CGen directory on the
hard disk. Each module specified in ASCET is expanded into three files: the
database with the extension *.db, a header file with the extension *.h.pl,
and the C file with the extension *.c.pl.

B ECCO

In the second phase, a "back end" called ECCO (Embedded Code Creator
and Optimizer) uses its global view of the ASCET project to do extensive
global optimization and then converts the intermediate code into C code,
adding any target compiler intrinsics (e.g. pragmas to place code into mem-
ory sections) required for the target microcontroller. ECCO uses a set of
code production rules (CPRs) to do the conversion. These CPRs can be
modified, within certain restrictions, to adapt the code generation to chang-
ing requirements.

The generation process is controlled by the generate.mk and makefile
files. The latter is generated automatically by ASCET for the individual steps
of code generation.

An OSEK OIL file, temp.oil, is created and RTA-OSEK is invoked on a basic
OS configuration called confVx.y.oil to generate the OS data structures.

Building the executable from the generated code needs two additional phases
that are managed by ASCET-SE:

C Compile

The C source and header files generated by ECCO and RTA-OSEK are com-
piled by the target-specific compiler. This process is controlled by ASCET
using several make files. ASCET makefiles have a .mk extension, e.g.
project_settings.mk and target_settings.mk. The makefile file
itself is generated by ASCET and contains all paths the user has entered via
the user interface, as well as an include command for the compile.mk file.
The following is an excerpt from the makefile file, using the MPC56x with
RTA-OSEK as example:

path definitions
P_TGROOT = C:\etas\ascet6.4\target
P_TARGET = c:\etas\ascet6.4\target\trg_mpc56x
...
P_CCROOT = c:\compiler\WindRiverV5.6.x
...
phase definition
include $(P_TARGET)\compile.mk

As a consequence of the "Smart-Compile" optimization, many different files
are generated and used during the compile phase. As a result, a set of object
files is created.
ETAS ASCET-SE V6.4 | User Guide

197 | Inside ASCET-SE
D Build

The compiled files are now linked to an executable program. This process is
controlled by the build.mk file and the specific makefile, as well as
project_settings.mk and target_settings.mk. As a result, the user
receives an executable program.

15.1 Structure of the Code Generator
The code generation subsystem has a layered structure. The tasks of the individ-
ual layers are discussed briefly in the following sections.

15.1.1 Front-End Transformation
A respective front-end conversion exists for each different type of specification
(i.e., block diagram, state machine, ESDL). Here, the specification is analyzed syn-
tactically. For example, a check is made to determine whether or not all necessary
ports on a block were connected during graphical input. For ESDL, a parser is used.
If the specification is syntactically correct, the front-end converts these files into
the so-called MDL format.

C code modules, in which the user works directly on the implementation layer, form
an exception in the specification. C code, in this case, is entered manually for the
respective target. Because of this special position, C code modules are not
important for the code generation. These are discussed later in this document.

15.1.2 MDL and MDL Builder
The MDL (method definition language) is an intermediate format, invisible to the
user, which is used internally to represent all the specification types uniformly.
MDL offers an object-based view. Classes and methods can be declared and
defined. In addition, MDL has elements to represent real-time behavior, i.e. pro-
cesses, messages, etc. Algorithms are still represented physically, without target
dependence. User-specific quantizations (e.g., re-scaling with correction factors)
occur later in the generation process. However, all elements (e.g., variables,
method arguments) are detailed with the available implementation information in
this format.

15.1.2.1 Semantic Analysis
In the MDL builder, also a general semantic analysis occurs. After this, a special
analysis takes place for the implementation code generation. The mathematical
expressions are analyzed semantically according to a stack-based mode of oper-
ation. The following additional checks are performed:

- Usage of non-linear conversion formulas? If yes: error message.

- Illegal mixture of floating point and integer entities? If yes: error message.

- Maximum bit width exceeded in an implementation specified by the user? If
yes: error message.

- For division, does the physical interval of the denominator contain zero? If
yes: error message.
ETAS ASCET-SE V6.4 | User Guide

198 | Inside ASCET-SE
- For assignments, does the physical interval of the assigned expression fit in
the physical destination interval of the variables to which it is assigned? If
no: warning. In this case, the generation of limiters is strongly recom-
mended.

15.1.2.2 Collecting Optimization Data
After the semantic analysis, additional information (e.g. scaling factors, intervals)
is calculated during the setup of the MDL tree. This data is used to optimize the
transformation of the arithmetic and is stored with each node in the MDL tree.

Computation of physical intervals for intermediate results: The user specifies
intervals for all variables, parameters, method arguments and return values. How-
ever, for the intermediate results found in mathematical expressions, the range of
values must be computed using interval arithmetic.

Computation of optimization data: To balance the precision and efficiency of the
generated code, a skillful choice of quantizations for the intermediate results is
important. For each operation in a mathematical expression, a list of optimal scales
is created which are based on minimizing the number of re-quantization opera-
tions. The optimization data serves as a decision base in the generation phase.

15.1.3 Code Generator
The code generator maps the object-oriented structure of the MDL to a function-
oriented structure. This contains simpler language features that are more akin
to C.

The code generator is still independent of the target. A distinction is made, how-
ever, between experimental targets and electronic control unit targets because
special optimizations are carried out for electronic control unit targets which are
required even at this layer.

In ASCET, several different code generators are available for selection. They differ
mostly in the method of arithmetic conversion. The code generators correspond
to the phases of an integrated development. The first three phases are executed
with experimental targets. The last phase corresponds to the work with a specific
microcontroller target.

- Physical experiment produces physical entities and floating-point arithme-
tic (without quantizations). For this code generator, no implementation
information is required.

- Quantized physical experiment produces a physical simulation with quanti-
zations. Floating-point arithmetic is used, but value ranges and quantiza-
tions can be indicated for any entity. Implementations may be partially
specified and can be changed at run-time.

- Implementation experiment produces a simulation on the implementation
layer. All implementations (e.g., data types, conversion formula, etc.) must
be specified (as needed later in the Controller Implementation). Algorithms
are transformed automatically into fixed-point arithmetic of the target sys-
tem.
ETAS ASCET-SE V6.4 | User Guide

199 | Inside ASCET-SE
- Object based controller implementation performs additional optimizations
for the electronic control unit (e.g., imported entities are directly refer-
enced). Name conventions are converted differently. Here, names are used
instead of data base IDs. The generation of fixed-point arithmetic is identi-
cal to that of the implementation experiment, which ensures the same
behavior.

All ASCET-SE targets are only capable of an object-based controller imple-
mentation, i.e. the object structures selected in the model are mapped in
the controller software.

- Object based controller physical produces floating-point arithmetics with
additional optimizations for the electronic control unit.

This code generator is mandatory for code generation with mixed physical
implementation; see the ASCET online help for details.

For an ASCET module, code can be generated and simulated without project con-
text only in the physical experiment. For the other code generators the module
must be integrated into a project. This is the only way to access the implementa-
tion information. Without project context, the conversion formulas as well as all
implementations of imported entities are missing.

15.1.3.1 Expander
The expander creates a target-independent intermediate code (*.pl files),
which is used for the generation of the final, target-specific C code. It creates the
desired software architecture. A substantial task of the expander is transforming
the physical/mathematical expressions in the MDL into concrete calculations
appearing later in the C code. It is directed by the code generator, using a stan-
dardized internal interface. The user can therefore select the expander inde-
pendently of the code generator.

Unlike the MDL Builder, the expander is function oriented. The MDL tree is tra-
versed from top to bottom recursively, in order to generate intermediate code for
the individual operations that correspond to the nodes in the MDL tree. At first,
code generation for individual operations is executed using basic principles in a
local context, i.e. for that operation only. Then, using the value intervals and opti-
mization data calculated during the semantic analysis, optimal code is generated
for each entire mathematical expression.

The expander works on the implementation layer, i.e., it uses C data types instead
of physical representations.

15.1.3.2 ECCO
Finally, the intermediate code generated by the expander is translated into exe-
cutable C code by ECCO.

15.2 Code Administration
The administration systems described below are not directly part of the code
generation subsystem. They aid the code generator and allow permanent, safe
storage of automatically generated and handwritten code.
ETAS ASCET-SE V6.4 | User Guide

200 | Inside ASCET-SE
15.2.1 Make Mechanism
The Make mechanism performs the task of creating an up-to-date and consistent
code version for a module. Due to modularity, the turn-around times are minimized
after model changes, because code is regenerated and compiled for as few mod-
ules as possible. The Make mechanism creates a dependency network from the
ASCET data model. The time stamps of each module in this network are analyzed
to determine which modules must be regenerated.

Unfortunately, the time stamps are not always sufficient to decide whether regen-
eration is necessary. Regeneration is not required with every change in the time
stamp, but this cannot be recognized automatically.

As a result, the Make mechanism is optimized for physical experiment code gener-
ation. Emphasis is given to achieving short turn-around times. In individual cases,
too many modules or, in rare cases, too few modules get regenerated. Users
should therefore select Build > Touch > Recursive after larger modifications to
the model structure (e.g., creation/deletion of variables/methods, or changing
exported/imported variables) before generating new code.

15.2.2 Code Manager
The code manager acts internally as the central interface for code generation and
storage. Through this interface, all other subsystems communicate demands for
code generation, the Make mechanism, and code storage. Some example func-
tions controlled by this interface are:

- Generating source code for a component (by selecting Build >
Generate Code).

- Generating the executable (by selecting Build > Build, the code is gener-
ated, compiled, linked and stored in the ASCET database or workspace).

- Loading code into the target (e.g., by selecting Build > Experiment).

- Saving source code to files (by selecting File > Export > Generated Code >
*). This option is only available, if the code has been stored to the database/
workspace before.

- Executing a "Touch" (by selecting Build > Touch > * the time stamp is
updated, specifically for the Make mechanism).

Code management ensures permanent, safe storage in the ASCET database/
workspace of software-generated and handwritten code. For any ASCET compo-
nent (i.e. module, state machine, class, etc.), several code variants may simultane-
ously be stored in the database/workspace as separate entities.

A code variant is essentially based on the target, code generator, and expander
selection in the code generation settings.

NOTE
As the target and expander are chosen in relation to each other, the target and
code generator suffice to identify a code variant.
ETAS ASCET-SE V6.4 | User Guide

201 | Inside ASCET-SE
Therefore, if one of these selections is changed at any time, a new variant will be
created and stored separately. Conversely, any time one of the other code gener-
ation options (e.g., protected division) is changed, the code of the existing variant
is overwritten with the altered form.

When a code generator that does not allow different implementations is selected
(e.g., "Physical Experiment"), system-generated and handwritten code is stored
with the component.

When a code generator that allows different implementations has been selected,
system-generated and handwritten codes are stored in different locations. Gen-
erated code is stored with the project, since that is the only location where the
necessary data (i.e., formulas, global variables, etc.) are available for generation
with implementations. Handwritten code is, again, stored with the component of
the respective implementation.

15.3 Directory Structure of Code Production Rules
The code production rules (CPRs) are Perl programs that are stored in a directory
with the following structure:

Fig. 15-2 Directory structure of the CPRs

NOTE
"Physical Experiment" and "Object Based Controller Physical" are currently the
only code generators in ASCET for which this is the case.

CP Rules (Generation
Base)

General Code Generation Rules

bo_* Code generation adaptations for elements, types,
components, and executables.

custom (user-specific) User-defined rules for the code generation
ETAS ASCET-SE V6.4 | User Guide

202 | Inside ASCET-SE
The technical prerequisite for a re-use on the CPR level is based on the following
Perl feature:

For searching a function (Macro, CPR), Perl processes a list of directories that can
be passed at start-up. The search ends either when the first function with a
matching signature is found, or with an error message if no matching function is
found.

If the CPRs of each component contained in ASCET-SE are stored in individual
directories, and if the Perl interpreter, in the corresponding make file, is provided
with a directory list that follows the order "from special CPR to general CPR", a
superimposition of standard CPRs by user-specific CPRs, i.e. overwriting of the
standard functionality, is possible.

milieu Adaptation of the code generated by ECCO to the tar-
get
operating system configuration
CPU frequency, prescaler

oil OIL generation rules
os OS generation rules

CP Rules (Generation
Base)

General Code Generation Rules
ETAS ASCET-SE V6.4 | User Guide

203 | ASCET-SE — Restrictions
16 ASCET-SE — Restrictions
This chapter describes what restrictions exist in the structure of the code gener-
ation and how these can be avoided. The known errors are also listed.

16.1 General Restrictions

16.1.1 Interval Arithmetic
The ranges for intermediate results in mathematical expressions are computed by
interval arithmetic. Functional relationships cannot be recognized in this; interme-
diate results are always computed as if all intervals arose from input variables inde-
pendent of each other. This can lead to unnecessarily large word lengths,
incorrectly detected overflows, and the corresponding unnecessary loss of
numerical precision. Another consequence can be the unnecessary generation of
code for limiters in a later assignment.

Example: x ∈ [9.0,99.0]. Then the expression x/(x+1) has the actual interval
of [0.9, 0.99], because x is in both the numerator and denominator. If, on the
other hand, the interval algorithm first calculates x+1, [10.0,100.0], the interval
for x/(x+1) is obtained from this by dividing the intervals: [9.0,99.0]/
[10.0,100.0]=[0.09,9.9]. This is two orders of magnitude larger than the
actual interval.

Therefore, when part of a larger expression, e.g., (x/(x+1))*y, this excessive
interval can cause an unnecessary right-shift in the immediate result (and possi-
bly even in y) in order to prevent a supposedly possible overflow. This can, in turn,
significantly worsen the numerical behavior of the system.

To avoid such effects, the range of the intermediate result can be explicitly speci-
fied using an additional variable, based on the known function dependence.

16.1.2 No Quantization for Literals
In rare cases, the automatic establishment of quantization of a literal according to
its context can lead to unsatisfactory results if the literal is thereby represented
too roughly. These cases are quite rare, however, and generally only occur for irra-
tional literal values.

The use of a parameter or an implemented temporary variable helps to alleviate the
problem.

16.1.3 ASCET Direct Access and Characteristic Lines/Maps
Direct access on a characteristic line or map in nested classes may lead to correct,
but inefficient code.

It is expected that the expression which delivers a characteristic line or map within
a call of the interpolation routine

CharTable2_getAt_s8s8s8(ASD_CHTBL_PTR(Two_D),
(sint8)1,(sint8)1);
is a simple expression. If not, correct, but inefficient code is generated if the opti-
mization options Optimize Direct Access Methods * are deactivated, e.g.,

ASD_INPL_CharTable2_getAt_s8s8s8(
ETAS ASCET-SE V6.4 | User Guide

204 | ASCET-SE — Restrictions
INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(
(struct MIDDLE_IMPL *)&self->Middle))).xSize,
(const sint8 *)
(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(
(struct MIDDLE_IMPL *)&self->Middle))).xDist),
INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(
(struct MIDDLE_IMPL *)&self->Middle))).ySize,
(const sint8 *)
(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(
(struct MIDDLE_IMPL *)&self->Middle))).yDist),
(const sint8 *)
(INNER_IMPL_getTwo_D((MIDDLE_IMPL_getInner(
(struct MIDDLE_IMPL *)&self->Middle))).values),
(sint8)1, (sint8)1) ;

Workaround: For performance optimization, it may be useful to use temporary
variables in a model if the getAt method of a characteristic line or map reference
shall be called, which was delivered via a method call:

res = Middle.Inner().Two_D().getAt(1,1);
In such a situation, a reference should be assigned to a temporary variable. Then,
the getAt method of the temporary variable is called.

_Two_D_REF = Middle.Inner().Two_D();
res = _Two_D_REF.getAt(1,1);
This results in a more efficient generated code:

_Two_D_REF = INNER_IMPL_getTwo_D(
(MIDDLE_IMPL_getInner((struct MIDDLE_IMPL *)
&self->Middle)));

ASD_INPL_CharTable2_getAt_s8s8s8(
_Two_D_REF->xSize,(const sint8 *)
_Two_D_REF->xDist,
_Two_D_REF->ySize,(const sint8 *)
_Two_D_REF->yDist,(const sint8 *)
_Two_D_REF->values,
(sint8)1, (sint8)1);

16.2 Restrictions in Using ASCET-SE

16.2.1 Inputs of Characteristic Lines and Maps
Restriction: Inputs of characteristic lines and maps must be static variables
(stored in RAM). In the ASCET-SE software architecture, these are exported or
imported class variables and also local instance variables of modules, but not
method arguments, method local variables, or instance variables of classes.
ETAS ASCET-SE V6.4 | User Guide

205 | ASCET-SE — Restrictions
Reason: Modern calibration systems and the ASAM-MCD-2MC format require (i.e.,
for display of operating point) the name and memory address of the input variable
which must be stored in static RAM cell (i.e. not on the stack) for every character-
istic line, etc. If an expression or a variable is used which is neither global nor visible,
rather than in a RAM location, then the characteristic line/map cannot be cali-
brated, or only with limitations.

Check: In the code generation, a warning indicates that the parameter is not cali-
bratable, if applicable.

Workaround: If necessary, insert an appropriate static intermediate variable (RAM
cell) in the model before the input of the characteristic line/map.

16.2.2 No Separate Search for Interpolation Nodes and Interpolation
Restriction: Separate processes to search for interpolation nodes and the inter-
polation itself are not possible for normal (individual) characteristic lines and
maps, i.e., the methods search and interpolate (extended interface of charac-
teristic lines and maps) can not be used.

Reason: Characteristic line objects are stored in static memory areas (ROM/
FLASH) in the controller and therefore cannot contain storage spaces. To make a
separate search for interpolation nodes possible, additional separate variables
would always have to be created in RAM in order to store the result of the search.
This is not performed for reasons of efficiency.

Check: A failure report is indicated during code generation when applicable.

16.2.3 No Choice for Interpolation Method
Restriction: Individual selection of different interpolation or extrapolation meth-
ods for characteristic lines and maps (rounded, linear) as in the simulation is not
possible. Interpolation and extrapolation behaviors are determined globally by the
interpolation routines used.

Reason: If the type of interpolation were to be individually selected for each char-
acteristic line, then it would be necessary either to provide separate routines for
each type of interpolation (i.e., greater amount of code), or to use a generic rou-
tine to which the interpolation type is passed as a switch when it is called (i.e.,
greater amount of code and longer running time). Thus, this is not provided in the
controller for reasons of efficiency.

Check: None. The interpolation routine provided (or supplied by the user) for the
respective combination of characteristic line/map type and data type is always
called.

16.2.4 Uniqueness of Component Names
Restriction: The names of components must be unique within the generated
code of a a project. Additionally, the project may not have the same name as a
component contained within it.

Reason: The C names of functions and variables in the controller code must be
readable and therefore contain the names of components. If two components in
the project have the same name, then this could cause a name conflict in the code
(compiler/linker error).
ETAS ASCET-SE V6.4 | User Guide

206 | ASCET-SE — Restrictions
Check: In the Make mechanism, a failure report is indicated when applicable.

Remedy
If you need to include components with identical names, but different locations in
the ASCET database/workspace, in your project, do the following:

Open the Project Properties window, go to the "Production Code" node and acti-
vate Use OID for Generation of Component Names. With that, the IDs of compo-
nents and implementations are used to create names in the generated C code,
and name clashes are avoided.

16.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic
Restriction: The make mechanism does not recognize all dependencies (e.g.,
changes of formulas, etc.) that, together with Implementation Experiment or
Controller Implementation, require a regeneration of the entire project or individ-
ual project parts. If it did, the entire project would have to be analyzed, which would
take about as much time as a complete regeneration.

Reason: The make mechanism for the Object Based Controller Implementation
works the same way as for the physical simulation. Some global side effects from
changes in the model are therefore not recognized.

Workaround: For changes with global effects, the user has to force a complete
regeneration of the project by selecting Component > Touch > Recursive. Thus,
the code consistency is put under the user's control.

16.3 Known Errors in the ASCET-SE Code Generation
The following errors are known for ASCET-SE. Only errors which are specially asso-
ciated with controller code generation via ASCET-SE are listed here. General
restrictions associated with ASCET are not given here.

16.3.1 Build Executable Code After Exiting ASCET
When you select Build > Build All, an executable program is generated in the tem-
porary ..\ascet6.4\cgen directory and stored into the ASCET database/work-
space. When the Keep files in Code Generation Directory option is deactivated
in the ASCET options (cf. ASCET online help), the content of the .\cgen\ direc-
tory is deleted whenever you exit your ASCET session. Retrospectively activating
the option has no effect for the running session.

The executable code is still in the database, but there is no way of reading it from
there. The workaround is, upon re-entering ASCET, to force a new compilation of a
component and relinking by selecting Build > Touch > Flat before rebuilding the
executable.
ETAS ASCET-SE V6.4 | User Guide

207 | Contact Information

ETAS ASCET-SE V6.4 | User Guide

17 Contact Information

Technical Support

ETAS Headquarters
ETAS GmbH

For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website:

www.etas.com/en/hotlines.php

ETAS offers trainings for its products:

www.etas.com/academy

Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com
https://www.etas.com/en/hotlines.php
https://www.etas.com/academy

208 | Glossary
Glossary

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems, with
the working groups Measuring, Calibration, Diagnosis

ASAM-MCD-2MC file

Standard exchange format for program descriptions for calibration purposes.

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-SE

ASCET Software Engineering – integration package for microcontroller targets;
allows the generation of an executable application for the target (control unit)
with ASCET.

AUTOSAR

Automotive Open System Architecture; see https://www.autosar.org/

BD

Block Diagram

BDE

Block Diagram Editor

BLOB

Binary large object, interface-specific description data provided in ASAM-
MCD-2MC files.

Class

A class is one of the component types in ASCET. Classes in ASCET are compa-
rable to object-oriented classes. The functionality of a class is described by
methods.

Code Generation

Code generation is the first step in the conversion of a physical model to exe-
cutable code. The physical model is transformed into ANSI C code. Since the
C code is partly compiler (and therefore target) dependent, different code for
each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Components
can be specified as classes, modules, or state machines. Each component is
built up of elements which are combined with operators to build up the func-
tionality.
ETAS ASCET-SE V6.4 | User Guide

https://www.autosar.org/

209 | Glossary
CPR

Code Production Rules

ECCO

Embedded Code Creator and Optimizer

ECU

Electronic Control Unit

ESDL

Embedded Software Description Language

ETK

Emulator test probe (German: Emulator-Testkopf)

Implementation

An implementation describes the transformation of the physical specification
(model) to executable fixed point code. An implementation consists of a (lin-
ear) transformation formula, a limiting interval for the model values, and further
information (as memory assignment) where necessary.

Implementation Cast

Element that provides the users the possibility to control the implementations
of intermediate results in arithmetic chains without changing the physical rep-
resentation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C programming
language, e.g. unsigned byte (uint8), signed word (sint16), float.

Implementation Types

Implementation types offer the user the possibility to define implementation
once at the center of the project, and assign them as often as needed.

INCA

INtegrated Calibration and Acquisition Systems

Literal

A literal is used in the descriptions of components. A literal contains a string
that is interpreted as a value, e.g. as a continuous or logical variable.

Memory class

A memory class is the name of the abstract memory area where a quantity is
placed later in the electronic control unit.

Message

A message is a real-time language construct in ASCET for protected data
exchange between concurrent processes.
ETAS ASCET-SE V6.4 | User Guide

210 | Glossary
Method

A method is part of the description of the functionality of a class in terms of
object-oriented programming. A method has arguments and one return value.

Module

A module is one of the component types in ASCET. It describes a number of pro-
cesses that can be activated by the operating system. A module cannot be
used as a subcomponent within other components.

NV

non-volatile

NVRAM

non-volatile RAM

OIL

OSEK Implementation Language

OS

Operating System

OSEK

Working group "open systems for electronics in automobiles" (German: Arbeit-
skreis Offene Systeme für die Elektronik im Kraftfahrzeug)

OSEK operating system

Operating system conforming to the OSEK standard.

Parameter

A parameter (characteristic value, curve, or map) is an element whose value
cannot be changed by the calculations executed in an ASCET model. It can,
however, be calibrated during an experiment.

Priority

Each OS task has a priority, represented by a number. The higher the number,
the higher the priority. The priority determines the order in which the tasks are
scheduled.

Process

A process is program function called from an operating system task. Processes
are specified in ASCET modules and do not have any arguments or return val-
ues. Inputs to and outputs from a process are handled by messages.

Project

A project describes an entire embedded software system. It contains compo-
nents which define the functionality, an operating system specification, and a
binding system which defines the communication.

RAM
ETAS ASCET-SE V6.4 | User Guide

211 | Glossary
Random Access Memory

Resource

A resource is used to model parts of an embedded system that can be used
only mutually exclusively, e.g. timers. When such a part is accessed, it has to be
reserved; after executing its task, it is released again. These reservations and
releases are done using resources.

ROM

Read Only Memory

RTE

AUTOSAR Run-Time Environment which provides the interface between soft-
ware components, basic software, and operating systems.

Scheduling

Scheduling is the assigning of processes to tasks, and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component) or
global (defined inside a project).

SM

State Machine

SWC

Atomic AUTOSAR software component; the smallest non-dividable software
unit in AUTOSAR.

Target

The hardware a program or an experiment runs on. In ASCET-SE, a target is spe-
cific to a combination of a microcontroller and compiler.

Task

A task is the entry point for functionality that is scheduled by an OS. Attributes
of a task are its priority, its mode of scheduling and its operating mode. The
functionality of a task in ASCET-SE is defined by a collection of processes.
When a task runs the processes of a task are executed in the specified order.

Trigger

A trigger activates the execution of a task (in the scope of the operating sys-
tem) or a state machine action.

Type

In an ASCET model, variables and parameters can have various types: cont
(continuous), udisc (unsigned discrete), sdisc (signed discrete)
or log (logic). Cont is used for physical quantities that can have any value;
ETAS ASCET-SE V6.4 | User Guide

212 | Glossary
udisc for positive integer values, sdisc for negative integer values; and log is
used for Boolean values (true or false). These types are not the same as the
data types generated in the code.

Variable

A variable is an element that can be read and written during the execution of an
ASCET model. The value of a variable can also be measured with the calibration
system.
ETAS ASCET-SE V6.4 | User Guide

213 | Figures

ETAS ASCET-SE V6.4 | User Guide

Fig. 2-1 ASCET project .14

Fig. 2-2 Main stages of ASCET-SE code generation .16

Fig. 2-3 Basic stages in ASCET-SE code generation . 17

Fig. 5-1 Build system – basic control . 70

Fig. 7-1 Interpolating a characteristic line . 83

Fig. 8-1 Priority Levels . 86

Fig. 8-2 Selecting the OS and the template on project settings . 87

Fig. 8-3 Static and dynamic dT . 90

Fig. 8-4 Production Code options .91

Fig. 8-5 Selecting the OS and the template in the "Project Settings" window
(a: "Build" node, b: "OS Configuration" node) . 96

Fig. 9-1 MEASUREMENT block with SYMBOL_LINK entry .110

Fig. 9-2 Code generation with and without ASAM-MCD-2MC and VAT generation 110

Fig. 10-1 Disabling data structure generation for all components .119

Fig. 10-2 Selecting data structure generation on a per-component basis 119

Fig. 14-1 Include Hierarchy: "Header/C Code Structure"= Component 154

Fig. 14-2 Include Hierarchy: "Header/C Code Structure" = Project . 155

Fig. 14-3 Include Hierarchy: "Header/C Code Structure" = Project Header and Source . . . 155

Fig. 14-4 Include Structure of a_basdef.h . 156

Fig. 14-5 Target-specific Build options . 185

Fig. 14-6 Target-specific Filename Templates . 186

Fig. 15-1 Structure of the program generation process for ASCET-SE . 195

Fig. 15-2 Directory structure of the CPRs . 201

Figures

214 | Tables

ETAS ASCET-SE V6.4 | User Guide

Tab. 3-1 Licenses used by the ASCET product family . 35

Tab. 8-1 Default templates for supported Operating Systems . 95

Tab. 14-1 Storage system – characteristic line . 171

Tab. 14-2 Storage system – characteristic map .173

Tab. 14-3 Storage system – group characteristic line . 175

Tab. 14-4 Storage system – interpolation node distribution . 175

Tab. 14-5 Storage system – fixed characteristic line . 179

Tab. 14-6 Storage system – fixed characteristic map . 180

Tables

215 | Index
Index
Symbols
.\target\trg_<targetname> folder . 29
.\target\trg_<targetname>\include

folder . 32
.\target\trg_<targetname>\intpol

folder . 33
*.template file . 94

A
a_basdef.h .77
a_intpol.h .81
Algorithms . 138
alignment

definition .107
aml_template.a2l 24, 108
ANSI-C target . 19, 96

code generation . 26
interfacing with OS API 97
task configuration 96

application modes . 194
array

initialization . 164
memory class for ~ reference 68
record type . 165
scalar type . 159

ASAM-MCD-2MC . 24, 25
alignment definition107
description file . 108
ETK driver configuration 108
generate ~ file . 109
generation18, 107–112
memory layout .107
project definitions 107
suppress exported elements/

parameters 111
virtual address table 108

ASCET
configure optimization features 120
include external code 117
include handcoded sources 117

B
banners . 72
Boolean tables . 183
build.mk . 72

C
C files

including own ~ . 75
characteristic line . 171

fixed ~ . 179
group ~ .175
linear access .172
rounded access .172

characteristic map .173
fixed ~ . 179

group ~ . 175
linear access . 174
rounded access . 174

Class instance variables 182
Classes . 182

implementation . 44
code

banners . 72
formatting . 73
initialization

array . 164
matrix . 164

postprocessing . 73
code formatter "Indent" 73

documentation . 73
Code generation . 19–26

ANSI-C target . 26
copy C code . 135
copy operating system settings 136
generate ASAM-MCD-2MC file 25
generate executable code 25
generate source code 24
target-specific adaptations 135

code generation settings 21
Code generator . 198

implementation experiment 198
object based controller

implementation 199
object based controller physical . . . 199
physical experiment 198
quantized physical experiment 198

Code manager . 200
Code Production Rules (CPR) 201
codegen.ini . 59
codegen_<target>.ini 59
codegen_ecco.ini . 59
common subexpression elimination .74, 130

activate . 74
compile.mk . 72
Compiler .18

path . 20
path selection . 20

Conditional tables . 184
configuration files

a_basdef.h .77
prj_def.a2l . 107
proj_def.h 77, 116, 117

Constants . 188
Contact information . 207
Conversion Formulas 123
cooperative task . 84
copy C code

entire project . 135
module/class . 135
ETAS ASCET-SE V6.4 | User Guide

216 | Index
D
Data structure

Boolean tables . 183
classes . 182
conditional tables 184
modules . 183
variant-coded . 184

data structure generation 118
Degrees of freedom . 138
Degrees of optimization 138
Dependent Parameters 190
directory

.\target\trg_<targetname> . . . 29

.\target\trg_<targetname>\incl
ude . 32

.\target\trg_<targetname>\intp
ol . 33

distribution
example . 177

dT . 89, 128
generate .91
optimize calculation 94
static . 92

dynamic dT .91

E
ECCO . 199
Enumerations . 159
Error propagation . 140
ETAS contact information 207
ETAS Safety Advice . 9
Expander . 196, 199
exported elements

suppress in ASAM-MCD-2MC 111
exported parameters

suppress in ASAM-MCD-2MC 111
exported variables .187
External Code Integration 114–122

see also handcoded sources
external record . 56

F
FILES_HEADERS_PROJ 71
fixed characteristic line

example . 180
fixed characteristic map

example . 181
Front-End transformation 197

G
generate dT .91
generate.mk . 71
Generated Code 94, 152–194

distribution to files 152
Modularity . 152

Glossary . 208–212
group characteristic line

example .175

group characteristic map
example .177

H
H files

including own ~ . 75
handcoded sources

call ASCET C Code 117
call ASCET-generated functions 117
code for use with external data

structures 118
configure message copies 121
configure method calls 120
configure optimization features (AS-

CET) . 120
include in ASCET make process 117
integration via prototypes 114
interface

function_declarations.h .
152

interface
variable_declarations.h .
152

optimization features 120
use external global variables/parame-

ters in ASCET code 117
variant parameters 122

Header Structure . 153
Header/C code structure 153

I
if_data_template.a2l 24, 108
Implementation . 36–58

additional information 43
basic model types 36
classes . 44
complex model types 44
conversion formula 39
copy/paste . 45
edit element ~ . 36
Identity Conversion Formula 43
implementation type 38, 41
limiters .41
memory class . 42
method-local variables 57
methods . 54
operators . 58
optimized method calls 46
processes . 54
process-local variables 57
records . 56
related variables 125
runnables . 54
temporary variables 57
value range . 40
zero in value range 42

Implementation casts 57
ETAS ASCET-SE V6.4 | User Guide

217 | Index
Implementation code generation
collecting optimization data 198
generation of C code 199
semantic analysis 197

Implementation Types 41
arrays . 159, 165
logical values . 158
matrices . 159, 165
scalar values . 158

imported variables .187
Indent code formatter 73

documentation . 73
individual instance trees for modules . . 157,

183
Input Frequency . 24
Installation

install.ini . 29
silent mode . 28

Integer Arithmetics . 139
error propagation 140
errors from integer division 139
quantization errors 139

Integer code generation
addition . 143
assignments . 141
comparisons .147
degrees of freedom 138
degrees of optimization 138
division . 145
literals .147
multiplexers .147
multiplication . 144
optimization . 148
re-scaling . 141
rules . 140
subtraction . 143
switches .147

interface to handcoded sources
function_declarations.h 152
variable_declarations.h 152

Interpolation
accuracy . 83
range of values . 83

Interpolation node distributions175
Interpolation procedure 82
Interpolation routines 81–83
Interrupt Priority Level 85

L
Licensing . 35
Linker . 72
Linker/Locator .18

path selection . 20
Literals . 147, 188
local parameters . 184
local variables . 184
Locator . 72

M
make files

build.mk . 72
compile.mk . 72
include own ~ . 75
project_settings.mk 72
settings_<compiler>.mk 71
target_settings.mk 71, 72

Make mechanism . 200
Make Variables

ASM_SRC_FILES . 76
C_INTEGRATION . 76
COMPILE_MODE . 72
C_SRC_FILES . 76
FILES_HEADERS_PROJ 71
LIBS_USER . 76
P_ASM_SRC_FILES 76
P_CGEN . 76
P_C_SRC_FILES . 76
P_DATABASE . 76
P_H_SRC_FILES . 76
POST_CGEN_PERL_MODS 73
P_TARGET . 76
P_TGROOT . 76
SMART_COMPILE_COMPARE 72

matrix
initialization . 164
memory class for ~ reference 68
record type . 165
scalar type . 159

MDL and MDL Builder 197
mem_lay.a2l .24, 107
Memory classes . 42

category . 65
default ~ per memory segment 68
define . 65–67
for array/matrix with variable size . . . 68
memorySections.xml 64

memory segment 79–80
default memory class 68, 79
define . 67
propagate . 80

memorySections.xml 22, 23, 64
Memory classes . 66
memory segment 67

Messages . 187, 191
optimization .78, 192

Methods
call . 187
declaration . 187

modeling hints . 123–134
classes . 133
concatenated calculations 132
conversion formulas 123
division . 129
implementation . 125
logical operators 133
ETAS ASCET-SE V6.4 | User Guide

218 | Index
method in module 134
multiple calculations 130
multiplication .127
scale values . 123
state machines . 134
value intervals . 124

Modularity . 152
Class interface . 152
Public interface . 152

module . 183
individual instance trees 157, 183

N
non-preemptable task 84
non-volatile variables 42

no initialization . 158

O
Object Based Controller Implementation .21
Object Based Controller Physical 21
Operating System Integration

see OS Integration
operating system settings

copy . 136
RTA-OSEK . 22

Optimization Features 120
configure message copies . 78, 121, 192
configure method calls 46, 120

optimize dT calculation 94
optimized method calls 46
OS

interfacing with unknown ~ 96
path . 20

OS configuration
RTA-OSEK . 22
template-based ~ 94

OS editor
Tick Duration field 89

OS Integration . 84–106
additional OS configuration 87
dT . 89
interfacing with unknown OS 96
provide main program 89
scheduling . 84
set up project . 86
template language reference 98
template-based OS configuration . . . 94

OS template . 94, 98
Alarm object . 105
AppMode object 103
basics . 98
chomping whitespace 100
comment . 100
conditionals . 99
directives . 98
expressions . 98
Function object . 106

include other files 100
InitTask object . 104
ISR object . 104
iteration . 99
Message object . 105
object reference .101
OS object . 102
Process object . 106
Resource object 105
subroutine . 99
Task object . 103
UsedMessage object 106

OSEK Resource
RES_SCHEDULER 193

os_unknown_inface.h 96, 97
Overflow handling143, 144

P
Parameter

dependent . 190
local . 184
virtual . 190

physical experiment 198, 201
preemptive task . 84
preprocessor definitions 184, 187
preprocessor switch

COMPILE_UNUSED_CODE 77
DECLARE_INLINE_METHODS 77
DECLARE_PROTOTYPE_ELEMENTS . . 117
DECLARE_PROTOTYPE_METHODS 77, 117
message configuration 78
__MESSAGES . 192
model specific ~ . 78
NO_DECLARE_* 115, 116

Prescaler . 24
priority scheme . 84
prj_def.a2l . 107
process .191
Product liability disclaimer 9
proj_def.h .116, 117
project

migrate to new target 135–137
project editor

implementation type41
project_settings.mk 23, 71
Prototypes . 51, 183

integrate handcoded sources via ~ . 114
specify . 53

Q
Quantized arithmetic 138–151

see also Integer Arithmetics

R
Real-Time Constructs191

Application Modes 194
Messages .191
Processes .191
ETAS ASCET-SE V6.4 | User Guide

219 | Index
Resources . 193
Tasks . 191

Record
external . 56

Re-scaling . 141, 143
Resources . 193
Restrictions . 203

characteristic lines/maps 204
component names 205
direct access . 203
General . 203
in Using ASCET-SE 204
interpolation method 205
interval arithmetic 203
known errors . 206
make mechanism 206
no quantization f. literals 203

S
Safety .8

FPU Usage .10
Non-Volatile Elements 11

Safety information . 9
Scheduling . 84

cooperative . 84
non-preemptable 84
preemptive . 84

scheduling modes for tasks 191
Service routines . 47

specify . 50
settings_<compiler>.mk 71
Smart-Compile . 72
Software architecture 156

data structures . 158
initialization of primitive objects 158
instantiation . 156
naming conventions 157
storage system . 158

static dT . 92
Storage system

characteristic lines 171
characteristic maps173
distributions .175
fixed characteristic line 179
fixed characteristic map 179
group characteristic line 175
group characteristic map 175

System constants . 189

T
target.ini .61
target_settings.mk 71
task . 191

cooperative . 84
non-preemptable 84
preemptive . 84
scheduling modes 191

task configuration
ANSI-C target . 96

temp.oil . 86, 98

U
user-defined service routines 47

specify . 50

V
Value intervals . 124
variant-coded data structures 184
Variants . 122
Virtual Address Table 108

generate . 108
virtual parameters . 190
ETAS ASCET-SE V6.4 | User Guide

	ETAS ASCET-SE V6.4
	User Guide
	Contents
	1 Introduction
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.4.1 Interpolation Routines
	1.4.2 FPU Usage
	1.4.3 Non-Volatile Elements
	1.4.4 Provision of Customized Data Types

	1.5 Data Protection
	1.6 Data and Information Security
	1.6.1 Data and Storage Locations
	License Management
	Problem Report

	1.6.2 Technical and Organizational Measures
	Locations for Generated Files

	2 About ASCET-SE
	2.1 Components of ASCET-SE
	2.2 Basic Stages from Model to Executable
	2.2.1 Code Generation
	2.2.2 Compilation and Linking
	2.2.3 ASAM-MCD-2MC Generation

	2.3 Configuring ASCET-SE for Code Generation
	2.3.1 Target Selection
	2.3.2 Path Settings for External Tools
	2.3.3 Code Generation Settings
	2.3.4 Operating System Configuration
	2.3.5 Memory Class Configuration
	2.3.6 Target Initialization Code
	2.3.7 Customizations for Compiling and Linking
	2.3.8 Generating the Executable File and Running it on the Target
	2.3.8.1 Differences for the ANSI-C Target

	2.4 Finding Out More

	3 ASCET-SE Installation
	3.1 Installation Contents
	Directory .\target\trg_<targetname>
	Directory .\target\trg_<targetname>\cp_rules
	Directory .\target\trg_<targetname>\docco
	Directory .\target\trg_<targetname>\example
	Directory .\target\trg_<targetname>\include
	Directory .\target\trg_<targetname>\Intpol
	Directory .\target\trg_<targetname>\Intpol\lib
	Directory .\target\trg_<targetname>\Intpol\Src
	Directory .\target\trg_<targetname>\scripts
	Directory .\target\trg_<targetname>\source

	3.2 Licensing

	4 Implementation Configuration
	4.1 Implementations for Basic Model Types
	4.1.1 Implementation Data Types
	4.1.2 Conversion Formula
	4.1.3 Value Range (Only for Numerical Quantities)
	4.1.4 Implementation Master
	4.1.5 Implementation Types
	4.1.6 Value Range Limitation
	4.1.7 Zero Containedness in the Value Range
	4.1.8 Memory Locations
	4.1.9 Consistency Check
	4.1.10 Additional Information
	4.1.11 Sizes of Composite Model Types
	4.1.12 Summary of Element Implementation

	4.2 Implementations for Classes
	4.2.1 Optimized Method Calls
	4.2.2 User-Defined Service Routines
	4.2.3 Prototype Implementations
	4.2.4 Implementation of Methods, Processes and Runnables

	4.3 Implementation of Records
	4.4 Implementations for Temporary Variables
	4.5 Implementations for Implementation Casts
	4.6 Implementations for Method- and Process-Local Variables
	4.7 Migration of Operator Implementations

	5 Configuring ASCET for Code Generation
	5.1 codegen[_*].ini Files
	5.2 target.ini File
	Section [Target]:
	Sections [<osname>]

	5.3 memorySections.xml File
	5.3.1 Defining a Memory Class
	5.3.1.1 Step 1
	5.3.1.2 Step 2
	5.3.1.3 Step 3

	5.3.2 Defining Memory Segments
	5.3.3 Defining Memory Classes for Variable Array/Matrix References

	5.4 Build System Control & Configuration Settings
	5.4.1 Project Settings – Make File project_settings.mk
	5.4.2 Target and Compiler Settings – Make Files target_settings.mk and settings_<compiler>.mk
	5.4.3 Code Generation – Make File generate.mk
	5.4.4 Compilation – Make File compile.mk
	"Smart-Compile"

	5.4.5 Build – Make File build.mk
	Linker/Locator Control

	5.5 Customizing Code Generation
	5.5.1 Banners
	5.5.2 Formatting Generated Code – .indent.pro Configuration File
	5.5.3 Code Post-Processing
	5.5.4 Common Subexpression Elimination

	5.6 Customizing the Build Process
	5.6.1 Including Your Own Make Files
	5.6.2 Including User-Defined C and H Files
	5.6.3 Special Makefile Variables Provided by ASCET

	5.7 Controlling What is Compiled Using ASCET Header Files
	5.7.1 Include File a_basdef.h
	5.7.2 Include File proj_def.h

	6 Memory Segments
	6.1 Default Memory Class Per Category and Segment
	6.2 Propagating Memory Segments

	7 Interpolation Routines
	7.1 Use of Interpolation Routines
	7.2 The Interpolation Procedure
	7.3 Accuracy and Allowed Range of Values

	8 Operating System Integration
	8.1 Scheduling and the Priority Scheme
	8.2 Setting Up the Project
	8.2.1 Generating ASCET’s OS Configuration File
	8.2.2 Providing Additional OS Configuration

	8.3 Providing the Main Program
	8.4 The dT Variable
	8.4.1 Dynamic dT
	8.4.1.1 Providing a Time Reference for Dynamic dT Calculation

	8.4.2 Static dT
	8.4.3 Implementing Your Own dT Routines

	8.5 Template-Based OS Configuration Generation
	8.6 Interfacing with an Unknown Operating System
	8.6.1 Configuration of Tasks
	8.6.2 Interfacing with the OS API

	8.7 Template Language Reference
	8.7.1 Templating Basics
	8.7.1.1 Directives
	Expressions
	Conditionals
	Iteration
	Sub-Routines
	Including Other Files
	Comments
	Chomping Whitespace

	8.7.2 Object Reference
	8.7.2.1 OS
	8.7.2.2 AppMode
	8.7.2.3 Task
	8.7.2.4 InitTask
	8.7.2.5 ISR
	8.7.2.6 Alarm
	8.7.2.7 Resource
	8.7.2.8 Message
	8.7.2.9 UsedMessage
	8.7.2.10 Process
	8.7.2.11 Function

	9 Measurement and Calibration with ASAM-MCD-2MC
	9.1 Project Definitions in ASAM-MCD-2MC (prj_def.a2l File)
	9.2 Memory Layout in ASAM-MCD-2MC (mem_lay.a2l File)
	9.3 ETK Driver Configuration in ASAM-MCD-2MC (aml_template.a2l and if_data_template.a2l)
	9.4 Generation of an ASAM-MCD-2MC Description File
	9.5 Suppressing Exported Elements and Parameters
	9.6 Working with SERAP

	10 Integration with External Code
	10.1 Calling C Functions from an ASCET Model
	10.1.1 Use of Prototypes
	10.1.2 Invocation by C Code Specified in ASCET
	10.1.3 Including C Source Files in the ASCET Make Process

	10.2 Calling ASCET-Generated Functions from External C Code
	10.3 Using External Global Variables/Parameters in ASCET Code
	10.4 Generating Code for Use with External Data Structures
	10.5 Configuring the ASCET Optimization Features
	10.5.1 Configuring Method Calls
	10.5.2 Configuring Message Copies

	10.6 Working with Variant Parameters

	11 Modeling Hints
	11.1 Implementations
	11.1.1 Definition of Conversion Formulas
	11.1.2 Definition of the Value Intervals
	11.1.3 Defining Implementations for Related Variables
	11.1.4 Multiplication of Large Results

	11.2 Model Structure
	11.2.1 Division
	11.2.2 Multiple Calculations
	11.2.3 Concatenated Calculations
	11.2.4 Logical Operators
	11.2.5 Classes and Modules
	11.2.6 State Machines

	12 Migrating an Existing Project to a New Target
	13 Understanding Quantized Arithmetic
	13.1 Degrees of Freedom and Optimization
	13.2 Numerical Aspects of Integer Arithmetic
	13.2.1 Quantization Errors
	13.2.2 Errors from Integer Division
	13.2.3 Error Propagation

	13.3 Rules of Integer Code Generation
	13.3.1 Assignments
	13.3.2 Addition and Subtraction
	13.3.3 Multiplication
	13.3.4 Division
	13.3.5 Comparisons
	13.3.6 Switches and Multiplexers
	13.3.7 Literals
	13.3.8 Treatment of Operators With Multiple Inputs
	13.3.9 Optimization of Mathematical Expressions

	14 Understanding Generated Code
	14.1 Modularity
	14.2 Distribution of Generated Code to Files
	14.2.1 Include Hierarchy

	14.3 Software Architecture
	14.3.1 Naming Conventions
	14.3.2 Storage Systems, Data Structures, Initialization of Primitive Objects
	14.3.2.1 Scalar and Logical Values
	14.3.2.2 Enumerations
	14.3.2.3 Arrays and Matrices of Scalar or Enumeration Type
	Example 1 – Normal Matrix
	Example 2 – Matrix with System Constants
	Example 3 – Arrays

	14.3.2.4 Optimized Initialization for Arrays and Matrices
	Example 4 – Sparse Array and Matrix with System Constants

	14.3.2.5 Arrays and Matrices of Record Type
	Example – Array of Record Type
	Example – Matrix of Record Type

	14.3.2.6 Characteristic Lines
	14.3.2.7 Characteristic Maps
	14.3.2.8 Interpolation Node Distributions, Group Characteristic Lines and Maps
	14.3.2.9 Fixed Characteristic Lines and Maps

	14.3.3 Data Structures and Initialization for Complex (User-Defined) Objects
	14.3.3.1 Classes
	14.3.3.2 Modules
	14.3.3.3 Boolean Tables
	14.3.3.4 Conditional Tables

	14.3.4 Local Variables and Parameters
	14.3.5 Variant-Coded Data Structures
	14.3.6 Exported and Imported Variables
	14.3.7 Method Declarations and Calls
	14.3.8 Constants and Literals
	14.3.9 System Constants
	14.3.10 Virtual Parameters
	14.3.11 Dependent Parameters

	14.4 Real-Time Constructs
	14.4.1 Tasks
	14.4.2 Processes
	14.4.3 Messages
	14.4.3.1 Selection of Message Copy Variants at Compilation Time
	14.4.3.2 Selection of Message Copy Variant at Generation Time

	14.4.4 Resources
	14.4.5 Application Modes

	15 Inside ASCET-SE
	15.1 Structure of the Code Generator
	15.1.1 Front-End Transformation
	15.1.2 MDL and MDL Builder
	15.1.2.1 Semantic Analysis
	15.1.2.2 Collecting Optimization Data

	15.1.3 Code Generator
	15.1.3.1 Expander
	15.1.3.2 ECCO

	15.2 Code Administration
	15.2.1 Make Mechanism
	15.2.2 Code Manager

	15.3 Directory Structure of Code Production Rules

	16 ASCET-SE — Restrictions
	16.1 General Restrictions
	16.1.1 Interval Arithmetic
	16.1.2 No Quantization for Literals
	16.1.3 ASCET Direct Access and Characteristic Lines/Maps

	16.2 Restrictions in Using ASCET-SE
	16.2.1 Inputs of Characteristic Lines and Maps
	16.2.2 No Separate Search for Interpolation Nodes and Interpolation
	16.2.3 No Choice for Interpolation Method
	16.2.4 Uniqueness of Component Names
	Remedy

	16.2.5 Make Mechanism for Controllers and Fixed-Point Arithmetic

	16.3 Known Errors in the ASCET-SE Code Generation
	16.3.1 Build Executable Code After Exiting ASCET

	17 Contact Information
	Technical Support
	ETAS Headquarters

	Glossary
	Figures
	Tables
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

