
ETAS ASCET-SE V6.4

EHOOKS Target

User Guide

Copyright
The data in this document may not be altered or amended without special notification from
ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this document.
The software described in it can only be used if the customer is in possession of a general
license agreement or single license. Using and copying is only allowed in concurrence
with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.

©Copyright 2024 ETAS GmbH, Stuttgart.

The names and designations used in this document are trademarks or brands belonging
to the respective owners.

ASCET-SE V6.4 EHOOKS Target | User Guide R09 EN – 06.2024

3 | CONTENTS

Contents
1 Introduction 5

1.1 Intended Use . 5
1.2 Target Group . 5
1.3 Classification of Safety Messages . 5
1.4 Safety Information . 6
1.5 Data Protection . 7
1.6 Data and Information Security . 7

1.6.1 Data and Storage Locations . 7
1.6.1.1 License Management . 7
1.6.1.2 Problem Report . 8

1.6.2 Technical and Organizational Measures . 8
1.6.2.1 Locations for Generated Files . 8

2 About the EHOOKS Target for ASCET-SE 9
2.1 Understanding ASCET/EHOOKS Integration . 9

2.1.1 Typical Workflow . 9
2.1.2 On-Target Bypass Concepts . 10
2.1.3 ASCET Models as Bypass Functions . 11
2.1.4 Key Features of the EHOOKS Target . 11
2.1.5 Summary . 12

2.2 Finding Out More . 13

3 Installation 15
3.1 Installation . 15
3.2 Licensing . 15
3.3 After Installation . 16

4 Getting Started with an EHOOKS Project 17
4.1 Project Administration . 17

4.1.1 Creating an ASCET/EHOOKS Project . 17
4.1.2 Specifying the Configuration File Location . 18
4.1.3 Configuring ASCET-EHOOKS Interaction Settings 19

4.1.3.1 EHOOKS Build Options . 19
4.1.3.2 Global Name Space Prefix . 21
4.1.3.3 ASAM-MCD-2MC Names . 22
4.1.3.4 Cont Implementation Type . 24

4.1.4 Basic EHOOKS Configuration . 25
4.2 Integrating Bypass Functions . 27

4.2.1 Preparing the Project . 27
4.2.2 Connecting Inputs and Outputs to ECU Variables 27

4.2.2.1 "Input" Tab . 29
4.2.2.2 "Output" Tab . 36
4.2.2.3 Mapping Messages and ECU Variables 39
4.2.2.4 Auto-Mapping . 46

4.2.3 Configuring the Scheduling . 50
4.2.3.1 "Scheduling" Tab . 51
4.2.3.2 Mapping Processes to Dispatch Points 52

4.2.4 Exporting and Importing Mappings . 56
4.3 Non-Volatile RAM . 59
4.4 Building the ECU Code . 61

4.4.1 Using the Code Generator: Object Based Controller Physical 61
4.4.2 Generating ECU Code Only . 63
4.4.3 Viewing the ASCET Build Log . 64

5 Calibrating Bypass Functions 65
5.1 Calibration of Elements in Classes with Multiple Instances 67

6 Interacting with EHOOKS Control Variables 68

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

4 | CONTENTS

7 Arithmetic Services and Interpolation Routines 71
7.1 Arithmetic Services . 71

7.1.1 Preparing a Service Set . 72
7.1.2 Using a Service Set . 74

7.2 Interpolation Routines . 76
7.2.1 Understanding Interpolation Routine Use in ASCET 77

7.2.1.1 Definition Files . 77
7.2.1.2 Mapping Files . 79
7.2.1.3 Header Files . 79
7.2.1.4 Library . 79

7.2.2 Using the Default Routines . 80
7.2.3 Using Custom Routines . 80

7.2.3.1 Modifying an Existing Interpolation Scheme 80
7.2.3.2 Creating a New Interpolation Scheme 81

7.3 Callbacks to Existing ECU Code . 84
7.3.1 Arithmetic Services . 85
7.3.2 Interpolation Routines . 85
7.3.3 Mixing Callbacks to Off-ECU and On-ECU Code 86

8 Using Libraries 87
8.1 Model Libraries . 88
8.2 Service Libraries . 88

8.2.1 Controlling Method Names in Generated Code 88
8.2.2 Optimizing Data Structure Accesses . 89
8.2.3 Using Services Routines on the ECU . 90

8.3 Working with Formulas . 90

9 Updating Projects from Old EHOOKS-DEV Versions 91

10 Contact Information 93

Figures 95

Tables 96

Index 99

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

5 | Introduction

1 Introduction
In this chapter, you can find information about the intended use, the addressed tar-
get group, and information about safety and privacy related topics.

Please adhere to the ETAS Safety Advice (accessible via Help > Product Dis-
claimer in the ASCET Component Manager) and to the safety information given
in the user documentation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information.

1.1 Intended Use
The ASCET tools support model-based software development. In model-based de-
velopment, you construct an executable specification -– the model -– of your sys-
tem and establish its properties through simulation and testing in early stages of
development. When a model behaves as required, it can be converted automati-
cally to production-quality code via ASCET-SE.

The EHOOKS Target of ASCET-SE is a tool for the following purposes:

– enable interaction between ASCET-SE and EHOOKS

• map ASCET messages onto bypass hooks provided by EHOOKS

• map ASCET processes onto bypass containers provided by EHOOKS

• use services provided by external libraries and/or the ECU itself in
ASCET-generated code

– on-target prototyping using the ECU as the prototyping platform

1.2 Target Group
You are a trained function developer who wants to do on-target prototyping using
the ECU as the prototyping platform. You have knowledge of software development
using ASCET and of using the EHOOKS tools.

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

DANGER
DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.

WARNING
WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

mol9fe
Oval
umbenannt gemäß Struktur in Redaktionsleitfaden, V6

mol9fe
Oval
war vorher "The safety messages used here ..."

mol9fe
Polygonal Line
neues Sicherheitssymbol aus Götz' Sammlung in file://fe13606/Dok/Templates/Content/Graphics/Symbols/Safety

mol9fe
Rectangle
Name der Menüfunktion korrigiert

6 | Introduction

CAUTION
CAUTION indicates a hazardous situation that, if not avoided, could result in mi-
nor or moderate injury.

NOTICE
NOTICE indicates a situation that, if not avoided, could result in damage to prop-
erty.

1.4 Safety Information
Observe the following safety information when using the ASCET-SE EHOOKS Tar-
get, to avoid injury to yourself and others as well as damage to property:

CAUTION
Risk of harm or property damage

Wrong word size and/or compiler division lead to wrong compilable code. Wrong
compilable code may lead to unpredictable behavior of a vehicle or test bench.
When working with the EHOOKS target, you must create your bypass in a way
that word size and compiler division match the selected EHOOKS-DEV back end
to avoid wrong compilable code.

WARNING
Harm or property damage due to unpredictable behavior of vehicle or test
bench

Wrongly initialized NVRAM variables (NV variables) can lead to unpredictable
behavior of a vehicle or a test bench. This behavior can cause harm or property
damage.

ASCET projects that use the NVRAM possibilities of the ASCET-SE EHOOKS
Target expect a user-defined initialization that checks whether all NV variables
are valid for the current project, both individually and in combination with other
NV variables. If this is not the case, all NV variables have to be initialized with
their (reasonable) default values.

Due to the NVRAM saving concept, this is absolutely necessary when projects
are used in environments where any harm to people and equipment can hap-
pen when unsuitable initialization values are used (e.g. in-vehicle-use or at test
benches).

Adhere to the ETAS Safety Advice and the safety information given in the online
help and user guides. You can open the ETAS Safety Advice from the main ASCET
window with Help > Product Disclaimer. A PDF version is available on the instal-
lation medium: Documentation\ETAS Safety Advice.pdf

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

mol9fe
Polygonal Line

mol9fe
Rectangle
eingefügt, weil EHOOKS auch NVRAM anbietet

mol9fe
Polygonal Line
an das gleichnamige Kapitel in anderen ASCET-Handbüchern angeglichen(Forts. nächste Seite)

7 | Introduction

In addition, take all information on environmental conditions into consideration be-
fore setup and operation (see the documentation of your computer, hardware, etc.).

Further safety advice is given in the ASCET V6.4 safety manual available at ETAS
upon request.

1.5 Data Protection
If the product contains functions that process personal data, legal requirements of
data protection and data privacy laws shall be complied with by the customer. As
the data controller, the customer usually designs subsequent processing. There-
fore, he must check if the protective measures are sufficient.

1.6 Data and Information Security
To securely handle data in the context of this product, see the next sections about
data and storage locations as well as technical and organizational measures.

1.6.1 Data and Storage Locations
The following sections give information about data and their respective storage lo-
cations for various use cases.

1.6.1.1 License Management
When using the ETAS License Manager in combination with user-based licenses
that are managed on the FNP license server within the customer’s network, the fol-
lowing data are stored for license management purposes:

Data

• Communication data: IP address

• User data: Windows user ID

Storage location

• FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses
that are provided as FNE machine-based licenses, the following data are stored for
license management purposes:

Data

• Activation data: Activation ID

Used only for license activation, but not continuously during license usage

Storage location

• FNE trusted storage

C:\ProgramData\ETAS\FlexNet\fne\license\ts

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

mol9fe
Polygonal Line
Forts. v. Vorseite

mol9fe
Polygonal Line
Neue Abschnitte gemäß Struktur in Redaktionsleitfaden, V6(weiter nächste Seite)

8 | Introduction

1.6.1.2 Problem Report
When an error occurs, ASCET offers to send an error report to ETAS for trou-
bleshooting. ETAS uses the personal information to have a contact person in case
of system errors.

The problem report may contain the following personal data or data category:

Data

• Communication data: IP address

• User data: Windows user ID, user name

Storage location

• EtasLogFiles<index number>.zip in the ETAS-specific log files di-
rectory

Additionally to the problem information that is entered by the users themselves,
ASCET collects the available product-related log files in a ZIP archive to support
the bug fixing process at ETAS. The zip file is named according to the pattern
EtasLogFiles<index number>.zip. See also chapter 5 "Support Function for
Feedback to ETAS in Case of Errors" in the ASCET Getting Started manual.

All ETAS-related log files in the ETAS-specific log files directory and the zip
archives created by the Problem Report feature can be removed after closing all
ETAS applications if they are no longer needed.

1.6.2 Technical and Organizational Measures
We recommend that your IT department takes appropriate technical and organiza-
tional measures, such as classic theft protection and access protection to hardware
and software.

1.6.2.1 Locations for Generated Files
Names and paths of files generated by ASCET may contain personal data,
if they refer to the current user’s personal directory or subdirectories (e.g.,
C:\Users\<UserId>\Documents\...).

If you do not want personal information to be included in the generated files, make
sure of the following:

– The workspace of the product points to a directory without personal refer-
ence.

– All settings in the product (accessed via the menu function Tools > Op-
tions in the product) refer to directories and file names without personal
reference.

– All project settings in the projects (accessed via the menu function File >
Properties in the ASCET project editor) refer to directories and file names
without personal reference.

– Windows environment variables (such as the temporary directory) refer to
directories without personal reference because these environment vari-
ables are used by the product.

In this case, please also make sure that the users of this product have read and
write access to the newly set directories.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

mol9fe
Sticky Note
Dieser Abschnitt war in der Vorversion Abschnitt 1.5.4 "Description of Problem Report".

mol9fe
Polygonal Line
Fortsetzung von Vorseite

mol9fe
Sticky Note
Dieser Abschnitt war in der Vorversion Teil von Abschnitt 1.5.2 "Data and Data Categories".

9 | About the EHOOKS Target for ASCET-SE

2 About the EHOOKS Target for ASCET-SE
Welcome to the EHOOKS Target for ASCET-SE!

The EHOOKS Target allows you to use ASCET to build software for on-target by-
pass hooks and integrate it with existing ECU software using ETAS’ EHOOKS tools.

This manual explains the following topics:

– the basic concepts behind ASCET and EHOOKS interaction (section 2.1)

– how to install the EHOOKS Target (chapter 3 on page 15)

– how to configure an ASCET project to use the EHOOKS Target (sec-
tion 4.1 on page 17)

– how to map ASCET messages onto hooks, and processes into bypass
containers provided by EHOOKS (section 4.2 on page 27 and section 4.3
on page 59)

– how to prepare calibration (chapter 5 on page 65)

– how to interact with EHOOKS control variables (chapter 6 on page 68)

– how to use services provided by external libraries and/or the ECU itself in
ASCET-generated code (chapter 7 on page 71 and chapter 8 on page 87)

– how to update projects from old EHOOKS-DEV versions (chapter 9 on
page 91)

2.1 Understanding ASCET/EHOOKS Integration
The ASCET-SE EHOOKS Target provides a special ASCET-SE target that gen-
erates code for use as on-target bypass functions suitable for integration with an
EHOOKS-prepared ECU. The EHOOKS Target can also transparently run the
EHOOKS-DEV tool chain to integrate the generated code with ECU software with
access to only the ECU hex and A2L files.

2.1.1 Typical Workflow
Figure 2.1 shows the standard workflow when using the EHOOKS Target:

Figure 2.1: Workflow for ASCET/EHOOKS Development

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

10 | About the EHOOKS Target for ASCET-SE

A. You design ASCET models for your bypass functionality and integrate them
into an ASCET project.

B. You configure the EHOOKS target for your ASCET project. ASCET will in-
teract with EHOOKS to create a *.ehcfg configuration file.

C. ASCET stores the information about which parts of the ASCET model are
hooked onto which ECU variables in the database or workspace.

D. ASCET generates code from the model as normal, but also the code and
configuration files (SCOOP-IX) necessary to interface ASCET code with
EHOOKS.

E. ASCET runs the EHOOKS build process to automatically generate new
.hex and .a2l files that include your bypass functionality.

2.1.2 On-Target Bypass Concepts
On-target bypass allows run-time control of whether the original value calculated by
the ECU or a value calculated by a bypass function running on the ECU is used for
subsequent calculations as shown in Figure 2.2.

Figure 2.2: On-target bypass hooks with ASCET-generated C code

When the ECU is built, the ECU supplier decides which values can be switched
between the ECU value and the bypass value, and creates a hook to allow the
choice to be made. Hooks are therefore writeable values in the ECU software. The
EHOOKS-PREP tool from ETAS allows ECU suppliers to choose and insert hooks
into the ECU software; see the EHOOKS-DEV User Guide of your EHOOKS instal-
lation. The ECU is also prepared to include placeholders called dispatch points,
into which bypass code can be placed. Dispatch points are typically found in ex-
isting ECU functions or OS tasks.

To use a hook you need to provide a bypass function and the associated EHOOKS
configuration:

– which data is read

– which data is written

– when does the bypass function run

You could do this by hand, however, the EHOOKS Target allows functions to be de-
veloped as ASCET models.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

11 | About the EHOOKS Target for ASCET-SE

2.1.3 ASCET Models as Bypass Functions
On-target bypass using the EHOOKS Target follows the same basic principles as
bypass using ASCET-RP: the bypass model interacts with the ECU over the mes-
sage interface. The ECU sends messages to the bypass function and receives
messages that contain the bypass values from the bypass function, as shown in
Figure 2.3.

Figure 2.3: ECU sending and receiving messages from the bypass function

The EHOOKS Target interacts with the EHOOKS-DEV tool to allow the ASCET on-
target bypass model to be configured to have access to one or more input variables
from the ECU software (ECU measurements) and to write to one or more hooked
ECU write variables. Each ASCET model can contain one or more bypass func-
tions containing the processes of the ASCET model in which the hooked variables
are read and written.

The EHOOKS Target can also use the features of EHOOKS-DEV to enable the in-
troduction of new calibration parameters for the on-target bypass function. ASCET
model elements that need to be calibrated must be assigned the scope "Exported"
in the element’s properties editor. This is because EHOOKS has to generate the
data structures so it can integrate them with calibration parameters that already ex-
ist on the ECU. The EHOOKS Target tells EHOOKS-DEV what elements need to be
generated for calibration using a SCOOP-IX (*.six) file.

2.1.4 Key Features of the EHOOKS Target
Key features of the EHOOKS Target are:

No special modeling required: It is not necessary to modify your models
to work with the EHOOKS target. Models can be used unmodified with
EHOOKS for complex internal bypass. It is only necessary to configure an
EHOOKS target for a project and hook model messages onto hooks pro-
vided by the ECU.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

12 | About the EHOOKS Target for ASCET-SE

No changes to generated code: ASCET generates identical C code from
the model as it would when generating code for an embedded ECU. This
means that the code for modules and classes is not modified in any way
for the EHOOKS target. ASCET interfaces to EHOOKS by generating by-
pass functions that set up the context for ASCET on entry and tear down
the context on exit.

No special memory configuration needed: EHOOKS does not have the no-
tion of differing memory sections - there is simply code space, variable
space and parameter space. ASCET ignores any memory sections defi-
nitions declared in model configuration.

No need to know the target ECU or compiler: ASCET does not need to know
what micro-controller is being used in the ECU or what compiler needs to
be used for building the bypass functions for integration - ASCET just sees
a special EHOOKS target. Any EHOOKS-supported ECU can be used as
an EHOOKS target. Details of supported ECUs can be obtained by con-
tacting ETAS.

CAUTION
Risk of harm or property damage

Wrong word size and/or compiler division lead to wrong compilable code.
Wrong compilable code may lead to unpredictable behavior of a vehicle or
test bench.
When working with the EHOOKS target, you must create your bypass in a
way that word size and compiler division match the selected EHOOKS-DEV
back end to avoid wrong compilable code.

Automatic conversion between ECU types and model types: ASCET auto-
matically converts between ECU types and model types.

One-click ECU rebuild: ASCET generates code, the EHOOKS configuration,
and runs the EHOOKS build process with a single mouse click.

2.1.5 Summary
ASCET automatically does the following:

– Add configuration information to the EHOOKS configuration file to inte-
grate the bypass function, including telling EHOOKS-DEV what file to in-
clude in the ECU build.

– Create a SCOOP-IX file defining all global data, measurements and cali-
bration parameters required for the bypass functions.

– Generate code that implements the ASCET model. The code is identical
in structure and content to the code generated for all other ASCET-SE tar-
gets.

– Generate bypass functions that integrate ASCET-generated code with the
EHOOKS-generated interface.

– Runs the EHOOKS-DEV tool to integrate the bypass functions with the
ECU.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

13 | About the EHOOKS Target for ASCET-SE

EHOOKS-DEV automatically does the following:

– Use the SCOOP-IX (*.six) file to generate ASCET-compatible data
structures for all parameters.

– Use the EHOOKS (*.ehcfg) configuration file to generate an interface to
the ECU data for the ASCET-generated bypass functions.

– Integrates all the source generated by both ASCET and EHOOKS-DEV
with the existing ECU hex file.

2.2 Finding Out More
If not specified otherwise during installation, the following documentation is avail-
able after installing ASCET and ASCET-SE. Most PDF manuals are available in
the ETAS\ETASManuals\ASCET V6.4 folder, accessible via the Windows Start
menu, E > ETAS > Online manuals.

– ASCET-SE user guide (ASCET-SE V6.4 User Guide.pdf)

– EHOOKS Add-On user guide (this manual; ASCET-SE V6.4 EHOOKS
Add On User Guide.pdf)

– ASCET online help (accessible via the Help menu and <F1> in the
ASCET windows)

– ASCET Getting Started (ASCET V6.4 Getting Started.pdf)

– ASCET Installation Guide (ASCET V6.4 Installation.pdf)

– ASCET Icon Reference Guide (ASCET V6.4 Icon Reference
Guide.pdf)

– ASCET AUTOSAR User Guide (ASCET V6.4 AUTOSAR User
Guide.pdf)

– AUTOSAR to ASCET Importer User Guide (ASCET V6.4 AUTOSAR To
ASCET Converter User Guide.pdf)

Note

The cooperation of ASCET and AUTOSAR requires the installation of the
ASCET-SE target ANSI-C.

When you install ASCET-RP, ASCET-SCM, or ASCET-DIFF, further documentation
is available:

– ASCET-RP

• user guide (ASCET-RP V6.4 User Guide.pdf)

• separate online help; accessible via the Help menu and <F1> in the
hardware configurator

– ASCET-SCM

• online help (integrated in the main ASCET online help)

– ASCET-DIFF

• ASCET-DIFF Getting Started; accessible via the Windows Start menu

• separate online help; accessible via the Help menu and <F1> in the
ASCET-DIFF windows

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

14 | About the EHOOKS Target for ASCET-SE

The EHOOKS-DEV User Guide (EHOOKS-DEV V<x>.<y> User Guide.pdf)
and other EHOOKS documentation is available in the Manuals subfolder of your
EHOOKS-DEV Front End and Back End installations.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

15 | Installation

3 Installation
This version of the EHOOKS Target requires the following products:

Product Version

EHOOKS-Dev Front End V4.11 / V4.12 / V5.0 / V5.1 / V5.2 / V5.3

EHOOKS-Dev Back End V4.11 / V4.12 / V5.0 / V5.1 / V5.2 / V5.3

ASCET V6.4.8

3.1 Installation
The EHOOKS Target is part of ASCET-SE. When you install ASCET-SE, you must
select the EHOOKS-enabled ECU target to install EHOOKS Target. See also the
ASCET Installation Guide (ASCET V6.4 Installation.pdf).

You must install the EHOOKS Front End and ECU Back End for each ECU you
want to use for on-target prototyping. Installing EHOOKS tools is described in the
respective EHOOKS User Guide (EHOOKS-DEV V<x>.<y> User Guide.pdf).

3.2 Licensing
The ASCET product family uses the following licenses:

License name Functionality

ASCET-MD ASCET Modeling and Design

ASCET-RP ASCET Rapid Prototyping

ASCET-SE ASCET Software Engineering (includes, among others,
the EHOOKS Target)

ASCET-DIFF ASCET Difference Viewer

ASCET-VIEW ASCET Model Viewer (part of the ASCET-DIFF software)

ASCET-SCM ASCET Software Configuration Management

Table 3.1: Licenses used by the ASCET product family

A valid license is required to use the software. You can obtain a license in one of
the following ways:

– from your tool coordinator

– via the self-service portal on the ETAS website at
www.etas.com/support/licensing

– via the ETAS License Manager

To activate the license, you must enter the Activation ID that you received from
ETAS during the ordering process.

For more information about ETAS license management, see the ETAS License
Management FAQ or the ETAS License Manager help.

To open the ETAS License Manager help

The ETAS License Manager is available on your computer after the installation of
any ETAS software.

1. From the Windows Start menu, select E > ETAS > ETAS License Man-
ager.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

https://www.etas.com/support/licensing
https://www.etas.com/en/downloadcenter/37717.php
https://www.etas.com/en/downloadcenter/37717.php
mol9fe
Sticky Note
Dieses Kapitel war In der Vorversion war der Abschnitt 2.1.Hierher verschoben gemäß Struktur im Redaktionsleitfaden, V6.

mol9fe
Oval
Versionen aktualisiert

mol9fe
Polygonal Line
Neue Abschnitte gemäß Struktur in Redaktionsleitfaden, V6(weiter nächste Seite)

16 | Installation

The ETAS License Manager opens.

2. Click in the ETAS License Manager window and press <F1>.

The ETAS License Manager help opens.

3.3 After Installation
Unlike other ASCET targets, the EHOOKS Target does not need to know which
compiler and operating system are required. Compilation and OS integration issues
for the target ECU are handled by EHOOKS.

Furthermore, ASCET does not need to be told where EHOOKS is installed on your
system; the EHOOKS Target will find the EHOOKS tools automatically.

It is possible to have more than one EHOOKS Versions installed on the same host
PC as ASCET for the EHOOKS Target to work correctly. ASCET uses the version
that is selected in the ASCET options window, "Targets\EHOOKS\Build" node (see
Figure 4.4 on page 20), "External Build Tool" list.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

mol9fe
Polygonal Line
Fortsetzung von Vorseite

17 | Getting Started with an EHOOKS Project

4 Getting Started with an EHOOKS Project
You are now ready to create an ASCET project that uses an EHOOKS target.

Before you start, you must have the following mandatory items from your ECU sup-
plier:

– the ECU *.hex file, pre-prepared for EHOOKS use, for the ECU you want
to use for on-target prototyping

– the *.a2l file, pre-prepared for EHOOKS use, for the ECU you want to
use for on-target prototyping

– the password for the *.a2l file (if is it password-protected)

Use of advanced capabilities of the EHOOKS Target, for example use of external
or on-ECU services, requires some or all of the following optional items from your
ECU supplier:

– a services.ini file from your ECU supplier defining the services avail-
able on the ECU

– a *.ini file from your ECU supplier defining the interpolation routines
available for use on the ECU

– an ASCET workspace (or database) from your ECU supplier defining the
model interface for library functions that are available for use on the ECU

– C source code files and/or pre-compiled libraries for your ECU that imple-
ment service routines

Further information about what is required and when can be found in chapters 7
and 8.

4.1 Project Administration
A new EHOOKS project is created with the following steps:

A. in ASCET: create an ASCET project for an EHOOKS target (section 4.1.1)

B. in ASCET: specify which EHOOKS *.ehcfg configuration file ASCET will
use (section 4.1.2)

C. in ASCET: configure ASCET-EHOOKS interaction (section 4.1.3)

D. in EHOOKS: select the *.hex and *.a2l files EHOOKS will use (sec-
tion 4.1.4)

The following sections explain these steps in more detail.

4.1.1 Creating an ASCET/EHOOKS Project
You must create an ASCET project in which to build your bypass functionality. You
can use an existing project or create a new one.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

18 | Getting Started with an EHOOKS Project

To define an EHOOKS project

The project needs to be configured to target an EHOOKS prepared ECU as follows:

1. Create and open a project as described in the ASCET online help.

2. In the project editor, select File > Properties (or use <Ctrl> + <p>) to
open the "Project Properties" window.

3. Go to the "Build" node and select EHOOKS as the target for the build as
shown in Figure 4.1.

4. In the "Code Generator" combo box, select a code generator.

Two code generators are available, Object Based Controller
Implementation and Object Based Controller Physical.

Figure 4.1: Configuring a project to use an EHOOKS target

When you set up the project to use the EHOOKS target, a new tab appears in
the project editor (see Figure 4.2 on the next page). This new tab replaces the
"OS" tab; here you do all the configuration that is specific to EHOOKS projects in
ASCET.

4.1.2 Specifying the Configuration File Location
Each project that uses the EHOOKS target must be associated with an EHOOKS
configuration file (*.ehcfg).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

19 | Getting Started with an EHOOKS Project

Figure 4.2: "EHOOKS" tab in the project editor (no configuration file selected)

Note

You must associate your ASCET project with an EHOOKS configuration file be-
fore you can do any further configuration.

You can choose an existing EHOOKS configuration file or create a new one. If you
use an existing EHOOKS configuration file, any pre-existing configuration items
will be preserved. When ASCET generates EHOOKS configuration information
in the file, only the parts owned by ASCET are modified. Non-ASCET-generated
EHOOKS configuration is unchanged.

To select an EHOOKS configuration file

1. In the project editor, go to the "EHOOKS" tab.

2. In the "EHOOKS" tab, click the Change File button.

The Windows file selection window opens. The file extension *.ehcfg is
preselected.

3. Select your EHOOKS configuration file and click Open.

Path and name of the EHOOKS configuration file are shown in the
"Configuration file" field at the top of the "EHOOKS" tab. The sub-tabs
"Scheduling", "Input" and "Output" appear. See also Figure 4.3 on the next
page.

4.1.3 Configuring ASCET-EHOOKS Interaction Settings
When you have associated an EHOOKS configuration file with the ASCET project,
you need to configure how ASCET interacts with EHOOKS.

4.1.3.1 EHOOKS Build Options
The EHOOKS Target uses the EHOOKS toolchaindriver program to re-build
the ECU.

Any options that you want ASCET to pass to the toolchaindriver can be en-
tered in the ASCET options window, "Targets\EHOOKS\Build" node (see Figure 4.4
on the next page), "Build Tool Options" field. The values are passed directly to the
toolchaindriver without any modification and must be valid EHOOKS options.

Permitted options are listed in the EHOOKS-DEV user guide, section "EHOOKS-
DEV Command Line Usage".

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

20 | Getting Started with an EHOOKS Project

Figure 4.3: "EHOOKS" tab with EHOOKS configuration file

Figure 4.4: Build options for the EHOOKS target

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

21 | Getting Started with an EHOOKS Project

4.1.3.2 Global Name Space Prefix
Global names generated by ASCET will not clash with names used by the ECU be-
cause EHOOKS works with a compiled HEX image.

However, the names that you use in your project may clash with the symbolic
names of elements used on the ECU and stored in the *.a2l file.

To prevent this, ASCET allows the definition of a user-defined prefix that is, by
default, added to all global data elements generated. The prefix is defined in the
ASCET options window, "Targets\EHOOKS\Name Templates" node (see Fig-
ure 4.5; it is added to the default templates for element names and the element dis-
play names provided in the "Targets\EHOOKS\Name Templates\ASAM-2MC" node
(see Figure 4.6 on the next page).

By default, the module and class instance names are combined like in the following
example with prefix BP_:

– global variable:

BP_<varname>

– local variable in module:

BP_<varname>.<module_inst_name>

– local variable in single-instance class in module:

BP_<varname>.<class_inst_name>.<module_inst_name>

For parameters, names are generated the same way.

Figure 4.5: Name Templates options for the EHOOKS target

By default, the element name and the element display name in the *.a2l file are
the same. However, you can change the default by editing the default name tem-
plates (see also section 4.1.3.3 on the next page). If you do so, make sure to avoid
clashes with the symbolic names of elements used on the ECU and stored in the
*.a2l file.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

22 | Getting Started with an EHOOKS Project

4.1.3.3 ASAM-MCD-2MC Names
In ASAM-MCD-2MC files, the labels of characteristics and measurements usually
are dot-separated strings containing the names of the items on the instance path.
There are two frequently used variants:

– element first, root node last

This variant is suitable if the labels are very long and the display fields are
left-justified and may be unable to show the complete labels.

– root node first, element last

This variant is suitable to sort labels, or to structure them in a tree.

For local and exported elements, ASCET allows to configure the ASAM-MCD-2MC
names, i.e. IDENTIFIER and DISPLAY_IDENTIFIER, in the "Targets\EHOOKS\
Name Templates\ASAM-2MC" of the ASCET options window (see Figure 4.6).

Figure 4.6: ASAM-2MC Name Options for the EHOOKS target

Table 4.1 lists the template parameters that can be used to configure ASAM-MCD-
2MC names.

Template Parameter Meaning Remarks

%ELEMENT.NAME% name of the specified ele-
ment

%ELEMENT.INSTANCEPATH% instance path of element;
starts at the element, up
to the project (but ex-
cludes project) or an ex-
ported element

%ELEMENT.
INSTANCEPATH.
FROM_ELEMENT%
identical to
%ELEMENT.
INSTANCEPATH%

%ELEMENT.INSTANCEPATH.
FROM_ELEMENT%

%ELEMENT.INSTANCEPATH.
FROM_ELEMENT_TO_PROJECT%

instance path of element;
starts at the element,
up to and including the
project or an exported el-
ement

%ELEMENT.INSTANCEPATH.
FROM_PROJECT_TO_ELEMENT%

inverse instance path of
element; starts at and in-
cludes the project or an
exported element, down
to the element

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

23 | Getting Started with an EHOOKS Project

Template Parameter Meaning Remarks

%ELEMENT.INSTANCEPATH.
TO_ELEMENT%

inverse instance path of
element; starts at the
project (but excludes
project) or an exported
element, down to the ele-
ment

%COMPONENT.NAME% name of the associated
ASCET component

%COMPONENT.IMPL.NAME% name of associated im-
plementation set from the
ASCET component

%TARGET.PROPERTIES.
GLOBALNAMEPREFIX%

name prefix specified in
the ASCET options win-
dow, "Targets\EHOOKS\
Name Templates" node

see also section
"Global Name
Space Prefix" on
page 21

Table 4.1: Template parameters for the configuration of ASAM-MCD-2MC names

Figure 4.7 shows the "Outline" tab for a project named Proj_names. The project
uses an implementation named Impl.

The highlighted elements – the exported parameter Ki in the Integrator class
included in the IdleCon module and the local variable ndiff in the IdleCon
module – are used to determine the results of the ASAM-MCD-2MC name tem-
plates.

Figure 4.7: Example project for testing the ASAM-2MC name options

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

24 | Getting Started with an EHOOKS Project

Template Parameter Result for ndiff Result for
Ki

%ELEMENT.NAME% ndiff Ki

%ELEMENT.INSTANCEPATH%
ndiff.IdleCon Ki

%ELEMENT.INSTANCEPATH.
FROM_ELEMENT%

%ELEMENT.INSTANCEPATH.
FROM_ELEMENT_TO_PROJECT%

ndiff.IdleCon.
Proj_names

Ki

%ELEMENT.INSTANCEPATH.
FROM_PROJECT_TO_ELEMENT%

Proj_names.
IdleCon.ndiff

Ki

%ELEMENT.INSTANCEPATH.
TO_ELEMENT%

IdleCon.ndiff Ki

%COMPONENT.NAME%
_%ELEMENT.NAME%

IdleCon_ndiff IdleCon_Ki

%COMPONENT.IMPL.NAME%
_%ELEMENT.NAME%

Impl_ndiff Impl_Ki

Table 4.2: Results of template parameters for the configuration of ASAM-MCD-
2MC names

Note

Using %COMPONENT.NAME% or %COMPONENT.IMPL.NAME% without another tem-
plate parameter that contains the element name leads to name clashes.

4.1.3.4 Cont Implementation Type
The code generator (Object Based Controller *; see
"To define an EHOOKS project" on page 18), in combination with the EHOOKS
target option "Cont Implementation Type" (see Figure 4.4 on page 20), controls how
ASCET generates bypass function code for continuous (real number) elements in
the model.

The following combinations are available:

Code Generator Cont Implemen-
tation Type

Effect

Object Based
Controller
Implementation

* Use the implementations specified in
the model.

When a variable is read from the ECU,
the EHOOKS Target will automatically
convert the value to the type defined
in the model.
When a variable is written to the ECU,
the EHOOKS Target will automatically
convert the value to the type used by
the ECU.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

25 | Getting Started with an EHOOKS Project

Code Generator Cont Implemen-
tation Type

Effect

Object Based
Controller
Physical

Phys.
Single
Precision

Generate all continuous elements as
single-precision floating-point values.

When a variable is read from the ECU
the EHOOKS Target will automatically
convert the value to single-precision
floating-point.
When a variable is written to the ECU
the EHOOKS Target will automatically
re-quantize the value to use the quan-
tization defined by the ECU.

Phys.
Double
Precision

Generate all continuous elements as
double-precision floating-point values.
When a variable is read from the ECU
the EHOOKS Target will automatically
convert the value to double-precision
floating-point.
When a variable is written to the ECU
the EHOOKS Target will automatically
re-quantize the value to use the quan-
tization defined by the ECU.

Table 4.3: Effects of "Code Generator" and "Cont Implementation Type" combi-
nations

4.1.4 Basic EHOOKS Configuration
If you decided to create a new EHOOKS *.ehcfg configuration file, then you need
to start EHOOKS and configure the locations of the *.hex and *.a2l files.

To configure input and output files

1. In the "EHOOKS" tab, click on Start EHOOKS (see Figure 4.3 on
page 20).

If EHOOKS is not running, it is started now. The *.ehcfg file is opened in
the EHOOKS-DEV window.

2. In the EHOOKS-DEV window, use the first and third Browse buttons (I in
Figure 4.8 on the next page) to select input *.a2l and *.hex files.

If you access a password-protected *.a2l file for the first time, you are
asked for a password.

3. Enter the password and click OK.

4. Activate the Save Password in Project option to store the password in
the *.ehcfg file.

5. In the EHOOKS-DEV window, use the second and fourth Browse buttons
(O in Figure 4.8 on the next page) to enter output *.a2l and *.hex files.

6. In the EHOOKS-DEV window, select File > Save to save the *.ehcfg
file.

ASCET will generate the warning shown in Figure 4.9 on the next page if you do
not specify any files in EHOOKS.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

26 | Getting Started with an EHOOKS Project

Figure 4.8: EHOOKS-DEV window: Choosing EHOOKS files (I: input files, O: out-
put files)

Figure 4.9: Warning if no EHOOKS files are selected

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

27 | Getting Started with an EHOOKS Project

4.2 Integrating Bypass Functions
Bypass functions are created as normal ASCET models, and integrated in an
ASCET project in the same way as any other ASCET model. Please consult the
ASCET online help if you are unsure about how to create ASCET models.

The project can be an arbitrarily complex ASCET model.1

4.2.1 Preparing the Project
When you integrate a normal ASCET project for series production, the code gener-
ator checks that:

– every sent message has a receiver
– every received message has a sender

ASCET will generate warnings if these checks fail.

When you build a bypass function, however, your model will typically have "uncon-
nected" messages because they will be sent from or received by the ECU.

ASCET needs to know that these "loose ends" will be joined up. You can do this by
selecting Extras > Resolve Globals in the project editor, as shown in Figure 4.10.
In the EHOOKS Target this creates "virtual" messages that can then be hooked
onto ECU variables.

Figure 4.10: Resolving globals

4.2.2 Connecting Inputs and Outputs to ECU Variables
Messages that are sent or received by the project technically have no sender or
receiver as the project context is passive. These messages represent the uncon-
nected parts of the ASCET model. To connect them to ECU variables, you need to
do the following things:

A. select ECU measurements and ECU write hooks
1 Not all functionality is currently supported. See the ASCET-SE release notes

for known limitations in this release.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

28 | Getting Started with an EHOOKS Project

B. map messages that have no sender to ECU measurements (the message
will be read from the ECU)

C. map messages that have no receiver to ECU write hooks (the messages
will be written to the ECU)

The "Input" and "Output" sub-tabs of the "EHOOKS" tab in the ASCET project edi-
tor allow mapping ASCET messages to ECU variables.

Note

To make sure that the view in these tabs is up to date, click the Update button to
refresh the tab.

The "Input" and "Output" tabs are described in section "Input" Tab on the next page
and section "Output" Tab on page 36. Section "Mapping Messages and ECU Vari-
ables" on page 39 contains detailed instructions for manual mapping, and section
"Auto-Mapping" on page 46 describes automatic mapping.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

29 | Getting Started with an EHOOKS Project

4.2.2.1 "Input" Tab

Figure 4.11: "Input" tab

The "Input" tab (shown in Figure 4.11) contains the following GUI elements:

A. top bar

a. information field

Shows whether message mapping is complete (), incomplete (), or
contains invalid mappings ().

b. Update Messages button

Updates the instances of the modules, i.e. imports changes in these
components into the project.

c. Open EHOOKS functions button

This button opens a dropdown menu with the following functions:

d. combo box for auto-mapping pattern

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

30 | Getting Started with an EHOOKS Project

In this combo box, you determine the pattern used for automatic map-
ping. See section 4.2.2.4 "Auto-Mapping" on page 46 for details.

e. button
Opens the ASCET options window in the "Appear-
ance\Editors\Project\Ehooks" node. In that node, you can adjust
the patterns available for automatic mapping.

f. / button

Shows () or hides () the upper table.

B. upper table (hidden by default)

a. "Messages" column

This column lists all receive and send&receive messages from all mod-
ules directly or indirectly used in the project. The messages are dis-
played as follows:

scalar
messages

exported/
imported

<message>

local self.<module_inst>2

(.<nested module_inst>...)3

.<message>

messages of
array type

exported/
imported

<message>[0..<n>4]

local self.<module_inst>
(.<nested module_inst>...)
.<message>[0..<n>]

messages of
record type

exported/
imported

<record_inst>5

(.<nested record_inst>...)3

.<record element>

local self.<module_inst>
(.<nested module_inst>...)
.<record_inst>
(.<nested record_inst>...)
.<record element>

Note

Receive messages with an external Set method are not shown.

Messages of array type are shown if With Arrays is activated.

Messages of matrix type are not shown.

Messages of record type are not shown directly. The record fields are
shown instead.

If one module contains a send message <name>, and another module
contains a receive message with identical <name>, the receive mes-
sage <name> is not shown.

2 <module_inst> is the module instance name
3 optional for nested modules or records
4 <n> is array_size - 1
5 <record_inst> is the record instance name

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

31 | Getting Started with an EHOOKS Project

⋄ input field and button above the column

You can enter a text string in the input field and then click on
to filter the list of available messages by name. The filter is case-
insensitive; it finds all messages whose names contain the text
string.

⋄ properties filter above the column

Opens the "Filter Criteria" dialog window (see Figure 4.20 on
page 45), which allows filtering the list by selected properties.

An active type filter is indicated by a green overlay icon on both filter

buttons:

An active filter is indicated by a green overlay icon: Click the button to
remove the filter.

b. "ECU Variables" column

This column lists all unmapped ECU measurement variables that are
available for mapping. The elements are displayed as follows:

scalar ECU vari-
ables

<ECU variable>

ECU variables
of array type

With Arrays activated <ECU array>[0..<n> 6]

With Arrays deacti-
vated

<ECU array>[<i> 7]

(A) (B)

ECU variables of array type — (A:) With Arrays is activated; (B): With
Arrays is deactivated

⋄ input field, properties filter and button above the column

The same as in the "Messages" column.

c. context menu

⋄ Get ECU Labels (pre-selection)

Opens the EHOOKS variable selection dialog window (see Figure 4.16
on page 40). Variables you select there will be available in the "ECU
Variables" columns when you close the window with OK.

See also To select ECU variables on page 39.

⋄ Get ECU Backup Copy Labels (pre-selection)

Opens the EHOOKS backup copy selection dialog window (see Fig-
ure 4.18 on page 41). This allows to map a message to a backup copy
of an ECU write hook (i.e. the value calculated by the original ECU be-
fore the ECU variable was hooked and bypassed by EHOOKS).

See also To use the Get ECU Labels and Map (*) commands on
page 50.

6 <n> is array_size - 1
7 <i> is the number of the array element (0 .. array_size - 1)

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

32 | Getting Started with an EHOOKS Project

⋄ Map pre-selected ECU Labels (overwrite existing mappings) and
Map pre-selected ECU Labels (keep existing mappings)

Variables in the "ECU Variables" field are mapped automatically to
messages with matching names. Existing mappings are treated ac-
cording to the function you selected.

See also To use the Map pre-selected ECU Labels (*) commands on
page 50.

⋄ Get ECU Labels and Map (overwrite existing mappings) and Get
ECU Labels and Map (keep existing mappings)

The ECU variables are searched for variables that match ASCET mes-
sage names. Detected matches are mapped automatically. Existing
mappings are treated according to the function you selected.

See also To use the Get ECU Labels and Map (*) commands on
page 50.

C. button
Maps a message selected in the "Message" column to an ECU variable se-
lected in the "ECU Variables" column.

Note

In the "Input" tab, one message can be mapped to one ECU variable. How-
ever, you can map several messages to the same ECU variable.

D. "Mapping" field - lower table

a. input field, properties filter and button

The same as in the "Messages" column of the upper table; see
page 31.

b. "Messages" column

This column lists the same messages as the "Messages" column in the
upper table; see the description on page 30.

c. icon column

This column contains icons that represent the mapping status.

The message is unmapped.

Mapping is valid: the message is mapped to a suitable ECU variable

Mapping is invalid

d. "ECU Variables" column

This column shows the ECU variables mapped to the messages in the
"Messages" column of the "Mapping" field. The elements are displayed
as in the upper "ECU Variables" column.

If no mapping exists (---; see Figure 4.12 on the next page, 3rd row),
the "ECU Variables" column can be used to perform mapping. A
double-click in a table cell opens a list of all suitable ECU variables (see
Figure 4.12, 4th row).

Unsaved changed mappings appear in blue font (see Figure 4.12, 2nd

row).

e. context menu

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

33 | Getting Started with an EHOOKS Project

Figure 4.12: "Mapping" field in the "Input" tab

⋄ Edit

Opens the list of available ECU variables for selection.

⋄ Remove

Removes the selected mapping.

⋄ Remove All

Removes all existing mappings.

⋄ Revert Changes

Reverts unsaved mapping changes.

Note

Edit, Remove, Remove All, and Revert Changes work the same
way as the respective commands described in the ASCET online
help for message and parameter mapping in AUTOSAR software
components.

⋄ Get ECU Labels (pre-selection)

The same as in the context menu of the upper table; see page 31.

See also To select ECU variables on page 39.

⋄ Get ECU Backup Copy Labels (pre-selection)

The same as in the context menu of the upper table; see page 31.

See also To connect a message to a backup copy of an ECU variable
on page 40.

⋄ Map pre-selected ECU Labels (overwrite existing mappings)
and Map pre-selected ECU Labels (keep existing mappings)

The same as in the context menu of the upper table; see page 32.

See also To use the Map pre-selected ECU Labels (*) commands
on page 50.

⋄ Get ECU Labels and Map (overwrite existing mappings) and Get
ECU Labels and Map (keep existing mappings)

The same as in the context menu of the upper table; see page 32.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

34 | Getting Started with an EHOOKS Project

See also To use the Get ECU Labels and Map (*) commands on
page 50.

⋄ Export

Opens the "Export Settings" dialog window where you can export
mappings to an *.xml or *.csv file.

⋄ Import

Imports mappings from an *.xml or *.csv file.

Note

Instructions for Export and Import are given in section 4.2.4 "Ex-
porting and Importing Mappings" on page 56.

⋄ Create ASCET Link

Creates an ASCET link for the selected source or target of a map-
ping, or the selected entire mapping, in the "Mapping" field. The link
opens the project and highlights the selected mapping part or map-
ping in the appropriate sub-tab of the "EHOOKS" tab.

See the ASCET online help for further information on ASCET links.

The Mapping menu contains the same options as the context menu in
the lower table.

E. Without Send/Receive Messages option

If activated, no send&receive messages appear in the upper and lower
"Messages" columns of the "Inputs" tab.

Note

Do not deactivate this option after you have mapped send&receive mes-
sages. If you do, the existing mappings become invalid.

The state of this option is stored when the project editor is closed.

F. With Arrays option

If the option is activated (A in Figure 4.13 on the next page), messages of
array type appear in the upper and lower "Messages" columns of both "In-
put" and "Output" tab. ECU arrays are listed as arrays in the "ECU Vari-
ables" columns.

If the option is deactivated (B in Figure 4.13 on the next page), array mes-
sages do not appear in the "Messages"column; they cannot be mapped.
Each element of an ECU array is listed separately in the "ECU Variables"
columns.

Note

An ECU variable appearing as an array element may either actually be an
array element, or a regular element with an index as part of the label name.
In the latter case, the ECU variable does respond to changes of the option.

The state of this option is stored when the project editor is closed.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

35 | Getting Started with an EHOOKS Project

Figure 4.13: "Input" tab with (A) and without (B) activated With Arrays option

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

36 | Getting Started with an EHOOKS Project

4.2.2.2 "Output" Tab

Figure 4.14: "Output" tab

The "Output" tab contains the following GUI elements:

A. top bar

Contains the same elements as the top bar in the "Input" tab; see page 29.

B. upper table (hidden by default)

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

37 | Getting Started with an EHOOKS Project

a. "Messages" column
This column lists all send and send&receive messages from all modules
directly or indirectly used in the project. The messages are displayed as
follows:

scalar
messages

exported/
imported

<message>

local self.<module_inst> 8

(.<nested module_inst>...) 9

.<message>

messages of
array type

exported/
imported

<message>[0..<n> 10]

local self.<module_inst>
(.<nested module_inst>...)
.<message> [0..<n>]

messages of
record type

exported/
imported

<record_inst>11

(.<nested record_inst>...)
.<record element>

local self.<module_inst>
(.<nested module_inst>...)
.<record_inst>
(.<nested record_inst>...)
.<record element>

Note

Send messages with an external Get method are shown.

Messages of array type are shown.

Messages of matrix type are not shown.

Messages of record type are not shown directly. The record fields are
shown instead.

If one module contains a send message <name>, and another module
contains a receive message with identical <name>, the send message
<name> is shown.

⋄ input field, properties filter and button above the column

The same as in the "Input" tab, "Messages" column, of the upper
table; see the description on page 31.

b. "ECU Variables" column
This column lists all unmapped ECU Write Hook variables that are avail-
able for mapping. The elements are displayed the same way as in the
"Input" tab; see the description on page 31.

⋄ input field, properties filter and button above the column

The same as in the "Input" tab, "Messages" column, of the upper
table; see the description on page 31.

8 <module_inst> is the module instance name
9 optional for nested modules or records

10 <n> is array_size - 1
11 <record_inst> is the record instance name

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

38 | Getting Started with an EHOOKS Project

c. context menu
The same as the context menu in the upper table of the "Input" tab (see
page 31), except that Get ECU Backup Copy Labels (pre-selection)
is deactivated.

C. button

Maps a message selected in the "Message" column to an ECU variable se-
lected in the "Variables" column.

Note

In the " Output" tab, one message can be mapped to several ECU vari-
ables.

D. "Mapping" field - lower table

a. input field, properties filter and button
The same as in the "Input" tab, "Messages" column, of the upper table;
see the description on page 31.

b. "Messages" column
This column lists the same messages as the "Messages" column in the
upper table; see page 37. If a message is mapped more than once,
each mapping is shown in a separate row.

c. icon column
The same as in the "Input" tab; see the description on page 32.

d. "ECU Variables" column
This column shows the ECU variables mapped to the messages in the
"Messages" column of the "Mapping" field. The elements are displayed
as in the upper "ECU Variables" column.
If no mapping exists (---; see Figure 4.15, 3rd row), the "ECU Vari-
ables" column can be used to perform mapping. A double-click in a ta-
ble cell opens a list of all suitable ECU variables (see Figure 4.15, 4th

row).
Unsaved changed mappings appear in blue font (see Figure 4.15, 2nd

row).

Figure 4.15: "Mapping" table in the "Output" tab

e. context menu
The same as the context menu in the lower table of the "Input" tab (see
page 32), except that Get ECU Backup Copy Labels is deactivated.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

39 | Getting Started with an EHOOKS Project

E. Without Send/Receive Messages option
If activated, no send&receive messages appear in the upper and lower
"Messages" columns of the "Outputs" tab.

Note

Do not deactivate this option after you have mapped send&receive mes-
sages. If you do, the existing mappings become invalid.

The state of this option is stored when the project editor is closed.

F. With Arrays option

Works the same way as in the "Input" tab; see the description on page 34.

4.2.2.3 Mapping Messages and ECU Variables
This section contains step-by-step instructions for selecting ECU variables and
mapping them to messages.

To select ECU variables

1. In the project editor, go to the "EHOOKS" tab.

2. Do one of the following:

• To select ECU Measurement variables, go to the "Input" tab (Fig-
ure 4.11 on page 29).

• To select ECU Write Hook variables, go to the "Output" tab (Fig-
ure 4.14 on page 36).

3. To open the EHOOKS variable selection dialog window (see Figure 4.16
on the next page), do one of the following:

• Right-click in the tab and select Get ECU Labels (pre-selection) from
the context menu.

• Select Mapping > Get ECU Labels (pre-selection).

• Click on the Open EHOOKS functions button and select Get
ECU Labels (pre-selection).

4. In the EHOOKS variable selection dialog window, select the required
EHOOKS variables, then click OK.

The selected ECU variables appear in the "ECU Variables" column in the
upper table of the "Input" or "Output" tab.

Note

It is recommended that you leave the EHOOKS option Convert All activated.
This will cause EHOOKS to generate the conversion functions from ECU types to
floating-point types. ASCET uses these functions when generating code for the
Object Based Controller Physical code generator (see section 4.1.3.4
on page 24).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

40 | Getting Started with an EHOOKS Project

Figure 4.16: EHOOKS variable selection dialog window (see the EHOOKS-DEV
user guide for further information)

To connect a message to a backup copy of an ECU variable

Note

Backup copies are only available for ECU measurement variables whose "Create
Backup Copy" property is set to Yes; see Figure 4.17 on the next page.

1. In the project editor, go to the "Input" sub-tab of the "EHOOKS" tab.

2. Do one of the following:

• Right-click in the tab and select Get ECU Backup Copy Labels (pre-
selection) from the context menu.

• Select Mapping > Get ECU Backup Copy Labels (pre-selection).

• Click on the Open EHOOHS functions button and select Get
ECU Backup Copy Labels (pre-selection).

The "Hook Selection" window (see Figure 4.18 on the next page) opens.
The left table lists all ECU variables with backup copy enabled.

3. In the left column of the "Hook Selection" window, select the EHOOKS
variables whose backup copies you want to connect to ASCET messages.

4. Click the button to shift the selected ECU variables to the right col-
umn.

5. Click OK to close the "Hook Selection" window.

Backup copies (named EH_copy_<ecu variable>) of the selected
ECU variables are now available for mapping (see Figure 4.19 on
page 42).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

41 | Getting Started with an EHOOKS Project

Figure 4.17: Activating backup copies in the "Variable Bypass" tab of the EHOOKS
window (see the EHOOKS-DEV user guide for further information)

Figure 4.18: EHOOKS "Hook Selection" window

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

42 | Getting Started with an EHOOKS Project

6. Map the backup copies to ASCET messages as described in
"To map messages and ECU variables in the "Mapping" field on page 43"
or "To map messages and ECU variables in the upper table" on page 43.

Figure 4.19: Backup copies of ECU measurement variables available for mapping

Note

Note that when selecting a backup copy, the GUI presented by EHOOKS sup-
ports multiple selection. ASCET can only use a single selection. If you select
more than one backup variable per message using the dialog, ASCET will only
use the first item you select.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

43 | Getting Started with an EHOOKS Project

To map messages and ECU variables in the "Mapping" field

Note

You cannot use the "Mapping" field in the "Output" tab for multiple mappings of
the same message.

This instruction applies to scalar messages and scalar elements of record mes-
sages.

1. In the project editor, go to the "EHOOKS" tab.

2. Do one of the following:

• To map ECU Measurement variables, go to the "Input" tab (Fig-
ure 4.11 on page 29).

• To map ECU Write Hook variables, go to the "Output" tab (Figure 4.14
on page 36).

3. If desired, filter the columns (see also "To filter the columns" on page 45).

4. In the "Mapping" field, double-click in a cell in the "ECU Variables" column.

A list with all ECU variables available for mapping opens.

5. Select an ECU variable.

The mapping is performed. The results are shown in the "Mapping" field.

In the "Output" tab, the mapped ECU variable is removed from the "ECU
Variables" column of the upper table.
In the "Input" tab, the mapped message is removed from the "Messages"
column of the upper table.

Changed mappings are indicated by blue font in the "ECU Variables" col-
umn of the "Mapping" field.

The icon column in the "Mapping" field shows the mapping status; see the
description on page 32.

To map messages and ECU variables in the upper table

This instruction applies to scalar messages and scalar elements of record mes-
sages.

1. In the project editor, go to the "EHOOKS" tab.

2. Do one of the following:

• To map ECU Measurement variables, go to the "Input" tab (Fig-
ure 4.11 on page 29).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

44 | Getting Started with an EHOOKS Project

• To map ECU Write Hook variables, go to the "Output" tab (Figure 4.14
on page 36).

3. If necessary, click on to show the upper table.

4. If desired, filter the columns (see also "To filter the columns" on the next
page).

5. In the "Messages" column of the upper table, select a message.

6. In the "ECU Variables" column of the upper table, select an ECU variable.

The button becomes available if the selected elements can
be mapped.

7. Click on .

Note

As an alternative to these steps, you can drag a message from the "Mes-
sages" column and drop it onto a suitable element in the "ECU Variables"
column.

The mapping is performed. The results are shown in the "Mapping" field.

In the "Output" tab, the mapped ECU variable is removed from the "ECU
Variables" column of the upper table.
In the "Input" tab, the mapped message is removed from the "Messages"
column of the upper table.

Changed mappings are indicated by blue font in the "ECU Variables" col-
umn of the "Mapping" field.

The icon column in the "Mapping" field shows the mapping status; see
page 32.

To remove a selected message/ECU variable mapping

This instruction applies to scalar messages and scalar elements of record mes-
sages.

1. In the project editor, go to the "EHOOKS" tab.

2. Go to the "Input" (Figure 4.11 on page 29) or "Output" (Figure 4.14 on
page 36) tab.

3. In the "Mapping" field, "Messages" or "ECU Variables" column, select a
mapped element.

4. Do one of the following:

• Open the context menu or the Mapping menu and select Remove.

• Press <Delete>.

• In the "Mapping" field, double-click a cell in the "ECU Variables" col-
umn and select <None>.

The mapping is removed. If it was the 1+nth mapping of a Send or
SendReceive message, the entire line is removed from the "Mapping"
field.

The ECU variable reappears in the upper table.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

45 | Getting Started with an EHOOKS Project

If the message is a Receive message, it reappears in the upper table, too.

Changed mappings are indicated by blue font in the "ECU Variables" col-
umn of the "Mapping" field.

The icon in the icon column is reset to .

To remove all message/ECU variable mappings in a tab

1. In the project editor, go to the "EHOOKS" tab.

2. Go to the "Input" (Figure 4.11 on page 29) or "Output" (Figure 4.14 on
page 36) tab.

3. Open the context menu or the Mapping menu and select Remove All.

All mappings in the tab are removed. Messages and ECU variables reap-
pear in the upper table.

The icons in the icon column are reset to .

To filter the columns

You can filter the columns in the "Input" or "Output" tabs for more clearness. You
can filter for element names or for element properties.

1. To filter for element properties, do the following:

i. In the column you want to filter, click on the button.

The respective "Filter Criteria" dialog window (Figure 4.20) opens.

ii. In the combo boxes of the "Filter Criteria" dialog window, select the
properties you want to show in the column.

iii. Click OK to apply the filter.

Only elements with all of the selected properties are shown in the list.
The active type filter is indicated by a green overlay icon on both filter

buttons:

(A) (B) (C)

Figure 4.20: "Filter Criteria" windows — (A): upper table, "Messages" column; (B):
upper table, "ECU Variables" column; (C): lower table

2. To filter for element name, do the following:

i. In the column you want to filter, enter a text string in the input field.

ii. Click on or press <Enter> to apply the filter.

Only elements whose names contain the text string are shown in the
list. The filter is case-insensitive, i.e. a search term Msg will also find
msg, MSG, etc. The active name filter is indicated by a green overlay

icon on the second filter button:

In the "Mapping" field (lower table), the filter is applied to both columns
(see also Figure 4.21 on the next page). An entry is displayed if at
least one name contains the text string.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

46 | Getting Started with an EHOOKS Project

(A) (B)

Figure 4.21: Example: Name filter in the "Mapping" field — (A): no name filter; (B):
active name filter

3. If desired, combine both filters.

4. To deactivate all filters in a list, click on the button of the respective list.

The filter is deactivated, all entries of the respective list are shown. The fil-
ter settings, i.e. the text string in the input field and the settings in the "Fil-
ter Criteria" dialog window, are kept until you delete or overwrite them.

4.2.2.4 Auto-Mapping
Mapping each individual message can be time-consuming if you have a lot of vari-
ables. To simplify the task, the EHOOKS Target provides an auto-mapping function.

By default, auto-mapping maps messages and ECU measurements / write hooks
with identical names. To make auto-mapping more effective, you can define pat-
terns that are used to map messages and ECU measurements / write hooks with
different names. With these patterns, you can, for example, take into account pre-
fixes and/or postfixes.

Default patterns are defined in the ASCET options, "Appearance\Editors\
Project\Ehooks" node (see Figure 4.22 on the next page). These patterns are avail-
able in the combo boxes of the "Input" and "Output" tabs; see (1d) in Figure 4.11 on
page 29 and Figure 4.14 on page 36. You can add your own patterns, either via the
ASCET options window or via the combo box.

Auto-mapping maps unconnected ASCET messages in the project to ECU mea-
surements or write hooks with matching names according to the following heuristic:

– If a message has no sender (or is sent only by the project itself) and is re-
ceived by one or more modules, then it will be automatically mapped to an
ECU Measurement with a matching name.

– If a message has no receiver (or is received only by the project itself) and is
sent by one module, then it will be automatically mapped to an ECU Write
Hook with a matching name.

ECU variables are searched for matches in the following order:

A. identifier of the ECU variable

If an ECU variable with matching identifier is found, it is mapped to the
ASCET message.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

47 | Getting Started with an EHOOKS Project

Figure 4.22: EHOOKS options: patterns for auto-mapping in the "Input" and "Out-
put" tabs

B. display identifier of the ECU variable

If no matching identifier is found, the display identifiers of the ECU vari-
ables are searched. If a matching display identifier is found, the respective
ECU variable is mapped to the ASCET message.

C. an array element of an ECU array variable

If no matching identifier and no matching display identifier are found, the
names of ECU array variables are searched. If a matching array variable is
found, the ASCET message is mapped to an element of this array.

The pattern for searching arrays is determined in the "Pattern for Arrays"
field in the "Appearance\Editors\Project\Ehooks" node of the ASCET op-
tions window (see Figure 4.22).

This pattern is used to find messages that can be mapped to array ele-
ments. If an ECU array can be found by applying the inferred label name to
the mapping pattern (both considering the A2L identifier and display iden-
tifier), and the inferred index is within the range of the ECU array, then the
message is mapped to the array element with that index.

If a mapping is done from ECU variables to messages (i.e. using pat-
terns based on %ECULABEL.NAME%), he name of the ECU variable is first
passed to the automapping pattern and then to the array pattern.

If the array pattern does not contain both the %VARIABLE.NAME% and
%INDEX%) parameters it is considered invalid and no additional array el-
ement mapping will be done. This allows for disabling this auto-mapping
functionality.

This procedure works for all auto-mapping commands (see Figure 4.23 on
page 49).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

48 | Getting Started with an EHOOKS Project

Note

There is no guarantee that a message and an ECU variable with matching
names represent the same concept.

For example, a message named Speed in the model representing speed in km/h
is not the same as a message named Speed on the ECU that represents speed
in miles/h.

You must therefore verify that any auto-mappings represent valid connections by
using the ECU information provided by your ECU supplier.

Matching names are derived from the currently selected pattern.
%MESSAGE.NAME% is the template for names of elements in the "Messages"
column, %ECULABEL.NAME% is the template for names of elements in the "ECU
Variables" column. If you add a prefix or postfix to a template, auto-mapping works
as shown in Table 4.4.

pattern auto-mapping result

prefix_%MESSAGE.NAME% A message name and an ECU variable
prefix_name are mapped.

%MESSAGE.NAME%_postfix A message name and an ECU variable
name_postfix are mapped.

prefix_%ECULABEL.NAME% A message prefix_name and an ECU vari-
able name are mapped.

%ECULABEL.NAME%_postfix A message name_postfix and an ECU vari-
able name are mapped.

Table 4.4: Auto-mapping patterns and auto-mapping results

Note

Keep in mind the following rules when you define a template:

– You can add a prefix, or a postfix, or both.

– Prefixes and postfixes are case-sensitive; a pattern PREFIX_<name> will
not match a message or ECU variable prefix_<name>.

– You cannot use %MESSAGE.NAME% and %ECULABEL.NAME% in the same
pattern.

Auto-mapping is accessed via the Mapping menu, the Open EHOOKS functions
button or the context menu in the "Input" and "Input" tabs ((A) – (C) in Figure 4.23
on the next page).

Auto-mapping has the following modes:

Overwrite existing mappings replaces any mappings you have done with the
mappings that are automatically detected.

Keep existing mappings adds automatically detected mappings only if a map-
ping is not already defined.

ASCET will show the changes that auto-mapping has made by highlighting the
mappings in blue text. The highlighting is removed when you save the project.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

49 | Getting Started with an EHOOKS Project

Figure 4.23: Accessing auto-mapping — (A): via the Mapping menu, (B): via the
Open EHOOKS functions button, (C): via the context menu in the "In-
put" and "Output" tabs

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

50 | Getting Started with an EHOOKS Project

To use the Map pre-selected ECU Labels (*) commands

1. Go to the "Input" or "Output" tab.

2. In the combo box12, define or select a pattern for auto-mapping.

3. Do one of the following:

• Select Mapping > Map pre-selected ECU Labels (* 13).

• Click the Open EHOOKS functions button and select Map pre-
selected ECU Labels (*13).

• Right-click in a table in the "Input" or "Output" tab and select Map pre-
selected ECU Labels (*13) from the context menu.

Unmapped messages and pre-selected ECU variables (cf. page 39)
with matching names are mapped. Module names in labels of local mes-
sages and record names are not considered (see also the descriptions on
page 30 and page 37).

The results are shown in the "Mapping" field.

To use the Get ECU Labels and Map (*) commands

1. Go to the "Input" or "Output" tab.

2. In the combo box12, define or select a pattern for auto-mapping.

3. Do one of the following:

• Select Mapping > Get ECU Labels and Map (*13).

• Click the Open EHOOKS functions button and select Get ECU
Labels and Map (*13).

• Right-click in a table in the "Input" or "Output" tab and select Get ECU
Labels and Map (*13) from the context menu.

If it is not yet running, EHOOKS is started. Matching ECU variables are
selected automatically and mapped to messages with matching names.

Module names in labels of local messages and record names are not con-
sidered (see also the descriptions on page 30 and page 37).

4.2.3 Configuring the Scheduling
To map the processes of your ASCET model to dispatch points on the ECU, you
first need to map the processes into a "virtual" task called a bypass function, and
then associate the bypass function with a dispatch point provided by the ECU. This
is done in the "Scheduling" sub-tab of the "EHOOKS" tab.

The "Scheduling" sub-tab is described in section ""Scheduling" Tab" on the next
page.

12 see (1d) in Figure 4.11 on page 29 and Figure 4.14 on page 36
13 * is either overwrite existing mappings or keep existing mappings

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

51 | Getting Started with an EHOOKS Project

4.2.3.1 "Scheduling" Tab

Figure 4.24: "Scheduling" tab

The "Scheduling" tab contains the following GUI elements:

A. "Processes" field

Lists all modules included in the project. Each module can be expanded to
display its processes.

B. Unused processes only option

If activated, only processes not assigned to any bypass function are shown
in the "Processes" field.

C. and buttons

These buttons are used to map/unmap processes to bypass functions. At
least one process in the "Processes" field and one bypass function in the
"Bypass function" field must be selected.

D. "Bypass function" field

Lists all bypass functions in the project. Each bypass function can be ex-
panded to display its assigned processes.

The "Bypass function" field offers a context menu with the following func-
tions:

• Create from operating system

Creates bypass functions according to the task list of an existing OS
configuration.
See also "To copy an existing OS configuration" on page 53.

• Add (<Insert>)

Creates a bypass function.
See also "To create a bypass function" on the next page.

• Rename (<F2>)

Renames a bypass function.

• Delete (<Delete>)

Deletes a bypass function.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

52 | Getting Started with an EHOOKS Project

• Move Up (<Ctrl> + <↑>) and Move Down (<Ctrl> + <↓>)

Moves a process upwards/downwards within the bypass function.

• Open Module

Opens a suitable component editor and edits the module that contains
the selected process.

• Remove undefined processes

Removes undefined processes from the bypass functions.

• Export

Opens the "Export Settings" dialog window where you can export map-
pings to an *.xml or *.csv file.
See also To export all mappings of one or more tabs on page 57.

• Import

Imports mappings from an *.xml or *.csv file.
See also "To import mappings" on page 58.

• Create ASCET Link

Creates an ASCET link that opens the project, and highlights the se-
lected bypass funktion in the "EHOOKS" tab, "Scheduling" sub-tab.

See the ASCET online help for further information on ASCET links.

E. "Settings" field

This field allows to set properties for a selected bypass function.

• "Dispatch point" combo box

Used to associate a bypass function with an ECU dispatch point.
See also "To associate a bypass function with a dispatch point" on
page 54.

• "Period" input field

Used to specify a period in seconds. ASCET will use this period for dT
for all processes mapped to the bypass function.

Possible selections: <None>, <Select>, previously selected dispatch
points

4.2.3.2 Mapping Processes to Dispatch Points

To create a bypass function

1. In the project editor, go to the "EHOOKS" tab and the "Scheduling" sub-
tab.

2. In the "Scheduling" sub-tab, right-click in the "Bypass function" field and
select Add from the context menu.

A new bypass function is created. Its name is highlighted for editing.

3. Enter a name and press <Return>.

To map a process to a bypass function

1. In the project editor, go to the "EHOOKS" tab and the "Scheduling" sub-
tab.

2. In the "Processes" field, select one or more processes ((1) in Figure 4.25
on the next page).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

53 | Getting Started with an EHOOKS Project

Figure 4.25: Mapping processes to bypass functions

3. In the "Bypass function" field, select one or more bypass functions ((2) in
Figure 4.25).

4. Click the button ((3) in Figure 4.25).

The selected processes are assigned to the bypass function(s).

To copy an existing OS configuration

You can copy a process-to-task mapping from other target/OS combinations (e.g.
your PC experiment) to a process-to-bypass function mapping for the EHOOKS Tar-
get. To do so, proceed as follows.

1. In the project editor, go to the "EHOOKS" tab and the "Scheduling" sub-
tab.

2. In the "Scheduling" sub-tab, right-click in the "Bypass function" field and
select Create from operating system from the context menu (see Fig-
ure 4.26 on the next page).

The "Selection Required" window opens.

3. Select the combination of target and operating system you want to copy
and click OK.

For each task in the copied mapping, a bypass function is created, and the
respective processes are assigned.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

54 | Getting Started with an EHOOKS Project

Figure 4.26: Copying an existing configuration from another target

To associate a bypass function with a dispatch point

1. In the project editor, go to the "EHOOKS" tab and the "Scheduling" sub-
tab.

2. In the "Scheduling" sub-tab, select a bypass function.

The "Dispatch Point" combo box is now available.

3. Open the "Dispatch Point" combo box and select <Select>.

If EHOOKS is not already running, it is started now. A configuration dialog
(see Figure 4.27 on the next page) that lists all available dispatch points
opens.

4. In the configuration dialog, select the dispatch point you want to associate
with the bypass function.

5. Close the configuration dialog with OK.

The selected dispatch point is now shown in the "Dispatch Point" combo
box.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

55 | Getting Started with an EHOOKS Project

Figure 4.27: Selecting a Bypass Container Dispatch Point

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

56 | Getting Started with an EHOOKS Project

To access dT

The EHOOKS Target does not currently provide a way to use a dT value from the
ECU. If your model needs a notion of time, you have to specify a period in seconds
that ASCET will use for dT for all processes mapped to the bypass function. Pro-
ceed as follows.

1. In the "Scheduling" sub-tab, select a bypass function.

2. If necessary, associate a dispatch point (see page 54).

The "Period" field is now available.

3. In the "Period" field, enter the desired time in seconds.

Note

If you do not specify a period, ASCET will use an undefined value for dT.

4.2.4 Exporting and Importing Mappings
You can export selected message/ECU variable mappings from the "Input" or "Out-
put" sub-tab of the "EHOOKS" tab, or you can export selected mappings of pro-
cesses to ECU dispatch points from the "Scheduling" sub-tab. Alternatively, you
can export all mappings of one to three sub-tabs.

Note

In this section, the term mapping refers to message/ECU variable mapping in
the "Input" and "Output" tabs and to the mapping of processes to ECU dispatch
points in the "Scheduling" tab.

To export selected mappings

1. Go to the tab that contains the mappings you want to export.

2. Do one of the following:

• In the "Mapping" field of the "Input" or "Output" tab, select one or more
mappings.

• In the "Bypass function" field of the "Scheduling" tab, select one or
more bypass functions.

3. Do one of the following:

• Select Mapping > Export.

• Right-click in the "Mapping" or "Bypass function" field and select Ex-
port from the context menu.

If your project contains unsaved mapping changes, you are asked if you
want to store the changes.

4. Click Save or Revert to continue.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

57 | Getting Started with an EHOOKS Project

The "Export Selections" dialog window opens. The option Only Selected
Elements in Mapping Table is preselected.

Note

You cannot combine the export of selected mappings and the export of all
mappings in a tab. If you activate one of the other options, Only Selected
Elements in Mapping Table is deactivated.

5. Click OK to continue.

A file selection window opens.

6. Select the export format and path and name for the export file.

You can select either XML (*.XML) or CSV (*.CSV).

7. Click Save to export the selected mappings.

The export file is created. When you selected the CSV format, you are in-
formed that the export file is not compatible with ASCET V6.2.0.

8. Read the message carefully, then confirm with OK.

To export all mappings of one or more tabs

1. Go to the "Scheduling", "Input" or "Output" tab.

2. Do one of the following:

• Select Mapping > Export.

• Right-click in the "Mapping" field or in the "Bypass function" field and
select Export from the context menu.

If your project contains unsaved mapping changes, you are asked if you
want to store the changes.

3. Click Save or Revert to continue.

The "Export Selections" dialog window opens. The options in the "Map-
ping Types" area are preselected.

Note

You cannot combine the export of all mappings in a tab and the export of
selected mappings. If you activate Only Selected Elements in Mapping
Table, the other options are deactivated.

4. In the "Export Selections" dialog window, select one or more mapping tabs
in the "Mapping Types" area.

5. Click OK to continue.

A file selection window opens.

6. Select the export format and path and name for the export file.

You can select the XML (*.XML) or CSV (*.CSV) format.

7. Click Save to export the selected mappings.

The export file is created.

You can import mappings from a mapping export file.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

58 | Getting Started with an EHOOKS Project

To import mappings

1. Go to the "Scheduling", "Input" or "Output" tab.

2. Do one of the following:

• Select Mapping > Import.

• Right-click in the "Mapping" field or in the "Bypass function" field and
select Import from the context menu.

If your project contains unsaved mapping changes, you are asked if you
want to store the changes.

3. Click Save or Revert to continue.

A file selection window opens. You can filter the display for XML
(*.XML), CSV (*.CSV) or AEHK.XML (*.aehk.xml)

14 .

4. Select the mapping export file you want to import.

Note

All mappings in the export file will be imported, you cannot select only a
part of the mappings in the export file.

There is no check if the imported mappings are valid or invalid.

5. Click Open to import the mappings in the selected file.

The mappings in the file are imported according to the rules given in Ta-
ble 4.5 on the next page.

6. Check the "Scheduling", "Input" and "Output" tabs and correct invalid map-
pings.

14old file format used by ASCET to store mapping information

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

59 | Getting Started with an EHOOKS Project

"Input" tab • Existing mappings are kept.

The respective entries in the export file are ignored.

• For each ignored mapping, a warning message is issued
in the ASCET monitor window:

Import of mapping ("<message name> ->
<ECU variable name>")prevented because it
is already existent!"Output" tab • Existing mappings are kept.

• If a message in an existing mapping can be mapped to
multiple ECU write hooks, the mapping in the export file is
added.

• If a message in an existing mapping cannot be mapped to
multiple ECU write hooks, the mapping in the export file is
ignored.

• For each ignored mapping, a warning message is issued
in the ASCET monitor window:

Import of mapping ("<message name> ->
<ECU variable name>")prevented because it
is already existent!"Scheduling" tab • Existing bypass functions in the "Bypass functions" field
are kept unchanged, even if they are not associated with
processes or dispatch points.

The respective entries in the export file are ignored.

• For each ignored mapping, a warning message is issued
in the ASCET monitor window.

Import of bypass function label "<bypass
function name>"prevented because it is
already available!

Table 4.5: Rules for import of mappings

4.3 Non-Volatile RAM
EHOOKS supports non-volatile RAM since V3.1. In ASCET, parameters are auto-
matically set to non-volatile; other elements can be placed in the NVRAM memory
via the Non-Volatile option in the element’s properties editor.

To assign the Non-Volatile Attribute to an element

1. Open the component that contains the desired element in a component
editor.

2. In the "Outline" tab of the component editor, right-click the element and
select Properties from the context menu to open the "Properties Editor".

3. In the "Attributes" area, activate the Non-Volatile option (see Figure 4.28
on the next page).

4. Click OK to close the "Properties Editor".

During the Build process, ASCET generates a *.six file in the SCOOP-IX V1.4
format, which contains the nonVolatile attribute for <dataElement>s; see List-
ing 4.1.

...
<dataElement>

...

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

60 | Getting Started with an EHOOKS Project

Figure 4.28: Assigning the Non-Volatile attribute to an element

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

61 | Getting Started with an EHOOKS Project

<usage measurement="true"
virtual="false"
variant="false"
nonVolatile="false">

</usage>
...

<dataElement>
...

Listing 4.1: SCOOP-IX V1.4 extract with nonVolatile attribute

4.4 Building the ECU Code
To rebuild the ECU hex image, update the ASAM-MCD-2MC file, and generate the
SCOOP-IX file 15, select Build > Build All or Build > Rebuild All from the project
editor menu. Alternatively, you can use the keyboard shortcuts: <F7> to build, and
<Shift> + <F7> to re-build.

ASCET will generate code for your bypass function(s) and call EHOOKS to rebuild
the ECU image and generate a new *.a2l file.

The *.a2l and *.hex files will be located in the places you specified in EHOOKS
for output configuration (see section 4.1.4 on page 25).

4.4.1 Using the Code Generator: Object Based Controller Physical
In the "Build" node of the "Project Properties" window, two Code Generators are
available: Object Based Controller Physical and Object Based
Controller Implementation, see Figure 4.29 on the next page.

If Object Based Controller Physical is selected as code generator, the im-
plementation information in the ASCET Bypass project is ignored, all ASCET udisc
and sdisc data type values are implemented as uint32 and sint32, and the ASCET
log data type is implemented as uint8. The ASCET generated code behaves like
the generated code for the physical PC target. When a variable is written to the
ECU, the EHOOKS Target will automatically limit the value to the min and max val-
ues defined by the ECU.

The min and max values of all Bypass elements in the generated ECU *.a2l file
are -9.9995e+36 and 9.9995e+36.

All cont values are implemented as real32 or real64 (single or double precision
values), depending on the setting of the "Cont Implementation Type" option in the
ASCET options, "Targets\EHOOKS\Build" node.

15 all supported EHOOKS versions generate *.six files with SCOOP-IX V1.4.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

62 | Getting Started with an EHOOKS Project

Figure 4.29: Choosing the Code Generator in the project properties, "Build" node

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

63 | Getting Started with an EHOOKS Project

The following settings are available for "Cont Implementation Type" (see also Ta-
ble 4.3 on page 25):

Phys. Single Precision - Generate all continuous elements as single-precision
floating-point values.

Phys. Double Precision - Generate all continuous elements as double-
precision floating-point values.

Note

This setting applies to all projects that use the EHOOKS target.

4.4.2 Generating ECU Code Only
You can generate C code and the *.ehcfg file from ASCET by selecting Build >
Generate Code from the project editor menu or pressing <Ctrl> + <F7>.

Note

ASCET does not update the EHOOKS configuration until the Generate Code
step is executed. If you have ASCET and EHOOKS open simultaneously, you
must perform Generate Code to see the ASCET-configured parts of the configu-
ration in EHOOKS.

The SCOOP-IX file is not generated in the Generate Code step.

ASCET generates all bypass functions in a single C source file called
asd_bypass_func.c. This file is located in the directory specified in the ASCET
options, "Build\Paths" node, "Code Generation Path" field (see the ASCET online
help for details)16.

Each generated bypass function has the structure shown in Listing 4.2. In-
stead of direct access to the EHOOKS variable structures, the methods
EH_ARG_PUT_<ECUVar> and EH_ARG_SET_<ECUVar> are generated for the ac-
cess.

EH_USER_BYPASS_FUNC(<function_name>)
{

/* save the current value of dT for later restoring */
ASD_DT_SCALED_TYPE Saved_ASD_DT_SCALED = ASD_DT_SCALED;

/* Perform RAM initialization. Use default number of
bytes

** to initialize. The OTB function will return with
failure

** until the RAM has been initialized.

*/
if (!EH_InitRam(0)) {

return 0;
}

16 By default, "Code Generation Path" is set to <ASCET
installation_directory> \CGen.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

64 | Getting Started with an EHOOKS Project

/*--

* Copy the EHOOKS input arguments to ASCET messages

--/

/* ... */

BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(
EH_IMPL_TO_float_PHYS_<ECUVar>(
EH_ARG_GET_<ECUVar>(EH_context)));

...

/*--

* Copy the EHOOKS output arguments to ASCET messages

* for initialization,

* if not already done by EHOOKS input arguments

--/

/* ... */

BP_<Message> = ASD_REAL32_TO_IMPL_<Message>(
EH_IMPL_TO_float_PHYS_<ECUVar>(
EH_ARG_GET_<ECUVar>(EH_context)));

/* ASD_CALC_SCALED_DT macro expects the dT value in
milliseconds */

ASD_CALC_SCALED_DT(ASD_DT_SCALED, 10U);

/* *** Execute processes *** */
<Module>_<Implementation>_<Process>();
...

/*--

* Copy ASCET output messages to EHOOKS output arguments

--/

/* ... */

EH_ARG_PUT_<ECUVar>(EH_float_PHYS_TO_IMPL_<ECUVar>(
ASD_IMPL_TO_REAL32_<Message>(BP_<Message>)));

...

/* restore the original value of dT */
ASD_DT_SCALED = Saved_ASD_DT_SCALED;

return 1;
}

Listing 4.2: Example bypass function structure (EHOOKS-DEV 3.0)

4.4.3 Viewing the ASCET Build Log
ASCET logs code generation and EHOOKS invocation information in the moni-
tor window. Additional information can be found in the file Makelog.txt in the
same directory as the asd_bypass_func.c file (see section 4.4.2 on the previous
page).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

65 | Calibrating Bypass Functions

5 Calibrating Bypass Functions
Calibration on bypass functions requires a slightly different approach when using
EHOOKS to using other embedded targets.

For non-EHOOKS targets, ASCET itself must generate all data structures, export
all measurement and calibration labels to an A2L file and then, after the build stage,
extract address information for all symbols from the executable image and patch
them into the A2L file.

With the EHOOKS target, ASCET is not in control of the build process; this is man-
aged transparently by EHOOKS-DEV. This means that EHOOKS-DEV is respon-
sible for all data location and the extraction of addresses to generate the updated
ECU *.a2l file.

The impact of this is that any elements in an ASCET bypass model that need to be
available for calibration in the re-built ECU image must be known to EHOOKS. The
elements of the following type are supported for calibration:

– scalar elements

– characteristic lines (1D characteristic tables): fixed, normal and group

– characteristic maps (2D characteristic tables): fixed, normal and group

– arrays

– matrices

– records

Restrictions exist that only parameter characteristic tables and distributions are sup-
ported for calibration. Variable elements of characteristic tables and distribution
types are not shown in the generated ECU *.a2l file.

Note

You must ensure that – for parameters – both options in the "Calibration Access"
area of the element’s properties editor are set, to ensure that EHOOKS adds the
elements to the ECU *.a2l. Otherwise the build will run successfully, but the
elements will be missing.

It is possible to also write the default raster information to the A2L file. To enable
this, select the SCOOP-IX version 1.5 in the settings of the EHOOKS target (see
also section 4.1.3.1).

The default raster helps to configure the data acquisition in the calibration tool.

Figure 5.1 on the next page shows how a curve called MyFixedCurve is marked
for calibration when working with the EHOOKS Target.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

66 | Calibrating Bypass Functions

Figure 5.1: Exporting an element

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

67 | Calibrating Bypass Functions

5.1 Calibration of Elements in Classes with Multiple Instances
Calibration of elements in multi-instance components must be explicitly activated.
This is done in the ASCET options window, in the nodes of the EHOOKS versions;
see Figure 5.2.

Figure 5.2: Enable the calibration access to characteristics and measurements

Note

Calibration access to characteristics in multi-instance classes may consume ad-
ditional memory, if a calibration method that uses multiple copies is used (e.g.
SERAP). If a project runs out of memory, the calibration access can be disabled.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

68 | Interacting with EHOOKS Control Variables

6 Interacting with EHOOKS Control Variables
EHOOKS configurations can define enablers that allow calibration-time and/or run-
time control of hooked variables (see Figure 2.2 on page 10).

When an enabler is configured, EHOOKS generates a C variable with the name
you specify that acts as a switch to control whether or not the hook is active.

Note

Give your EHOOKS hook control variables names that are valid C names.

For more details on EHOOKS control variables, see the EHOOKS-DEV user
guide, sections "EHOOKS-DEV Hook Configuration Properties" and "Configur-
ing Properties of a Variable Hook".

The hook can be enabled and disabled at run-time by writing the following values:

Function Write Value

Enable 0x12 (18 in decimal)

Disable Any other value

You can access this capability from your ASCET bypass function by creating a
C code class that writes to the EHOOKS-generated variable. Figure 6.1 shows an
example model that disables a hook when a value reaches a specific threshold:

Figure 6.1: Using C code classes to access control variables

To write a C code class to access control variables

You will need to write the C code class(es) to write to the control variables as fol-
lows1:

1. Create a C code class to store your control methods.

2. Add a method for each variable you need to enable or disable.

The method can use any valid ASCET method name.

1 There are alternative ways of building this functionality – you are only limited
by the capabilities of the C programming language!

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

69 | Interacting with EHOOKS Control Variables

3. At the bottom of the C code editor pane, do the following:

i. Set "Target" to EHOOKS.

ii. Set "Arithmetic" to Object Based Controller
Implementation.

iii. Leave "Implementation" set to the default.

4. Click on the "Header" tab (in any method or in main – headers are shared
across all methods in C code classes) and enter the following code:

#include "UserBypassFuncs.h"

This header file defines all the available control variables. It is automati-
cally generated by EHOOKS and included in the build process.

5. For each method that must enable the hook, add this code:

control_variable_name = 18;

6. If the method must disable the hook, add this code:

control_variable_name = 0;

Figure 6.2 shows a method called enableSpeedHook that writes to a control vari-
able called B_srfdke__control.

The same method for interacting can be used for the Object Based
Controller Physical code generator. For the C code classes, you have to se-
lect Object Based Controller Physical in the "Arithmetic" combo box (see
Figure 6.2).

Figure 6.2: C code to enable a hook

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

70 | Interacting with EHOOKS Control Variables

Note

The control variable name used by your configured C code class must be iden-
tical to the C name of the EHOOKS hook control variable you declare in the
EHOOKS configuration.

It is important to remember the following: If a configured hook control variable
name is not a valid C identifier, then EHOOKS will automatically convert the
name into a valid C identifier by replacing all characters that are not permitted
in a C identifier with double underscores (__).

For example, if you call a control variable MyVariable.control, then
EHOOKS will automatically convert the name to MyVariable__control.
You must use the converted C name when building C code classes that write to
EHOOKS hook control variables.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

71 | Arithmetic Services and Interpolation Routines

7 Arithmetic Services and Interpolation Routines
ASCET can interact with user code that is provided outside of ASCET’s own code
generation process. To do this, ASCET needs to know what code exists and when
to use it. This information is provided by *.ini files.

During code generation, ASCET uses the information in the *.ini files to gener-
ate callbacks to user code. At compile time you must provide the implementation of
the callbacks you have told ASCET to use. These callbacks are sometimes called
service routines because they provide services to ASCET.

ASCET uses callbacks in the following cases:

Arithmetic services are used to override the compiler’s and/or ASCET’s default
arithmetic operations. Arithmetic services are optional and are disabled by
default.

Interpolation routines are used to interpolate between axis points in character-
istic lines (1D char tables) or maps (2D char tables). Interpolation routines
are mandatory if your model uses characteristic lines or maps.

Further information about these topics is provided in the ASCET online help.

The EHOOKS Target handles callbacks using exactly the same mechanisms as all
other ASCET embedded targets. This means that the classic use-case, where call-
backs are made to access code you provide to the project, works with EHOOKS as
well. However, another possibility is available with EHOOKS - using callbacks to ac-
cess functionality that is already available in the ECU.

Note

Your ECU supplier must have prepared the ECU to support this use case.

You can also combine both approaches, using callbacks that you provide as C code
at build time together with callbacks to services provided by the ECU as shown in
Figure 7.1 on the next page.

The following sections explain how to configure your bypass functions for use within
the context of an EHOOKS project.

7.1 Arithmetic Services
This section provides a brief introduction to principles behind arithmetic services
and their use in ASCET. It is not intended to be a comprehensive tutorial; further
details are described in the ASCET online help system.

Note

As for the Physical Experiment code generator and the PC target, arithmetic
services cannot be used for the Object Based Controller Physical code
generator.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

72 | Arithmetic Services and Interpolation Routines

Figure 7.1: Providing callbacks and accessing them in ASCET generated code

7.1.1 Preparing a Service Set
To use arithmetic services with the EHOOKS Target, you need the following:

– A services.ini file that defines which operator signature should be
replaced by which arithmetic service routines. This must be located in
ASCET’s EHOOKS target directory. The default location is <install_dir>
1\targets\trg_eHooks.

– The source code and/or libraries for the service routines defined in the
services.ini file.

The services.ini file uses Windows INI file format to define one or more service
sets. Each service set appears in a uniquely named section:

[MyServiceSet]
+|*|*|*=Add_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)
-|*|*|*=Sub_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)

||*|*=mul_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)
-|*|*|*=div_NOLIMIT_%t1%%t2%_%tr%(%i1%, %i2%)
...
[MyOtherServiceSet]
+|*|*|*=ADD_%t1%%t2%_%tr%(%i1%, %i2%)
-|*|*|*=SUB_%t1%%t2%_%tr%(%i1%, %i2%)
...

Listing 7.1: Service sets in a services.ini file

Each un-commented line in the file defines a mapping rule as follows:

<operator>|<type-signature>=[<return-type>]<function>(<parameters>)

1 <install_dir> is the ASCET installation directory, e.g.,
C:\ETAS\ASCET6.4

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

73 | Arithmetic Services and Interpolation Routines

For example, the rule for + defined in MyServiceSet (cf. Listing 7.1 on the
previous page) will cause the replacement of every plus with a call to function
Add_NOLIMIT_%t1%%t2%_%tr%() where %t1% and %t2% are the types of the
input parameters and %tr% is the type of the return value.

When ASCET generates code, each time the operator is required in the context de-
fined by the type signature, a call to the function is generated instead of the normal
ASCET code.

For example, Figure 7.2 shows a model that uses four numerical operations. The
inputs are both signed 16-bit integers, and the outputs are signed 32-bit integers.
Listing 7.2 shows the code generated by ASCET when no arithmetic service set
is selected. Listing 7.3 shows the code generated by ASCET when the arithmetic
service set MyServiceSet from Listing 7.1 on the previous page is selected2.

Figure 7.2: ASECT model using arithmetic operators

void SERVICES_IMPL_process (void)
{

/* process: sequence call #5 */
out1 = (sint32)(in1 + in2);
/* process: sequence call #10 */
out2 = (sint32)(in1 - in2);
/* process: sequence call #15 */
out3 = (sint32)(in1 * in2);
/* process: sequence call #20 */
out4 = (sint32)(((in2 == (sint16)0) ? in1 : in1 / in2));

}

Listing 7.2: Code generation without services

void SERVICES_IMPL_process (void)
{

/* process: sequence call #5 */
out1 = Add_NOLIMIT_s16s16_s32(in1, in2);
/* process: sequence call #10 */
out2 = Sub_NOLIMIT_s16s16_s32(in1, in2);

2 The code shown has been simplified for clarity. Comments and variable pre-
fixes have been removed.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

74 | Arithmetic Services and Interpolation Routines

/* process: sequence call #15 */
out3 = Mul_NOLIMIT_s16s16_s32(in1, in2);
/* process: sequence call #20 */
out4 = (sint32)(((in2 == (sint16)0) ? in1 :

Div_NOLIMIT_s16s16_s16(in1, in2)));
}

Listing 7.3: Code generation with services from MyServiceSet

You must provide an implementation for every function referenced by
services.ini. The implementation can use any valid C code, including macro
definitions. The following C code examples show the header and source files that
would be required to implement the functions in Listing 7.3 on the previous page.

#include "a_basdef.h"
sint32 Add_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint32 Sub_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint32 Mul_NOLIMIT_s16s16_s32(sint16 x, sint16 y);
sint16 Div_NOLIMIT_s16s16_s16(sint16 x, sint16 y);

Listing 7.4: Header File: services.h

#include "services.h"
uint32 Add_NOLIMIT_s16s16_s32(sint16 x, sint16 y){

...
return ...;

}
uint32 Sub_NOLIMIT_s16s16_s32(sint16 x, sint16 y{

...
return ...;

};
uint32 Mul_NOLIMIT_s16s16_s32(sint16 x, sint16 y){

...
return ...;

}
uint32 Div_NOLIMIT_s16s16_s16(sint16 x, sint16 y){

...
return ...;

}

Listing 7.5: Source File: services.c

7.1.2 Using a Service Set
Figure 7.3 on the next page shows the interaction between ASCET, EHOOKS and
you when integrating arithmetic services.

The following step-by-step guide explains what you need to do.

To use an arithmetic service set:
1. Open the "Project Properties" window and go to the "Build/Code Genera-

tion/Integer Arithmetic" node.

2. In the "Arithmetic Service Set" combo box (see also Figure 7.4 on the next
page), select the service set you want to use.

3. Close the "Project Properties" window with OK.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

75 | Arithmetic Services and Interpolation Routines

Figure 7.3: Using external arithmetic services with EHOOKS

Figure 7.4: Selecting the service set in ASCET

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

76 | Arithmetic Services and Interpolation Routines

4. #include the header file(s) for the service implementation in
proj_def.h in the targets\trg_eHooks\include directory.

5. Add the path(s) to the include directories and the names of the source files
and/or library files for your arithmetic services to the EHOOKS build as
shown in Figure 7.5.

Figure 7.5: Adding a source file to the EHOOKS build

When you re-build, ASCET will generate code that includes the calls to your ser-
vices at the appropriate places using services.ini, and EHOOKS will compile
and link the service implementations with the ASCET-generated code.

7.2 Interpolation Routines
When your model uses characteristic lines (1D tables) or maps (2D tables), ASCET
makes callbacks to C functions called interpolation routines to calculate interpolated
values.

The following discussion provides some basic information. You can find out more
in the ASCET online help: select the Help > Contents menu option and – in the
help viewer – open the book "Introduction/Basics/Types and Elements/User-defined
Interpolation Routines".

Note

You must use Help > Contents to open the entire online help. <F1> opens only
a part of the online help, and the "Introduction" book may be invisible.

Note

Interpolation routines can also be used with Object Based Controller
Physical as described in this section.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

77 | Arithmetic Services and Interpolation Routines

7.2.1 Understanding Interpolation Routine Use in ASCET
Interpolation routine use in ASCET has both model-specific and target-specific
parts. Figure 7.6 shows how the various parts of ASCET that influence the use of
interpolation routines interact in an "out-of-the-box" installation of ASCET.

Figure 7.6: From model to code with interpolation routines

The following sections explain the contents of these files in more detail.

7.2.1.1 Definition Files
Interpolation definition files tell ASCET what interpolation schemes exist so they
can be selected in the model. These definitions allow ASCET to use different in-
terpolation routines for different elements in the same project.

The definitions are located in XML files in <install_dir>\Tools\
Interpolation Routine. You can see which definition has been configured for
a characteristic line or map by opening the properties editor for the line or map as
shown in Figure 7.7 on the next page.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

78 | Arithmetic Services and Interpolation Routines

Figure 7.7: Characteristic line using the Linear interpolation model

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

79 | Arithmetic Services and Interpolation Routines

Each interpolation definition specifies the search path to the *.ini mapping file
that ASCET will use at code generation time. By default, the search path is con-
figured with the following search order:

A. target\trg_<target>\intpol\Intpol<name>.ini

B. target\common\interpolation\Intpol<name>.ini

This forces ASCET to look in the target directory first and then in the common di-
rectory. ASCET will use the first matching definition file it finds.

Note

ASCET only installs definitions into the common directory by default.

7.2.1.2 Mapping Files
Mapping files are *.ini files, referenced by interpolation definition files, that define
the mapping between logical access functions (e.g. getAt1, getAt2 etc.) and the
interpolation routines that must be used in the generated code. The file is similar in
principle to a services.ini file.

There are two sections – [Experiment] and [Production] –, and each section
defines a complete set of mappings. The following example shows the start of the
[Production] section of the standard IntpolLinear.ini file.

[Production]
; One D Char Tables
getAt1|*|*=CharTable1_getAt_%tx%%tv%(%ct%,%x%)
getAtFixed1|*|*=CharTableFixed1_getAt_%tx%%tv%(%ct%,%x%)
getX1|*=%ct%->xDist[%i%]
setX1|*=%ct%->xDist[%i%]=%x%
getValue1|*=%ct%->values[%i%]
setValue1|*=%ct%->values[%i%]=%v%
getValueFixed1|*=%ct%->values[%i%]
setValueFixed1|*=%ct%->values[%i%]=%v%
...
%

Listing 7.6: [Production] section of IntpolLinear.ini

Note that EHOOKS is classified as a Production target as it is an ASCET-SE tar-
get.

7.2.1.3 Header Files
Header files declare the interpolation routines and must be included by ASCET
code that uses interpolation. Every function named in the .ini files must be de-
clared in the header file(s).

7.2.1.4 Library
The interpolation routine library provides the implementation of the interpolation
routines declared in the header file(s).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

80 | Arithmetic Services and Interpolation Routines

7.2.2 Using the Default Routines
The EHOOKS Target (like all ASCET-SE targets) is supplied with example source
code and a pre-compiled library that includes routines for linear and rounded inter-
polation.

The ASCET EHOOKS Target will automatically use the example routines when
generating code. ASCET will add the include file path and the library path to the
EHOOKS build for the example library.

Note

In this release of the EHOOKS Target, the library (intpol_ehooks_hitec.a)
is built for the Infineon TriCore device using the HighTecs C compiler.

If you need these routines to work with another microcontroller and/or com-
piler, follow the instructions in ReadMe_Interpolation.html in the
<install_dir>\target\trg_eHooks\intpol directory or contact ETAS
for further assistance.

7.2.3 Using Custom Routines
Using your own interpolation routines in ASCET code generated for the EHOOKS
target is possible in the same way as for all ASCET-SE targets. You can either
choose to modify the supplied mapping files for linear and rounded interpolation
(IntpolLinear.ini or IntpolRounded.ini) or you can create new definition
and mapping files.

7.2.3.1 Modifying an Existing Interpolation Scheme
You can modify an existing interpolation scheme to use your own interpolation rou-
tines. The following list explains how:

A. For each interpolation type you use, your interpolation routine mapping file
(IntpolLinear.ini or IntpolRounded.ini as appropriate) needs
entries that call your routines. The EHOOKS target is an embedded target,
and the entries must be created in the [Production] section.

B. Define a C header file that declares every function in your mapping file.

Note

If you replace the ASCET-supplied header file a_intpol.h in
trg_eHooks\intpol, then ASCET will use the file because it is always
#included in a_basdef.h).

If you want to use a different file name, you must ensure that it is visible to
ASCET-generated code. This can be done by #includeing the header file
in ASCET’s standard location for custom header files: the proj_def.h file
in trg_eHooks\include.

C. Implement your interpolation routines and build a library.

D. Add the include path, source files and/or library files for your interpolation
routines to the EHOOKS build as shown in Figure 7.5 on page 76.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

81 | Arithmetic Services and Interpolation Routines

7.2.3.2 Creating a New Interpolation Scheme
You can create an entirely new interpolation scheme to use with your models. The
following step-by-step guide explains how to create a new set of routines called
"CustomInterpolation":

To create a new interpolation scheme

1. Create a copy of the file etas.aid.xml.template in <install_dir>
\Tools\Interpolation Routine, delete the .template suffix and
replace etas with the name of your interpolation routine definition, e.g.
CustomInterpolation.aid.xml.

2. Open the file in a text/XML editor of your choice and set the
<DefaultValue> of the Identifier and the Label to the name of
your interpolation routine.

The name you specify will be used in the "Interpolation" combo box in the
properties editor for a characteristic line or map.

<!-- mandatory, fixed options -->
<OptionDeclaration optionCategory="FIXED"

xmlCategory="" optionClass="EtasStringOption"
attributeName="Identifier">
<Group/>
<Label>Identifier</Label>
<Description>Unique name for \ASCET internal

management of this interpolation
routine.</Description>

<Tooltip>Identifier for the interpolation
routine</Tooltip>

<DefaultValue>CustomInterpolation </DefaultValue>
</OptionDeclaration>
<!-- required, variable options -->
<OptionDeclaration optionCategory="FILE"

xmlCategory="" optionClass="EtasStringOption"
attributeName="Label">
<Group/>
<Label>Label</Label>
<Description>Unique name to display the

interpolation routine in ASCET.</Description>
<Tooltip>Name of the interpolation

routine</Tooltip>
<DefaultValue>CustomInterpolation </DefaultValue>

</OptionDeclaration>

Note

It is recommended that the file name and the <DefaultValue>s of
Identifier and Label are the same - this makes it easy for you to
identify which description file contains which interpolation scheme.

3. Save and close the file.

4. Start or re-start ASCET and select Tools > Options to open the ASCET
options dialog window.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

82 | Arithmetic Services and Interpolation Routines

5. In the ASCET options dialog window, go to the "Options/Build/Interpolation
Routine/CustomInterpolation" node and do the following:

i. In the "Interpolation Header" field, enter the header file name you want
to use.

ii. In the "Interpolation Library" field, enter the library name you want to
use.

iii. Add a "Mapping File" entry, e.g.,
%P_TARGET%\CustomInterpolation.ini.

iv. If desired, set other options.

v. Click OK.

6. Create the file CustomInterpolation.ini in the trg_eHooks direc-
tory.

For each interpolation type you use, your interpolation routine mapping file
needs entries that call your routines. The EHOOKS target is an embedded
target, and the entries must be created in the [Production] section.

7. Create the C header file with the same name you specified in the "Interpo-
lation Header" and declare every function in your mapping file.

8. Implement your interpolation routines and build a library.

9. Add the include path, source files and/or library files for your interpolation
routines to the EHOOKS build as shown in Figure 7.5 on page 76.

To use the new interpolation routine, open the properties editor for your characteris-
tic line or map and select the interpolation routine in the "Interpolation" combo box
(see Figure 7.8 on the next page).

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

83 | Arithmetic Services and Interpolation Routines

Figure 7.8: Selecting a user-defined interpolation routine

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

84 | Arithmetic Services and Interpolation Routines

7.3 Callbacks to Existing ECU Code
ASCET can use callbacks to arithmetic services or interpolation routines that are
already present in the ECU. Figure 7.9 shows the interaction between ASCET,
EHOOKS, the ECU supplier and you when using services provided by the ECU.

Figure 7.9: Making callbacks to ECU-provided functions

Neither ASCET nor EHOOKS can work out what routines are available in the ECU.
Your ECU supplier, however, can optionally make routines available when they
prepare the ECU using the EHOOKS-PREP tool. They can do this by providing a
header file that defines function pointers with the names of the service routines that
you can use, and then placing the header file in the ECU_INTERNALS section of the
*.a2l file.

For example, Listing 7.7 shows how to create a function pointer to an arithmetic ser-
vice called Div_limit_s32s32_u16 on the ECU:

typedef uint16 (*FPtr_Div_limit_s32s32_u16) (sint32 x,
sint32 y);

#define Div_limit_s32s32_u16
((Fptr_Div_limit_s32s32_u16)(0x1234ABCD))

Listing 7.7: Creating a function pointer to an arithmetic service

Note

It is only possible to make callbacks to services that the ECU supplier makes
available to you.

The EHOOKS Target can use callbacks to ECU routines at code generation time
instead of (or in combination with) normal externally provided routines. The mecha-
nism is identical to accessing routines that you provide, i.e.:

A. Define *.ini files that tell ASCET which routines to use and when.

B. Ensure that the header files for the routines are included by ASCET.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

85 | Arithmetic Services and Interpolation Routines

You therefore need the following information to use these routines in ASCET-
generated code:

– The *.ini file mappings for the ECU routines made available by the ECU
supplier.

– The name of the header file(s) that declare the C function names for rou-
tines. ASCET needs to #include these files 3.

The only difference is where the implementation of the routines is found – in the
ECU instead of in a C source file or pre-built library.

7.3.1 Arithmetic Services

To use arithmetic services from the ECU

Note

The casting strategy Target Optimized is not permitted when using arith-
metic services.

1. Define a service set in the services.ini file.

2. Select the service set in the "Project Properties" window, "Build/Code
Generation/Integer Arithmetic" node.

3. #include the header file(s) for your service implementation in the
ASCET proj_def.h header file.

When you re-build, ASCET will generate code that includes the calls to the ECU
services at the appropriate places, and EHOOKS will compile and link the service
implementations with the ASCET-generated code.

7.3.2 Interpolation Routines
Using interpolation routines from the ECU is very similar to using interpolation rou-
tines in other case. You need to do the following:

A. Create or modify (see section 7.2.3 on page 80) an interpolation routine
signature mapping file that maps routine signatures to the routines pro-
vided by the ECU. For the EHOOKS target, you must create entries in the
[Production] section.

B. #include the header file(s) for your service implementation in ASCET’s
proj_def.h header file.

When you re-build, ASCET will generate code that includes the calls to the ECU
interpolation routines at the appropriate places.

3 You only need the name of the file(s) - not the files themselves. Your ECU
supplier will embed the header files in the *.a2l file when preparing the ECU
for EHOOKS. When EHOOKS rebuilds the ECU it will automatically extract the
header files and use them in the build process so the ASCET-generated code will
compile correctly.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

86 | Arithmetic Services and Interpolation Routines

7.3.3 Mixing Callbacks to Off-ECU and On-ECU Code
You can freely mix callbacks to both Off-ECU and On-ECU code by defining a map-
ping file (services.ini and/or IntPol*.ini as appropriate) that include map-
pings to both ECU functions and functions you will provide as external code and/or
libraries. You must then include appropriate header files.

It may be the case that you do not know which services will be on the ECU and
which will need to exist externally at the point you decide to write your header files.
You will have two header files, one for the Off-ECU functions that declares a C
function, and one for the On-ECU functions that defines a function pointer for the
C function. For example, in the Off-ECU header you might have the following code:

uint32 SomeFunction (uint32 x, uint32 y);

In the On-ECU header file, you might have a C function pointer to access the same
function on the ECU:

typedef uint32 (*SomeFunction_Ptr) (uint32 x, uint32 y);
#define SomeFunction ((SomeFunction_Ptr)(0xABCD1234))

This is not a problem if you include the header files for On-ECU functions after
those for Off-ECU functions (because this ordering will ensure that the On-ECU
functions are used in preference to the Off-ECU functions). For example, assume
that there are two header files:

– OFF_ECU_Services.h that declares the function prototypes for Off-ECU
functions; and

– ON_ECU_Services.h that includes the function pointer definitions for
On-ECU functions.

The correct include file ordering would be:

...
#include "OFF_ECU_Services.h"
#include "ON_ECU_Services.h"
...

Note

The On-ECU services must be included after all header files defining Off-ECU
services. The application may not compile if you reverse the include order.

This structure exploits the fact that the On-ECU functions are declared as
#defines in the ON_ECU_Services.h header file. While a function name
can appear in both files, it is only a #define to a function pointer in the
ON_ECU_Services.h header file. The C programming language is permissive
enough to allow this type of construct, and the C preprocessor will use the last
definition, the On-ECU function, in preference to the Off-ECU function.
Most modern C compilers will generate a warning when this occurs, which can
be safely ignored.4

4 Note, however, that these warnings provide an easy way to check which func-
tions are actually being called on the ECU!

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

87 | Using Libraries

8 Using Libraries
You can use ASCET libraries with the EHOOKS Target in exactly the same way as
all other ASCET-SE targets. There are typically two types of library:

Model libraries typically provide ASCET class models that implement common
functionality. Model libraries contain pre-defined, complete ASCET models
that can be re-used across multiple projects. Each library is self-contained
– everything that ASCET needs to generate code is contained in the library
itself.

Service libraries also provide ASCET class models, but typically with methods
implemented as service routines (A in Figure 8.1) or prototype implemen-
tation (B in Figure 8.1). This means that a service library defines only the
interface between ASCET and some externally provided implementation of
the functionality. The library is therefore not self-contained. If you want to
use a service library, you will need both the ASCET model and the external
implementation of the library (either as C source code or a pre-compiled
library).

Figure 8.1: Class configured for methods to be implemented as service routines (A)
or prototype implementations (B)

Note

To specify service routines and prototype implementations, you must set
the "Generate Method Body" option in the EHOOKS target settings to Use
Component Settings.

Details are given in the ASCET-SE user guide, sections "User-Defined Service
Routines" and "Prototype Implementations".

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

88 | Using Libraries

Any given library may contain some classes that are complete models (i.e. those
classes are a model library) and some other classes that define the interface to ser-
vices (i.e. those classes are a service library).

8.1 Model Libraries
Use of model libraries is straight-forward: import the library into your workspace (or
database), and then use the models in your project in exactly the same way you
would use models you have built yourself.

ETAS supplies ASCET with two model libraries as standard:

– the ETAS_SystemLib

– the ETAS_MBFS_Library

These libraries can be found in the <install_dir>1\export di-
rectory. More information about the functionality of the libraries can
be found in the ASCET online help (opened with the Help > Con-
tents menu option) and in the System_Libraries.pdf document in
...\ETAS\ETASManuals\ASCET<x>.<y>.

8.2 Service Libraries
When working with service libraries you need the following:

– the ASCET library (as an *.axl or *.exp 2 export file according to the
data model format you are using for your ASCET model)

– one (or more) C header files that define the C interface to the library

– the library itself (either as a pre-compiled library compatible with your ECU
or source code)

To use the library, perform the following steps:

A. Import the ASCET library into ASCET using File > Import.

B. #include the header file(s) for the service library in ASCET’s
proj_def.h header file in the targets\trg_eHooks\include direc-
tory.

C. Add the path(s) to the include directories and the names of the source files
and/or library files to the EHOOKS build (see Figure 7.5 on page 76).

8.2.1 Controlling Method Names in Generated Code

By default, ASCET generates method names of the following form in the C code3:

CLASSNAME_IMPLEMENTATIONNAME_MethodName

If you mark a method as being implemented as a service, then the service you pro-
vide must have this name and use the same signature expected by ASCET.

If the service implementation does not follow the ASCET convention for method
names, you can configure ASCET to generate a compatible name by defining a
"Symbol" for the method as follows:

1 <install_dir> is the ASCET installation directory, e.g.,
C:\ETAS\ASCET6.4

2
*.exp files can only be imported into ASCET databases. If you use an

ASCET workspace, you need an *.axl file.
3 Note that ASCET capitalizes the module and implementation names by de-

fault, so a module with model name MyClass will become MYCLASS.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

89 | Using Libraries

To define a symbol for a method

1. Open the component that contains the desired method in the respective
component editor.

2. In the "Outline" tab of the component editor, right-click the method and se-
lect Implementation from the context menu.

The implementation editor for methods (see Figure 8.2) opens.

3. Enter the required name in the "Symbol" field, then click OK.

Figure 8.2: Re-defining the symbol name for a method

Figure 8.2 shows how a call to method MyMethod() can be modified to be a call to
UseThisNameInstead().

If the "Symbol" field is empty, then ASCET generates the default name. If the
"Symbol" field is not empty, then ASCET generates a call to the method using the
name exactly as written. Names must be valid C identifiers, but they can also use
ASCET’s template macros (e.g. %name%, %class%, %impl%). For further details,
see the ASCET online help.

8.2.2 Optimizing Data Structure Accesses
ASCET-generated component type data structures normally contain a ROM-able
part (for constants) and a RAM part (for variables). The ROM part of the data in-
cludes a pointer to the RAM part.

If the component only includes variables, then the ROM-able part can be elided in
generated code. This removes the ROM structure itself and also removes the data
structure pointer indirection, optimizing both time and space. This means that an
access of the form:

self->RAM_part->element

becomes:

self->element

This optimization is controlled by the option optimizeCompTypeDescriptor in
codegen_ehooks.ini. It is enabled by default in the EHOOKS Target.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

90 | Using Libraries

8.2.3 Using Services Routines on the ECU
Section 7.3 on page 84 explained how to make callbacks to arithmetic services and
interpolation routines that are already present in the ECU hex file.

You can use the same technique to access service routines that already exist on
the ECU.

8.3 Working with Formulas
ASCET allows you to define named formulas that specify a fixed-point quantization
as shown in Figure 8.3. Formulas are defined by projects, and module or class im-
plementations can optionally declare that they use a formula with a given name.

Figure 8.3: Formula definitions in a project

The problem with using formulas in this way is that the portability of those imple-
mentations can be broken: When the module or class is used in another project,
the formula may be undefined. ASCET will report an error at build time for all for-
mulas that are used by modules and/or classes, but are not defined in the project.

Missing formula definitions can be created in the "Formulas" tab of the project edi-
tor; see the ASCET online help for details.

The formulas associate with each ECU variable. The decision for automatic conver-
sion of a variable read from the ECU will take the formula specification into account.
If the ASCET message and the mapped ECU Label have the same formula specifi-
cation, no conversion will be generated. This approach has several advantages:

– You do not have to make sure that the formulas used on the ECU and in
the bypass model use identical names.

– The accuracy of the value is not changed, since no conversion takes
place.

– The runtime for the conversion can be saved.

Note

You can avoid loss of accuracy even when using the Object Based
Controller Physical code generator.

If you are using the mixed physical implementation4, the implementation set
does not have to be complete. For each entry in the implementation set, ASCET
checks if the formulas of the message and the ECU variable are identical.

4 see the ASCET online help for details

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

91 | Updating Projects from Old EHOOKS-DEV Versions

9 Updating Projects from Old EHOOKS-DEV Versions
If you already have an EHOOKS configuration file (*.ehcfg) for your project and
an old EHOOKS-DEV version (i.e. ≤ V4.10), you can just use that file.

To adapt the *.ehcfg file to a newer EHOOKS version

1. Open the ASCET options window.

2. In the ASCET options window, go to the "Targets\EHOOKS\Build" node
and select a supported EHOOKS version as External Build Tool.

Note

This setting applies to all projects that use the EHOOKS target.

3. Close the ASCET options window.

4. In the "EHOOKS" tab of the project editor, click the Start EHOOKS button
(see Figure 4.2 on page 19) to open EHOOKS-DEV.

5. If desired, modify your output locations for the *.hex and *.a2l files in
EHOOKS-DEV.

6. Even if nothing needs to be modified, force EHOOKS to save the
EHOOKS configuration file (*.ehcfg).

You can do so, e.g., by adding or modifying the contents of a field in the
"Project Information" area (marked in red in in Figure 9.1 on the next
page).

7. Close EHOOKS-DEV and save the modified EHOOKS configuration file
(*.ehcfg).

8. In the project editor, select Build > Build All or Build > Rebuild All to
re-build the project with the selected EHOOKS version.

Alternatively, you can use the keyboard shortcuts <F7> to build and
<Shift> + <F7> to rebuild.

If you do not have an EHOOKS configuration file (*.ehcfg) for your project, pro-
ceed as described in chapter 4 "Getting Started with an EHOOKS Project" on
page 17.

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

92 | Updating Projects from Old EHOOKS-DEV Versions

Figure 9.1: Minimal / Start Configuration of an EHOOKS project by providing both a
*.hex file and an associated *.a2l file

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

93 | Contact Information

10 Contact Information

Technical Support

For details of your local sales office as well as your local
technical support team and product hotlines, take a look
at the ETAS website:

www.etas.com/en/hotlines.php

ETAS offers trainings for its products:

www.etas.com/academy

Technical support is available to all ASCET-SE users with a valid support contract.
If you do not have a valid support contract, please contact your regional sales of-
fice.

You can contact technical support by email or by phone. It is helpful if you can pro-
vide technical support with the following information:

– your support contract number
– the version of the ETAS tools you are using
– the version of 3rd-party tools you are using, e.g. compiler tool, version man-

agement system, etc..
– your .exp, .axl, or .amd configuration files
– a description of how to reproduce the error
– the error message you received (if any)

ETAS Headquarters

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

https://www.etas.com/en/hotlines.php
https://www.etas.com/academy
https://www.etas.com/
mol9fe
Rectangle
an aktuelle Vorgaben angepasst

94| FIGURES

Figures

2.1 Workflow for ASCET/EHOOKS Development . 9

2.2 On-target bypass hooks with ASCET-generated C code 10

2.3 ECU sending and receiving messages from the bypass function 11

4.1 Configuring a project to use an EHOOKS target . 18

4.2 "EHOOKS" tab in the project editor (no configuration file selected) 19

4.3 "EHOOKS" tab with EHOOKS configuration file . 20

4.4 Build options for the EHOOKS target . 20

4.5 Name Templates options for the EHOOKS target . 21

4.6 ASAM-2MC Name Options for the EHOOKS target . 22

4.7 Example project for testing the ASAM-2MC name options 23

4.8 EHOOKS-DEV window: Choosing EHOOKS files (I: input files, O: output files) . . . 26

4.9 Warning if no EHOOKS files are selected . 26

4.10 Resolving globals . 27

4.11 "Input" tab . 29

4.12 "Mapping" field in the "Input" tab . 33

4.13 "Input" tab with (A) and without (B) activated With Arrays option 35

4.14 "Output" tab . 36

4.15 "Mapping" table in the "Output" tab . 38

4.16 EHOOKS variable selection dialog window (see the EHOOKS-DEV user guide
for further information) . 40

4.17 Activating backup copies in the "Variable Bypass" tab of the EHOOKS window
(see the EHOOKS-DEV user guide for further information) 41

4.18 EHOOKS "Hook Selection" window . 41

4.19 Backup copies of ECU measurement variables available for mapping 42

4.20 "Filter Criteria" windows — (A): upper table, "Messages" column; (B): upper ta-
ble, "ECU Variables" column; (C): lower table . 45

4.21 Example: Name filter in the "Mapping" field — (A): no name filter; (B): active
name filter . 46

4.22 EHOOKS options: patterns for auto-mapping in the "Input" and "Output" tabs 47

4.23 Accessing auto-mapping — (A): via the Mapping menu, (B): via the Open
EHOOKS functions button, (C): via the context menu in the "Input" and "Out-
put" tabs . 49

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

95| Figures

4.24 "Scheduling" tab . 51

4.25 Mapping processes to bypass functions . 53

4.26 Copying an existing configuration from another target . 54

4.27 Selecting a Bypass Container Dispatch Point . 55

4.28 Assigning the Non-Volatile attribute to an element . 60

4.29 Choosing the Code Generator in the project properties, "Build" node 62

5.1 Exporting an element . 66

5.2 Enable the calibration access to characteristics and measurements 67

6.1 Using C code classes to access control variables . 68

6.2 C code to enable a hook . 69

7.1 Providing callbacks and accessing them in ASCET generated code 72

7.2 ASECT model using arithmetic operators . 73

7.3 Using external arithmetic services with EHOOKS . 75

7.4 Selecting the service set in ASCET . 75

7.5 Adding a source file to the EHOOKS build . 76

7.6 From model to code with interpolation routines . 77

7.7 Characteristic line using the Linear interpolation model 78

7.8 Selecting a user-defined interpolation routine . 83

7.9 Making callbacks to ECU-provided functions . 84

8.1 Class configured for methods to be implemented as service routines (A) or pro-
totype implementations (B) . 87

8.2 Re-defining the symbol name for a method . 89

8.3 Formula definitions in a project . 90

9.1 Minimal / Start Configuration of an EHOOKS project by providing both a *.hex
file and an associated *.a2l file . 92

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

96| Tables

Tables

3.1 Licenses used by the ASCET product family . 15

4.1 Template parameters for the configuration of ASAM-MCD-2MC names 23

4.2 Results of template parameters for the configuration of ASAM-MCD-2MC names . 24

4.3 Effects of "Code Generator" and "Cont Implementation Type" combinations 25

4.4 Auto-mapping patterns and auto-mapping results . 48

4.5 Rules for import of mappings . 59

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

97| Index

Index
A
A2L file

default raster . 65
Arithmetic services . 71

mix on-ECU/off-ECU.86
on ECU. 84
prepare service set 72
use on-ECU service 85
use service set . 74

ASAM-MCD-2MC
configure names . 22

ASCET
automatic actions . 12
build log . 64
EHOOKS tab . 18
interpolation routines.77
libraries . 87

ASCET model
bypass function . 11

ASCET/EHOOKS integration 9 – 13
key features . 11
On-target bypass . 10
workflow . 9

asd_bypass_func.c 63
Auto-mapping . 46

Get ECU Labels and Map 50
Map pre-selected ECU Labels 50

B
Basic EHOOKS configuration 25
build .59, 61
Bypass

on-target .10
Bypass function . 65

ASCET model . 11
associate with dispatch point 54
create . 52
dT . 56
export selected mapping 56
integrate . 27
map process .52

C
Calibration . 65 – 67

multi-instance class 67
supported elements 65

Code generator
Object Based Controller Implementation

18
Object Based Controller Physical . 18, 61

connect message/ECU variable 27
manually .43

Cont Implementation Type 24
Control variable . 68

access via C code class 68
Object Based Controller Implementation

68
Create bypass function 52
create project. .17

D
Data protection . 7
Data security . 7
default raster . 65
Dispatch point . 10

associate with Bypass function 54
dT. .56

E
ECU supplier . 10, 17
ECU variable

backup copy . 40
export mapping . 57
export selected mapping 56
import mapping . 58
map to message . 43
remove all mappings 45
remove mapping . 44
select . 39

EHOOKS build options 19
EHOOKS control variable see Control

variable
EHOOKS Functionality

access dT . 56
key features . 11

EHOOKS project . 17 – 64
administration. .17
auto-map messages/ECU variables . . 46
basic configuration 25
build . 59, 61
build log . 64
configuration file . 18
configure . 18
configure ASCET-EHOOKS interaction

19
connect message/ECU variable 27
create . 17
create ASCET project 17
dT . 56
existing OS configuration 53, 56
generate code . 63
input files . 25
integrate Bypass function 27
mandatory items . 17
optional items . 17
output files .25
prepare . 27
scheduling . 50

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

98| Index

select target . 18
EHOOKS tab . 18
EHOOKS target . 18

ASAM-MCD-2MC names 22
build options . 19
Cont Implementation Type 24
global name space prefix 21
select . 18

EHOOKS-DEV
supported versions 15
update from old version 91

EHOOKS-DEV tool
automatic actions . 13

EHOOKS-PREP tool . 10

F
Formula . 90

G
generate code . 63
Global Name Space Prefix 21

I
Information security .7
Input tab . 29

auto-mapping . 50
export all mappings 57
export selected mapping 56
filter column . 45
import mapping . 58

Installation . 15
Interpolation routines 71, 76

create new. .81
definition file . 77
header file . 79
in ASCET. 77
library . 79
mapping file . 79
mix on-ECU/off-ECU.86
modify existing . 80
on ECU. 84
use custom routine.80
use on-ECU routine 85

K
key features . 11

L
Libraries . 87 – 90

model . 87, 88
service. .87, 88

M
message

export mapping . 57
export selected mapping 56

import mapping . 58
map to ECU variable 43
remove all mappings 45
remove mapping . 44

Model library . 88

O
Object Based Controller Implementation

code generator 18
Object Based Controller Physical code gen-

erator .18,
61

On-target bypass . 10
OS configuration

use existing . 53, 56
Output tab. .36

auto-mapping . 50
export all mappings 57
export selected mapping 56
filter column . 45
import mapping . 58

P
Process

map to bypass function 52
process

export mapping . 57
export selected mapping 56
import mapping . 58

project file
location . 18

Project properties
Build node . 18

R
remove message/ECU variable mapping

all . 45
selected . 44

resolve globals . 27

S
Scheduling tab . 51

export all mappings 57
export selected mapping 56
import mapping . 58

select backup copy . 40
select ECU variable . 39
Service library . 88

control method name 88
data structure access 89
use . 88
use on-ECU routine 90

T
Typical workflow . 9

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

99| Index

U
User interface

ASAM-2MC name options 22
EHOOKS Build options 20
EHOOKS tab . 20

EHOOKS-DEV window 26
Input tab . 29
Name Templates options21
Output tab . 36
Scheduling tab. .51

ETAS ASCET-SE V6.4 EHOOKS Target | User Guide

	1 Introduction
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Safety Information
	1.5 Data Protection
	1.6 Data and Information Security
	1.6.1 Data and Storage Locations
	1.6.1.1 License Management
	1.6.1.2 Problem Report

	1.6.2 Technical and Organizational Measures
	1.6.2.1 Locations for Generated Files

	2 About the EHOOKS Target for ASCET-SE
	2.1 Understanding ASCET/EHOOKS Integration
	2.1.1 Typical Workflow
	2.1.2 On-Target Bypass Concepts
	2.1.3 ASCET Models as Bypass Functions
	2.1.4 Key Features of the EHOOKS Target
	2.1.5 Summary

	2.2 Finding Out More

	3 Installation
	3.1 Installation
	3.2 Licensing
	3.3 After Installation

	4 Getting Started with an EHOOKS Project
	4.1 Project Administration
	4.1.1 Creating an ASCET/EHOOKS Project
	4.1.2 Specifying the Configuration File Location
	4.1.3 Configuring ASCET-EHOOKS Interaction Settings
	4.1.3.1 EHOOKS Build Options
	4.1.3.2 Global Name Space Prefix
	4.1.3.3 ASAM-MCD-2MC Names
	4.1.3.4 Cont Implementation Type

	4.1.4 Basic EHOOKS Configuration

	4.2 Integrating Bypass Functions
	4.2.1 Preparing the Project
	4.2.2 Connecting Inputs and Outputs to ECU Variables
	4.2.2.1 "Input" Tab
	4.2.2.2 "Output" Tab
	4.2.2.3 Mapping Messages and ECU Variables
	4.2.2.4 Auto-Mapping

	4.2.3 Configuring the Scheduling
	4.2.3.1 "Scheduling" Tab
	4.2.3.2 Mapping Processes to Dispatch Points

	4.2.4 Exporting and Importing Mappings

	4.3 Non-Volatile RAM
	4.4 Building the ECU Code
	4.4.1 Using the Code Generator: Object Based Controller Physical
	4.4.2 Generating ECU Code Only
	4.4.3 Viewing the ASCET Build Log

	5 Calibrating Bypass Functions
	5.1 Calibration of Elements in Classes with Multiple Instances

	6 Interacting with EHOOKS Control Variables
	7 Arithmetic Services and Interpolation Routines
	7.1 Arithmetic Services
	7.1.1 Preparing a Service Set
	7.1.2 Using a Service Set

	7.2 Interpolation Routines
	7.2.1 Understanding Interpolation Routine Use in ASCET
	7.2.1.1 Definition Files
	7.2.1.2 Mapping Files
	7.2.1.3 Header Files
	7.2.1.4 Library

	7.2.2 Using the Default Routines
	7.2.3 Using Custom Routines
	7.2.3.1 Modifying an Existing Interpolation Scheme
	7.2.3.2 Creating a New Interpolation Scheme

	7.3 Callbacks to Existing ECU Code
	7.3.1 Arithmetic Services
	7.3.2 Interpolation Routines
	7.3.3 Mixing Callbacks to Off-ECU and On-ECU Code

	8 Using Libraries
	8.1 Model Libraries
	8.2 Service Libraries
	8.2.1 Controlling Method Names in Generated Code
	8.2.2 Optimizing Data Structure Accesses
	8.2.3 Using Services Routines on the ECU

	8.3 Working with Formulas

	9 Updating Projects from Old EHOOKS-DEV Versions
	10 Contact Information
	Figures
	Tables
	Index

