ASCET V5.2

Reference Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH.

© Copyright 2007 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.
Document EC0O10005 R5.2.2 EN

Contents

The Modeling Language

1

ProjeCtS . . 13
1.1 The Task Schedule for the Operating System 13
1.11 Scheduling 15
1.1.2 Tasks .. 17
1.1.3 ProCesses . . . 19
1.1.4 Application Modes 19
1.2 Modules and Processes 19
1.3 Interprocess Communication 20
COMPONENTS . o 23
21 Modulesvs. Classes 24
2.2 Definition and Instantiation of Components 25
2.3 The Interface of Components 27
2.3.1 The Interface of Classes 27
2.3.2 The Interfaceof Modules 29
2.4 Reusing COmMpoNentst 29
2.4.1 Hierarchical Class Structure. 31
2.4.2 Hierarchical Module Structure. 31
2.5 State Machines 32

Contents

2.5.1 State Machine Components. 34

2.5.2 Semantics of State Machines 47

2.5.3 Semantics: Simple State Machines 48

254 Semantics: Junctions in State Machines 51

2.5.5 Semantics: Hierarchical State Machines. 57

2.5.6 Semantics: Summary 68

2.5.7 Simple Code Example. 72

2.5.8 Optimizing the State Machine 73

2.5.9 State Machinesas Classes. 83

3 Typesand Elements 89
3.1 BasicModel Types o 90
3.1.1 Scalar TYpes . .. oo 90

3.1.2 Composite TYPES © . oot 91

3.1.3 Real-time Language Constructs 94

3.14 Special Types 95

3.2 TheKindof Elements 96
3.3 TheScopeof Elements 99
3.4 User-defined Model Types i, 100
4 DataandImplementations 101
4.1 Data ... 101
4.2 Implementations 103
4.2.1 Implementations for Scalar Types 103

4.2.2 The Implementation of Composite Types 105

4.2.3 The Implementation of User-Defined Types. 105

4.2.4 Implementation Casts. 106

4.3 Code Generation with Implementations 108
4.3.1 Transformation of Data under Implementation 109

4.3.2 General Rules for the Implementation Transformation 109

4.4 The Implementation of Methods and Processes 110
5 Body Specification INESDLo 111
5.1 ESDLasa Modellinglanguage 111
5.2 BasicElements 112
5.2.1 Working with Methods and Processes 112

5.2.2 ESDLSyntaxo 114

5.2.3 Variable Names. 114

5.24 Data Types . . . oo 115

5.2.5 Type CONVEISION . . oottt e 115

5.2.6 Primitive Methods. 116

5.2.7 Literalsand Constants 116

5.2.8 Comments. ... 116
5.2.9 Operators. . ..o 117
5.3 Implementation Casts inESDL 119
54 Control Flow 120
5.4.1 foElse. . 120
5.4.2 Switch...Case...Default 121
5.43 While 123
5.4.4 FOr 123
5.4.5 Break 124
55 Methods 124
5.5.1 This .o 126
5.5.2 AccessControl 126
5.5.3 Direct AccessMethods o 127
5.6 Composite Data Types 127
5.6.1 ATTAYS. 127
5.6.2 Matrices. 129
5.6.3 One-dimensional Tables 129
5.6.4 Two-dimensional Tables 131
5.6.5 Distributions and Group Tables. 133
5.7 Structures 134
5.8 MeSsages 135
5.9 ReSOUICES .. i 136
5.10 Mathematical Functions 136
5.11 Accessing Block Diagrams from ESDL 138
5.12 Using ESDL in State Machines 139
5.13 Overview: ESDL Features Compared 141
Body Specification with Block Diagrams 143
6.1 Graphical Description of Elements 143
6.1.1 BasicElements 144
6.1.2 Elements of User-defined Type 149
6.2 EXPresSiONS . .ottt 149
6.2.1 Arithmetic Operators 151
6.2.2 Comparison Operatorst 151
6.2.3 Logical Operators. 151
6.2.4 Conditional Operators 152
6.2.5 Other Operators. 153
6.3 Statements 154

6.3.1 Assignment ... 155

10

6.3.2 The Break Statement 155

6.3.3 Method Call. 156
6.3.4 Control Flow 156
6.4 The Semantics of Block Diagrams 159
6.4.1 Graphical Hierarchies, 160
Body Specification in C......... 161
7.1 Structure 161
711 Methods and Processes 162
7.1.2 Variables and Function Parameters 163
7.1.3 Header. 169
7.2 External Source Code 169
7.3 Programming Model Interface, 170
7.4 ACCESS MACIOS . . . 170
Continuous Time Systems. 173
8.1 Structure of Continuous Time Models 173
8.1.1 Modeling with Basic Blocks and Structure Blocks 174
8.1.2 Modeling with Graphical Hierarchies 175
8.1.3 Experiments 176
8.14 Projects and Hybrid Projects 176
8.2 Solving Differential Equations — Integration Algorithms 177
8.2.1 Integration Methods — Overview. 179
Continuous Time Basic Blocks. 183
9.1 BasiCs ... 183
9.2 Available Elements and Methods 183
9.2.1 Modeling With Continuous Time Basic Blocks. 184
9.3 BlockInterfaces 185
9.4 Block Methods 186
9.5 Computing SEQUENCE ot 187
9.6 Modelingwith ESDL 191
9.6.1 Differential Equations in ESDL. 191
9.6.2 Semantic Checks inESDL 192
9.6.3 Additional Library Functions L. 193
9.7 Modelingin C 195
9.7.1 Differential Equationsin C 195
9.7.2 Additional CRoutines. 196
Continuous Time Structure Blocks and Graphical Hierarchies 199
10.1 Reuse of Structure Blocks 199

10.2 Elements of a Continuous Time Structure Block 199

10.3 Block Interfaces 200
10.4 Operators 200
10.5 AlgebraicLoops 201
10.6 Directand Nondirect Output 201
10.7 Difference Between Graphical Hierarchies and CT Structure Blocks 204
10.8 Computing Sequence of Methods Within a Structure 204
11 Projects and Hybrid Projects 209
11.1 Combining Continuous Time Blocks With Modules 210
Reference Lists

12 The ASCET System Library 215
121 Bit Operators 215
12.1.1 and ... 215
1212 clearBit 215
1213 getBit 216
12.1.4 OF . 216
1215 rotate. 217
1216 setBit 217
12.1.7 shiftleft.... 218
121.8 shiftRight. 218
1219 toggleBit.... 219
12110 writeBit 219
12111 writeByte. 220
12,112 XOF . 220

12.2 Comparators 221
12.2.1 Closedinterval 221
12.22 LeftOpeninterval 221
12.23 Openlinterval 222
1224 RightOpenlnterval 222
1225 GeaterZero......... 223

12.3 Counter & Timer 223
12.3.1 CountDowNn. 223
12.3.2 CountDownEnabled............... 224
1233 Counter. 224
1234 CounterEnabled............. 225
12.3.5 StopWatch....... 225
12.3.6 StopWatchEnabled............. 226
12.3.7 TiMBr.. .. 226
123.8 TinerEnabled........ 227

1239 TinmerRetrigger...... ... i 227
12.3.10 TinmerRetriggerEnabled. 228

124 Delay 228
1241 DelaySignal 228
12.4.2 DelaySignal Enabled. 229
1243 DelayValue.. 229
1244 Del ayValueEnabled. 230
1245 TurnOfDelay........ 230
1246 TurnOfDelayVariable. 231
1247 TurnOnDelay. 232
1248 TurnOnDel ayVariable. 232

12.5 MemMOry . ..o 233
12.5.1 Accunulator............ . .. 233
12.5.2 AccunulatorEnabled. 234
12.5.3 AccunulatorLimted. 235
1254 RSFIIipFlOp. ... 235

12.6 Miscellaneous 236
12.6.1 DeltaOneStep........ ... i 236
12.6.2 DifferenceQuotient. 236
12.6.3 EdgeBi. 237
12.6.4 EdgeFalling........ 237
12.6.5 EdgeRising............ 238
12.6.6 Mux1of4. ... 238
12.6.7 Mux1of 8. ... 239

12.7 Nonlinears 239
12.71 Hysteresis-Delta-RSP 239
12.7.2 Hysteresis-LSP-Delta. 240
12.7.3 Hysteresis-LSP-RSP....... 240
12.7.4 Hysteresis-MsSP-DeltaHalf...................... 241
1275 Limiter. ... 241
12.7.6 Signum 242

12.8 Transfer Function 242
1281 Control.o 242
12.8.2 Integrators. 248
12.8.3 LOWPASS. . o oo 252

13 Troubleshooting 257
13.1 General HINtS 257

13.2 Problems with ASCET 258

14 Code Generation MeSSagest 261

14.1

14.2

14.3

ComMpPOoNENtS . ..o 261
14.1.1 Error Messages.ot 261
14.1.2 Warnings 264
PrOJECtS . o o 265
14.2.1 Error Messages.ot 265
14.2.2 Warningso 266
Fixed Point Code Generation i, 266

14.3.1 Error Messages.ot 266
14.3.2 Warnings

10

ASCET V5.2

The Modeling Language

12

1.1

Projects

In ASCET, an embedded software system is defined in the context of a project.
A project contains at least the following:

e A collection of modules
¢ The task schedule for the real-time operating system
e The definition of the inter-process communication

The central part of a project is the definition of the operating system’s task
schedule. Here, the dynamic behavior of the system is described. Fig. 1-1 illus-
trates the structure of a project.

Project
Module A | | Module B | Operating System
Process A1 l Process B1 I | |
\ k! | Task 1 | | Task 2 |
Process A2 | Process B2 | “x_
Y T B
\ \ Process A1 | Process B2 |
\ Tl \ : RES
N T A QRRRAREEEEREES peeemett /
\ \ : /
AN p Process B1 | Process A2 |
N\ \
NN \ A /
\ L /
e N T 7 //
~N ~ N N _ 7 _ Ve
\\\\ _’/// ///

——— -

Fig. 1-1 The structure of a project

The Task Schedule for the Operating System

An essential part of an embedded control system is the underlying real-time
operating system that controls the execution of the various algorithms and
computations. In ASCET, the specification of the task schedule is supported by
a special editor, where all relevant data for the operating system scheduling
can be specified.

Projects

13

14

Projects

The specification of the task schedule is based on the automotive real-time
operating system ERCOSEK. To serve the large number of parallel requests to
the embedded control system, e.g. camshaft interrupts or sampling at a fixed
rate, a priority-based cooperative and preemptive scheduling is the core of the
operating system. This scheduling controls the execution of tasks in a multi-
tasking environment. A task is defined as a list of processes to be executed in
a given order. A process is any portion of a control algorithm which has to be
executed at a given rate or as a reaction to an external interrupt.

Since a control system contains a number of algorithms, the number of pro-
cesses can be very large. At the same time, many of these processes have a
similar dynamic behavior. The collection of processes with the same dynamic
behavior into tasks therefore reduces the administrative overhead of the oper-
ating system and structures the dynamic behavior of the application. Processes
with the same dynamic behavior are therefore collected into one task.

The definition of a real-time task schedule consists of:
e Scheduling
e Tasks
e Processes

e Application modes

1.11

Process

PS T
p4
p3 T
P2 T
S

Scheduling

The operating system schedules the execution of processes defined in the
modules. The definition of the schedule consists of grouping processes into
sequences where each sequence defines a task in the operating system task
schedule. The tasks are activated by the operating system in different modes,
for instance periodically by timers, or by software or external events.

Task1

Project

Task2

@ Process4

e

Fig. 1-2 Grouping processes into tasks

Fig. 1-2 shows two tasks with processes assigned to them. Task1 is activated
every 10ms, and has a higher priority than Task2, which is activated every
20ms. The running times of the processes are as follows: p1=2ms, p2 = 1ms,
p3 =2ms, p4 = 1ms, p5 = 1ms. The scheduling would then look like this:

Task 1
é Task 2

Task 1 Task 1
é é Task 2

D W —

Task1 Task2

| »
p—

2 Time (ms)
Task1 Task1 Task2

1

Fig. 1-3 A simple task schedule

The operating system knows three kinds of scheduling. In cooperative sched-
uling, the current process is not interrupted if a task with a higher priority is
activated. A new task starts after the current process is finished. If the current
task (the one that gets interrupted) has more processes to execute, it pauses
until the interrupting task is completed. After the interrupting task is com-

Projects

15

16

pleted, the interrupted task is continued. This type of scheduling is illustrated
in Fig. 1-4, where the running times of processes are p1=2ms, p2 = 1ms, p3
=5ms, p4 = 4ms, and p5 = 2ms.

24 Task 1 Task 1
as as
8 Task 2 Task1 Task 2
a
o | |
4 —— I I
3 - | I I
Sy | |4,—’7
"M — | ‘
i D W 8 Time
0 Taski Taskz ° Task1 Task2 Task1 Task2 (Ms)
(contd.)
Fig. 1-4 Resuming an interrupted task in cooperative scheduling
In preemptive scheduling the current process is directly interrupted, whenever
a task with a higher priority is activated. Since all cooperative tasks have lower
priorities than preemptive, or non-preemptable, tasks (see Fig. 1-7), preemp-
tive tasks cannot be interrupted by cooperative tasks. After the interrupting
task is completed, the process is resumed. Fig. 1-5 shows the same scenario as
above (i.e. the same process running times) with preemptive scheduling.
%A Task 1 Task 1 Task 1
g é Task 2 é é Task 2
5 4+
4+ : :
3 4+ | |
1 |
2 + 1 |
4 1 1
| —
{ J Time
0 10 20 (ms)
Task1 Task2 Task1 Task2 Task1 Task2
(p4 contd.)
Fig. 1-5 Resuming an interrupted task in preemptive scheduling

Projects

In non-preemptable scheduling (micro-controller targets only), neither the cur-
rent process nor the current task are interrupted when a task with higher pri-
ority is activated. The new task is executed only after the non-preemptable task
is completed. Fig. 1-6 shows the same scenario as above (i.e. the same process
running times) with non-preemptable scheduling

% 1 Task 1 Task 1 Task 1
2 Task 2 Task 2
o
ps T é é é
4 I
T I I
P31 : :
4
2T | |
p1T |
|
T —»
o 10) e Time
Task1 Task2 Task1 Task1 Task2
Fig. 1-6 Task-schedule for a non-preemptable task

Note
Non-preemptable tasks were introduced in ERCOSEK to provide OSEK com-
patibility. Their use is explicitly not recommended, since most jobs can be
solved easier by exclusive use of cooperative and preemptive tasks, and the
configuration of non-preemptable tasks can be complicated due to several
boundary conditions.

1.1.2 Tasks

A task contains a list of processes that are executed on activation of that task.
The execution order of the processes is fixed. The way a task is scheduled by
the scheduler of the operating system is defined by the task settings. There are
several different task modes:

e Alarm tasks are activated periodically. The activation rate is specified in
seconds.

e Timetable tasks (micro-controller targets only) are alarm tasks written
into a timetable. Thus, runtime can be saved (at the price of enhanced
memory requirement).

e Interrupt tasks are activated by an external event. For each processor,
different types of events are available. The appropriate event can be
chosen from a list of events.

e Software tasks are activated by calling an operating system routine, i.e.
they are activated directly through the software.

Projects

17

18

Projects

e |nit tasks are activated once before the start of the operation system.
Init tasks contain code for the initialization of the system.

Each task is furthermore assigned to one of the three scheduling groups, non-
preemptable, preemptive or cooperative, and inside each group to one of the
available priority levels. The number of priority levels for each scheduling group
can be defined by the user, and determines the memory demand of the sched-
uler tables. It should be optimized for the final system.

Tasks at a higher priority than the running task can interrupt the running task,
running tasks scheduled as non-preemptable excepted. If the interrupting task
belongs to the preemptive scheduling group, the running task is interrupted
immediately, otherwise the interrupt happens at the end of the current pro-
cess. Preemptive and non-preemptable tasks always have a higher priority than
cooperative tasks. Fig. 1-7 shows the priority scheme. The actually available
tasks depend on the selected target.

4 Priority
Max. interrupt priority = A
Max. preemptive priority
Max. priority (software/periodic)| | ®
o
3
=
| Min. interrupt priority s
Software and
periodic tasks
Min. preemptive priority O A/
Max. cooperative priority A 9
§ Software and
3 periodic tasks
| Max. cooperative priority (0) | 5 o

Fig. 1-7 Priority scheme

Each time a task is activated, the time elapsed since the previous activation is
stored in the global variable dT. This variable can be used in the definition of
algorithms to describe the control algorithms independent of their sample
rate.

1.2

Processes

A task consists of a sequence of processes. Processes contain the execution
code of the program. The body of a process is executed sequentially. Since
tasks can be interrupted preemptively by tasks of a higher priority, processes
can be interrupted in the middle of their execution. Therefore, processes must
be designed so that they can be executed in parallel.

When working in a preemptive system, the main problem is data consistency.
The operating system has to guarantee, that the result of the computation in
a process depends on the value of the input variables alone, and not on the
order of execution in the system.

To solve this problem, the ERCOSEX concept of messages is supported in pro-
cesses. In the ERCOSEK operating system, messages are protected global vari-
ables. Protection is achieved by working on copies of the global variables. The
system analyses whether a copy is required and establishes an optimum data
consistency scheme without penalties for the run-time kernel.

Application Modes

Application Modes are a special feature of the operating system ERCOSEK. In
order to keep the run-time load of the processor low, the operating system can
be run in different modes. Typical modes are the normal mode, the EEPROM
programming mode etc. These modes are mutually exclusive, i.e. only one
mode is active at a given time. Therefore, in each mode, only the relevant tasks
have to be executed.

Each task is assigned an application mode which it runs in. Switches between
application modes are activated by the software. When entering a new appli-
cation mode, the init tasks assigned to that application mode are activated.

Note

Switches between application modes take place via an operating system ser-
vice call. Details can be found in the API description of the ERCOSEX manual.

Modules and Processes

The processes assigned to tasks are defined in the context of modules. A mod-
ule encapsulates a number of related processes, e.g. processes that belong to
a lambda control function. The functionality described in a module can be split
into several processes, since different parts of a control algorithm may be com-
puted at different times. This greatly reduces the execution time for the control
algorithms, since only the most sensitive parts of the algorithms need to be

Projects

19

20

1.3

Projects

computed at the highest frequency. At the same time the descriptions of the
algorithms are not distributed, which makes them easier to develop, maintain
and understand.

The functionality of a complex control task can be distributed over several
modules which can be modelled hierarchically. For further refinement classes
and state machines can be used for sub-algorithms or service routines (e.g.
accumulator, pi-control etc.)

Modules are exclusively used by projects and are the top level components
within a project. Usually, modules are used to describe a unique part of a
project, e.g. a lambda control. Therefore modules can have only one instance
inside a project, in contrast to other components, which can have any number
of instances (e.g accumulators).

Like all other components, modules have an interface. The interface of a mod-
ule consists of its processes and the messages which are used for data
exchange.

Interprocess Communication

The communication between processes is achieved via messages, which are
protected global variables in ERCOSEX. Data consistency is achieved by work-
ing on copies of the actual variable whenever a copy is required.

Fig. 1-8 shows how data inconsistency may occur in a preemptive system. To
avoid this conflict, the interprocess communication is modelled with messages.
At the beginning of a process, all input messages (those messages that are only
read) are received by the process. Upon receiving a message, an automatic
temporary copy of the message is produced, on which the process works. At
the end of the process, all messages that are written to are copied back to the
actual message. This mechanism guarantees that the values of the variables
are left unchanged within a process, unless the process itself changes its value.

The use of protected global variables for interprocess communication, i.e. the
use of state messages, is appropriate for embedded control systems. There is
no dependence between the sender and the receiver of a message, so that no
complicated and run time consuming synchronization scheme is required. Sec-
ondly, when using state messages there is no one-to-one relation between a
sender and the receiver. Therefore a message can be received by more than
one process.

process2 interrupts

process1
Data become inconsistent
é because all processes work
x=1 x= -1 on the same variable
process2
if (x>0) y=sqrt(x)
process1 —
i >
process2 interrupts
process1
Data stay consistent
é because each process works
x=1 x= -1 on its own copy
process2
t=x;
if (t>0) y=sqrt(t)
process1 —
i >
Fig. 1-8 Data inconsistency in a preemptive system

The messages mechanism is based on the ERCOSEX message principle. The

ERCOSEX development environment contains an offline system optimization
feature, where message implementation can be optimized. Here copies are
only introduced, if data consistency is endangered, and copies are only pro-
duced at the beginning and the end of a task.

The interprocess communication is resolved by the project. Messages with the
same name are bound to each other and represent the same message. If, for
example, two processes use the message vel oci ty, they communicate by
writing to and reading from this variable. The same name-based resolution
mechanism is performed on other global objects as well, e.g. global variables
or global parameters.

Projects

21

22 Projects

Components

A project is at the top level of an embedded control system specification in
ASCET. Here the framework of an application is defined and its execution are
controlled. A project is the brain of an embedded control system.

Compared to this, components are the body. They are used to specify the
actual control algorithms and other various computation tasks to be per-
formed in the embedded control system.

Components have a clearly defined interface that describes how and when to
perform the algorithms described in the components, and also how data
exchange with other components is to be performed.

There are two types of components: modules and classes. A central aspect in
the design of both types is data encapsulation, where ASCET follows an
object-oriented approach. A component contains a number of elements that
can be used by all processes or methods defined in that module or class. The
scope of these elements can be restricted to be local. Even for messages, the
scope can be restricted to processes defined within that module only.

A component specification consists of:

¢ The content of the component, i.e. declarations of the variables,
parameters etc. the component uses.

e The interface of the component in the form of processes or methods.
This interface can be extended by allowing access to internal variables
(of classes) and messages (used in modules) directly.

* The algorithms themselves, which specify the computations within a
process or method.

Component
/ v \
Elements Interface Algorithms
Fig. 2-1 The elements of a component specification

In the following, modules and classes are discussed in general. Then the struc-
ture of the interface of a component is explained. The various ways in which
algorithms can be described (block diagrams, textual, C code) are discussed in
the subsequent chapters. The final sections of this chapter are about a special
type of classes: state machines. This special class type can only be described in
terms of block diagrams.

Components

23

24

2.1

Modules vs. Classes

When specifying an embedded control system, the real-time requirements of
the system are crucial. In order to meet these requirements, special compo-
nents with a real-time capable interface, modules, can be used in ASCET.

A module defines a number of processes; in addition, methods can be defined.
A process contains a piece of code, that is executed sequentially. Processes are
activated by the operating system, no parameters can be passed. Instead,
modules use messages for data exchange, i.e. direct access to a global variable
space, which results in a highly efficient communication mechanism.

Unlike processes, which are activated only by the operating system, methods
are much more flecible. Each method can have an arbitrary (but fixed) number
of arguments and a single return value.

The behavior of modules is unique piece within an embedded control system
in the sense that they can be instantiated only once in the context of a project.
To avoid this limitation, classes can be used. Classes are object-oriented
abstract data types that encapsulate data and make available a well defined
interface. The interface is a collection of methods, which can be called from
anywhere inside the program. Unlike processes, which can only be activated by
the operating system, methods are much more flexible. Each method can have
an arbitrary (but fixed) number of arguments and a single return value.

Classes can be instantiated more than once, e.g. more than one accumulator
class can exist in a project. Each instance of a class has its own data space (its
own parameters and variables), but all instances share the same specification.
Global variables defined in classes are the same for all instances of a class (and,
in an object-oriented view, can be considered to be class variables), but they
can also be accessed by other components.

Classes, however, do not support real-time interprocess communication via
messages. This has two reasons. Firstly, classes can have multiple instances and
the data consistency scheme of ERCOSEK cannot manage muiltiple instantia-
tions. Secondly, processes are assigned statically to one fixed task. Whenever a
process runs, the operating system creates copies of all its messages. These
copies are accessible only to that instance of the process that created them.
Hence, if the same message is used by various processes, each process gets its
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Methods, on the other hand, can be called arbitrarily from different points in
the program, for instance from different processes in different tasks. The
method does not "know" the calling task. Thus, it cannot be decided which
message copy is relevant for which method call.

Components

2.2

The properties of modules and classes are summarized in Tab. 2-1.

Property Module Class
Processes X

Methods X X
Argument passing X
Messages X

Multiple instances X
Hierarchical design X X

Tab. 2-1 The properties of modules and classes

State machines are a special type of class available in ASCET. Their semantic
behavior is the same as that of classes, but the notations are different. State
machines, for example, have special methods for computing the conditions of
a state transition.

When specifying components, modules as well as classes, the structure is often
hierarchical, since other previously defined classes or modules are to be reused.

Definition and Instantiation of Components

A component describes an abstract data type, it makes available an interface,
through which it interacts with its environment. When using a component in a
project, each element has to be created, i.e. for each element real memory cells
have to be allocated. The process of creating an object is also called instantia-
tion. Upon instantiation, the necessary data structure is built and initialized.

Components

25

Each instance of a component has its own set of elements, but inherits the
interface and the functional description from the component itself.

Component
/ v \ e contains
Elements Interface Algorithms | ... instantiates
T RoTT 8 -
~ _ - AN | — — — - inherits
- — N
- P
. Instance A Instance B
: v v
peees >| Elements Elements

Fig. 2-2 Instantiation and inheritance in components

The definition of a component is therefore the definition of a template for the
instantiated components. The difference between template and instance is not
obvious for modules, since modules only have one occurrence in a project con-
text, i.e. modules are only instantiated once. There is a one-to-one relation
between the template and the instance for modules.

Component (Module)

/ A 4 \ ——— contains

---1 Elements Interface Algorithms |

_v -~V
- _ - - . inherits

Module A

A 4

e >| Elements

Fig. 2-3 Instantiation and inheritance in modules

instantiates

26 Components

2.3

2.3.1

Classes, on the other hand, can have multiple instances. Here, the distinction
between definition and instantiation becomes more obvious, since there is no
simple one-to-one relation between template and instance. The relationship
can 1:n. The definition of a class is therefore the definition of a reusable, user-
defined model type.

The instantiation of a component only works in the context of a project. Thus,
when working with components only, a default project is automatically created
to provide the context for instantiating the components.

When using a class in another component (see following section), the class is
instantiated in the context of that component, when that component is instan-
tiated. In contrast to this, modules are always instantiated in a project.

The Interface of Components

The interface of a component consists of methods, processes, and the access
to global variables. Modules, for instance, have access to messages. Methods
and processes are structured in the same way. Their structure is independent of
the way the methods or processes are described.

Each method or process is assigned to a diagram, where each diagram can
either be public or private. Methods assigned to private diagrams are only vis-
ible inside the component and do not belong to the public interface of the
component, which is visible to other components. All methods assigned to one
diagram are described in this diagram (in the case of block diagrams, there is a
common block diagram for all these methods).

public/private 4—— Diagram
modelled in
assigned to
dioini
methods/processes — e — algorithms

Fig. 2-4 The interface of components

The Interface of Classes

The interface of a class consists of a number of methods which are assigned to
one of the diagrams of the class. The interface of each methods, consists of its
arguments and a return value. Methods are similar to subroutines, that can be
called from any point in the software. However, the data encapsulation of a

Components

27

28

class, i.e. the access to the same set of instance variables and parameters,
makes the concept of methods and classes far more pervasive than that of
subroutines. Methods have access to all the elements defined in their class.

The arguments and return value of a method can only be used in the body of
the associated method. In addition, each method has a number of method-
local variables. These variables are temporary and not static, and like argu-
ments, they can only be used in the body of the associated method.

Method Method Method
interface | interface | —| interface |
Method Method Method
(algorithm) (algorithm) (algorithm)

Hements (encapsualted data)

A 4 4
Referenced
class \ ﬂ
Y_V Y
| -
Referencing class or module \ \
\ \
Global variables Automatically generated
access methods

Fig. 2-5 The interface of classes

Additional methods can be made available for direct access to the instance
variables of a class. This mechanism allows classes to be used as data contain-
ers (similar to records in C).

The interaction of a class with its environment consists of calling the methods
of the class. When a method is called, the instructions in the method body are
executed.

The methods of a class are categorized as either public or private by assigning
them to a public or private diagram. Public methods can be called from any
component, that uses that class. Private methods are hidden and can be called
only by methods of the same class. They can used as internal subroutines.

Components

2.3.2

2.4

The Interface of Modules

The interface of a module consists of a number of processes and—optional—
methods, as well as the messages used in that module. Modules interact at
two different levels, since the activation of processes and the communication
via messages is separated. The activation of the process is under control of the
operating system (that is part of the project).

The communication between processes via messages is asynchronous to the
activation of the processes, i.e. the sending of a message and the receiving of
it in a process do not happen at the same time. This concept is different from
parameter passing between methods, which is synchronous to calling the
method.

Like methods, processes can have temporary process-local variables.

Method

Interface

Process Process Process cl)\’/ljgf)hnoac;:
(algorithm) (algorithm) (algorithm) (Algorithm)

Elements (encapsulated data)

A A A
Messages
Module 9

Operating vyvyYy automatically generated
System Communication with other modules access methods
Fig. 2-6 Inter-process communication (grey parts are optional)

Reusing Components

When specifying components, previously defined classes or modules contain
functionality that can be reused. Reusing components leads to a hierarchical,
tree-like structure of a component. The leaves of this structure are classes or
modules that do not contain other classes or modules.

The structure of a component has to be tree-like, i.e. cyclic dependencies are
not allowed. This is because the usage relation is also a containment relation,
and a cyclic dependence would be unresolvable.

Components

29

30

If a class is used in another component, the class will automatically be instan-
tiated and initialized when the containing component is initialized.

There is, however, an exception. When using a class that is imported, i.e the
class is instantiated in some other context, for instance in the project directly,
the usage relation is not a containment but a reference relation. Thus a cyclic
dependency does not lead to an unresolvable containment relation in this case.

Class A Class A
(72}
& |3
> 2 » Class B
Class B
? |
& [! »
> 2 L___»| ClassB
Class B :
|
|
[J
contains
————— references
Fig. 2-7 Containment relation and reference

Modules are the top level component. Therefore, modules may not be con-
tained in classes. Classes, however, may be contained in modules as well as in
other classes. The following relation holds:

Containment relations Class Module
Class X R
Module X X

Tab. 2-2 Typology of relations

Since the interfaces of modules and classes are different, the meaning of a
hierarchical module structure and a hierarchical class structure is also different.

Components

241

2472

Hierarchical Class Structure

When using a class inside some other component, the methods of the class
can be used as subroutines in the component.

Methods are

Arguments Return values .
activated by the
Class referencing
> component

Module or class

Fig. 2-8 Method invocation in a nested class

The methods are called as part of the execution of the component’s methods
or process, this point in the software can be determined by the component
itself. When calling a method, the component must supply the method with
actual parameters for the arguments of the method.

Hierarchical Module Structure

As mentioned before, modules are always instantiated in a project. That is, in
a hierarchical module structure, a module used in another module is not
instantiated within the containing module. As a consequence, all of the mod-
ules instantiated in a project are on the same level, independent of their posi-
tion in the hierarchical structure.

The hierarchical structuring of modules serves mainly two purposes. A hierar-
chical structure reflects the nature of a control system. In an engine control, for
instance, there may be separate modules for ignition, injection, and lambda
control.

Components

31

32

2.5

In addition, the communication structure in a hierarchical mode can be made
much more transparent, since the dataflow is directly visible in block diagrams.

—_——— e e — — —

| |

I A A |

| |

| |

| |

| |

| vV \4 |

| |

| |

| SZ SN2 .

| Messages Messages | Processes are
: Cl : activated by the
| ass | operating system
| > |

| |

| |

| |

| |

| |

I Module :

|

| |

Fig. 2-9 The communication structure in a hierarchical module

A further advantage of a hierarchical module structure becomes clear by this
example: easier maintenance. If, for instance, the name of a message is
changed, it must be changed in all modules that use that message. If a hierar-
chical module is used instead, the changes only affect one module, since the
name based binding is not explicitly used.

State Machines

A state machine is a special type of classes, an event-driven system where the
focus is not on computations but on control flow. Therefore the main level of
description of a state machine, the state diagram, does not describe how data,
but how control is passed. To model control flow, a state machine consists of
a finite number of states, and transitions between these. Besides, at least one
trigger must be included to control the state machine. At each trigger call, one
step of the state machine is executed.

For more information on the theory of finite state machines, see

e Harel, David: "Statecharts: A Visual Formalism for Complex Systems”,
Science of Computer Programming 8, 1987, pp. 231-274

¢ Hatley, Derek J. & Imtiaz A. Pirbhai, Strategies for Real-Time System
Specification, Dorset House Publishing Co., Inc., NY, 1988.

Components

The following diagram shows the components of a state machine.

State Machine

State Diagram

Public Diagram

Public
Method

ActionCondition
Diagram

Fig. 2-10 State machine — scheme

Specifying a state machine consists of determining the states a system can be
in, defining the conditions that have to be fulfilled for changing from one state
to another, and determining the actions that are to be performed during these
transitions.

The state diagram is a special block diagram for defining a state machine. Each
state is displayed as a rectangle with rounded corners. One of the states always
has to be marked as the start state, this is the state the machine is in at the
beginning.

The transitions are targeted curves between the states. Each arc represents one
transition in a direction marked by an arrowhead at one end. Each end of a
transition is connected to a state. The state where the transition starts is the
source state, the one where it ends is the destination state. Two arcs are nec-
essary to model a bidirectional transition.

Components

33

The sample diagram contains the relevant graphical components of a state

machine.

Open hierarchy state,
simultaneously start state

®/ v

Condition
Transition action

Transition

trigger_100ms
[condition_2]

Segment
with action

Start state State A/ (5 ? ftransition_action <€—
within the Ctate A 1)
hierarChy Entry: entry_a1 trigger_100ms
gri't‘_'zxﬁax—m [condition_1]
Static
action trigger_100ms itransition_action Junction
[condifion_1] 1/ 1
State_a_2f —
. 2— Static: static_AzZ)
X trigger_100ms trigger_100ms =
E><|'g [condition_2] [condition_2]
action 1
1 =5
trigger_100ms
| |
State_A_3i [condition_1]
Static: static_A3]1’
trigger_10s
Closed Conditions ———p [condition_3]
hierarchy state
with history -
State_Bf
Entry: entry_B
Transiti trigger_100rms . K
ransition
with associated trigger/ j \ ’/j

Transition priorities

Entry action

2.51

34

Fig. 2-11

State Machine Components

Graphic Components

States

A state describes one mode of an event-driven system. The activity or inactivity
of the states changes dynamically, based on trigger events and conditions.

Each state has a parent state (hierarchy state, see page 41). For states on the
highest level (St at e_Aand St at e_B in Fig. 2-11), the state diagram itself is
the parent. You can place states within other higher-level states; State_A 1,
State_A 2 and State_A 3 are substates of St at e_A. States containing

Components

no other states are called base states (State_A 1,State A 2,State Bin
Fig. 2-11). A hierarchy state can have a history (see page 44). History provides
an efficient means of basing future activity on past activity.

The states are mutually exclusive, i.e. only one base state can be active at any
one time. If the active base state is the substate of a hierarchy, all hierarchy
states that contain the active state are active, too. If, for example, the
St at e_A 2 statein Fig. 2-11 is active, the hierarchy state St at e_Ais active,
too. If one of the (invisible) substates of St at e_A 3 is active, State_A 3
and St at e_A are active, too.

Each state has a unique name. Identical names are forbidden within different
hierarchies. If you use an existing name a second time, _n is added to it. n is
the smallest unissued number for this name (States State_A_1 to
State_A 3in Fig. 2-11). The following names are forbidden, too:

e names of methods, processes, elements etc. in the entire project
¢ names from the C language (e.g., st ati c, defi ne, etc.)

Such state names do not always result in an error message, but the
generated code is always wrong.

Besides the names, the state labels contain the various actions (see page 45).
These are processed successively according to their type. The following types
exist: entry action, static action and exit action. All actions are optional.

Transitions

A transition is a graphic object connecting two states. One end of the transi-
tion is attached to the source state where the transition begins. The other is
connected to the destination state where the transition ends. A transition may
be interrupted by one or more junctions (see page 38) and split into several
segments.

A priority is assigned to each transition. The higher the number, the higher the
priority. If more than one transition originate from the same state or junction,
they are evaluated in the order of their priorities. Two transitions from the
same state may not have the same priority.

A transition label describes the circumstances under which the system moves
from one state to another. A trigger event is necessary for a transition to occur.
The name of the trigger is the first part of the transition label. In Fig. 2-11, the
trigger tri gger _100ns actuates the transition from State_A 1 to
State_A 2. Optionally, the transitions can also contain a condition (see
page 45) and an action (page 45), the transition action. These are named in
the second and third part of the label. In the state diagram, conditions are

Components

35

36

represented in square brackets, transition actions with a leading "/". How trig-
gers, conditions and actions are assigned to the segments of a transition with
junctions is described in "Junctions" on page 38.

A transition is valid when its source state is active and its condition—if speci-
fied—is true. There are several kinds of transitions:

1.

Components

Transitions between base states

&
. 1|
trigger

[switch_off-1 frigger
- [gwitch_on]

Br

The transition from state A to Bis valid if A is active, the trigger event
tri gger occurs, and the condition [swi t ch_on] is true.

Transitions from and to hierarchy states

®

1 D _hierarchy!

trigger
[zwitch_on)

trigger

1

trigger

1

trigger
[swritch_off]

The transition from Cto the hierarchy state (see page 41)

D_hi er ar chy isvalid if Cis active, the trigger eventt r i gger occurs,
and the condition [swi t ch_on] is true. It is an explicit transition to
the hierarchy state.

For a valid transition to a hierarchy state, you must implicitly define one
substate as the destination. Here, you do this by marking the substate
D1 as start state (see page 43). What is executed in fact is the transition
from Cto D1.

The transition from D_hi er ar chy to Cis valid if D_hi er ar chy is
active, the trigger event t ri gger occurred, and the condition
[swi tch_of f] is true, regardless of which substate is active.

3. Transitions between substates of different hierarchies

®

E_hierarchyf F_hierarchys
1
1 1——F2i
trigger

[upl trigger

The transition from the substate E2 in the hierarchy state

E_hi er ar chy in the substate F1 in the hierarchy state

F_hi erar chy is valid if E2 is active and the trigger event t ri gger
occurs. The transition defines an explicit exit from substate E2 and an
implicit exit from the hierarchy state E_hi er ar chy. It also implicitly
defines an entry into F_hi er ar chy and an entry into F1.

Loops

®

G_hierarchyr

&
1

. trigger
trigger

[reset_state]
Ireset
1|32

trigger

A loop is a transition from a state to itself. The transition in the above
figure is valid if either of the substates of G_hi er ar chy is active, the
trigger event t ri gger occurs and the condition [reset _state] is
true. The system leaves the active substate, it leaves the

G_hi er ar chy state, executes the transition action, re-enters

G_hi er ar chy, and finally enters the substate GL.

Components

37

5. Transitions with junctions

All types of transitions can contain junctions (see next section). Here,
just one of the many possible examples is shown.

Hi :
trigger

If state His active and the trigger event t ri gger occurs, the system

leaves state H. In the junction, the conditions to the leading transition
segments ([condi tion_1],[condition_2],[condition_3])
are tested in sequence for their priority. If, for example, the condition

[condi ti on_2] isfulfilled, transition to state J occurs. If none of the
conditions are fulfilled, the system remains in the start state H.

Junctions

A junction is a graphic object which considerably improves the legibility of
state diagram and aids the generation of efficient code. Junctions form addi-
tional possibilities for representing the required system behavior.

Junctions are not states, they represent branching points in the state diagram.
Nodes interrupt a transition (see page 35) and split it into segments. One seg-
ment connects the source state with the junction, one or more segments con-
nect the interrupting junctions (if required), and the last segment connects the
last junction with the destination state. Thus, junctions aid the representation
of different transitions. At the same time, they allow reuse of transition seg-
ments.

Note the following when using junctions:

38 Components

¢ Transitions from a starting state to several destination states are clearly

B destination_1/
rigger

[condition_a]

1

> destination_z2/
trigger

3

[condition_a]
[condition_b]

1 > destination_z2/
kngger [condition_b]
/ Erigger
[eondition_c] astination_3] [condition_c] fectination_z/

You can achieve the same functionality modelled with a junction in Part
A of the diagram by direct transitions from the start state

sour ce_st at e to the destination states (Part B of the diagram).
However, using the junction brings a runtime benefit, as the transition
segment between the start state and the junction is evaluated first. If
this is already invalid, no transition can take place and you need not
consider the segments leading away from the junction.

e Also, transitions from several starting states to a destination state are
clearly represented.

represented.

source_skatef

trigger
Jaction

trigger
Jaction

1 1
1 ot
Jaction

In this case too, both ways of writing have the same meaning. You can
(and should) assign an action shared by all three transitions to the seg-

ment leading away from the junction.

¢ If none of the transition segments leading away from the junction are
valid, then no transition occurs and the system remains in the starting

state.

trigger
Jaction
1
1 \

Components

39

¢ Transition segments from a junction into a state can contain actions.

source_ 1I

destinations
Source_. 21
faction

S0Urce_. 3I

It is not possible to assign an action to a transition segment ending in a
junction. The complex semantics of such transition actions results in
inefficient coding.

® Each segment of a transition can have a condition.

1 [condition 1]
1 [condtion_2] ,
1 [condition_3]

e Transitions from one junction to another (cascading junctions) are
allowed, all kinds of loops are forbidden.

source) destinations

destinations
1 N
[condition]
faction

40 Components

¢ Only one segment of a transition has a trigger. Usually, a trigger is
assigned either to the segments leading towards the first junction of a
transition, or to the segments leading away from the last junction, but
not to all segments.

i
] ’ rigyer] ’
] " trigger
] q trigger

Note

@
1— H
triger L

R
e
by

The assignment of triggers to more than one segment of the same tran-
sition is not deactivated. However, in such a case, ASCET outputs an error
message if different triggers are assigned to the segments.

You are therefore responsible for the assignment of triggers.

¢ [f none of the segments leading to a possible destination state is valid,
no transition occurs. The state remains in the source state.

Triggers

Triggers activate the execution of the state machines: Each trigger call causes
the execution of one state machine step. They are public methods of the state
machine; you must define each trigger that affects the state diagram. A trigger
can have arguments for communication with other ASCET components (see
also the sections "State Machines as Classes" on page 83 and "The State
Machine Editor" in the ASCET user’s guide).

A state machine can have one or more triggers. Each transition is assigned to
one of the triggers of the state machine. By this assignment, it is possible to
define several substate machines that work on the same states. Each trigger
can be started independently. The state machine is activated whenever a trig-
ger is started: all transitions from the current state are checked in the order of
their priority, and a transition is executed if necessary.

Hierarchy

State machines often have a large number of states. The hierarchy allows the
organization of complex systems by defining higher or lower-level object struc-
tures. A hierarchical design usually reduces the number of transitions and pro-
duces structured and readable diagrams (see also section "Hierarchy States" in
the ASCET user’s guide).

Components

a4

ASCET supports the hierarchical organization of states in the form of open and
closed hierarchies (St at e_A and St at e_A 3, respectively, in Fig. 2-11). The
only difference between them is the graphical representation.

Each state can contain other states. Those states are called hierarchy states;
states containing no other states are called base states. A state contained in a
hierarchy state is called a substate of the hierarchy state. The system is always
in a base state, and together with that base state also in its associated hierar-
chy states.

The state diagram shown here has a hierarchy state that contains two sub-
states. (Some transitions are left out for clarity.)

|

clutch_engaged engaged!

The hierarchy state engaged contains the two substates f i r st and second.
This makes engaged the parent state of fi r st and second. When the trig-
ger event cl ut ch_engaged occurs, the system transitions from the neu-
tral state to the hierarchy state engaged.

42 Components

Far more complicated structures are possible, too (see Fig. 2-11). The following
is an example of a hierarchical state machine with two hierarchical substates,
one of which contains a further hierarchy state. The lines between the states
symbolize a containment relation and should not be confused with transitions.

Statemachlne

State B
State B1 State B2

State B1a State B1b

Fig. 2-12 Relationships within complex state machines

Within a hierarchy state, the substates form a state machine of their own. For
instance, state A1 and state A2 form a state machine of their own. States
inside a hierarchy state can have transitions to other states, which are not
located inside the same hierarchy state. The states are connected by transi-
tions; one of the states is marked as the start state in the hierarchy state. At the
beginning the hierarchical state machine is in the start state, and if this state is
hierarchical, too, it is in the start state of the hierarchical state and so on.

In the above example, the start state of the state machine is state B1b, since it
is the start state of state B1, which itself is the start state of B. B, in turn, is the
start state on the topmost level.

A transition from a hierarchy state automatically includes the exit from the
active substate. A transition from a substate can lead beyond the borders of
hierarchy states to another substate. If a substate is active, its parent hierarchy
state is active, too.

Start State

The start state specifies which state is to be activated when there are several
possibilities on the same hierarchy level. Thus, the start state of the entire state
machine, or that of a hierarchy level is determined.

Components

43

44

A common error in the specification of state machines is the generation of
several states without marking one of them as start state. In that case, there is
no indication of which state becomes active by default. Therefore, on code
generation, ASCET outputs an appropriate error message.

The state neut r al is the start state of the entire state diagram shown below,
first isthe start state of the hierarchy state engaged.

@ clutch_engaged

trigger
[eluteh_idle]

engaged!

@ trigger

firstf
1

With that, the state neut r al becomes active when the state machine is first
activated. If you had not defined a start state, it would be unclear whether
neut r al or engaged should be activated. When a transition from neut r al
to engaged occurs, the substate f i r st is activated inside the hierarchy state.

History

The history option provides the means to determine the destination substate
of a transition to a hierarchy state based on past activities. If a hierarchy state
has a history, the transition ends in the substate that was most recently active.

The history belongs to the hierarchy state in which the option was set. It takes
priority over the start state within the hierarchy.

@ clutch_engaged

trigger
[eluteh_idle]

engaged!

@ trigger

firstf
1

The H in the diagram indicates that the hierarchy state engaged has a history.
Whether the first or second substate is activated upon a
transition from neutral toengaged is based on which of them was
most recently active.

The generated code contains a special variable for the history, the history vari-
able.

Components

Conditions

A condition is a Boolean expression specifying that a transition occurs, given
that the expression is t r ue. Each transition and segment of a transition can
have a condition. In Fig. 2-11, the condition [condi ti on_3] represents a
Boolean expression that must be t r ue for the transition from St ate_A to
St at e_B to occur.

@ clutch_engaged

trigger
[eluteh_idle]

engaged!

@ trigger

— [speed = threshold]
1

In the system shown here, the transition from fi r st to second takes place
if the Boolean condition [speed > t hreshol d] is true.

You can specify conditions as block diagrams (in separate diagrams) or in ESDL
(in separate diagrams or directly at the transition). For more information, see
section "Specifying Conditions and Actions" in the ASCET user’s guide.

Conditions can also have arguments for communication with other ASCET
components. You can find more on this in section "State Machines as Classes"
on page 83 and in the ASCET user’s guide, section "Communication with
Other Components”.

Actions

Actions take place as part of the state machine execution. An action can be
executed either as part of a transition from one state to another (e.g.
/transition_action in Fig. 2-11), or based on the activity status of a
state (e.g. stati c_A2 orexi t _Alin Fig. 2-11).

Components

45

46

Transitions and transition segments leading away from a junction can have
transition actions. States can have entry, static and exit actions. All actions are
optional. In Fig. 2-11 on page 34, the St at e_A_1 state has all three action
types, whereas St at e_A 2 has neither entry nor exit action, only a static
action. The transition from St at e_A 1 to St at e_A 2 has no action.

@ clutch_engaged

trigger
[eluteh_idle]

engaged!
trigger
3] [speed = threshold)

Tratl Izwitch_gear
Static: accelerate |1

When, in this example, the f i r st state is active, and no transition occurs, the
static action accel er at e is executed. At the transition fromfi r st to sec-
ond, the transition action swi t ch_gear is executed.

The sections "Semantics: Simple State Machines", "Semantics: Junctions in
State Machines" and "Semantics: Hierarchical State Machines" describe in
detail which actions are executed when. You can specify actions as block dia-
grams (in separate diagrams) or in ESDL (in separate diagrams or directly at the
transition). For more information, see the ASCET user’s guide, section 4.2.3
"Specifying Conditions and Actions".

Actions can also have arguments for communication with other ASCET com-
ponents. You can find more on this in section "State Machines as Classes"
on page 83 and in the ASCET user's guide, section "Communication with
Other Components".

Data

Data objects are used to store and process numerical values in the state dia-
gram. The following types are available:

e Variables, parameters, constants (see page 96)
¢ Enumerations (see page 96)

e Arrays, matrices (see page 91, 92)

e Literals (see page 96)

e Temporary variables (see page 98)

e Characteristic curves and maps (see page 92)
e Inputs for data from other ASCET components
e Qutputs to other ASCET components

Components

2572

e other classes (e.g., timers, counters, comparators)

The state variable smof type unsi gned di scr et e also belongs to the data.
The variable is created in every state machine.

Elements Sorted by IName j ®)

= 45" O self:ibwo_junctions
— g O cola::cont

*& O counter::cont
*T O error:ilog

*C O glass_Full::log
*& [lemon::cont

*& O mysm::cont

*& [orange::cont
*& [range::cont

*& [rootbeer::cont

waiting)
Entry: reset

Orange/
Entry: skark_counter

1 Static: count

trigger]_10ms
[mo erjor]

[select = 1]

This variable contains the number of the currently active state. You cannot edit
it in the state machine editor but you can measure it in an experiment. If an
ASAM-MCD-2CM file is generated for a project containing a state machine,
the smparameter is also saved to the file.

Semantics of State Machines

A state machine consists of a finite number of states. Each state represents a
state a system can be in, for instance whether a door is locked, open, or closed.
Under certain circumstances the state of the system changes. These state
changes are modelled by transitions between the different states. For each
possible transition to take place, a condition has to be fulfilled.

An external event, the trigger event, activates a state machine. A trigger is a
public method of the state machine. A state machine always has to be in one
of its states. At the beginning, a state machine is in a special state, the start
state. If a trigger event occurs, the system reacts with the execution of actions
(e.g., creation of a signal, change of a variable, or transition to another state).

The entry action of a state is executed when a transition to that state occurs.
The state is activated before the execution of the entry action is started.

Note

When a state machine is called for the first time, the entry action of the start
state is not executed.

The static action of a state is executed if the state is active and a trigger event
occurs which does not result in a transition from the state. When a transition
between two substates of the same hierarchy state occurs, the hierarchy state
(which is not left) executes and completes its static action after the source state
was left, but before the transition action is executed.

Components

47

438

253

The exit action of a state is executed when a transition from that state occurs.
The state becomes inactive after the execution of the exit action is completed.

The transition action of a transition is executed after the source state has been
left and before the destination state is activated.

The semantics describe how a state diagram is interpreted and executed and
in which order the actions will be executed. Knowledge of the semantics of
state diagram is essential for the creation of suitable state machines and the
generation of efficient code. Different implementation options result in differ-
ent simulation behavior and in the executable code.

The semantics of state machines contain rules for the
® Processing of states,
e Selection of transitions,
® Processing of transitions.

The following sections describe the semantics of state machines using exam-
ples. These cover a wide range of possible implementations and combinations
of the different actions.

Refer to the section "Semantics: Summary" on page 68 for a summary of the
rules.

Semantics: Simple State Machines

Example 1: Transition between two states.

trigger
[=witch_on]
Iewitch_count ++;

1

®

darks
Entry: lamp_off

hrights
Entry: lamp_on

trigger
[switch_of]

This simple state machine models a light switch. At the beginning, the lamp is
off, the state dar k is active. The trigger event t ri gger occurs and initiates
the evaluation of the state machine. The light switch is pressed, so that the
condition swi t ch_on is true. The following steps are executed:

1. The state diagram checks to see if there is a valid transition.

2. The dar k state is active so that only the transition from dar k to
bri ght has to be evaluated. The condition [swi t ch_on] is fulfilled,
the transition is valid.

3. The dar k state has no exit action that could be executed. It is deacti-
vated.

Components

4. The transition action is executed, the counter swi t ch_count is
increased by 1.

The bri ght state is activated.

6. The | anp_on entry action is executed and completed. The lamp is
switched on.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Every state can have transitions to more than one other state. To make the
behavior of the state machine deterministic, each transition has to be assigned
a priority. The priority determines the order in which the conditions belonging
to the transitions are checked. Once a condition evaluates to t r ue, the asso-
ciated transition takes place, and all other conditions belonging to transitions
with lower priorities are not tested. If no condition evaluates to "true", the
state remains unchanged and the static action is executed.

Example 2: Several possible transitions from one state

figger_100ms

[t_air = 1&& I frost_warning]

ifrost_warning = true;
1

temperature/

.)
Static: show_temperature Wigger_100ms

[key_pressed)

trigger_100ms
[key_pressed]

trigger_100ms
[t_air =1 && I frost_warning)
Ifrost_warning = true;

trigger_100ms
[t_air =1 && ! frost_wearning]
Ifrost_warning = true;

average_speed!
Static: show_average_speed

speed!
Static: show_speed

trigger_100ms
[t_air = 1 && | frost_warning] 2

! firost_warning = true;
trigger_100ms distance/
[key_pressed] Static: show_distance

2

This state machine models a display. Outside temperature, speed, average
speed and distance covered can be displayed as required. There is also a key to
toggle the display. If the outside temperature falls below 1°C, a change to the
temperature display occurs, and a frost warning is shown.

trigger_100ms
[kev_pressed)

Components

49

50

The state machine is in the speed state. A trigger event t ri gger _100ns
occurs; the temperature drops from 1.5 °C to 0.5 °C. The switch is not pressed.
The following steps are executed:

1. The system checks to see if there is a valid transition from speed.

2. The transition from speed to di st ance has the highest priority, and
is evaluated first. However, the [key_pr essed] condition is not ful-
filled, the transition is invalid.

3. The transition from speed to t enper at ur e has the condition
[t_air <1 && !frost_warning].Atfirst, the temperature was
above the threshold of 1 °C and no frost warning was required. Now,
it has dropped to 0.5 °C. Both parts of the condition are true, the tran-
sition is valid.

4. The speed state has no exit action. It is deactivated.

The/frost_warni ng = true transition action is executed, and the
frost warning appears.

6. Thet enper at ur e state is activated.

Since that state has no entry action, the evaluation of the state
machine initiated by this trigger event is finished.

Example 3: Loop

figger_100ms

[t_air=1&& ! frost_warning]

ffrost_warning = true;
1

termperaturear
Entry: clear_display
tatic: show_termperature

2
trigger_100rms
[key_pressed]

trigger_100ms
[key_pressed]

trigger_100rms
t_air=1 && ! frost_warning]
Mrost_warning = true;

trigger_100ms
[t_air =1 && Hfrost_warning)
Ifrost_warning = true,

2

average_speed! 1
Entry: clear_display
Static: show_awerage_speed

speed!
Entry: clear_display
Static: show_speed

i

The state machine is the same as in Example 2. However, the entry action
cl ear _di spl ay was added to the states. The state machine is in the t em
per at ur e state. Otherwise, the starting state is the same as in the previous
example. A trigger event tri gger _100ns occurs and the switch is not
pressed. The following steps are executed:

Components

254

The system checks to see if there is a valid transition from t enper a-
ture.

The transition from t enper at ur e to speed has a higher priority, but
the condition is not fulfilled. The transition is invalid.

The transition from t enper at ur e to itself has the condition
[t_air <1 && !frost_warning].Thisis fulfilled, the transition
is valid.

The t enper at ur e state has no exit action. It is deactivated.

The/frost_warni ng = true transition action is executed, and the
frost warning appears.

The t enper at ur e state is activated.

The entry action cl ear _di spl ay of the t enper at ur e substate is
executed and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Semantics: Junctions in State Machines

waitings

trigger_10ms

Junctions (see page 38) aid the legibility of state diagrams. The functionality of
all the examples can also be described using direct transitions between the

Example 4: If...Then...Else Construction

trigger_10ms
[glass_full]

1ﬁ
Caolar
lect==2
S8t Entry: pour_Cola 1
3 1

Entry: pour_Lerman

Orangel
Entry: pour_Orange

—

Roaotheer
Entry: pour_Roaotheer

_

—

Components

51

52

This state machine models a simple drinks machine which offers four different
drinks. The state machine is in the wai ti ng state. A trigger event
tri gger_10mns occurs: someone wants Cola. This sets the sel ect selection
to 2. The following steps are executed:

1.

The system checks to see if there is a valid transition or a valid segment
from wai ti ng.

The transition segment from wai t i ng to the left-hand junction is
valid.

. The transition segments leading away from the junction are examined

in order of their priority, starting with the segment of the junction to
state Or ange.

The condition [sel ect ==1] is not fulfilled, the segment is invalid.
Next, the segment from the junction to state Col a is tested.

The condition [sel ect ==2] is fulfilled, the segment is valid. This
means that there is a fully-valid transition available from the state
wai ting.

Only now does the transition occur. The state wai t i ng has no exit
action and is deactivated.

5. The Col a state is activated.

The pour _Col a entry action is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 5: No transition

The state machine is the same as in Example 4. The state machine is in the
speed state. A trigger eventt ri gger _10ms occurs, the selection sel ect is
set to 5 by mistake. The following steps are executed:

1.

Components

The system checks to see if there is a valid transition or a valid segment
from wai ti ng.

The transition segment from wai t i ng to the left-hand junction is
valid.

. The transition segments leading away from the junction are examined

in the order of their priority.

As sel ect was set to 5, none of the conditions are fulfilled, all the
segments are invalid.

3. There is no valid transition from wai t i ng. The system remains in the
state wai t i ng. As the state has no static action, nothing happens.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 6: Loop construction

®

waitings
Entry: select=0;

trigger_10ms
[glass_full]

Orangel

Entry: pour_Orange
Calar

Entry: pour_Cola
Lernanf

Entry: pour_Leman
Roatheers

Entry: pour_Roaotheer

The state machine is the same as in Example 4. The addition is a transition
segment away from the junction back to the state wai ti ng and the entry
action inwai ti ng.

1 |lselect=1 || select = 4]

[select==1]

select==2

trigger_10ms

The state machine is in the state wai t i ng; a trigger event t ri gger _10ns
occurs. By mistake the selection sel ect is set to 5. The following steps are
executed:

1. The system checks to see if there is a valid transition or a valid segment
from wai ti ng.
The transition segment from wai t i ng to the left-hand junction is
valid.

2. The transition segments leading away from the junction are examined
in the order of their priorities, starting with the segment of the junction
back to the state wai t i ng.

The condition[sel ect <1 || sel ect > 4] isfulfilled, the segment
is valid. This means that there is a complete, valid transition available
from the state wai t i ng.

Components

53

54

3. Thewai ti ng state has no exit action. It is deactivated.

4. The transition from wai t i ng to wai ti ng has no transition action,
and therefore the state wai t i ng is reactivated.

5. The entry action sel ect =0; from wai ti ng is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

This loop construction corresponds to a direct transition from a state to itself
from Example 3.

Example 7: Transitions from multiple start states to a destination state (one
trigger)

®

weaitingl
Entry: select=0;

trigger_10ms
[alass_full]

Crangef

Entry: paur_Orange
Colar

Entry: pour_Cola
Lernanf

Entry: pour_Leman
Roatheers

Entry: pour_Roaotheer

The state machine is the same as in Example 6. The state Col a is active, the
glass has been filled and the logical variable gl ass_ful | set to true. A
trigger event t ri gger _10ns occurs, and the following steps are performed:

1 |[select=1 || select = 4]

[select==1]

J

select==2

—

trigger_10ms

1. The system checks to see if there is a valid transition or a valid segment
from Col a available.

The transition segment from Col a to the right-hand junction is valid.

2. The transition segment from the junction to the state wai t i ng has the
condition [gl ass_full].Asglass_full wassettotrue, this
segment is also valid and the transition can take place.

3. The Col a state has no exit action. It is deactivated.

Components

4. The transition has no transition action and therefore the state wai t -
i ng is activated next.

5. The entry action sel ect =0; from wai ti ng is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 8: Transitions from a start state to different destination states (mul-
tiple triggers)

®

heverage_offf
Entry: reset

trigger_soda
[=witch_off]
1

soda_onf
Entry: start_soda
Exit: shut_down

trigger_soda

[gwitch_on]

heer_anf
Entry: start_heer
Exit: shut_dawn

triqger_heer
[swvitch_off]

trigger_beer

This state machine describes a drinks machine which offers different types of
sodas or beers. The actual choice takes place in the hierarchy states soda_on
and beer _on; it is irrelevant for the example. The section "Semantics: Hierar-
chical State Machines" describes the semantics of hierarchical state machines.

The state machine is in the starting state bever age_of f . A trigger event
trigger_soda occurs and the machine is switched on (swi t ch_on is
t r ue). The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from
beverage_of f.

2. The transition segment from bever age_of f to the junctions is valid,
as the condition [swi t ch_on] is fulfilled. As the trigger event
tri gger _soda has occurred, the segment from the junction in the
state soda_on is also valid; the transition can occur.

3. The bever age_of f state has no exit action. It is deactivated.

4. The transition from bever age_of f to soda_on has no transition
action. Therefore, the state soda_on is activated next.

Components

55

56

5. The entry action st art _soda of soda_on is executed and com-
pleted.

6. The necessary steps in the hierarchy state are executed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 9: Transitions from different start states to the same destination
state (multiple triggers)

©

beverage_ofif
Entry: reset

trigger_soda
[switch_off]
1

soda_aon/
Entry: start_soda
Exit: shut_down

trigoer_soda

[=witch_on]

heer_onf
Entry: start_beear
Exit: shut_down

trigoer_heer
[=witch_ofi]

trigoer_heer

The state machine is the same as in Example 8. The system is in the state
soda_on (or in one of the substates of the hierarchy). A trigger event
tri gger _soda occurs, the machine is switched off (swi t ch_of f istrue).
The following steps are executed:

1. The system checks to see if there is a valid transition or a segment from
soda_on available.

2. The transition segment from soda_on to the junctions is valid, as the
condition [swi t ch_of f] is fulfilled. As the trigger event
tri gger_soda has occurred, the segment from the junction in the
state bever age_of f is also valid; the transition can occur.

3. The necessary steps in the hierarchy state are executed.
4. The exit action shut _down of the state soda_on is executed.

The transition from soda_on to bever age_of f has no transition
action. Therefore, the state bever age_of f is activated next.

Components

255

6. The entry action r eset of bever age_of f is executed and com-
pleted.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Semantics: Hierarchical State Machines

Upon activation of the state machine, the conditions of the transitions are
checked. The hierarchical order determines the priority. The highest hierarchi-
cal level has the highest priority, i.e. the conditions on transitions on upper
hierarchy levels are checked first. When a hierarchy state is left, the current
substates are left as well. The innermost substate is left first, the outermost
hierarchy state is left last. When entering a hierarchy state, the order in which
the entry actions are executed is from the outermost hierarchy state to the
innermost (base) state, i.e. the outermost state is entered first, and the inner-
most is entered last. If no transition takes place, the static actions are executed
in an outward sequence, i.e. the static action of the innermost substate is exe-
cuted first, and the static action of the outermost hierarchy state is executed
last.

Note

The examples in this chapter assume no optimization of static actions in hier-
archy states. If this optimization is activated, the semantics change, see
"Optimized for Code Size" on page 76

Example 10: Transition to a hierarchy state without history

On entry into a hierarchical level, there are two possibilities: either entry into
the start state of the hierarchy state (this example). In this case, the hierarchy
state has 'forgotten’ the substate it has been in when it was left. Alternatively,
the last active substate is entered. In this case, the hierarchy state has a history
(Example 11).

For each hierarchy state it is possible to determine whether it has a history or
not. When entering a hierarchy state with history for the first time, the start
state of that hierarchy state is entered.

Components

57

58

figger_100ms

display/
Entry: reset_count

ifrost_warming = true
1

[t_air = 1&& | frast_warning)

Static: count)]

termperatures
Entry: clear_display

trigner_100ms

tatic: show_ternperature

2
trigger_100ms
[key_pressed]

[key_pressed)

tringer_100ms
[t_air =1 && ! frost_warning]
ffrast_warning = true;

average_speed! 1
Entry: clear_display
Static: show_average_speed

trigger_100ms
[t_air =1 && I frost warning]
ifrost_warning = true,

speed!
Entry: clear_display
Static: show_speed

trigger_100ms
[t_air=1 && I frost_warning] 2
: ifrost_warning = true,

. distance!
trigger_100ms . f
lkey_pressed] , Entry: clear_display

tatic: show_distance

trigger_100ms
[key_pressed

trigger_10s

reset_frost warning!
[t_air= 3 && frost_warning]

4__| Entry: frost_warning = false;

trigger_100ms

In the state di spl ay, this hierarchical state machine contains the display func-
tion from Example 3. di spl ay is a hierarchy state. As soon as a temperature
of 3 °C is exceeded, the frost warning is to be reset. The second state on the
highest hierarchy level, r eset _f r ost _war ni ng, is used for that purpose.
Every 10 seconds, a change from di spl ay to the r eset _f r ost _war ni ng
state can occur, where the frost warning is switched off.
After the frost warning was displayed (f r ost _war ni ng = t r ue), the dis-
tance display was selected so that the system was in the di st ance state. The
temperature rose to 5 °C, and the transition from di spl ay to
reset _frost_war ni ng took place when the trigger event t ri gger _10s
occurred. The system is now in the r eset _f r ost _war ni ng state. A trigger
event t ri gger _100ns occurs, and the following steps are performed:
1. The system checks to see if there is a valid transition from
reset _frost_warning.
2. The transition from r eset _f r ost _war ni ng to di spl ay has no
condition; it is therefore valid at every t ri gger _100ns trigger event.
3. Thereset _frost_war ni ng state has no exit action. It is deacti-
vated.

Components

4. The transition from r eset _f rost _war ni ng to di spl ay has no
transition action, and the di spl ay hierarchy state is activated next.

5. Thereset _count entry action of the di spl ay hierarchy state is exe-
cuted and completed.

6. Thet enper at ur e substate is the start state in the hierarchy. It is acti-
vated.

7. The entry action cl ear _di spl ay of the t enper at ur e substate is
executed and completed.
With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Example 11: Transition to a hierarchy state with history

)

fiager_100ms

[t_air = 1&& ! frost_warning]

Ifrast_warning = true;
1

display/
Entry: reset_count
Static: count)

ternperatures
Entry: clear_display
tatic: show termperature

2
trigger_100ms
[kev_pressed)

trigner_100ms
[key_pressed)

trigger_100ms
[t_air =1 && ! frost_warning]
Ifrost_warning = true;

trigger_100ms
[t_air=1 && I frost_warning)
ifrost_warning = true,

speeds
Entry: clear_display
Static: show_speed

average_speeds 1
Entry: clear_display
Static: sh d
atic: show_average_spee Wigger 100ms
[t_air=1 && I frost_warning] 3
i frast_warning = true;

distance/
Entry: clear_display
2 tatic: show_distance

trigger_100ms

trigger_100ms
[key_pressed

[key_pressed)

trigger_10s
[t_air = 3 && frost_warning]

reset_frast_warning!
q Entry: frost_warning = false,

trigger_100ms

The state machine is the same as in Example 10. Now it has a history. The
prehistory and the starting state are the same as in the previous example.

The system is now in the reset _frost_war ni ng state. A trigger event
trigger_100ns occurs, and the following steps are performed:

1. The system checks to see if there is a valid transition from
reset _frost_warning.

Components

59

60

Components

. The transition from r eset _f rost _war ni ng to di spl ay has no

condition; it is therefore valid at every t ri gger _100ns trigger event.

. Thereset _frost_war ni ng state has no exit action. It is deacti-

vated.

. The transition from r eset _f rost _war ni ng to di spl ay has no

transition action, and the di spl ay hierarchy state is activated next.

. Thereset _count entry action of the di spl ay hierarchy state is exe-

cuted and completed.

Since di spl ay has a history (‘H" in the above figure), the speed sub-
state is activated. That state was active when the hierarchy state was
left.

. The entry action cl ear _di spl ay of the speed substate is executed

and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ns trigger event is finished.

Example 12: Transition within a hierarchy state

If a transition takes place inside a hierarchy state, the state machine remains in
that hierarchy state. Therefore, the static action of the hierarchy state is exe-
cuted, as well as the static actions of all hierarchy states that contain the state
in question. They are executed after all exit actions, and before the transition
action, from the innermost hierarchy state to the outermost one.

)

fiager_100ms

[t_air = 1&& ! frost_warning]

Ifrast_warning = true;
1

display/
Entry: reset_count
Static: count)

ternperatures
Entry: clear_display
tatic: show termperature

2
trigger_100ms
[kev_pressed)

trigner_100ms
[key_pressed)

trigger_100ms
[t_air=1 && I frost_warning)
ifrost_warning = true,

trigger_100ms
[t_air =1 && ! frost_warning]
Ifrost_warning = true;

speeds
Entry: clear_display
Static: show_speed

average_speed! 1
Entry: clear_display
Static: show_average_speed

trigger_100ms
[t_air =1 && ! frost_warning] 2
! ifrast_warning = true;

. [distance!
trigoer_100ms
poer Entry: clear_display

trigger_100ms
[key_pressed

lkey_pressed] 2 tatic: show_distance

trigoer_10s

trigger_100ms i :
[t_ait = 3 && frost_warning]

The state machine is the same as in Example 11. The state machine is in the
speed state. The temperature is still 5 °C, the frost warning is switched off
(frost _warning is fal se). A trigger event t ri gger _100ns occurs, the
switch is pressed (key_pressed ist r ue). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. The transition from the di spl ay hierarchy state to
reset _frost_warni ng is initiated by another trigger
(trigger_10s); itis of noimportance here.

3. The transition from speed to the di st ance substate is evaluated.
The condition [key_pr essed] is fulfilled, the transition is valid.

4. The speed state has no exit action. It is deactivated.

5. The di spl ay hierarchy state is not left. Therefore, its static action
count is executed and completed.

Components

61

62

6. The transition from speed to di st ance has no transition action, and
the di st ance substate is activated.

7. The entry action cl ear _di spl ay of the speed substate is executed
and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ns trigger event is finished.

Example 13: Transition between hierarchy states

®

nathings
Entry: value = Phix;
Static: value = output;

trigger

trigger
[enable == false]

[ienahle == true) &&

trigaer (mode == 1]]

[ienahle == true) &&
(mode == 2)]

trigger
[enahle == false]

sinus
Entry: start_sinus
Exit: stop_sinus

rarmpf
Entry: start_ramp
Exit: stop_ramp

ups
Entry: walue = Phin;
output=value;
Static: sinus_up

calct
Entry: walue = PMn,
output=value;

Static: wvalue += P5tep;

- — . 1— loutput=value;
trigger trigger :
vigger [value == Phix] [(enatle == true) && trigger
fralue == PMn] (mode == 2] trigger [value == Pl
ftrug]
gt 1l recalcs

- i trigger Entry: value = PMx;
Entry: sinus_down :
Static: value -= PStep; [(Bnable == g} && autput=value,
output = value; trode == 1)] Static; output = value;

This state machine acts as a data generator. When enabl e is setto t rue, a

signal is produced, either a ramp (state r anp, node = 1) or a sine (state
si nus, node = 2).

The down substate in the si nus hierarchy state is active. The signal mode
nmode is set to 1, enabl e remains t r ue. A trigger event occurs, and the fol-
lowing steps are performed:

1. The system checks to see if there is a valid transition. Since the transi-
tions from the si nus hierarchy state have higher priorities than those
from down, they are evaluated first.

Components

. The transition from si nus to not hi ng has the highest priority. It is

invalid, though, because the condition [enabl e == fal se] is not
fulfilled.

The transition from si nus to r anp is evaluated next. The condition
[(enabl e ==true) && (node == 1)] istrue, the transition takes
place.

The transition from the down substate to the up substate has the low-
est priority and is not evaluated.

The down substate has no exit action, it is deactivated immediately.

The exit action st op_si nus of the si nus hierarchy state is executed
and completed.

The si nus hierarchy state is deactivated.

7. The transition from si nus to r anp has no transition action, therefore

the r anp hierarchy state is activated next.

8. The entry action st art _r anp of r anp is executed and completed.

9. The cal c substate is the start state within the hierarchy. It is activated.

.The entry action val ue = PMh; output = value; ofcalcis

executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Components

63

64

Example 14: Loop

The source and destination states of a transition can be identical. Such loops
are frequently used to specify the reset function of a hierarchy state.

trigoer

[ienable == true) &&

{mode == 23] trigger [walug == Phx]
[true]

T4 recalc/

trigger Entry: value = Phix;

[(enable ==1rue) &&
{mode =

=11

trigger
[ienable == true) &&
(mode ==1j]

trigger |I
[enable == false]2

rarnpf
Entry: start_ramp
Exit: stop_ramp

calef
Entry: value = PMn;

output =value; trigger
Static: value += PStep; [reset_ramp]
1— 4output=value; ireset

triqger

output = value,;
Static: output = value,

The ranp hierarchy state from the state machine in Example 13 has now a
reset function in the form of a loop, i.e. a transition from r anp to itself. The
rest of the state diagram is left out for clarity.

The r ecal ¢ substate in the ranp hierarchy state is active. A trigger event
occurs, the reset button is pressed (reset _ranp = true). enabl e and
node remain unchanged. The following steps are executed:

1.
2.

&

© N o u

Components

The system checks to see if there is a valid transition.

The loop has the highest priority. The condition [r eset _r anp] is ful-
filled, the transition is valid.

Other transitions are not evaluated.
The r ecal c substate has no exit action, it is deactivated immediately.

The exit action st op_r anp of the r anp hierarchy state is executed
and completed.

The r anp hierarchy state is deactivated.

The loop's transition action / r eset is executed and completed.
The r anp hierarchy state is re-activated.

The entry action st art _r anp of r anp is executed and completed.

9. The cal ¢ substate is the start state within the hierarchy. It is activated.

10. The entry action of cal c is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 15: Transition between substates of different hierarchies

Transitions can lead directly from the substate of one hierarchy state to the

substate of another hierarchy state.

trigoer

' trigger
trigger [fenable == trug) && -
__ == trigger [ienahle == true) &&
hle == fal _
[enable == false] (mode == 2] [enahle == falze] z {mode == 1)]

trigger
sinus [Fast_switch] ramp!
Entry: start_sinus Jrode = 1; Entry: start_rarmp

Exit: stop_sinus fast_switch = false; Exit: stop_ramp

]
)] 1 E
upf
Entry: walue = Phin; 2

output=wvalue;
Static: sinus_up

calch
Entry: value = PMn;
output=value,

Static: wvalue += PStep;

; e _—1— loutput=value;
trigger trigger
tralug == Piix] [(enable == frue) && tager
trigger (mode == 7]} trigger [valus == Phx]
fvalue <= Pin] frug]
down/ o R —— recalcs
i trigger Entry: value = Phlx;
Entry: sinus_down !
1| static: value -= Potep; | | [(Enable ==1ue) £& 1 | output= value;

autput = value; trode == 1]] Static: output = value;

This state machine is the same as the one in Example 13, only the transition
from the up substate in the si nus to the substate cal ¢ in r anp was added.

The up substate in the si nus hierarchy state is active. The value val ue is
lower than the maximum PMk. A trigger event occurs. mode remains 2, and
enabl e remains t r ue, but the fast-switch is pressed (f ast _switch =
t r ue). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. The transitions from si nus to not hi ng and from si nus tor anp are
evaluated first. They are both invalid because the associated conditions
are not fulfilled.

3. The transition from substate up to substate down is evaluated next. It
is invalid, too, because the condition [val ue >= PM] is not fulfilled.

Components

65

66

The transition from up to the cal ¢ substate has the lowest priority and
is evaluated last. The condition [f ast _swi t ch] is true, the transition
takes place.

5. The up substate has no exit action; it is deactivated immediately.

The exit action st op_si nus of the si nus hierarchy state is executed
and completed.

7. The si nus hierarchy state is deactivated.

0.

The transition action (/ mode = 1; fast_switch = false;)is
executed and completed.

The r anp hierarchy state is activated.

10. The entry action of r anp is executed and completed.

11. The cal ¢ substate is activated.

12. The entry action of cal c is executed and completed.

With that, the evaluation of the state machine initiated by this trigger
event is finished.

Example 16: Transition from a substate to a hierarchy state

If the transition from a substate does not lead to another substate, but to the
hierarchy state, the procedure is almost the same. The substate is left, the hier-
archy state is left, too, and immediately re-entered. Depending on whether the

Components

hierarchy state has a history, either the most recently activated substate or the
start state of the hierarchy is entered. This is another way to realize, for exam-
ple, the frost warning.

®

ﬁr.igger_WDms

disnlayi [t_air = 1 && | frost_warning]
P .y 1 ffrost_warning = true;

Entry: reset_count 1))

Static: count

temperatures
Entry: clear_display 5
Static: show_temperature

trigger_100ms

[key_pressed]

trigger_100ms

|'2 [key_pressed]

average_speed! speed!
1 Entry: clear_display Entry: clear_display
Static: show_average_speed Static: show_speed P

trigger_100ms
[t_air = 1&& | frost_warning]
ffrast_warning = true;

1 trigger_100ms
trigger_100ms 2 [t_air = 1&& Hrost_warning]
[key_pressed)] trigger_100ms Ifrast_warning = true;
distances key_pressed]

Entry: clear_display
Static: show_distance

1
trigger_100ms
It_air =< 1&& ! frost_waming] 1

ffrast_warning = true;

trigger_10s

triger_100ms [t_air= 3 && frost_warning)

The state machine is very similar to the Example 10 only here, the frost warning
is implemented using transitions in the hierarchy state. It is in the state di s-
tance. frost _warning is f al se. A trigger event tri gger_100ns occurs;
the temperature drops to 0.5 °C. The switch is not pressed. The following steps
are executed:

1. The system checks to see if there is a valid transition from di st ance.

2. Another trigger initiates the transition from di spl ay to
reset _frost_warni ng; itis of no importance here.

3. The transition from di st ance to aver age_speed is evaluated. The
condition [key_pr essed] is not fulfilled, the transition is invalid.

4. The transition from di st ance to di spl ay has the condition
[t_air < 1 && !frost_warning].Both parts of the condition
are true, the transition is valid.

5. Thedi st ance state has no exit action. It is deactivated.
6. The di spl ay hierarchy state has no exit action. It is deactivated.
7. The di spl ay hierarchy state is activated again.

Components

67

68

256

8. The reset_count entry action of display is executed and completed.

9. The/frost_warni ng = true transition action is executed, and the
frost warning appears.

10. The t enper at ur e state is the start state in the hierarchy. It is acti-
vated as di spl ay does not have a history.

11. The entry action cl ear _di spl ay of the t enrper at ur e substate is
executed and completed.

With that, the evaluation of the state machine initiated by the
trigger_100ms trigger event is finished.

Example 17: No transition

The state machine is the same as in Example 16. The state machine is in the
t enper at ur e state. The temperature is unchanged. A trigger event
trigger _100nms occurs, the switch is not pressed (key_pressed is
f al se). The following steps are executed:

1. The system checks to see if there is a valid transition.

2. Another trigger initiates the transition from di spl ay to
reset _frost_war ni ng; it is of no importance here.

3. The transition from t enper at ur e to speed is invalid because the
switch was not pressed.

4. The transition from t enper at ur e to di spl ay is invalid because
frost_warni ng = true and thus the condition is false.

There are no other possible transitions available.

5. Thestatic action show_t enper at ur e in the t enper at ur e substate
is executed and completed.

6. The static action count in the hierarchy state di spl ay is executed
and completed.

With that, the evaluation of the state machine initiated by the
trigger_100mns trigger event is finished.

Semantics: Summary

Initialization of the state diagram: The start state of the system is acti-
vated. If the start state is a hierarchy state, the start state within the hierarchy
is also activated. No entry action is executed.

Entering a state:

1. If the state has an inactive higher-level state, steps 1-4 are executed for
that state.

Components

The state is activated.
The entry action is executed.
Carry out implicit entry actions as necessary:

4.1 If the state contains a subordinate diagram with a history, and if
one of the substate was active after initialization, this substate is
activated and its entry action executed.

4.2 If the state contains a subordinate diagram with a history, and if
one of the substate was active after initialization, this substate is
activated and its entry action executed. Otherwise, proceed as
described in 4.1.

Executing a (basis) state:

1.

4.

The transitions leading away from the state and transitions leading out
of higher-level states are evaluated in order of their priority.

If a valid transition is found, it is executed. This ends the execution of
the state.

If no valid transition from the state is available, the static action is exe-
cuted.

If the state has higher-level states, their static actions are executed.

Leaving a state:

1.

2.
3.

If the state contains active substates, their exit actions are executed.
The exit action of the innermost basis state is executed first.

The exit action of the state is executed.
The state is deactivated.

Executing a transition:

The transitions are evaluated in the order of their priority. Transitions from a
hierarchy state always have a higher priority than transitions from the sub-
states of this hierarchy state.

1.
2.

A transition or transition segment is tested.

If the transition/segment is invalid, the transition/segment with the
next-lowest priority is tested.

If the transition/segment is valid, the next step depends on where the
transition/segment ends.

Components

69

70

In a state:

3.1 No additional transitions or transition segments are tested. In the
case of a transition segment from a junction, the segment is
pulled in to the junction in question to obtain a complete transi-
tion.

3.2 The substates of the start state are left (see "Leaving a state").
3.3 The start state is left.

3.4 The transition action is executed.

3.5 The system enters the destination state (see "Entering a state").
In a junction:

3.1 The transition segments leading away from the junction are eval-
uated as described in steps 1 — 3.

If all the transition segments leading away from a junction are invalid,
the system returns to the start state from which the junction was
reached. As the segment in the junctions does not belong to any valid
transition, steps 1 —4 are executed for the transition/segment with the
next-lowest priority.

If all of the transitions/segments leading away from a state are valid,
then no transition occurs and the system remains in the state.

The sequence is represented schematically in Fig. 2-13.

Components

@

check transitions
from all active states

At least
one condition
true?

Yes

A

execute exit actions,
beginning with the
innermost substate that

is left bottom-up

Y

execute static actions |-

hierarchy states that
are not left

from all higher
J bottom-up
[og

Y

execute
transition action

Y

execute entry actions, |-
beginning with the

outermost hierarchy
state to be entered

top-down

top-down,
beginning at
the highest
hierarchy level

No

execute static actions,
beginning with the
innermost substate

bottom-up

T
S— |

measurement,
display
measure values

Fig. 2-13

Evaluation of a state machine

Components

71

257 Simple Code Example

Elements Sorted by I j ®
B &7 O self:lightswitch E;I‘,gwgt:{j on]
*E" O count::sdisc [y ,l’switch:count++,'
*T O lamp::log bright}

Entry: lamp_on
Static: count++;

0 O smiudisc
*E" [switch_count: :sdisc
*F M switch_in::log

Exit: count=_D,'

trigger
[switch_aff]

Parts of the generated code are shown here for this simple state machine.

S
* Defines
*.7
#define bright 1 g H
ot oo goidin b < #def i ne statements for the states
S

-
BEGIN: Function definitions — Algorithmns

%
woid LIGHTSWITCH_IMPL_trigger(struct LIGHTSWITCH_IMPL_Cbj *=self)
=yitch (=elf-rsm—>val)
default: Exit action from
case dark ¢
dar k
if (LIGHTSWITCH_IMFL switch_on (=self)
{
self-rocount->val = (sint32)0; . X
Transition from self-rswitch_count—s>wal++: < Transition action
. =zelf-rlanp-rwal = {(uint8itrus:
dark tobri ght zelf->sm—>»val = bright: .
return; Entry action from
} .
return; bri ght
caze bright
if (LIGHTSWITCH_IMPL switch off (sslf)) Entry action from
{
zelf-:lanp-rwval = (uint8ifal=e; dark
Transition from zelf->smn—>val = dark:
. return;
bright to 1)) .
dar k self-soount—svalit; € Static action from bri ght
return;
N ¥ Public method for the output | anp

+
uint8® LIGHTSWITCH_IMPL_ getlanp(struct LIGHTSWITCH_IMPL_Obj #*=elf)
return (self-:lamp->wvall:

+
— P uintd LIGHTSWITCH IMPL setswitch in(struct LIGHTSWITCH IMPL_Obj %*self,
uint8 parm)

return ((uint8)i{=self-sswitch_in-val = parm)):

| Public method for the inputswi tch_in

72 Components

258

Optimizing the State Machine

Usually, there are several ways to specify the same functionality or to adjust the
code generation/build process settings.

When code is generated for a state machine, parts of actions and conditions
specified at the state or transition are either inserted on the spot (inlining) or—
on certain conditions—generated as separate methods (outlining). The prereg-
uisites for outlining are:

1. The state machine optimization option Outline Generated Methods
(may be changed locally) is activated in the "Project Properties" win-
dow, "Statemachine" node, of the project that contains the state
machine.

This options applies to all state machines contained in the project, and
to all experiments (physical, quantized, implemented).

2. The option Outline automatically generated methods for State
Machines is activated in the implementation editor of the state
machine.

Note

When the first prerequisite is not met, outlining is not done for any state
machine in the project.

When the first prerequisite is met, but not the second, outlining is not
done for this particular state machine.

If both prerequisites are met, code size with and without outlining is checked
during code generation. If code with outlining is smaller, outlining is done.

If actions and conditions (or parts thereof) are specified in separate diagrams,
the corresponding code is either generated in separate private methods (out-
lining), or it is inserted on the spot automatically during code generation (auto-
inlining).

The following prerequisites must be met so that auto-inlining can take place:

1. The state machine optimization option Auto-inline private methods
(Smaller code-size - may be changed locally) is activated in the
"Project Properties" window, " Statemachine" node, of the project that
contains the state machine.

This options applies to all state machines contained in the project, and
to all experiments (physical, quantized, implemented).

Components

73

74

2. The option Auto-inline private methods (Smaller code-size) is acti-
vated in the implementation editor of the state machine.

Note

When the first prerequisite is not met, auto-inining is not done for any
state machine in the project.

When the first prerequisite is met, but not the second, auto-inining is
not done for this particular state machine.

If both prerequisites are met, code size with and without auto-inlining is
checked during code generation. If code with auto-inlining is smaller, auto-
inlining is selected. This is usually the case for small private functions, or for
functions with only a few calls. Each function is checked separately, so that
only those functions are inlined whose inlining saves code size.

Depending on the possibilities you choose, you can optimize a state machine
under three aspects:

e Response time
e Runtime
e Code size

Optimized for Response Time

If response time is the most important criterion, take advantage of the hierar-
chical structure and the transition priorities. Speed-critical actions are best built
into the highest possible hierarchical level to produce efficient code and the
quickest possible reaction.

This is illustrated by an example:

1 ®
trigger Stopf
[switch_on]

trigger
[emergency _stop]

Components

If the emergency stop button is pressed (emer gency_stop = true), the
system should stop as fast as possible, i.e. reach the St op state. By drawing
the associated transition from the Run hierarchy state to the St op state, the
transition has the highest priority in the hierarchy and is evaluated first.

If any of the substates is active and the emergency button is pressed, the tran-
sition from Run to St op is always evaluated and the transition occurs.

Direct transitions from each of the substates to St op are as efficient regarding
time, but they require higher maintenance effort because four transitions are
specified instead of one.

A separate trigger for time-critical events (emer gency_st op = true in the
example) also optimizes response time. The drawback is additional program
code for the separate trigger.

Optimized for Runtime

If the total runtime is the most important criterion, you can use several optimi-
zation possibilities, individually or in combination, to generate efficient code.

Actions/Conditions: If actions or conditions are specified with partly or
totally the same functionality, this can be done either runtime-optimized or
size-optimized. Runtime-optimized means that the code for each action and
condition is inserted on the spot during code generation. No additional func-
tion call is required. The disadvantage is the repeatedly generated code and
thus increased memory requirement.

This can be achieved by specifying the code explicitly at the state or condition
and deactivating the options Outline Generated Methods (may be
changed locally) and Outline automatically generated methods for
State Machines (see prerequisites for outlining on page 73).

State Editor for: state A

Edit
State Caolar

Istate_A j I

Enty | Static | Exit |

|<EsDLs

out =inl [lin2 [l in3;
count = count +1;
if [count>5)
{ count_log = true;
log = brue;}

The optimization becomes even more effective if auto-inlining (see page 73) is
activated. In that case, even actions/conditions specified in separate diagrams
are inserted on the spot, if applicable.

Components

75

76

With the Inline option in the implementation editor of an action/condition
specified in a separate diagram, you can enforce inlining.

Junctions: If several transitions with partially identical conditions lead away
from a state, the use of junctions can bring runtime savings. Identical sections
of the conditions are assigned to the transition segment from the start state in
the first junction. If these are not fulfilled, the other segments are not evalu-

ated.
Orangef
Entry: pour_Crange
@ 3
wraitingf 1 5 Colar
Entry: entry_wait 4 — ¥ Entry: pour_Cola
trigger_10ms 1 [zelect==2]
[selection_made]
Lermans
Entry: pour_Lerman

Actions/Conditions: Optimizing actions or conditions for code size means
that identical parts of actions/conditions are generated as separate private
functions that are called at need.

[select==1]

i

[select==13]

Optimized for Code Size

Components

This can be achieved by specifying the repeatedly used parts as methods in a
separate diagram, which are then called from the actions (see figure).

Enty | Static | Exit | Enty Statie |Exit |

|<EsDLs |<EsDLs

Bath]:

if [count>5)

{ count_log = true;
log = true;,

{ rection = 5.3;}

T .-')E"-H inl::lag irﬁl‘?\i‘_ ;
0 inZ:log : A\ JBoth

T M in3:log e PO I —
* B out:log inZ ANV S oot
*& O count:sdise :
T 0 smoudise -
in3 MY

Diagrams b

% bd ain
trigger []

% ActionCondiion_BDE <privs
E

/2/Bath

As an alternative, you can enter the code directly at the state or transition and
use the outlining functionality.

For both alternatives, the code is generated only once. The price to be paid are
additional function calls.

In some cases (small private functions, few calls), it may be advantageous,
regarding code size, to insert the code on the spot. You can activate auto-
inlining (cf. page 73) with the Auto-inline private methods (Smaller code-
size - may be changed locally) and Auto-inline private methods (Smaller
code-size) options; with that, you have selected the most effective optimiza-
tion of actions and conditions for code size.

Static actions of hierarchy states: For static actions in hierarchy states, an
additional optimization option exists.

By default, code for the static action of a hierarchy state is generated for each
transition that does not lead out of the hierarchy, as well as once for each
substate of the hierarchy. In large hierarchies, this can result in a noticeable
part of the entire code.

When you activate the Optimize Static Actions (Restricted Modeling) code
optimization option in the project that contains the state machine, code for
the static action of a hierarchy state is generated only once for each substate.
Thus, code size can be reduced.

Components

77

78

A disadvantage of this optimization is that it does not work for some models.
If a state machine contains a substate with a direct transition out of it's hierar-
chy state, this transition must have the highest priority of all transitions from
that substate. Otherwise, code generation aborts with the following error mes-
sage:

ERROR(YSn72) : higher priority transitions do not exit
hi erarchy state "HState", but this transition does.

The changes in code generation change the state machine semantics as fol-
lows:

Note

The changes can alter the behavior of the state machine. If you activate the
option for an existing state machine, check it's behavior carefully.

e The static action of the hierarchy state is executed before the condi-
tions of the transitions from the substate are evaluated.

¢ If no transition occurs, the static action of the hierarchy state is exe-
cuted before the static action of the substate.

e [f atransition occurs, the static action of the hierarchy state is executed
before the exit action of the substate.

Two examples illustrate the effect of this optimization. In both examples, the
state machine consists of the hierarchy state HSt at e containing the substates
Start and | nner St at el, and the base state Qut er End. Two transitions
leave St art, one of them (Start - Qut er End) also leaves the hierarchy
state HSt at e.

In the first example, the transition from St at e to Qut er End has a higher
priority than the transition from St at e to | nner St at el. This means that
code can be generated both with activated and deactivated Optimize Static
Actions (Restricted Modeling) option.

©

HSkate)
Static: x=x+1;

nnerstatelf
~

Start]
Static: x =% *2;
Exit: x=x *3;

1

trigger
[x==13]

trigger
[x==2]

trigget
[x==1]

Components

The following table shows the generated C code for both cases. Code for the
static action of HSt at e is set in boldface.

Option deactivated

Option activated

case Start

{

if (x == 1.0)

{
X =x * 3.0;
sm = Cut er End;
return;

}

if (x == 2.0)

{
X =x * 3.0
X =x + 1.0;
sm = | nner St at el;
return;

}
X = x * 2.0;
X =x + 1.0;
return;

}

case I nnerStatel :

{

if (x == 3.0)

{
X = x + 1.0;
sm= Start;
return;

}

X = x + 1.0;
return;

}

case Start
{
if (x == 1.0)
{
X =x * 3.0;
sm = Cut er End;
return;

=x + 1.0;
f (x == 2.0)

e el

X =x * 3.0;
sm = | nner St at el;
return;
}
X = x * 2.0;
return;
}
case | nnerStatel :
{
X =x + 1.0;
if (x == 3.0)
{
sm= Start;
return;
}
return;

}

Components

79

In the second example, the transition from St at e to Qut er End has a lower
priority. With activated Optimize Static Actions (Restricted Modeling)
option, code cannot be generated.

)

HStatef
Static: x=x+1;

trigger

e s

St
Skatic: x =x * 2;
Exitt 3= %% 3,

Erigger
[x==1]

Option deactivated Option activated
case Start : ERROR(YSnv2) : hi gher prio-
{ rity transitions do not exit
if (x == 2.0) hi erarchy state "HState",
{ but this transition does.
X =x * 3.0;
X = x + 1.0;
sm = | nner St at el;
return;
}
if (x == 1.0)
{
X =x * 3.0;
sm = CQuter End;
return;

= X +)
eturn,;
}
case I nnerStatel :
{
if (x == 3.0)
{
X =x + 1.0;
sm= Start;
return;
}
X =x + 1.0;
return;
}

80 Components

Hierarchical Code Generation: Two possibilities exist to generate code for
a hierarchical state machine:

With flat code generation, the hierarchy is flattened, i.e. a single swi t ch
statement is generated for all (basis) states and transitions.

With hierarchical code generation, several swi t ch statements are generated,
nested according to the hierarchy. To activate this kind of code generation, the
following options must be activated:

1. project settings, "statemachine" node: Hierarchical Code Genera-
tion (may be changed locally)

2. implementation editor of the state machine, "Settings" tab:Hierarchi-
cal code generation for State Machines

When the first option is not activated, no hierarchical code generation is done.
When the first option is activated, the second option activates/deactivates hier-
archical code generation for a particular state machine.

With hierarchical code geenration, code for transitions from hierarchy states is
generated only once, instead of once for each affected basis state with flat
code generation. Thus, code size is reduced. The reduction can be considerable
(up to 30%). In the experiment, hierarchical and flat codegeneration behave
identcal for identical state machines.

Note

For hierarchy states without transitions and/or static actions, code size is not
reduced, but slightly (1-2%) increased.

An example illustrates the difference in the generated code.

)

top_1}
Entry: x =0; i

! qger
Skatic: x = x+1; [lag_m == trus]

[

&
@ddle_l;’) @ddle_z,f)
Skatic: ¥ = w+1;

1

trigger
1[Iog_t == false]

trigger
[log_m == False]

trigger
[log_t == true]

Note

The reduced code size does not show in the generated C file, but in the
generated executable file.

Components

81

The transition from t op_1 to t op_2 is set in boldface.

hierarchical code generation

flat code generation

switch (self->
_ASCET_snlevel _0->val)

0
{

case top_2 :
{
if (self->log_t->val)
{
sel f - >x->val
sel f-> a
_ASCET_snlevel _0->0
val = top_1,;
sel f ->sm >val m ddl e_1;
return;
}
return;
}
defaul t:
case top_1 :
{
if (!self->log_t->val)

{

sel f - >x->val
sel f-> O
_ASCET _snlevel _0->0
val top_2;
self->sm>val = top_2;
return;

}

switch (self->sm>val)

0.0;

-1.0;

defaul t:
case mddle_1 :

if (self->log_m>val)

{

sel f->x->val = self->0

x->val + 1.0;
sel f->y->val -1.0;
sel f->sm>val =

O

m ddl e_2;

82 Components

switch (sel f->sm>val)
{
defaul t:
case mddle_ 1 :
{
if (!self->log_t->val)

{

sel f->x->val = -1.0;
sel f->sm>val = top_2;
return;
if (self->og_m>val)
{
sel f->x->val = self-> a
x->val + 1.0;
self->y->val = -1.0;
sel f->sm>val = mddle_2;
return;
}
sel f->y->val = self->y->0
val + 1.0;
sel f->x->val = self->x->0
val + 1.0;
return;
}
case mddle 2 :
{
if (!self->log_t->val)
{
sel f->x->val = -1.0;
sel f->sm>val = top_2;
return;
if (!self->log_m>val)
{
sel f->x->val = self-> 0O
x->val + 1.0;
self->sm>val = middle_1;
return;

}

return; sel f->x->val = sel f->x->0
} val + 1.0;
sel f->y->val = self-> 0 return;
y->val + 1.0; | }
sel f->x->val = self-> [case top_2 :
x->val + 1.0;
return; if (self->log_t->val)
{
case mddle 2 : sel f->x->val = 0.0;
{ self->sm>val = middle_1;
if (!self->log_m>val) return;
{ }
sel f->x->val = self->0 return;
x->val + 1.0; }
sel f->sm>val = 0)}
m ddl e_1;
return;
}
sel f->x->val = self-> 0O
x->val + 1.0;
return;
}
}
}
}

Triggers and trigger arguments: [f trigger arguments are used for com-
munication with other ASCET components, instead of inputs and outputs, the
static RAM requirements are reduced. You can find more information on this
in the next chapter.

259 State Machines as Classes

A state machine is a class with special description means. The trigger, condition
and actions are modelled as special methods:

e Atrigger is a public method without a return value. The state machine
is executed whenever a trigger is started.

e A condition is a private method with a return value of type logical.

e An action is a private method. An action has, as standard, no argu-
ments and no return value.

If necessary, you can add arguments to any of these methods, for communica-
tion with other ASCET components.

Components

83

84

Inputs and outputs serve for the integration of the state machine with other
components. The input values are buffered to internal variables and can there-
fore be used in all computations of the state machine (in contrast to arguments
of a method, that can only be used in the method itself). The outputs are also
buffered, so they can be read without invoking the computation of the state
machine. Each input and output needs its own sequence call (see section 6.3).

Elements Sorted by IType - | =

trigger _100ms trigger _10s
= %D selftiE3_18_display f3]display_T00ms I {UEM
i dgeB EdaeE 7 display key trigger_100ms trigger_10s
* H ave_viicont —’ key
*2 B displ_value::cont ke
*& M dist::cont t_air
*& M t_airi:cont t_air
*& M vicont T_air
*C B frost_warning::log v
L H key:ilog & display_100ms
*C W returnfkey_pressed::lag = N fldse f;_
*B O smiudisc § " displ_value
— ?f ave_viimesglcont] t. 100 displ_value
— g (3 displ_value::mesg[cont] dist frast_warning [~ " /7idisplay_100ms
— &% 3 dist::mesg[cont] dist L
— & T_air::mesg[cont] ave_w Frost_warning
— wimesg[conk] ave_v
— Frost_warning: :mesg[log] ave_v

key:imesg[log] E3_17_display

This type of external communication is, however, memory intensive as a vari-
able must be reserved in the RAM for each input and output. To reduce the
static RAM requirement, you can add arguments to the triggers (and to argu-
ments and conditions, if these are specified in a separate diagram). You can
then use these for external communication. Stack variables which do not bur-
den the static RAM are created for the arguments of a C function. The dynamic
RAM area is burdened temporarily.

You should always keep the following points in mind:

e Triggers are public methods. Their arguments can be described outside
of the state machines. In the Layout Editor, the trigger arguments are
represented by black argument connections.

Components

Arguments and conditions are private methods. Their arguments are
therefore not available outside the state machine. In the Layout Editor,
they are represented by white argument connections.

If a trigger argument is to be used in an action or condition specified as
a block diagram, an argument of the same type and the same name as
the trigger argument must be added to each corresponding method.

. —H T_air
Tr|gger —H ave_v .
- v reset_frost_warning Return values
arguments o) dist ~
¥ key from

ave v key pressed & conditions
Arguments from EE_IEI dizpl_value —
actions/conditions 1 frost_warning [—
(t_air isusedin :
two methods) g E3 17_dizplay_arg

The arguments are depicted according to their name and their type. If,
in the trigger and the action/condition, there are arguments with the

same names but with different types, a warning is issued. If the argu-
ment is only defined in an action or a condition but not in the opening
trigger, an error message is output.

Also, there are the following rules for the use of trigger arguments in actions
and conditions:

All trigger arguments which are to be used in the entry action of a state
must be defined in the action and in every trigger belonging to the
transition leading into the state, as it will be started by these triggers.

All trigger arguments which are to be used in the exit action of a state
must be defined in the action and in every trigger belonging to the
transition leading out of the state, as it will be started by these triggers.

All trigger arguments which are to be used in the static action of a state
must be defined in the action and in each trigger of the state machine.
Each trigger event which does not cause a transition from the active
state, starts the execution of its static action.

You must define all trigger arguments which are to be used in the con-
dition or transition action of a transition, in the action/condition and in
the triggers belonging to the transition, as they will be started by this

trigger.

If one of these rules is violated, an error message is issued.

Components

85

After the integration into another components, you can assign values to the
trigger arguments. In contrast to the inputs and outputs, only a sequence start
(see section 6.3) is required for all the arguments.

Elements Sorked by IType j x
X trigger_10s
= [] self:E3_16_display_arg trigger_100ms T/display_10s
= - {1 idisplay_100ms
r [EdgeEi: :EdgeBi t_air

ave_y

*& P ave_vjshow_average_speed::
— *& B ave_vftrigger_100ms::conk
— *& B ave_wjtrigger_10s::cont

— * B displ_value::cont

— *& B dist{show_distance::cont Je)display_100ms

— *&" P distjtrigger_100ms::cant Cew—— : N
P t_ait/show_temperature::cont dist : displ_vakie displ_value

¥
dist

Y.
t_air
ave_v

[4
—
— & B t_air/trigger_100ms::cont =-—----)
— *& W t_air/trigger_10s::cont key frost_warning I J7idisplay_100ms
— *& B vjshow_speed::cont Lo)
— "E"b wikrigger_100ms::conk Frost_warning
=Y

T B frost_warning::log "
— *T" P keyfkey_pressed::log E3_17_display_arg
— T P keyftrigger_100ms::log
— *C" P returnfkey_pressed::log
— 5 [smiudisc

Additionally, ‘'normal’ public methods can be defined for a state machine like
with all other classes. These public methods offer several additional possibili-
ties. They can be started from outside the state machine, e.g., as well as from
the states and transitions. Their arguments and return values can replace
inputs and outputs in the communication with other components. In this case
too, only a single sequence start is required for the complete method (this does
not, however, bring any runtime savings). You also have the option of prepar-
ing the input values, should they be needed in the state machine.

trigger_100ms trigger_10s
Ja]display_100ms A]display_10s
cale e erIIDDms tri ;': 10s
— & P ave_v/calci:cont T} display_To0ms gger_. igger_
— & B displ_value::cont [E— oo — key

— & B distjcalc:icont key
— *& [distance::conk
— g P t_airfcalc:cont

SoF .

— g [tair::cont])

— & P w/calciicont £_air) J6}display_100ms
— *& 0O v_ave:cont I:\?P—I—‘ t_air ﬂmle
— *& 0 v_moment::conk v displ_value pl_

- .
— T B frost_warning: :log Ij)—l—’ e v frost warming - .
— T P key/fcalc:log ave_w) - — q : /7idisplay_100ms
— T key_in::l Cop»——————————— dist .

£ O key_n: og dist Frost_warning

— *C" P returnfkey_pressed::
— 75 O sm:udisc E3_17_display_meth

Further applications of public methods in state machines are, for example,
reset functions that can be started both from within and without the state
machine, or counters that have to register events inside and outside the state
machine. Parts of the state machine, integrated classes, can be calculated in a

86 Components

different time frame. You can integrate a second state machine into the first
and - without an additional trigger - computed in a different time frame, too,
by starting it via a public method.

Components

87

88 Components

Types and Elements

Every algorithm in a component works on elements. An element contains a
piece of data, and makes available an interface for accessing its data or return-
ing the value of a computation (e.g. interpolation of a characteristic line). Ele-
ments are strongly typed, i.e. each element is of a fixed type. Since there can
be more than just a single element of a given type, an element is referred to as
an instance of a given type.

ASCET has a number of basic types, that can be used directly, such as discrete
or continuous variables, arrays, matrices or characteristic lines and fields. New,
user-defined types can be added to the system in the form of classes. Classes
are complex types, they have a complex structure, because they are usually
build up from other types (basic as well as other complex ones). The types can
be classified as in the following diagram:

R

Fig. 3-1 Classification of data types in ASCET

As the modelling in ASCET takes place on the physical level, the types are also
‘physical’ types. Elements are committed to a specific data type (e.g.
unsi gned i nt 8) only during the implementation phase, which is indepen-
dent of the modelling phase.

The physical definition of an element must contain the following information:
e the name of the element
e the model type
e the element kind
¢ the scope of the element

The options that are available for each of the above categories are described in
detail in the following sections.

Types and Elements

89

920

3.1

3.11

When defining an element, additional information on the physical unit and a
comment can be added to generate a meaningful documentation of the
model. This information has no impact on the physical model.

Basic Model Types

In ASCET there are two categories of basic model types: scalar types and com-
posite types.

Scalar Types

The most important of the basic model types are the scalar ones. ASCET sup-
ports four basic scalar types, which are represented in the various ASCET win-
dows by their respective symbols:

e Continuous is used for continuous physical values that can be infinitely
+F large and have an arbitrarily fine resolution. This type is suitable for
c modelling variables like temperature, speed, etc.; it is referred to as
model type cont .

Signed discrete is used to model integral numbers of arbitrary size; it is
*E" referred to as model type sdi sc.

e Unsigned discrete is used to model non-negative integral numbers of
'HL:I" any size. This type is suitable for modelling things like the number of
cylinders of an engine; it is referred to as model type udi sc.

e [ogical is used to model logical information, e.g. whether a particular
'*E' system is active or not; it is referred to as model type | og.

The four basic scalar types are value types. Whenever an element of such a
type is used, not the element itself as an object, but its value is used. Automatic
typecasting between the arithmetic types cont, sdi sc and udi sc is per-
formed if necessary.

Like complex types (classes), each basic type has an interface, i.e. methods to
access it. For the basic model types these methods are fixed, the interface can-
not be modified.

Scalar types have two simple access methods for the value stored in an ele-
ment of the basic scalar type, i.e. for writing a new value to and reading the
current value from the element:

e set (type a): This method takes one value, e.g. the value a, and
overwrites the value of the element with that value. If the type of the
value does not fit to the type of the element, a type conversion is per-
formed automatically.

e get () : This method returns the current value of the element. The
value returned is of the same type as the element itself

Types and Elements

Accessory methods in basic types are invoked automatically, when an element
name is used in an expression or when an assignment is performed. They do
not have to be coded explicitly.

Composite Types

Composite types are basic types that are built up from basic scalar types. The
following composite types are available in ASCET:

e array (];If[)

e matrix ([E E])

e characteristic line (E)

e characteristic map (E)

o distribution (+gH)
Composite types consist of basic scalar types. Arrays and matrices can consist
of all four scalar types, characteristic lines, maps, and distributions only of the
three arithmetic types. Unlike basic scalar types, composite types are reference

types. When assigning two variables of reference types to each other, not the
values are assigned (and copied), but the references to the variable.

All reference types have access methods for their elements:

e set (reference type a): Thisisan assignment of the reference
to reference type a. After such an assignment, both elements (the
assigned as well as the assigning) are the identical element!

e get : This returns a reference to the element of composite type.

Parameter passing in method calls works in the same manner as assignments.
A reference is passed to the element. As a consequence, a change to the
parameter, for instance by assigning a value to it, is also reflected outside the
method. This mechanism is equivalent to a “call by reference” in programming
languages like C.

Array

An array is a basic type, holding a number of scalar values of the same basic
scalar type, e.g. conti nuous or | ogi cal . The position of a scalar value
within an array is indicated by its associated index value which must be of the
model type unsi gned di scr et e. The size of an array is limited to 2048,
and must be defined statically. The array index takes values between 0 and
si ze-1.

The interface of an array consists of the following methods:

Types and Elements

91

92

e void setAt(scalar type a, udisc i):Theassignment of the
scalar value a to the position i in the array.

e scal ar t ype get At (udi sci): Returns the value at positioni of the
array.
Arrays of non-scalar basic types or complex (user-defined) types are not avail-
able.

Matrix

A matrix is similar to an array. A matrix is two-dimensional, however, so it takes
two indices. The type of index is the same as that of an array (udisc). The size
for each dimension is limited to 63, i.e. the indices take values between 0 and
62.

The interface of an array consists of the following methods:

e void setAt(scalar type a, udsic i, udisc j):The
assignment of the scalar value a to the position (i , j) in the matrix.

e type getAt(udisc i, udisc j):Returnsthe value at position
(i ,j) of the matrix.

Matrices of non-scalar basic types or user-defined types are not available.

Characteristic Tables

EE

To support nonlinear control engineering, one-dimensional and two-dimen-
sional characteristic tables are available in ASCET. The former are called char-
acteristic lines, the latter are called characteristic maps. Characteristic tables
are used to describe a value in dependence of one or two other values, where
either the functional dependence is not known exactly or calculating the func-
tion would be computationally expensive.

An example for a characteristic line is the throughput of a diode in dependence
of the input voltage. This characteristic behavior is described by a curve. The
curve is represented as a table of sample points, each of which is associated
with a sample value. The sample points represent the x-axis of a function
graph, the sample values represent the curve being described.

Accordingly, a characteristic map is represented by a two-dimensional table of
sample points for pairs of input values, where a sample value is associated with
each pair of sample points. The size of characteristic tables is limited to 2048

Types and Elements

sample points for characteristic lines, or 63 sample points on each axis for char-
acteristic tables. Characteristic tables are always parameters, i.e. they can only
be read from within the model.

Each characteristic table is also associated a interpolation and extrapolation
routine. These routines determine, how the output value of a characteristic
curve is determined by the input value(s).

ASCET provides two different interpolation modes: with rounded interpolation
the value between two sample points is derived from the sample value at the
lower (left) sample point, with linear interpolation the value is derived from a
straight line between the sample values.

In controller applications interpolation is a very time consuming operation. It
consists of two operations: searching for the right interval of sample points
and calculating the interpolation factors, and secondly, calculating the output
value from the interpolation factors.

The computation of interpolation factors can be optimized using two special
types of characteristic tables in ASCET: group tables and fixed tables. Group
tables do not contain a sample point distribution, but reference a distribution
of sample points. Distributions can be shared by many group tables. The com-
putation of the interpolation factors is performed only once for the distribu-
tion, and only the computation of the output value is performed for each
group table separately.

A distribution is always a one-dimensional table of sample points. Two-dimen-
sional group tables therefore reference two distributions.

Fixed tables have a equidistant distribution, i.e. the sample points have a con-
stant distance from each other. This makes the computation of interpolation
factors much faster. The memory requirements are lower as well, since instead
of a list of sample points, only an offset and a distance have to be stored. There
is, however, no combination of fixed and group tables.

The interface of a characteristic table depends on its dimension and whether it
is a normal, fixed or group table. There are basically three methods:

e voi d sear ch (arithmetic type a): This method applies to the distribu-
tion of a characteristic line. Here the correct supporting points are
searched, and the interpolation factors are computed. For two-dimen-
sional tables there are two parameters, i.e. voi d sear ch (arithmetic
type a, arithmetic type b).

e arithmetic typei nt er pol at e(): This method interpolates the value of
the characteristic line or map from the interpolation factors and the
value points at the associated supporting points.

Types and Elements

93

94

3.1.3

e arithmetic type get At (arithmetic type a) is the combination of the
search and interpolate method. For two-dimensional tables, there are
two parameters, i.e. voi d get At (arithmetic type a, arithmetic type
b).

For one table, the parameter and the output value must be of the same arith-
metic type, e.g. there is no characteristic map where continuous and discrete
types can be mixed. The separation of the method get At into the methods
sear ch and i nt er pol at e only makes sense for group tables.

A distribution only has the method search. A group table only has the
method i nt er pol at e. A regular or fixed characteristic table has all three
methods.

Real-time Language Constructs

ASCET provides a number of language constructs for real-time applications in
the description of components.

Messages

AR
?

Send Message

Send & Receive Message
Receive Message

Messages form the input and output variables of processes and are used for
interprocess communication in the same way as basic scalar types. Unlike glo-
bal variables, messages are protected variables in preemptive scheduling. If
two concurrent processes both access the same message, data consistency is
guaranteed, because each process works on its own copy. Messages are only
available in modules. Depending on their usage, there are three different types
of messages:

® Receive messages can only be read. Receive messages are used as
@ inputs to a module.
[]

Send messages can only be written to. They are used for the results of
@ the computations of a module.

* Send & Receive messages can be read from and written to.

€7

Types and Elements

3.1.4

Resources

-

A resource (type symbol 1) represents a part of an application that can only
be used exclusively, e.g. timers or special devices. In order to access a resource,
there are two methods:

e void reserve(): the resource is reserved, that is the access to it is
blocked.

e void rel ease():the resource is released, that is access to it is
granted again.

By executing the r eser ve method, access to the resource is blocked and
exclusive access is guaranteed in a preemptive environment, i.e. if the current
process is de-scheduled and another process wants to use the resource, the
access is denied.

When access to the resource is no longer required, the resource can be
released by the r el ease method. This makes the resource accessible to other
components again. To avoid deadlocks or priority inversions, the reservation of
a resource is linked to the priority ceiling of the corresponding process.
Resources are always global elements.

The dT Parameter

al

In control engineering applications the result of the calculations within a com-
ponent often depends on the value of the sampling rate. ASCET provides the
system parameter dT (type symbol m) for uniformly describing the algo-
rithms for all sampling rates. The value of this parameter is provided by the
operating system and represents the time difference since the last activation of
the currently active task.

Note

The name dT is reserved for the system parameter. You can create no other
element with that name, since reserved keywords so not distinguish
between upper and lower case, DT, dt, and Dt are reserved, too.

Special Types

Several other types exist besides those already described. They are discussed
here.

Types and Elements

96

3.2

Enumeration

&l

Enumerations (type symbol @) are unigue types with values taken from a
group of known constants called enumerators.

Literals

Lt f ww

Literals are strings that represent a fixed value of a basic scalar type which can
be used in any expression. The value of a literal is either a number (discrete or
continuous), a character string, or one of the values t r ue or f al se (logical).
In the block diagram editor the values stri ng, true, fal se, 0.0,and 1. 0
are predefined.

The Kind of Elements

Each element has a kind. The kind of an element describes how the element is
used, either as a variable, a parameter, a system constant or constant. Imple-
mentation-Casts are another kind.

e \Variables store values that can be read and written from inside the
model, i.e. a read and a write operation can be performed on them.

In the ECU, they can be placed in the volatile or non-volatile memory.
For newly created variables, volatile is pre-selected.

® Parameters store values that can only be read from inside the model.
Parameters can also be calibrated, i.e. written to from outside the
model. In some cases, special prerequisites are required for that pur-
pose, e.g., the connection to a calibration tool.

Parameters (including characteristic lines/maps) are automatically set to
non-volatile; in the ECU, they are placed in the respective memory.

e (Constants store values that can only be read from inside the model. In
contrast to parameters, constants cannot be changed from outside the
model but are fixed at specification time. Constants cannot be imple-
mented, either.

Constants are created as a def i ne statement in the generated C code.
However, they are not necessarily explicitly visible in the generated
code. If, e.g., the constant is set against a requantization, the constant
does not explicitly appear.

Types and Elements

System constants are used like constants, and also created as def i ne
statements. Unlike constants, system constants can be implemented.
They are always explicitly visible in the generated code.

System constants can be converted into normal constants using
Extras - Convert System Constants to Constants in the Compo-
nent Manager.

Tab. 3-1 summarizes the differences in usage between variables,
parameters and constants.

Implementation casts (see section 4.2.4) provide the user with the abil-
ity to specify the implementation in a targeted manner at any chosen
position of a calculation or a data stream. Unlike variables and param-
eters, implementation casts do not allocate any memory, and thus have
no storing effect in the model and cannot be calibrated.

Implementation casts do not have data; they are always of the cont
model type, always have a scalar dimension and a /ocal range of validity
(see section 3.3). Unlike other elements, the properties of implementa-
tion casts cannot be edited.

Model Experiment / Implementation
Calibration Tool
variable r-w r-w yes
parameter r r-w yes
system constant r r yes
constant r r no
implementation cast — — yes
Tab. 3-1 Synopsis: variable, parameter, system constant, constant, imple-

mentation cast

Types and Elements

97

98

The kinds of elements are marked by certain symbols in various ASCET win-
dows (e.g., field "3 Contents" of the Component Manager).

Scope
imported exported local dependent virtual
variables? [| [] | b
messages [} B
parameters® d J [*d
(system) constants [| [] |
implementation casts P
dr n A

a: including arrays, matrices and enumerations

b: independent of scope; see page 99

¢: including characteristic line/map, distribution

d: symbol is derived from other settings (scope, etc.)

Tab. 3-2 Symbols for the various element kinds and scopes

Temporary Variables

To avoid multiple execution within the same method or process, temporary
variables can be specified for each operator or method call. With that, the
value of the expression is computed only once for each method or process it is
used in, and stored to a temporary variable. When the expression is used again
in that method, it is not re-evaluated but the temporary variable is reused.

Each specification editor can create a temporary variable. A temporary variable
does not have a start value; its value is determined only by the assignment of
an expression. ASCET internally manages the temporary variables and provides
a unique assignment (e.g. in the branches of an | F statement) so that no
undefined values turn up when the temporary variable is used later. The value
remains valid until a new assignment to the temporary variable occurs.

The example shows the temporary variable t which stores and reuses the value
of the additiona + b:

t = a+ b;
c =t;
d =t;

Types and Elements

3.3

Virtual Variables/Parameters

Virtual variables/parameters are only available in the specification platform,
they bear no relevance for code generation. They are included for a better
understanding of the significance of model elements in the specification.

Virtual variables always depend on other virtual or non-virtual variables. Virtual
variables are merely aliases to non-virtual variables. No mathematical depen-
dencies such as formulae are allowed; thus the identity (var _virtual =
var _r eal) is predefined for editing the data of virtual variables.

On the other hand, parameters declared as virtual are not necessarily depen-
dent on other parameters.

Dependent Parameters

Model parameters can be connected to other system or model parameters via
a mathematical dependency. Calibrating parameters can therefore lead to
inconsistencies.

To avoid possible inconsistencies from parameter calibration, it is possible
within ASCET to specify the dependency of a parameter in the specification
editors. The dependency of a parameter is represented by a mathematical for-
mula.

Note

Dependent variables do not exist.

The Scope of Elements

Some elements are used for exchanging data between different components.
To establish this, elements can be exported from one component (or from the
project) and can be imported in any other component. Here, the matching is
done via names. The scope of each element can be defined as one of the
following:

e [ocal elements can only be used within the component that defines
them, i.e. in all methods or processes of that component.

e Imported elements are defined in some other component or project,
but can be used in the component that imports them. The properties of
an imported element can be changed only in the context of the com-
ponent that defines and exports the element.

® [Exported elements are defined in one component and can be accessed
by all other components by importing that element.

Types and Elements

929

100

3.4

e Method/Process-local elements can only be used in the method/process
that define them. Method/Process-local elements are not static and do
not have a data set.

User-defined Model Types

Elements can also be user-defined model types, i.e. modules or classes. User-
defined model types are always reference types. The interface is defined by the
interface of this component.

The scope of a user-defined type can be the same as that of the basic types,
namely imported, exported, local and method-local. Like arguments,
method/process-local elements of a reference type are not instantiated, but a
reference to them is established. This means that, when using a method/pro-
cess-local element of a reference type, an assignment to this element must
precede any further use of that element.

The kind of an element is irrelevant for user-defined model types. User-defined
model types are always treated as variables, i.e. there is no restriction of the
interface from within the model.

Types and Elements

4.1

Data and Implementations

In the previous chapter the parts of a component were identified as the set of
elements, the interface of the component, and the functional description of
the methods or processes in the form of algorithms.

In this chapter two additional parts of a component specification are intro-
duced: data and implementation. Both data and implementation belong to the
elements in a component, i.e. both describe properties of the elements.

The approach of separate descriptions for data and implementations is not
usually found in standard programming languages, where the data assign-
ments of variables is part of the functional specification, i.e. the program code.

The data of a component describes the physical values with which the ele-
ments of the components are initialized. Data contain physical information and
are thus part of the physical specification of the component.

Also, standard programming languages do not usually separate between the
implementation of a functional specification and the functional specification
itself. The functional specification is usually identical to its implementation.

Data

The data of a component describes how the elements of a component are to
be initialized. Thus data refers to the elements of a component.

Elements > Data

Fig. 4-1 A component with multiple data sets

Component

The data is held separately from the elements because a component can have
multiple instances in a project, whereas the different instances access different
data sets for their elements. (The data sets are, however, not parts of the
respective instance.)

An example would be a p-control filter. Each instance of this p-control filter has
its own value for the p-factor. This is achieved by assigning different data sets
to the p-control.

Data and Implementations

101

102

The specification of data is part of the specification of the component itself,
and not of the different instances. This may lead to a large number of different
data sets for a component, but if each instance would hold its own data, this
would result in the loss of a modular system design.

The organization of data for each element depends on whether it is a basic or
complex element. Since basic elements are always used within complex
objects, and are never considered separately from those, basic elements do not
have explicit data sets. The data for the basic elements are therefore part of the
data set of the complex element they are contained in.

Complex elements are the components specified by the user. Each complex
element has its own data set. If a complex element is used in a component, the
data set of the complex element is referenced by the component. Thus the
data of a component has the same hierarchical structure as the component
itself.

Data sets have an object ID, which is used to reference the data of a compo-
nent. Just like references to user defined types, this reference is not name-
based.

Consider the following example with the types A and C:

/A C
b:cont d:cont
c.C e:log

The type C has the following data sets:

C
d:cont d«—5 de—7
e:log e +— true e «— false
C1 Cc2

Data and Implementations

4.2

4.2.1

A data declaration for the type A using the data sets of C would have the
following results:

A
b:cont b<4+—3 be4—5
c.C C «—C1 C «—C2
d:cont d < 5 d < 7
e:log e «—true e +——false

A1 A2

The data for the basic types can be specified directly. For the scalar types the
data consists of one value. For composite types, like arrays or characteristic
lines, the data consists of a table of values, or a table of sample points and
sample values.

Implementations

Implementations describe how the elements of a component are to be realized
in code. Here the same scheme as for data is followed:

Elements »| Implementation

Fig. 4-2 A component with multiple implementations

Component

The same reference scheme applies to implementations as to basic and com-
plex types. The effect of implementations is much broader than that of data
sets. The implementation of an element, e.g. whether an element of type
cont is represented as a data type f | oat or si gned i nt, has direct influ-
ence on the code that is generated from the functional description for a
method or process.

Implementations for Scalar Types

The implementation describes how an element of a basic type is realized in the
generated C code. The implementation specification for elements of type log-
ical is very easy, since a logical element has only two values, either true or false.

Data and Implementations

103

104

The implementation specification consists only of the data type. For logical ele-
ments either byt e, wor d, or | ong can be chosen.

The implementation specification for the arithmetic types is much more com-
plex. It describes, among other things, the implementation type, which can be
an integer type even for elements of type cont i nuous. The implementation
specification therefore contains a complex transformation from the physical
domain to the implementation domain, which can be very different from each
other.

The differences between the physical domain (e.g. model type cont i nuous)
and the implementation domain are the infinite range of the physical domain
from -infinity to +infinity, and its arbitrarily fine resolution. In the implementa-
tion domain, on the other hand, the range is limited by the word length, and
the resolution is not arbitrarily fine but fixed to 1.

In order to make a transformation between the physical domain and the imple-
mentation domain possible, the range of the physical domain has to be lim-
ited. Thus each element must be assigned an interval for the relevant physical
values. The resolution must also be restricted. Therefore, each element has to
be given a fixed resolution, the quantization.

For example, let A be a range of values in the physical domain, A = [-1, 0.5],
and assume a quantization of g = 0.2.

The result of the limitation of the range to an interval and of the quantization
is a restriction of the values of an element to a finite set of equidistant values.

Ag=1{1,-0,8,-0.6,-0.4,-0.2,0,0.2,0.4}

This finite set of values can now be mapped to an integer range:

Aint ={-5, -4, -3,-2,-1,0, 1, 2}

This corresponds to a linear conversion formula between the physical domain
to the implementation domain of the kindi npl = 5 * phys. The data type
for the integer variable is automatically determined from the integer range. In
this example, the data type si gned i nt 8 would be chosen.

When the range of the physical element has an offset larger than zero, the
associated integer interval may only contain a few values, but a large data type
has to be used.

Consider for example the physical domain range A = [120, 130] and a quanti-
zation of g = 0.5. A linear conversion would result in an integer range Aint =
{240, ..., 260}.

The type for the integer variable is unsi gned i nt 16 in this case, although
the number of values would also fit into a variable of type i nt 8.

Data and Implementations

4.2.2

4.2.3

To implement this, a general linear conversion formula with an offset can be
specified. In the above example, a conversion formula of the type

impl = 2 * phys - 240
would lead to an integer interval of {0,...,20} and a variable of data type
unsigned i nt 8 would be sufficient.

The conversion formulas are not specified in the context of a component, but
in the context of a project. This makes it easy for several components to use
the same conversion formulas. Furthermore, this complies with the ASAM-
MCD-2MC standard.

The Implementation of Composite Types

For composite types like arrays, matrices or characteristic tables, the implemen-
tation is specified for the interface elements of the composite types, which
themselves are of a scalar type.

For arrays, for instance, the implementation for the elements held in the array
must be given. This implementation is valid for both, the input and the output
of the array. The implementation for the index is fixed, since the index is a
discrete model type.

For characteristic tables, the implementation of the x-points and y-points and
the values of the table can be specified separately from each other.

The Implementation of User-Defined Types

The implementation of user-defined types consists of the implementations of
all elements used in that component.

In the case of classes, the arguments and return values also need to have an
implementation, since the value of an actual and formal argument have to be
adjusted correctly to each other. This is automatically done for arguments of a
scalar type.

This automatic adjustment does not work for arguments of composite or com-
plex types. If such arguments are used, the implementation of the formal argu-
ment and the actual argument must coincide. Here, no automatic adjustment
is possible, since these arguments are passed as references.

Temporary elements do not have an explicit implementation, but they are
automatically assigned an implementation by the code generation algorithm.
It is important that an assignment to this variable (e.g. an initialization) pre-
cedes any other use of it.

Method- and process-local elements can be implemented automatically, like
temporary elements, but they can be explicitly implemented, too (see ASCET
user's guide, section "Implementations of Method- and Process-Local Vari-
ables"). The implementation is preserved within the method/process.

Data and Implementations

105

106

424

Implementation Casts

ASCET 5.0 introduced a new primitive element type — the implementation
cast. Implementation casts provide the user with the ability to influence the
implementation of intermediate results within arithmetic chains. This allow the
user to display knowledge regarding particular physical correlations (for exam-
ple, that a specific range of values is not exceeded at a defined point in the
model) in the model, without requiring the allocation of physical memory.

Note

Implementation casts cannot be used in conjunction with logical elements.

Below is a small example to illustrate this functionality.

In a simple arithmetic specification, two variables, a and b, are added, the
result of the addition is multiplied by the literal 2, and the result of the multi-
plication is assigned to variable c.

f1/process
—T> o + | o x | .
4a [
.
Fig. 4-3 Simple Calculation without an Implementation Cast

During implementation, variables a, b and ¢ have been assigned the i nt 16
type; all three variables exhaust the entire possible value range. Because of
this, the code generator in the example above would create a 32-bit-wide tem-
porary variable, and would requantize this before assigning it to ¢ to a value
range that is applicative for i nt 16 by executing a right shift.

Nowy, if the user knows that the sum of a and b can be no greater than a 16-
bit-wide result and thus exhausts only half of the possible value range (for
example, due to physical boundary conditions or because certain correlations
in the model compel this to be the case), he or she can define this as such
using an implementation cast (see Fig. 4-4).

M ipracess
— T o+ ’ o | W T—
a impl_cast c
b
Fig. 4-4 Simple Calculation with an Implementation Cast

Data and Implementations

In implementing the implementation cast with the i nt 16 type and value
range [- 16384. . 16383], while disabling both the Limit to maximum bit
length and Limit Assignments options, the user guarantees specific proper-
ties of the intermediate result for the code generator. This prevents the requan-
tization required in the example illustrated in Fig. 4-3.

Another application for implementation casts is the targeted allocation of
implementations to the inputs and outputs of operators. This function allows
you to select target arithmetic services (see section 4.14 "Arithmetic Services"
in the ASCET user's guide) for specific operators. In this context, implementa-
tion casts replace the present operator implementations.

As the name implies, implementation casts only affect the implementation.
More accurately, this means that implementation casts are taken into account
for the code generation of experiments (see chapter 4.8.8 in the ASCET user’s
guide) of these types:

e inplenmentation experinment and

e oO0bject based controller inplenentation
They are simply ignored for these types:

e physical experinent and

e« quantized physical experinent

Depending on the code generation options (see "To adjust the project set-
tings:" in the ASCET user’s guide) for the implementation experiments, imple-
mentation casts have the following properties:

e If the maximum bit size that is defined for the project is smaller than
32 bits, the code generation for implementation casts allows the use of
a larger bit size. If, however a variable that exceeds the permitted bit
size is necessary in the code, an error message is displayed.

With this functionality, implementation casts can be applied within
arithmetic chains to specify intermediate results that are outside of the
controller's original maximum bit size.

e If animplementation cast is present at the numerator input of a division
operator, its implementation overwrites the Allow Double Bit Size
for Division Numerators option.

Another important property of the implementation cast is that it allocates for
its implementation during code generation neither permanent nor temporary
memory. This is because implementation casts are not created as global ele-
ments or as local function variables. For implementation casts that are applied
in combination with a value limitation, however, a local, temporary function
variable can be necessary to temporarily store the calculation result before area
check is carried out.

Data and Implementations

107

108

4.3

The use of implementation cast is limited to the block diagram editor and the
ESDL editor. Furthermore, these elements are only offered for modules and
classes (excluding, however, CT blocks, Boolean tables and condition tables)
and for specifying conditions and actions in state machines.

Code Generation with Implementations

When choosing an implementation, the code is generated in fixed point arith-
metic. This fixed-point arithmetic is based on integer arithmetics. The informa-
tion of the implementation applies to elements of a component. This
information together with the functional description, i.e the information how
the elements interact with each other, is the basis for integer code generation.

Component
/ ‘ \
Implementation Body
Elements of Elements Specification
specified by user
3 y automatically generated
Implementation (= code) of body v9
specification
Fig. 4-5 Code generation with implementations

To make the principle of integer code generation more transparent a simple
example is given in the following.

An Example: Code Generation for an Addition

Imagine the following simple example
c =a + b;
where a, b, and ¢ are model variables of type cont i nuous.

The implementation transformation is linear without an offset. The following
quantizations are used: 0.01 for a, 0.04 for b and 0.05 for c. A, B, and C are
the corresponding implementation variables for the elements in the generated
C code.

When generating code for the above example, the quantizations must be
taken into account. For the values a = 1, b = 0.6, and consequently ¢ = 1.6,
the result with the above quantizations would be A = 100, B = 15 and C =32.
A direct transformation of the model to the implementation level would lead
to a wrong result (A+B = 100 + 15 = 115 which is not equal to C = 32).

Data and Implementations

4.3.1

4.3.2

The reason is that the quantization is not taken into account. The above model
equation must be transformed to the implementation transformation. Here
the quantizations of A and B have to be adjusted before the addition takes
place, and the result of this addition has to be adjusted to the quantization of
C. This leads to the following piece of C code for the above model:

C=(A+4*B) /| 5

The multiplication of B by 4 corresponds to the adjustment of the quantization
0.04 t0 0.01, and the division by 5 corresponds to the adjustment of the quan-
tization of 0.01 to 0.05.

Transformation of Data under Implementation

The data stored with an element always contains the "model data", i.e. the
physical values, but the implementation must also be reflected in the data. In
the above example, the physical (model) data for variable a was 1, the data for
the implementation variable A however was 100.

Component
/ | \
Data for Elements Implementation
Elements of Elements

\ / specified by user
automatically generated

Data (= values) for implementation
variables

Fig. 4-6 Transformation of data

General Rules for the Implementation Transformation

The implementation transformation works on arithmetic values. The values are
adjusted in all arithmetic expressions, so the corresponding arithmetic opera-
tions can be executed:

Addition and Subtraction:

The arguments of these operations are adjusted to an quantization. This quan-
tization is determined by the internal code generation algorithms and mini-
mizes the number of re-quantizations. The constant offset is calculated for the
result from the quantizations and the offset of the arguments.

Multiplication and Division:

The arguments of these operations are first made offset free, before the mul-
tiplication or division can take place. The quantization must not be adapted,
but is determined from the result of the multiplication or division. However, to

Data and Implementations

109

110

4.4

avoid overflow or a loss in precision, the quantization of the arguments may be
multiplied by a power of two (shift operations). This is also automatically deter-
mined by the internal code generation algorithm.

Comparison, Minimum and Maximum:

Similarly to addition, the arguments are adjusted to each other (as well in
quantization as in offset). The minimum and maximum operator work like the
addition operator.

Assignment:
The value that is assigned to a variable is re-quantized and the offset is cor-
rected before assignment is performed. This also applies to argument passing.

The Implementation of Methods and Processes

The facilities for using implementations (enhanced in ASCET 5.0) allow for
method implementations to be specified. Method and process implementa-
tions are available in both ESDL and block diagrams.

The implementation of a method or process contains information the memory
to be used for running a method or process and whether it should be fully
expanded during code generation.

In general, algorithms that should have a short response time or are used more
often, will be run in internal memory, whereas other algorithms that are not
used very often, such as initialization algorithms, will run in external memory.

In addition, method and process calls can either be represented as function
calls or fully expanded in generated code (inlining).

Data and Implementations

5.1

Body Specification in ESDL

This chapter describes the common features of ESDL that are used in the
description of classes and modules. The description is divided into three main
parts.

The first section contains a brief description of general ESDL characteristics. A
comprehensive description of both the syntax and elements of ESDL is pro-
vided in subsequent sections.

The differences between ESDL and block diagrams as well as those between
ESDL and the C and Java programming languages are summarized at the end
of this chapter.

Readers are assumed to be familiar with either the C or Java programming
language (or both). If you need further information on C or Java, you can use
any of the standard reference manuals for these languages.

The following is a list of some common reference manuals for Java and C:

e Arnold, Ken, Gosling, James, The Java Programming Language
(Reading, Mass.: Addison Wesley, 1996)

¢ Flanagan, David, Java in a Nutshell (Cambridge, Mass.: O'Reilly, 21997).
e Kernighan, Brian W., Ritchie, Dennis M., The C Programming Language
(Englewood Cliffs: Prentice-Hall, 21988).

ESDL as a Modelling Language

ESDL was designed specifically as a modelling language for the automotive
environment. In ASCET, it is used to specify the method or process bodies
within classes or modules. For simplicity, classes and modules are subsumed
under the term classes in this section.

In ESDL, both the syntax and elements are based on the Java programming
language to provide for a low learning curve. When working with ESDL, how-
ever, it is important to keep in mind that ESDL is radically different from other
languages.

The main characteristics, which in part distinguish ESDL from other languages,
are as follows:

e ESDL is a modelling language, not a programming language. It is a
modeling language that works on the same abstract, physical level of
description as the block diagrams commonly used in ASCET. Concepts
that are related to or dependent on implementation, such as pointers
or shift operators, are not available.

Body Specification in ESDL

11

112

e ESDL is used for systems that run in a real-time environment. Hence, it
must meet the requirements of real-time operation. As a consequence,
ESDL is as object-oriented as these parameters permit. The model struc-
ture can be mapped to classes and modules, but instantiation is static
and there is no inheritance.

e ESDL is used to build automotive software. While users can build com-
plex software models in ESDL, concepts that are currently not relevant
to embedded systems, such as string operations, are not implemented.

e ESDL ties in seamlessly with the ASCET development environment. The
language is used at the same level as block diagrams, that is, for
describing the functions contained in method or process bodies. Import
of elements and variable declaration are performed using the corre-
sponding tools in the ESDL editor.

These four main characteristics of ESDL determine the scope and usage of the
language. Otherwise ESDL can—more or less—be seen as a highly specialized
variant of the Java programming language.

5.2 Basic Elements

5.2.1 Working with Methods and Processes

The basic elements of a functional description in ESDL are methods and pro-
cesses. A method consists of a method header, which servers as an identifier,
and the method body which describes the operations to be performed.

Body Specification in ESDL

The method header consists of the method name, a list of arguments and a
return value. Method names are assigned when adding a new item to the
methods list ("Diagrams" pane) of the ESDL Editor. They can be modified by

renaming the list item.

A ESDL for: IntegratorKLimited Project: IntegratorkLimited_DEFAULT>PC<

Component Diagram Element Edit View

EEF TR WG oo | me s B Nemal 7] | & 2 O & | @ B WG| &[ofine PO

Elements Sorted by IName vl by compute [in::conk;K::conk;mn: :cant;mx: :cont] |
@DseIF::IntegratorKLimith memory = mwemwory + K * in * dT; ;n
= Limiter.out (mn, mem, wmx);

£ O dTdT memory

& B infcompute:cont

B initvalusfreset:icont

B Klcompute:cont
& [Limiter: Limiter

*t" O memary: conk

*¢ & mnfcompute::cont

'”E"P mfcompute:conk

*€ P returnjout::cant

|asmmg ﬁl uoneaynads &

Diagrams
Main =
lE reset [initvalue:icont] q _bl_l

out []rel

il

Method names must be unique in ESDL. Method overloading is not supported,
i.e. it is not possible for two methods to differ from each other only in the
number of parameters and/or parameter types.

The arguments and the return value are optional elements of the method
interface. The method header and interface can be modified using the Inter-
face Editor on the ESDL Editor window. The Interface Editor is used to add or
modify parameters and the return value as needed.

Interface Editor for: compute [in::cont:K::cont:mn::cont:mx::cont]

Argument Return Local Variable

Arguments | Hetuml Localsl OK |
Arguments Add Del
- coni st Type _Conea |
Kzont
mn::cont Icont 'l
g cont
Uit
Comment

The functional description of a model is contained in the method body which
can be edited in the text pane of the ESDL Editor.

Body Specification in ESDL 113

114

52.2

523

ESDL Syntax

ESDL syntax is entirely the same as that of the Java programming language.
Every statement in ESDL is terminated by a semicolon (;).

Timer.cal cul ate();
X = a + b;
tnp = Tinmer.out();

Compound statements or blocks are contained in curly braces { ...}.

if (x >0) {
y = f(x);
z =1; }

Method parameters and expressions are contained in parentheses (...).
while (z > 4) {
z--3}

I ntegrator.reset(15);
Limter.out(0, 15, 100);

The equals sign (=) is used for assignments.

low = -1;
xVar = a * (b-5);
tnp = xVar. max(15);

Variable Names

In ESDL, variables names are made up of letters and digits. The first element of
a variable name must be a letter. The underscore character counts as a letter.
Variable names must not contain spaces.

The following are valid ESDL variable names:
i, j2a, aVar, a_Var

The names of all variables must be unique within the scope of the current
element. This limitation is important when working with imported classes or
modules. ESDL does not, at this stage, resolve name conflicts.

Reserved Keywords:
The following keywords are reserved and may not be used as variable names.

auto, break, case, char, cond, const, continue,
default, df, do, double, dt, el se, enum exit, extern,
false, float, for, get, getat, getatat, goto, header,
if, inactive, int, interpolate, | ong, nonitorprocess,
nornmal, null, receive, register, return, search,

Body Specification in ESDL

524

525

self, send, set, setat, setatat, short, signed,
si zeof, static, struct, switch, true, typedef, undef,
uni on, unsigned, void, volatile, while.

Since upper and lower case are not distinguished, any spelling of the above
names is reserved.

Data Types

ESDL is strongly typed and variables must be declared. The procedure here is
the same as when editing block diagrams. Variables are added to the elements
list and can then be edited as needed.

There are four data types available in ESDL, namely udi sc, sdisc, cont
and | og. They can be added to a class or module by selecting the correspond-
ing element from the editor toolbar.

The ESDL method or process body itself does not contain variable declarations.
Only if a variable is local to the current method/process can it be declared and
initialized in the method body using a statement like the following:

cont set = 12. 34;
cont tenp = 0. 78e4;
udisc i =3, j, k;
sdi sc aVar = -12;
log trigger = true;

Type Conversion

Whenever a basic arithmetic operator like +, -, *, [/ has operands of
different types, the result is automatically converted to that of the strongest
type used in the expression.

The order of types is (from weak to strong): sdi sc, udi sc, cont .
cont result = varUdisc + varCont;

When assigning a value to a variable the data types must match. There is no
explicit type casting. Only for the basic arithmetic types signed discrete,
unsigned discrete and continuous does ESDL perform an implicit conversion.

cont tnmp = 2;
A conversion of boolean and arithmetic types is not possible.

Body Specification in ESDL

115

116

526

527

528

Primitive Methods

Every arithmetic type has a predefined interface which covers a set of basic
math functions. The following messages are available for all arithmetic types:

Method Receiver Returns Usage

val . abs() arithmetic arithmetic absolute value of val

val 1. max(val 2) arithmetic arithmetic the greater of two values

val 1. mi n(val 2) arithmetic arithmetic the smaller of two values
var . bet ween(val 1, arithmetic log var betweenval 1 andval 2
val 2)

Tab. 5-1 Primitive methods for arithmetic types

The var. between(val 1, val 2) method corresponds to the
bet ween: And: element in block diagrams.

Literals and Constants

Literals are values like 12, 6. 1e4 or t r ue. Every primitive type (boolean and
arithmetic), can occur as a literal in an ESDL method. The data type of literals
is implicit.

Constants are named values, such as g = 9. 81. They are added to a class
and declared in the same manner as variables. The Element Editor can be used
to assign a value and flag a variable as a constant.

Some examples:
e X = g.abs();
The absolute value of the constant g is assigned to the variable x.
e outl = nyvar.max(g); or outl = g.max(nyvar);

The larger of the values myvar (a variable) and g is assigned to the
variable out 1.

e out2 = myvar.mn(.04); or out2 = (.04).mn(nyvar);

The smaller of the values myvar and 0. 04 is assigned to the variable
out 2.

Comments

A comment explains the purpose of a particular piece of ESDL code. There are
two types of comments, commonly referred to as single- and multi-line com-
ment.

Body Specification in ESDL

529

Single-line comments are preceded by a double slash (/ /). The text that fol-
lows is ignored up to the end of the current line. Multi-line comments are
delimited by / * and */ .

The comments used in an ESDL description are not transferred to the C code
that is generated from that description.

Operators

In EDSL, method calls take precedence over all other operators. The order of
precedence can be manipulated by adding parentheses to an expression.

Unary Operators:

The unary operators are +, - and! (not); the latter is used for boolean types.
In addition, the increment and decrement operators ++ and - - are available.
They can be used as prefix or postfix operators.

Unary operators take precedence over all other operators. They associate right
to left.

Arithmetic Operators:

The four arithmetic operators +, -, * and/ can be used in ESDL. The mod-
ulus operator % which calculates the remainder of an integer division, is also
available.

The *, / and % operators take precedence over the binary + and - operators.
Arithmetic operators associate left to right.

Comparison and Equality Operators:

The comparison operators are >, >=, < and <=. They are applied to arith-
metic types and take precedence in this group.

The equality operators == and ! =, which can be applied to both value and
reference types, range next in the order of precedence.

Comparison and equality operators are binary. They associate left to right.
Logical Operators:

The logical operators & and || (AND and OR) follow next in the order of
precedence with the AND operator taking precedence over an OR.

Logical expressions are evaluated only until the truth or falsehood of the entire
expression is determined. If, for example, the expression a && b is evaluated
and a evaluates to f al se, it is redundant to evaluate the remainder of the
expression. The evaluation of b has no impact on the result.

Logical operators are binary. They associate left to right.

Body Specification in ESDL

117

118

Conditional Operator (MUX):

The conditional operator ?: corresponds to the MUX operator in the block
diagram editor. The operator has the general form (a ? n : nm) wherea'is
a boolean, n and mmust be of the same type. They can be any primitive type,
boolean or arithmetic.

The value of a conditional expression depends on the value of a. If aistrue
in the above example, the value of the expression is n otherwise it is m

The conditional operator is ternary. It ranges behind all binary operators in pre-
cedence. Association is from right to left.

Shorthand Assignment Operators:

In ESDL common shorthand assignments, such as += or * = can be used. The
a += 4 operation is a shorthand forthea = a + 4 assignment operation.
Shorthand notation is available for the following operators:

*= =, Y%, +=, -=
Shorthand operators have lowest precedence. They associate from right to left.
Summary: Operator Precedence and Associativity:

The following table summarizes the precedence and associativity of operators
in ESDL as described in the previous section.

Operator Associativity
++ - - right to left
+ - (unary) right to left
! right to left
* | % left to right
+ - (binary) left to right
< <= left to right
> >= left to right
== left to right
I= left to right
&& left to right
| left to right
?: right to left
= right to left
*= /= Y% 4= -= right to left

Tab. 5-2 Operator precedence and associativity

Body Specification in ESDL

53

Implementation Casts in ESDL

Implementation casts (see chapter 4.2.4) are available in ESDL for modules and
classes (except CT blocks).

In the specification of an operation in ESDL, implementation casts must be
represented by their names. An addition with implementation casts that
appears as follows in BDE:

a caszt_2

is represented as a function in ESDL as such:

Elements * process [] |

O self:Module_ESDL
*£ 0 ascont

*& O brcont

*& O cocont

*F # cast_l:cont
*F # cast_Z:cont
*F & cast_3:cont

¢ = cast 3 (cast_1 (a) + cast Z (b));

Here it is important that an implementation cast is written like a method call:
it is always placed before the element to which it refers; the element is
enclosed in parentheses, like a method argument. If the implementation cast
is to be applied to the result of an operation, the entire operation must be
enclosed in parentheses.

In the example above, cast _1 refers to variable a, cast _2 tob and cast _3
to the result of the operationa + b.

If intermediate results of arithmetic operations are to be manipulated using an
implementation cast, the corresponding intermediate results have to be
enclosed in parentheses.

Thus, in this statement:

x =cast_1 ((cast_ 2 ((a+b)y *c-d))/ e);
cast _2 refers to the intermediate result of the operation,

(a+b) *c-d
while cast _1 changes the overall result of the operation:

Body Specification in ESDL

119

120

54

541

((a+b) *c-d) [/ e

Note

An implementation cast in ESDL always refers to the value in the code that
immediately follows the implementation cast.

It is important to note here, that the use of the syntax as described above is
limited to implementation casts. The parentheses must contain an existing
implementation cast; if you specify a standard type, such as ui nt 8 (a), an
error message is displayed.

When using implementation casts, remember that they are not available for
use with logical variables. If an implementation cast is applied to a logical vari-
able, the code generator generates an error message.

Control Flow

The control flow elements can be used to determine the order of and condi-
tions under which an ESDL function or statement is executed. The most com-
mon types are conditional structures and loops.

There are two types of conditional statements, i f ..el se and
switch..case..defaul t, and two types of loop statements, whi | e and
for.

In addition, a br eak statement is available.

The control flow constructions in ESDL are described in more detail in the fol-
lowing subsections.

If...Else

The i f ..el se statement can be used for simple conditional constructions. It
has the general form

i f (expressionLog){

st at enent True; }
el se {

st at enent Fal se; }

The el se block can be omitted. When expr essi onLog is evaluated, the
program decides whether to execute the st at ement Tr ue block. If not, the
program either executes an existing st at enent Fal se block or it continues
without doing anything.

The expr essi onLog that controls the decision must be explicitly of type
| og. An arithmetic with a value of one or zero is not accepted.

Body Specification in ESDL

54.2

When the desicion that the expression is always t r ue can be made directly at

the i f statement, the construction is optimized in the generated C code. An
example:

if (true || testlog_a) {

cont=1; }
el se {
cont =0; }

is reduced to:
cont =1;

When an optimization is performed, an information is given in the ASCET
monitor window.

Ei MONITOR [Ascet_Monitor.log] =1 B3
File Edit Wiew ?
Monitor Build |

= o CODE GEMERATION
= o lightswitch {Component)
= o action
o INFO(IMAI40): constant Folding - reduced IF-THEM-ELSE statement to THEM statement

I~ show hidden messages @ al ¢ Errors Warnings ¢ Information

|6|Enors: 0/0 Wamings: 040 Infos: 141

In the generated C code, however, no hint is given.

Note

The decision whether optimization is performed is made locally at the i f
statement. If previous program parts would have to be considered to make
the decision, no optimization takes place.

Switch...Case...Default

The swi t ch..case..def aul t statement or, for short, the swi t ch state-

ment, can be used for more complex conditional constructions. It has the gen-
eral form

switch (expressionsDisc) {
case sDiscM {
statenentM }

Body Specification in ESDL

121

122

case sDiscN {
statenentN }
default: {

statenent Defaul t }
}

The swi t ch statement is a multi-way decision that tests whether the argu-
ment expr essi onsDi sc matches one of the constant values sDi scM
through sDi scNand branches accordingly.

Each case is labelled with a constant expression that must be of type sdi sc.
The corresponding block is executed if the expr essi onsDi sc matches the
value of the constant expression. The (optional) case def aul t is executed if
no other match can be found.

If the def aul t case is not available and no match is found, the swi t ch state-
ment does nothing and control returns to the remainder of the software
model.

The example below sets the value of a variable scont depending on the value
of the ar gSdi sc.

swi tch(sdiscArg) {
case 1 : {
scont = 1.123;
break; }
case -1: {
scont = O;
break; }
default: {
scont = -1; }

}

In this example, every block is terminated with a br eak statement. This causes
the swi t ch statement to be finished immediately after the block has been
executed.

If the case blocks were not terminated explicitly, execution would continue
immediately after a match has been found. In the above example, this means
that for sdi sc=- 1 the value of scont would first be set to 0 by the corre-
sponding block and then set to -1 by the def aul t block if the br eak state-
ment was missing.

This phenomenon is commonly referred to as fall through. The remainder of a
swi t ch statement is always executed if a block is not terminated. Although
this can be useful for multi-layered filtering it is generally regarded as poor style
and should be avoided by terminating every case statement with a br eak.

Body Specification in ESDL

543

544

While

The whi | e loop is used to model a simple loop. It has the general form:

whil e (expressionLog) {
| oopSt aterment; }

The loop condition expressi onLog is evaluated. If it is t rue, the
| oopSt at ement block is executed and expr essi onLog is evaluated again.
The loop exits when expr essi onLog evaluates to f al se.

In ESDL, the loop condition expr essi onLog must be of type logical.

For

The f or loop stands out as one of the modelling features that are available in
ESDL only. There is no equivalent in block diagrams.

The for loop has the general form

for (initExpression; expressionLog; incrExpression)

{

| oopSt atenent; }
This is equivalent to

i ni t Expressi on;

whil e (expressionLog) {
| oopSt at enent ;
i ncr Expression; }

In the f or loop, every component of the loop head, i ni t Expr essi on,
expr essi onLog, and i ncr Expr essi on, is optional. The loop condition
expr essi onLog must be of type logical. It is set to t r ue if omitted which
results in an infinite loop.

Note

In ESDL, the components of the loop head must be simple expressions,
comma-separated lists of expressions, such asi =0, j=1; ori++, j--;,
are not accepted. In other words, it is not possible to use more than a single
statement in either the i ni t Expr essi on or the i ncr Expr essi on.

The following example is a simple combination of an'i f ..el se statement and
afor loop:

if (log) {
for (index=0; index < array.length(); index++) {
array[index] = index * index; }
}
el se {

Body Specification in ESDL

123

124

545

55

for (index=0; index < array.length(); index++) {
array[index] = index; }
}
The example writes values to an ar r ay. The | og condition in thei f ..el se
statement determines which of the two loops is used to write values to the
array.

Each of the loops iterates over the entire ar r ay and assigns a value to each
cell. The value is either the result of i ndex * i ndex or the value of i ndex.

Break

The br eak statement can be used to exit immediately from each of the con-
trol elements listed above and return to another enclosing statement or to the
remainder of the model.

Since ESDL does not support labels in the model description, there is no labeled
br eak statement that returns control to a label.

Methods

The functional description of a software model in ESDL is contained in meth-
ods. The methods perform calculations and manipulate data. They are invoked
(or called) as operations on objects.

A method call has the general form
recei ver Cl assNane. doSonet hi ng(par anet er Li st)

where r ecei ver assNane is the name of the receiver object, which ‘exe-
cutes’ the doSonet hi ng method. Parameters can be passed on as either a
comma-separated list or a single parameter in the par anet er Li st. Any
expression can be a parameter, including method calls.

The following are valid method calls in ESDL:

| oader.resol ve(fal se, 1.76);
//do not use characteristic, calculate value for 1.76

nunmbers. set At (10*i ndex, i ndex);
//set array nunmbers to 10*i ndex at i ndex

(12. 4) between(val A, val B);
//check if 12 is between val A and val B

Body Specification in ESDL

array. |l ength();
/lreturn array length

Note

If a method has no parameters, the parentheses at the end of the method
name still have to be supplied for the statement to be interpreted as a
method call.

A method call can return a value, which can in turn be assigned to a variable
in the method call. The variable must be of the same type as the return value.

aNunber = anArray. get At (i ndex);
/lassign value fromindex position

anOf fset = | oader.resolve(true, 2.14);

/Il assign value for 2.14, calculate using characteris-

tic
If a method has a return value, the method body must be terminated with a
r et ur n statement. The r et ur n statement can be followed by any expression
that evaluates to the return type of the method.

return in.between(ub, Ib);
/1 returns a |ogical value

return intVar;
//returns the val ue of intVar

A method call can return only a single value. If more than one value is to be
passed on between modules or objects, an object can be used to hold these
values (see section "Structures” on page 134).

Method calls cannot be nested in ESDL. The following statement is illegal:
| oader.resolve(true, 2.14).sqrt();

It must be replaced with the following, legal statement:
aNunmber = | oader.resolve(true, 2.14);
aNunber. sqrt();

Only if direct access methods are enabled for access to an object’s variable, can
a method call be nested. Hence, the following nested statement is legal if aa
is a variable defined in anbj ect :

anObj ect.aa().sqrt()

Body Specification in ESDL

125

126

5.5.1

55.2

This

The pseudo-identifier t hi s can be used in ESDL to call a method at the current
component. If, for example, you want to call the private method
i ni t Count er at the current object, you can use the following statement:

this.initCounter();
If the initCounter method has a return value, you can assign it as follows:
aValue = this.initCounter();

The reference to the current object using the t hi s identifier is optional in both
these cases because it is implicit in the context. Hence, the above statements
can be written as follows:

i nitCounter;
aVal ue = initCounter();

Only if the current object is to be passed on as a parameter to another method,
is the reference using t hi s needed.

O her Obj ect. eval uate(this);
Here, the identifier t hi s passes on a reference to the current object.

Note

While ESDL accepts both the sel f and the t hi s identifier, it is recom-
mended to use t hi s to ensure compatibility with Java syntax.

Access Control

In ESDL, both the methods and variables of a class can be declared as either
public or private to control access to these elements and hide their implemen-
tation from other objects.

Private methods can be called and private variables manipulated only from
within the current object. By contrast, public methods can be called and public
variables accessed from both within and outside the current object.

Methods are declared public or private by assigning them to a corresponding
diagram in the ESDL Editor. The default for new objects is to have a single
public diagram Mai n which contains the cal ¢ method.

Users can create additional public methods in the same diagram or add a new
diagram. Private methods must be created as part of a private diagram. The
access rights to a method can be changed by moving it from one diagram to
another.

Body Specification in ESDL

553

5.6

5.6.1

An object Cal | er can access the public interface of another object
Recei ver if the latter has been imported by adding it to the Elements list for
Cal | er.

New variables are created as private when they are added to the Elements list
in the ESDL editor. They cannot be accessed from outside the current object.
The status of a variable can be modified only in the element editor for that
object (see ASCET user’s guide, section "Editing Element Properties").

Direct Access Methods

Every public variable automatically adds two methods to the current object’s
interface, which are referred to as direct access methods. A direct access
method can be called to access the data in a public variable. It can be used for
both read and write access to that variable.

In the following example, suppose that the Vi si bl eObj ect has two public
variables named f r ee and al | respectively. Method calls from outside can be
as follows:

sdisc tnp = Visibleject.all();
Vi si bl eCbj ect. free(120);

Direct access methods are generated automatically and added to the public
interface of an object whenever a variable is declared public. These methods
do not have to be coded explicitly.

Composite Data Types

ESDL provides two groups of composite data types. The first group of compos-
ite types comprises common arrays and matrices, the second group, which
contains one-dimensional tables, two-dimensional tables and distributions, is
used for characteristic lines and fields.

Composite data types are explained in the following subsections, with arrays
and matrices first and tables and distributions to follow suit.

Arrays

An array is a one-dimensional, indexed set of variables which have the same
data type. In ESDL, arrays are available for all basic data types. The variables are
accessed through the array index, the first index position is 0.

An array can be added to a module by adding it to the "Elements"” list in the
ESDL Editor. The array type can be specified in the element editor as any
primitive type.

Body Specification in ESDL

127

128

The array size and its data can be edited using the Table Editor dialog which is
automatically opened when the data of an array are to be edited. You can
specify both the current and maximum size of the array in the table editor.

The array size cannot be modified at runtime. The maximum size for arrays is
1024 elements.

The array data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (seeASCET user's guide, chapter "Editing Data", section
"Array Editor").

i Table Editor (]

Edit ‘“iew Eustras

u Iarray AWalue block= j oK |

X 0 1 2

z 0,000 0,000 0,000 LCancel |
w-ha: Size: #-Size:

S E

In ESDL, elements of an array can be read and written to using the following
syntax:

val = myArray[index];
nyArray[index] = val;

The first statement reads the value of the ar r ay element at position i ndex
and assigns it to the variable val , which must be the same type as the array.
Since the array index count starts from O, nyArray[3] returns the fourth
element of an array.

The second statement sets the value of the ar r ay element at position i ndex
to val , which must be the same data type as the array.

Public Interface:

Tab. 5-3 summarizes the public methods available of arrays.

Method Returns Usage

| ength() udisc get number of array elements

get At (i ndex) type of array get array element at position index
set At (val , index) void set value of array element to val

Tab. 5-3 The public interface of arrays

Body Specification in ESDL

5.6.2

5.6.3

Matrices

A matrix is a two-dimensional, indexed set of variables which have the same
data type. In ESDL, matrices are available for all basic data types. The variables
are accessed through the array indices x and y, the first index position is 0.

A matrix can be added and manipulated in the ESDL Editor in exactly the same
manner as an array. The matrix size cannot be modified at runtime. The maxi-
mum size of matrices is 64 elements per dimension.

The elements of a matrix can be read and written to in ESDL using the follow-
ing syntax:

val = matrix[indX[indY];
matri x[indX] [indY] = val;

The first statement assigns the value of the mat ri x element at position
column i ndX and row i ndY to the variable val , which must be the same
type as the matrix. Since the index count starts from 0, nyMatri x[2, 3]
returns the third element in the fourth row of a matrix.

The second statement sets the value of the mat ri x element at position col-
umni ndX androw i ndY to val , which must be the same data type as the
matrix.

Public Interface:

Tab. 5-4 summarizes the public methods available for matrices.

Method Returns Usage
xLengt h() udisc get number of columns in matrix
yLengt h() udisc get number of rows in matrix
get At (i ndX, indY) type of matrix get matrix element at

position i ndX, indY
set At (val, indX, indY) void set matrix element at

position i ndX, i ndY to val

Tab. 5-4 The public interface of matrices

One-dimensional Tables

A one-dimensional table is used to model characteristic lines which describe
parameter values in dependence of a given set of sample points rather than
using an algorithm.

Body Specification in ESDL

129

130

For each sample point x, in the table, there exists a parameter value y,, which
can be retrieved from the one-dimensional table. In addition, the table can
cover the entire range of values between sample points using either linear or
rounded interpolation.

An one-dimensional table can be added to a module by adding it to the
Elements list in the ESDL Editor. The data type can be specified in the Element
Editor as any arithmetic type.

The maximum size for one-dimensional tables is 1024 sample point : value
pairs. Unlike arrays and matrices, tables are used as parameters in ASCET, that
is, the sample points and values cannot be written to from within the model.

The table data can either be edited in the table editor or filed in from a tab-
delimited ASCII file (see ASCET user’s guide, chapter "Editing Data", section
"The 1-D Table Editor").

The interpolation mode for sample points can also be specified in the table
editor as rounded or linear. Rounded interpolation uses the value from the
lower (left) sample point for a given point, whereas linear interpolation derives
it from a straight line between sample values.

Public Interface:

In ESDL, tables can only be accessed using their public interface. Tab. 5-5 sum-
marizes the public methods available for one-dimensional tables.

Method Returns Usage

sear ch(i ndex) void set the sample point of the table to index or
calculate interpolation factor for index

i nterpol ate() typeoftable getthe value for the current sample point or
interpolate it from the table

get At (i ndex) type of table set the sample point to index and get the cor-
responding value or calculate interpolation
factor for index and interpolate the value

Tab. 5-5 The public interface of one-dimensional tables
Linear Interpolation:
The following example illustrates linear interpolation in one-dimensional
tables. It uses a table LLpr that has the following values:
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0
0.0 0.8 1.1 1.5 1.8 2.0 2.2

In general, the method get At (i ndex) is sufficient for the evaluation of
characteristic lines. Linear interpolation for this example works as follows:

Body Specification in ESDL

5.6.4

tnmpVal = LLpr. get At (3000);

/1 assigns 1.5 to tnpVal

tnmpVal = LLpr. get At (2280);

/1 calculates interpolation factor for 2280
/1 interpol ates value for 2280 as 1.212 and
/1 assigns it to tnpVal

tnmpVal = LLrp. get At (9000);

/1 calculates interpolation factor for 9000
/1 interpol ates value for 9000 as 2.2 and
/1 assigns it to tnpVal

In some cases, though, separating the search and interpolate steps in tables
can be more efficient, e.g. when generating code for experimental targets. In
that case, linear interpolation is performed as follows:

LLpr. search(1000);
/1 sets sanple point to 1000

tnpVal = LLpr.interpolate();
/] assigns 0.8 to tnpVal

LLpr. search(2780);
/1 calculates interpolation factor for 2780

tnpVal = LLrp.interpolate()
/1 interpol ates value for 2780 as 1.412 and
/1 assigns it to tnpVal

Two-dimensional Tables

A two-dimensional table is used to model characteristic maps which describe
parameter values in dependence of a given set of pairs of sample points rather
than using an algorithm.

For each pair of sample points (x, : y,) in the table, there exists a parameter
value z, which can be retrieved from the two-dimensional table. In addition,
the table can cover the entire range of values between sample points using
either linear or rounded interpolation.

A two-dimensional table can be added and manipulated in the ESDL Editor in
the same manner as a one-dimensional table. The maximum size for two-
dimensional tables is 64 pairs of sample points and corresponding values.

Body Specification in ESDL

131

Public Interface:

In ESDL, tables can only be accessed using their public interface. Tab. 5-6 sum-
marizes the public methods available for two-dimensional tables.

Method Returns Usage

search(indX, indY) void set the sample points of the table to
i ndX and i ndY or calculate interpola-
tion factor fori ndX and i ndY

i nterpol ate() type of table get the value for the current sample point
or interpolate it from the table

get At (i ndX, indY) type of table setthe sample pointtoi ndXandi ndY
and get the corresponding value or calcu-
late interpolation factor for i ndX and
i ndY and interpolate the value from the
table

Tab. 5-6 The public interface of two-dimensional tables
Linear Interpolation:

The following example illustrates linear interpolation in two-dimensional
tables. It uses a table LLpr 1 that has the following values:

y\ x 0.0 1.0 8.0 15.0
1.0 -5.0 -3.0 0.0 1.0
3.0 0.0 1.0 4.0 6.0
5.0 8.0 5.0 4.0 4.0

As with characteristic lines, the method get At (i ndX, i ndY) contains every-
thing that is needed for the evaluation of characteristic maps. Linear interpola-
tion for this example works as follows:

tnmpVal = LLpr2.getAt(8,5);

/1 assigns 4.0 to tnpVal

tnmpVal = LLpr2.getAt(0.5,1.5);

/1 calculates interpolation factor for

/1 x=0.5 and y=1.5

/1 interpolates value for (0.5,1.5) as -2.875 and

/] assigns it to tnpVal

tnpVal = LLrp2. getAt(20,10);

/] cal cul ates extrapol ation factor for x=20, y=10

/'l extrapol ates value for (20,10) as 5.0 and
/] assigns it to tnpVal

132 Body Specification in ESDL

5.6.5

With characteristic maps, too, separating the search and interpolate steps in
tables can be more efficient. In that case, linear interpolation is performed as
follows:

LLpr 2. search(1, 3);

/1 sets x sanple point to 1 and y sanple point to 3

tnpVal = LLpr2.interpolate();

/1 assigns 1.0 to tnpVal

LLpr 2. search(4, 4);
/1 calculates interpolation factor for x=4, y=4

tnmpVal = LLrp2.interpol ate()
/'l interpol ates value for (4,4) as 3.143 and
/1 assigns it to tnpVal

Distributions and Group Tables

Characteristic lines and fields can be related to each other by using the same
set of sample points. In ASCET, such a shared set of sample point is modelled
as a distribution, tables that use the sample points in a distribution are referred
to as group tables.

A distribution is an array of sample points. The sequence must be strictly
monotone increasing. Distributions can be used for both types of tables (one-
and two-dimensional). Two-dimensional tables require a distribution for each
dimension.

Using distributions and group tables can significantly reduce the time and
memory required for computations since interpolation factors are computed
only once and can be reused over a set of tables.

Adding a group table in the ESDL Editor consists of first adding a distribution
and then a group table. When the group table is added, the system prompts
for the corresponding distribution. Since the ESDL Editor cannot be used to
reassign distributions to existing group tables, distributions should always be
created before adding the tables.

The Table Editor can be used to edit the data of both distributions and tables.
It does not accept distributions which violate strict monotony. Data can also be
filed in from tab-delimited ASCII files.

Public Interface:

Unlike plain tables, group tables do not have a get At method. Instead, the
public interface is "split" between the distribution, which has a search
method, and the group table, which has an i nt er pol at e method.

A two-dimensional table requires sample points to be set for both distributions
before the corresponding value can be interpolated.

Body Specification in ESDL

133

Tab. 5-7 shows the public interface of distributions in ESDL.

Method Returns Usage

sear ch(i ndex) void set the sample points of the distribution
to index or calculate the interpolation
factor for index

Tab. 5-7 The public interface of distributions
Tab. 5-8 shows the public interface of group tables in ESDL.

Method Returns Usage

i nterpol ate() type of table get the value for the current sample
point or interpolate it from the table

Tab. 5-8 The public interface of group tables

5.7 Structures

In ESDL, structures (or records) are modelled using classes. A class can be used
as a complex container element which holds any number of variables. If a vari-
ables in a class is public, it can be read and written to from ESDL using direct
access methods.

Classes that are used as container elements are accessed in the same manner
as other classes in ESDL. The first step is always to add the class to the Elements
list of the ESDL Editor to make it available in the context of the current class.
Variables can be declared public in the Layout Editor for the parent object.

The variables can then be accessed from within ESDL using the simple direct
access method syntax:

theVar = Visibl eObject.aVar ()
Vi si bl eCbj ect. avar (5. 12);
/1 read/wite access to primtive variable

theVar = VisibleObject.anArray().getAt(2)
Vi si bl eCbj ect. anArray().setAt(2.14, 3);
/1 read/wite access to array variables

For group tables and distributions, this procedure does not work.

134 Body Specification in ESDL

5.8

In ESDL, classes can be nested to model self-referential structures.

Note

A complex assignment such as Vi si bl eObj ect . anArray(nyArray) is
not legal in ESDL, it does not assign the values in the my Ar r ay parameter to
the anAr r ay element. Complex statements can, however, be used to pass
on a reference to another object.

Messages

In ASCET, an additional concept of messages as real-time language constructs
is used for interprocess communication. Messages, in this sense, are used as
protected global variables in the real-time environment.

Messages are available only in modules. From within a module, a message is
merely a variable that can be read, written to or both. Whenever a process
runs, the operating system creates copies of all its messages. These copies are
accessible only to that instance of the process that created them.

Hence, if the same message is used by various processes, each process gets its
own copy of the message. This strategy is used by the real-time operating sys-
tem to ensure data consistency over multiple processes.

Messages are fully supported in ESDL, they can be used in all modules. A mes-
sage is added like all other elements in the Elements list by selecting the corre-
sponding icon from the ESDL Editor toolbar. Messages can be added as

¢ send messages—the current module can write to this variable,
* receive messages—the current module can read this variable, or

e send and receive messages—the current module can read and write
to this variable.

In ESDL, messages are accessed through assignment statements:

theVar = receiveMsg + 1.24;
sendMsg = 12;
theMessage = 3 * tnpVar;

Public Interface:

Tab. 5-9 summarizes the public methods available for messages.

Method Returns Usage
receive() void read message
send() void write message

Tab. 5-9 The public interface of messages

Body Specification in ESDL

135

136

59

5.10

Resources

Similar to messages, resources are available only in modules. As desrcibed in
section 3.1.3, they have two access methods, reserve and r el ease. In
ESDL, these methods can be used as shown in the following example:

resourcel.reserve();

do_sonet hing() ;

resourcel.rel ease();

Tab. 5-10 summarizes the public methods available for messages.

Method Returns Usage
reserve() void reserve a resource
rel ease() void release a resource

Tab. 5-10 The public interface of resources

Mathematical Functions

ASCET comes with a comprehensive library of pre-defined elements. They can
be used as building block for new modules and classes.

For model descriptions in ESDL, additional mathematical functions are pro-
vided in the system library. The mathematical functions are defined in the class
Et as_Systenl i b_CT\ C asses\ Mat hFcn and can be accessed after this
class has been added to the Elements list of the ESDL Editor.

The following examples show how to access mathematical functions from an
ESDL model description.

/1 calculate sine of x

X = x + MathFcn. pi ()/2;

y = Mat hFcn. si n(x);

/1 cal culate square root of arg

if (arg > 0) return MathFcn.sqgrt(arg);

/1 typecast continuous arg to | ogical
return (MathFcn. Sign(arg) = 0 ? false : true);

/1 fill array at x-1 with x/X

udi sc x

cont tnp, vy;

for (x = 1; x < array.length() + 1; x++) {
tnp = Xx;

array[x-1] = MathFcn.pow(tnp, 1/tnp); }

Body Specification in ESDL

The following table summarizes the functions available in the Mat hFcn class.
The return and parameter types are the same for all mathematical functions,
they accept variables of type continuous as parameters, the return type is con-

tinuous, too.

Method Operation

pi () returns 3.141592654

si n(x) sine of x

cos(x) cosine of x

tan(x) tangent of x

asi n(x) sin1(x) (arc sine)

acos(x) cos(x) (arc cosine)

at an(x) tan''(x) (arc tangent)

si nh(x) hyperbolic sine of x

cosh(x) hyperbolic cosine of x

t anh(x) hyperbolic tangent of x

sch(x) hyperbolic secant of x

csch(x) hyperbolic cosecant of x

cot h(x) hyperbolic cotangent of x

exp(x) exponential function e*

| og(x) natural logarithm | oge(Xx), x > 0
| 0g10(x) base 10 logarithm | 0g1g(x),x > 0
pow(x,) X

sqrt (x) square root of x

abs(x) absolute value |x|

si gn(x) sign function returns: -1 ifx < 0;0ifx = 0;1ifx > 0

limt(m x, n)

limiter returns: mif x <= mxifm< x < n;nifx =>n

max(x, Yy) returns the greater value of x and 'y

mn(x, y) returns the smaller value of x and y

frod(x, vy) floating point remainder of x/ y, same sign as x
ceil (x) returns smallest integer value not smaller than x
fl oor(x) returns largest integer value not larger than x

Tab. 5-11 Mathematical functions in ESDL

Body Specification in ESDL

137

138

51

Accessing Block Diagrams from ESDL

This section guides you through building a simple limited integrator in ESDL.
The integrator uses a limiter element from the Syst em i b_ETAS folder to
determine the bandwidth of the outgoing signal.

The limiter element has a single method out with three parameters m, x, nx.
The out method either returns m if x < mM, x if M <= x <= nx, or nx if
X > NnX.

The block diagram for the limiter element is displayed below.

retur ot

oLt

T oLt

To build the integrator element

e In the Component Manager, create a new
ESDL module and rename it to | nt egr at or -
Limt.

e Open an ESDL Editor for I nt egr at or -
Limt.

e Inthe "Elements" list, add a continuous vari-
able named nem The integrator’s memory
stores the value of the outgoing signal.

e |nthe "Elements" list add the limiter module
from the following folder:
System i b_ETAS\
Nonl i nears\Limter.

e |n the Methods list, add the methods out
reset and conput e.

You can either rename the default method
cal c to conput e or delete it.

Body Specification in ESDL

5.12

e Use the Interface Editor to edit the corre-
sponding method interfaces as follows:

Method Arguments Returns
conput e cont nx voi d
cont in
cont mMm
out voi d cont
reset cont initVal voi d

e Enter the ESDL code for each method and
save the method. The ESDL code for each
method is listed below.

reset (initVval)
mem = initVval;

cont out ()
return nem

compute(mm, in, nx)

mem = nem+ K * in * dT,

mem = Limter.out(m, nmem nx);
The example shows how to use an existing module as a building block for a
new one. The second statement in the conput e method limits the integrator
signal. The limiter's out method returns the signal value or the lower or upper
bound, which is assigned to the integrator’s memory.

Using ESDL in State Machines

When modelling state machines in ASCET, the description in ESDL is often
more compact than block diagrams. ESDL can be used to describe both states
and transitions between states.

Typically, a state can have three up to three different actions, which are labelled
entry, static and exit. They are performed when the state is entered, while it is
active, and when the state is terminated.

Body Specification in ESDL

139

140

State Editor for: state

Edit
State Calar [~ Start State oK
j I LI I~ Hierarchy State

LCancel
Enty | Static | Exit |

|<EsDLs (= Edit |
- |

-
A ¥

The actions in a state can be edited in the State Editor. They can be specified in
ESDL if the <ESDL> option for the corresponding action is selected. This acti-
vates the text field for the action which is a simple ESDL editor. From this editor
the output and input variables of the state machine and all other items in the
Elements list of the state machine can be accessed.

A transition between states usually has a condition that triggers the transition
to another state; it can have an action as well, which is executed when the
transition is performed.

Transition Editor for: trigger

Edit

Caolar idth oK
Trigger Pricrity Cancel |
I trigger j |1

Actian | Condition

|<EsDLs = it |
- |

¥
4 ¥

The transitions between states can be edited in the Transition Editor. Again,
conditions and actions can be specified in the text field in ESDL after the
<ESDL> option has been activated and all items in the elements list can be
accessed.

Body Specification in ESDL

5.13

In all text fields of both editors, standard ESDL code is used as in the examples
above. The one important point to remember in ESDL syntax is that the expres-
sion entered in the "Condition" tab returns a boolean and is not terminated
by a semicolon. You find more about editing actions and conditions in ESDL in
the ASCET user’s guide, chapter 4.2, section "Conditions and Actions in the

State Diagram".

Overview: ESDL Features Compared

ESDL vs. Block Diagrams

The following table presents an overview of differences in model descriptions

using ESDL and block diagrams.

ESDL Block Diagrams
this X o}
sel f X X
%operator X o
++, - - operator X 0
f or statement X o
atomic sequences o} X

Tab. 5-12 Synopsis: ESDL vs. block diagrams

Reference: ESDL vs. ANSI C

The following table presents an overview of the main differences between the
ESDL modelling language and the ANSI C programming language.

ESDL ANSI C
bit data type, shift operations o X
string data type, string operations o} X
cont i nue statement o X
pointer arithmetic o X
preprocessing o X

Tab. 5-13 Synopsis: ESDL vs. ANSI C

Body Specification in ESDL

141

142

Reference: ESDL vs. Java

The following table presents an overview of the main differences between the
ESDL modelling language and the Java programming language.

ESDL Java
inheritance o X
dynamic instantiation o] X
polymorphism o X
method overloading o} X
explicit type casting o X
error handling o} X
garbage collection o X

Tab. 5-14 Synopsis: ESDL vs. Java

Body Specification in ESDL

6.1

Body Specification with Block Diagrams

With the block-oriented description language of ASCET embedded control sys-
tems can be specified graphically. It is the graphical equivalent of the ESDL
language used for specifying control systems textually.

This section describes how to specify software modes using block diagrams in
ASCET. The following section starts with a brief introduction to the graphical
description of components, which is followed by an overview of the graphic
modelling language.

The overview section presents linguistic means available in block diagrams:
e Elements
e Expressions
e Statements

Block diagrams and ESDL are, for the most part, functionally equivalent in
ASCET. The differences between block diagrams and ESDL are summarized in
section "ESDL vs. Block Diagrams" on page 141.

Graphical Description of Elements

Every element and operator used in a component is graphically represented by
a diagram item in the form of a rectangle. The interaction between these ele-
ments is represented by lines connecting the corresponding diagram items.

The interface of an element is represented graphically by pins (Fig. 6-1). Each
argument of a method is represented by an argument pin (with a little arrow
head pointing towards the block) at the block frame. The return values are
represented by a return pin. The call to a method is associated with its return
pin. Methods without arguments or return values are represented by a method

pin.
— Method Pin
—+ Argument Pin

— Return Pin

Fig. 6-1 The representation of pins in graphical blocks

Body Specification with Block Diagrams

143

144

6.1.1

The name of the element is placed underneath the rectangle. An icon can be
used to illustrate the functionality of an element. The position of the pins can
be changed by the user

Argument Name

Icon
Name of Method
Argument Pin—»jm l o
4 mi — «—— Pin for Return Value of Method m1
in2 i
-+ inl
me md
S0 I+ Method Pin
SO
?
Sequence Call for Method m2 Sequence Call for Method m3
Fig. 6-2 The graphical block for a complex element.

The example in Fig. 6-2 shows a complex element with three methods.
Method mi has one argument and a return value. Method n2 has no return
value and is represented by its arguments, method n8 has neither arguments
nor a return value and is represented by a method pin.

Basic Elements

Elements are represented as rectangular blocks with the arguments and return
values represented as pins. Each element has a name that is placed underneath
the block by default, but this position can be changed.

All basic types have a fixed interface and their graphical representation is also
fixed.

Body Specification with Block Diagrams

Basic Scalar Elements

‘ariable Parameter Canstart Variable Parameter Constart
Calibration Mo Calibration
S0 Fara
- [E— T El— Volatile
RS congkd <0.0: 5 wardnc /MC constane <0.0x A8 AMNC Local
J04- f0s-
- — [— T— e 1— Norrvalatie
vardiny ANV pardiny vardnecny MY MNC pardneny /MO
J0s- £/
Co— [Ep— L [— [El— Imparted
warb parBny conste A varBnony MY MC paiBncny congtBnc A¢ /MC
0 £/
Cz— k— —{o [— [— Exported
warl palCry constC <0.0: A varlCneny MY MMC parCneny constChe <0.0: A4 /NC
J0s- J07-
T Wirtual W ariable
warl) warline MMC
1 [+— Dependent Parameter
parE parEnc /MNC
Fig. 6-3 The graphical representation of basic elements

Basic scalar elements have one argument pin for setting a new value (if their
value can be set), and one return pin for reading the current value. The icon
inside the block represents the kind of the element. The scope of an element
is also indicated by the icon: a solid red square represents an imported
element, a solid circle an exported one. If the kind of the basic scalar element
does not permit writing to it (e.g. parameters) the corresponding pin is miss-
ing. Elements that can be calibrated have a small black box on the left side.

Messages

Messages are the input and output variables of processes. Depending on the
message type, they are displayed with one or two pins. The figure shows mes-
sages with the attributes Calibration and volatile; changing one or both
attributes makes the display change as shown for variables in Fig. 6-3.

Receive Send & Receive Send
A0 £07-
local
mizg_receive_| mzg_sendreceive | mizg_send_|
#0 £07- i
imported
meg_leceive i meg_zendreceive mzg_zend
A0 S04
exported
msg_leceive_g msg_sendreceive_e msg_send_e

Body Specification with Block Diagrams

145

146

Literals

Literals are represented by small blocks, with the value of the literal inside the
block:

Arrays and Matrices

T [E]

An array or matrix has two methods, one for setting the content of a specific
element and one for retrieving it. The read and write operations can occur
independently of each other. The value to be written to the array is represented
by the left (argument) pin, the corresponding index by the bottom left pin. The
result of reading from the array is represented by the return pin and the index
by the bottom right argument pin.

—H >
ot
M
/1.l’calc /chalc in_v
e I
invalue outy/alue / ry /
aray Aprocess . 2process
—A[EE] ——e»
Input_Walue Output_falue
inlndez:
T
autl ndes; T
in_%
— I
out_x,

Matrices are represented similarly, but each method takes two index argu-
ments. The x-index is represented by the bottom left pin, like the index of an
array. The y-index is represented by the pin at the top of the block with the top
left pin being the index for writing to the matrix, and the top right pin the
index when reading from it.

Body Specification with Block Diagrams

When arrays or matrices are to be passed as method arguments, or returned
as return values, this is done with the help of Get and Set ports. These are
made available via the Get/Set Ports pop-up menu function in the drawing
area.

arg_anay/calc_aray aray
> J2/cale_armay
i JE
1/ cale_aran outialue
T
o — \
outlndex
Set Port Get Port

out_Y'

arg_mabni=Szals_matrix matrix

>

[=]

{2/calc_matrix

oLt alue

out_g
Fig. 6-4 Get and Set ports for arrays and matrices

The Get port provides a pointer to the entire data content of the respective
element; by the Set port directs the element to access a certain memory area.

An example: In Fig. 6-4, array reads from the memory area used by
arg_array, while matri x reads from the memory area used by
ar g_mat ri x. The pointers to the respective memory areas are passed via the
Get and Set ports. It is important that writing to the Set port is performed as
the first step of the method; otherwise, inconsistencies arise.

Note

The same mechanism is used to pass classes, too.

Body Specification with Block Diagrams

147

148

Characteristic Tables

HH E Elﬂurmal "I

Depending on the dimension, characteristic tables, including fixed tables, have
one or two argument pins on the left side where the sample values are sup-
plied, and one return pin where the value of the interpolation is given.

fS.fcaIc _.IED_l—’ f4.l’ca|c
s —— T
in OE out —'ED—,—'T% out

in2

The above representation corresponds to using the get At method in ESDL.
(cf. the respective sections on page 129 and page 131).

As with ESDL, the search and interpolate steps in tables can be separated in the
block diagram editor. To do so, the extended table interface has to be made
available via the Extended Interface pop-up menu function in the drawing
area.

1ione_d search
/ - - [1itwo_d
search_x search_x |
 [=dx Az -
—+
One_D J2ione_d Tuo_D J 2itwo_d
interpolate interpolate

A distribution has one argument pin for the sample value on the left side of the
distribution. A group table has one return pin on the right side. It contains no
own sample point distribution, but references one or two distributions instead.
Group tables and distributions do not have an extended interface.

J3cale —

ffcale f2icalc in_x Jaicale

I,._{ LT - distribt ﬁ I
in_x out Jicale E'— out2

T dismpd

One_D_group {distrib1) Two_D_agroup (distrib1,distrib2)

in_y
distrib2

Body Specification with Block Diagrams

6.2

As with arrays and matrices, Get and Set ports can be made available via the
Get/Set Ports pop-up menu function.

Note
If you want to pass characteristic tables as method arguments, you have to
embed them in classes, and pass the class via the Get port.

Resources

-

Resources are represented by a block with the two methods r eser ve and
r el ease at the top. Both methods have no arguments or return values and
are represented as method pins:

TEsS erye release

e e

Implementation Casts

ica

Implementation casts are represented by a small diamond with two pins.

impl_cast_1

Elements of User-defined Type

The methods, arguments and return values of elements of user-defined type
are represented by argument or return pins at the graphical block. The user
can define the layout of the representation for each user defined type. Get and
Set ports can be made available for these elements, too.

Expressions

Expressions are formed in block diagrams by connecting elements or other
expressions with operators. Like in ESDL, expressions are built up recursively, as
follows:

e An element is an expression.

e The result of an operator is an expression (the operands itself are
expressions).

Body Specification with Block Diagrams

149

150

e The return value of a method call is an expression. If arguments are
supplied to the method, these arguments also belong to the expres-
sion.

The range of an expression is therefore limited by the base expressions in that
expression, which are either elements or return values of methods without
arguments.

Expressions are built graphically by connecting the return pins of elements or
operators with the argument pins of methods or other operators.

There are no precedence rules for operators in the BDE, since the expressions
are “bracketed” by the way the lines and operators are connected. The follow-
ing example shows the difference between the expressions (a*b) +c and
a* (b+c) in the graphical representation.

The evaluation order of the arguments of operators is sometimes very impor-
tant. In the graphical representation this sequence is always from top to bot-
tom, except for the four basic arithmetic operators with at most three inputs.
The order of evaluation is illustrated in the following diagram:

i L
J2/process _D_|_’

fiprocess 5 £3/process
[[+ [[> [[+
a . out . out3 _D_l—' outd
[T= -
b b
d
a+b a+b+0 a+b+(c+d)

In block diagrams the number of arguments to the operators is often limited
to a maximum of 10 or 20 inputs. The evaluation order of method arguments
depends on the order in which they are defined. Since the layout of an element
can be changed, the order in the layout must not coincide with that in the
definition.

Body Specification with Block Diagrams

6.2.1

6.2.2

6.2.3

Arithmetic Operators

+ - X = 7

The meaning of the operators is the same as in ESDL. The following operators
are available: Addition, Subtraction, Multiplication, Division, Modulo. The
addition and multiplication operators can have between 2 and 10 arguments.
The subtraction and division operators have only two arguments.

Comparison Operators

> € £ 3 = g
The comparison operators are identical to their counterparts in the textual rep-
resentation with ESDL. The following comparison operators are available:
e Greater Than
e Less Than
e Lessor Equal
e Greater or Equal
e Equal
¢ Not Equal

The Equal and Not Equal operators can also be applied to non-arithmetic ele-
ments.

Logical Operators

The meaning of the logical operators And, Or and Not is identical to their
meaning in ESDL. The And and Or operators can be applied to more than two
operands.

Body Specification with Block Diagrams

151

152

6.2.4

Conditional Operators

Multiplex Operator

=

The conditional operator (? :) is named Multiplex operator (for short:
Mux) in the graphical representation. The graphical representation of (condi -
tion ? trueValue : falseVal ue) is as follows:

condition

trueWalue

The multiplex operator can also be used directly with several arguments (left
image); the right image shows the identical functionality built as a cascade of
several Mux operators:

conditioriz E condition2

condition] E E conditiond

[>
—'I:D—L’ taketfakeValue
fakelfalezfalue -~

faks ettruaValue

truetvalue

truedValue

The above example is equivalent to (conditionl ? (truelVal ue
condition2 ? (fal seltrue2Value : fal selfal se2value))),
i.e., the first argument has priority over the others. A cascaded Mux operator
with n logical condition arguments can select between n+1 arguments
between which it switches. The type of the arguments is arbitrary, but all argu-
ments must be of a compatible type.

Body Specification with Block Diagrams

6.2.5

Case Operator

-

The case operator is a special case of the conditional operator. It does not take
a logical value but a switch value of type unsigned discrete. The Case operator
selects one of the arguments depending on the switch value. If the switch
value is 1, the first argument is selected, if it is 2 the second is returned and so
on. If the switch value falls outside the range, the last argument is selected.

The above example is equivalentto ((a=1) ? bl : ((a=2) ? b2 : b3)).
Other Operators

Besides the operators described so far, the following operators are also avail-
able:

e Max and Min

e Between
o Abs
e Negation

Max and Min Operators

MY MH

The Max and Min operators return the maximum or minimum of the argu-
ments. Both operators can have 2 to 20 arguments; they can be applied only
to arithmetic elements.

Body Specification with Block Diagrams

153

154

6.3

Between Operator

The Between operator checks if the argument val ue lies between the limiters
m n and max. If this is the case, the logical return value out _| og is t r ue,
otherwise it is set to f al se.

walue

/1.l’procss
e —— w1
min out_log
The graphical representation is equivalent to out _log = ((value >=

mn) & (value <= max)).The argument and both limiters have to
be either cont or di screte.

Abs Operator

=1

This operator returns the absolute value of the argument. Argument and
return value have to be both either cont or di screte.

Negation Operator

e

The Negation operator returns the negative value of the argument. Argument
and return value can be cont ordi scr et e; if the argument is cont , the type
of the return value should be the same.

Statements

Graphical specifications of components can be hierarchically distributed over
several diagrams. In a diagram one or more methods or processes can be
described which can be executed independently of each other. The order in
which calculations are executed, as well as the particular method or process a
calculation belongs to is determined by sequence calls.

Body Specification with Block Diagrams

6.3.1

6.3.2

For each statement of a block diagram, there is a sequence call that assigns it
to a process or method. The order within a process or method is determined
by the sequence number that is part of the sequence call. A sequence call is
represented graphically as follows:

Method Called

/Sequence Number/Method Calling

With the sequence numbers the order of the operations belonging to one
method or process can be determined by the user. A built-in sequencing algo-
rithm can be used to assign sequence numbers that correspond to the evalua-
tion order of standard block diagrams.

A sequence call generally consists of three fields:
e The name of the method called.
e The name of the method or process calling.

e The sequence number determining the position of the called method in
the calling method or process.

In the case of scalar elements, the name of the method called is left blank as
this is always the assignment of a new value.

There are three kinds of statements:
e Assignment statements
e Method calls
e Control Flow Statements, e.g. i f ..t hen..el se, whil e

Assignment

An assignment statement is the assignment of the value of an expression to an
element. In case of an assignment to a complex element, only an element of
the same type can be assigned. The assignment is then not the assignment of
a value but of a reference.

A special case is that of assigning a value to the return value of a method. The
associated sequence call must be the last sequence call of that method.

The Break Statement

El

The return from a method or process can also be established by the break
statement. This statement does not have to be the last of a method or process.

Body Specification with Block Diagrams

155

156

6.3.3

6.3.4

Method Call

An assignment is a special case of a method call. When calling a method in a
block diagram, the corresponding sequence call has to be filled in properly and
the arguments to the method have to be supplied.

Control Flow

The following control flow statements are available in block diagrams:

e |f.Then

e |f.Then.Else

e Switch

e Wile
All control flow statements evaluate a logical expression and, depending on
the result, activate a control flow branch which may contain several state-

ments. The statements represented by sequence calls are connected to the
control flow by connectors.

The sequence number of the sequence call determines the order of the state-
ments connected to the activated control flow branch.

If...Then

E

The | f ..Then statement evaluates a logical expression and activates a control
flow branch if the result is Tr ue. The control flow output is connected to one
or more sequence calls which are triggered whenever the control flow branch
is activated. Whenever the input expression evaluates to Tr ue, the connected
sequence calls are executed.

[Siiter

e L1 Al
N T T

The example above is equivalent to

if (1) {
c=0Db
I

Body Specification with Block Diagrams

If...Then...Else

IF

I f .. Then..El se is similar to | f ..Then, but has two control flow branches.
Depending on the value of the logical expression, the left or right branch is
executed, the right branch is executed if the value is Tr ue, the left one if it is
Fal se.

":|l> _______ .

The example above is equivalent to
if () {
d = b}

el se

c

=~ Il

b
b
As for thei f ..el se statement in ESDL, the generated code is optimized when

the expression for | f ..Then or | f ..Then..El se is always t r ue. Section
"If...Else" on page 120 describes how the optimization works.

Switch

]

The Swi t ch construct is similar to the Case Operator. A Swi t ch evaluates a
si gned di screteorunsi gned di scret e value and, depending on that
value, activates different control flow branches. These branches are separated
from each other, so that a “fall through” like in the swi t ch construct in C is
not possible.

Body Specification with Block Diagrams

157

For each alternative the value for the branch can be defined by the user. The
last branch at the bottom is the default branch that is executed if the input
value does not equal any of the values at the branches.

a J2/process

/0

b

The example above is equivalent to
switch (a) {
case 0: c b; break;

case 5. d = b; break;

defaul t: break;
I
While

=i

The only loop construct available in block diagrams is the Whi | e loop. Care
has to be taken to avoid infinite loops or loops unsuitable for real-time appli-
cations.

Similarly to the I f ..Then statement, the control flow is activated when the
value of the logical expression is Tr ue. The operation is executed as long as
the value of the logical input remains Tr ue. Therefore, the value of the logical
expression should be manipulated in the while loop. In order to avoid infinite
loops, the number of maximal loop iterations can be limited to a fixed, user
definable number.

158 Body Specification with Block Diagrams

6.4

T !
Ao 7 aCla o

The example above is equivalent to
while (i<10) {
c=b * c
i =1+ i;

I

The Semantics of Block Diagrams

Each part of a block diagram is assigned to a process or method. The execution
order is determined by the sequence numbers in the sequence calls. When a
process or method is activated, all statements whose sequence calls are
attached to that process or method are executed in the order given by the
sequence numbers.

In contrast to standard block diagrams, an operation is executed only on
demand, i.e. when its sequence call is activated. The order of execution is sim-
ilar to the left-to-right principle of standard block diagrams: before an opera-
tion, for example an addition, can be performed, the values for all its
arguments have to be computed.

The order of evaluation of the arguments of methods of user-defined compo-
nents is given by the order of their declaration. This order, however, may not
coincide with the order implied by the diagram, as the argument pins can be
arranged arbitrarily at the block frame.

The evaluation of operands etc. is directly associated with the statements that
use the results. This may result in multiple evaluations of an expression.

S 0ms
— —
o
Sz 0ms
——
d
/1.l'sg.rr|c

T

]

Body Specification with Block Diagrams

159

160

6.4.1

In this example, the addition is executed three times, for each of the assign-
ments to the variables c, d, and e. The addition is used in assignments in two
different processes. Without multiple execution, it would not be clear in which
of the processes the addition should be executed. The expression a + b is
evaluated twice in the process 10ms.

Graphical Hierarchies

In order to structure a graphical specification, graphical hierarchies can be
used. Graphical hierarchies do not influence the semantics of a block diagram
but are used for structuring only. A hierarchy contains a part of the block dia-
gram. The lines that cross the border of the hierarchy, i.e. that connect ele-
ments inside the hierarchy with those outside, are represented by pins. In
ASCET 5.2, an icon can be assigned to hierarchies in the block diagram editor.

Body Specification with Block Diagrams

7.1

Body Specification in C

The specification of the body of methods and processes can be implemented
in C code as well as in the form of block diagrams and ESDL. As with the other
specification methods, only the body of a method or process has to be speci-
fied. The method declaration, the function head and frame, and the data
instantiation and initialization are generated automatically.

In contrast to specifications in either ESDL or with block diagrams, components
in C code are specified on the implementation level, rather than on the model
level.

ESDL BDE/State Physical Model Level

Machine (Independent of Software
Architecture)

Implementation Transformation

Implementation Level
(Independent of Software
Architetcure)

Expansion

Implementation Level

Generated C-Code (Depending on Software
C-Code Architetcure)
Fig. 7-1 From physical model to implementation

This has several important consequences:
e Thereis no transformation from the model to the implementation level.

® For each code variant (different target, different specification level, dif-
ferent implementations) the C code can be different. As a conse-
guence, the code must be specified separately for each variant.

¢ The C code has to be adapted to the software architecture of the code
generated by ASCET when user-defined types are used. This is because
the interface is generated and the exact naming convention for the
generated C functions depends on the expander and may not be trans-
parent to the user. In the present expander, the identity tag of the class
is used in the name for the generated functions in order to guarantee
a unigue name space.

Structure

A component described with C code has the same structure as if it was
described with ESDL or as a block diagram. The C code describes the body of
methods or processes. Each code variant is stored separately.

Body Specification in C

161

162

7.11

The specification of a component in C code depends on:

The target, e.g. whether the C code is for the PC, PPC or for a specific
controller CPU. Here the code can vary, since, for instance, a controller
CPU has special registers that have to be addressed directly, or the
endian format is different.

The specification level. The C code can be intended to represent the
physical level. In that case the implementation level coincides with the
physical level as far as possible, e.g. the type cont i nuous is repre-
sented as a 64-bit float. Alternatively the C code can be on the imple-
mentation level of fixed point arithmetic.

The chosen implementation, if the C code is on the implementation
level, since the C code depends on the implementations of the vari-
ables, particularly on their quantizations.

Methods and Processes

For each method or process a C function is generated. The function head is
generated automatically, the C code is only used in the function body itself.

Example:
The body of the method cal c()

a
c
could

=b + d;

=a* c;

result in the following generated code (including function head),

depending on the software architecture required for the experimental target:

voi d QX040H28HI8HAMDI870S4G7MDI BQQLSM cal ¢ (struct
QX040H28HI8BHAMDI870S4G7MDI BQRLSM Ohj *sel f) {

}

/* BEG N handwritten code */
/* calc 1 */fa=Db + d;
/* calc 2 */c =a * c;
/* END handwitten code */

The names of the functions generated for the methods and processes of com-
ponents depend on the code expander and the software architecture of the
generated code. The user has no influence on these names. Depending on the
code expander a unique name space is achieved, i.e. methods at different
classes can have the same name without any naming conflicts. In the above

Body Specification in C

example the identity tag for the component is used to generate the unique
name QX040H28HI8HAMDI870S4G7MDI BQQLSM cal ¢ for the method
cal c.

Variables and Function Parameters

The variables of a component are held in a data structure that, like the function
heads, is automatically generated. The user has no influence on this data struc-
ture. A part of this data structure consists of the instance variables of the com-
ponent, which can be used in any method. Therefore they have to be passed
to all generated functions. This data structure also depends on the code
expander and the exact naming is therefore hidden from the user.

In the above example, the component has a data structure of its own that is
passed to the generated function for the method calc. The data structure could
look like this:

struct QX040H28HI8HAMDIB70S4G/MDI BQQALSM Obj {
ASDCbj ect Header obj ect Header ;
real 64_0Obj *a;
real 64_Obj *b;
real 64_0Obj *c;
real 64_Obj *d;
b
The element names must be valid ANSI C identifiers. In addition to the reserved
keywords of C, the names sel f and t hi s are reserved.
Note

When specifying components in C code, the user must ensure that the
names of functions called in the method body do not collide with the names
of variables defined in the interface.of that same component.

Accessing Elements:

To allow easy access to the elements of the component, a macro is defined
automatically for each element. Each element can then be accessed simply by
its element name.

The public elements defined in other components can be accessed from within
C functions using the notation Defi ni ngObj ect. Publ i cEl ement .
Access is restricted to basic elements, arrays and matrices. The public interface
of complex elements defined in other components, e.g. using the get At
set At orsear ch andi nt epol at e methods as in ESDL, cannot be accessed
from C functions.

Body Specification in C

163

164

Automatically Generated def i ne Statements for Instance Variables:

#define a sel f->a->val
#define b sel f->b->val
#define d sel f->d->val
#define c self->c->val

/* BEG N handwritten code */
/* calc 1 */a=Db + d;
/* calc 2 */c =a * c;
/* END handwitten code */
#undef a
#undef b
#undef d
#undef ¢
Working with Basic Elements :

For basic types, the method names of these types can be used, as explained in
chapter 3 "Types and Elements" on page 89. When accessing arrays or matri-
ces, the index operator '[] ' can be used in a C-like manner.

Since the method names of a user-defined type depend on the expander, the
method of user-defined types can only be called with the knowledge of the
exact generated function name for that method. In the above example the
function name QX040H28HI8HANMDI870S4G7MDI BQQALSM cal ¢ is gener-

ated for the method cal c.

When using elements defined in ASCET, these elements are of a model type
(either basic or user-defined). Basic types have the following default implemen-

tation, which is taken on the physical level:
e continuous = real 64
e udisc = unsigned int32
e sdisc = signed int32
e |log = intl6.

Note

Elements of type | ogi cal should not be used as numbers in the C code,
since this depends on the default implementation, which is subject to

change in further releases of ASCET.

Body Specification in C

The default implementation is replaced by the user-defined implementation
when switching the specification level (e.g. fixed point code). Elements of
model type | ogi cal can be represented for instance as a bit, and can there-
fore not be used as a number in the C code.

Messages:

Messages are part of an intra-task (intra-process) communication concept used
within ASCET models (see chapter 1.3). To achieve data consistency, the
ASCET code generation has to create additional message copies.

If messages are used within the functional code (read/write access), additional
code is required to ensure safe copying of the current values from message
originals to the local copies. Within the process body, only these local copies
are used. At the end, all local copies which could change their value within the
process body must be written back to the message originals.

In ESDL and block diagram components, ASCET generally detects very well,
which messages are changed within a process. However, this functionality is of
limited availability when using C code for the body specification. Here, the user
has to take care of data consistency on his own.

In general, ASCET is not able to detect where and when a variable is written in
user-specified C code. ASCET recognizes only a few special cases where, e.g.,
the variable name is followed by a =, or where assignment operators like ++
are used. If a variable is changed within a macro, an extern function, or via
adress operators and pointer arithmedic, ASCET does not detect the change.

When messages are used, this behavior results in message copies being cre-
ated at the beginning of the process, but—under certain circumstances—not
written back at the end.

A simple example shall illustrate this. The module shown below contains the
messages b2, ¢, and d. The messages ¢ and d are directly written, b2 is used
within a macro.

4 C Code for: Test Project: Test_DEFAULT [PC/Physical]

Component Diagram Element Edit Yiew Code Variants
TETETEFLED = O i ENomal o]| & D O &
Elements Sorted by IName 'l = | process[] |Header|

&7 O self::Test uints bi:
@ bz::mesgludisc] b1 = 0O;
7 @ cimesafudisc] [

d::mesgludisc]

fidefine makro(a) a = Z:

makroikl)
d = hi;

makro (k2]

Body Specification in C

165

166

In the generated code, copies are initially created for all three messages (1).
However, since only ¢ and d are accessed in a way ASCET can recognize, only
these two message copies are written back at the end (2). The change of mes-
sage b2 that occurs in the macro, is not recognized and gets lost.

S

* Function definitions — Algorithms

*.7

void initCla=s TEST (TEST_Cla==s *clas=)
{

class—:b2 = ¥3_initlInstance_uint32 (0. 1
wi_initInstance uint32 (0, ASD VARIAELE):
ASD VARIABLE)

class—:d =
class—>c = w3_initInstance uint32 (0.
sEpublicss

void TEST process (woid)

uint32 _tluint32;
uint32 _tZ2uint32;
uint32 _t3uint32;
SUSPEND_HS INTERRUFTS

ASD_WARIABLE) ;

_tluint32 = TEST_ClaSSOhj.h2—>val;} (1)

_t2uint3? = TEST_Cla==0bj . c—>val:
_t3uint32 = TEST_Cla==0bj.d-:val:
RESUHE INTERRUPTS
{
<% process 1 *. uint8 bl:
S% process 2 *. bl = 0;
A% process 3 *. _t2uint3? ++:
S% process 4 *.

#define makroia) a = 2:
S% process b *.

S% process 7 *. makroibl):
S% process 8

S% process 9 *.
<% process 10 *.
<% process 11 *.
S% process 12 *.

t
SUSPEND_HS INTERRUFTS
TEST_Cla=s=0bj.c—»wal

* _t3uint32 = bl;

makroi_tluint32):

= _tZ2uint3Z: (2)
TEST_Cla=s0bj.d-»wal = _t3uint3z;

RESUME INTERRUPTS
¥

Arguments:

Arguments of methods are mapped to function parameters in the parameter
list of the function generated for the method. These are also accessed by the

name of the argument.

Local variables:

Following the general C rules, function local variables can be declared in the
method body. Here only variables of a C data type can be declared, not how-
ever of an ASCET model type. In particular, no local variables of a user-defined
type can be used in components within body specifications in C.

real 64 i;

for (i=0; i < 10; i++)

Body Specification in C

sum = sum+ af[i];

}
Since there is a code variant for each implementation variant, the user can
define the local variables and their data types with respect to the implementa-
tion variant.

Characteristic lines and maps:

Characteristic lines and maps defined in the component are evaluated via three
subroutines each (as in ESDL).

Table LLpr from section "One-dimensional Tables" on page 129 is again used
as an example for a characteristic line.

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0
0.0 0.8 1.1 1.5 1.8 2.0 2.2

The Char Tabl el_get At _real 64_real 64(charline, index) sub-
routine is usually sufficient for the evaluation of characteristic lines. Linear
interpolation for this example works as follows:

tnpVal = Char Tabl el_get At _real 64_real 64(LLpr, 3000);
/] assigns 1.5 to tnpVal

tnmpVal = Char Tabl el_get At _real 64_real 64(LLpr, 2280);
/1 calculates interpolation factor for 2280

/1 interpol ates value for 2280 as 1.212 and

/1 assigns it to tnpVal

tnmpVal = Char Tabl el_get At _real 64_real 64(LLpr, 9000);
/1 calculates interpolation factor for 9000

/1 interpolates value for 9000 as 2.2 and

/1 assigns it to tnpVal

In some special cases, though, separating the search and interpolate steps in
tables can be more efficient. In these cases, the subroutines
Char Tabl el_search_real 64(charline, index) and
Char Tabl el_i nt er pol _real 64_real 64(charl i ne) are used.

Char Tabl el_search_real 64(LLpr, 1000);
/1 sets sanple point to 1000

tnpVal = Char Tabl el_i nterpol _real 64_real 64(LLpr);
/1 assigns 0.8 to tnpVal

Char Tabl el_search_real 64(LLpr, 2780);
/1 calculates interpolation factor for 2780

Body Specification in C

167

168

tnmpVal = Char Tabl el_i nterpol _real 64_real 64(LLpr);
/1 interpol ates value for 2780 as 1.412 and
/] assigns it to tnpVal

Table LLpr 2 from section "Two-dimensional Tables" on page 131 is again
used as an example for a characteristic map:

y \ x 0.0 1.0 8.0 15.0
1.0 -5.0 -3.0 0.0 1.0
3.0 0.0 1.0 4.0 6.0
5.0 8.0 5.0 4.0 4.0

The Char Tabl e2_search_real 64_real 64(charline, indX indY)
subroutine is usually sufficient for the evaluation of characteristic lines. Linear
interpolation for this example works as follows:
tnpval =
Char Tabl e2_get At _real 64_r eal 64_real 64(LLpr2,8,5);
// assigns 4.0 to tnpVal
tnpVval =
Char Tabl e2_get At _real 64_real 64_real 64(LLpr2, 2, 2);
/1 calculates interpolation factor for x=2 and y=2
/1 interpolates value for (2,2) as -0.571 and
/] assigns it to tnpVal
tnpval =
Char Tabl e2_get At _real 64_real 64_real 64(LLpr2, 20, 9);
/1 cal cul ates extrapol ation factor for x=20, y=10
/] extrapol ates value for (20,10) as 5.0 and
/] assigns it to tnpVal
In some special cases, though, separating the search and interpolate steps in
tables can be more efficient. In these cases, the subroutines
Char Tabl e2_search_real 64_real 64(charmap, indX, indY) and
Char Tabl e2_i nterpol _real 64_real 64_real 64(charmap) are
used.

Char Tabl e2_search_real 64_real 64(LLpr2, 1, 3);
/] sets x sanple point to 1 and y sanple point to 3
tnpval =

Char Tabl e2_i nterpol _real 64_real 64_real 64(LLpr2);
/1 assigns 1.0 to tnpVal
Char Tabl e2_search_real 64_real 64(LLpr2, 4, 4);
/1 calculates interpolation factor for x=4, y=4

Body Specification in C

7.2

tnpval =

Char Tabl e2_i nterpol _real 64_real 64_real 64(LLpr2);
/1 interpolates value for (4,4) as 3.143 and
/] assigns it to tnpVal

Header

Besides the description of the methods in the form of C code, a header can be
defined for macros and for included files. This header has a local range
restricted to the component. Therefore, no extra header file is generated, but
the definitions are copied into the generated C code file.

External Source Code

Existing C code can be integrated by importing external C code source files.
For this purpose, one C code file with a corresponding header file can be
attached to each code variant of a component. The C code file contains stan-
dard C function definitions, the header file contains the corresponding func-
tion declarations and structure definitions. The defined functions can be called
through the standard C conventions. It is possible to pass pointers and share
defined structures between methods or processes of the component and the
functions in the attached C code.

As an alternative to using a C code file, an object file with a corresponding
header file can be attached to a component. Like the header files of the com-
ponent itself, the range of the header files of the attached sources is local, i.e.
they are copied into the generated C code.

The attached C file is compiled separately and linked to the other (generated
and compiled) C source files. As a consequence, this compiled unit exists only
once within any given context. If the code and the included data is shared
between multiple instances of the same component, all instances share the
same compiled unit.

Note
The data in an attached C file is shared between multiple instances of the
component, and not instantiated for each of the instances.

Additionally it is possible to have i ncl ude statements in the C code. The
include files however are not stored in the database, but a stored on the file
system. The i ncl ude statement must contain the file path to these i ncl ude

Body Specification in C

169

170

7.3

7.4

files. The C code therefore depends not only on items in the database but also
on the file structure of the current installation. Therefore care has to be taken
when exchanging data, since these files are not known to the ASCET system.

Note

When using i ncl ude files the user must take care of the correct references
to these files on their own.

C-Code C-Code
Component Component
Instance1 Instance2
() . () Multiple
: Instances
A y Single
Attached Instance
C-Source Code Include Files
or Object Code
Fig. 7-2 Using external source code

Programming Model Interface

In earlier ASCET versions, the names of classes and methods could only be
used in C code, if they were labeled with an escape symbol ("@"). By means
of this mechanism, the so called Programming Model Interface (PMI) was acti-
vated. In ASCET 4.x and 5., class and method names are recognized automat-
ically, i.e. no escape symbol is necessary and the PMI is used by default (see
description of code generation options in the ASCET manual for details).
Therefore, the escape symbol is obsolete and should not be used any longer
when modelling in C code. For backward compatibility, however, the escape
symbol can still be used when modifying the respective code generation
option.

Access Macros

Similar to access methods in ESDL, ASCET offers access macros for the usage
with C code components. For the following operations, special macros are
defined. By means of these macros, the user can apply pre-defined operations
in the C code. The macros are described in the following sections.

Body Specification in C

Direct Acess

Elements of classes embeded into C code components can be accessed directly
using the macros

ASD_GET(recei ver, variable);
and
ASD_SET(receiver, variable, value);

Example:

Elements Sorted by IName 'l

cale] | Header I

¥ = ASD_GET(Classl, x): —
ASD_SET(Classl, x, v+3):

x

unpEaypads 4

25m04g M

Length of Arrays

The current length of an array can be determined using the macro
ASD _LENGTH (receiver);

Example:
z = ASD LENGTH(array);

Resource Access

Resources can be reserved and released using the macros
ASD_RESERVE(r esource) ;

and
ASD_RELEASE(r esource);

Acess to Private Methods

Private methods can be acessed using
sel f.
Example:
y = sel f.method_private(x);
Making Arrays Avaiable for Usage in External C-Code

Using the macro

Body Specification in C

171

ASD USE_ARRAY EXTERNAL(arr ay)

array acess can be converted from the ASCET internal representation to the
standard C code representation. The macro is a synonym for:

&array[0]
Example:
y = c_functi on(ASD_USE_ARRAY_EXTERNAL(array));

172 Body Specification in C

8.1

Continuous Time Systems

The comprehensive capabilities of ASCET are utilized to model discrete systems
for the functional development of controller software and for the simulation of
control units. In contrast, the control system associated with the control unit
represents a continuous time physical system that is described by differential
equations.

Examples for continuous time systems are the drive train or the wheel suspen-
sion of vehicles (mechanical system), the combustion process in the cylinder
chamber (thermodynamic system), the brake circuit of a vehicle (hydraulic or
pneumatic system), and the vehicle battery (electric or electrochemical system).
In addition, there are increasingly also mechatronic systems in which, e.g., the
mechanics of an actuator is connected with a local electronic control, or an
intelligent sensor processes the physical signal electronically.

ASCET supports the model design and simulation of such continuous time sys-
tems by means of so-called CT blocks. CT stands for Continuous Time and
refers to elements that are modeled or calculated in quasi-continuous time
increments. The continuous time modeling in ASCET is based on state space
representation, the standard description form in the design of continuous time
systems. This representation allows the description of CT basic blocks by non-
linear ordinary first-order differential equations and nonlinear output equa-
tions. ASCET provides several real-time integration methods to solve these
differential equations efficiently.

The continuous time model can be structured in modular and hierarchical
blocks. Continuous time models can be combined by ASCET controller specifi-
cations to create combined models, so-called hybrid projects. These hybrid
projects can be used to test a controller specification against a model of the
actual technical processes that need to be controlled.

The model and the simulation experiment are strictly separate; a model con-
tains the modular and hierarchical system description while an experiment
contains the selected data set, the integration algorithm, and the selected visu-
alization configuration including an input method for parameters. The results
are accurate, reusable models and high flexibility. At the experiment level, each
model variable can be flexibly altered and measured. The chosen integration
step size and the integration algorithm can be changed during the simulation,
without any time-consuming recompilation of the model or the current exper-
iment.

Structure of Continuous Time Models

The following sections describe the various structuring options for a model
with basic blocks, structure blocks, and graphical hierarchies.

Continuous Time Systems

173

8.1.1 Modeling with Basic Blocks and Structure Blocks

Models of continuous time systems can be structured in modules and hierar-
chies. The fundamental element is the continuous time basic block, or CT basic
block, in which the partial model is described in the form of differential equa-
tions, algebraic equations, formulas and assignments using the high-level lan-
guages ESDL or C.

Continuous time blocks (CT blocks) consist of inputs, outputs, parameters, and
discrete and continuous states with several dimensions, scopes and data types.
In addition, continuous time and discrete equations and output equations as
well as an initialization and termination sequence are also supported. State
events, software and hardware events (interrupts) can also be handled.

More complex continuous time models can be assembled to CT structure
blocks using the Block Diagram Editor (BDE). Using the Block Diagram Editor,
several CT basic blocks and/or CT structure blocks can be assembled and com-
bined. Fig. 8-1 shows a simple CT structure block composed of two CT basic

blocks.
basic block\
Ay R
/’ \\
/ \
/ ’r' \\ i,
structure block L L
’ I ” \\ \\ \\
I . /’ \\
inputs: u; ! \ inputs: F;
outputs: y; i | outputs: y, yd, ydd;
states: x1, x2; / \ | states: xm, xd_m;
parameters: Td, Ti; / | parameters: ¢, d, reib;
variables: delta := 0.0; / 1 || variables: Fr:=0.0;
/ \
state_equations: [\[| state_equations:
P R S
_/ _/

Fig. 8-1 CT structure block composed of two CT basic blocks

1. C should be used in imperative, exceptional cases only because ASCET provides
automatic verification functions (semantic checks, computing sequence) only for
ESDL.

174 Continuous Time Systems

Several CT structure blocks and CT basic blocks can in turn be combined to one
new CT structure block. Fig. 8-2 shows the possible structuring options with
CT structures.

CT Structure Block

CT structure block

CT basic block

A

CT basic block

CT structure block

A

CT structure |

block CT basic block

CT basic block

A
A

Fig. 8-2 Modeling with CT structure blocks

The correct computing sequence of the CT blocks is determined automatically.
CT basic blocks and/or CT structure blocks can be combined together with
Standard ASCET structures to build hybrid projects.

CT basic blocks are used to describe small physical components such as brakes,
wheels, etc. CT structure blocks serve to describe more complex entities such
as a power train facility or a complete vehicle model. CT basic blocks and CT
structure blocks are each stored in the database and are available for other
models. In this way, it is possible to easily build a model library. Modifications
to blocks or structures are automatically distributed to all models within one
database. This has the advantage that basic elements have to be maintained at
one place only while corrections are automatically adopted by all models
included in the same database. On the other hand, it must of course be
ensured that the basic elements remain compatible.

Modeling with Graphical Hierarchies

A CT structure block composed of many CT basic blocks and/or CT structure
blocks can be designed more clearly by combining several related CT blocks in
a graphical hierarchy (refer to Fig. 8-3). Graphical hierarchies and CT structures
can be combined into new hierarchies-the processing sequence is not affected
by these graphical hierarchies. In the Block Diagram Editor, graphical hierar-
chies are indicated by a double-line frame.

Continuous Time Systems

175

176

8.1.3

Graphical hierarchies are especially used when the individual CT blocks have
strong cohesion and require a fixed computing sequence within an integration
step. By using graphical hierarchies, algebraic loops (refer to section " Algebraic
Loops" on page 201 and section "Difference Between Graphical Hierarchies
and CT Structure Blocks" on page 204) that may be caused by CT structure
blocks can be avoided. The correct computing sequence is ensured by auto-
matic sequencing. Graphical hierarchies cannot be stored individually but only
together with the corresponding structure block.

CT Structure Block

Graphical Hierarchy

graphical
hierarchy
CT basic o CT basic o | CT structure
block o block o block
CT basic | 4 CT structure | CT basic
block o block ‘ block

Fig. 8-3 Graphical hierarchy

Experiments

Basic and structure blocks can be evaluated in a simulation experiment. In the
experiment, the integration method, the model stimulation, and the visualiza-
tion of results are selected and specified. Several experiment settings can be
stored for a (partial) model.

Projects and Hybrid Projects

The real-time experiment is defined in a project. Both basic blocks and struc-
ture blocks can be used in a project. Furthermore, it is only in the project where
individual integration methods and their step size can be assigned to each inte-
grated basic block or structure block. This allows allocating more CPU time to
the model part with high dynamics than to other, less dynamic model parts, if
the processor capacity is limited.

Continuous Time Systems

8.2

For a model in which the controller and control system models are to be com-
bined, a hybrid project can be defined, i.e., a project that contains both CT
blocks and standard ASCET components. A hybrid project thus allows the sim-
ulation of the control system and the control unit in one model (hybrid simula-
tion).

Project
CT structure block CT1 CT structure block CT2
Euler h=0.00005 sec P Adams-Moulton h=0.002 sec
n=1 n=2
dT=0.002 sec N dT=0.002 sec
A A

Discrete standard block

ECU simulation

\ 4

dT=0.01 sec

A

Fig. 8-4 Project

The communication between individual CT blocks and individual controller
modules is performed by explicitly connecting inputs and outputs in the Block
Diagram Editor (for details on projects, refer to chapter "Projects”
on page 13).

The experiment can be conducted on-line on the real-time simulation hard-
ware or off-line on the PC (unless special hardware has to be available or inte-
grated for the experiment).

Solving Differential Equations — Integration Algorithms

Due to the complexity of the equations in continuous time models and fre-
guent non-linearities, it is generally not possible to solve them by analytic
methods. It is therefore necessary to solve the differential equation system
using a numeric integration algorithm.

If only CT blocks are simulated in a CT structure, ASCET uses a global integra-
tion algorithm. The combination with discrete controller models is possible at
the project level only (combined modeling in a hybrid project). Projects also
support modeling with several CT structures using different integration meth-
ods.

Continuous Time Systems

177

178

To ensure high flexibility and short iteration cycles for modeling and simula-
tions, the configuration of the integration method, i.e., the actual integration
method and its integration step size, can be selected and modified interactively
during the experiment.

There is no ideal integration method that fits all types of models. The speed
and accuracy of the individual algorithms varies for different model character-
istics such as non-linearities, discontinuities, and dynamic behavior. A general
statement regarding the speed of each method cannot be given, as the step
size is adapted to suit the model and integration method best. However, some
guidelines for selecting a suitable integration method are given below.
Detailed information can be found in the literature, e.g.,

Addison, C. A.; Enright, W. H.; et al., A Decision Tree for the Numerical
Solution of Initial Value Ordinary Differential Equations. ACM Transi-
tions on Mathematical Software 17, 1, March 1991, Chapter "Contin-
uous Time Integration Algorithms".

ASCET provides the following integration methods:

e FEuler
e Mulstep 2
e Heun

e Adams-Moulton 2
e Runge-Kutta 4

To solve more complex or stiff differential equations that need more precise
calculation, ASCET provides the following variable-step iterative integration
methods:

e Dormand/Prince RK5

e Calvo 6(5)

e Dormand/Prince RK8
e Implicit RK2

e Implicit RK4

e Implicit Gear 1
e Implicit Gear 2

During calculation, these integration methods adapt the step width used iter-
atively in order to achieve a certain given precision. Therefore, they cannot be
used for real-time calculations.

Continuous Time Systems

8.2.1

Due to technical reasons, the implicit integration methods can only be used
with newer Borland and Microsoft compilers. They cannot be used with the
Borland C 4.5 compiler shipped with ASCET. These methods are taken from
the GNU Scientific Library. The integration method Gear 4 provided in previous
versions of ASCET is not available anymore.

Integration Methods — Overview

It is assumed that the differential equation exists in its state form:
X' (t) = f(x,t); with x(t=0) = xq

The table below lists some characteristics of the implemented integration
methods:

® The global error order p of the discretion error that is proportional with
hP, where h is the integration step size.

® The number of function evaluations per integration step. Each time,
the local variables are reset and the nondi r ect Qut put s,
di rect Qut put s, deri vat i ves methods are executed. This, com-
bined with the integration step size, can be used to estimate the speed
of the method.

e Single-step/multi-step methods (SSM/MSM): Single-step methods only
use the last estimated value for the next step, whereas multi-step
methods take the last n estimates into account.

e A predictor-corrector method (P-C) first uses an integration method to
calculate an estimate which is then corrected using a second method.

e Fixed or variable step size.

The table below contains a summary of these characteristics for inbtegration
methods with fixed step size (for MSM, the time when the function is com-
puted or when the break points are taken into account is indicated in paren-
theses).

Integration Error Function SSM/MSM P-K Step
Method Order Evaluations/ Size
Step
Euler 1 1(t) SSM no fixed
Mulstep 2 2 1 (t) MSM (t-h, t) no fixed
Heun 2 2 (t, t+h) SSM yes fixed
Adams-Moulton 2 2 (t, t+h) MSM(t-h, t) yes fixed
Runge-Kutta 4 4 4.(t, t+h/2, SSM no fixed
t+h/2, t+h)

Continuous Time Systems

179

180

To ensure that the integration methods can be applied in real-time, each
method is implemented using relatively few function evaluations per integra-
tion step and a correspondingly low error order.

Euler

The Euler integration method is the simplest integration method available. A
single-step method with only one function evaluation per integration step, its
cycle time is the smallest, making it relatively fast and especially suitable for
real-time simulations.

Mathematical Formula
x(t+h) =x(t)+h*f(x,t)
Its stability range is high, however, at the trade-off of a higher discretion error

that, at the same step size, is typically higher than with the other methods
(lowest order).

Mulstep

The Mulstep integration method is a multi-step method which is used for mod-

els without heavily varying eigenvalues. The cycle time of one integration step

is only slightly higher than for the Euler method since only one function evalu-

ation is performed per integration step. However, the error order is 2.
Mathematical Formula

x(t+h) =x(t) +h(3/ 2*f (x, t) -1/ 2f (X, t- h))

Heun

The Heun integration method is used for models without heavily varying eigen-
values. The cycle time is twice as long as with the Euler method.
Mathematical Formula

Predictor: x(t+h)=x(t)+h*f(x,t) (Euler)
Corrector: x(t +h) =x(t) +h/ 2*(f (x, t) +f (x, t +h))

Continuous Time Systems

Adams-Moulton

The Adams-Moulton integration method is also suitable for models without
heavily varying eigenvalues. In contrast to the previous algorithms, the model
should exhibit a smooth behavior. The cycle times for the Adams-Moulton and
Heun algorithms are almost the same.

Mathematical Formula

Predictor: x(t+h)=x(t)+h/2(3f(x,t)-f(x,t-h)) (Adams-Bashforth)
Corrector: x(t +h) =x(t) +h/ 2(f (x, t) +f (x, t +h))

Runge-Kutta 4

The Runge-Kutta integration method is best suited for models without heavily
varying eigenvalues. This integration method is very robust for this type of
model. It is the slowest, but also the most accurate method at comparable step
sizes. It is therefore possible to increase the step size considerably.

Mathematical Formula
x(t+h) =x(t) +h/ 6(K{+2Ky,+2K3+K,)

where

Ki = f(x,t)

Ko = f(x + Ky*h/2, t + h/2)
Kg = f(x + K;*h/2, t + h/2)
Ky = f(x + Ks*h, t + h)

Integration Methods With Variable Step Width

For experiments that need very precise calculation, the step width usually has
to be reduced. This can increase the time used for calculation significantly.
Models employing stiff differential equations often render the calculation
using fixed-step integration methods infeasible. Adaptive integration methods
are controlled by a target error margin. The step width is only reduced for
those parts of the model where it is needed. Because the step width (and
therefore the time needed for calculation) varies, these integration methods
are not real-time capable.

If the desired precision cannot be reached due to the parameter settings, the
experiment issues a warning in the ASCET monitor window. This happens
when the maximum iteration depth is set too low or the minimal step width is
set too high.

Continuous Time Systems

181

182 Continuous Time Systems

9.1

9.2

Continuous Time Basic Blocks

Continuous time basic blocks (CT basic blocks) are generally used to describe
small, independent physical components that can be used in various model
scenarios. Basic blocks can be specified using the CT block editor. The block
interface is specified interactively and the dynamics of the physical component
are described by differential and algebraic equations.

Basics

Continuous time basic blocks are specified either in C code editor or in the
ESDL editor. The two editors are slightly different for the specification of CT
blocks. The internals of the blocks, i.e., the differential and algebraic equations
as well as the control structures, are described within pre-defined methods.
The proper computing sequence required for correct, continuous time model-
ing is derived automatically (sequencing). The pre-defined method structure
cannot be modified by the user.

Basic blocks are used to describe models by means of nonlinear ordinary first-
order differential equations (ODE) and nonlinear output equations. To describe
a system of higher order, it has to be converted into several differential equa-
tions of first order. The table below illustrates the transformation of a second-
order system into its representation in the state space.

One 2nd-order differential equa- Two 1st-order differential equa-
tion tions
TZxx" 4 2.0*%d*T*X' + X = K*in; X' = Xxp;

xp' = (K*in - (2.0*d*T*xp) -) / T2

Tab. 9-1 Resolution of a second-order differential equation

The equations can be written in ESDL or C. The use of ESDL ensures a target-
independent specification and advanced semantic checks. When using C, the
entire functionality of the C programming language is available. The drawback
of C is that it is not possible to perform a semantic analysis. The use of ANSI C
enables largely target-independent modeling, however, this is not the case if
special language dialects such as for special hardware optimization is used.
Furthermore in C, the block's behavior has to be specified as direct or nondi-
rect.

Available Elements and Methods

Continuous time basic blocks differ in some elements from discrete modules or
classes. The following elements exist:

e Inputs

Continuous Time Basic Blocks

183

184

9.2.1

e Qutputs

e Continuous state

e Discrete state

e Steplocal variables

e Parameters

e Dependent parameters

e (Constants

e OneD /TwoD table parameters

Each element type can have different dimensions, scopes, and data types (refer
to section "Block Interfaces" on page 185). The figure shows the various data
types (and their associated icon) and the available methods for working with
these data.

Data Methods
] Y | Init() |
Bl ouput | Terminate() |
Sl Parameter | Derivatives) |

_ | Update() |
Continuous State | DirectOutputs() |
Discrete State | NondirectOutputs() |
®] steplocal \ariable | StateEvents() |
= constart | DependentParameters() |
Dependent Parameter | Events() |

Fig. 9-1 Different data types and methods

Modeling With Continuous Time Basic Blocks

Within a continuous time basic block, the internals of the system to be mod-
eled can be described using the ESDL model description language or directly in
C. The target-independent ESDL modeling language provides advanced
semantic verification ensuring a correct model. Modeling directly in C, there-
fore, should be confined to target-dependent real-time blocks only. In general,
the use of ESDL is recommended.

Continuous Time Basic Blocks

9.3

The behavior of the block is described within a fixed framework, i.e., with a
fixed number of methods. Each method has a specific purpose, e.g., the calcu-
lation of derivations or outputs. In contrast to standard ASCET models, the exe-
cution sequence is fixed (refer to section "Computing Sequence"
on page 187), and the methods are scheduled automatically.

Block Interfaces

The elements (interfaces, storage elements) for modeling continuous time
basic blocks are slightly different from those used for discrete modules or
classes. The following describes the available element types.

Inputs: Block inputs have to be described using Inputs. At each evaluation
step, all input variables are read.

Outputs: Block outputs have to be described using Outputs. At each evalu-
ation step, all output variables are updated.

Continuous State: The description of ordinary differential equations
requires state variables. Each state variable functions as a "storage element”;
an example is the distance and velocity of a moving mass point. Continuous
state variables are only used by the differential operator ddt .

Discrete State: A discrete state variable is a storage element. It can be used
to keep a variable value from one calculation step to the next, e.g., the value
of a counter. Discrete state variables are equivalent to the variables in discrete
classes or modules. Discrete state variables cannot be used by the differential
operator ddt .

Steplocal Variables: Steplocal variables are used to store intermediate val-
ues during the calculation of an evaluation step. These variables are visible in
all block methods. The value of a steplocal variable is valid only in one evalua-
tion cycle; the variable is reinitialized at the beginning of each iteration step. If
the value must be evaluated in a different method, the execution sequence of
the methods has to be considered (ensure writing before reading).

Parameters: Parameters are used to create a physical model. Normally, a
parameter corresponds to a characteristic property of a real system, such as
mass, length, or attenuation constant. A generic model library can be system-
atically built by means of efficient parameterization. Parameters can be varied
during the simulation in the experiment environment (using the Calibration
Editor).

Dependent Parameters: If one parameter depends on another parameter,
e.g., parameters described in different coordinate systems, it should be recal-
culated only if the other, affecting, parameter has changed. This type of

Continuous Time Basic Blocks

185

186

9.4

parameter behavior can be described by dependent parameters. They are cal-
culated only in case of changes asynchronously in the dependentParameters
method.

For example: m vehicl e = m enpty + m payl oad.

If the payload changes in the experiment, the vehicle mass is recalculated in
the dependent Par anet er s method.

Constants: Constants describe system-wide values that do not change dur-
ing an experiment, e.g., the gravitation constant.

Dimensions, Scopes, and Data Types: For each element type available,
there are various dimensions, scopes, and data types. The possible combina-
tions are listed below.

combinations . .
dimension scope data type
. - =
elements § : § g o) :;.), é -_(gJ E
© = = O = ® 35 O
input X X X X X
output X X X X X
discrete state X X X X X
continuous state X X X X
steplocal variable X X X X X X X
parameter X X X X X X X X
dependent parameter [x X X X X X X
constant X X X X X X X X

Fig. 9-2 Dimensions, Scopes, and Data Types
Block Methods

The methods (type and number) available in CT basic blocks are pre-defined
and cannot be modified by the user. Each method has a specific purpose, e.g.,
the calculation of derivations or outputs. The execution sequence of the meth-
ods is fixed; the methods are executed automatically. It is not necessary to use
each method in a CT basic block.

The following methods are available in CT basic blocks:

init(): Theinit() method is called only at the beginning or restart of
an experiment. The i ni t () method can be used to specify code for initializ-
ing the block, e.g., to model the start-up behavior of a model or to initialize
state variables (e.g., r eset Cont i nuousSt at e(x, 5. 3)). Initialization val-
ues derived from calculation statements have to be explicitly assigned using
thei nit () method.

Continuous Time Basic Blocks

9.5

termnate(): Theterm nate() method is executed at the end of the
experiment. The t er mi nat e() method can be used to specify code for fin-
ishing a block, e.g., to model the shutdown behavior of the system.

derivatives(): Ordinary differential equations (ODE) have to be speci-
fied in the deri vati ves() method. If the model structure changes during
the simulation (e.g., in a model with moving masses that simulates static and
dynamic friction), the structure change can be controlled with the usual con-
trol structures (i f (...) then... else...).

updat e(): update() is executed in the granularity of the external com-
munication interval dT. Values required only at this granularity (also communi-
cation with the experiment environment) can be calculated using this method.

direct Qutputs(): ThedirectQutputs() method includes all output
equations with direct pass-through that directly depend on inputs. As they
directly depend on inputs that in turn may depend on nondi r ect Qut -
put s(), this method is executed after nondi r ect Qut put s() .

nondi rect Qut puts(): The nondi rect Qut put s() method includes
all output equations with nondirect pass-through (i.e., those not directly
depending on inputs).

dependent Paraneters(): Within the dependent Paramet ers
method, equations are specified for parameters that depend on other param-
eters. This method is only executed if a parameter has been changed during
the simulation experiment (asynchronous execution when changed). This
reduces the calculation time.

For example: m vehicl e = m enpty + m payl oad.
The vehicle mass is recalculated in the dependent Par anmet er s method only
if the payload changes in the experiment.

stateEvents(): Within the st at eEvent s() method, it is possible to
model state- and time-dependent discontinuities. This method is evaluated at
the end of each consistent integration step. Discrete state equations must be
specified in the st at eEvent s() method.

events(): The events() method can be used to process asynchronous
software and hardware interrupts. This method is not executed time-synchro-
nously but asynchronously when the corresponding event occurs.

Computing Sequence

During the execution of a simulation, the methods contained in a CT block are
triggered in different cycles. There are three general cycle intervals:

e the external communication interval dT

e the integration step size h

Continuous Time Basic Blocks

187

188

e The step size h/n depending on the internal integration method

External Communication Interval dT

The communication interval is not part of the model but is chosen only at run-
time of the simulation. The following communication occurs during the dT
cycle:

e communication between CT blocks and the experiment environment,
e.g., stimulation and visualization

e communication between CT blocks and controller modules within a
hybrid project

e communication between several CT (structure) blocks within a hybrid
project if several integration methods are used

e calling the updat e() method
Integration Step Size h

The integration step size is not part of the model but chosen only at run-time
of the simulation. During the h cycle, communication takes place between sev-
eral continuous time blocks within a continuous time structural block. After
the integration step has been executed across all blocks, the
st at eEvent s() method is executed.

Each value transferred is numerically acknowledged and depends on the
selected integration method. When simulating a highly dynamic model for
which h has to be very small, the speed can be considerably increased by
selecting a much higher value for dT than for h.

Step Size Depending on the Internal Integration Method: h/ n

Other than the h cycle, the h/n cycle depends on the selected integration
method; e.g., the Euler integration method uses the cycle time h/l while the
Heun integration method uses h/2.

During the h/n cycle, the intermediate steps of the integration are calculated.
As for the h cycle, communication takes place between the continuous time
blocks of a continuous time structure block. The intermediate steps of the inte-
gration cannot be communicated to the outside.

Numerically, no discontinuities can be handled during this cycle since the
st at eEvent s() method is not called during this cycle.

There is the following relationship between the different step sizes:
dT >= h >= h/n

Continuous Time Basic Blocks

The entire cycle of the various method calls is depicted in Fig. 9-3:

8 nondirectOutputs [] | | | |
§ Reading Inputs [| | | | |
g directOutputs | | | | L]
cg) derivatives [[[] u
% stateEvents | | |
g update [)
3 events »v »v

v dependentParam. »v »v

t
ty, to+hn ty+h tp+dT
» Asynchronous
Event (Interrupt)

Fig. 9-3 Cycle of method calls in a continuous time block

The event s() and dependent Par anet er s() methods are only called
when an explicit, asynchronous event occurs, and especially not during a dT

cycle.

Continuous Time Basic Blocks

189

Fig. 9-4 shows the execution sequence of all methods from the start to the end
of the simulation.

Reset steplocal variables

NondirectOutputs

Read Inputs

DirectOutputs

Derivatives

i+1
1

h /n Cycle

i=1;Tr=0

h Cycle

dT Cycle

DependentParameters ‘

Asynchronous
Event

Processing
. . ﬂ Events ‘

Tr = relative time for sequencing
i =1...n; n depends on integration algorithm
dT = k*h; with communication interval dT,
k=1, 2, ... and integration step width h

Fig. 9-4 Execution sequence of methods in the CT block

The sequence in which the methods of a basic block are executed is illustrated
by means of the following examples.

The evaluation sequence for synchronous calls, e.g, if n = 1 (Euler)and h =
dT, is:

190 Continuous Time Basic Blocks

9.6

9.6.1

e attimet=dT nondi rect Qut put s - (reading inputs) - di r ect Qut -
puts -derivatives

e attimet=dT stateEvents
e attimet=dT update

For a more complex integration method, e.g., if n = 2 (Adams-Moulton) and h
= dT, the sequence is:

e attimet=d7/2: nondi r ect Qut put s - (reading inputs) -
direct Qut puts -derivatives

e attimet=dT nondi rect Qut put s - (reading inputs) - di r ect Qut -
puts -derivatives

e attimet=dT stateEvents
e attimet=dT update
The evaluation sequence for n =1 and h = d7/2 is:

e attimet=d7/2: nondi r ect Qut put s - (reading inputs) -
direct Qut puts -derivatives

e attimet=dT7/2: stateEvents

e attimet=dT nondirect Qut put s - (reading inputs) - di r ect Qut -
puts -derivatives

e attimet=dT stateEvents
e attimet=dT update

Understanding the computing sequence and thus the behavior of continuous
time basic blocks is absolutely mandatory for a correct use of these blocks.
Using ESDL as the modeling language gives the additional advantage of pro-
viding an automatic analysis phase that ensures consistent modeling when
connecting several CT blocks. The computing sequence is especially important
for blocks with direct outputs (directOutputs), because current values from the
same iteration cycle have to be applied to the corresponding inputs.

Modeling with ESDL

The entire language scope of ESDL is available for the specification of continu-
ous time basic blocks. In addition, a semantic check and a number of addi-
tional library functions for describing differential equations are provided. These
are described in the following sections.

Differential Equations in ESDL

In ESDL, each continuous state variable supports the derivation operator ddt .
Differential equations can be described with the ddt operator.

Continuous Time Basic Blocks

191

192

9.6.2

An example may be a PT2 system with the continuous state variables x and xp,
the input i n, and the parameters d, T, K. The mathematical description of the
system is:
X' = Xp;

xp' = (K*in - (2.0*d*T*xp) - x) / (T*T);
When modeling this PT2 system with ESDL, the derivations are specified by
means of the ddt method:

X. ddt (xp);

xp.ddt ((K*in - (2.0*d*T*x.ddt()) - x) / (T*T));
The derivatives on the left side of a differential equation (i.e., in the argument
of a derivation method) cannot be accessed. If such an access is required, the
system needs to be reformulated.

The ddt operator can only be used in the deri vati ves() method.
Semantic Checks in ESDL

Semantic checks can be performed when using ESDL within a continuous time
method. The verification items ensure that the model matches the fundamen-
tal continuous time simulation framework. For example, it is not permitted to
change the value of a state variable directly (instead, the r eset Cont i nu-
ousState() function hasto be used to internally reset the integration
algorithm). Fig. 9-5 provides an overview of the access rights to those ele-
ments. The semantic check traps any violation of these rights.

Continuous Time Basic Blocks

9.6.3

.
2
2 2 ©
Q| @ | =)

t Sl %S |8 35|58 =
2 -= =] » 7] © © © - © c
£ > =] o| 3| @ > = | @ S s
¢ |2l & 2l ola|lg| S |E|l=| @
s | E[3| 92 3|08 S| S| ¢
S| 6| E|lL|8|®|&| 28| 8
2 2|8 |al8| e 2| °

© S © o2 g

@ ()

©

method
init r-lrw|rw|r-|--|rmw|rmw|r-|r-|r-
derivatives r=|==|r=-{r-|rw|rmwjrwjfr-|r-|r-
update r-l-=lrw!| == -=lrw|rmw!lr-|r-|r-
directOutputs r-l-w|r-{r-|--|mw|mwl|r-|r-|r-
nondirectOutputs r=|-w|r-|r-|--|rmwjrwjr-|r-|r-
terminate r-|-w|rw|r-|--|mw|rw|r-|r-|r-
events r-|w|mw|r-|--|mw|rw|r-|r-|r-
dependentParameters L T A BT R I A oA I o
rel ==l wlr-|-=lrwlrwlr-lr-|r- r = read
stateEvents w = write

Fig. 9-5 Access Rights to Elements

The derivation operator ddt supports only the first derivative. The output
eqguations of the nondi r ect Qut put s() method are analyzed to detect a
direct dependency on an input. If such a case is found, a warning is issued.

Additional Library Functions

For advanced continuous time modeling with ESDL, the system library provides
a number of additional library functions:

get Ti ne()

getdT()

getl ntegrationStepsi ze()
reset Conti nuousSt at e()
reset CTSol ver ()

The following describes the use of each library function in detail. Access to
these functions in each method is shown in Fig. 9-6.

Continuous Time Basic Blocks

193

194

o . Q |ae |a (3|3
additional library % g 28 2 |
functions 5|4 % 513
@ Q |9 |+
3|2 |9
= |5 |2
S5 |5
g | "

S |2

o |8

method o | ®
init + |+ |+ |+ |+

derivatives + |+ | 4+ - - + available
update + |+ +] +] + - not available
directOutputs + |+ |+ -] -
nondirectOutputs + |+ o+ - -
terminate + |+ | + | - -
events + |+ +] - -
dependentParameters + + | + | - -
stateEvents + |+ |+ |+ |+
Fig. 9-6 Access to functions in the methods of a continuous time block

getTime(): Insome cases, the current simulation time is of importance.
For on-line experiments, this is the actually elapsed time. This value can be
obtained using the get Ti ne library function:

t =getTime ();
The get Ti me function can be used in any method.

getdT(): The getdT library function provides the current step size for
external communication:

step = getdT ();

getIntegrati onStepsize(): The getlntegrationStepsize()
library function returns the current integration step size:

h = getlntegrati onStepsize ();

reset Conti nuousState(state, new value): Modeling time- or
state-dependent discontinuities often requires resetting the continuous state
variable. To ensure a correct numeric evaluation, the integration method needs
to be reinitialized internally. This is done using the r eset Cont i nuousSt at e
function:

reset Conti nuousState (x, 0.0);

Continuous Time Basic Blocks

9.7

9.71

In this case, the state x is set to 0.0 and, if necessary, the integration method
is reinitialized. Use of the r eset Cont i nuousSt at e library function is per-
mitted only in the i ni t, and st at eEvent s methods. Use of the function is
also allowed in the method updat e, but it is useless because that method has
no write access to continuous states. it is useless. reset Conti nu-
ousSt at e(x,y) isfollowed automatically by r eset CTSol ver () .

reset CTSol ver(): With reset CTSol ver, the integration method
can be reset explicitly:

reset CTSol ver ();

Use of the r eset CTSol ver library function is permitted only in the i ni t,
updat e, and st at eEvent s methods. r eset Cont i nuousSt at e(x, y) is
followed automatically by r eset CTSol ver ().

Modeling in C

Modeling in C offers the capabilities of the C language but no semantic
checks. Continuous time basic blocks specified in C may be hardware-depen-
dent. If programming is done in ANSI-C, it is possible to create hardware-inde-
pendent models even in C. This is necessary if pointers or C subroutines are to
be used. C basic blocks can be used to model hardware-dependent blocks and
in the same way as ESDL basic blocks. C basic blocks require an explicit speci-
fication whether they have a direct pass-through (output depends directly from
the input) or an indirect pass-through by selecting di r ect or nondi r ect in
the "Block Behavior" combo box. This affects the automatic determination of
the execution sequence.

Note

When modeling in C, there are no semantic checks ensuring consistent mod-
eling (as in ESDL). Consistency has to be ensured by the user.

It is recommended to use C for modeling continuous time systems only if
absolutely necessary, e.q., for modeling controller-dependent system por-
tions or if C pointers or C subroutines have to be used.

Differential Equations in C

In C, an internal derivation variable is created for each continuous state vari-
able. The name of this variable is composed of the name of the state variable
and the prefix ddt .

Examples are the continuous state variables x and xp; the automatically cre-
ated derivation variables are ddt x and ddt xp. They are visible in all methods.

A complete example is a PT2 system with the continuous state variables x and
xp, the inputi n, and the parameters d, T, K.

Continuous Time Basic Blocks

195

196

9.7.2

X = Xp;
xp' = (K*in - (2.0*d*T*xp) - x) / (T*T);
The PT2 system above can be expressed as C code in the CT block as follows:
ddtx = xp;
ddtxp = (K*in - (2.0*d*T*ddtx) - x) [/ (T*T);
Additional C Routines

Additional C routines are available for modeling in C. For generic use of these
routines, the internal data structure of the current block must be specified in
the routine's interface. The CTBI ock and sel f methods are visible in each
method.

The following routines are provided:
e getTinme
e getdT
e getlntegrationStepsize
* reset CTSol ver

e sizeU
e sizeY
e sizeV
e sizeX
e sizeXK

The get and reset routines provide additional ESDL library routines; the
si ze routine allows a generic model design if the number or array size of
instance variables has to be changed.

The following describes the use of the additional C routines in more detail.
There are no semantic checks and usage restrictions provided with these rou-
tines. It is the user's responsibility to ensure they are used correctly.

real 64 get Ti me(CTSi nExperi nment *):

The get Ti me function returns the current simulation time:
t = getTinme (CTBI ock);

real 64 getdT ():

The get dT function returns the current interval for external communication:
step = getdT ();

Continuous Time Basic Blocks

real 64 getlntegrationStepsize(CTSi nExperiment *):

The get I nt egrati onSt epsi ze function returns the current integration
step size:

h = getlntegrati onStepsize (CTBI ock);
voi d reset CTSol ver (CTSi nExperinent *):

The integration algorithm can be reset explicitly with the r eset CTSol ver
routine. An example for its use is resetting a continuous time state:

x = 0.0;
reset CTSol ver (CTBI ock);

Whenever one or more continuous time states have been set explicitly, the
internal structures need to be reset when finished. Note that the r eset CT-
Sol ver command should always be issued after a value has been assigned to
a continuous time state.

int_32 sizeU (CTSi nExperinent *):
The si zeU function returns the number of block inputs:
si zeU = sizeU (CTBI ock) ;

If some of the inputs are arrays, the total number of the scalar elements is
returned. More complex inputs, such as records, structures or classes, are
counted as one element.

int_32 sizeY (CTSi nExperinent *):
The si zeY function returns the number of block outputs:
sizeY = sizeY (CTBI ock);

If some of the outputs are arrays, the total number of the scalar elements is
returned. More complex outputs, such as records, structures or classes, are
counted as one element.

int_32 sizeV (CTSi nExperiment *):

The si zeV function returns the number of block parameters (parameters and
dependent parameters):

si zeV = sizeV (CTBI ock);

If some of the parameter states are arrays, the total number of the scalar ele-
ments is returned.

int_32 sizeX (CTSi nExperinent *):
The si zeX function returns the number of continuous states:
si zeX = sizeX (CTBI ock);

Continuous Time Basic Blocks

197

If some of the continuous states are arrays, the total number of the scalar
elements is returned.

int_32 sizeXK (CTSi nExperinent *):
The si zeXK function returns the number of discrete states:
nof X = si zeXK (CTBI ock);

If some of the discrete states are arrays, the total number of the scalar ele-
ments is returned.

198 Continuous Time Basic Blocks

10 Continuous Time Structure Blocks and Graphical Hier-
archies

Continuous time structure blocks (CT structure blocks) can be used to build
complex models by combining and linking other CT structure and CT basic
blocks in a graphical block diagram. A slightly modified Block Diagram Editor
(BDE) is provided for the specification of continuous time structure blocks (refer
also to Fig. 8-2 on page 175). The corresponding inputs and outputs are
graphically connected with each other in the BDE.

A continuous time structure block is modeled as a block diagram with a fixed
number of methods. In principle, the methods of the CT basic blocks are auto-
matically applied and cannot be modified in the BDE. The functional descrip-
tion is tied to a single diagram. The correct computing sequence is also
determined automatically and cannot be influenced directly.

For a simple example illustrating the use of CT basic blocks, their methods, and
CT structure blocks up to the simulation in the experiment environment, refer
to the tutorial (volume "Getting Started", chapter "Modeling a Continuous
Time System").

10.1 Reuse of Structure Blocks

CT structure blocks are stored in the database, the same as CT basic blocks,
and are available for other CT structure blocks. This allows building a model
library for a modular and hierarchical model structure. If a CT basic block or CT
structure block is changed in the database, the change is automatically applied
to all models in the database. Maintenance of the CT blocks is thus required at
one place only.

Finished models whose CT blocks may not be replaced with newer versions,
must therefore be stored in a different database.

10.2 Elements of a Continuous Time Structure Block

Not all variables that are used in basic blocks are required in continuous time
structure blocks. The following elements are available:

e Inputs

e Qutputs

* Global parameters

e (Constants

e OneD and TwoD table parameters

For each element type, there are different dimensions, scopes, and data types.

Continuous Time Structure Blocks and Graphical Hierarchies 199

200

10.3

10.4

Addition and subtraction operators are provided for which the number of
inputs can be selected individually.

Block Interfaces

The following sections describe the elements available in continuous time
structure blocks.

Inputs: Block entries are described by inputs. During each evaluation step, all
input variables are read.

Outputs: Block exits are described by outputs. During each evaluation step,
all output variables are updated.

Global Parameters: Global parameters are used to describe parameters
that are visible in the entire model. A global parameter usually corresponds to
a global characteristic property of the real system. An efficient use of global
parameters can reduce the complexity and facilitate the maintenance of the
model.

Constants: Constants are used for values that do not change during an
experiment, such as the gravitation constant.

Dimensions, Scopes, and Data Types: Each type of element has a certain
dimension, a scope of validity, and a type. The possible combinations are illus-
trated in the table below.

combinations | dimension scope data type
— © =
elements g g Ei _r.g &8 2t
2 & @ ° 5 5 2 88
input X X X X X X
output X X X X X X
global parameter X X X X X X X
constant X X X X X X X

Fig. 10-1 Dimension, scope, and data type of elements

Operators

According to the systems theory, only linear operators are required for the
description of structure blocks. Nonlinear elements are encapsulated in basic
blocks. Therefore, only addition and subtraction operators are provided.

Continuous Time Structure Blocks and Graphical Hierarchies

10.5

10.6

Algebraic Loops

In the following equation system

x = f4(2)
y = fa(x)
z = f3(input a) (inputaassumed valid)

each equation, with the exception of f3, depends on another equation. In
order to allow the system to be computed from top to bottom correctly, the
equations have to be rearranged as follows:

z = f3(input a)
x = f4(2)
y = fa(x)

In this sequence, the system can be easily computed, even by conventional PC
programs.

An algebraic loop exists if:

y=f1(x);

x=fo(y);

i.e., if two functions directly depend on each other. y is needed to calculate x,
and x is needed to calculate y.

Direct and Nondirect Output

ASCET sorts CT blocks or methods in connected CT blocks directly depending
on each other automatically in the correct order (automatic sequencing). If an
algebraic loop exists in the model, ASCET terminates with an appropriate error
message when determining the computing sequence. This occurs, for exam-
ple, if two or more CT blocks with direct outputs form a feedback loop.

To enable the automatic determination and control of the computing
sequence, the output property has to be specified. Outputs that directly
depend on inputs have to be specified or described in the di r ect Qut put s
method. Such a CT basic block is said to have a direct output or a direct pass-
through. Outputs that do not directly depend on inputs are specified in the
nondi r ect Qut put s method. Such a CT basic block is said to have a nondi-
rect output or a nondirect pass-through.

Wrongly declared outputs (e.g., direct output in the nondi r ect Qut put s
method) are detected if the ESDL modeling language is used. In CT blocks
written in the C programming language, the nondirect or direct property is
determined by the model designer.

Continuous Time Structure Blocks and Graphical Hierarchies

201

202

The nondi r ect Qut put s and di r ect Qut put s methods essentially deter-
mine the behavior of the CT basic blocks and the computing sequence in a CT
structure block. This is illustrated again in the following example.

out_direct
out_direct =K * in; >
in —><
X' = (K*in - X)/T;
out_nondirect = x; — .
out_nondirect

Fig. 10-2 Example: Direct and nondirect output

In general, an output has a direct pass-through behavior if it directly depends
on one of the inputs. For example, an amplifier block (p behavior) is described
by the function:

out = K* in
The output directly depends on the input. Consequently, the inputs have to be

read first before the output can be calculated. The function must be written
using the di r ect Qut put s method.

If the output does not depend on one of the inputs, for example, if the output
depends on a continuous state or a parameter condition, it does not have
direct pass-through behavior. Nondirect outputs are calculated from the values
of the previous step. A CT block having a direct output terminates an existing
loop. An example is the so-called PT4 behavior:

X" = ((K¥in - x)/T);
out = Xx;

The differential equation is solved using an integration method that requires
the last output value and the input value i n to calculate the current output
value x. The assignment out =x has to be written using the
nondi r ect Qut put s method (the differential equation is discussed in the
deri vati ves method).

Two simple examples illustrate a correct and an incorrect coupling of two CT
basic blocks with direct and nondirect output within a CT structure block. It is
essential to understand that a direct output requires the input data of the cur-
rent time step. A nondirect output can be calculated and sent without the
input information of the current time step. Therefore, the direct outputs are
calculated after the nondirect outputs.

Continuous Time Structure Blocks and Graphical Hierarchies

Fig. 10-3 shows a combination of two CT blocks with direct and nondirect
pass-through behavior that does not cause an algebraic loop.

P PT1

nondirectOutput nondirectOutput

in —»E}—» 4,—» out
directOutput directOutput

Fig. 10-3 Circuit of CT blocks with direct and nondirect outputs

The P block requires a valid input value for its calculation. Consequently, the
nondi r ect Qut put s method in the PT; block has to be calculated first and
then the di r ect Qut put s method in the P block.

P P

nondirectOutput nondirectOutput

in —»| 4,—» r» out
directOutput directOutput

Fig. 10-4 Algebraic loop

In Fig. 10-4, two CT blocks with direct outputs are connected in series. This
results in an algebraic loop. Each block requires the current output value of the
other block. ASCET reports this error.

Direct pass-through circuits must be avoided. However, it is not possible to
resolve algebraic loops automatically and implicitly because an implicit resolu-
tion of algebraic loops requires an iterative method, which is not acceptable
under real-time conditions.

An advantage over the automatic resolution of an algebraic loop is that the
user, knowing his model, can insert a block without a direct output at the most
appropriate position so the subsequent blocks can be computed in the next
iteration step.

In principle, there are two alternatives to avoid algebraic loops:

1. Inserting a block without a direct output. As this corresponds to a stor-
age element, the integration step size may have to be decreased to
avoid that the dynamics of the model is impaired.

2. Modifying the model structure to eliminate the algebraic loop. Refor-
mulating the equations in the CT basic blocks, modifying the structure.

Continuous Time Structure Blocks and Graphical Hierarchies

203

204

10.7

10.8

Difference Between Graphical Hierarchies and CT Structure Blocks

Externally, CT structure blocks behave like CT basic blocks regarding their com-
puting sequence. The computing sequence is determined in the CT structure
block. The structure behaves like a block with direct or nondirect output
depending on whether the outputs of the structure block depend on the
inputs directly or nondirectly.

Hierarchies, however, have a purely symbolic nature used to layout a CT struc-
ture block more clearly. They do not affect the simulation. Fig. 10-5 (left part)
shows an example in which a CT structure block has a direct output to a CT
basic block which in turn has a direct output to the same CT structure block.
This causes an algebraic loop as the two blocks within the structure block are
computed directly succeeding each other (virtually simultaneously). However,
the second CT block within the structure block requires a current output of the
external CT block.

CT Structure Block Graphical
Hierarchy
CT basic CT basic o
block block b
CT basic CT basic
block block
< CT basic < . CT basic -
- block block >

Fig. 10-5 Structuring with CT structure blocks or graphical hierarchies

The algebraic loop can be avoided by resolving the structure block and replac-
ing it with a graphical hierarchy (Fig. 10-5, right-hand part) that combines
model parts obviously related with each other. A drawback of hierarchies is
that they cannot be stored separately but only together with the structure
block in which they are contained.

Computing Sequence of Methods Within a Structure

The computing sequence in a CT structure block is essentially determined by
the computing sequence of the methods within a CT basic block that was
described in chapter 9.5 (refer to Fig. 9-4 on page 190). It depends mainly on
the integration method and the selected time or communication intervals.

Continuous Time Structure Blocks and Graphical Hierarchies

In principle, the methods in the structure block are computed in the same
sequence as in the basic block (i ni t, nondi r ect Qut put's, di rect Qut -
put s,...), with the same method being executed first in all basic blocks of the
structure block before switching to the next method. This means that the
i ni t method is first executed in all blocks before starting the nondi -
rect Qut put s method in any basic block.

As long as the di r ect Qut put s method is not used in any CT basic block, the
sequence is exclusively determined by the CT basic blocks. The order in which
the same method is executed in the individual CT basic blocks is not important.
This means that first all i ni t methods are computed, then all nondi -
r ect Qut put s methods, etc., each method in any arbitrary order of blocks.

If the di r ect Qut put s method is used in more than one block, the comput-
ing sequence becomes important, because some of the inputs of the
di rect Qut put s methods require current values from other outputs. If the
input is connected to an output of the nondi r ect Qut put s method, there is
always a current value, because this method is first computed in all CT blocks
before starting the di r ect Qut put s method. However, if the input depends
on the output of another di r ect Qut put s method, this method must be
computed first.

Example: Computing Sequence

Fig. 10-6 shows the computing sequence in a small CT structure block with
coupled CT basic blocks. r eadl nput s is not a method in its own right but
belongs to di rect Qut put s; it is shown to emphasize that current values
have to be read first in order to compute the di r ect Qut put s method. The
computing sequence is determined by the automatic sequencing algorithm.
The numbers indicate the order of processing. Identical numbers mean that
the execution sequence is arbitrary.

CT Block 1 CT Block 2 CT Block 3 CT Block 4
init init init init
nondirectOutput nondirectOutput —| nondirectOutput —I nondirectOutput
> |_> 5l
> readinputs readinputs readlnputs readlnputs
B
directOutput directOutput directOutput —|—> directOutput v
derivatives derivatives derivatives derivatives
stateEvents stateEvents stateEvents stateEvents

Fig. 10-6 Computing sequence of methods for coupled CT blocks

Continuous Time Structure Blocks and Graphical Hierarchies

205

206

The computing sequence is especially important for CT blocks with direct out-
puts (di r ect Qut put s method), because current values from the same itera-
tion cycle have to be applied to the corresponding inputs (shaded sections in
Fig. 10-6).

The CT blocks are processed from top to bottom. Furthermore, each method is
executed sequentially one after the other. i ni t is executed only once at the
start of the simulation.

Within the integration loop (nondi rect Qut puts up to derivatives
methods), all nondi r ect Qut put s are always computed. Their sequence is
not fixed. As the di r ect Qut put s method directly depends on the corre-
sponding input, ASCET searches all di r ect Qut put s methods until the cor-
responding r eadl nput s no longer depends on another di r ect Qut put s
method (shaded section in Fig. 10-6). In Fig. 10-6, this is the case in CT basic
block 3. This results in the following sequence for reading the inputs and exe-
cuting the di r ect Qut put s method:

1. readl nput s (CT block 3), di rect Qut put s (CT block 3)
2. readl nputs (CT block 4), di r ect Qut put s (CT block 4)
3. readl nput s (CT block 1), di r ect Qut put s (CT block 1)
4. readl nput s (CT block 2), di rect Qut put s (CT block 2)

Only then the deri vat i ves methods 1-4 are executed in arbitrary order. In
case of a single-stage integration method, now follow the st at eEvent s
methods for the CT blocks 1-4 in arbitrary order. Then again back to nondi -
rect Qut puts.

In case of n-stage integration methods, nondi r ect Qut put s - di r ect Qut -
put s (as described above, in the correct order) and deri vati ves of CT
blocks 1-4 are executed n times, before st at eEvent s is executed (also refer
to Fig. 9-4 on page 190).

This means that the communication for combined CT basic blocks and/or CT
structure blocks within one structure also occurs during the intermediate steps
of the integration method. Each time, the nondi rect Qut puts up to
deri vati ves methods are executed (single line frame).

The updat e method is executed after st at eEvent s only at the granularity
of the communication interval dT and t er ni nat e only at the end of the sim-
ulation. For each, the computing sequence within the structure block is arbi-
trary.

There are therefore typically several equivalent computing sequences to solve
a structure block. The sequencing algorithm of ASCET automatically selects
one of the possible sequences.

Continuous Time Structure Blocks and Graphical Hierarchies

Example: Execution Not Possible

If there is an algebraic loop, the computing sequence cannot be determined
automatically. This situation is shown in Fig. 10-7. Each input of a
di rect Qut put s method depends on another di r ect Qut put s, closing
the loop from CT block 4 to CT block 1. This results in an appropriate error

message.

CT Block 1

CT Block 2

CT Block 3

CT Block 4

init

init

init

init

nondirectOutput

nondirectOutput

nondirectOutput

nondirectOutput

> readinputs
_’

readinputs

readinputs

directOutput

jb readinputs
directOutput

eTs

directOutput

I

directOutput

derivatives derivatives derivatives derivatives
stateEvents stateEvents stateEvents stateEvents
Fig. 10-7 Algebraic loop

Continuous Time Structure Blocks and Graphical Hierarchies

v

207

208 Continuous Time Structure Blocks and Graphical Hierarchies

11

Projects and Hybrid Projects

Projects are used for:

¢ Online simulation (hardware-in-the-loop) of CT blocks and Standard
ASCET blocks

e Continuous time modeling of several CT structures with different inte-
gration algorithms and step sizes in a project

e Simulation of CT blocks in real-time

A project can consist of standard or/and continuous time modules or struc-
tures. A hybrid project is a project that contains both standard ASCET blocks
and continuous time components. For example, in the hardware-in-the-loop
simulation, the sending, receiving, and processing of signals from the real pro-
cess (that is simulated by continuous time structures) are usually processed by
standard modules.

When modeling and simulating systems with very fast and very slow compo-
nents, e.g., hydraulic and mechanical components, the computing time can be
reduced by using different integration methods or different integration steps.
For this purpose, the respective model parts have to be located in a CT basic
block or CT structure block, as appropriate.

The various CT model parts are loaded into a project and connected with each
other in the Block Diagram Editor. In a project, each CT model part (CT basic
block or CT structure block) can be computed as an independent process using
a separate integration method and integration step size. It should be noted,
however, that the individual blocks are linked to different tasks that communi-
cate with each other only in fixed, selectable time intervals dT.

There is no exchange of values for intermediate steps of the integration
method as is the case for coupling CT blocks with CT structures. There is also
no automatic semantic verification as for CT structures that determines the
computing sequence for the integration. The above applies only to CT
blocks/structure at the project level. CT blocks and CT structures within the CT
structures communicate at the granularity of the integration step size, of
course, also within projects.

To ensure numeric stability, strongly cohesive systems should, therefore, not be
coupled at the project level but within CT structures. Systems with weak cohe-
sion can, however, be structured in projects. The advantage for weakly cohe-
sive systems with highly disparate dynamic properties is that the integration
method and integration step size can be selected individually to achieve an
optimal computing time.

Projects and Hybrid Projects

209

Fig. 11-1 schematically shows a project composed of one discrete standard
block and two different CT structure blocks.

Project
CT structure block CT1 CT structure block CT2
Euler h=0.00005 sec P Adams-Moulton h=0.002 sec
n=1 n=2
dT=0.002 sec < dT7=0.002 sec
A A

Discrete standard block

ECU simulation

» dT=0.01 sec

A

Fig. 11-1 Project with two continuous time blocks and one discrete block

A hybrid project (e.g., for the ECU test automation) combines a controller
model (Standard ASCET block) with a control system model (continuous CT
structure blocks). The continuous time model part is itself composed of two CT
structure blocks with different integration methods and different step sizes.
The communication between the CT blocks takes place at 2 msec intervals
while the CT blocks communicate with the discrete standard block every 10
msec.

11.1 Combining Continuous Time Blocks With Modules

Discrete modules in a project communicate via messages (global variables in
ASCET blocks). There are no explicit connections (connecting lines) between
Send and Receive messages; they are assigned to each other by their names.

210 Projects and Hybrid Projects

Continuous time blocks, on the other hand, communicate among themselves
and with modules via connections that have been specified graphically. The
connections are built using the same method as in block diagrams.

> A C > E G » B J
cT cT
module >
—»B D » block ([F block 4
controller_1 plant_1 plant_2
—» C B
module
L M —»
controller_2
implicit connection between modules: no implicit connection between modules
controller_1 - B and controller_2 - B and CT blocks

controller_1 - C and controller_2 - C
- - no implicit connection between CT blocks

Fig. 11-2 Combining continuous time blocks with modules

For discrete modules, the user has to explicitly define the tasks and to assign
the processes defined in the module editor to the appropriate tasks.

CT blocks do not require an explicit definition of tasks, because these are
defined automatically when needed. A si mul at e task and an event task are
generated for each CT block. In addition, a common i ni t task and a common
t er m nat e task are generated for all CT blocks in a project. For the example
above, the following tasks are generated automatically:

e simulate_CT1l (plant_1)

e simulate_CT2 (plant_2)

e event_CT1l (plant_1)

e event_CT2 (plant_2)

e initialize CT (plant_1 ... plant_n)
e ternminate_CT (plant_1 ... plant_n)

These predefined tasks are static. They are all defined as cooperative tasks. The
following sections describe the meaning of these tasks in more detail.

Projects and Hybrid Projects

211

212

si mul at e_CTn Tasks:

For the si mul at e_CTn tasks, one simulation step is computed; the step size
is dT. The step size can be specified for each si mul at e_CTn task individually;
this allows for having several integration methods for different CT structure
blocks within a project. The integration step size can be set during an experi-
ment interactively. A simulation task normally uses the Timer trigger mode.

event _CTn Tasks:

When calling the event _CTn task, the event methods of the underlying CT
blocks are executed. Because event methods are usually called asynchro-
nously, the trigger mode of the event _CTn task should either be Software or
Event.

initialize_ CT Task:

When calling thei ni ti al i ze_CT task, the i ni t methods of the underlying
CT blocks are executed. As i ni t methods are usually computed at the begin-
ning of a simulation, the trigger mode of the i ni ti al i ze_CTn task should
be Init.

t er m nat e_CT Task:

When calling the t er mi nat e_CT task, the t er mi nat e methods of the
underlying CT blocks are executed. The t er m nat e task is automatically exe-
cuted when the experiment finishes.

Projects and Hybrid Projects

ASCET V5.2

Reference Lists

214

12

12.1

12.1.1

12.1.2

The ASCET System Library

Bit Operators

and

o
AND —
|

and returns the binary AND conjunction of the two arguments..

Methods Arguments Return Value

and bitArrayl:: unsi gned di screte
unsi gned di screte
bitArray2::

unsi gned di screte

On activation of method

and: The result of the binary AND conjunction of
bi t Arrayl and bi t Array?2 is returned.
clearBit
i-0

cl ear Bi t resets the bit at the specified position of the argument. The posi-
tion of the LSB' is 0.
Methods Arguments Return Value

clearBit bitArray:: unsi gned di screte
unsi gned di screte

position::
unsi gned di screte

On activation of method

clearBit: The argument bi t Arr ay is returned with a zero-
bit at position posi ti on.

1 Least Significant Bit

The ASCET System Library

215

12.1.3 getBit

0

get Bi t returns the value of the bit at the specified position of the argument
as a logical value.
Methods Arguments Return Value

getBit bitArray:: | ogi cal
unsi gned di screte

position::
unsi gned di screte

On activation of method

getBit: TRUE is returned, if the bit at position posi ti on
is equal to 1, otherwise FALSE is returned.
1214 or
-+
Ok —
)

or returns the binary OR conjunction of the two arguments.

Methods Arguments Return Value

or bitArrayl:: unsi gned di screte
unsi gned di screte
bitArray2::

unsi gned di screte

On activation of method

or: The result of the binary OR conjunction of
bi t Arrayl and bi t Array?2 is returned.

216 The ASCET System Library

12.1.5

12.1.6

rotate

r ot at e rotates the bits of the argument to the left by a specified number of
positions.

Methods Arguments Return Value

rotate bitArray:: unsi gned di screte
unsi gned di screte
k::

unsi gned di screte

On activation of method

rotate: The result of the left-rotation of bi t Array by k
positions is returned.
setBit
e

set Bi t sets the bit at the specified position of the argument. The position of
the LSB is 0.
Methods Arguments Return Value

setBit bitArray:: unsi gned di screte
unsi gned di screte

position::
unsi gned di screte
On activation of method

setBit: The argument bi t Ar r ay is returned with a one-
bit at position posi ti on.

The ASCET System Library

217

12.1.7 shiftlLeft

shi ftLeft shifts all bits of the argument to the left. The right bits are filled
with zeros.

Methods Arguments Return Value
shiftLeft bitArray:: unsi gned di screte
unsi gned di screte

K::

unsi gned di screte

On activation of method

shiftLeft: The result of the left-shift by k positions is returned.
For k=1 the result corresponds to the multiplication
by two.

12.1.8 shiftRi ght

shi ft Ri ght shifts all bits of the argument to the right. The left bits are filled
with zeros.
Methods Arguments Return Value
shi ft Ri ght bitArray:: unsi gned di screte
unsi gned di screte
k::

unsi gned di screte

On activation of method

shi ft Ri ght: The result of the right-shift by k positions is
returned.

218 The ASCET System Library

12.1.9

12.1.10

toggl eBi t

t oggl eBi t inverts the bit at the specified position of the argument.

Methods Arguments Return Value

t oggl eBi t bitArray:: unsi gned di screte
unsi gned di screte

position::
unsi gned di screte

On activation of method

toggl eBit: The argument bi t Ar r ay is returned with the bit
at position k toggled.

witeBit

_’ o

ST

.
writeBit writes the value of the logical argument to the specified position
of the unsigned discrete argument.

Methods Arguments Return Value
witeBit bitArray:: unsi gned di screte
unsi gned di screte
aBool : : | ogi cal

position::

unsi gned di screte

On activation of method

witeBit For aBool = FALSE the argument is returned
with a zero-bit at position posi ti on, for aBool
= TRUE the argument is returned with a one-bit at
position posi ti on.

The ASCET System Library

219

220

12.1.11 writeByte

wri t eByt e writes the values of eight logical inputs to the eight least signifi-

cant bits of the argument.

Methods
witeByte

On activation of method

writeByte:

12.1.12 xor

Arguments Return Value
bitArray:: unsi gned di screte
unsi gned di screte

b0: : | ogi cal

bl::1 ogical

b2::1 ogi cal

b3::1 ogi cal

b4: : 1 ogi cal

b5: : | ogi cal

b6: : | ogi cal

b7::1 ogi cal

The argument is returned with the values of b0 to
b7 written to the bit positions 0 to 7. 0 is the posi-
tion of the LSB and the logical values TRUE and
FALSE are mapped to 1 and O respectively.

o
XOR —

]

xor returns the binary exclusive OR conjunction of the two arguments.

Methods

xor

On activation of method

Xor:

The ASCET System Library

Arguments Return Value
bitArrayl:: unsi gned di screte
unsi gned di screte

bitArray2::

unsi gned di screte

The result of the binary exclusive OR conjunction of
bi t Arrayl and bi t Array2 is returned.

12.2

12.2.1

12.2.2

Comparators

Cl osedl nt erval

Cl osedl nt erval returns TRUE if the value X is in the closed interval
defined by A and B.
Methods Arguments Return Value
out X::continuous | ogi cal
A: : conti nuous

B: : conti nuous

On activation of method

out: TRUE is returned, if A <= x <= B. Other-
wise FALSE is returned.

Lef t Openl nt er val

Lef t Openl nt erval returns TRUE if the value X is in the left open interval
defined by Aand B.
Methods Arguments Return Value
out X::continuous | ogi cal
A: : conti nuous

B: : conti nuous

On activation of method

out: TRUE is returned, if A < X <= B. Otherwise
FALSE is returned.

The ASCET System Library

221

12.2.3

12.2.4

Openl nt er val

Openl nt erval returns TRUE if the value x is in the open interval defined
by A and B.
Methods Arguments Return Value
out X::continuous | ogi cal
A: :continuous

B: : conti nuous

On activation of method

out : TRUE is returned, if A < X < B. Otherwise
FALSE is returned.

Ri ght Openl nt er val

Ri ght Openl nt er val returns TRUE if the value X is in the right open inter-
val defined by A and B.

Methods Arguments Return Value
out X::continuous | ogi cal
A: :continuous

B: : conti nuous

On activation of method

out : TRUE is returned, if A <= X < B. Otherwise
FALSE is returned.

222 The ASCET System Library

12.2.5

12.3

12.3.1

G eat er Zero

>a.8
Gr eat er Zer o returns TRUE if the value X is greater than zero.

Methods Arguments Return Value

out X::continuous | ogi cal

On activation of method

out: TRUE is returned, if X > 0. 0. Otherwise
FALSE is returned.

Counter & Timer

Count Down

S

i

Count Down decrements the counter and signals when the counter has
reached zero.

Methods Arguments Return Value
start start Val ue: : none
unsi gned di screte
conput e none none
out none | ogi cal

On activation of method

start: The counter is set to the start value.
conput e: The counter is decremented by one.
out: TRUE is returned if the counter is greater than

zero. Otherwise, FALSE is returned.

The ASCET System Library

223

224

12.3.2

12.3.3

Count DownEnabl ed

S

F
Count DownEnabl ed decrements the counter and signals when the counter
has reached zero. This counter must be enabled explicitly.

Methods Arguments Return Value
start start Val ue: : none
unsi gned di screte
comput e enabl e: : | ogi cal none
out none | ogi cal

On activation of method

start: The counter is set to the start value.
conput e: If enable is TRUE, the counter is decrement by
one.
out: TRUE is returned if the counter is greater zero.
Otherwise, FALSE is returned.
Count er
H :‘ —
I
T

Count er increments the counter by one.

Methods Arguments Return Value

reset none none

conput e none none

out none unsi gned di screte

On activation of method

reset: The counter is set to zero.
conput e: The counter is increment by one.
out: The counter value is returned.

The ASCET System Library

12.3.4

12.3.5

Count er Enabl ed

E I
T T

Count er increments the counter by one. This counter must be enabled

explicitly.
Methods

reset

conput e
out

On activation of method

reset:
conput e:

out:

St opWat ch

Arguments

i nitEnabl e: :

| ogi cal

enabl e: : | ogi cal

none

Return Value
none

none

unsi gned di screte

Ifi ni t Enabl eis TRUE, the counter is set to

zero.

If enabl e is TRUE, the counter is incre-

mented by one.

The counter value is returned.

n @
I
il

St opWat ch increments the time counter by one dT.

Methods
reset
conmput e
out

On activation of method
reset:

conput e:

out:

Arguments
none
none

none

Return Value
none
none

cont i nuous

The time counter is set to zero.

The time counter is increment by dT.

The time counter value, i.e. the time elapsed
since the last start, is returned.

The ASCET System Library

225

12.3.6 St opWat chEnabl ed

K,
T
St opWat chEnabl ed increments the time counter by one dT. This timer

must be enabled explicitly.

Methods Arguments Return Value
reset initEnable:: none
| ogi cal
comput e enabl e: : | ogi cal none
out none conti nuous

On activation of method

reset: If i ni t Enabl e is TRUE, the time internal
counter is set to zero.

conput e: If enabl e is TRUE, the time counter is incre-
ment by dT.

out: The time counter value, i.e. the time elapsed

since the last start and while enabl ed was
TRUE is returned.

12.3.7 Ti mer

S

N~

Ti mer decrements the time counter by dT and signals when the time counter
has reached zero. It is not retriggerable.

Methods Arguments Return Value
start startTine:: none
conti nuous
conput e none none
out none | ogi cal

On activation of method

start: The time counter is set to st art Ti ne if the
time counter value was previously less than or
equal to zero.

conput e: The time counter is decremented by dT.

226 The ASCET System Library

12.3.8

12.3.9

out: TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.

Ti mer Enabl ed

i

e B

Ti mer Enabl ed decrements the time counter by dT and signals when the
time counter has reached zero. It is must be enabled explicitly.

Methods Arguments Return Value
comput e enabl e: : | ogi cal none
in::logical
startTine::

conti nuous

out none | ogi cal

On activation of method

conput e: If enabl e is TRUE, i n has a rising edge and
the time counter value is less or equal to zero,
the timer is started,i.e. its counter value is set to
the start time. Otherwise, the time counter is
decremented by dT. If enabl e is FALSE,
nothing happens.

out: TRUE is returned, if the time counter is greater
than zero.Otherwise, FALSE is returned.

Ti mer Ret ri gger

S

N

Ti mer Ret ri gger decrements the time counter by dT and signals when the
time counter has reached zero. It can be retriggered.

Methods Arguments Return Value
start startTine:: none
conti nuous
conput e none none
out none | ogi cal

On activation of method

The ASCET System Library

227

start: The time counter is set to the start value.

conput e: The time counter is decremented by dT.

out : TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.

12.3.10 Ti mer Retri gger Enabl ed

Ti mer Ret ri gger Enabl ed decrements the time counter by dT and sig-
nals when the time counter has reached zero. It can be retriggered and must
be enabled explicitly.

Methods Arguments Return Value
conput e enabl e: : | ogi cal none
in::logical
start Val ue: :

conti nuous

out none | ogi cal

On activation of method

conput e: If enabl e is TRUE and i n has a rising edge,
the timer is started, i.e. its counter value is set
to the start value. Otherwise, the time counter
is decremented by dT (the time frame). If
enabl e is FALSE, nothing happens.

out : TRUE is returned, if the time counter value is
greater than zero. Otherwise, FALSE is
returned.
12.4 Delay

12.4.1 Del aySi gnal

Az

Del aySi gnal delays its input signal by one evaluation step.

Methods Arguments Return Value
conput e signal : : 1 ogical none
out none | ogi cal

228 The ASCET System Library

12.4.2

12.4.3

On activation of method
conput e: The input signal is buffered.

out: The buffered signal is returned, thus the input
signal is delayed by one step.

Del aySi gnal Enabl ed

i-1
E Iv I

Del aySi gnal Enabl ed delays its input signal by one evaluation step. It
must be enabled explicitly.

Methods Arguments Return Value
reset initEnable:: none

| ogi cal

initValue::logi-

cal
conput e signal : : 1 ogical none

enabl e: : | ogi cal

out none | ogi cal

On activation of method

reset: If i ni t Enabl e is TRUE, i nitVal ue is
buffered.

conput e: If enabl e is TRUE, the input signal is buff-
ered.

out: The buffered signal is returned, thus the input

signal is delayed by one step.

Del ayVal ue

Az

Del ayVal ue delays its input value by one evaluation step.

Methods Arguments Return Value
conput e val ue: : conti nuous none
out none conti nuous

The ASCET System Library

229

230

On activation of method
comput e:

out:

The input val ue is buffered.

The buffered value is returned, thus the input
value is delayed by one step.

12.4.4 Del ayVal ueEnabl ed
i-1
E IV T
Del ayVal ueEnabl ed delays its input value by one evaluation step. It must
be enabled explicitly.
Methods Arguments Return Value
reset i ni tEnable:: none
| ogi cal
i nitVal ue::
conti nuous
conput e val ue::continuous none
enabl e: : | ogi cal
out none | ogi cal
On activation of method
reset: If i ni t Enabl e is TRUE, i ni t Val ue is
buffered.
conput e: If enabl e is TRUE, the input value is buff-
ered.
out : The buffered value is returned, thus the input
value is delayed by one step.
12.4.5 TurnO f Del ay

Tur nOF f Del ay delays a falling edge of the input signal.

Methods
conput e

out

The ASCET System Library

Arguments Return Value
signal : : 1 ogi cal none

del ayTi ne: :

conti nuous

none | ogi cal

12.4.6

On activation of method

conput e:

out:

TurnOF f Del ayVari abl e

A falling edge of the input signal is delayed. If
the signal flips from TRUE to FALSE, a timer
is started. On being FALSE the timer is incre-
mented by dT and is compared to

del ayTi me. If the input signal is TRUE, the
timer is reset.

TRUE is returned if the input signal is TRUE or
the timer has not exceeded del ay Ti ne.
Otherwise, FALSE is returned.

Tur nOF f Del ay delays a falling edge of the input signal. The duration of the
delay can be modified at runtime via the Ti me variable.

Methods Arguments Return Value
conput e signal : : 1 ogical none
del ayTi ne: :

conti nuous

out none

On activation of method

conput e:

out:

| ogi cal

A falling edge of the input signal is delayed. If
the signal flips from TRUE to FALSE, a timer
is started. On being FALSE the timer is incre-
mented by dT and is compared to

del ayTi me. If the input signal is TRUE, the
timer is reset.

TRUE is returned if the input signal is TRUE or
the timer has not exceeded del ay Ti ne.
Otherwise, FALSE is returned.

The ASCET System Library

231

12.4.7 TurnOnDel ay

Tur nOnDel ay delays a rising edge of the input signal.

Methods Arguments Return Value
conput e signal : : 1 ogi cal none
del ayTi ne: :

cont i nuous

out none | ogi cal

On activation of method

conput e: A rising edge of the input signal is delayed. If
the signal flips from FALSE to TRUE, a timer
is started. On being TRUE the timer is incre-
mented by dT and is compared to
del ayTi me. If the input signal is FALSE,
the timer is reset.

out: FALSE is returned if the input signal is
FALSE, or the timer has not exceeded
del ayTi me. Otherwise, TRUE is returned.

12.4.8 TurnOnDel ayVari abl e

Tur nOnDel ayVar i abl e delays a rising edge of the input signal. The dura-
tion of the delay can be modified at runtime via the Ti ne variable.

Methods Arguments Return Value
conput e signal :: 1 ogical none
del ayTi ne: :

cont i nuous

out none | ogi cal

On activation of method

conput e: A rising edge of the input signal is delayed. If
the signal flips from FALSE to TRUE, a timer
is started. On being TRUE the timer is incre-

232 The ASCET System Library

12.5

12.5.1

out:

Memory

mented by dT and is compared to
del ayTi me. If the input signal is FALSE,
the timer is reset.

FALSE is returned if the input signal is
FALSE, or the timer has not exceeded
del ayTi me. Otherwise, TRUE is returned.

Accunul at or

I

T

Accunul at or adds up its input value.

Methods

reset

conput e

out

On activation of method
reset:

conput e:

out:

Arguments Return Value

i ni tVal ue:: none
conti nuous

val ue: : conti nuous none

conti nuous

The accumulator value is set to i ni t Val ue.

The accumulator is incremented by the input
value, i.e.accumul ator (new) =
accurul ator (ol d) + input

val ue.

The accumulator value is returned.

The ASCET System Library

233

234

12.5.2 Accunul at or Enabl ed

+ 4
TN M

E IV I
T T

Accunul at or Enabl ed adds up its input value. It must be enabled explic-

itly and its accumulator value can be limited.

Methods Arguments
reset i nitValue::
conti nuous
i ni tEnable::
| ogi cal
conput e val ue: : conti nuous

mm: : cont i nuous
nx: : conti nuous
enabl e: : | ogi cal

out none

On activation of method

Return Value

none

none

cont i nuous

reset: If i ni t Enabl e is TRUE, the accumulator
value is set to i ni t Val ue.

conput e: If enabl e is TRUE, the accumulator is incre-
mented by the input value, i.e.
accumul at or (new) =
accurul ator (ol d) + i nput val ue.
Additionally, the accumulator value is limited by

m and NX.

out : The accumulator value is returned.

The ASCET System Library

12.5.3 Accunul atorLi nmi ted

+ 4
MM MR
- —
Iy
T
Accunul at or Li mi t ed adds up its input value. Its accumulator value can
be limited.
Methods Arguments Return Value
reset i ni tVal ue:: none
conti nuous
conput e val ue: : conti nuous none
mm: : cont i nuous
nmx: : conti nuous
out none cont i nuous

On activation of method
reset: The accumulator value is set to i ni t Val ue.

conput e: The accumulator is incremented by the input
value, i.e. accunul at or (new) =
accurul ator (ol d) + i nput val ue.
Additionally, the accumulator value is limited by
mm and nx.

out : The accumulator value is returned.
12.5.4 RSFli pFl op

E

]
RFFﬁ

RSFI i pFl op is a flip flop with a reset and a set input, where the reset input
dominates the set input.

Methods Arguments Return Value
conput e r::logical none
s:: 1 ogical
q none | ogi cal
ng none | ogi cal

The ASCET System Library 235

On activation of method

conput e: If r is TRUE, the state of the flip flop is set to
FALSE. Otherwise, if S is TRUE, the state is
set to TRUE. If both r and s are FALSE, the
state is left unchanged.

q: The state of the flip flop is returned.
nqg: The negated value of the state is returned.
12.6 Miscellaneous

12.6.1 Del t aOneSt ep

-

Del t aOneSt ep returns the difference of the current input value and the last

input value.

Methods Arguments Return Value
conput e val ue:: continuous none

out none conti nuous

On activation of method

conput e: The previous input value is subtracted from the
input value.
out: The difference is returned.

12.6.2 Di fferenceQuotient

Di f f erenceQuoti ent computes the difference quotient of the input

value.
Methods Arguments Return Value
conput e val ue: : conti nuous none
out none conti nuous

On activation of method

conput e: The difference quotient (val ue - previ -
ous val ue)/ dT is computed.

out: The difference quotient is returned.

236 The ASCET System Library

12.6.3

12.6.4

EdgeBi

EdgeBi detects a bidirectional edge of the logical input signal.

Methods Arguments Return Value
conput e signal : : 1 ogi cal none
out none | ogi cal

On activation of method

conput e: The input signal is compared to the previous
input signal.

out : TRUE is returned, if the input signal and the
previous input signal differ. Otherwise, FALSE
is returned.

EdgeFal | i ng

EdgeFal | i ng detects a falling edge of the logical input signal.

Methods Arguments Return Value
conput e signal : : 1 ogical none
out none | ogi cal

On activation of method

conput e: The input signal is compared to the previous
input signal.
out: TRUE is returned, if the input signal is low and

the previous input signal was high. Otherwise,
FALSE is returned.

The ASCET System Library

237

238

12.6.5

12.6.6

EdgeRi si ng

EdgeRi si ng detects a rising edge of the logical input signal.

Methods Arguments Return Value
conput e signal : : 1 ogi cal none
out none | ogi cal

On activation of method

conput e: The input signal is compared to the previous
input signal.
out: TRUE is returned, if the input signal is high and

the previous input signal was low. Otherwise,
FALSE is returned.

Mux1lof 4

[iIN]
a
il
a
il

oo @ e

Mux1of 4 switches between the four inputs values s0, ..., s3 on the
binary representation of their index.

Methods Arguments Return Value
out b0: : | ogi cal conti nuous
bl::1 ogical

s0: : conti nuous
sl::continuous
s2::continuous
s3::continuous

On activation of method

out: The input value si (i ndex i) isreturned
withi = b0 + 2*bl, interpreting FALSE
as 0 and TRUE as 1.

The ASCET System Library

12.6.7 Muxlof 8

it
ML
W eaee
H1ee
Ha1e
W11e |-
MW aaq
181
a4
114
Mux 1of 8 switches between the eight inputs values sO, ..., s7 on the
binary representation of their index.
Methods Arguments Return Value
out b0: : | ogi cal conti nuous
bl:: 1 ogical
b2::1 ogi cal

s0: : conti nuous
sl::continuous
s2::continuous
s3::conti nuous
s4::continuous
s5::continuous
s6::conti nuous
s7::continuous

On activation of method

out: The input value si (i ndex i) isreturned
withi = b0 + 2*bl+ 4*Db2, interpreting
FALSE as 0 and TRUE as 1.

12.7 Nonlinears

12.7.1 Hyst eresi s- Del t a- RSP

+ 4
AR
AEEENn
Hyst er esi s- Del t a- RSP is a hysteresis with a right switching point and a
delta offset

Methods Arguments Return Value

out X::continuous | ogi cal
del ta::continuous
rsp::continuous

The ASCET System Library 239

On activation of method

out : TRUE is returned, if X > rsp. FALSEis
returned, if X < (rsp - delta).The
return value is unchanged, if X lies within the
openinterval] (rsp - delta), rsp[.

12.7.2 Hysteresis-LSP-Delta

+ 4
L &
AEEENn
Hyst er esi s- LSP- Del t a is a hysteresis with a left switching point and a
delta offset.

Methods Arguments Return Value

out X::continuous | ogi cal
| sp:: continuous
del ta::continuous

On activation of method

out: TRUE isreturned, ifx > (I sp + delta).
FALSE s returned, ifx < | sp.Thereturn
val ue is unchanged, if X lies within the open
interval] I sp, (lsp + delta)].

12.7.3 Hysteresis-LSP- RSP

t—
AAEENy

Hyst er esi s- LSP- RSP is a hysteresis with both a left and a right switching

point.
Methods Arguments Return Value
out X::continuous | ogi cal

| sp:: continuous
rsp::continuous

On activation of method

out: TRUE is returned, if X > rsp. FALSE is
returned, if X < | sp. The return value is
unchanged, if X lies within the open interval

11'sp, rsp[.

240 The ASCET System Library

12.7.4

12.7.5

Hyst er esi s- MSP- Del t aHal f

E
M Al

aEaEYy
Hyst er esi s- MSP- Del t aHal f is a hysteresis with a middle switching
point and a delta/2 offset.

Methods Arguments Return Value
out X::continuous | ogi cal
nep: : conti nuous
del tahal f::

conti nuous

On activation of method

out : TRUE is returned, if x > (nsp +
del t ahal f) . FALSE is returned, if X <
(msp - del tahal f) . The return value is
unchanged, if input x is in the open interval
Imsp - deltahalf), (msp +
deltahal f)[.

Li m t er returns the input X limited by rm and nx.

Methods Arguments Return Value

out X::continuous conti nuous
mm: : cont i nuous
nx: : conti nuous

On activation of method

out: The input X is limited by nm and nx and is
returned, i,e max(mn(x, nx), m).
There is no check if M <= nx.

The ASCET System Library

241

12.7.6 Signum

Si gnumreturns the sign of the input.

Methods Arguments Return Value

out X::continuous conti nuous

On activation of method

out: 1. 0isreturnedif x > 0.0, 0. 0 is returned
ifx = 0.0,and-1.0isreturnedif x < 0. 0.

12.8 Transfer Function

12.8.1 Control

dT1 is a time discrete differentiation transfer function with time constant T
and gain constant K.
Methods Arguments Return Value

conput e i n::continuous none
T::continuous
K: : conti nuous

out none conti nuous

On activation of method

conput e: The differentiation value is computed via a P-
function and an I-function which is backcou-
pled.

out: The differentiation value is returned.

242 The ASCET System Library

-
[3
Il

P is a time discrete proportional transfer function with gain constant K

Methods Arguments Return Value

out i n::continuous cont i nuous
K: : conti nuous

On activation of method

out: The return value out = in * Kis computed.

PI

- -
K T

e
=
Pl is a time discrete proportional integrator with time constant T and gain

constant K.

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e i n::continuous none
T: :continuous
K: : conti nuous

out none conti nuous

On activation of method
reset: The integrator value is set to i ni t Val ue.

conput e: The value of the PI-function is computed as the
sum of a P-function and an I-function.

out : The value of the PI-function is returned.

The ASCET System Library

243

244

PI D

+ +

K TUTH

A NP0
Iv
T

PI Dis a time discrete proportional integrator with differential part with time

constants Tv and Tn and gain constant K.

Methods Arguments

reset i ni tVal ue::
cont i nuous

conput e i n::continuous
Tv::continuous
Tn: : conti nuous
K: : conti nuous

out none

On activation of method

Return Value

none

none

cont i nuous

reset: The integrator value is set to i ni t Val ue.

conput e: The value of the PID-function is computed as a
sum of a P-function, a D-function and an I-
function.

out: The value of the PID-function is returned.

The ASCET System Library

PI DLi mi t ed

4 44 Ao

K TNFX TUTH

* [MPID [
IV
T

PI DLi mi t ed is a time discrete proportional integrator with differential part
with time constants Tv and Tn and gain constant K. The value of the integra-

tor is limited.

Methods
reset

conput e

out

On activation of method
reset:

conput e:

out:

Arguments

i ni tVal ue::
conti nuous

i n::continuous
Tv::continuous
Tn: : conti nuous
K: : conti nuous

mm: : cont i nuous
nmx: : cont i nuous

none

Return Value

none

none

conti nuous

The integrator value is set to i ni t Val ue.

The value of the PID-function is computed as a
sum of a P-function, a D-function and an I-
function, where the integrator value of the I-
function is limited by m and nx.

The value of the PID-function is returned.

The ASCET System Library

245

PILimted

+ 4 4 4
NN T

P
a
Pl Li m ted is a time discrete proportional integrator with time constant T

and gain constant K. The value of the integrator is limited.

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e i n::continuous none
T::continuous
K: : conti nuous
mm: : cont i nuous
nmx: : cont i nuous

out none conti nuous

On activation of method
reset: The integrator value is set to i ni t Val ue.

conput e: The value of the PI-function is computed as the
sum of a P-function and an I-function, where
the integrator value of the I-function is limited
by rm and mx.

out : The value of the PI-function is returned.

PT1 is a time discrete low pass with time constant T and gain constant K.

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e i n::continuous none
T::continuous
K: : conti nuous

out none conti nuous

246 The ASCET System Library

On activation of method

reset: The value of the integrator is set to
initVal ue.

conput e: The value of the PT1-function is computed via
an I-function and a P-function which is back-
coupled.

out: The value of the PT1-function is returned.

PT2

4

VP2
IV
i

PT2 is a time discrete delay function with time constant T, gain constant K,

and damping d.

Methods Arguments
reset i ni tVal ue::
conti nuous
compute i n::continuous
T::continuous
K: : conti nuous
d: : conti nuous
out none

On activation of method

Return Value

none

none

conti nuous

reset:

conput e:

out:

The two integrator values are set to
i nitVal ue.

The value of the PT2-function is computed via
two I-functions in row, which are backcoupled
by a cascade of two P-functions.

the value of the PT2-function is returned.

The ASCET System Library

247

12.8.2 Integrators

I ntegratorkK

B
3

- K -

I
T

I nt egr at or Kis a time discrete integrator with gain constant K.

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e i n::continuous none
K: : conti nuous

out none conti nuous

On activation of method

reset: The integrator value is set to i ni t Val ue.

conput e: The integrator value is computed via i nt e-
grator (new) = integrator (old) +
in* dT* K

out: The integrator value is returned.

I nt egr at or KEnabl ed

E Iv 1
L

I nt egr at or KEnabl ed is a time discrete integrator with gain constant K. It
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value
reset i ni tVal ue:: none

cont i nuous

i ni tEnabl e: :

| ogi cal
conput e i n::continuous none

K: : conti nuous

mm: : cont i nuous
nx: : conti nuous
enabl e: : | ogi cal

out none conti nuous

248 The ASCET System Library

On activation of method

reset:

conput e:

out:

I ntegratorKLimted

If i ni t Enabl e is TRUE, the integrator value
issettoinitVal ue.

If enabl e is TRUE, the integrator value is
computed via i nt egrator(new) = inte-
grator(old) + in * dT * K(limited by
mm and nx).

The integrator value is returned.

TV

I nt egrat or KLi mi t ed is a time discrete integrator with gain constant K. Its

integrator value can be limited.

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e in::continuous none
K: : conti nuous
mm: : cont i nuous
nmx: : conti nuous

out none

On activation of method
reset:

conput e:

out:

cont i nuous

The integrator value is set to i ni t Val ue.

The integrator value is computed via i nt e-
grator (new) = integrator (old) +
in* dT * K(limited by m and nx).

The integrator value is returned.

The ASCET System Library

249

IntegratorT

+

T
E in
Iy
T

I nt egrat or T is a time discrete integrator with time constant T.

Methods Arguments Return Value

reset i nitVal ue:: none
conti nuous

conput e i n::continuous none
T::continuous

out none conti nuous

On activation of method

reset: The integrator value is set to i ni t Val ue.

conput e: The integrator value is computed via
integrator(new) = integrator(old)
+in*dT/ T

out: The integrator value is returned.

I nt egr at or TEnabl ed

I nt egr at or TEnabl ed is a time discrete integrator with time constant T. It
must be enabled explicitly and its integrator value can be limited.

Methods Arguments Return Value
reset initVal ue:: none

conti nuous

i ni tEnabl e::

| ogi cal
conput e i n::continuous none

T::continuous

m: : cont i nuous
nx: : conti nuous
enabl e: : | ogi cal

out none cont i nuous

250 The ASCET System Library

On activation of method

reset: If i ni t Enabl e is TRUE, the integrator value
issettoinitVal ue.

conput e: If enabl e is TRUE, the integrator value is
computed via i nt egr at or (new) =
integrator(old) +in* dT / T (lim-
ited by m and nx).

out: The integrator value is returned.

IntegratorTLim ted

Iv

I nt egrat or TLi mi t ed is a time discrete integrator with time constant T. Its

integrator value can be limited.

Methods Arguments

reset initValue::
cont i nuous

conput e i n::continuous
T::continuous
mm: : cont i nuous
nmx: : conti nuous

out none

On activation of method

Return Value

none

none

cont i nuous

reset: The integrator value is set to i ni t Val ue.
conput e: The integrator value is computed via
integrator(new) = integrator(old)

+in * dT / T (limited by m and nx).

out: The integrator value is returned.

The ASCET System Library

251

12.8.3

Lowpass

Di gi t al Lowpass

DigitalLowpass recursively computes the mean value of the input value.

Methods
reset

conput e

out

On activation of method
reset:

conput e:

out:

LowpassK

Arguments Return Value

i ni tVal ue:: none
conti nuous

i n::continuous none
m : conti nuous

none

conti nuous

The mean value is set to i ni t Val ue.

The mean value is computed via mean val ue
(new) = nean value (old) + m*(in
-mean value (old)).

The mean value is returned.

LowpassK s a simplified PT1-function with gain constant K (low pass filter).

Methods

reset

conput e

out

252 The ASCET System Library

Arguments Return Value
i ni tVal ue:: none

conti nuous

i n::continuous none

K: : conti nuous

none

cont i nuous

On activation of method
reset:

conput e:

out:

LowpassKEnabl ed

The lowpass value is set to i ni t Val ue.

The lowpass is computed vial owpass (new)
= |l owpass (old)+ (in - |owpass
(old)) * dT* K

The lowpass value is returned.

LowpassKEnabl ed is a simplified PT1-function with gain constant K (low
pass filter). It must be enabled explicitly.

Methods

reset

conput e

out

On activation of method

reset:

conput e:

out:

Arguments Return Value
i ni tVal ue:: none

cont i nuous

i nitEnabl e: :

| ogi cal

in::continu- none

ousK: : conti nu-
ousenabl e: : | ogi ca
I

none conti nuous

If i ni t Enabl e is TRUE, the lowpass value is
settoi nit Val ue.

If enabl e is TRUE, the lowpass is computed
vial owpass (new) = lowpass (old)+
(in - lowass (old)) * dT* K

The lowpass value is returned.

The ASCET System Library

253

LowpassT

LowpassT is a simplified PT1-function with time constant T (low pass filter).

Methods Arguments Return Value

reset i ni tVal ue:: none
conti nuous

conput e i n::continuous none
T::continuous

out none cont i nuous

On activation of method

reset: The lowpass value is set to i ni t Val ue.

conput e: The lowpass is computed vial owpass (new)
= |l owpass (old)+ (in - |owpass
(old)) * dT/ T.

out: The lowpass value is returned.

LowpassTEnabl ed

E 1v I
T F

LowpassTEnabl ed is a simplified PT1-function with time constant T (low
pass filter). It must be enabled explicitly.

Methods Arguments Return Value
reset initVal ue:: none

conti nuous

i ni tEnabl e::

| ogi cal
conput e i n::continuous none

T::continuous
enabl e: : | ogi cal

out none conti nuous

254 The ASCET System Library

On activation of method

reset: If i ni t Enabl e is TRUE, the lowpass value is
settoi ni t Val ue.

conput e: If enabl e is TRUE, the lowpass is computed
vial owpass (new) = lowpass (old)+
(in - lowass (old)) * dT / T

out: The lowpass value is returned.

The ASCET System Library 255

256 The ASCET System Library

13

13.1

Troubleshooting

In this chapter potential problems when working with ASCET are discussed
and hints for solving these problems are given. If you have any problems that
are not included in this chapter, please inform ETAS, so that this section can be
enhanced.

In general, any system error indicated by ASCET may be a serious error, i.e. it is
advisable to store all data to the database after a system error. If the system
behavior is unexpected after a system error, the system error has caused an
inconsistency in the running system. In this case you should leave ASCET and
reboot Windows.

General Hints

Limit of the size of a database: The size of an ASCET database is limited
to 4 GByte, the size of a single object to 128 MBytes. Be careful not to reach
this limit when working with a large database, because when the limit is
exceeded the database will be destroyed. Use the database tools to compact
your database when necessary.

Conversion of databases: Databases that have been developed with the
predecessor versions ASCET-SD V4.1 or V4.2 or ASCET V5.0 are automatically
converted to ASCET 5.2. Note that the converted database cannot be used
with older versions of ASCET. A backup copy of the old database is created
automatically during conversion.

Databases created with ASCET-SD 4.0 or even earlier versions cannot be
opened with ASCET 5.2.

ASCET supports only ANSI C compliant names. To ensure compatibility, you
have to adjust the names of all items in the database using the built-in conver-
sion tool. Choose Tools - Database - Convert — All Names To ANSI Cin
the Component Manager to convert the names of all items.

Problems with Graphics Cards: When problems with the displaying of
ASCET windows appear, there is probably an incompatibility between ASCET,
the graphics card and the graphics cards driver. When such problems occur,
either try the most recent driver for your graphics card (which is usually avail-
able on the Internet from the card manufacturer) or try another resolution of
your card. All standard VGA and SVGA modi should generally work.

The offline experiment runs out of time. The time (dT) for offline exper-
iments has a limitation of approx. 3 days (in units of dT), i.e. if the dT is set very
high (for instance 1000 seconds), the offline experiment will crash after a few
minutes.

Troubleshooting

257

258

13.2

Unpredictable effects when using complex assignments: Unpredict-
able effects with the measuring of complex elements occur when complex
assignments are executed in the model. A complex assignment is represented
by an assignment of the respective pointers of the complex elements, that is,
both objects are identical afterwards and one object is ‘lost’. E.g. in the assign-
ment A=B, the element A becomes the element B. The measurement and cal-
ibration system however still refers to both as separate objects. You can
measure and calibrate the ‘lost’ object (here object A) but this has no effect
and does not take into account the object that represents the complex element
after the assignments (i.e. object B).

The fonts are not displayed properly: The Arial font family is not dis-
played properly under Win97/WinNT, so that some entries are hardly visible.
Use the Microsoft SansSerif Font of size 10 instead. With this font, there are no
display problems.

Problems with the external experimental targets: A potential source of
errors when using the Centronics link cable is that the speed of the parallel
port may be too fast for the Centronics link cable (esp. when using a Pentium
200 or higher). Here it is advisable to reconfigure the parallel port in the setup
of the computer BIOS.

Busy ASCET: While ASCET is busy (e.g. generating code, committing to the
database), do not try to invoke other functions in ASCET, but wait until the
current action of ASCET is finished. Otherwise, the system behavior of ASCET
may lead to unexpected errors (e.g. system errors).

Problems with ASCET

Some ASCET experiments do not end or do not run properly: Here
the problem often lies with the C code that has been integrated into an ASCET
model. Potential errors are wrong passing of parameters (when converting the
ASCET type cont i nuous the C type doubl e f1 oat should be chosen), and
infinite loops in the C code. Infinite loops may also occur in recursive object
structures. A possible way to find the error here, is to exclude the C code com-
ponents.

The generated code may not run in the scheduled time frame, i.e. its execution
time is too long. Here either the specification must be changed, or a time
frame with a longer interval should be assigned.

Another source of errors in this field is that sequence calls are not set properly
or are simply forgotten.

Troubleshooting

The compilation returns unexplainable error messages or does not
end: |If you click into another window during compilation the priority for the
DOS-box where the compilation takes place is decreased dramatically, so that
the compilation comes to an almost complete stop. in that case you can acti-
vate the DOS-box by double clicking on its icon.

Additionally you should avoid the following keywords, which are used by the
error management system to trace back compiler errors to the ASCET model:
Error, ERROR, Serious, Fatal, illegal, Failed, failed, warning, known format.

ASCET does not compute correctly when using temporary variables:
Automatic temporary variables can be used when the result of an expression is
to be used in several different branches. These temporary variables are only
computed once (upon evaluation of the first branch). When the branches
using the temporary variable are only computed conditionally (e.g. as they are
input to a switch or a MUX operator), the value of that temporary variable may
not be computed correctly. Therefore automatic temporary variables should
not be used, if the branches leading from a temporary variable are fed into a
conditional operator.

L1-Communication Errors often occur during online experiments: In
this case the priority of the communication process is too low. The priority of
this process can be raised for the target in the file es1130cp. i nv,
es1130cp_gnu.inv or es1135cp_gnu.inv in the respective target
directory. The file you have to edit depends on your target/compiler combina-
tion.

This file is used in the configuration of the compiler. Here you can modify the
priority of the communication process by setting the parameter __ L1_Pri o
= to the desired priority (by default it has the lowest priority, i.e. 0).

The documentation generation in . rt f format does not work prop-
erly. When displaying . rtf files, Word for Windows may not display the
integrated bitmap image files. You may have to update all links to (external)
*. gif files to view the images.

Troubleshooting

259

260 Troubleshooting

14

14.1

14.11

Code Generation Messages

This chapter contains the warnings and error messages that may appear during
ASCET code generation, together with hints and explanations on how to cor-
rect the mistakes that led to the error. Error messages point to serious faults in
the specification that lead to the code generation process to be terminated.
Warnings point to less serious faults. The code generation process may be suc-
cessful, but the resulting code may not work as desired.

Components

Error Messages

nmet hod <net hod_nane> nust be defined; need a return val ue
Description:

A method with return value has been declared in the component, but the
return value does not have a sequence call attached to it. This is required,
because the method might be called by other components.

Solution:

Edit the sequence call and select the method the return value belongs to as the
sequence name. The sequence number must be the highest number attached
to that method.

<met hod_nanme> has no argunent <argunent_nane>
Description:

An operation attached to the method met hod_name uses an argument
belonging to another method. A method may only use the local and global
elements and its arguments, but not the arguments of other methods.

Solution:
Change the sequence call or replace the argument with another element.

m ssi ng argument connection for nethod <nethod_name> at
bl ock <bl ock_nane>

Description:

At the block bl ock_nane the method met hod_nane is called, but not all
arguments are connected, i.e. one of the arguments is missing. In the case of
an operator, the method name is left blank.

Solution:

Connect the missing arguments, or in the case of an operator, choose an oper-
ator with the appropriate number of arguments.

Code Generation Messages

261

262

doubl e sequence number <sequence_nunber> for <name>
Description:

The process, method, action, or condition name has two sequence calls
attached to it with the same sequence number sequence_nunber .

Solution:

Change one of the sequence numbers to a sequence number not yet used in
nane.

return val ue does not belong to <name>

Description:

A return value of some method or condition is assigned a sequence call
belonging to a method or action name, which has no return value. The

sequence call of a return value must always be assigned to the method or
condition defining that return value.

Solution:

Change the sequence name of the sequence call of the return value to the
name of the condition or method the return value belongs to.

del ay-free | oop detected at <bl ock_nanme> bl ock
Description:

A loop is created without any operation in that loop, e.g. the return value of
an operator is directly fed in as an input to that operator.

Solution:

Insert an element into the loop.

type msmatch: expected <type_A> got <type_ B>
Description:

An argument of t ype_B is used where an argument of t ype_A is required,
and the t ype_B can not be cast to t ype_A. E.g. an argument of type cont
is fed into a logical operator. Presumably the connection is wrong.

Solution:
Supply an argument of the correct type.

type msmatch: expected <type_A> [<name_A>}, got <type_ B>
[<name_B>]
Description:

An element with name name_B of t ype_B is assigned to a variable with
name nane_A of type t ype_A where t ype_B can not be cast to t ype_A.
E.g. an element of type cont is assigned a variable of type | ogi cal . Presum-
ably the connection is wrong.

Code Generation Messages

Solution:
Change the type of the element or make a correct connection.

return nust be the | ast operation of <nane>
Description:

A method with a return value or condition nane has a return statement whose
sequence call does not have the highest sequence number in sequence calls
attached to the method or condition.

Solution:

Change the sequence number in the sequence call to the highest number in all
sequence calls belonging to the method or condition nane.

<then> part of |F block nust be specified
Description:

An IF block is used where THEN part is not used.
Solution:

Specify the THEN part. There must be at least one sequence call with a connec-
tor attached to the THEN part.

state nmachi ne needs start state
Description:

The state machine has no start state.
Solution:
Specify one of the states of the state machine as its start state.

mul tiple prio <priority_nunber> for trigger <trigger_nanme>
in state <state_nane>

Description:

The state machine contains two transitions leading from state st at e_nane
attached to the same trigger tri gger _name with the same priority
priority_nunber. This is not allowed, since the transition is not unique.
Solution:

Change one of the priorities, such that all priorities leading from the same
state and assigned to the same trigger are different.

unbal anced nunber of start/stop atomic in <name>
Description:

The method, process, condition or action name has sequence calls with

attached atomic marks. However, there is an unbalanced number of start and
stop marks.

Code Generation Messages

263

264

14.1.2

Solution:

Insert or delete some of the start or stop marks, such that their number and
appearance is balanced.

Expected consistent datanodel for <elenent_name> in
<Cl ass_nane>. El enent needs GET/ SET direct access - ple-
ase change attributes OR restore diagram

or—for ESDL/C code

nmet hod "<El ement _name>"/"<functi on_nane>" not defined
as public in class "<C ass_nanme>"

Description:

The element / function in the class <Cl ass_nane> has not been set for direct
access/ made public.

Solution:

Enable direct access (Set/Get functionality) for the element or make the func-
tion public.

Warnings

<nanme> not defined
Description:

The method, process, or action has been declared, but was not defined. There
is no sequence call with sequence name nane. This only relates to methods
without return values.

Solution:

Define the method, process or action or delete its declaration from the compo-
nent interface.

type mismatch with casting from <type B> [<name_B>], got
<type_A> [<nane_A>]
Description:

An element with name nanme_B of type t ype_B is assigned to a variable with
name nane_A of type t ype_A where a type cast is made from t ype_B to
type_A. E.g. an element of type cont is assigned a variable of type sdi sc.

Solution:

Change the type of the element or make a correct connection.

Code Generation Messages

argunment <argunent _nanme> of net hod <met hod_nane> not used
Description:

In the definition of the method met hod_name the argument
ar gunent _nane of the method is not used.

Solution:

Use the argument ar gunent _nane in the definition of the method or delete
it from the method definition.

unreachabl e state <state name>

Description:

The state machine contains a state with name st at e_nane that can not be
reached from the start state, i.e. no transition leads to that state.

Solution:

Delete the state or make the state reachable from the start state.

literal value <value> does not fit type <type> - linted
to <range_val ue>

Description:

The value of the literal is to large for the variable of type t ype, it is assigned
to. The value of the literal for this assignment is automatically limited to the
value r ange_val ue. This does not apply to expressions consisting of literals

only. The type t ype is either udi sc or sdi sc which have a range of a 32 bit
integer (unsigned or signed).

14.2 Projects

14.2.1 Error Messages

need binding for inported el enent <el enent_nane>
Description:

The imported element or message el ement _nane is not bound to a global
element or message.

Solution:
Adjust the binding (either automatically or manually).

appl i cation nmodes missing for task <task_name>
Description:

The task t ask_nane has no application mode assigned to it.

Code Generation Messages 265

266

14.2.2

14.3

14.3.1

Solution:

Assign an application mode, or delete the task t ask_nane. To exclude certain
tasks from execution, simply specify an additional application mode with name
unused and assign it to the tasks that are to be excluded.

Warnings

no start application node specified - using <opnode_nane>
Description:

None of the application modes is defined as the start mode. The application
mode opnode_nane is automatically defined as the start mode.

Solution:

Define one of the modes as the start mode, unless the right mode has been
picked as the default.

m ssing trigger event
Description:

One of the event tasks specified in the operating system has no trigger event
assigned to it.

Solution:

Change the mode of that task or assign one of the trigger events to that task.

Fixed Point Code Generation

Error Messages

Integer interval [a,b] of variable <name> too |arge for
i mpl erent ati on type

Description:

The integer interval [a,b] derived from the model interval is to large for the
chosen implementation type. Presumably, the implementation for this element
has not been edited or the implementation type is not set to an integer type.

Solution:

Edit the implementation for the element nane.

Cannot generate fixed point code for the non-linear for-
mul a <fornul a_nane> of variabl e <nane>

Description:

The non-linear formula f or mul a_nare is assigned to nane. The fixed point
code generation only supports linear formulae.

Code Generation Messages

14.3.2

Solution:

Change the formula assigned to name or change the formula
f or mul a_nane, so that it is a linear formula.

Physical interval [a,b] of divisor contains zero
Description:

Fixed point code can not be generated, because a division by zero could occur.
This would result in an implementation interval of infinite size.

Solution:

Insert a variable for the divisor and specify a meaningful implementation for it
(the physical interval should not contain zero).

Warnings

formula ininplenmentation for <name> not known i n current
project - using default

Description:

In the implementation for the element nane the formula is not known in the
context of the current project. Presumably, no formula has been assigned. The
identity formula is used instead.

Solution:

Use a valid formula from the context of the current project for the implemen-
tation for the element nare.

Interval mismatch i n assi gnnent of <variabl e_name>: [a,b]
= [c,d] (will be limted)
Description:

The fixed point code generator has found, that in the assignment of variable
vari abl e_nane there is a possible conflict. The value of the expression that
is assigned to the variable lies within the interval [c,d]. This interval is com-
puted via interval arithmetics from the intervals specified for the elements in
that expression. The interval [a,b] for the variable var i abl e_nane does not,
however, include the interval [c,d], so that an overflow might occur. To avoid
this overflow, the value of the expression is automatically limited to the value
interval of variable vari abl e_nane before the assignment is carried out.
Note, that this warning cannot be avoided when there are arithmetic loops.

Code Generation Messages

267

268 Code Generation Messages

Index

Symbols || 117

1117

- 117 A

-- 117 Abs operator 154

1= 117 abs() 116, 137

%117 access macros 170

% 118 acess to private methods 171
&& 117 array length 171

* 117 arrays in external C code 171
*= 118 ASD_GET 171

+117 ASD_LENGTH 171

++ 117 ASD_RELEASE 171

+= 118 ASD_RESERVE 171

/ 117 ASD_SET 171

/* commrents */ 117 ASD_USE_ARRAY_EXTERNAL 171
/'l comments 117 direct acess 171

/=118 resource access 171

<117 sel f 171

<= 117 accessing objects 124

-=118 access control 126

== 117 block diagrams 138

> 117 C code access macros 170
>= 117

? 118

269

270

accessing objects
direct access methods 127
library functions 136
this 126
acos() 137
Action 45
see also state machine
Adams-Moulton 181
AND 151
see logical operators
application mode 19
argument 113, 166
arithmetic operator 117, 151
arrays 91, 127, 146
access in ESDL 128
Get/Set Port 147
maximum size of ~ 128
public interface 128
Table Editor 128
asin() 137
assignment 114
shorthand assignment operator 118
atan() 137
atomic sequences 141
auto-inlining 73

B
basic language elements 112
basic types 89
Between operator 154
bet ween() 116
block diagram
~vs. ESDL 141
access ~ in ESDL 138
semantics 159
block statements 114
branching
see control flow
break 155
break 122, 124

C
C code
access macros 170
argument 166
charachteristic lines/maps 167
direct access methods 171

external ~ 169

function parameters 163

header 169

local variables 166

message 165

method 162

process 162

specification 161

variables 163
C programming language

see programming languages
case operator 153
ceil () 137
characteristic line 92

see also one-dimensional table
characteristic map 92

see also two-dimensional table
characteristic table 92, 148
class 24

hierarchical structure 31

interface 27

state machine 83

vs. module 24
comment 116

~ in generated code 117
communication

between processes 20

message 20
comparison operator 151
complex element 100
component 23

definition 25

instantiation 25

interface 27

reusing 29

specification 23
composite data types 127—134

array 127

data structures 134

distributions 133

group tables 133

matrix 129

one-dimensional table 129

two-dimensional tables 131
compound statements 114
Condition 45
conditional construction

see control flow

conditional operator 118, 152
constant 96, 116
system ~ 97
cont 115
Continuous Time block
see CT block
Continuous time models
structure 173
control flow 32, 120—124
break 122, 124
for 123
if.else 120
return 125
swi tch..case..default 121
whil e 123
conventions
method names 112
variable names 114
conversion
of data types 115
cooperative scheduling 15
cos() 137
cosh() 137
coth() 137
csh() 137
CT basic block 174, 183—198
interfaces 185
methods 186
CT block 173—181
computing sequence 187
direct output 201
input 174
modeling in C 195
nondirect output 201
output 174
parameter 174
predefined tasks 211
state 174
structure 199
CT structure block 174, 199—207

D
data 101
transformation 109
data set 101
data structures
modelling ~ in ESDL 134

data types
array 127, 146
basic ~ 115—116
composite ~ 127—134
continuous 115
conversion 115
data structures 134
distributions 133
group tables 133
logical 115
matrix 129, 146
messages 135
one-dimensional table 129
signed discrete 115
strings 112
two-dimensional tables 131
unsigned discrete 115
diagram
item 143
line 143
pin 143
diagram item 143
differential equation 177
in C 195
direct access methods
C code 171
ESDL 127
distributions 133
assigning to group tables 133
monotone sequencing in ~ 133
dT parameter 95
dynamic instantiation 112

E
editor
ESDL ~ 113
element 89
basic 144

graphical representation 143, 145

scalar 145

scope 99, 145
Entry action 47
entry action

in state machines 139
enumeration 96
equality operator 117
ERCOSHK 14, 20, 21

271

ESDL
access block diagram 138
basic elements 112
description 111
direct access methods 127
feature list 111
general features 111
implementation cast 119
instantiation 112
Java syntax in ~ 111
syntax 114

ESDL editor 113

Euler 180

exit action 48
in state machines 139

exp() 137

expression 114

external event 15

external source code 169

F

floor() 137
fod() 137
for 123

G
Get/Set ports 147
get At ()
array elements 128
matrix elements 129
table elements 130
two-dimensional table elements 132
graphical representation
element 145
expression 145
operators 151
statement 154
group tables 133
assigning distributions 133
public interface 133

H
Heun 180
hierarchy 41
of classes 31
of modules 31
of state machines 57

History
state machine 44, 57
hybrid project 173

|
if...then statement 156
if...then...else operator 157
if.else 120
I f .. Then 156
I f..Then.El se 157
implementation 103
code generation 108
composite types 105
implementation cast 106
scalar types 103
transformation 109
user defined types 105
implementation cast 97, 106—108, 149
ESDL 119
inheritance 112
instantiation 25
integration method
Adams-Moulton 181
Euler 180
fixed step size 178
Heun 180
Mulstep 180
Runge-Kutta 181
variable step size 178
Integration step size 188
interface
of a class 27
of a component 27
of a module 29
Interface Editor 113
interpolate() 130, 132, 134
interpolation
linear 130
rounded 130
interpolation mode
~ of tables 130
linear 130, 132
interprocess communication 20

J
Java programming language
see programming languages

Junction 38
state machine 51

K
keywords

reserved ~ in ESDL 114
kind 96

L
I ength() 128
library functions
accessing ~ 136
limt() 137
linear interpolation 130, 132
Literal 146
literal 96, 116
local variable
C code 166
| og 115
log() 137
| 0g10() 137
logical operator 117, 151
loops
see control flow

M

mathematical functions

accesing library functions 136

primitive methods 116
Mat hFcn 136
matrix 92, 129, 146
access in ESDL 129
Get/Set Port 147
maximum size of ~ 129
public interface 129
Max operator 153
max() 116, 137
message 20, 94, 165
~ in processes 135
accessing ~ in ESDL 135
methods
arguments 113
editing method bodies 112
header 112
interface 112
method calls 124

naming conventions 112
nesting method calls 124
overloading 113

precedence of method calls 117

primitive methods 116
private 126
public 126
return value 113, 124
Min operator 153
mn() 116, 137

model type
cont i nuous 90
| ogi cal 90

si gned di screte 90
unsi gned di screte 90
module 19, 24
hierarchical structure 31
interface 29
vs. class 24
Mulstep 180
multi-tasking 15
Mutiplex operator 152
MUX 118, 152
see conditional operator

N
Negation operator 154

non-preemptable scheduling 17

Not 151

(0]
object
access control 126
object reference
t hi s in method calls 126
object-oriented concepts 112
Of state machines 41
one-dimensional table 92, 129
C code interpolation 167
interpolation mode 130
linear interpolation 130
maximum size 130
public interface 130
operating system
real time ~ 13

273

274

operator 117—118
Abs 154
arithmetic 151
arithmetic ~ 117
associativity of ~ 118
Between 154
case 153
comparison 151
comparison and equality ~ 117
conditional ~ 118, 152
logical 117, 151
Max 153
Min 153
Multiplex 152
Negation 154
order of evaluation 150
precedence levels 118
shorthand assignment ~ 118
unary ~ 117
OR 151
see logical operators
overloading 113

P
parameter 96
dependent ~ 99
see also arguments
virtual ~ 99
pi () 137
PMI 170
pointers 111
pow() 137
precedence
~ of operators 117—118
pre-emptive scheduling 16
priority
task 16
private
see accessing objects
process 15, 19
using messages 135
see also methods 112
programming languages
C 161
Cvs. ESDL 111, 141
Java vs. ESDL 112, 142
Programming Model Interface 170

project 13
hybrid 209
module 20
process 20
public
see accessing objects

R

real time operating system 13
real-time
dT parameter 95
language construct 94
message 94
resource 95
records
see data structures
relational operator 117
reserved keywords 114
resource 95, 149
return 125
return value 113, 124
reusing components 29
rounded interpolation 130
Runge-Kutta 181

S

sch() 137

scheduling 15
cooperative 15
non-preemptible 17
pre-emptive 16

scope 99

sdisc 115

search() 130, 132, 134

sel f
seethis

Semantics
hierarchical state machine 57
simple state machines 48
state machine with junction 51
state machines 47—71

sequence call 155

sequence number 155

sequences
atomic ~ 141

sequencing 159

set At ()
array elements 128
matrix elements 129
shift operators 111
shorthand assignment operator 118
sign() 137
sin() 137
sinh() 137
software event 15
specification
component 23
in C code 161
sqrt () 137
Start state 43
State 34
entry action 47
exit action 48
static action 47
State diagram 33
State editor 140
State machine 32—87
action 45
class 83
condition 45
ESDL in ~ 139
function 47
hierarchy 41, 57
history 44, 57
inlining 73
junction 38, 51
optimize (actions) 75, 76
optimize (conditions) 75, 76
optimize (hierarchical code genera-
tion) 81
optimize (junctions) 76
optimize (static action of hierarchy
state) 77
optimized for code size 76
optimized for response time 74
optimized for runtime 75
outlining 73
semantics 47—71
start state 43
transition 33, 35
trigger 41
statements 114
block statements 114

static action 47
in state machines 139
strings 112
Swi tch 157
swi tch..case..defaul t 121
fall through 122
syntax
ESDL 114
method calls 124
system constant 97
System Library
Bit Operators 215
Comparators 221
Control 242
Counter 223
Delay 228
Integrators 248
Lowpass 252
Memory 233
Miscellaneous 236
Nonlinears 239

Timer 223
T
table 129—134
group ~ 133

interpolation mode 130
linear interpolation 130, 132
one-dimensional 129
two-dimensional 131
Table Editor 128
tan() 137
tanh() 137
task 15, 17
priority 16
this 126
timer 15
transformation 109
Transition 33, 35
action 48
in state machines 140
priority 35
Transition action 48
Transition editor 140
Trigger 41

275

two-dimensional table 92
C code interpolation 167
linear interpolation 132
maximum size 131
public interface 132
see also table
type
basic 89, 90
composite 91
scalar 90
user defined 89, 100
type casting
see conversion

U
udi sc 115
unary operators 117

Vv

variable
local 166

variables 96
declaration of ~ 115
direct access methods 127
naming conventions 114
public and private ~ 126
reserved keywords 114
temporary ~ 98
virtual ~ 99

W

whi | e 123

Wil e loop 158

X
xLengt h() 129

Y
yLength() 129

276

	The Modeling Language
	1 Projects
	1.1 The Task Schedule for the Operating System
	1.1.1 Scheduling
	1.1.2 Tasks
	1.1.3 Processes
	1.1.4 Application Modes

	1.2 Modules and Processes
	1.3 Interprocess Communication

	2 Components
	2.1 Modules vs. Classes
	2.2 Definition and Instantiation of Components
	2.3 The Interface of Components
	2.3.1 The Interface of Classes
	2.3.2 The Interface of Modules

	2.4 Reusing Components
	2.4.1 Hierarchical Class Structure
	2.4.2 Hierarchical Module Structure

	2.5 State Machines
	2.5.1 State Machine Components
	States
	Transitions
	Junctions
	Triggers
	Hierarchy
	Start State
	History
	Conditions
	Actions
	Data

	2.5.2 Semantics of State Machines
	2.5.3 Semantics: Simple State Machines
	2.5.4 Semantics: Junctions in State Machines
	2.5.5 Semantics: Hierarchical State Machines
	2.5.6 Semantics: Summary
	2.5.7 Simple Code Example
	2.5.8 Optimizing the State Machine
	Optimized for Response Time
	Optimized for Runtime
	Optimized for Code Size

	2.5.9 State Machines as Classes

	3 Types and Elements
	3.1 Basic Model Types
	3.1.1 Scalar Types
	3.1.2 Composite Types
	Array
	Matrix
	Characteristic Tables

	3.1.3 Real-time Language Constructs
	Messages
	Resources
	The dT Parameter

	3.1.4 Special Types
	Enumeration
	Literals

	3.2 The Kind of Elements
	Temporary Variables
	Virtual Variables/Parameters
	Dependent Parameters

	3.3 The Scope of Elements
	3.4 User-defined Model Types

	4 Data and Implementations
	4.1 Data
	4.2 Implementations
	4.2.1 Implementations for Scalar Types
	4.2.2 The Implementation of Composite Types
	4.2.3 The Implementation of User-Defined Types
	4.2.4 Implementation Casts

	4.3 Code Generation with Implementations
	An Example: Code Generation for an Addition
	4.3.1 Transformation of Data under Implementation
	4.3.2 General Rules for the Implementation Transformation

	4.4 The Implementation of Methods and Processes

	5 Body Specification in ESDL
	5.1 ESDL as a Modelling Language
	5.2 Basic Elements
	5.2.1 Working with Methods and Processes
	5.2.2 ESDL Syntax
	5.2.3 Variable Names
	5.2.4 Data Types
	5.2.5 Type Conversion
	5.2.6 Primitive Methods
	5.2.7 Literals and Constants
	5.2.8 Comments
	5.2.9 Operators

	5.3 Implementation Casts in ESDL
	5.4 Control Flow
	5.4.1 If…Else
	5.4.2 Switch…Case…Default
	5.4.3 While
	5.4.4 For
	5.4.5 Break

	5.5 Methods
	5.5.1 This
	5.5.2 Access Control
	5.5.3 Direct Access Methods

	5.6 Composite Data Types
	5.6.1 Arrays
	5.6.2 Matrices
	5.6.3 One-dimensional Tables
	5.6.4 Two-dimensional Tables
	5.6.5 Distributions and Group Tables

	5.7 Structures
	5.8 Messages
	5.9 Resources
	5.10 Mathematical Functions
	5.11 Accessing Block Diagrams from ESDL
	5.12 Using ESDL in State Machines
	5.13 Overview: ESDL Features Compared
	ESDL vs. Block Diagrams
	Reference: ESDL vs. ANSI C
	Reference: ESDL vs. Java

	6 Body Specification with Block Diagrams
	6.1 Graphical Description of Elements
	6.1.1 Basic Elements
	Basic Scalar Elements
	Messages
	Literals
	Arrays and Matrices
	Characteristic Tables
	Resources
	Implementation Casts

	6.1.2 Elements of User-defined Type

	6.2 Expressions
	6.2.1 Arithmetic Operators
	6.2.2 Comparison Operators
	6.2.3 Logical Operators
	6.2.4 Conditional Operators
	Multiplex Operator
	Case Operator

	6.2.5 Other Operators
	Max and Min Operators
	Between Operator
	Abs Operator
	Negation Operator

	6.3 Statements
	6.3.1 Assignment
	6.3.2 The Break Statement
	6.3.3 Method Call
	6.3.4 Control Flow
	If...Then
	If...Then...Else
	Switch
	While

	6.4 The Semantics of Block Diagrams
	6.4.1 Graphical Hierarchies

	7 Body Specification in C
	7.1 Structure
	7.1.1 Methods and Processes
	7.1.2 Variables and Function Parameters
	7.1.3 Header

	7.2 External Source Code
	7.3 Programming Model Interface
	7.4 Access Macros
	Direct Acess
	Length of Arrays
	Resource Access
	Acess to Private Methods
	Making Arrays Avaiable for Usage in External C-Code

	8 Continuous Time Systems
	8.1 Structure of Continuous Time Models
	8.1.1 Modeling with Basic Blocks and Structure Blocks
	8.1.2 Modeling with Graphical Hierarchies
	8.1.3 Experiments
	8.1.4 Projects and Hybrid Projects

	8.2 Solving Differential Equations - Integration Algorithms
	8.2.1 Integration Methods - Overview
	Euler
	Mulstep
	Heun
	Adams-Moulton
	Runge-Kutta 4
	Integration Methods With Variable Step Width

	9 Continuous Time Basic Blocks
	9.1 Basics
	9.2 Available Elements and Methods
	9.2.1 Modeling With Continuous Time Basic Blocks

	9.3 Block Interfaces
	9.4 Block Methods
	9.5 Computing Sequence
	External Communication Interval dT
	Integration Step Size h
	Step Size Depending on the Internal Integration Method: h/n

	9.6 Modeling with ESDL
	9.6.1 Differential Equations in ESDL
	9.6.2 Semantic Checks in ESDL
	9.6.3 Additional Library Functions

	9.7 Modeling in C
	9.7.1 Differential Equations in C
	9.7.2 Additional C Routines

	10 Continuous Time Structure Blocks and Graphical Hier archies
	10.1 Reuse of Structure Blocks
	10.2 Elements of a Continuous Time Structure Block
	10.3 Block Interfaces
	10.4 Operators
	10.5 Algebraic Loops
	10.6 Direct and Nondirect Output
	10.7 Difference Between Graphical Hierarchies and CT Structure Blocks
	10.8 Computing Sequence of Methods Within a Structure
	Example: Computing Sequence
	Example: Execution Not Possible

	11 Projects and Hybrid Projects
	11.1 Combining Continuous Time Blocks With Modules

	Reference Lists
	12 The ASCET System Library
	12.1 Bit Operators
	12.1.1 and
	12.1.2 clearBit
	12.1.3 getBit
	12.1.4 or
	12.1.5 rotate
	12.1.6 setBit
	12.1.7 shiftLeft
	12.1.8 shiftRight
	12.1.9 toggleBit
	12.1.10 writeBit
	12.1.11 writeByte
	12.1.12 xor

	12.2 Comparators
	12.2.1 ClosedInterval.
	12.2.2 LeftOpenInterval.
	12.2.3 OpenInterval.
	12.2.4 RightOpenInterval.
	12.2.5 GreaterZero.

	12.3 Counter & Timer
	12.3.1 CountDown.
	12.3.2 CountDownEnabled.
	12.3.3 Counter.
	12.3.4 CounterEnabled.
	12.3.5 StopWatch.
	12.3.6 StopWatchEnabled.
	12.3.7 Timer.
	12.3.8 TimerEnabled.
	12.3.9 TimerRetrigger.
	12.3.10 TimerRetriggerEnabled.

	12.4 Delay
	12.4.1 DelaySignal.
	12.4.2 DelaySignalEnabled.
	12.4.3 DelayValue.
	12.4.4 DelayValueEnabled.
	12.4.5 TurnOffDelay.
	12.4.6 TurnOffDelayVariable.
	12.4.7 TurnOnDelay.
	12.4.8 TurnOnDelayVariable.

	12.5 Memory
	12.5.1 Accumulator.
	12.5.2 AccumulatorEnabled.
	12.5.3 AccumulatorLimited.
	12.5.4 RSFlipFlop.

	12.6 Miscellaneous
	12.6.1 DeltaOneStep.
	12.6.2 DifferenceQuotient.
	12.6.3 EdgeBi.
	12.6.4 EdgeFalling.
	12.6.5 EdgeRising.
	12.6.6 Mux1of4.
	12.6.7 Mux1of8.

	12.7 Nonlinears
	12.7.1 Hysteresis-Delta-RSP.
	12.7.2 Hysteresis-LSP-Delta.
	12.7.3 Hysteresis-LSP-RSP.
	12.7.4 Hysteresis-MSP-DeltaHalf.
	12.7.5 Limiter.
	12.7.6 Signum.

	12.8 Transfer Function
	12.8.1 Control
	dT1.
	P.
	PI.
	PID.
	PIDLimited.
	PILimited.
	PT1.
	PT2.

	12.8.2 Integrators
	IntegratorK.
	IntegratorKEnabled.
	IntegratorKLimited.
	IntegratorT.
	IntegratorTEnabled.
	IntegratorTLimited.

	12.8.3 Lowpass
	DigitalLowpass.
	LowpassK.
	LowpassKEnabled.
	LowpassT.
	LowpassTEnabled.

	13 Troubleshooting
	13.1 General Hints
	13.2 Problems with ASCET

	14 Code Generation Messages
	14.1 Components
	14.1.1 Error Messages
	14.1.2 Warnings

	14.2 Projects
	14.2.1 Error Messages
	14.2.2 Warnings

	14.3 Fixed Point Code Generation
	14.3.1 Error Messages
	14.3.2 Warnings

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

