
ASCET V5.2
User’s Guide



2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license. 
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract. 

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH. 

© Copyright 2007 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.

Document EC010001 R5.2.2 EN 



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Typical Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Launching the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The Component Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Component Manager – User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 User Interface Component Manager. . . . . . . . . . . . . . . . . . . . . 15

Description of the Window Elements . . . . . . . . . . . . . . . . . . . . 16
Description of the Control Elements in the Button Bars. . . . . . . 17
Description of the Symbols for the Database Items . . . . . . . . . . 18
Description of Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Context-Sensitive Menu Options. . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Views in the Component Manager . . . . . . . . . . . . . . . . . . . . . . 28
2.1.4 ETAS "Problem Report" Support Function  . . . . . . . . . . . . . . . . 33

2.2 Component Manager – Setting Up ASCET . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 General Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Appearance Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Options for Confirmation Dialogs . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Build Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Contents 3



4

2.2.4 Default Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Implementation Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.5 Options for Automatic Documentation . . . . . . . . . . . . . . . . . . . 53
2.2.6 Options for Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Options for Block Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Options for Text Editors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Options for Table Editors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Options for State Machines  . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Options for Calibration Windows . . . . . . . . . . . . . . . . . . . . . . . 58
Options for Measurement Windows . . . . . . . . . . . . . . . . . . . . . 58

2.2.7 Experiment Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.8 Options for External Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ASCII Editor Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.9 Options for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Export Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Import Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Licensing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Data Exchange Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Executable File Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.10 External Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.11 Working with User Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Using the User Selection Feature. . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Component Manager – Managing Data  . . . . . . . . . . . . . . . . . . . . . . . . . 73

Database Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.3.1 Managing Database Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.2 Working with View Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Editing Components and Projects in the Component 
Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Selecting Another Data or Implementation Set . . . . . . . . . . . . . 89

2.3.3 Exporting Folders and Database Items. . . . . . . . . . . . . . . . . . . . 89
Binary Export  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
AMD Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Other Export Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Performing the Export  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.3.4 Importing Folders and Database Items  . . . . . . . . . . . . . . . . . . . 93
Performing the Import  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Importing a Directory Content  . . . . . . . . . . . . . . . . . . . . . . . . . 97
Special Features of the AMD Import . . . . . . . . . . . . . . . . . . . . . 98
Importing Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Contents



Importing Items from Old ASCET Versions  . . . . . . . . . . . . . . . 103
2.3.5 Working with Database Items. . . . . . . . . . . . . . . . . . . . . . . . . 104

References on Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Find and Replace in C Code and ESDL Components . . . . . . . . 112

2.3.6 Managing Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Basic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Using Databases from Previous ASCET Versions  . . . . . . . . . . . 128
ANSI C Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Resolving Name Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Database Maintenance Routines. . . . . . . . . . . . . . . . . . . . . . . 132
Generated Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Browsing the Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.3.7 Database Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2.4 The ASCET Monitor Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.4.1 "Monitor" Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.4.2 "Build" Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Configuring Messages in the "Build" Tab . . . . . . . . . . . . . . . . 150
Configuring Messages in the "CodeGen Message 
Configuration" Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3 Adding User-Defined Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.1 Defining Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.2 Defining an Autostart Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.3 Defining a Shutdown Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.4 Structure of the Script Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.4.1 EXECUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.4.2 NOWAIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.4.3 OBJECT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.4.4 SELECTOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.4.5 MENUITEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.4.6 FILE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.4.7 FORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.4.8 SEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.4.9 POST  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4 Specification of Components and Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.1 The Block Diagram Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.1.1 The Block Diagram Editor User Interface . . . . . . . . . . . . . . . . . 180
Description of Menu Options . . . . . . . . . . . . . . . . . . . . . . . . . 184
Contents 5



6

4.1.2 Defining a Component Interface. . . . . . . . . . . . . . . . . . . . . . . 192
Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.1.3 Complex Types as Interface Elements  . . . . . . . . . . . . . . . . . . . 198
Arrays and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Characteristic Lines and Maps. . . . . . . . . . . . . . . . . . . . . . . . . 204

4.1.4 Creating Block Diagrams  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Elements, Operators and Connections  . . . . . . . . . . . . . . . . . . 207
Arrays, Matrices, Characteristic Curves and Maps . . . . . . . . . . 211
Control Flow Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Components as Complex Elements. . . . . . . . . . . . . . . . . . . . . 217
Comments and Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.1.5 Editing Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Viewing Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Editing Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Appearance of Diagram Elements. . . . . . . . . . . . . . . . . . . . . . 225
Layout of Included Components . . . . . . . . . . . . . . . . . . . . . . . 228

4.1.6 Sequence Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Editing Individual Sequence Calls  . . . . . . . . . . . . . . . . . . . . . . 235
Editing Several Sequence Calls . . . . . . . . . . . . . . . . . . . . . . . . 241
Connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

4.1.7 Implementation Casts in Block Diagrams  . . . . . . . . . . . . . . . . 246
4.1.8 Graphical Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.1.9 Navigating Between Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 254

Components with Multiple Diagrams . . . . . . . . . . . . . . . . . . . 254
Navigating Between Components. . . . . . . . . . . . . . . . . . . . . . 257

4.1.10 Analyzing Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.1.11 Data Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.1.12 Using the Block Diagram Editor  . . . . . . . . . . . . . . . . . . . . . . . 263

Saving Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Viewing and Printing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . 263
Using Referenced Components. . . . . . . . . . . . . . . . . . . . . . . . 267

4.2 The State Machine Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Special Menu Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

4.2.1 Drawing the State Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.2.2 Hierarchy States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Closed Hierarchy State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Open Hierarchy State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

4.2.3 Specifying Conditions and Actions . . . . . . . . . . . . . . . . . . . . . 284
Conditions and Actions in Separate Diagrams. . . . . . . . . . . . . 285
Contents



Using Conditions and Actions. . . . . . . . . . . . . . . . . . . . . . . . . 290
Conditions and Actions in the State Diagram . . . . . . . . . . . . . 295
Communication with Other Components . . . . . . . . . . . . . . . . 300

4.2.4 Public Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
4.2.5 Experimenting with state Machines  . . . . . . . . . . . . . . . . . . . . 304

4.3 The C Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Description of the Menu Options . . . . . . . . . . . . . . . . . . . . . . 310

4.3.1 Specifying Components in C Code . . . . . . . . . . . . . . . . . . . . . 316
4.3.2 External Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
4.3.3 Using the External Source Editor . . . . . . . . . . . . . . . . . . . . . . . 325

4.4 The ESDL Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.4.1 Specifying Classes in ESDL Code. . . . . . . . . . . . . . . . . . . . . . . 329
4.4.2 Specifying Modules in ESDL . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.4.3 Analyzing ESDL Components . . . . . . . . . . . . . . . . . . . . . . . . . 332

4.5 Specifying Continuous Time Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
4.5.1 Continuous Time Blocks as Block Diagrams  . . . . . . . . . . . . . . 333
4.5.2 Continuous Time Blocks as C Code  . . . . . . . . . . . . . . . . . . . . 335
4.5.3 Continuous Time Blocks in ESDL. . . . . . . . . . . . . . . . . . . . . . . 336
4.5.4 Experimenting with Continuous Time Blocks  . . . . . . . . . . . . . 337

Monitoring the Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
4.6 The Boolean Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Description of the Menu Options . . . . . . . . . . . . . . . . . . . . . . 344
Specifying Boolean Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

4.7 The Editor for Conditional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Description of the Menu Functions . . . . . . . . . . . . . . . . . . . . . 353
Description of the Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

4.7.1 Setting Up a Conditional Table . . . . . . . . . . . . . . . . . . . . . . . . 358
4.7.2 Specifying a Conditional Table . . . . . . . . . . . . . . . . . . . . . . . . 366
4.7.3 Experimenting with Conditional Tables . . . . . . . . . . . . . . . . . . 369

4.8 The Project Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
4.8.1 Default Project for a Component  . . . . . . . . . . . . . . . . . . . . . . 373
4.8.2 Description of the Menu Options . . . . . . . . . . . . . . . . . . . . . . 374

"Graphics" Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
"OS" Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
"Formulas" Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
"Impl. Type" Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
"Files" Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

4.8.3 Specifying a Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
4.8.4 Defining Global Communication. . . . . . . . . . . . . . . . . . . . . . . 388
4.8.5 Defining the Scheduling in the OS Editor  . . . . . . . . . . . . . . . . 390
Contents 7



8

Operating System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Tasks and Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
The Monitoring Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Application Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

4.8.6 Administration of External Project Files . . . . . . . . . . . . . . . . . . 402
4.8.7 Hybrid Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
4.8.8 Project Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

"ASAM-2MC" Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
"Build" Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
"OS Configuration" Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
"Code Generation" Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
"Integer Arithmetic" Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
"Experiment Code" Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
"Production Code" Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
"Optimization" Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
"Statemachine" Node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

4.8.9 Defining the Implementation for Fixed Point Arithmetic  . . . . . 423
Formulas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Global Changes in Implementations . . . . . . . . . . . . . . . . . . . . 429
Implementation Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

4.8.10 Experimenting with Projects . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Online and Offline Experimentation  . . . . . . . . . . . . . . . . . . . . 437
Experimenting with Quantized Floating Point Code  . . . . . . . . 440

4.8.11 Generating Application Data  . . . . . . . . . . . . . . . . . . . . . . . . . 442
4.9 Containers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

4.9.1 Working with Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
4.9.2 Containers and Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

4.10 Editing Element Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Instances and Occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

4.10.1 Element Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
4.10.2 Dependent Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

4.11 Editing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
4.11.1 Editors for Scalar Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Numerical Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Logical Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Enumeration Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

4.11.2 The Editor for Combined Types (Table Editor)  . . . . . . . . . . . . . 460
Array Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
The 1-D Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
The 2-D Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Contents



Fixed Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Group Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

4.11.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
4.12 Editing Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

4.12.1 Implementations of Components/Projects. . . . . . . . . . . . . . . . 476
4.12.2 Implementation of Scalar, Non-logical Elements  . . . . . . . . . . . 479

Specifying Individual Implementations  . . . . . . . . . . . . . . . . . . 483
Using Implementation Types . . . . . . . . . . . . . . . . . . . . . . . . . . 491

4.12.3 Implementations of Method- and Process-Local Variables . . . . 493
4.12.4 Implementations for Temporary Variables . . . . . . . . . . . . . . . . 494
4.12.5 Implementations of Arrays, Matrices, and Tables. . . . . . . . . . . 495
4.12.6 Implementation of Logical Elements . . . . . . . . . . . . . . . . . . . . 497
4.12.7 Implementations of Enumerations  . . . . . . . . . . . . . . . . . . . . . 499
4.12.8 Method and Process Implementations  . . . . . . . . . . . . . . . . . . 500
4.12.9 Implementations of Arguments and Return Values of 

Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
4.12.10 Implementations of Implementation Casts  . . . . . . . . . . . . . . . 502
4.12.11 Operator Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Automatic Conversion of Operator Implementations  . . . . . . . 508
4.13 Editing the Layout of a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

4.13.1 Editing a Class Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
4.13.2 Editing the Layout of Other Components . . . . . . . . . . . . . . . . 517

4.14 Arithmetic Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
4.14.1 The Functionality of an Arithmetic Service. . . . . . . . . . . . . . . . 519
4.14.2 Defining Arithmetic Services . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Function Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Allowable Arithmetic Services . . . . . . . . . . . . . . . . . . . . . . . . . 522
Allowable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Function Declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

4.14.3 Creating and Saving Arithmetic Services . . . . . . . . . . . . . . . . . 527
4.14.4 Using Arithmetic Services in ASCET. . . . . . . . . . . . . . . . . . . . . 528

Selecting a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Potential Error Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

4.14.5 The Interface Editor for Arithmetic Services. . . . . . . . . . . . . . . 532
The Functions of the AS editor . . . . . . . . . . . . . . . . . . . . . . . . 532
Launching the AS Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
The User Interface of the AS Editor . . . . . . . . . . . . . . . . . . . . . 535
The Editor Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Using the AS Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
Contents 9



10
5 Signals and Icons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
5.1 The Signal Viewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
5.2 The Icon Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

6 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
6.1 The Experimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

6.1.1 Description of the Menu Options . . . . . . . . . . . . . . . . . . . . . . 562
6.1.2 Opening and Setting Up the Experimentation Environment. . . 565
6.1.3 The Event Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Event Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
6.1.4 The Data Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
6.1.5 The Measurement System. . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
6.1.6 The Calibration System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
6.1.7 Running Offline Experiments  . . . . . . . . . . . . . . . . . . . . . . . . . 585
6.1.8 Loading and Saving Environments  . . . . . . . . . . . . . . . . . . . . . 594
6.1.9 The Data Logger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
6.1.10 Experimentation Environment Options . . . . . . . . . . . . . . . . . . 609

Block Diagram Navigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
Display Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

6.1.11 Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
6.2 Calibration Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

6.2.1 General Description of Menu Options. . . . . . . . . . . . . . . . . . . 616
6.2.2 Data Editors for Calibration Variables . . . . . . . . . . . . . . . . . . . 620
6.2.3 Working with Calibration Windows . . . . . . . . . . . . . . . . . . . . 620

The Numerical Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
The Logical Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
The Enumeration Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
The Array Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
The 1-D Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
The 2-D Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
1-D Graphical Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
The 2-D Graphical Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
The 3-D Graphical Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

6.2.4 Calibrating Sample Points in the Table Editor  . . . . . . . . . . . . . 646
6.3 Measurement Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

6.3.1 Selecting Measurement Windows. . . . . . . . . . . . . . . . . . . . . . 648
6.3.2 General Description of Menu Options. . . . . . . . . . . . . . . . . . . 649
6.3.3 Working with Measurement Windows . . . . . . . . . . . . . . . . . . 652
6.3.4 The Different Measurement Windows  . . . . . . . . . . . . . . . . . . 656

Numerical Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Contents



Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
Recorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Horizontal and Vertical Bar Display . . . . . . . . . . . . . . . . . . . . . 674
Bit Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

7 Automatic Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
7.1 Generating Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
7.2 Documentation File Output Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

ASCII Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
RTF Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
HTML Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Postscript Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

7.3 Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
General Remarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Documentation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Options for Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
Options for Element Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

7.4 Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Contents 11



12
 Contents



1 Introduction

All program parts and windows, the menu structure and how to operate the
program are described in detail in the User’s Guide. All menus and menu
functions are explained. Before you work through this part of the manual, you
should already be familiar with ASCET, i.e. you should already have worked
through the chapter "Understanding ASCET" and the "Tutorial" in the ASCET
Getting Started manual. The subsections are more or less in the order of the
steps necessary for specifying components and projects. 

All sections in the documentation follow the same principle. At the beginning
of every main chapter, there is a short introduction, then a description of the
user interface and menu items, followed by a workflow-oriented description of
the individual steps.

1.1 Typical Workflow

The program structure of ASCET makes it necessary for the user to adapt some
parts of his/her workflow to correspond to a specific scheme. There are several
dialog sequences which cannot be changed. This results in a typical and
efficient workflow which was taken into consideration in the documentation
and is used as the guide. The following list is a rough overview of the order of
the individual working steps:

• set up ASCET 

• create the database and database entries

• add your own functions

• specify and simulate components

• specify and simulate projects

• create and edit datasets

• create and edit implementations

• use of signals and icons

• experimenting

• documentation of the results

1.2 Launching the Program

To launch ASCET:

• By default, the ASCET installation creates an 
icon on your desktop. Double-click this icon to 
launch the program.
Introduction 13



14
• Alternatively, you can launch ASCET via 
Programs in the Start menu.

Below, there is a detailed description of the user interface of the Component
Manager, with which ASCET is launched by default.

Note

You can determine software behavior individually. You can specify default 
paths, set different colors and fonts, make specifications for the import and 
export of data and lots more in ASCET. For more detailed information, please 
refer to chapter 2.2 "Component Manager – Setting Up ASCET".
Introduction



2 The Component Manager

This chapter contains a detailed description of the Component Manager, its
menu structure and operation. This window replaces both the ASCET start
window and the database browser of previous versions.

The function of all menus and menu items is explained. Before reading this
part, you should be familiar with ASCET by having studied chapter "Under-
standing ASCET" and the "Tutorial" in the ASCET "Getting Started" volume.

2.1 Component Manager – User Interface

2.1.1 General Description

The ASCET Component Manager opens when the program starts. This is
where you start the various editors (see chapter 4 "Specification of Compo-
nents and Projects"). You can also manage several user profiles and, via an
option dialog box, set station-, database-, and user-specific options, e.g., the
definition of storage directories, preferences such as screen display options, or
the start-up behavior of the software (see "Component Manager – Setting Up
ASCET" on page 36). 

The main purpose of the Component Manager is, however, to systematically
store and manage all data created during the work with ASCET in a database
(see "Component Manager – Managing Data" on page 73).

This section only describes the functions forming an integral part of the Com-
ponent Manager. The editors, the experiment environment, as well as some
add-ons, are described in separate chapters.

2.1.2 User Interface Component Manager

ASCET manages all the database items in a database in the Component Man-
ager. You can create folders and subfolders, move, copy, import, and export
individual items and also create entirely new databases. Besides organizing
your data, you can also edit components and projects in ASCET. In earlier ver-
sions, this was only possible in the specification editors.
The Component Manager 15



16
Description of the Window Elements

The folders and items contained in the current database are displayed in the
"1 Database" list. The database name is the root of the tree structure. Each
database contains one or more folders, which in turn contain other folders and
database items. They are organized and displayed in a hierarchy in the
"1 Database" list.

The "2 Comment" field is a text field that contains any notes or internal com-
ments on the current folder or item. Typically, this field is used for developer
comments and internal version details. This information is not included in the
documentation generated automatically. It is not to be confused with the
information entered via the notes editor (see chapter 7.4 "Notes" on
page 693).

Note

During export (cf. chapter 2.3.3 on page 89), the content of the 
"2 Comment" field is exported only for top-level folders and items. Com-
ments on subfolders are not exported.

Menu bar

button bars
"Contents" field

Comment field

Database items:

"2 Comment"

"1 Database" list

Bottom line with filter display for the "1 Database"
list, current database, and user name; the empty
fields serve as status display for selected items
The Component Manager



The "3 Contents" field displays information about the selected folder or data-
base item in various tabs. The information displayed in the "3 Contents" field
varies depending on the selection (folder or database item) and the type of
database item. Details are given in chapter 2.1.3 "Views in the Component
Manager".

Description of the Control Elements in the Button Bars

Default Button Bar:

1. New (creates a new database)

2. Open

3. Save

4. Cut

5. Copy

6. Paste

7. Delete

8. Expand all ("1 Database" list)

9. Collapse all ("1 Database" list)

10. Import

11. Export

"Insert" Button Bar:

1. Insert Folder

2. Insert Project

3. Insert Module - <Type>

4. Insert Class - <Type>

The arrows (3a and 4a) can be used to select the object type - block 
diagram, C code, or ESDL.

5. Insert State Machine

1 2 3 4 5 6 7 8 9 10 11

1 2 43 5 6 7

4a3a

8 9
The Component Manager 17



18
6. Insert Container

7. Insert Boolean Table

8. Insert Conditional Table

9. Insert Container

"Tools" Button Bar:

1. Options

2. ? (opens the "AboutASCET" window with information on the installed 
products of the ASCET product family)

Description of the Symbols for the Database Items

1. database

2. project

3. module

4. class

5. CT block

6. state machine

7. enumeration

8. Boolean table

9. conditional table

10. icon

11. signal

12. container

13. ASAM-MCD-2MC project

1 2

1 2 3 4 5 76 98 10 1211 13
The Component Manager



Description of Menu Options

• File

– New Database (<CTRL> + <N>)

Create a new database.

– Open Database (<CTRL> + <O>)

Open database.

– Close Database

Close database.

– Save Database (<CTRL> + <S>)

Saves the changes in the database.

– Save Database as...

Creates a backup copy of the entire database at a location you 
specify.

– Import (<CTRL> + <M>)

Imports database entries from an export file and shows them in the 
"1 Database" list.

– Import directory

Imports the entire content of a directory.

– Export (<CTRL> + <E>)

Exports selected items or entire folders from the "1 Database" list 
into one or more export files (*.exp).

– 1 D:\...\DB 
(and other, similar entries)

List of most recently opened databases.

– Exit (<ALT> + <F4>)

exit ASCET

Note

This function is only available when ASCET-MD is installed. In that 
case, it is also available as a context menu in the "1 Database" 
list.
The Component Manager 19



20
• Edit 

– Cut (<CTRL> + <X>)

Cuts the selected database entry from the database.

– Copy (<CTRL> + <C>)

Copies the selected database entry to the clipboard.

– Paste (<CTRL> + <V>)

Pastes a database item from the clipboard to the selected folder.

– Delete (<DEL>)

Finally deletes the selected database item. When a folder is deleted, 
all items in the folder are deleted as well.

– Rename (<F2>)

Renames the selected database item.

– Find (<CTRL> + <F>) 

Searches a string in C code or ESDL components.

– Replace (<CTRL> + <H>)

Replaces a string in C code or ESDL components.

– Query (<CTRL> + <Q>)

Searches the database from various points of view (see section 
"Browsing the Database" on page 133).

• View

– Expand all

Displays the whole database content (folders and database items).

– Collapse all

Only the database name is displayed.

Note

The functions Cut, Copy, Paste, Delete and Rename are also available 
as context menus in the "1 Database" list.
Except Find and Query, these functions are only available if ASCET-MD 
is installed.

Note

Be careful when using the Edit → Delete function; it cannot be 
undone.
The Component Manager



– Filter → <component type> 

Provides filters for the database items in the "1 Database" list.

– Show /Hide

Shows/hides several window elements.
Database List →  the "1 Database" list,
Comment → the "2 Comment" field,
Contents → the "3 Contents" field,
Monitor → the monitor window

– Update (<F5>)

Updates the Component Manager.

• Insert

– Folder (<INSERT>)

Adds a new folder.

– Project

Adds a new project.

– Module

Adds a new module;
Block Diagram → as block diagram,
ESDL → in ESDL,
C Code → in C code.

– Class

Adds a new class (submenus as for modules)

– Continuous Time Block

Adds a new CT block (submenus as for modules)

– State Machine

Adds a new state machine.

– Enumeration

Adds a new enumeration.

– Boolean Table

Adds a new Boolean Table.

Note

The Insert menu is also available as context menu in the "1 Database" 
list. It is only available when ASCET-MD is installed.
The Component Manager 21



22
– Conditional Table

Adds a new conditional table (s. chapter 4.7).

– Icon

Adds a new icon

– Signal

Adds a new signal.

– Container

Adds a new container.

• Component

– Edit Item (<RETURN>)

Opens the editor for the selected database item.

– Edit Layout 

Edit a component layout.

– Enumeration

only available when an enumeration is selected in the 
"1 Database" list, and the focus is on the "3 Contents" field (see 
page 28).

– Disallow Import

Disallows overwriting of database items during import.

– Access Rights 

Changes the access rights of a folder or item.

– Password

Activates and deactivates password protection (only for folders).

– Show References

Displays the references to a component.

– Replace References

Replace the references to a database item.

Note

The Edit Item function is also available as context menu in the 
"1 Database" list.
Edit Layout, Replace References, Become another Item and Repro-
duce as are only available when ASCET-MD is installed.
The Component Manager



– Become another Item

Replacement of a database item.

– Reproduce As

Copies the structure of a component
Block Diagram →  to a block diagram,
ESDL → in ESDL,
C Code → in C code.

– Notes

Edits the notes for a database item.

– Reset Operator Implementation

Resets the operator implementations 
Flat → in the selected components,
Recursive → in the selected components and the referenced copo-
nents.

• Build

– Touch All

All database components are marked as changed. Thus, a compila-
tion of the entire project is enforced.

– Clean All

The code of the project stored in the database is discarded.

• Tools

– Documentation → Contents

Opens the "Documentation Contents" window. This is where the 
items to be documented are selected.

– Documentation → Options

Setting options for documentation generation.

– Database → Performance Utilities

Opens the "Database Info for: <Database>" window. It provides 
four, partly combinable, database administration functions.

Optimize is used to recombine the various scattered fragments in 
the database that result from intensive editing (defragmentation).

Convert is used to cleanup the internal references between the 
data records ("X uses Y") after changes have been made to the 
database structure, thus improving access speeds.
The Component Manager 23



24
Repair is used to rebuild the database from scratch using the 
"Optimize" and "Convert" functions.

Check is used to verify the structures and references in the data-
base while logging the results in the monitor window.

– Database → Convert

Converts the database;

Modify components to force impl/data update → all components 
are set to modified state, so that the next time a component is 
accessed, it’s implementation is checked and—if necessary—
adjusted;

All Names to ANSI-C → all names in the database are converted to 
ANSI-C;

System Constants to Constants → converts system constants to 
constants (cf. chapter "The Kind of Elements" in the ASCET refer-
ence guide);

Variables to Volatile → assigns the volatile attribute to all variables 
in the database (cf. page 112 and page 451);

Variables to Nonvolatile → assigns the non-volatile attribute to all 
variables in the database;

Components/Elements to default memory location → inserts the 
memory location Default into all element implementations in the 
database;

Operator Implementations to Impl. Casts → replaces existing oper-
ator implementations with implementation casts (cf. page 508);

Reset Operator Implementations → removes all operator imple-
mentations from the database).

– Database → List Operator Implementations

Displays a list of operator implementations in the ASCET monitor 
window.

– Database → Compare Database

Compares the current database with a selected second database.

– Arithmetic Service Editor

Opens the editor for arithmetic services for a target (see 
chapter 4.14);

PC → PC target; 
more submenus are added when ASCET-RP or ASCET-SE are 
installed.
The Component Manager



– Network Settings

Opens the "Network settings for ETAS hardware (Page 1)" win-
dow; only relevant for ASCET-RP.

– Views

Opens the "Views" window, where views are managed (cf. chapter 
7.3 on page 683).

– Options

Opens the "Options" window, which allows the setting of various 
options (cf. chapter 2.2 on page 36).

• Manuals

– English user’s guide

Opens the English user’s guide in the Acrobat Reader.

– English reference

Opens the English reference manual in the Acrobat Reader.

– German user’s guide

Opens the German user’s guide in the Acrobat Reader.

– German reference

Opens the German reference manual in the Acrobat Reader.

– Open manuals folder

Opens the ETAS\ETASManuals directory in the Windows-
Explorer.

When you install ASCET-RP or ASCET-SE, further menu functions for 
the respective manuals are added.

• Help

– Contents

Opens the content of the ASCET online help.

– Index

Opens the index of the ASCET online help.

Note

If you did not install the manuals, the menu contains no functions.
The Component Manager 25



26
– Loaded Packages

Displays a list of all installed integration modules (see chapter "Sys-
tem Information" in the ASCET "Getting Started" manual) in the 
monitor window.

– Loaded Targets

Displays a list of the installed ASCET-SE in the monitor window.

– Product Disclaimer

Opens the disclaimer window containing a danger notice.

– Problem Report

Starts the Problem Report" tool (see chapter 2.1.4).

– Hotkey Assignment

Opens a window listing the keyboard shortcuts.

– About 

Opens a window with information on the installed products of the 
ASCET product family.

– Support

Opens a window with the ASCET hotline addresses.

– License Info

Opens a window with licensing information (see chapter "Licens-
ing" in the ASCET "Getting Started" manual).

Context-Sensitive Menu Options

The options of the Edit and Component menus described here have various
meanings, depending on the focus. This section lists the meaning of the menu
functions for each tab in the "3 Contents" field, provided the focus is on that
field.

"Element" Tab:

• Edit

– Copy (<CTRL> + <C>)

Copies the selected elements to the database clipboard.

Note

The options of the two menus not described in this section either have the 
same meaning regardless of the focus or are deactivated.
The Component Manager



– Paste (<CTRL> + <V>)

Copies the elements from the database clipboard to the compo-
nent.

– Delete (<Del>)

Deletes the selected elements from the component.

– Rename (<F2>)

Renames the selected element.

• Component

– Edit Item (<RETURN>)

Opens the element editor for the selected element.

"Data" Tab:

• Edit

– Copy (<CTRL> + <C>)

Copies the current data of the selected element to the database 
clipboard.

– Paste (<CTRL> + <V>)

Pastes the data from the database clipboard to the selected ele-
ment.

– Delete (<Del>)

Deletes the selected elements from the component.

– Rename (<F2>)

Renames the selected element.

• Component

– Edit Item (<RETURN>)

Opens the data editor for the selected element.

"Implementation" Tab:

• Edit

– Copy (<CTRL> + <C>)

Copies the current implementation of the selected element to the 
database clipboard.

– Paste (<CTRL> + <V>)

Pastes the implementation from the database clipboard to the 
selected element.
The Component Manager 27



28
– Delete (<Del>)

Deletes the selected elements from the component.

– Rename (<F2>)

Renames the selected element.

• Component

– Edit Item (<RETURN>)

Opens the implementation editor for the selected element.

An enumeration is selected in the "1 Database" field:

• Edit

– Delete (<Del>)

Deletes the selected enumerator from the component.

– Rename (<F2>)

Renames the selected enumerator.

• Component 

– Enumeration → Add (<INSERT>)

Adds an enumerator.

– Enumeration → Shift Up (<CTRL> + <U>)

Moves an enumerator upward in the list.

– Enumeration → Shift Down (<CTRL> + <D>)

Moves an enumerator downward in the list.

2.1.3 Views in the Component Manager

ASCET offers an enhanced concept for viewing the database items. Folder,
components, projects, containers and enumerations can be displayed in the "3
Contents" field under various aspects. For components and projects, the tabs
of the "3 Contents" field offers an element, data, and implementation view;
for components, a layout view is offered, too. For folders, the field offers the
folder view, which displays the objects in the folder as well as some informa-
tion about the objects. The container view is much the same as the folder view.

Each tab offers several editing possibilities which are available via the Edit and
Component menus or the context menu in the "3 Contents" field.
The Component Manager



To select the folder view.

• Highlight a folder in the "1 Database" field.

The content of the folder, as well as the name, 
type, creation date and time, access rights and 
method of component creation are displayed.

Section "Editing Components and Projects in 
the Component Manager" on page 82 
explains how to work in this tab.

To select the Element view of a component or project.

• Select a component or project in the 
"1 Database" field.

• In the "3 Contents" field, click on the
"Elements" tab to display the element view.
The Component Manager 29



30
All elements of the component or project, and 
the name, type, scope, type and unit of the 
elements, are displayed. If a comment was 
entered for an element (cf. page 451), it is 
shown here, too.
For arrays, matrices and characteristic lines/
maps, the maximal size is shown, too.

Section "Editing Components and Projects in 
the Component Manager" on page 82 
explains how to edit elements.

To select the Data view:

• Select a component or project in the 
"1 Database" field.

• In the "3 Contents" field, click on the "Data" 
tab for the Data view.

Name, type and data of the elements are 
shown. Use the combo box to select another 
dataset.
Section "Editing Components and Projects in 
the Component Manager" on page 82 
explains how to edit the data.

To select the implementation view:

• In the "1 Database" field, select a component 
or project.
The Component Manager



• In the "3 Contents" field, click on the
"Implementation" tab to display the imple-
mentation view.

All the information about the current imple-
mentation is displayed. Use the combo box to 
select another implementation.
Section "Editing Components and Projects in 
the Component Manager" on page 82 
explains how to edit the implementations.

To select the Layout view of a component:

• In the "1 Database" field, select a compo-
nent.

Note

Projects have no layout.
The Component Manager 31



32
• In the "3 Contents" field, click on the
"Layout" tab to display the layout view.

The component layout is displayed.

Section "Editing Components and Projects in 
the Component Manager" on page 82 
explains how to edit the layout.

To select the container view:

• In the "1 Database" field, select a container.

The content of the container, as well as the 
name, type, creation date and time, access 
rights and creation method of the objects 
inside are displayed.

Section 4.9.1 "Working with Containers" 
explains how to work in this tab.
The Component Manager



To select the enumeration view:

• In the "1 Database" field., select an enumera-
tion.

The enumerators are listed in the "3 Con-
tents" field. 

Section "To create an enumeration:" 
on page 76 explains how to edit enumera-
tions.

2.1.4 ETAS "Problem Report" Support Function

ASCET offers you a support function to inform ETAS about problems that
occurred during your work with the program. When you use the support func-
tion, ASCET compresses the entire contents of the "log" directory (all *.log
f i les) including a textual description into an archive fi le named
EtasLogFiles01.zip in the ...\ETAS\LogFiles\ directory. For addi-
tional archive files, the file name is incremented automatically (up to 19) to
avoid immediate overwriting older archive files. 

You can set up ASCET so that this archive is automatically sent to the ETAS
hotline service. For this purpose, you need a MAPI-compliant E-mail program
(e.g., MS Exchange or Eudora). For other e-mail programs, you need to send
the archive yourself as an attachment.

Note

A maximum of 20 archive files can be created; if more archive files are used, 
older files are overwritten starting at 00.
The Component Manager 33



34
To set up the "Problem Report" support function:

• In the Component Manager, select the 
Tools → Options menu option.

The "Options" window opens.

• In the "Options" node, activate the Send 
E-Mail option.

Thus, the automatic transmisson of the e-mail 
to the ETAS hotline is enabled.
If your mail program is not MAPI-compliant, 
this function is ignored. 

• If necessary, change the address of the hotline 
service in the "E-Mail Address" field. The cur-
rent address is:
ec.hotline@etas.de
The Component Manager



To send a problem report:

• In the Component Manager, select Help → 
Problem Report to send your problem to 
ETAS.

A dialog window opens and prompts for a 
description of the problem. 

• Type your description and click OK.

Your license is checked. When you are using a 
licensed ASCET version, the report is com-
pressed into an archive file. When automatic 
transmission is activated, the archive is sent 
immediately. Otherwise, you are asked 
whether the archive is to be sent.

• Click Yes to send the e-mail; otherwise, click 
No.

If your mail program is not MAPI-compliant, 
you have to send the archive file manually, 
e.g., as an attachment.
The Component Manager 35



36
2.2 Component Manager – Setting Up ASCET

This chapter describes the configuration options of ASCET and how to work
with user profiles. 

You can set various options in ASCET. There are two types of options: general
and user-specific options. Both types are managed in the "Options" window
and stored in XML files. When ASCET is booted for the first time after installa-
tion, these XML files do not exist. They are created automatically and assigned
the default settings of the system or—if an older ASCET version was
installed—the settings of the older version.

General options (  icon) are specific to the ASCET installation on your work-
station. They comprise the target directory for code generation, several paths,
code preview settings, and the selection of single- or multi-user mode for run-
ning the program.

General options are stored in the data directory in the stationSet-
tings.xml file. 

User-specific options (  icon) comprise a variety of topics, ranging from set-
tings for diagrams, export/import file paths to miscellaneous general options
which are described in more detail later in this chapter. With these options, you
can create a user environment customized to meet your particular needs.
Changes to the user options are stored separately for each user if user selec-
tion is activated on startup. New user profiles start with the default settings.

User-specific options are stored in the directory of the relevant user (ETAS-
Data\ASCET5.2\User\<username>) in the userSettings.xml file.

Options with invalid values are indicated by a red circle containing a white X:
.

Note

This manual describes the ASCET-MD options. Add-on products, such as 
ASCET-RP, can add their own options; these are described in the respective 
add-on program.

Note

Before setting user-specific options, you should decide whether your ASCET 
installation is to run in single- or multi-user mode to make sure your options 
are stored in the correct user profile.
The Component Manager



User interface of the ASCET options window. The ASCET options win-
dow contains the following elements:

• at the top left, a filter for the options

• on the left, a tree view with the option groups as nodes

The  or  symbol next to a node indicates that the node, or one 
of its subnodes, contains an invalid option.

• at the top right, the display field for the options of the selected node

• at the bottom right, a short description of the options displayed

• the buttons Import Options for selected Node from XML File, 
Export Options of selected Node into XML File and System 
Defaults 

• the File menu with the following menu options

– Import 

Imports the options for the selected node from an XML file.

– Export 

Exports the options of the selected node to an XML file.

• the View menu with the following menu options

– Expand All 

The tree view is expanded as far as possible.
The Component Manager 37



38
– Collapse All 

The tree view is collapsed as far as possible.

– Show/Hide Description 

Shows/hides the brief description of the options displayed.

To set ASCET options:

• In the Component Manager, select Tools → 
Options

or

• click the Options button.

The ASCET options window ("Options" dialog 
window) opens. 

The options are ordered by topic; each topic is 
represented as a node in the tree view on the 
left in the "Options" window.

• Select the required node to make the settings 
for ASCET.

Some options appear as radio buttons, input 
fields or combo boxes. Other options show a 
button next to their names which opens 
another dialog window.

• Make the new setting as appropriate for the 
respective control element.

Options which have been changed are indi-
cated by an *; options with a setting other 
than the default one are displayed in bold.

You can set options successively in different 
nodes of the "Options" window.

• Click the System Defaults button to restore 
the default settings for the current node.
The Component Manager



• When you have made all settings, click on OK.

The settings are applied and the "Options" 
window closed.

To export options:

Once you have set the options of a node, you can export them to an XML file.
Open the ASCET options window.

• Select the node whose options you want to 
export.

• If necessary, set the options of this node.

• Click the Export Options of selected Node 
into XML File button

or

• select File → Export.

The Windows file selection window opens. 
*.xml is specified as format.

• Set path and name of the export file.

• Click Save.

The options of the selected node are written 
to the XML file specified.

To import options:

Exported options can be reimported again. This means that, for example, iden-
tical options can be defined for several users.

• Open the ASCET options window.

• Select the node whose options you want to 
import.

• Click the Import Options for selected Node 
from XML File button

or

Note

Some new settings may not take effect immediately. For example, you mod-
ify the list font for the ASCET user interface; this does not affect any win-
dows that are already open. You must close the relevant window and reopen 
it for the new settings to take effect.
The Component Manager 39



40
• select File → Import.

A confirmation dialog opens. 

• Activate the option Remember my Decision 
if you want to give the same answer to all 
questions of this type (see page 45).

In that case, the "Import Options" window no 
longer opens. You can revoke this setting in 
the ASCET options window, "Confirmation 
Dialogs" node (see "Options for Confirmation 
Dialogs" on page 45).

• Confirm the overwriting of the existing 
options with OK.

The Windows file selection dialog box opens. 
*.xml is specified as format.

• Select the XML file which contains the options 
required.

• Click Open.

The options contained in the XML file speci-
fied are applied to the options window.

To filter options:

You can filter the options to make the display more concise.

• Enter a text in the filter text field.

• You can enter one or mor words, or a part of 
a wort.

• Click the Apply Filter String button.

The display field shows only options whose 
name, value, or description, contains the filter 
text.
The tree view shows only nodes than contain 
options matching the filter. If necessary, fur-
ther nodes are displayed to maintain an intact 
hierarchy.
The Component Manager



2.2.1 General Options

You set a few general options in the top node of the options window, the
"Options" node (see figure on page 38).  

With the Automatic Save option, you can activate the automatic saving func-
tion and enter the time interval you want. Your data will then be saved accord-
ing to the intervals you entered.

For performance reasons, some user operations requiring an entry in the data-
base are only held in a cache. Using Automatic Save, you can force the data-
base cache to be saved in cycles.

To set up automatic saving:

• Activate the Automatic Save option.

Automatic saving is switched on.

• Enter a value in "Store every ... minutes"

or

• use the arrow keys to adjust the time interval 
between two updates.

The database cache is saved regularly at the 
specified interval.

The Multiple user handling option specifies whether your ASCET installation
should handle user profiles. For more details, refer to chapter 2.2.11 "Working
with User Profiles".

The Send E-Mail option allows you to enable the automatic transmission of e-
mails to the ETAS hotline. 

Option Value Description

Automatic Save Activated/
deactivated

Activates/deactivates the automatic saving 
function.

Store every ... minutes Number Time interval for automatic saving

Database Path Path Main ASCET database directory

Multiple user handling Activated/
deactivated

Activates/deactivates user selection.

Send E-Mail Activated/
deactivated

Activates/deactivates automatic e-mail 
transfer.

E-Mail Address Address Hotline e-mail address
The Component Manager 41



42
To enable the automatic transmission of e-mails:

• Activate the Send E-Mail option.

• In the "E-Mail Address" field, enter the cur-
rent hotline address.

• Click OK to accept the setting.

The next time you select Help → Problem 
Report, an e-mail is automatically sent to the 
hotline. This function is described in detail in 
chapter 2.1.4 on page 33.

2.2.2 Appearance Options

In the "Appearance" node, you set the options which influence the appear-
ance of ASCET or of individual editors. Options of the same type are compiled
in subnodes.

Option Value Description

Extended Infos in 
Database Browser

Activated/
deactivated

Activates/deactivates the display of infor-
mation on access rights in the Component 
Manager.

Show Disclaimer Activated/
deactivated

Activates/deactivates the display of the dis-
claimer when ASCET is launched.

List Font Font font for list entries

Text Font Font Font for text on the user interface

Edit Font Mapping Directives Mapping Windows fonts to Postscript fonts
The Component Manager



To set fonts:

• Click on the button next to the font you want 
to change.

The "Font Selection" window opens.

• In the "Foundry" combo box, select the origin 
of the font.

• In the "Family" combo box, select the font.

• In the "Charset" combo box, select the char-
acter set.

• In the "Style" combo box, select style and 
inclination of the font.

• In the "Size" combo box, select the font size.

The available sizes depend on the selected 
font.

The text field below the combo boxes shows a 
sample sentence in the currently selected font. 
In the "Ext. Style" combo box, as well as to 
the left and right of the OK and Cancel but-
tons, further information on the selected font 
is given.

• Click OK to accept the selection and close the 
"Font Selection" window.

The font selection does not affect existing 
windows.
The Component Manager 43



44
To map fonts:

With the "Edit Font Mapping" option, you can map the Windows fonts to
Postscript fonts. When a block diagram is saved as a Postscript file, the Win-
dows fonts are replaced by the selected Postscript fonts.

• Click the button in the "PostScript" subnode.

The "PostScript Font Mapping" window 
opens. It shows a table of existing mapping 
entries for fonts.

1. Adding/removing mapping entries

• Click the Add new Mapping Entry button in 
the "PostScript Font Mapping" window to 
create a new mapping entry.

• Click the Remove selected Mapping Entry 
button in the "PostScript Font Mapping" win-
dow to remove a mapping entry.

Column Meaning

SmallTalk Font Descriptor Windows font (SmallTalk)

PostScript Font Name PostScript font

PostScript Font Size Size of PostScript font

Note

You can map a Windows font to several Post-
script fonts. When generating Postscript files, 
only the first mapping entry for a font is used; 
the others have no effect.
The Component Manager



2. Editing mapping entries

• Double-click in a cell of the "SmallTalk Font 
Descriptor" column in the "PostScript Font 
Mapping" window.

The "Font Selection" window (see page 43) 
opens.

• Set the Windows font you want to map to a 
Postscript font in the "Font Selection" win-
dow and click OK.

• Double-click a cell in the column "PostScript 
Font Name" in the "PostScript Font Mapping" 
window and enter the Postscript font which is 
to replace the Windows font.

• Double-click a cell in the column "PostScript 
Font Size" in the "PostScript Font Mapping" 
window and enter the size for the Postscript 
font.

• Click the Preview selected Mapping Entry 
button in the "PostScript Font Mapping" win-
dow to display the Postscript command gener-
ated with the selected settings.

3. Concluding work

• Close the "PostScript Font Mapping" window 
with OK to accept the settings.

• Close the "PostScript Font Mapping" window 
with Cancel to reject the settings.

Options for Confirmation Dialogs

When working with ASCET, confirmation windows are displayed at various
points. You can hide these windows, if you like. In the "Confirmation Dialogs"
node of the "Options" window, you can show hidden confirmation windows
(  symbol). You can also hide confirmation windows here.

The main purpose of this node is to show confirmation windows you have
hidden while working with ASCET. It is explicitly not recommended to use the
node to hide confirmation windows you have not yet seen in the program. 
The Component Manager 45



46
"Dialog" column "Decision" 
column

Description

Change DB Path Show / 
Yes / No

Confirmation window for changing the 
database path when opening a database 
which is not in the default directory.

Close ASCET Show / OK Confirmation window when ending 
ASCET.

Close Boolean Table Show / OK Confirmation window when closing a Bool-
ean table with wrong entries.

Close existing Editor Show / OK Confirmation window when an editor is 
opened again for the same component.

Deassign Application 
Mode <inactive>

Show / OK Confirmation window when the type of an 
init task with application mode inactive 
is changed in the OS editor.

Edit complex Element Show / 
Hide

Determines whether the element editor for 
complex elements opens automatically 
(Show) or not (Hide).

Edit CT Element Show / 
Hide

Determines whether the element editor for 
CT blocks opens automatically (Show) or 
not (Hide).

Edit Implementation 
Cast

Show / 
Hide

Determines whether the element editor is 
opened (Show) or not (Hide) when gener-
ating a new implementation cast.

Edit primitive Element Show / 
Hide

Determines whether the element editor 
should be opened (Show) or not (Hide) 
when generating a new element (variable, 
parameter, characteristic curve/map).

Export Components Show / OK Confirmation window during export with 
activated One File for Each Item option.

Export Message 
Configuration

Show / OK Confirmation window when exporting 
message configurations (see chapter 2.4.2) 

Import Options Show / OK Confirmation window when importing 
options.

Import Views Show / OK Confirmation window when importing 
views.

Overwrite Files/Folders Show / OK Confirmation window when importing 
existing components.
The Component Manager



The possible values of an option depend on the confirmation dialog window.

• Show is always available; the confirmation window is displayed if Show 
is selected.

• Yes and No are available if the confirmation window contains Yes and 
No buttons.

• OK is available if the confirmation dialog contains an OK button.

Yes, No, and OK hide the window; further effects correspond to the 
button of the same name.

• Hide is available for those options that control automatic opening of 
the element editor for new elements. Hide prevents automatic open-
ing of the element editor.

Resize Drawing Area Show / 
Yes / No

Confirmation window when, upon open-
ing a block diagram, the size of the draw-
ing area is about to be changed.

Save Experiment Show / 
Yes / No

Confirmation window for saving an experi-
ment when the experiment is quit.

Set Layout to Default Show / OK Confirmation window when the layout of a 
new component is set as default layout (see 
page 233).

Set Options to Default Show / OK Confirmation window when resetting 
options.

Set Target Settings to 
Default

Show / OK Confirmation window when a project with 
unknown target or compiler is opened in 
ASCET.

Start Offline Simulation Show / OK Confirmation window when an offline 
experiment is started and the event genera-
tor contains no event.

Store Changes in 
Graphic

Show / 
Yes / No

Confirmation window when a block dia-
gram with unsaved changes is closed.

"Dialog" column "Decision" 
column

Description
The Component Manager 47



48
To show/hide confirmation dialog windows:

• In the ASCET options window, open the 
"Confirmation Dialogs" node.

• In the "Coonfirmation Dialogs" field, double-
click the entry in the "Decision" column next 
to the desired option.

• Select an entry from the combo box.

From now on, the confirmation window is 
treated according to the selection.
The Component Manager



2.2.3 Build Options

In the "Build" node, you set options which influence code generation in
ASCET. 

Option Value Description

Code Preview Path Path Directory for the generated C-code or 
HTML/XML files

Code Generation Path Path Target directory for code generation; this is 
where files generated during code genera-
tion are stored.
Default: ETAS\Ascet5.2\cgen

Target Root Path Path Target main directory; this is where subdi-
rectories for the different targets are cre-
ated.

Specific Path Path Settable path for project files

Write Project Files on 
Build

Activated/
deactivated

Determines whether project files are written 
to the hard disk during code generation.

Keep files in Code Gen-
eration Directory 

Activated/
deactivated

Specifies whether the code generation 
directory ("Code Generation Path" option ) 
is to be retained or deleted when exiting 
ASCET.
The Component Manager 49



50
To set a path:

• If you want to change a path, click on the but-
ton next to the path option you want to 
change. 

The "Path Selection" window opens.

• If necessary, select a volume in the "Volume" 
combo box.

• Select an existing directory from the "Directo-
ries" list

or

• create a new directory using the New button.

• Click OK.

The selected directory is displayed in the 
options window.
The Component Manager



2.2.4 Default Options

In the "Defaults" node, you can make default settings for newly created
projects (also default projects) as well as for implementations. The default set-
tings for implementations are compiled in the "Implementation" subnode.

Default setting for arithmetic services:

To activate arithmetic services for newly created projects, proceed as follows.

• Activate the option Use Arithmetic Service 
in the "Defaults" node.

This activates the use of arithmetic services for 
newly created projects.

• Activate the option Use first available Ser-
vice Set.

A newly created project uses the first set of 
arithmetic services of the services.ini 
file.

• Click OK to accept the setting.

For more details on arithmetic services, refer to chapter 4.14.

Option Value Description

Use Arithmetic Service Activated/
deactivated

Activates/deactivates the use of arithmetic 
services for new projects.

Use first available 
Service set

Activated/
deactivated

Assigns new projects the first set of arith-
metic services in the file services.ini. 

Use Project Options 
Template

Activated/
deactivated

Activates/deactivates the use of an XML file 
as template for project settings of new 
projects.

Project Options 
Template

File Name and path of the XML file which is 
used as template for the project settings 
(only available if Use Project Options Tem-
plate is activated).
The Component Manager 51



52
Implementation Options 

Option Value Description

Limit to maximum bit 
length

Activated/deactivated Specifies whether the result of an 
operation is to be limited in the 
case of an overflow.

Implementation 
Master 

Model /
Implementation

Implementation master

Resolution Handling Automatic / 
Reduce Resolu-
tion /
Keep Resolution

Specifies how the resolution is to 
be handled in the case of an over-
flow.

Minimum cont Data 
Type

real64/ real32/ 
uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Minimum type for implementa-
tions of cont variables

Minimum log Data 
Type

bit/ uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Minimum type for implementa-
tions of log variables

Minimum sdisc Data 
Type

uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Minimum type for implementa-
tions of sdisc variables

Minimum udisc Data 
Type

uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Minimum type for implementa-
tions of udisc variables

Default cont Data 
Type

real64/ real32/ 
uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Default type for implementations 
of cont variables

Default log Data Type bit/ uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Default type for implementations 
of log variables

Default sdisc Data 
Type

uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Default type for implementations 
of sdisc variables

Default udisc Data 
Type

uint8/ int8/ 
uint16/ int16/ 
uint32/ int32

Default type for implementations 
of udisc variables
The Component Manager



To set up default options for implementations:

• Activate the option Limit to maximum bit 
length if the result of an operation is to be 
limited in the case of an overflow. 

• In the "Implementation Master" combo box, 
select the master page to determine newly 
created implementations.

When you create a new implementation, the 
selected page is used automatically as master 
page in the implementation editor.

• In the "Minimum <type> Data Type" combo 
box, select a minimum implementation data 
type for <type> variables.

• In the "Default <type> Data Type" combo 
box, select a default implementation data type 
for <type> variables.

<type> can be cont, log, sdisc or 
udisc.

The selected types are preset when you edit 
the implementations of the respective vari-
ables.

When you open a database from an older 
ASCET version, real64 is selected for cont 
variables, int8 for sdisc variables, uint8 
for udisc variables and int8 for log vari-
ables.

• Click OK to accept the setting.

2.2.5 Options for Automatic Documentation

In the "Documentation" node, you can make global settings for automatic
documentation (for more details see chapter 7). 

Option Value Description

Documentor Working 
Path

Path Working directory for documentation: Tar-
get directory for the documentation gener-
ated.

Scale EPS Graphic Activated/
deactivated

Specifies whether the EPS graphic gener-
ated with View → Save as Postscript is 
scaled to the paper size (see page 57).
The Component Manager 53



54
2.2.6 Options for Editors

In the "Editors" node, you can make settings for different editors, as well as
for measure and calibration windows. Settings which belong to just one editor
are compiled in subnodes. 

Options for Block Diagrams

The options in the "Block Diagram" node refer to all block diagrams.

Option Value Description

Global Sort Order Activated/
deactivated

Activates/deactivates the use of a global 
sort order in the element list of all editors.

Word Wrap in Notes Activated/
deactivated

Activates/deactivates line break in the notes 
editor

Option Value Description

Activate flexible layout Activated /
deactivated

Determines whether the layout of an 
included component can be changed in 
the block diagram editor or not.

Size of Undo Buffer Number Number of working steps in the undo 
buffer of block diagram and state 
machine editor

Drawing Area Size (px) 2000@2000 / 
5000@5000 / 
10000@10000

Size in pixel of the drawing area for 
block diagrams.

Selection Marker Size 
(Pixel)

Number Selection marker size in block diagrams
The Component Manager



To activate a flexible layout (global):

• In the "Block Diagram" node, activate the 
option Activate flexible layout.

Now you can change the layout of included 
components in the block diagram or in the 
"Graphics" tab of the project editor.

Setting fonts is described on page 43.

"Colors" node: The color settings for block diagrams are compiled in the
options window in the "Colors" node.

Show Watermark Activated /
deactivated

Determines whether the name of the 
selected view is displayed as a water-
mark in the block diagram.

Watermark Size (px) Number Font size of the watermark

Show Page Number Activated /
deactivated

Shows the page number in block dia-
grams.

BDE Graphical 
Comments

Font Font for user comments in block dia-
grams

BDE Graphical Names Font Font for names of graphical elements in 
block diagrams

Option Value Description

Background Color Color Background color in the block diagram edi-
tor and the project editor, "Graphics" tab

Grid Color Color Color of the grid in block diagrams

Comment Line Color Color Color of comment lines in block diagrams 
or projects

Selection Marker Color Color Color of the selection markers in block dia-
grams

Watermark Color Color Color for the watermark, i.e. the name of 
the selected view, as well as for page num-
bers and print-page markers.

Option Value Description
The Component Manager 55



56
To specify colors:

You can determine various color settings for block diagrams as well as the
input area (inputs of Boolean tables, see chapter 4.6, and the condition area of
conditional tables, see chapter 4.7) and output area (outputs of Boolean tables
and action area of conditional tables).

• Select the combo box of the option you want 
to change.

A color selection prompter is displayed. The 
current color is indicated.

• Select the desired color.

For the color selection to become effective, 
close and re-open an existing window.

"Sequencing" node: This node compiles options for sequence calls (see
chapter 4.1.6).

To set sequencing options:

• In the "Sequence Step Size" field, enter the 
step size for the automatic scaling of 
sequence call numbers.

• In the "Sequence Shift Offset" field, enter the 
value for the automatic shift of sequence call 
numbers.

• Activate the Use gaps option when you want 
the automatic numbering of sequence calls to 
fill the gaps between existing sequence num-
bers.

Option Value Description

Sequence Shift Offset Number Offset for the shift of sequence call num-
bers

Sequence Step Size Number Step size for the automatic scaling of 
sequence call numbers

Use gaps Activated/
deactivated

Fills the gaps between existing sequence 
numbers with automatic numbering of 
sequence calls.
The Component Manager



"Paper Size" node: This node contains the options which control the print-
ing of block diagrams.

Options for Text Editors

The options in the "Text" node concern the C-Code and ESDL editor, but not
the state or transition editor.

Setting fonts is described on page 43.

Options for Table Editors

The options in the "Tables" node affect the editors for Boolean tables and
conditional tables.

Setting colors is described on page 56.

Option Value Description

Paper Size A5 (148x210)/ 
A4 (210x297)/ 
Letter (216x279)/
Legal (216x355)/
Userdefined

Determines the size of the print area. 
If Userdefined is selected, the size 
can be adjusted using the following 
two options.

User Size Width 
(mm)

Number User-defined print area: Width

User Size Height 
(mm)

Number User-defined print area: Height

Paper Orientation Landscape / 
Portrait

Orientation of the print area.

Option Value Description

Tabulator Size Number Size of the tabulator in the text editors

Code Font Font Font for text in ESDL and C-Code editors

Option Value Description

Input Color Color Background color for the input area of a 
table

Output Color Color Background color for the output area of a 
table
The Component Manager 57



58
Options for State Machines

In the "Statemachine" node, you determine default settings for state
machines.

To set default options for state machines:

• Activate the Use ESDL as default for state 
machine option.

• Click OK to accept the setting.

If you create a new state or transition in a state 
machine, ESDL is used as default for the tran-
sition and state editors.

Setting colors is described on page 56.

Options for Calibration Windows

In the "Calibration" node, you determine default settings for calibration win-
dows. These settings, and others, can be changed in the setup for individual
calibration windows.

For the meaning of the options, refer to the descriptions in the Options win-
dow.

Options for Measurement Windows

In the "Measurement" node, you determine default settings for calibration
windows. These settings, and others, can be changed in the setup for individ-
ual calibration windows.

For the meaning of the options, refer to the descriptions in the Options win-
dow.

"Datalogger" node: This node contains options for the data logger (see
chapter 6.1.9).

Option Value Description

Use ESDL as default for 
state machine

Activated/
deactivated

Default for actions of states and transitions

Animated States Color Color Color of animated states in experiments

Option Value Description

Auto Increment Data-
Logger File Name

Activated/
deactivated

Determines whether the log file of the data 
logger is numbered consecutively (acti-
vated) or overwritten at each recrding.
The Component Manager



2.2.7 Experiment Options

The "Experiment" node contains options for offline and online experiments.

2.2.8 Options for External Tools

The "External Tools" node contains options for external tools. Some external
tools have separate subnodes, e.g., the compilers or the text editor which can
be called from the ESDL or C code editor or from the ASCET monitor window.
Other options are set directly in the "External Tools" node.

To set the paths for external tools:

• In the "External Tools" node, click the button 
next to the option you want to change.

The Windows file selection dialog box 
appears.

• Select the directory that contains the tool.

• Select the required file and click Open. 

File name and path are shown to the right of 
the button.

Option Value Description

Initialize variables at OS 
start

Activated/
deactivated

Determines whether variables are initialized 
at each start of the simulation (offline 
experiment) or the operating system (online 
experiment).

Initialize parameters at 
OS start

Activated/
deactivated

Determines whether parameters are initial-
ized at each start of the simulation (offline 
experiment) or the operating system (online 
experiment).

Option Value Description

Perl Compiler File Perl compiler

External Make Utility File External make file

Output Redirector 
Utility

File Redirects output

C Preprocessor File C-code preprocessor

C Code Beautifier File Reformats the generated code in accor-
dance with user specifications
The Component Manager 59



60
ASCII Editor Options 

The combo boxes for command line arguments and region markers offer pre-
defined values for some text editors.

Compiler Options

The "Compiler" node contains subnodes for the existing compilers. By default,
these are Borland-C V4.5, Borland-C V5.5 and Microsoft Visual C++. If you
install ASCET-RP or ASCET-SE, there are additional compilers.

The options—except the last one—are available for all compilers. 

Option Value Description

Use external ASCII 
Editor

Activated/
deactivated

Activates/deactivates the use of an external 
text editor.

ASCII Editor File Name and path of the external text editor

Commandline 
Arguments

characters Command line arguments for the external 
text editor; first argument: file name, seond 
argument: line number

Begin RegionMarker characters Marker for the text editor to identify the 
beginning of a region.

End RegionMarker characters Marker for the text editor to identify the end 
of a region.

Option Value Description

Tool Root Path Path Installation directory of the compiler

Private directive Directive Compiler directive for private functions

Public directive Directive Compiler directive for public functions

Unique identifier String Unique identifier for the compiler

Object file extension File exten-
sion

File extension for object files

Result file extension File exten-
sion

File extension for executables

Supports long 
filenames

Activated/
deactivated

Indicates whether the compiler supports 
long file names.
The Component Manager



2.2.9 Options for Integration

The "Integration" node contains options for import/export, data exchange etc.
Related options are compiled in subnodes.

Export Options

The "Export" node allows you to specify in which way and to what extent the
database objects selected will be exported. In this way, you can store individual
datasets as separate files and specify that the referenced entries will be
exported as well. 

You can also specify whether a description file is created when database items
are exported. Format and content of the description file can be determined
too.

Inline directive Directive Compiler directive for inline functions

Change CYGWIN 
Registry Settings

GNU-C V2.95.3 (PowerPC) only; changes 
the Cygwin registry settings to guarantee 
corrrect function with the GNU compiler.

Supports precompiled 
header

Activated/
deactivated

Cannot be edited. Shows whether the com-
piler supports precompiled headers.

Option Value Description

Tool Server Activation Activated/
deactivated

For internal use; should always be activated.

Use .NET based Tool API Activated/
deactivated

Toggles between the current .NET-based 
Tool API and the (outdated) MS J++ Tool 
API.

Option Value Description

Default Export Path Path Default export directory

Include Referenced 
Items

Activated/
deactivated

Activates/deactivates recursive export.

One File for each Item Activated/
deactivated

Activates/deactivates export of items in sep-
arate files.

Write ASCII file on 
Binary Export

Activated/
deactivated

Activates/deactivates the generation of 
additional ASCII description files.

Write XML file on 
Binary Export

Activated/
deactivated

Activates/deactivates the generation of 
additional XML description files.

Option Value Description
The Component Manager 61



62
To set export options:

• Select the default target directory for export in 
the "Default Export Path" field.

• Activate the Include Referenced Items 
option to export database items recursively 
(i.e. including all referenced items).

• Activate the One File for each Item option to 
write each exported database item in a sepa-
rate file.

• Activate the Write ASCII file for Binary 
Export option if you want to create an addi-
tional ASCII description file.

• Activate the Write XML file for Binary 
Export option if you want to create an addi-
tional XML description file.

The options in the field under Write XML file 
for Binary Export are now available.

Create HTML File Activated/
deactivated

Generates an HTML file for the XML 
description file.

Write Default Project 
Info

Activated/
deactivated

Adds information about the default project 
to the XML description file.

Write Version Info Activated/
deactivated

Adds information on the version to the XML 
description file.

Write Graphic 
Specification

Activated/
deactivated

Adds graphic information to the XML 
description file.

Sort XML Tags Activated/
deactivated

Activates/deactivates alphabetic sorting of 
the tags in the XML description file.

Create complete 
Hierarchy

Activated/
deactivated

Specifies whether the exported files are 
stored in a directory structure which reflects 
the folder structure of the ASCET database 
during AMD export.

Export Experiment 
Environment

Activated/
deactivated

Specifies whether the experiment environ-
ment is exported together with the compo-
nent.

Encryption Key Key Key for file encryption during AMD export

Option Value Description
The Component Manager



– Activate or deactivate the options to 
determine the content of the XML 
description file.

• Activate or deactivate the options in the 
"AMD Format" field to determine the content 
of the AMD description file.

For information on exporting database items, see chapter 2.3.3 "Exporting
Folders and Database Items" on page 89.

Import Options

In the "Import" node, you set options for importing database entries. Options
for automatic repair during AMD import are compiled in the "Autofixes" node
(page 64).

To set import options:

• Enter the default directory for imports in the 
"Default Import Path" field.

Option Value Description

Default Import Path Path Default import directory

Discard Existing 
Implementation

Activated/
deactivated

Activates/deactivates replacement of all 
existing implementations with the imported 
implementations.

Keep Folder Path in 
Database

Activated/
deactivated

Activates/deactivates the usage of the path 
set in the database when you import exist-
ing components.

Remove Version 
Information

Activated/
deactivated

Activates/deactivates the removal of infor-
mation from a version management tool.

Keep Hierarchy Activated/
deactivated

Specifies whether the directory structure of 
the export files in the ASCET database is 
reflected during AMD import.

Import referenced 
Items

Activated/
deactivated

Activates/deactivates recursive AMD import.

Remap OIDs Activated/
deactivated

Assigns new object IDs to all imported com-
ponents. Thus, copies of existing items are 
created. 

Decryption Key Key Key for file decryption during AMD import
The Component Manager 63



64
• Activate the Discard Existing Implementa-
tions option to replace all existing implemen-
tations with the imported implementations.

All previously existing implementations are 
lost; only those of the imported component 
are retained.

This option is only relevant if an existing com-
ponent is imported.

• Activate the Keep Folder Path option to 
keep the path set in the database. 

If you deactivate this option, the path stored in 
the export file is used for the import of exist-
ing components. 

• Activate the Remove Version Information 
option to remove existing version information.

If you import a versioned item without activat-
ing the option, you will not be able to store it 
in your own version management database 
unless you have access to the original archive. 
If in doubt, activate the option.

• Use the options in the "AMD Format" field to 
set up the AMD import.

For information on importing database items, see "Importing Folders and
Database Items" on page 93.

"Autofixes" Node: This node contains solutions for possible problems dur-
ing AMD import (see "Special Features of the AMD Import"). You can select
which problems are solved automatically, without notification.
The Component Manager



Licensing Options

In the "Licensing" nod, you 

Data Exchange Options

In the "Data Exchange" node, you set the options for data exchange. The
exchange formats DCM V1.x and 2.x and data exchange with INCA and
ASCET from V4 are supported. 

Option Value Description

Borrow license for days Number Length of time a license can be borrowed 
(see ASCET Getting Started manual, chap-
ter "Licensing").

Activate idle time shut-
down

Activated/
deactivated

Determines whether ASCET shuts down 
after an idle period or not.

Idle period [min] Number Determines the length of the idle period in 
minutes.

Option Value Description

Data File Path Path Directory of the data file

Extension for Output 
File

dcf / dcm / 
kon

File extension for the exchange file

DCM Format version DCM V1.x / 
DCM V2.x

Determines the DCM version to be used.

Write Enums Activated/
deactivated

Determines whether enumerations are 
written in TEXT format (only for DCM 
V1.x).

Write Sampling Points Activated/
deactivated

Determines whether sampling points are 
written in DCM V2.x syntax (only for DCM 
V1.x).

Case Sensitive Names Activated/
deactivated

Specifies whether upper/lower case are 
taken into account. 
If the option is disabled, e.g. a parameter 
named CONT is mapped to a parameter 
named Cont during import.

Hierarchical Names Activated/
deactivated

Switches between complete (activated) 
and simple item names of global items.

Include Booleans Activated/
deactivated

Specifies whether Booleans are taken into 
account.
The Component Manager 65



66
Executable File Options

The setting options for the executable files are located in the "HexFile" node. 

The options SRecord* are only of any importance if MotorolaSRecord was
selected under "HexFile Format".

2.2.10 External Options

It is possible to include user-defined options. This takes place using an XML file
which you modify to suit your own requirements. The file is stored in the
ASCET installation directory; for ASCET to recognize it, it must have the exten-
sion *.aod.xml. 

The definition of an option has the following basic format (code sections in
italics must be replaced with suitable values for each option):

<OptionDeclaration 

Boolean format true/
false / 
Integer

Determines the format of Booleans (only 
for DCM V2.x).

Show Log File for Load /
Show Log File for Save

Activated/
deactivated

Specifies whether the log file for read/
write processes is displayed.

Log File for Load/ 
Log File for Save

File name Path and name of the log files for read 
and write processes

Option Value Description

HexFile Format IntelHex / 
MotorolaSRecord

Default format for exporting a hex file

IntelHex Record 
Size

16 / 32 / 64 Permissible number of bytes per field for 
the IntelHex format

SRecord Count Activated/
deactivated

Determines whether the number of data 
fields is written at the end of each block 
(and before a possible subsequent termi-
nation record).

SRecord Format 16 / 24 / 32 Address width in bits in Motorola format

SRecord Size 16 / 24 / 32 Permissible number of bytes per field for 
the Motorola format

SRecord 
Termination

Activated/
deactivated

Specifies whether a termination record is 
put at the end of each block or not (and 
before a possible subsequent termina-
tion record). 

Option Value Description
The Component Manager



xmlCategory="path" 

optionCategory="value" 

optionClass="type" 

attributeName="option name" 

optionFile="filename.xml">

<Group>path</Group>

<Label>text</Label>

<Description>text</Description>

<Tooltip>text</Tooltip>

<InitialValue>value</InitialValue>

<DefaultValue>value</DefaultValue>

</OptionDeclaration>

Some option types have additional items; these are described in Tab. 2-2.

The meaning of the attributes and items is listed in Tab. 2-1.

Attribute/Item Meaning

xmlCategorya Path under which the option in the XML file from 
optionFile is stored, e.g. Sample\Option.

optionCategory Way the option is saved (FILE – in a file, FIXED – not 
saved).

optionClass Type of option; for possible values see Tab. 2-2.

attributeName Name of the option in the XML file from optionFile. Has 
to be unique in the file.

optionFilea XML file in which the value of the option is stored.

<Group> Path (Node\Subnode\...) of the option in the ASCET 
options window; either new or existing.

<Label> Name of the option in the ASCET options window.

<Description> Short description of the option.

<Tooltip> Tooltip text of the option in the ASCET options window.

<InitialValue> Initial value; is only used if no value from optionFile is 
saved in the XML file.

<DefaultValue> Default value; is used for System Defaults and as an initial 
value if <InitialValue> is not set.

a: The values of several options can be stored in the same XML file and/or under the
same path.
The Component Manager 67



68
Tab. 2-1 Meaning of the Attributes and Items

The following types are available for the definition of user-defined options: 

optionClass Explanation

EtasBooleanOption Option box

EtasButtonOption Button that executes a command

<InitialValue> and <DefaultValue> are 
set to the value ignored.
Additional items for the definition:

<ButtonOption>
<Action>path/executable file↵

</Action>
</ButtonOption>

EtasEnumerationOption Combo box for selecting a character string

Additional items for the definition:
<EnumerationOption>

<StringValues>
<StringValue>string1  ↵

</StringValue>
...
<StringValue>stringN  ↵

</StringValue>
</StringValues>
<Values>

<Value>value1</Value>
...
<Value>valueN</Value>

</Values>
</EnumerationOption>
The Component Manager



Tab. 2-2 Types of User-Defined Options (code sections in italics must be 
replaced with suitable values for each option)

EtasFileOption Text field for path and name of a file as well as a 
button for file selector window

Additional items for the definition:
<FileOption>

<DialogTitle>text  ↵
</DialogTitle>

<SearchPath>path</SearchPath>
<SearchMask>mask</SearchMask>
<InvalidCharacters>characters

</InvalidCharacters>
<FilterTypes>

<FilterType filter>
<Description>text  ↵

</Description>
</FilterType>
...

</FilterTypes>
</FileOption>

EtasFloatOption Entry field with arrow buttons for float values

Additional items for the definition:
<FloatOption>

<MinValue>value</MinValue>
<MaxValue>value</MaxValue>

</FloatOption>

EtasNumericOption Entry field with arrow buttons for integer values

Additional items for the definition:
<NumericOption>

<MinValue>value</MinValue>
<MaxValue>value</MaxValue>

</NumericOption>

EtasPathOption Text field for directory path with button for "Path 
Selection" window

EtasStringOption Text field for entering a character string

optionClass Explanation
The Component Manager 69



70
Your installation CD contains the sample file externalOptionsExam-
ple.aod.xml. This file defines the options shown below.

2.2.11 Working with User Profiles

You can create and manage several user profiles in ASCET. This function
enables the selection of specific settings in ASCET which apply to one user
only. If, for example, several users share a computer, each user can save an
ASCET configuration customized to meet his/her requirements in his/her per-
sonal user environment. This includes options such as screen font, font size,
several settings for the various editors, default settings for elements, etc.

All settings in a respective user profile are global and apply irrespective of the
concrete task.

During program execution, only the user profile for the current user environ-
ment can be changed. Editing user profiles is only possible when the function-
ality has been activated. Use the Tools → Options function ("Options" node,
see chapter 2.2.1 on page 41) to determine whether editing user profiles is
possible during program execution. Another user profile can only be selected
by restarting ASCET. 

Using the User Selection Feature

By activating user selection, the user can specify whether the dialog window
for user profile selection is displayed. 

If user selection is not activated, the program automatically uses the user pro-
file for the user logged onto the system.

Note

Even if only one user uses a computer, (s)he can set up several user profiles. 
For example, (s)he can create an optimized user profile for working in the 
office and one for travelling.
The Component Manager



If user selection is activated, the user is prompted to log on the next time the
program starts. The user can do this by selecting an existing user profile or
adding a new profile to ASCET. This is described in the following.

To activate user selection:

• In the Component Manager, select Tools → 
Options

or

• click on the Options button.

The "Options" window opens.

• In the "Options" node, activate the Multiple 
user handling option.

The next time you start ASCET, you are 
prompted to either select an existing user 
name or to enter a new name.

To add a new user profile:

• Start ASCET with user selection activated in 
the "Options" window.

The "Select User" window opens. It contains 
all available users.

When user selection is first activated, the user 
list only contains one entry: <new>.
The Component Manager 71



72
• Select the <new> entry from the list and click 
OK.

The "Enter User" dialog window prompts for 
the name of the new user profile. 

• Enter a name and click OK. 

A user profile name can consist of up to eight 
characters.

ASCET is now started using a copy of the 
default user profile (default settings); the 
Component Manager opens. The name of the 
current user profile is displayed in the bottom 
bar of the window.

The user options specified during an ASCET session are stored in the user pro-
file you select when the program starts. They become applicable again when
the corresponding user name is selected at startup.

For instructions on how to customize the user environment to meet your
requirements, read sections 2.2.1 – 2.2.10.

To activate an existing user profile:

• Start ASCET with user selection activated in 
the "Options" window.

The "Select User" window opens.
The Component Manager



• Select the name you want from the list and 
click OK.

The Component Manager opens. The user 
options for the selected profile are activated.

2.3 Component Manager – Managing Data

As mentioned above, the main purpose of the Component Manager is to sys-
tematically store all data that is created during the work with ASCET (classes,
modules, projects, etc.) in a database. The Component Manager allows you to
manage the database items from a comprehensible user interface. Similar to
the Windows Explorer, you can create folders and subfolders, move, copy,
import, and export individual items, and also create entirely new databases.
This means that you can organize your data in a similar fashion as you are
accustomed to for the file system.

Besides organizing your data, you can also edit components and projects in
ASCET.

Database Items

An ASCET database contains different types of database items. This section
presents an overview of the types of database items available in ASCET.

Components: The specification of an embedded software system in ASCET
is made up of components. A component is a modular piece of functionality
which contains algorithms and data. The different algorithms specified within
a component can be executed independently of each other. The components
of an Embedded Control System can be combined into projects.

On a physical level, components are specified either graphically as block dia-
grams or state machines, or in ESDL-Code. Alternatively, they can be specified
in C code. Components that are specified either graphically or in ESDL are
implementation-independent, i.e. they can be used to generate code for dif-
ferent platforms. Components specified in C code are always platform-depen-
dent. They encapsulate target-specific behavior.

The types of component available in ASCET and their usage are described in
chapter "Components" in the ASCET reference manual. Information on work-
ing with components is available in the description of the relevant editor.

Note

You cannot switch user profiles while the program is running. You must exit 
the current session and restart the program to change users.
The Component Manager 73



74
Projects: A project specifies the functionality of an Embedded Control Sys-
tem. It contains all the components together with the necessary protocols,
operating system and code generation settings. A project determines the
communication between components and the order in which algorithms are
executed. 

The project concept is explained in chapter "Projects" in the ASCET reference
manual; a description of how to work with projects can be found in chapter
"The Project Editor" on page 371.

Icons: When a component is nested in another component, it appears as a
block in the diagram of the enclosing component. You can assign an icon to a
nested component to make a complex diagram more readable. 

A selection of icons is provided with ASCET. In addition, users can define and
edit their own. Importing, creating and editing icons is described in section
"The Icon Editor" on page 558.

Signals: In order to test ASCET models under realistic conditions, genuine
measurement data can be imported into ASCET, and used as input in the test-
ing of ASCET models. This data is stored in signal items.

Additional information on working with signals can be found in section "The
Signal Viewer" on page 555.

Container: Containers are used as containers for projects, classes and mod-
ules. Their purpose is to structure models and databases and place different
database items under a common version control. Details are given in chapter
"Containers" on page 443.

Enumerations: Enumerations are unique types with values taken from a
group of known constants called enumerators.

ASAM-MCD-2MC project: The ASAM-MCD-2MC file represents the inter-
face between ASCET-MD and other programs (INCA, ASCET-RP, and others)
that recognize the standard ASAM-MCD format. 

2.3.1 Managing Database Items

In ASCET, database items are organized in folders. A database can contain any
number of top-level folders, which in turn can contain other folders. Database
items must be stored in folders, they cannot be created at the root level of a
database. Database items are identified by their object IDs. Even though iden-
tical names are not allowed in the same folder, objects in different folders can
have identical names.

This section explains the standard operations you can perform on database
items. 
The Component Manager



To create a folder:

• In the Component Manager, "1 Database" 
list, select the database name or the folder 
you want the folder to be in.

You can place folders only beneath the data-
base name.

• Select Insert → Folder

or

• click on the Insert Folder button

or

• press the <INSERT> key.

A new folder appears in the "1 Database" list. 
When you place the folder at the top hierarchy 
level (see figure), Root is used as default 
name, otherwise, the default name is 
Folder.

• Edit the folder name. You can simply type over 
the highlighted name and then press <ENTER>. 

Each database has to have at least one top-
level folder that is created automatically when 
you create the database.

To create a database item:

• In the "1 Database" list, select the folder you 
want the new item to be in.

Note

Folder and component names are not case-sen-
sitive. Folder names differing only in the use of 
upper and lower case letters are not allowed.
The Component Manager 75



76
• Select Insert → <component type> or 
Insert → <component type> → <item 
type>

or

• click on the corresponding button in the Insert 
button bar

The new item is created with a default name 
and layout.

• Edit the name and press <ENTER>.

If you create a component of type Module, Class or Continuous Time
Block, you can choose whether the item should be realized as a block dia-
gram, in ESDL or C code. These item types are available via the <item type>
submenus or the Insert Module - <item type> and Insert Class - <item
type> buttons. The default item type of the buttons can be adjusted.

To select the default item type of classes/modules:

• Click on the arrow button next to Insert 
Module - <item type> or Insert Class - 
<item type>.

A drop-down list opens. The current default is 
checked.

• Select the default type for modules or classes.

When you now use the buttons to create com-
ponents, these have the default item type.-

To create an enumeration:

• In the "1 Database" list, select the folder you 
want the enumeration to be in.

• Select Insert → Enumeration

or
The Component Manager



• click on the Insert Enumeration button.

The enumeration is created with a default 
name; the first enumerator is displayed in the 
"3 Contents" field.

• Click anywhere in the "3 Contents" field to 
focus on it.

The menu changes described on page 28 
become effective.

• Select Component → Enumeration → 
Add*

or

• press <INSERT> 

or

• right-click in the "3 Contents" field and select 
Add → <submenu> from the context menu 
to add an enumerator.

The functions in Add → <submenu> place 
the new enumerator at the following posi-
tions:

• Select Edit → Rename

or

• press <F2> to rename a selected enumerator.

• Select Edit → Delete

or

• press <DEL> to delete a selected enumerator.

as first in the first row

as last in the last row

before selection before the selected enumerator

after selection after the selected enumerator
The Component Manager 77



78
• Select Component → Enumeration → Shift 
Up to move an enumerator up the list.

• Select Component → Enumeration → Shift 
Down to move an enumerator down the list.

All menu items are also available as context 
menu in the "3 Contents" field.

To edit a database item:

• In the "1 Database" list, select the entry you 
want to edit.

• double-click on the entry

or

• select Component → Edit Item

or

• press the <RETURN> key.

The editor for the selected item opens.

To rename a folder or database item:

• In the "1 Database" list, select the folder or 
item you want to rename.

• Select Edit → Rename

or

• Press <F2>.

The name of the folder is highlighted.

• Edit the name and press <ENTER>.

To delete a folder or database item:

• In the "1 Database" list, select the folder or 
item you want to delete.

• Select Edit → Delete

or

Note

Folders and components are deleted directly from the database and cannot 
be recovered. When you delete a folder, all items in that folder are deleted 
as well. Therefore, use the "Delete" command with care.
The Component Manager



• click on the Delete button

or

• press the <DEL> key.

A confirmation window is displayed when a 
component or a folder containing folders or 
items is to be deleted.
Empty folders are removed without confirma-
tion.

• Click OK to confirm the deletion.

You can copy and move database items or entire folders and their contents.
When the target directory contains an object with the same name as the orig-
inal, the extension "_1" is added to the name of the copied object.

To copy a database item or folder:

• Select the item or folder you want to copy.

• Select Edit → Copy

or

• click on the Copy button

or

• press <CTRL> + <C>.

The database item or folder is copied to the 
clipboard.

To cut a database item or folder:

• Select the item or folder you want to copy.

• Select Edit → Cut

or

• click on the Cut button

or

Note

Top-level folder can be copied and shifted only at top-level folder level with 
Cut/Copy/Paste.
Subfolders cannot be lifted to top-level folder level via Cut/Copy/Paste.
The Component Manager 79



80
• press <CTRL> + <X>.

The database item or folder is moved to the 
clipboard. The item symbol in the Component 
Manager appears now black and white.

To insert a database item or folder:

• In the Component Manager, select the target 
folder for the database item or folder in the 
clibboard.

• Select Edit → Paste

or

• click on the Paste button

or

• press <CTRL> + <V>.

The database entry or folder is inserted in the 
selected target folder. When the item was cut 
(cf. page 79), the corresponding entry in the 
target folder is deleted.

When items or folders are moved within the same database, item and/or folder
names are usually retained in the target folder. The new item is automatically
renamed only if the target folder already contains an item or a folder with the
same name, thus avoiding naming conflicts.

If you want to re-implement an existing block diagram component in C code
or ESDL code (or vice-versa), you can copy the structure of the original compo-
nent, so you will not have to specify it again. When you copy the structure of
a component, the entire interface of the component is created automatically in
the target component.

Note

When you close the database while the item or folder is still in the clipboard, 
the clipboard is emptied, but the object is not deleted. 
The Component Manager



To copy the structure of a component:

• In the Component Manager, select the com-
ponent you want to copy.

• Select Component → Reproduce As → 
<item type> to determine the item type to be 
created.

The new component is created in the same 
folder as the original one. It is named as the 
original, with the extension "_1".

The new component contains the same inter-
face as the original one, but no functionality is 
specified for the component.

• You may want to rename the new component 
to avoid naming conflicts.

• Double-click on the new item to open the rel-
evant component editor and specify the func-
tionality you want.

To save the current database:

When you make changes to ASCET databases, those changes are stored in a
cache, in RAM. To make the changes permanent, you have to save them to the
database on the hard disk.

• Select File → Save Database

or

• click on the Save button

or

• press <CTRL> + <S>.

The cache content is written to the hard disk.

For information on saving your database automatically at regular intervals, see
section "General Options" on page 41.

2.3.2 Working with View Concepts

You can work with view concepts via menu functions or via context menus. A
description of the menu functions is given in section "Description of Menu
Options" on page 19.
The Component Manager 81



82
Editing Components and Projects in the Component Manager

In ASCET it is possible to modify the properties of components and projects in
the Component Manager. By selecting the element you want in the "3 Con-
tents" field, you can edit the configuration, the data set, the implementation
or the layout, depending on the view you selected.

Method arguments and return values are exceptions to this. These elements
can only be changed in the specification editors.

To edit database items:

• Highlight a folder in the "1 Database" field. 

The folder view is shown in the "3 Contents" 
field. 

• In the "Components" tab, highlight an entry.

• Select Component → Edit Item

or

• press <RETURN>

or

• double-click on the highlighted entry.

The editor for the selected item opens.

• Select Rename from the context menu

or

• press <F2> to rename the selected item.

• From the context menu, select Select All to 
select all entries.

• Select Delete from the context menu

or

• press <DEL> to delete the selected items.

• Select Sort by → <column> from the context 
menu 

or
The Component Manager



• click on a column name to sort the display by 
that column.

In an ascending sorting, numbers come before 
upper-case letters, which come before lower-
case letters. 

A second sorting reverts the sorting order.

To edit elements:

• Select a component or project in the 
"1 Database" field. 

• In the "3 Contents" field, click on the
"Elements" tab.

The element view is displayed.

• Click on a column name to sort the display by 
that column.

• In the "Elements" tab, select an element.

• Select Component → Edit Item

or

• press <ENTER>

or
The Component Manager 83



84
• double-click on the selected element.

The element editor opens.

Chapter 4.10 contains detailed information about editing element configura-
tions.

• Select Edit → Rename

or

• press <F2> to rename the selected element.

• From the context menu, select Select All to 
select all entries.

• Select Edit → Delete

or

• press <DEL> to delete the selected elements.
The Component Manager



• Select Edit → Copy

or

• press <CTRL> + <C> to copy the selected ele-
ments to the clipboard.

• Select Edit → Paste

or

• press <CTRL> + <V> to paste elements from 
the clipboard to the component.

If an element with the same name already 
exists, a counter (_n) is added to the name of 
the pasted element.

To edit the data:

• In the "1 Database" field, select a component 
or project. 

• In the "3 Contents" field, click on the 
"Data" tab.

The data view is displayed.

• Click on a column name to sort the display by 
that column.

• Select the element you want.

• Select Component → Edit Item

or

• press <ENTER>

or

• double-click on the selected element.

The appropriate data editor opens, depending 
on the kind of the selected element.
For example, the "Logical Editor" or "Numeric 
Editor" dialog opens if you have selected a 
logical or scalar element.

Chapter 4.11 contains detailed information about editing data and data sets.
The Component Manager 85



86
• Select Edit → Rename

or

• press <F2> to rename the selected element.

• Select Edit → Copy

or

• press <Ctrl> + <c> to copy the current data of 
the selected element to the clipboard.

• From the context menu, select Select All to 
select all entries.

• Select Edit → Paste

or

• press <Ctrl> + <v> to copy the data from the 
clipboard to the selected elements.

• Select Edit → Delete

or

• press <Del> to delete the selected elements.

To edit the implementation:

• In the "1 Database" field, select a component 
or project. 

• In the "3 Contents" field, click on the "Imple-
mentation" tab (implementation view).

• Click on a column name to sort the display by 
that column.

• Select the element you want.

You can select both basic elements and 
included components.

• Select Component → Edit Item

or

• press <ENTER>

or
The Component Manager



• double-click on the selected element.

The corresponding implementation editor 
opens (the figure shows the implementation 
editor for basic elements).

Chapter 4.12 contains detailed information about editing implementations.

• Select Edit → Rename

or

• press <F2> to rename the selected element.

• Select Edit → Copy

or

• press <CTRL> + <C> to copy the current imple-
mentation of the selected element to the clip-
board.
The Component Manager 87



88
• From the context menu, select Select All to 
select all entries.

• Select Edit → Paste

or

• press <Ctrl> + <v> to copy the implementa-
tion from the clipboard to the selected ele-
ments.

• Select Edit → Delete

or

• press <Del> to delete the selected elements.

To edit the layout:

• In the "1 Database" field, select a component.

• In the "3 Contents" field, click on the "Lay-
out" tab.

The layout view is displayed.

• Select Component → Edit Layout

or

• press <ENTER>

or

Note

You can copy and paste implementations only 
between elements of the same type. It is not 
possible to copy the implementation of one ele-
ment type (e.g., a characteristic field) to an ele-
ment of a different type (e.g., scalar, matrix, ...).

Note

The "Layout" tab does not exist for projects.
The Component Manager



• double-click on the layout displayed.

The layout editor opens.

Chapter 4.13 contains detailed information about editing component layouts.

Selecting Another Data or Implementation Set

If more data or implementation sets are created for a component, you can
select these using a combo box. This combo box is only available in the data
and implementation views.

To select another data or implementation set:

• In the "Data" or "Implementation" tab, click 
on the combo box.

• Select a data or implementation set.

The values in the individual elements are 
changed accordingly.

2.3.3 Exporting Folders and Database Items

In ASCET, it is possible to exchange folders and database items between data-
bases. You can export entire folders, individual database items, or any selection
of database entries and folders. A distinction is made between exporting indi-
vidual items (flat export), or the items together with all other items referenced
by them (recursive export). 

Note

During export, the content of the "2 Comment" field (cf. page 16) is 
exported only for top-level folders and items. Comments on subfolders are 
not exported.
The Component Manager 89



90
Binary Export

The *.exp export file format is a very space-efficient binary format that can
be generated and read quickly. However, generating such export files can be a
memory-intensive task. If you are exporting large folders, you can distribute
their contents over several files to speed up the export/import process. You can
distribute the contents of large folders over several files by automatically gen-
erating one file per exported item.

When the Write XML file on Binary Export or Write ASCII file on Binary
Export option has been activated in the "Options" window (see "Export
Options" on page 61), description files in the selected format are created in
addition to the export file. These description files can be viewed with an inter-
net browser or a text editor, respectively.

AMD Export

With ASCET 5.2, the XML-based export format *.amd is provided. When you
select this export format, several *.amd files are created for each exported
component. These files store the complete model description. The names of
these files are created as follows:

<component name>.<information type>.amd

Tab. 2-3 lists the information types and file content. 

Note

The generation of XML description files requires at present Microsoft Inter-
net Explorer V5.5 (with MSXML Parser V3.0) or V6.

Information type Content

main names and properties of the elements in the 
project/component (cf. page 447)

data data of the elements in the component/project (cf. 
page 458)

experiments experiment environments defined in the compo-
nent/project (cf. page 561)

implementation implementations of the elements in the compo-
nent/project (cf. page 475)

specification specification details (e.g., interface information, 
block diagram structure, code of an ESDL or C code 
component)
The Component Manager



Tab. 2-3 Types of AMD export files

Each AMD file contains a signature which is used, during import, to check
whether the file was changed between export and import. 

If desired, the AMD files can be collected and compressed into a Zip file during
export. This Zip file has the extension *.axl.

Other Export Formats

Besides the export formats mentioned above, an XML format (*.xml) is avail-
able, too, that corresponds to the optional XML description file for binary
export. This XML format is fundamentally different from the AMD format; it
cannot be re-imported into ASCET.

For the export of ASAM-MCD-2MC projects, the export format *.a2l is
available.

Performing the Export

Before you export folders or database items, select the appropriate export
mode (with or without referenced items), and the file distribution, from the
export options (see "Export Options" on page 61)

To export a folder or database item:

• In the "1 Database" list of the Component 
Manager, select the folders or items to be 
exported.

• Select File → Export

or

projecta project-specific data such as operating system con-
figuration (cf. page 390), project settings (cf. 
page 407) 

project.formulasa formulas defined in the project (cf. page 424)

project. 
implementationTypesa

implementation types defined in the project (cf. 
page 430)

a. for projects only

Note

If you use the *.a2l format to export something other than an ASAM-
MCD-2MC project, you prodce an error.

Information type Content
The Component Manager 91



92
• select Export from the context menu

or

• click on the Export button

or

• press <CTRL> + <E>.

The "Select Export File" window opens.

• In the "Export Format" combo box, select an 
export format.

• In the "Export File" field, enter path and file-
name of the export file manually or via the  
button.

The OK button is now available.

ASAP2 files (*.a2l) only ASAM-MCD-
2MC projects

ASCET Model Data files 
(*.amd)

AMD export (cf. 
page 90)

ASCET compressed Model 
Data files (*.axl)

compressed AMD 
export

ASCET Export files 
(*.exp)

binary export (cf. 
page 90)

ASCET XML files old 
format (*.xml)

XML export, can-
not be imported

Note

When the export option One File for each 
Item is activated, the field is named "Export 
folder", andthe button looks like this: 
The Component Manager



• Click Options if you want to adjust the export 
options.

The "Options" window opens in the "Export" 
node (see section "Export Options" 
on page 61).

– Set the export options.

– Click OK to close the "Options" window.

• In the "Select Export File" window, click OK to 
start the export.

The objects are exported to the file and folder 
you selected.
During AMD exort, a series of *.amd files is 
created for each exported object.

2.3.4 Importing Folders and Database Items

Every object in an ASCET database has a unique identity tag, and is known to
the database only by this identity tag. Database items reference each other
only on the basis of these tags, not on the basis of the names displayed in the
Component Manager.

You can import from one or more export files of the following formats into
your database.

The folders and items required are created automatically. You are prompted for
confirmation when an existing item is overwritten by an imported item.

Note

When exporting database items on a "one file per item" basis, or when using 
AMD export including referenced items, you should export to an empty 
directory to keep your exported files manageable. ASCET automatically 
exports to the directory specified in "Default Export Path".

binary export file (s. page 90) ASCET Export files (*.exp;*.prj)

AMD export file (s. page 90) ASCET Model Data files (*.main.amd; 
*.main.xml)

compressed AMD export file ASCET compressed Model Data files 
(*.axl;*.zip)

ASAM-MCD-2MC project ASAP2 files (*.a2l)

The XML export format (s. page 91) cannot be imported.
The Component Manager 93



94
Besides the components themselves, the export files also store the component
paths in the exporting database. If an imported item is located in a folder exist-
ing in the target database, it is written into that folder. If an item is located in
a folder in the source database that does not exist in the target database, the
folder is automatically created in the target database. If necessary, several lev-
els of folders are created. The folder hierarchy is recreated as it exists in the
source database. 

When an item is imported that already exists in the target database, the exist-
ing item is overwritten. Renaming offers no protection against overwriting
because database items are identified by their object IDs, not their names.
With AMD import, the import option Remap OID makes sure that an existing
object is not overwritten, but a copy with a new object ID is created.

If an imported item overwrites an existing item, the target database path and
the behavior of existing implementations can be specified in the import
options (see "Import Options" on page 63). When you deactivate the Keep
Folder Path in Database option, the imported item is stored at the export
database path, even in case it is stored in a different folder in the target data-
base. To keep the existing path name, Keep Folder Path in Database has to
be activated.

It is possible to protect data in a database from being overwritten in this way.

To disallow overwriting of data in a database:

• In the Component Manager, select the items 
and folders you want to protect.

• Select Component → Disallow Import.

The items and folders selected are protected 
from being overwritten on import. Protected 
items are marked with <Disallow 
Import> in the "1 Database" list.

If a folder has been set to disallow import, this simply means that the folder
itself cannot be overwritten by an imported folder. 

Performing the Import

Before you import folders or items, set the import options in the user options
(see "Import Options" on page 63).

To import from export files:

• In the Component Manager, open the target 
database for the import. 
The Component Manager



• For AMD import or import of ASAM-MCD-
2MC files, select a folder.

• Select File → Import

or

• click on the Import button

or

• press <CTRL> + <M>.

The "Select Import File" window opens.

• In the "Import File" field, enter path and file-
name of the file you want to import manually 
or via the  button.

The file format does not have to be explicitly 
specified. It is identified by the file extension.

The OK button is now available.

• Click Options if you want to adjust the import 
options.

The "Options" window opens in the "Import" 
node (see section "Import Options" 
on page 63).

– Set the import options.

– Click OK to close the "Options" window.

Note

You can enter or select more than one file.
The Component Manager 95



96
• In the "Select Import File" window, click OK 
to start the import.

The "Import" or "Items available for import" 
window lists the content of the file(s). If one of 
the objects already exists in the database 
(identical object ID), the window shows the 
item to be overwritten.

• Select all the items to be imported and click 
OK.

If you are importing existing objects, you are 
asked to confirm the overwriting of the exist-
ing database items.

• Confirm the message with OK.

The items selected in the "Import" window 
are now imported. Finally, the imported items 
are listed in the "Imported Items" window.

Note

When the import option Remap OID is selected 
for AMD import, an existing object is not over-
written, but a copy wih new object ID is created.
The Component Manager



• When you click on an item in the "Imported 
Items" window, it is highlighted in the Com-
ponent Manager.

Importing a Directory Content

To allow an easy import of all export files in a given directory, the menu option
File → Import directory. is provided

Importing a directory content:

• In the Component Manager, select File → 
Import directory.

The "Select Import File" window opens.

• In the "Import folder" field, enter path and 
filename of the file you want to import manu-
ally or via the  button.

The OK button is now available.

• Click Options if you want to adjust the import 
options.

The "Options" window opens in the "Import" 
node (see section "Import Options" 
on page 63).

– Set the import options.
The Component Manager 97



98
– Click OK to close the "Options" window.

For the first import file, an "Import" or "Items 
available for import" window opens that lists 
the content of the file. If one of the objects 
already exists in the database (identical object 
ID), the window shows the item to be over-
written.

• Select all items to be imported and click OK.

If you are importing existing objects, you are 
asked to confirm the overwriting of the exist-
ing database items.

• Confirm the message with OK.

The selected items are now imported. After 
that, an "Import" or "Items available for 
import" window opens for the next import 
file.

After all imports, the imported items are listed 
in the "Imported Items" window.

Special Features of the AMD Import

During import from AMD files, several tests are performed.

Integrity check: The signatures are used to check whether the files have
been changed by third parties.

Consistency check: The system checks for the following errors:

• invalid file

If one of the AMD files is invalid, i.e. unreadable, not XML conforming, 
or not conforming to the respective XML schema, the following hap-
pens.

– The component is not imported.

– The"Import Problems" window lists file and problem.

– No automatic solution exists.

• missing file

An ASCET component is specified by several files (see "AMD Export"). 
If one or more of these files are missing, the following happens.

– The component is not imported.

– The"Import Problems" window lists the missing files.
The Component Manager



– The user is offered the opportunity to create default files for the 
missing files.

• missing components during import

If a referenced component does not exist, or is unavailable, the "Import 
Problems" window lists the missing files.

• missing information in a file

If information is missing in an AMD file (e.g., an element was defined, 
but its data are missing), but the file itself is valid (i.e. readable, con-
forming to XML and the respective schema), the following happens.

– The component is not imported.

– The"Import Problems" window lists the missing information.

– The user is offered the opportunity to create default values for the 
missing information.

• wrong information in a file

If an AMD file contains wrong information (e.g., data that do not agree 
with infoation in other AMD files of the component), the following 
happens.

– The component is not imported.

– The"Import Problems" window lists the wrong information.

– No automatic solution exists.

• obsolete information in a file

If an AMD file contains more information than required (e.g., a data 
configuration for a non-existing element), the following happens.

– The component is not imported.

– The"Import Problems" window lists the obsolete information.

– The user is offered the opportunity to ignore the obsolete informa-
tion.
The Component Manager 99



100
The "Import Problems" window contains the following elements.

• "Component / Problem" column

Affected component and kind of problem, e.g., unhandled excep-
tion, Invalid AMD file (missing), Data for Element 
<name> missing or Obsolete data for undefined ele-
ment <name>.

Problems can be of type warning (symbole  and ) or error (sym-
bols  and ).

• "File" column

Path and name of the affected file.

• "Autofix" column

Automatic solution; the possible solutions must be activated for the 
actions to be performed. 

The column is empty for problems without automatic solution.

• context menu in the table

– Expand all Nodes (<ALT>+<*>)

Expands all nodes in the "Component / Problem" column.

– Select All Autofixes (<CTRL>+<A>)

Activiates all automatic solutions in the "Autofix" column.

– Select Autofixes of this Type (<ALT>+<A>)

Only available when an entry in the "Autofix" column is selected. 
Activates all automatic solutions of the selected type.
The Component Manager



– Always Autofix Problems of this Type 

Only available when an entry in the "Autofix" column is selected. 
Ensures that the solutions of the selected type are, from now on, 
performed automatcally; you do not have to activate these options 
in the "Import Problems" window.

– Save Issue List as XML (<CTRL>+<S>)

Saves the window content to an XML file. For some errors, you get 
additional information. 

Such an XML file is helpful when you intend to analyze the prob-
lems automatically.

• Filter options

– Errors 

Shows problems of type error.

– Warnings 

Shows problems of type warning.

– Autofixed Warnings 

Shows automatically solved problems of type warning.

• Edit Autofix Options button ( )

Opens the "Options" window where settings for automatic problem 
solutions can be made.

• Select all Autofixes button ( )

Activates all automatic solutions in the "Autofix" column.

• OK button

Closes the window and performs the activated automatic solutions.

• Cancel button

Closes the window without performing the activated automatic soluti-
ons.
The Component Manager 101



102
To set options for automatic problem solutions:

• In the "Import Problems" window, click on 
Options.

The "Options" window opens. It contains only 
the "Import" node.

The "Always fix AMD Import problems" list 
contains solutions for the problems possible 
during AMD import.

• Activate the options for all problems that shall 
be solved without being displayed in the 
"Import Problems" window.

• Close the "Options" window with OK.

During the next AMD import, the selected 
solutions are performed automatically; you do 
not have to activate options in the "Import 
Problems" window.
The Component Manager



Importing Projects

Projects are imported like all other database entries. Any modules belonging to
a project which are not available in the database after an import are shown in
the element display of the Component Manager.

If the project is opened in the project editor (chapter 4.8 "The Project Editor"
on page 371), the names of the missing modules are in the "Elements" list. In
the operating system editor ("OS" tab, s. "Defining the Scheduling in the OS
Editor" on page 390) the missing processes are deleted from the "Processes"
field; they are however retained in the task list as open references
(undef::undef).

You can import the missing modules at a later time even if you have opened
the project. Afterwards, the project has no open references, and the processes
are automatically inserted into the right tasks.

Importing Items from Old ASCET Versions

Export files created with versions prior to ASCET-SD 4.0 cannot be imported
into ASCET 5.2 because the current version offers no interface to the old data-
base formats. When you try to import such a file as described on page 94, you
get the following error message:
The Component Manager 103



104
This file is compatible with ASCET-SD V3.0 or earlier. 
It cannot be imported directly. Convert it to a data-
base using your old version of ASCET-SD, then open 
this database.

To import an export file from ASCET-SD versions prior to 4.0: 

If you still have ASCET-SD 4.x, you can use very old export files with ASCET 5.2.
Proceed as follows:

• Start ASCET-SD 4.x.

These versions contain interfaces to the very 
old database formats.

• Import the old export file.

The database items are converted to the for-
mat of the corresponding ASCET-SD version.

• Export the imported items.

• Close ASCET-SD 4.x.

• Start ASCET 5.2.

• Import the database items you have just 
exported from ASCET-SD 4.x, as described on 
page 94.

2.3.5 Working with Database Items

References on Items

A reference to an item is created whenever the item is used by or included in
another item (e.g. a module that is included in a project is referenced by that
project). When moving items between folders, or renaming existing items in
folders, all references to that item are updated automatically. 

The Component Manager does not automatically resynchronize with the data-
base if references have been modified. To ensure the consistency of references
in the Component Manager, you need to update its references explicitly.

To update references in the Component Manager:

• In the Component Manager, select View → 
Update 

or
The Component Manager



• Press <F5>.

The Component Manager display is compared 
with the database, and updated if necessary.

You can view a list of references to ensure that your system is consistent before
removing items or folders from the database.

To display the references to a database item:

• Select a database item.

• Select Component → Show References.

The "Browse References To" dialog opens.

It shows the names of all the items which ref-
erence the selected item. 

Since references can be cyclic; an item can reference an item that references it.
When you delete an item, you should always make sure that the referenced
components are not corrupted. ASCET displays a warning and a list of refer-
ences if you attempt to remove a component that is referenced by other com-
ponents.

Deleting database items that are referenced by other components can destroy
the referencing components. This can be prevented by replacing the compo-
nent you want to remove with a new one or a different one. 

When a component is replaced, all the database items that have references to
the replaced component adjust their references to the replacing component.
The replaced component is no longer referenced by any other database item.

To replace the references to a database item:

• In the "1 Database" list of the Component 
Manager, select the item you want to replace.
The Component Manager 105



106
• Select Component → Replace References.

The "Select Item" window opens.

• Select the item intended to replace to the first 
item and click OK.

• In the "Confirm" window, confirm the com-
mand with OK.

The "Glue: <item> with: <item>" window 
opens. All replacements are listed here.

• Confirm by clicking OK.

The references to the first item are replaced 
throughout the database.

With this procedure, you only replace the reference to one item by a reference
to another item. Replacing references does not affect the database items in the
sense that any of the items involved no longer exists or has moved to another
location. 
The Component Manager



Here is an example to make the way Component → Replace References
works clearer. 

The illustration shows a section from the element view of the Component
Manager for the ControllerTest project in the Lesson4 folder of the
tutorial database. This project references the IdleCon component. 

After the selection of IdleCon in the "1 Database" list, this can be checked
with Component → Show References. 

In the entire database, the IdleCon component is referenced by five projects
with identical names (ControllerTest).

As described above, the reference to IdleCon is, with Component →
Replace References, replaced by a reference to IdleCon_1. After the com-
mand has been executed, the "1 Database" field is unchanged, but in the ele-
The Component Manager 107



108
ment view it can be seen that the ControllerTest project, albeit using the
old name, now references IdleCon_1. However, both components still exist
in the database.

Checking both components with Component → Show References has the
following result:

There is no longer a reference to IdleCon, the five projects now reference
IdleCon_1.

In ASCET 5.2 you can replace a database item and all the references to that
item in other components or projects completely. This option is particularly
important if you are working with a configuration management tool and need
to merge divergent development streams for the same system.
The Component Manager



Since every database item is known to the database only by its identity tag, the
replacing item simply takes the place of another item by taking its identity tag.
If, for example, your database has two objects A1 and A2, and you replace A1
with A2, the resulting object A2 gets the identifier and the references of A1
whilst keeping its functionality and the name A2.

To replace a database item:

• In the "1 Database" list of the Component 
Manager, select the item that is to replace the 
original item.

• Select Component → Become another 
Item.

The "Select Item" window opens.

• Select the item you want to replace.

• Click OK to replace both the references to the 
second item and the item itself.

• In the "Confirm" window, confirm the com-
mand with OK.

The "Glue <item> with: <item>" window 
opens. All replacements are listed here. 

• Confirm by clicking OK.

The original instance of the item that replaces 
the second item retains its identifier and is 
renamed to <item_name>_copy. 

Here is another example to clarify the way the command works. It is the same
example as discussed above; this time however, the IdleCon component is
completely replaced, not just the references to it. 

Before the Component → Become another Item command is executed, the
ControllerTest project references the IdleCon component. Another
project (Project) references the IdleCon_new component.
The Component Manager 109



110
As described above, the Component → Become another Item command is
used to replace the IdleCon component by IdleCon_new. After the com-
mand has been executed, the IdleCon component is deleted from the Com-
ponent Manager. The "1 Database" list now contains the components
IdleCon_new and IdleCon_new_copy. 

From the element view, it can be seen that ControllerTest (and the other
project of that name) now references IdleCon_new under the old name. This
component now has the identifier from the replaced component IdleCon. 
The Component Manager



The IdleCon_new_copy component contains the original instance of the
replacing component and accordingly is referenced by the project Project. 

Editing

You can edit the layout of a component without first opening the respective
component editor. The public interface of a component is declared in the lay-
out editor.

To edit the layout of a component:

• Select a component.

• Select Component → Edit Layout.

The layout editor opens for the selected com-
ponent. It is described in "Editing the Layout 
of a Component" on page 511.

Every database item can have two types of text attached to it: comment text
and notes. The comment text is entered in the "2 Comment" field in the Com-
ponent Manager and is stored automatically. The notes for a database item are
entered in a separate editor window. When documentation is generated auto-
matically, comments, unlike notes, are not included.

To edit the notes for a database item:

• Select the database item with the notes you 
want to edit.
The Component Manager 111



112
• Select Component → Notes.

The notes editor opens for the selected data-
base item. For details, see chapter 7.4 
"Notes" on page 693.

Depending on the "Memory" attribute (see "Element Configuration" on
page 448), variables and parameters are treated differently by the code gener-
ation. Only volatile elements are initialized automatically. Non-volatile data are
not overwritten upon initialization. 

To assign the volatile attribute to all variables:

To assign the volatile attribute to all variables in the database, proceed as fol-
lows:

• In the Component Manager, select Tools → 
Database → Convert → Variables to Vola-
tile.

All variables are now volatile and are thus ini-
tialized automatically.

To assign the non-volatile attribute to all parameters:

To assign the non-volatile attribute to all parameters in the database, proceed
as follows:

• In the Component Manager, select Tools → 
Database → Convert → Parameters to 
Nonvolatile.

All parameters are now non-volatile and are 
thus not overwritten upon initialization.

Find and Replace in C Code and ESDL Components

From within the Component Manager, you can search all C code and ESDL
components for a character string. You can replace either an individual occur-
rence of the character string, every occurrence in a component or every occur-
rence in the entire database.

This function makes it easier to work with messages (or other global elements).
These are linked via their names (see section "Interprocess Communication" in
the ASCET reference manual); if one name is changed, all occurrences have to
be changed. The search throughout the entire database means time-consum-
ing manual searches are a thing of the past.
The Component Manager



To find a character string:

• In the Component Manager, select Edit → 
Find 

or

• press <CTRL> + <F>.

The "Find (ESDL and C code only)" dialog box 
opens.

All buttons apart from Close are deactivated. 

• Enter the character string you want to find in 
the "Find what" field.

If you have performed other searches, you can 
select one of the previous search terms from 
the combo box of the field.

The Find button is now activated.

• Click Find to start the search.

If you are searching the database for the first 
time, the search may well take a few minutes. 
The Component Manager 113



114
The search does not distinguish between upper and lower case. If, for exam-
ple, you enter cont, Cont and CONT are found, too. The character string is
also found if it is part of a longer word; for example, searching for cont also
finds all occurrences of Continuous.

The results of the search are displayed in the "Found items" list; the Select All
button is now activated. The number of components which contain the char-
acter string entered in the "Find what" field is shown in square brackets after
the name of the list.

The "Found Items" list consists of five columns. 

• The "Infos" column lists all components and all individual methods/
processes that contain the character string. The list of methods/pro-
cesses is collapsed by default.

• The "Line" column specifies the number of occurrences of the charac-
ter string for a component and the number of the line in which the 
character string occurs for individual methods/processes.

• The "Code Variant" column specifies which target and which experi-
ment the code was specified for with C code components. The column 
is empty with ESDL components.

• The "Implementation" column contains the implementation used.

• The "Modified" column contains the date and time the component 
was last changed.
The Component Manager



To view the search results:

• Click on the plus sign next to a component in 
the "Found Items" list

or

• double-click a component.

The list of methods/processes opens. 

• Click a line.

The relevant code line is shown in the bottom 
bar of the window. The Open Comp. button 
is also activated.

To open the component from the search window:

Proceed as follows to open the component from within the search window:

• Click the Open Comp. button.

The editor for the component opens and the 
method/process is displayed. The line which 
contains the character string is highlighted. 

If it is a C code component, the code for the 
variant specified in the "Code Variant" and 
"Implementation" columns is displayed, rec-
ognizable by the contents of the combo box 
(see also chapter 4.3).
The Component Manager 115



116
To replace selected character strings:

• In the Component Manager, select Edit → 
Replace 

or

Note

Be careful using the Replace function—there is no undo!
The Component Manager



• press <CTRL> + <H>.

The "Find/Replace (ESDL and C code only)" 
dialog box opens.

Except for the "Replace with" field and the 
Replace button, this window is the same as 
the simple search window (cf. page 114). 

• In the "Find what" field, enter the character 
string you want to replace.

• Enter the new text in the "Replace with" field.

If you have performed other replace oprations, 
you can select one of the previous terms from 
the combo box of the field.
The Component Manager 117



118
• Click Find to search for occurrences of the old 
character string.

You can open the displayed components as 
described on page 115.
The Replace button is still deactivated.

• Find the component in which you want to 
replace the character string and expand the 
method/process list. 

• Highlight one or more occurrences of the 
character string.

The Replace button is now activated.

• Click Replace.

The selected occurrences of the character 
string are replaced by the new text. The rele-
vant lines disappear from the "Found Items" 
list.

To replace all character strings in one component:

Proceed as follows to replace all occurrences of the character string in a
selected component:

• Find the character string you want to replace 
as described on page 116.

• In the "Find/Replace (ESDL and C code only)" 
window, enter the new text in the "Replace 
with" field.

• Highlight the component within which you 
want to replace the character string.

With that, all occurrences of the character 
string in the component are selected.

• Click Replace.

All occurrences of the character string in the 
selected component (for C code: including all 
implementations and targets) are replaced by 
the new text.

Note

The order of the last two steps is irrelevant.
The Component Manager



To replace all character strings in the database:

Proceed as follows to replace all occurrences of the character string:

• Find the character string you want to replace 
as described on page 116.

• In the "Find/Replace (ESDL and C code only)" 
window, enter the new text in the "Replace 
with" field.

• Click Select All to select all occurrences in all 
components.

• Click Replace to replace all occurrences in the 
entire database.

2.3.6 Managing Databases

When you start to work on a new project, it is helpful to create a new data-
base. This operation is equivalent to changing to an empty dirctory on your
computer. Then, you can create a customized folder structure, and create or
import new items.

Basic Tasks

To create a new database:

• Select the File → New Database menu 
option 

or

• click on the New button

or

Note

You can read the name of the current database in the bottom bar of the 
Component Manager.

Note

It is recommended to use several databases to keep the data volume small 
and comprehensible and to ensure optimal use of ASCET’s performance.
The Component Manager 119



120
• press <CTRL> + <N>.

The "New database" window opens.

• Enter a name.

• Click on OK.

The new database, empty except for the data-
base name and the Default is opened. A 
subdirectory named as the database is created 
in the directory selected in the "Database 
Path" option (see page 41).

• Now proceed as described in "Managing 
Database Items" on page 74.

To load a database:

• Select File → Open Database

or

• click on the Open button

or

Note

You can also load databases from previous program versions (see "To convert 
an ASCET-SD 4.x database:" on page 128).
The Component Manager



• press <CTRL> + <O>.

The "Open database" window opens.

The selection list includes all databases located 
in the default directory.

• Select the entry you want and click OK.

If you want to load a database which is not 
located in the default directory, you can select 
the path required using the <select path> 
entry.

• Confirm by clicking OK.

The database is loaded.

To save a database:

• Select File → Save Database

or

• click on the Save button

or

Note

You can also create a new database from this window. To do so, select the 
<new database> entry.
The Component Manager 121



122
• press <CTRL> + <S>.

All changes are saved in the database. Use this 
command regularly to save your database.

To save a database under a different name: 

You can also save the database under any name. Thus you can, e.g., create a
backup of an entire database and its supplementary files. 

• In the Component Manager, select File → 
Save Database As.

The path selection window opens.

• Select the directory that will contain the data-
base.

You must not select a database.

Note

The user options (Tools → Options, "Options" node, cf. page 41) allow you 
to enable the Autocommit function and to enter the desired time interval. 
The database is also saved automatically when exiting the Component Man-
ager.
The Component Manager



• Click on the New button to create a new, 
empty directory.

• Enter a name and click OK.

The new directory is created, and selected as 
target directory for the backup copy. The color 
of the directory changes automatically after 
copying has finished.

• In the path selection window, click OK.

The content of the current database is copied, 
and the new database is created and loaded 
(see bottom bar in the Component Manager).

Note

When you selected an existing directory, a warning is displayed that you will 
delete the entire content of that directory if you continue the backup proce-
dure. You can cancel the procedure here.
The Component Manager 123



124
To close a database:

You can close the database you are working on without exiting ASCET.

• Select File → Close Database.

The database is closed. The Component Man-
ager remains open, but most buttons are 
deactivated.

To delete a database:

You cannot delete a database from within ASCET. 

• If the database you want to delete is open in 
ASCET, close it.

If you try to delete a database that is opened 
in ASCET, an error message occurs.

• In the Windows Explorer, select the directory 
(e.g., ..\ETASData\Ascet5.2) that con-
tains the database you want to delete.

• In the Windows Explorer, delete the subdirec-
tory containing the database.
The Component Manager



To optimize a database:

• In the Component Manager, select Tools → 
Database → Performance Utilities. 

The "Database Info" dialog window opens.

• Activate the Optimize option. 

This command is used to recombine the vari-
ous scattered fragments in the database that 
result from intensive editing  (defragmenta-
tion).

• Activate the Convert option.

This command is used to cleanup the internal 
references between the data records ("X uses 
Y") after changes have been made to the 
database structure, thus improving access 
speeds.
The Component Manager 125



126
In most cases, regular optimization will be enough to keep the performance of
your database at an acceptable level. You should only consider converting the
entire database if you encounter serious problems with performance.

• Activate the Repair option.

This command is used to rebuild the database 
from scratch. Damages of your database, e.g., 
destroyed references, are repaired. 
Repairing a database always includes the 
Optimize and Convert operations; the corre-
sponding options are blocked.

• Activate the Check option.

This command  is used to verify the structures 
and references in the database while logging 
the results in the monitor window.

Once you activated one option, the Execute 
button appears. 

• Click on the Execute button

The selected database management program 
is started. The results are shown in the ASCET 
monitor window.

Note

Converting a large database can be very time-consuming. It is recommended 
to run this as an overnight process.
The Component Manager



To compare two databases:

You can compare entire databases with each other. This is useful if you are
working with different copies or development streams of the same database,
or when working in development teams. 

• In the Component Manager, select Tools → 
Database → Compare Database.

The "Compare database" window opens.

• Select the database that you want to compare 
with the current database.

• Click OK to start the comparison.

The databases are compared with each other. 
A list of items and projects in which the data-
bases differ from each other is displayed in the 
monitor window.

Note

Comparing large databases can be very time-
consuming.
The Component Manager 127



128
Using Databases from Previous ASCET Versions

You can use existing databases from previous ASCET-SD versions with ASCET
5.2. These databases have to be converted, however, because the existing
ASCET database format is not compatible with fortmats from previous
ASCET-SD versions. 

Conversion of existing databases is done automatically the first time you open
a database that was created with ASCET-SD 4.x.

To convert an ASCET-SD 4.x database:

• Open the database as described in "To load a 
database:" on page 120.

• In the "Open Database" window, select the 
entry <select path> and click OK.

The "Select database path" window opens.

• Select the directory that contains the old data-
base.
The Component Manager



• Confirm by clicking OK.

The system prompts you to confirm the con-
version of your database.

You can abort the conversion with Cancel.

• Click OK to confirm the conversion.

The "Specify target directory for the migrated 
database" window opens. It works the same 
way as the "Select database path" window". 

Note

When you select a non-empty directory here, a 
warning occurs. Confirm the warning and cre-
ate a new, empty directory in the path selection 
window.
The Component Manager 129



130
• Click on the New button to create a new, 
empty directory.

• Enter a name and click OK.

The new directory is created, and selected as 
target directory for the conversion.

• Start the conversion procedure by clicking OK 
in the path selection window.

The database is converted to the ASCET 5.2 
format and written to the new directory. The 
duration of the conversion depends on the 
amount of data.
The original old database remains unchanged.

Export files created with ASCET-SD earlier than version 4.0 cannot be imported
into ASCET 5.2 because the current version offers no interfaces to the old
database formats. When you try to open such database as described on
page 128, you get the following error message:

This file is compatible with ASCET-SD V3.0 or earlier. 
It cannot be imported directly. Convert it to a data-
base using your old version of ASCET-SD, then open 
this database.

To convert a database from ASCET-SD prior to V4.0: 

When you still have ASCET-SD 4.x, you can use very old databases with ASCET
5.2. Proceed as follows:

• Start ASCET-SD 4.x.

These versions contain interfaces to the very 
old database formats.

• Open the old database.

The database items are converted to the for-
mat of the corresponding ASCET-SD version.

• Close ASCET-SD 4.x.
The Component Manager



• Start ASCET 5.2.

• Open the database you have just converted to 
ASCET-SD 4.x, as described on page 128.

ANSI C Conversion

In ASCET, ANSI C compliant naming is enforced for all the database items for
versions above 2.x. When adding new items or renaming existing ones, you
must use valid ANSI C identifiers. 

The conversion of folder and item names in existing databases must be trig-
gered explicitly after the database has been converted. All folder and item
names are converted automatically, special characters are replaced as displayed
in Tab. 2-4.

Tab. 2-4 ANSI C character mapping

To convert a database to ANSI C:

• Open the database you want to convert.

• Select Tools → Database → Convert → All 
Names to ANSI C.

The names of all folders, database items, 
methods, messages, variables, etc. are con-
verted to ANSI-C using the mapping table dis-
played above for all special characters, 
punctuation marks and spaces.

Resolving Name Conflicts

In some cases, where item names in an existing version 2.x database are distin-
guished only by punctuation marks or spaces, the default mapping for conver-
sion to ANSI C can lead to naming conflicts. 

Special Characters Maps to ANSI C

Ä, ä, Ö, ö, Ü, ü, ß Ae, ae, Oe, oe, Ue, ue, ss

<space>, <dash>, <dot> <underscore> for all items

Note

When converting large databases, you should consider compressing your 
database after conversion to speed up database access (see section "Data-
base Maintenance Routines" on page 132).
The Component Manager 131



132
For example, the item names "Integrator I21" and "Integrator-I21" both map
to "Integrator_I21". Since item names must be unique, the conversion algo-
rithm would assign "Integrator_211" to the second item.

You can either accept this solution to naming conflicts when converting to
ANSI C or edit the corresponding map file. The mapping.ini file is located
in the ASCET directory and can be edited using any standard text editor.

Database Maintenance Routines

ASCET provides tools for database repair, compression and backup. In addi-
tion, you can discard generated code for the entire database or force a new
build and compare of the databases. This section explains the database utili-
ties, which are accessed from the Component Manager.

For information on converting existing databases, see section "To convert an
ASCET-SD 4.x database:" on page 128.

Generated Code

You can remove all the code generated during experiments from the database
both to reduce the size of the database and to regenerate your code.

To discard the generated code stored in the database:

• In the Component Manager, select Build → 
Clean All.

You are prompted to confirm the deletion of 
the generated code from the database.

• Confirm by clicking OK.

All generated code is removed from the data-
base.

During code generation, a make operation is performed, i.e. the code is gen-
erated and compiled for new or changed items only. Sometimes you may want
to make sure that a build operation is performed, i.e. code is newly generated
and compiled for all items. This does not remove previously generated code.

Note

You cannot modify the mapping for spaces, they are always converted to 
underscores.
The Component Manager



To force a new build during code generation:

• Select Build → Touch All.

All components in the database are marked as 
changed (although no actual changes 
occured). Thus you ensure that next time, new 
code is generated and compiled.

Browsing the Database

You can browse the whole database for information on the relationship
between items and elements, or operator implementations. For example, it is
completely transparent in the Component Manager which items are used or
referenced by other items. You can browse the database for these relationships
using complex search criteria to display only the items in the database that
fulfil the criteria. 

When you browse the database ASCET always searches the entire database,
regardless of which folders or items are currently selected. It is possible to use
wildcard characters when specifying the search criteria, e.g. typing *acc* will
find all database items and elements that have the string acc in their name.
The search is not case-sensitive.

Searching for operator implementations (Tools → Database → List Opera-
tor Implementations) is described at the end of section "Operator Imple-
mentation" (page 504).

To browse the database ("Query" window):

• Open the Component Manager for the data-
base you want to browse.

• Select Edit → Query

or

Note

Forcing a new build can be very time-consuming if you are working on a 
large database.
The Component Manager 133



134
• press <CTRL> + <Q>.

The "Query" window opens.

• In the "Enter a string" field, enter a search 
term.

The search term should be the name of a data-
base entry, method, process, or element.
The combo box of the field contains previous 
search terms, which you can select. 

• In the "Select what you are looking for" 
combo box, select a search criterion (cf. 
page 136).

• Click Find to start the search.

The information found is shown in a dialog 
box. 

To browse the database (toolbar):

You can also browse the database via the Component Manager toolbar.

• In the Component Manager, click on the 
arrow button next to Search - <information 
type>.

A selection list opens. The currently selected 
search criterion (cf. page 136) is marked.
The Component Manager



• Select a search criterion.

The selected criterion is shown in pale font in 
the combo box.

• In the combo box, enter a new search term

or

• select a previous search term.

• Click on Search - <information type> to 
start the search.

While the database is searched, the "Search 
<objects>" window is shown. In that window, 
click Cancel to abort the search.

The resulting information is displayed in a dia-
log window.

Note

If you selected the information type Text in ESDL or C code, Search - 
Text in ESDL or C code does not open the results window. Instead, the 
"Find (ESDL and C-Code only)" window opens. Proceed as described in "To 
find a character string:" on page 113.
The Component Manager 135



136
The following types of information can be searched for:

Components:

This search criterion finds all the items in the database where the name
matches the search string. The information is displayed in the following dialog
window:

The "Browse Items" dialog window shows the full names of the matching
components together with their database path. If you click on a component
name, the component is displayed and highlighted in the Component Man-
ager.

References to component:

This search criterion finds all references to database components whose names
match the search string. The information is displayed in the following dialog
window.

The items that match the search string are displayed in the "Results" pane of
the dialog box. Click on an item in this pane to display its referencing items in
the "Referenced By" pane. If you click on a component in either list, it is dis-
played and highlighted in the Component Manager.
The Component Manager



Declaration of method/process:

This search criterion finds all methods or processes in the database which
match the search string. These are displayed in the following dialog window:

The "Browse Methods" dialog window shows the fully developed method
selector and the database path of the defining component. Click on a method
to display the defining component and highlight it in the Component Man-
ager.

References to method/process:

This search criterion finds all references to methods or processes in the data-
base whose names match the search string. These are displayed in the follow-
ing dialog window:

The "Browse Senders Of" dialog window displays the items that match the
search string in the "Results" pane. Method/process selectors are listed
together with their defining components. Click on a method/process to list the
components that call the method/process selected in the "Senders Of" pane
of the dialog window. Click on an entry in either pane to display and highlight
the relevant component in the Component Manager.
The Component Manager 137



138
Declarations of element:

This search criterion finds all components that declare elements (e.g. variables
or arguments) which match the search string. These are displayed in the fol-
lowing dialog window:

The "Browse Elements" dialog displays the elements together with the com-
ponents in which they are defined and the database paths of these compo-
nents. If you click on an element, the relevant component is displayed and
highlighted in the Component Manager.

References to element:

This search criterion finds all components containing references to elements
(e.g. variables or arguments) which match the search string. These are dis-
played in the following dialog window:

The "Browse Elements" dialog window shows the elements together with the
component in which they are used, and the database path of that component.
If you click on an element, the relevant component is displayed and high-
lighted in the Component Manager.
The Component Manager



Senders of message:

This search criterion finds all modules or projects that send messages matching
the search string. They are displayed in the following dialog window:

The messages are shown together with the defining module/project. If you
click on a message, the relevant module/project is displayed and highlighted in
the Component Manager.

Receivers of message:

This search criterion works analogous to the previous one, but for received
messages. 

2.3.7 Database Access

It is possible to adjust the access rights for each individual component, as well
as those for entire folders. Access rights can be password protected, so that
only users who know the password can change them. This ensures confidenti-
ality when ASCET data is exchanged. 

If, for instance, the access rights of a particular component are set to "execute
only", that component can be used as a building block in other components,
but it cannot be looked at, i.e. the algorithms it uses are protected from view. 

The following access rights can be assigned:

Read: The database item can be looked at with the appropriate item editor.

Write: Items can be added to the database and deleted. Items can be edited
in the appropriate editor.

Calibration: Items can be calibrated in experiments.
The Component Manager 139



140
Execute: Items can be experimented on. This also goes for referenced items,
i.e. if a user has no execute rights to an item, they cannot use it within another
item, and then experiment with that.

Code Generation: This option allows code generation even if write access is
not set. If read access is set, the component can be viewed, but not modified;
experimentation is possible.

The most recent changes always apply. If, for instance, access rights for a single
component are changed, and then later the rights for the entire folder are
changed, those changes overrule the ones made earlier to the component.

Your access rights to the item selected are displayed in the bottom bar of the
Component Manager.

To change the access rights of a folder or item:

• In the "1 Database" list of the Component 
Manager, select the desired folder or item.

• Select Component → Access Rights.

The "Overwrite Access Rights for" dialog 
opens. It displays the current access rights for 
the item selected. 

• Activate options to grant access rights.

• Deactivate options to revoke access rights.

• Click OK to confirm your changes.
The Component Manager



Access rights can be specified for any database item. However, only limited
modifications are permitted if password protection has been activated. Pass-
word protection can be activated separately for each root folder in the data-
base. If password protection is activated, users can modify access rights only if
they know the correct password.

To activate password protection:

• In the "1 Database" list of the Component 
Manager, select a top-level folder.

• Select Component → Password.

You are prompted to confirm the activation of 
their password protection.

• In the "Confirm" window, confirm with Yes.

The "Information Required" window opens.

• Enter a password that is at least six characters 
long and click OK.

A verification window for the password 
opens.

• Retype the password and click OK to activate 
password protection.

Users now have to enter the password when-
ever they want to modify access rights in this 
folder.

You can deactivate password protection by entering the password again.

Note

If password protection is active, you must enter the password for every 
change to the access rights. This can be quite cumbersome if you want to 
modify more than just a few items. Therefore, it is more efficient to specify 
access rights first and then activate password protection.
The Component Manager 141



142
To deactivate password protection:

• In the "1 Database" list of the Component 
Manager, select the top-level folder whose 
password protection you want to deactivate.

• Select Component → Password.

The "Information Required" window opens.

• Type in the password and click OK.

You are asked to confirm the deactivation.

• Confirm with Yes.

• Password protection is deactivated.

2.4 The ASCET Monitor Window

The results of various operations are displayed in the ASCET monitor window
in two tabs. 

The "Monitor" tab shows the results of the following operations:

• code generation, experimenting (see chapter 4.1.10, chapter 4.2.5, 
chapter 4.5.4 and chapter 4.8.10)

• analysis of diagrams (see page 258 and chapter 4.4.3)

• database optimizations (see page 125)

• export and import processes (see chapter 2.3.3 and chapter 2.3.4)

• search for operator implementations (see page 504)

The "Build" tab shows the results of the following operations:

• code generation, experimenting

• analysis of diagrams 
The Component Manager



User Interface

Menu Functions:

• File

– Open (<CTRL> + <O>)

Opens an existing log file. The file always opens in the "Monitor" 
tab even if the "Build" tab is currently displayed. The content of the 
"Monitor" tab is overwritten during loading.

– Save (<CTRL> + <S>)

Saves the content of the tab displayed in the file 
ASCET_Monitor.log ("Monitor" tab) or CodeGenera-
tion.log ("Build" tab). 

– Save As

Saves the content of the tab displayed under a name of your 
choice. 

– Show in Editor

Opens the log file of the current tab in a text editor. The text editor 
can be selected in the "External Tools" node of the ASCET option 
window, (see page 59).

– Reposition

Repositions the monitor window to the original position and size 
on the screen.

– Exit (<ALT> + <F4>) 

Closes the ASCET monitor window.

Menu Bar

Tab

Display Selection
(Only in the "Build" Tab)

Display Field

Status Bar
(No. of Errors/Warnings)
The Component Manager 143



144
• Edit
(also available as context menu in the "Monitor" tab)

– Cut (<CTRL> + <X>)

Cuts the selected text out of the display field.
This item is the only one that can be undone with <CTRL> + <Z>.

– Copy (<CTRL> + <C>)

Copies text from the display field into the clipboard.

– Paste (<CTRL> + <V>)

Inserts text from the clipboard into the display field. 
This command can be undone with <CTRL> + <Z>.

– Select All (<CTRL> + <A>)

Selects the entire content of the display field.

– Find/Replace (<CTRL> + <F>)

Finds/replaces text in the display field.

– Clear (<CTRL> + <R>)

Deletes the content of the display field.

• View 

– Collapse All

The display is collapsed as far as possible.

– Expand All

The display is expanded completely.

Context Menus. 

• "Monitor" tab

The context menu in the "Monitor" tab contains the same functions as 
the Edit menu.

• "Build" tab

Note

This menu is only available in the "Monitor" tab.

Note

This menu is only available in the "Build" tab.
The Component Manager



– Open

Opens the editor for the component which caused the message.

– File Out

Saves the content of the tab under a name of your choice. 

– Hide

Hides all messages of a selected type.

– Promote to warning

Promotes information to the status of warning.

– Promote to error

Promotes information or a warning to the status of error message.

– Revoke Promotion

Revokes a promotion and reestablishes the original type.

– Settings

Opens the "CodeGen Message Configuration" window (see 
page 154).

2.4.1 "Monitor" Tab

The results of various operations are displayed in the "Monitor" tab. As an
example, the screenshot below shows the results of the code generation and
compilation of a state machine. Older log texts are not overwritten; the new
log texts are simply added to the end.
The Component Manager 145



146
To save the content of the "Monitor" tab:

If you want to save the content of the "Monitor" tab, proceed as follows.

• Select File → Save

or

• press <CTRL> + <S> to save the text in the 
Ascet_Monitor.log file in the 
ETAS\LogFiles\Ascet directory.

If this file exists, you are prompted to confirm 
that the existing file will be overwritten.

• Confirm with OK.

The content of the "Monitor" tab is saved.

To save the content of the "Monitor" tab under a different name:

• Select File → Save As to save the log file 
under a name and path of your choice.

A file selector window opens.

• Select a path and a file name and click Save.

The content of the "Monitor" tab is written to 
the relevant file.

If you do not want to save the entire text of the "Monitor" tab, you can delete,
copy and add sections in the monitor window in the same way as you can with
any other text. The Edit menu contains the items Cut, Copy and Paste for this
purpose. You can also find and replace text strings using Edit → Find/
Replace.

To find/replace in the "Monitor" tab:

• Select Edit → Find/Replace

or

Note

Remember that there is no undo function when you are editing.
The Component Manager



• press <CTRL> + <F>.

The "Find/Replace" window opens.

• In the "Find" box, enter the search string.

• In the "Replace With" box, enter the text that 
is to replace the text entered in the "Find" 
box.

• Select the direction under "Direction".

• Activate Case Sensitive if the search is to 
take upper and lower case into consideration.

• Activate Wrap Search if the search is to be 
continued at the beginning once the end has 
been reached in the search direction.

• Click Find Next to find the next occurrence of 
the search string.

• Click Replace Selection to replace the 
selected occurrence.

• Click Replace/Find to replace the selected 
occurrence and search for the next one.

• Click Replace All to replace the search string 
each time it occurs.

• Close the "Find/Replace" window with Close.

If you want to delete the entire content of the tab, e.g. before an operation
whose result you want to save, proceed as follows:
The Component Manager 147



148
To clear the tab content:

• Select Edit → Clear

or

• press <CTRL> + <R>.

The entire text in the "Monitor" tab is cleared.

2.4.2 "Build" Tab

The "Build" tab displays the results of code generation and compilation as well
as of the analysis of diagrams. The screenshot below shows the results of the
same code generation and compilation as in the "Monitor" tab. Unlike the
"Monitor" tab, only the results of the last operation are displayed here.

Three types of message issued in the named operations are displayed: Errors
(red dot), warnings (yellow dot) and information (blue dot). The different types
of message are distinguished by abbreviations, e.g. WSm60 or IMdl40. The
display for every operation is ordered in a tree structure according to compo-
nents and methods/processes.

To make it easier to localize the problem areas, the errors and warnings dis-
played are also links to the problem areas.

To display the cause of the message:

• Double-click a message in the "Build" tab

or
The Component Manager



• right-click a message and select Open from 
the context menu. 

The editor for the component concerned 
opens and the relevant point is activated.

In the example shown, the transition from the 
status AllOff to the status Yellow caused 
the warning.

When compiler or linker errors have occurred, a text window or text editor
opens showing the relevant generated file. The use of a text editor is controlled
in the "External Tools" node of the ASCET option window (see page 59).

To save the content of the "Build" tab:

If you want to save the content of the "Build" tab, proceed as follows.

• Select File → Save

or
The Component Manager 149



150
• press <CTRL> + <S> to save the log text in the 
CodeGeneration.log file in the 
ETAS\LogFiles\Ascet directory.

Unlike in the "Monitor" tab, an existing file of 
this name is simply overwritten without any 
warning.

The content displayed in the "Build" tab is 
written to the relevant file.

To save the content of the "Build" tab under a different name:

• Select File Out from the context menu

or

• select File → Save As 

or

• right-click in the tab and select File Out from 
the context menu to save the content of the 
"Build" tab under a name and path of your 
choice.

A file selector window opens.

• Select a path and a file name and click Save.

The content displayed in the "Build" tab is 
written to the relevant file.

Configuring Messages in the "Build" Tab

There are different ways of configuring the display of messages from the
"Build" tab. Other possible configurations are described in the section "Con-
figuring Messages in the "CodeGen Message Configuration" Window"
on page 154. Your configurations are saved in the options of the current
project (when working with components: of the default project) and can be
accessed from there (see page 414).

Note

Hidden messages (see page 151) are not saved.
The Component Manager



Showing/hiding messages. You can hide messages of the same type to
keep the display clearer or to analyze one specific type of message.

To hide messages:

• Right-click the type of message you want to 
hide in the "Build" tab.

• Select Hide from the context menu.

All messages of the selected type are hidden. 
The number of messages displayed in the 
footer of the monitor window is adjusted.
If you hide all error messages and warnings, a 
green dot is shown at the left of the footer. 
The number as well as the colored icons in the 
display field indicate there are hidden mes-
sages.

To show all hidden messages:

You can display all hidden messages again.

• Activate Show hidden messages in the 
"Build" tab.

All hidden messages are displayed.

Note

Error messages cannot be hidden (even if they are promoted warnings or 
promoted information).

Note

There is no option to show hidden messages of 
a single type. This can only take place in the 
"CodeGen Message Configuration" window 
(see page 154).
The Component Manager 151



152
Promoting messages. Information and warnings do not interrupt the code
generation process. The relevant context of a project may require a stricter
interpretation for some information or warnings which is why it is possible to
promote information or warnings of one type. The table below shows the pos-
sible promotions.

The type of promoted message remains which is why promoting does not
affect showing/hiding messages.

If a hidden message is promoted, it is displayed again.

To promote information and warnings:

• Right-click the type of message you want to 
promote in the "Build" tab.

• Select Promote to warning from the context 
menu 

or

• select Promote to error from the context 
menu. 

The messages of the type selected are counted 
as warnings or error messages from the next 
time code is generated and shown accordingly 
in the "Build" tab.

The following figures are intended to clarify promoting. The first figure shows
a warning and an information message as they are issued by code generation.

↓  Promote to → Information Warning Error message

Information Possible Possible

Warning --- Possible

Error message --- ---
The Component Manager



In the second figure, the information has been promoted to a warning. The
type remains the same – IMdl40 – but the message is assigned the icon for
warnings with an indication that this warning is promoted information: . In
the "Build" tab, two warnings are displayed and counted.

In the third figure, the warning has been promoted to an error message. The
type remains the same – WSm12 – but the message is assigned the icon for
error messages with an indication that this is a promoted message: . 
Promotion to an error message causes code generation to abort at this point;
it does not reach the stage of the second message. This is why only one error
message is displayed in this case in the "Build" tab.

To revoke a promotion:

If a promoted message is displayed in the "Build" tab, you can revoke the
promotion.

• Right-click a promoted message in the "Build" 
tab.
The Component Manager 153



154
• Select Revoke Promotion from the context 
menu.

At the next code generation, messages of this 
type are again displayed in their original form.

Configuring Messages in the "CodeGen Message Configuration" Window

The "CodeGen Message Configuration" window contains other configuration
possibilities. You can promote or hide not only the messages currently dis-
played but all existing messages, you can revoke promotions and redisplay hid-
den messages of one type. 

To open the "CodeGen Message Configuration" window:

From the monitor window, you can only open the window if at least one mes-
sage is displayed in the "Build" tab. For details of how to get to the "CodeGen
Message Configuration" window via the project options, refer to the section
""Build" Node" on page 412.

• Right-click the "Build" tab.

• Select Settings from the context menu.

The "CodeGen Message Configuration" win-
dow opens.
The Component Manager



The window contains the following elements:

• List field

This field can display all information, warnings and error messages. You 
control the display using the options in the "Message Filter" box. The 
list is sorted alphabetically according to type. 

• Import Message Configuration from XML File and Export Mes-
sage Configuration to XML File buttons

Start import and export of message configuration.

• Reset All button 

Resets all messages to the state originally specified by the system.

• "Message Filter" box

You use the options in this box to set up the display in the list field.

– "Type" box with the options Information, Warning and Error 

These options enable/disable the display of the relevant type of 
message globally. The following options specify the details.

– Normal 

Enables/disables the display of unprocessed messages (not hidden, 
not promoted) of the selected types.

– Hidden 

Enables/disables the display of hidden messages of the selected 
types.

– Promoted to Warning and Promoted to Error 

Enables/disables the display of messages promoted to warnings or 
error messages of the selected types.

To set up the display:

• Activate the options of the types of message 
you want to display in the list field in the 
"CodeGen Message Configuration" window.

Information, Warning and Error are at your 
disposal.
The Component Manager 155



156
• Define the display using Normal, Hidden and 
Promoted to Warning/Error.

This enables you to search for specific groups 
of messages (only unprocessed information, 
no hidden messages, promoted warnings 
etc.). The following setting ensures, for exam-
ple, that only hidden messages are displayed.

To hide messages in the monitor window: 

• Select one or more messages you want to hide 
in the "CodeGen Message Configuration" 
window.

• Select Hide from the context menu.

Promoted messages are indicated with paler 
icons in the list field, e.g. these: 

• Close the "CodeGen Message Configuration" 
window with OK.

All messages of the selected type are hidden in 
the "Build" tab of the monitor window. 

The number of messages displayed in the 
footer of the monitor window is adjusted.
If you hide all error messages and warnings, a 
green dot is shown at the left of the footer. 
The number as well as the colored icons in the 
display field indicate there are hidden mes-
sages.

Note

Error messages cannot be hidden (even if they are promoted warnings or 
promoted information).
The Component Manager



To show hidden messages:

• Select one or more hidden messages you want 
to show in the "CodeGen Message Configu-
ration" window.

To make it easier to find the hidden messages, 
it may be helpful to disable Normal and Pro-
moted to *.

• Select Show from the context menu.

• Close the "CodeGen Message Configuration" 
window with OK.

All messages of the selected type are shown in 
the "Build" tab of the monitor window. 

To promote information and warnings:

• Select one or more messages you want to pro-
mote in the "CodeGen Message Configura-
tion" window. 

• Select Promote to warning from the context 
menu 

or

• select Promote to error from the context 
menu 

• Close the "CodeGen Message Configuration" 
window with OK.

The messages of the type selected are counted 
as warnings or error messages from the next 
time code is generated and shown accordingly 
in the "Build" tab.
Promoted messages are indicated with special 
icons in the list field:

information promoted to a warning

information promoted to an error message

warning promoted to an error message
The Component Manager 157



158
To revoke a promotion:

• Select one or more messages whose promo-
tion you want to revoke in the "CodeGen 
Message Configuration" window. 

• Select Revoke Promotion from the context 
menu.

• Close the "CodeGen Message Configuration" 
window with OK.

Messages of these types are once again dis-
played in their original form during the next 
code generation in the "Build" tab.

You can export your configuration of hidden and promoted messages to an
XML file and you can import this kind of configuration from an XML file.

To export settings:

• Open the "CodeGen Message Configuration" 
window.

• Click the Export Options of selected Node 
into XML File button.

A confirmation window opens. 

• If you do not want the confirmation window 
to be displayed in future, disable Show next 
time. (see page 45.)

• Confirm the saving of your changes with OK.

The Windows file selection dialog box opens. 
*.xml is specified as format.

• Set path and name of the export file.

• Click Save.

The hidden and promoted messages are writ-
ten to the XML file specified.

To import settings:

• Open the "CodeGen Message Configuration" 
window.
The Component Manager



• Click the Import Message Configuration 
from XML File button.

The Windows file selection dialog box opens. 
*.xml is specified as format.

• Select the XML file which contains the config-
uration required.

• Click Open.

The hidden and promoted messages con-
tained in the XML file specified are imported 
and displayed in the "CodeGen Message Con-
figuration" window and in the monitor win-
dow accordingly.
The Component Manager 159



160
 The Component Manager



3 Adding User-Defined Functions

It is possible to define your own functions to make it easier to work with
ASCET add-ons (e.g. version management) and external programs. These are:

• your own menus in different windows,

• an autostart action (executed when ASCET is started),

• a shutdown action (executed when ASCET is shut down).

These are specified in *.ini files which are either stored in a subdirectory of
the ASCET installation, ETAS\Ascet5.2\Executer, or of the data direc-
tory, ETASData\Ascet5.2\Executer. The Executer subdirectory can in
turn contain subdirectories.

The *.ini files are only read when ASCET is started; later changes are only
effective after a restart. The syntax of these files corresponds to the Windows
*.ini format. 

Each *.ini file consists of one or more sections whose names are in square
brackets. The following sections are available:

• [<NAME>] — defines a new menu item. You can select any name you 
wish, but each name can only occur once in an *.ini file. Please refer 
to section 3.1 "Defining Menu Items".

• [AUTOSTART] — defines the autostart action. Please refer to 
section 3.2 "Defining an Autostart Action".

• [SHUTDOWN] — defines the shutdown action. Please refer to 
section 3.3 "Defining a Shutdown Action".

3.1 Defining Menu Items

The section of the *.ini file which defines a menu item is as follows:

[<Name>]

WINDOW=<window name>

MENU=~<menu name>

ITEM=~<menu item name>

DESCRIPTION="<text>"

SEPARATOR=<separator>

Note

To keep the content of the Executer subdirectory in case of an update or 
re-installation of ASCET, you have to place it below the data directory 
(ETASData\Ascet5.2).
Adding User-Defined Functions 161



162
FILE=<filename>.txt

The variables have the following significance:

• <Name> is the name of the section. The name must be unique within 
the *.ini file. No difference is made between upper and lower case; 
for example [Input] and [INPUT] are the same.

Value: any, but unique

• <window name> is the name of the window in which the menu is 
generated. 

Value: see Tab. 3-1 on page 163

• <menu name> is the name of the menu which is generated in the 
specified window.

Value: any

• <menu item name> is the name of the menu item which is gener-
ated in the <menu name> menu.

Value: any

• <text> is a description of the menu item which is only required for 
documentation purposes.

Value: any

• <separator> specifies whether a separator is generated before or 
after the menu item. The line can be omitted if there is to be no sepa-
rator (Nothing).

Value: Before / After / Nothing

Note

The terms to the left of the equals sign must be written in block caps.
Adding User-Defined Functions



• <filename> – the script file <filename>.txt is executed when 
the menu item is selected. The structure of these files is explained in 
section 3.4 "Structure of the Script Files".

Value: any

Tab. 3-1 Names of the Windows into which Menu Items can be Inserted

If several *.ini files are created, they are evaluated in alphabetical order. The
menu items which are defined in a file called asd_menu.ini are further up
the relevant menu than items in the same menu which are defined in
my_menu.ini. 
Within the same *.ini file, the menu items are created in the order in which
they are defined.

To define menu items:

• Create a new *.ini file

or 

Name of the Window ASCET Window

mainwindow or databasebrowser Component Manager

projecteditor Project editor

blockdiagrameditor Block diagram editor

smeditor State machine editor

esdleditor ESDL editor

ccodeeditor C code editor

conttimeblockdiagrameditor Block diagram editor (CT blocks)

conttimeesdleditor ESD editor (CT blocks)

conttimeccodeditor C code editor (CT blocks)

booleantableeditor Boolean table editor

conditionaltableeditor Conditional table editor

datadialog "Data for ..." window

impldialog Implementation editor

onlinesimulation Online experiment environment

offlinesimulation Offline experiment environment

intecriobackanimation Experiment environment for back ani-
mation with INTECRIO

incabackanimation Experiment environment for back ani-
mation with INCA
Adding User-Defined Functions 163



164
• Open an existing *.ini file.

• Enter a name for the section, e.g.

[Input].

Make sure that the name is used only once in 
the file.

• Enter the window in which the menu is to be 
generated, e.g.,

WINDOW=databasebrowser.

• Enter a name for the menu, e.g.

MENU=~My Menu.

• Enter the name the menu item should have, 
e.g.

ITEM=~Show OID.

• Enter a description, e.g.,

DESCRIPTION=show object IDs.

• Enter where you want a separator,e.g.,

SEPARATOR=After.

• Enter the script file, e.g.,

FILE=show.txt.

The next time ASCET is started, My Menu will be generated in the Compo-
nent Manager.

If you want to define several menu items in the same or in different ASCET
windows, you have to create such a section for each individual menu item.
Constructions like the following do not work; the second definition is ignored.

[EXPORT]

WINDOW=databasebrowser

MENU=~My Menu

ITEM=~Show OID

DESCRIPTION=show object IDs
Adding User-Defined Functions



FILE=show.txt

ITEM=~open editor

DESCRIPTION=opens external text editor

FILE=openeditor.txt

The sections can either be in the same or in separate *.ini files. The advan-
tage of using separate files is that it is easier to control the order of the menu
items in a menu using the file names. 

If you use one *.ini file for several items, make sure that each name is only
used once. If a name occurs a second time, the first definition is executed a
second time regardless of what the second definition is. 

An example: the following sections are to be used to generate the menu item
My Menu → Show OID in the project editor and the menu item My
Menu → Open Editor in the Component Manager.

[Input]

WINDOW=projecteditor

MENU=~My Menu

ITEM=~Show OID

DESCRIPTION=show object IDs

SEPARATOR=After

FILE=show.txt

[INPUT]

WINDOW=databasebrowser

MENU=~My Menu

ITEM=~Open Editor

DESCRIPTION=open external text editor

SEPARATOR=After

FILE=openeditor.txt
Adding User-Defined Functions 165



166
As there is no distinction between upper and lower case, the names of the
sections are identical and the menu item Show OID is generated twice under
My Menu in the project editor. 

3.2 Defining an Autostart Action

An autostart action is defined in the [AUTOSTART] section of the *.ini file.
The section can be anywhere in the *.ini file, but can occur only once, even
if several *.ini files are used. It contains only one line, FILE="<file-
name>".

Example:

[AUTOSTART]

FILE=start.txt

The start.txt script file is executed at the start of ASCET.

The autostart function is used to execute configurations for file operations
(e.g. adapting templates for code generation, deleting directories) when
ASCET is started. This results in a unique, reproducible situation. An editor or
any other tool can also be invoked to execute the necessary preparatory work
and settings for the session. A message (s. page 169) can provide information
on the settings made. 

An example of this kind of script file:

EXECUTE c:\Programme\TextPad 4\TextPad.exe
C:\ETAS\Ascet5.2\target\c16x\codegen.ini

OBJECT message: "codegen.ini is updated"

You cannot access COM-API with the autostart function as the automation
server is not started at this time.

3.3 Defining a Shutdown Action

A shutdown action is defined in the [SHUTDOWN] section of the *.ini file.
The section can be anywhere in the *.ini file; it contains only one line,
FILE=<filename>.
Adding User-Defined Functions



Example:

[SHUTDOWN]

FILE=shutdown.txt

When ASCET is shut down, the shutdown.txt script file is executed.

You cannot access COM-API with the shutdown function as the automation
server has already been shut down at this time.

3.4 Structure of the Script Files

The script files (line File =... in the *.ini file) are written as text files.
Nine keywords are used to specify the various actions:

EXECUTE, NOWAIT, OBJECT, SELECTOR, MENUITEM, FILE, FORK, SEND,
Post.

The use of these keywords is explained in the following sections. 

Unlike with the *.ini files, changes to the script files are effective as soon as
the relevant menu item is next selected.

3.4.1 EXECUTE

The keyword EXECUTE is used to start an external program or a batch file. As
long as the external program is running, the execution of the script file is inter-
rupted.

Examples:

• EXECUTE C:\ETAS\Ascet5.2\import.bat invokes the batch 
file import.bat in the directory C:\ETAS\Ascet5.2.

• EXECUTE C:\PVCS\nt\PVCSvmnt.exe starts the version man-
agement program PVCS.

The interruption of the execution can have undesired results. If, for example, a
menu item My Menu → open PSP is added to make it easier to create screen-
shots, the following happens:

• The menu item invokes the script file. 

OBJECT popWindow: BDE

EXECUTE c:\Programme\Paint Shop Pro 5\psp.exe

• The first line results in the block diagram editor popping up; the second 
opens the image processing program. 
Adding User-Defined Functions 167



168
But because the execution of the script file is interrupted, the block 
diagram editor is not updated, which results in the following screen.

Swapping the lines around does not solve the problem because this would
result in the block diagram editor popping up after the image processing pro-
gram has been closed.

3.4.2 NOWAIT

The keyword NOWAIT is used in exactly the same way as EXECUTE. The exe-
cution of the script file is not, however, interrupted here.

Example:

The example is the same as at the end of the previous section, but NOWAIT
and not EXECUTE is now used in the script file.

OBJECT popWindow: BDE

NOWAIT c:\Programme\Paint Shop Pro 5\psp.exe

Again the first line results in the block diagram editor popping up; the second
opens the image processing program. As the execution of the script file is not
interrupted here, the block diagram editor is updated immediately and the
screenshot can be taken.
Adding User-Defined Functions



3.4.3 OBJECT

The keyword OBJECT can be used together with a range of identifiers for
different commands.

• help: <editor>

Displays the exe_hlp.txt help file in the specified editor.

Example: OBJECT help: notepad displays the help in the Notepad 
editor.

• log: <editor>

Displays the exe_log.txt log file in the specified editor.

Example: OBJECT log: notepad 

• message: <text>

Opens a window with a message for the user.

Example: OBJECT message: "Please note: execution is 
finished!" results in the following window:

• popWindow: <title>

The ASCET window with the specified name pops up. <title> does 
not have to be the complete name; part of the name specified in the 
title bar is sufficient.

Example: OBJECT popWindow: Database – the Component Man-
ager pops up.

Note

The blank after the colon is mandatory for all identifiers. The com-
mand cannot be executed if the colon is forgotten.
Adding User-Defined Functions 169



170
• generatePopWindowCommandFile: <filename> 

Creates a file with the specified name in which the correct popWindow 
command is generated for the ASCET window currently active. The 
required file ending must be specified in <filename>, path specifica-
tions are optional.

Example: OBJECT generatePopWindowCommandFile: 
pop.txt generates the pop.txt file with the following contents 
when invoked from the Component Manager (only ASCET-MD is 
installed):

OBJECT popWindow: "ASCET-MD"

• wait: <n>

Interrupts execution of the script file for n seconds.

Example: the lines

OBJECT wait: 5 
EXECUTE C:\PVCS\nt\PVCSvmnt.exe

result in a 5-second delay before PVCS is started.

• windows: <editor>

Displays a list (exe_win.txt) of the Smalltalk names of all open 
ASCET windows in the specified editor.

Example: OBJECT windows: notepad displays the list in Notepad.

3.4.4 SELECTOR

The keyword SELECTOR is used to invoke a range of predefined commands in
the Component Manager or the specification editors.

Example: Output of object IDs of selected components

SELECTOR executerFileOutSelectedElementsTo: "<filename>"
creates a file which contains the object IDs. The required file ending must be
specified in <filename>; path specifications are optional.

A menu item is added to the Component Manager which invokes the follow-
ing script file.

Note

If you make path specifications in <filename>, make sure that all subdirec-
tories exist. Otherwise the file cannot be created.
Adding User-Defined Functions



SELECTOR executerFileOutSelectedElementsTo: 
".\Executer\mysel.txt"

EXECUTE Notepad .\Executer\mysel.txt

MENUITEM View>Update

The ControllerTest, WarmUp and Light components are selected and
then the menu item is invoked. The following takes place:

• The first line (SELECTOR ...) creates the mysel.txt file in the 
Executer subdirectory of the installation directory. 

• The second line (EXECUTE ...) opens the newly created file in Note-
pad.

• The third line (MENUITEM ...) updates the Component Manager 
once Notepad has been closed.

Available Commands:

• executerCollapseAll

Function: collapses the element list in the "1 Database" field.

Use: in the Component Manager

Syntax:

SELECTOR executerCollapseAll

• executerExpandCollapseSelectedElement

Function: expands and collapses the selected directory in the 
"1 Database" field. (Subdirectories are collapsed but not expanded 
again.)

Use: in the Component Manager

Syntax:

SELECTOR executerExpandCollapseSelectedElement
Adding User-Defined Functions 171



172
• executerDeselectElements

Function: undoes the component or element selection.

Use: in the Component Manager as well as the specification editors

Syntax:

SELECTOR executerDeselectElements

• executerFileOutSelectedDiagrams

Function: writes all diagrams and hierarchies of the selected compo-
nent as well as the components in it to the ASCET installation directory 
as image files.
This command has no effect on ESDL or C-Code components.

Use: in the Component Manager

Syntax:

SELECTOR executerFileOutSelectedDiagrams

• executerFileOutSelectedElementsTo:

Function: writes the object IDs of the selected elements into the speci-
fied file.

Use: in the Component Manager as well as the specification editors

Syntax1:

SELECTOR executerFileOutSelectedElementsTo:
 "<filename>"

• executerSelectElementFromString:

Function: selects the first visible element in the "1 Database" list (Com-
ponent Manager) or "Elements" list (specification editors) whose name 
starts with the search string <name>.
Elements in collapsed folders or components that correspond to the 
search string and all following corresponding visible elements are 
ignored.

Use: in the Component Manager as well as the specification editors

Syntax2:

1. <filename> must contain the file ending; path specifications are optional.
2. Upper and lower case are not taken into consideration in the search.
Adding User-Defined Functions



SELECTOR executerSelectElementFromString:
 "<name>"

• executerFileOutDiagrams

Function: writes all diagrams and hierarchies of the edited component 
to the ASCET installation directory as image files.
This command has no effect on ESDL or C code components.

Use: in the specification editors 

Syntax:

SELECTOR executerFileOutDiagrams

• executerFileOutSelectedDiagramTo:

Function: writes the path name of the selected diagram of the edited 
component into the specified file. Images of the selected diagram and 
the hierarchies contained in it are additionally generated for block dia-
grams in the ASCET installation directory.

Use: in the specification editors

Syntax1:

SELECTOR executerFileOutSelectedDiagramTo:
"<filename>"

• executerSelectDiagramFromString:

Function: selects the diagram that contains the search string <name> 
but without loading it.

Use: in the specification editors

Syntax1:

SELECTOR executerSelectDiagramFromString:
"<name>"

• executerSelectPage:

Function: Opens the specified project editor tab. 

Use: in the project editor

Syntax:

SELECTOR executerSelectPage: "<tab name>"

(the tab name has to be specified exactly.)

1. Upper and lower case are not taken into consideration in the search.
Adding User-Defined Functions 173



174
3.4.5 MENUITEM

You can use the MENUITEM keyword to invoke an existing menu item from the
active window.

Example: 

The My Menu menu was added in the Component Manager; the menu func-
tion Overwrite Access Rights invokes the set_access.txt file with the
following contents:

MENUITEM Item>Change Access Rights>Overwrite

If this menu item is invoked, the "Overwrite Access Rights for ..." window is
opened for the selected database entry.

Details on access rights for database entries can be found in section 2.3.7
„Database Access“ on page 139.

3.4.6 FILE

The keyword FILE is used to invoke a script file from a script file. The execu-
tion of the first script file is interrupted as long as the second one is being
executed.

Example:
Adding User-Defined Functions



• File set_access.txt invokes the set_access.txt script file 
from the current script file.

3.4.7 FORK

The keyword FORK is used in exactly the same way as FILE to invoke a further
script file. The difference between them is that the execution of the first script
file is not interrupted.

3.4.8 SEND

The SEND keyword is used to send a (Windows) message to another running
application. ASCET waits until the application has processed the message. The
following possibilities to send a message are available:

SEND <class> <message>

SEND <class> <window> <message> 

SEND <class> <window> <message> <lparam>

SEND <class> <window> <message> <lparam> <wparam>

<class> is the class name of the application.

<window> is the window title of the application.

<message> is the name or identifier of the message to be sent.

<lparam> is the first optional parameter (0 ... 4294967295).

<wparam> is the secondoptional parameter (0 ... 4294967295).

For more details, refer to the Microsoft Windows Win32 interface documenta-
tion, checking the SendMessage keyword in particular.

3.4.9 POST

The POST keyword is used, like SEND, to send a (Windows) message to
another running application. Here, however, ASCET does not wait for the
application to process the message.

For more details, refer to the Microsoft Windows Win32 interface documenta-
tion, checking the PostMessage keyword in particular.
Adding User-Defined Functions 175



176
 Adding User-Defined Functions



4 Specification of Components and Projects

The Embedded Control System is specified in a project. A project in its turn is
made up of different components.

The content (declaration of variables, parameters), defined interfaces (pro-
cesses, methods), and an algorithm which defines the processing, are specified
in a component.

Components can be specified graphically, in ESDL or C code. 

Each element used for specification has default values for the configuration,
the implementation and the data. Editors can be used to modify these values.

This chapter describes working with the different specification editors and how
to edit the attributes of the elements used.

Component
Manager

Classes / Modules CT BlocksState Machines

Components

Editing
Configuration Editing Data Editing

Implementation

Element Editor Data for... Implementation
for...

Projects

Block
Diagram
Editor

C Code
Editor

ESDL
Editor

Block
Diagram
Editor

Block
Diagram
Editor

C Code
Editor

ESDL
Editor

Specified Component / Project
177



178
4.1 The Block Diagram Editor

This section describes in detail how to use the block diagram editor. It focuses
on using the program rather than developing any particular functionality. The
graphic language in ASCET is described in detail in "The Modeling Language"
in the ASCET reference guide.

The ASCET block diagram editor is used to specify components graphically. The
user draws a block diagram that determines what the component does.

A component can contain basic and complex elements, operators, control flow
statements and references to other components. Section "To create a database
item:" on page 75 describes the creation of a component.

To open the block diagram editor:

• In the Component Manager, select the desired 
item.

• Double-click on the item

or

• select Component → Edit Item

or

• select Edit Item from the context menu

or

• press <ENTER>

The selected item opens in the block diagram 
editor.

When you open a component that exceeds 
the currently selected size of the drawing area 
(see "To set the size of the drawing area:" 
on page 181), a message window opens. It 
displays the size of the drawing area and the 
size of the component, and offers the possibil-
ity to adjust the former.

To exit the block diagram editor:

• In the block diagram editor, select 
Component → Exit

or
The Block Diagram Editor



• click on the X at the right side of the title bar.

If any diagram contains unsaved changes, you 
are asked whether you want to save the 
changes.

• Activate the option Remember my Decision 
if you want to give the same answer to all 
questions of this type.

In that case, the "Save Changes in Graphic" 
window no longer opens. You can revoke this 
setting in the ASCET options window, "Con-
firmation Dialogs" node (see "Options for 
Confirmation Dialogs" on page 45).

• Click Yes to confirm the saving. 

The changes are stored to the cache; the block 
diagram editor is closed.

• Click No to reject the changes.

The block diagram editor is closed without 
saving the changes.

• Click Cancel to abort closing the block dia-
gram editor.
The Block Diagram Editor 179



180
4.1.1 The Block Diagram Editor User Interface

The block diagram editor has two tabs with different display modes. These two
modes have different functionality. Click on a tab to switch modes.

"Diagrams" pane

"Elements" pane

Button bars Menu bar

drawing area

drawing area

Argument Size combo box View combo box

Button bars
(cont.)

Zoom combo box
The Block Diagram Editor



The illustrations show the block diagram editor in specification mode with the
most important parts labelled. 

The title bar of the block diagram editor contains the following information
about the current block diagram: Component name, current diagram name,
current project name and current target.

The drawing area is where the actual block diagram is created. The elements
of the component (i.e. the inputs, outputs and variables) are shown in a tree
structure in the "Elements" pane; the ’root’ is the component name itself. The
diagrams and methods or processes are shown in the "Diagrams" pane. The
"Elements" and "Diagrams" panes can be hidden or shown, if required.

The size of the drawing area can be adjusted in the ASCET options window.
Keep the following in mind: If you select a size larger than the fixed size
(2000 x 2000 px) of previous ASCET versions (V5.2.0 and earlier), and use the
larger area for modeling, the component cannot be completely displayed in
older versions. Elements outside the drawing area cannot be deleted from the
component because you cannot remove their occurrences from the drawing
area.

To set the size of the drawing area:

The size you set applies to all graphical editors—block diagram editor (includ-
ing CT blocks), state machine editor, project editor ("Graphics" tab). Currently
open windows, however, are not affected by a change.

• In the Component Manager, select Tools → 
Options to open the ASCET options window.

• Open the "Block Diagram" node (cf. 
page 54).

• In the "Drawing Area Size (px)" combo box, 
select a size.

If you selected a size larger than 2000 @ 
2000, the following message is displayed:

If a size > 2000 @ 2000 px is 
selected, components may be 
displayed incompletely in 
ASCET versions < V5.2.1!

• Confirm the message with OK to select the 
size.
The Block Diagram Editor 181



182
• Click OK to close the options window.

The next time you open the block diagram 
editor (or another graphical editor), the draw-
ing area has the selected size.

To open an oversized component:

Iy you open a component that exceeds the currently selected size of the draw-
ing area, a message window opens. It displays the current size of the drawing
area, as well as the component size, and it offers the possibility to resize the
drawing area.

• Activate the option Remember my Decision 
if you want to give the same answer to all 
questions of this type.

In that case, the "Save Changes in Graphic" 
window no longer opens. You can revoke this 
setting in the ASCET options window, "Con-
firmation Dialogs" node (see "Options for 
Confirmation Dialogs" on page 45).

• Click Yes to selct a suitable size for the draw-
ing area.

The size is selected so that the component is 
displayed completely.

• Click No if you do not want to change the size 
of the drawing area.

You cannot see the entire component. Ele-
ments outside the drawing area cannot be 
deleted.

To show or hide the lists:

• Click on the X next to the name of the list you 
want to close

or
The Block Diagram Editor



• selectView → Show/Hide → Element List 
or Diagram List.

The selected list is hidden. The respective tick 
mark in the View → Show/Hide menu is 
removed.

• To redisplay the list, select View → Show/
Hide → Element List or Diagram List once 
again.

To adjust width and height of the lists:

• Move the mouse cursor over the split bar 
located between the "Elements" list and the 
drawing area.

The mouse cursor turns into a resize handle.

• Drag the split bar to the right or to the left to 
adjust the width of the lists as needed.

• Drag the split bar between the "Elements" 
and "Diagrams" lists up and down to adjust 
the height.

In order to gather more information about the elements of the component
specified you can switch to browser mode in all component editors.

Handle
The Block Diagram Editor 183



184
Switching display mode:

• Click on the Browse tab.

The browser mode is displayed:

This view offers the same functionality and structure as the view concept of the
Component Manager (see chapter 2.1.3 and chapter 2.3.2). The menu func-
tions, however, are here only available as context menus in the various tabs.

• Click on the Specification tab to return to the 
specification view.

To select a view of the diagram:

Details on views are given in chapter 7.3 "Views" on page 683.

• From the "View" combo box in the upper 
right corner of the toolbar, select a view.

The view changes according to the view set-
tings of the diagram items. All items that are 
marked invisible for the selected view are hid-
den. 

Description of Menu Options

• Component
The Block Diagram Editor



– Clean code generation directory

Deletes all files in the code generation directory.

– Touch

Forced regeneration during the next code generation
(Flat → the edited component,
Recursive → the referenced components also).

– Generate Code

Generates the code for a component.

– Compile

Compiles the generated code.

– Open Experiment

Starts an experiment.

– Default Project

Allows editing the default project used for experimenting with 
components
(Edit → opens an editor for the default project,
Resolve Globals →  automatically creates a global element for each 
imported element in the component for which there is no exported 
element,
Delete Unused Globals → deletes unused global elements).

– Edit Layout

Opens the layout editor.

– Edit Data

Opens the data editor for a component. Search of component data 
is possible.

– Edit Implementation

The implementation editor opens. Search of component implemen-
tations is possible.

– Edit Notes

Opens the notes editor - you can make notes about the component 
here.

– Check Dependency

Checks whether the allocation of formal parameters to the model 
parameters is correct.
The Block Diagram Editor 185



186
– Export Data

Exports a component data set.

– Delete Unused Elements

Deletes the elements that do not appear in the diagram from the 
"Elements" pane (deactivated for state machines).

– Show Path

Shows the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– File out Generated Code

Saves the code generated in the file system
(Flat → the edited component,
Recursive → the referenced components also).

– View Generated Code

Generates the code for the component and displays it in a text edi-
tor.
The text editor can be selected in the ASCET options window, 
"ASCII Editor" node (cf. page 60).

– File Out Generic Code For External Make

Saves the code generated in any directory for processing at a later 
point using external tools, e.g. an external Make/Build process.

– Exit

Exits the block diagram editor.

• Diagram
(also available as context menu in the "Diagrams" pane)

– Store to Cache

The component specification is saved in the cache. (It is not saved 
permanently in the database.)
The Block Diagram Editor



– Analyze Diagram

Analyzes the current diagram.

– Load Diagram

Loads a diagram.

– Add Diagram

Creates a new diagram.
(Public → contains only public methods,
Private → contains only private methods)

– Rename Diagram

Renames a diagram

– Delete Diagram

Deletes a diagram from the component.

– Add Method

Creates a method. Available for classes and modules.

– Add Process

Creates a process.

– Add Trigger / Action / Condition

Only available in the state machine editor, see "Special Menu 
Options" on page 268.

– Edit

Editing the method/process interface.

– Copy

Copies the selected method/process.

– Rename

Renames a method/process.

– Delete

Deletes a method/process.

– Move Up

Moves a diagram or a method/process (upwards).

– Move Down

Moves a diagram or a method/process (downwards).

– Move
Moves methods/processes between diagrams.
The Block Diagram Editor 187



188
– Edit Implementation

Specifies the implementation of a method / process.

• Element
(also available as context menu in the "Elements" pane)

– View → Collapse all is used to collapse the tree structure in the 
"Elements" pane so that only the component is shown.

– View → Expand all expands the tree structure so that the entire 
content of the component is visible.

– Add Item

Accepts a component as a complex element.

– Rename (<F2>)

Renames a selected diagram element.

– Delete (<DEL>)

Deletes a selected diagram element.

– Show Occurrences

Displays all occurrences of an element (block diagram editor only).

– Edit

Edits the configuration of a selected element.

– Edit Data

Edits the data of a selected element.

– Edit Implementation

Edits the implementation of a selected element.

– Set Cache Locking

These menu options are used in connection with ASCET-RP. They 
are described in the ASCET-RP user’s guide.

– Edit Component

Opens the specification editor for a selected included component

– Replace Component

Replaces a component with another component. The name of the 
old component remains.

Note

The Add Item, Rename, Delete and Edit functions are only avail-
able when ASCET-MD is installed.
The Block Diagram Editor



– Show Path

Displays the path of a selected included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– Notes

Opens the notes editor for an included component.

– Edit Distribution

Opens an editor for the selected distribution (only in group tables).

– Edit Max Size

Opens an editor where you can specify the maximum size of an 
array, any table or matrix.

– Copy Elements (<CTRL> + <C>)

Copies one or more selected elements from the "Elements" pane.

– Paste Elements (<CTRL> + <V>)

Pastes one or more copied elements into the "Elements" pane.

– File Out Data

Writes the data from an array or a table to a file.

– File In Data

Reads the data for an array or a table from a file

– Export Data

Exports the data set of an included component.

• Edit

– Cut (<CTRL> + <X>)

Cuts (deletes) a diagram element.

– Copy (<CTRL> + <C>)

Copies a diagram item.
The Block Diagram Editor 189



190
– Paste (<CTRL> + <V>)

Pastes a diagram item.

– Delete (<DEL>)

Deletes a connection or an element.

– File In Buffer

Reads a diagram from a file.

– File Out Buffer

Stores parts of a diagram in a file.

– Views

Opens the "Views" dialog window. The views in which the diagram 
item can currently be seen are selected and can be edited.

• View

– Show/Hide

Shows/hides several parts of the editor or the component.
(Element List →  "Elements" pane,
Diagram List →  "Diagrams" pane,
Connected Elements → browser area for elements connected to a 
selected diagram element (see page 221),
Impl. Casts in Element List → implementation casts in the "Ele-
ments" pane; if nothing else has been selected for the current view, 
the implementation casts remain visible in the drawing area.

– Redraw

Redraws the diagram.

– Rebuild Connections

Smoothes fragmented connections that were created during auto-
matic conversion of operator implementations (see page 508).

– Undo (<CTRL> + <Z>)

Reverses the most recent action. 

– Redo (<CTRL> + <Y>)

Reverses an undo command. 

– Show Hierarchy Path

Displays the complete hierarchy path for the component.

– Parent Component

Opens an editor for the including component. (The option is only 
available if an included component is being edited.)
The Block Diagram Editor



– Parent Hierarchy Level

Displays the hierarchy path.

– Page frame Portrait

Displays the diagram in portrait format.

– Page frame Landscape

Displays the diagram in landscape format.

– Grid

Modifies the grid in the drawing area:

– Print Diagram

Prints the component.

– Save as Postscript/ Bitmap/ RTF/ GIF

Saves the diagram in the format specified.

• Sequence Calls

– Sequencing - Ignore Info

Automatic assignment of sequence calls.

– Sequencing Starting With

Automatic assignment of sequence calls starting with a particular 
number.

– Sequencing Appending

Appends sequence calls to an existing sequence.

– Scale To Step Size

Scales sequence calls 
(For Diagram → for the whole diagram,
For Method/Process → for a single method/process)

– Reset

Resets sequence calls
(For Diagram → for the whole diagram,
For Method/Process → for a single method/process,
For Selected Blocks → for selected blocks)

– Show

Shows groups of sequence calls
(For Diagram → for the whole diagram,
For Method/Process → for a single method/process,
For Selected Blocks → for selected blocks,
Unused → unused sequence calls)
The Block Diagram Editor 191



192
– Hide

Hides groups of sequence calls
(contains the same menu functions as Sequence Calls → Show)

– Next Seq. Call (<CTRL> + <CURSOR RIGHT>)

Moves between sequence calls (next call).

– Previous Seq. Call (<CTRL> + <CURSOR LEFT>)

Moves between sequence calls (previous call).

4.1.2 Defining a Component Interface

The first step in specifying a component is to define its interface. The interface
determines how the component interacts with other components, i.e. what
data it receives and passes on, and how it can be addressed. The interface is
the main difference when specifying different types of components in the
block diagram editor; therefore it is explained separately for classes and mod-
ules.

Classes

The interface of a class consists of its public methods and their arguments and
return values. The arguments form the input parameters of the class, the
return values form the output parameters. The methods can be stimulated
externally to trigger the calculations within a component.

To create a method:

• Select Diagram → Add Method.

A new method is created in the "Diagrams" 
pane.

• Type in a name for the method and press 
<ENTER>.

Every class contains one or more methods; the default method calc is created
automatically. A method can have a number of arguments and a return value.
The arguments and the return value can be modified using the interface editor.

To edit the interface of a method:

• In the "Diagrams" pane, select the name of 
the method you want to modify. 

• Select Diagram → Edit

or
The Block Diagram Editor



• double-click on the method.

The interface editor for the selected method 
opens. In this dialog box you can assign argu-
ments and a return value to the method, and 
define local variables.

• Define the arguments, return value and local 
variables for the method as described below.

• Click OK to close the Interface Editor.

To add an argument to the method:

• In the interface editor, activate the "Argu-
ments" tab.

• Click on the Add button

or

• select Argument → Add.

The new argument is added to the "Argu-
ments" list with its name highlighted for in-
place editing.

• Name the argument and press <ENTER>.

• Specify the type of argument by selecting the 
value you want from the "Argument Type" 
combo box.

The default argument type is cont.

• When you selected an array or matrix as type, 
select Argument → Edit Max Size.
The Block Diagram Editor 193



194
• In the "Max Size for: <argument>" window, 
enter the array or matrix size.

• Enter a unit for the argument in the "Unit" 
box.

The unit is purely descriptive and does not 
influence the functionality of the class. 

• Type a comment relating to the argument into 
the "Comment" box.

Every argument or return value can have a 
comment associated with it. This comment is 
displayed when documentation for the com-
ponent is generated.

To add a return value to the method:

• Activate the "Return" tab of the interface edi-
tor.

• Tick the Return Value box, if the method is to 
have a return value.

• Specify the data type of the return value.

• When you selected an array or matrix as type, 
select Return → Edit Max Size.

• In the "Max Size for: return" window, enter 
the array or matrix size.

• Type in a comment and a unit.
The Block Diagram Editor



To add local variables to the method:

• Activate the "Locals" tab of the interface edi-
tor.

The "Locals" tab contains the same elements 
as the "Arguments" tab.

• Click on the Add button

or

• select Local Variable → Add.

A new local variable is added to the "Local 
Variables" list. 

• Enter a name for the local variable.

• Specify the type for the local variable.

• When you selected an array or matrix as type, 
select Local Variable → Edit Max Size.

• In the "Max Size for: <local>" window, enter 
the array or matrix size.

• Enter a comment and a unit for the variable.

To edit arguments and local variables:

• Select Argument → Rename to rename an 
argument.

• Select Argument → Move Up or Move 
Down to move an argument in the list.

• Select Argument → Delete

or

• click on  Del to delete a selected argument.

For editing local variables, the "Locals" tab offers the Local Variable menu,
which contains the same menu functions.
The Block Diagram Editor 195



196
The arguments, local variables and the return value are added to the "Ele-
ments" list of the block diagram editor. Each argument or return value is rep-
resented as a pin on the graphical block of the component.

To rename or delete a method:

• Select the method in the "Diagrams" pane.

• Select Diagram → Rename

or

• press <F2> to rename the method.

• Select Diagram → Delete

or

• press <DEL> to delete the selected method.

In the "Diagrams" list, the diagrams and methods are shown in chronological
order by default. Every new diagram or method is added at the end of the list.
The order can be modified by moving diagrams and methods within the list.

To move a diagram or method:

• In the "Diagrams" list, select the item you 
want to move.

• Select Diagram → Move Up to move the 
selected item one position up in the list.

• Select Diagram → Move Down to move the 
selected item one position down in the list.

You can use other components as interface elements of components. The pro-
cedure is described here for an argument of type user-defined. The same pro-
cedure can be used for a complex return value.
The Block Diagram Editor



To assign a component as an argument:

• Open the Interface Editor for the method to 
which you want to add the component.

• From the "Arguments" list, select the item for 
which you want to specify the data type (or 
add a new item).

• In the "Argument Type" list, select the entry 
<user defined>.

A selection dialog box opens for the current 
database.

• From the "1 Database" list, select the compo-
nent you want and click OK to close the dia-
log.

The selected component appears in the 
"Argument Type" pane on the interface edi-
tor.

• Click OK to store the changes you made to 
the interface.
The Block Diagram Editor 197



198
Modules

The interface of a module consists of processes. A default process is created
automatically for every new module. Processes determine the activation of the
module functionality, but they do not define inputs or outputs. Modules com-
municate and interact using messages and global elements (imported,
exported elements).

To create a process:

• Select Diagram → Add Process.

A new process is created and its name is high-
lighted to allow in-place editing in the "Dia-
grams" pane.

• Enter a name for the process and press 
<Enter>.

You can move (cf. page 196), rename or 
delete (cf. page 196) processes the same way 
as methods.

As a process does not have any arguments, only the "Locals" tab and the
Local Variable menu (see page 195) are available in the interface editor.

4.1.3 Complex Types as Interface Elements

This section explains, with the help of examples, the use of composite and
user-defined elements as interface elements.

Arrays and Matrices

When using a composite or user-defined interface element (array, matrix,
class), you can access it via the normal element pins. In addition, you can use
the Get and Set ports to access the entire data structure. A matrix is used as an
example to describe the procedure.

To create the matrix argument:

• Add an argument with argument type 
mat(cont) to a method (cf. page 193).
The Block Diagram Editor



• Place the argument in the drawing area.

The element has only the readout pins (see 
also "Arrays and Matrices" in the ASCET refer-
ence guide), it is not possible to write to the 
matrix.

• Use the normal readout pins, as shown in the 
figure.

The procedure to return matrices or arrays is more complicated. It is described
in the following paragraphs, using the addition of two matrices as an example.

To create the computation class:

• Create a class with a method to contain the 
matrix calculation.

• In the method, add two arguments of type 
mat(cont) for the matrices to be added.
The Block Diagram Editor 199



200
• Add another argument (e.g., 
arg_OutMatrix) of the same type for the 
result matrix.

Since you cannot write to the argument, you 
need an auxiliary matrix.

• Use the Matrix button to create a matrix of 
type cont.

• In the "Max Size for" window, accept the pre-
set values.

The third argument is assigned to the auxiliary 
matrix via the Get port. Thus, the size of the 
latter is determined, and does not have to be 
explicitly entered.

To specify the matrix addition:

• Place the auxiliary matrix and the argument 
arg_OutMatrix in the drawing area.

• Right-click on each element, and select Get/
Set Ports from the context menu.

The Get port of the argument and the Get and 
Set ports of the auxiliary matrix are displayed 
in the diagram.

Note

Since you assigned no special size to the matrix 
arguments, the preset size must be accepted. If 
not, the code generation returns an error mes-
sage.
The Block Diagram Editor



• Assign the argument arg_OutMatrix to the 
auxiliary matrix via its Set port.

• Select the sequence number 1 for the 
sequence call, so that the assignment is exe-
cuted as the first step of the method.
(Sequence calls are described in detail in sec-
tion "Sequence Calls" on page 234).

The auxiliary matrix accesses the memory area 
of arg_OutMatrix. Thus, the calculation 
results are made available outside the method.
The Block Diagram Editor 201



202
• Create the necessary indices, and specify the 
matrix addition.

The example uses a 3x3 matrix. The loops (but 
not the sizes of the matrix arguments and aux-
iliary matrix!) have to be adapted to the actual 
conditions.

To perform the calculation, you have to create another class or module that
assigns real values to the arguments of the computation class.

To perform the calculation:

• Create a class or module. 

• Use Element → Add Item to include the 
computation class as a complex element (cf. 
page 217).
The Block Diagram Editor



• Create two matrices of type cont, and fill 
them with the input data.

• Create a third matrix of the same type and size 
for the result.

• Place the elements in the drawing area, and 
connect them as shown below.

• Use the output pins of the result matrix to 
read it.

A frequently tried approach to return a matrix or an array is to add a return
value of the respective type to a method, and access the return value via the
Get/Set ports. The following figure shows such an arrangement; the class
calc_matrix contains the calc method with two matrix arguments and a
matrix return value.

Note

When you assigned a size to these matrices other than the preset values in 
the "Max. size" window, the code generation will produce the following 
warning:

type mismatch in array max size: <1@1> and <x@y> - 
accepted since larger matches smaller
The Block Diagram Editor 203



204
This does not work! The ports transfer pointers; in this case, pointers to a struc-
ture within the method are. This structure, though, is only available while the
method is computing - which means that, in the example, the data no longer
exist at the time of the assignment to out_matrix.

Characteristic Lines and Maps

You cannot directly pass a characteristic line or map as argument. To do so, you
have to include the characteristic table in a class, and use the class as an argu-
ment. The procedure is described for a characteristic line.

Preparations:

• Create a class, e.g., Class_charline. 

• In the Class_charline class,create and set 
up a characteristic line via the One D Table 
Parameter button (cf. page 211).

You have to make sure that the table can be 
accessed from outside the class. For that pur-
pose, proceed as follows.

• Open the element editor for the characteristic 
line (see also "Element Configuration" 
on page 448).

• Add an output for the characteristic line by 
activating the Get() option.

• Close the element editor.

An output for the characteristic line is added 
to the class layout.
The Block Diagram Editor



To pass the characteristic line as method argument:

• Create a class that is to contain the character-
istic line as method argument. 

• Add the class Class_charline as an argu-
ment of type <user-defined> to one of 
the methods, as described on page 197.

• Click OK to close the interface editor.

To use the characteristic line as method argument:

To actually use the method argument, proceed as follows.

• Place the complex argument in the drawing 
area.

Unlike with matrix and array arguments, you 
cannot access the pins of the characteristic 
line. Therefore, you have to pass it to a local 
characteristic line.

• Create and set up a characteristic line (cf. 
page 211), and place it in the drawing area.

• Right-click on the characteristic line, and select 
Get/Set Ports from the context menu. 

Characteristic tables are created as parame-
ters, i.e., they cannot be written from within 
the program. Thus, only the Get port is made 
available.
The Block Diagram Editor 205



206
• Open the element editor for the characteristic 
table, and assign the kind Variable (see also 
"Element Configuration" on page 448).

Now the Set port is available, too, and you can 
assign the complex argument to the charac-
teristic line.

• Connect the argument output to the Set port 
of the characteristic line.

• Select the sequence number 1 for the 
sequence call, so that the assignment is exe-
cuted as the first step of the method.

You can now analyze the characteristic line as 
usual. Data are read from the memory area in 
which the characteristic line passed as argu-
ment is located.

4.1.4 Creating Block Diagrams

After the interface for a component has been defined, the arguments and
return values or the inputs and outputs are shown in the "Elements" pane of
the block diagram editor. They can now be arranged on the drawing area and
connected to other graphical elements, such as variables or operators.

Note

If this assignment is not performed as the first 
step of the method, inconsistencies arise.
The Block Diagram Editor



Elements, Operators and Connections

To place an interface element:

• From the "Elements" pane, select the element 
you want and drag it to where you want it in 
the drawing area.

The element is positioned in the drawing area.

• You can select and drag the element in the 
drawing area to move it to another position.

To create a basic element:

• Click on the button for the element you want 
to create in order to load the mouse cursor 
with the corresponding type of element. 

The element buttons are in the second row of 
the button bar. 

The Element Editor of the element is opened 
automatically and allows the user to change 
the element’s properties immediately.

Note

If it is not desired to open the Element Editor 
upon an element’s creation,deactivate the 
Always show Edit Dialog for new elements 
option at the bottom of the editor or the Edit 
primitive Element option in the in the "Confir-
mation Dialogs" node (page 45) of the ASCET 
options window.
The Block Diagram Editor 207



208
• Click inside the drawing area to place the new 
item.

In the diagram, the element appears at the 
point where you clicked. You can drag it to 
another position. 
In the "Elements" list, a new element is 
added. 

You can change the properties of an element later by right-clicking on it. This
opens a context menu with various commands. These commands are
explained in section "Editing Element Properties" on page 447.

To insert an enumeration:

• Click on the Enumeration button.

The "Enumeration Selection" window opens.

All enumerations defined in the database are 
displayed in the "Enumeration Type" combo 
box.

• Select the enumeration you want from the 
combo box.

• Click OK to close the selection window.

This loads the mouse cursor with the enumer-
ation type. The element editor is opened

• Adjust the element’s properties according to 
your needs and click OK.
The Block Diagram Editor



• Click in the drawing area.

This positions the enumeration.

• Enter a name for the enumeration and press 
<ENTER>.

To position an operator:

• From the "Argument Size" combo box, select 
the number of inputs for the operator.

• From the toolbar, select the operator you want 
to create. This loads the mouse cursor with 
that operator.

• Click inside the drawing area to position the 
operator.

The operator is added to the diagram. You can 
adjust its position by dragging it to another 
position.

The flow of information in diagrams is determined by connecting the items in
the drawing area.

To connect diagram elements:

• Right-click inside the drawing area, but not on 
any of the elements,

or

Note

For some operators (e.g. division, subtraction, 
comparison operators) the number of inputs 
cannot be changed. In these cases, the selection 
has no effect.
The Block Diagram Editor 209



210
• click on the Connect button.

This starts the connection mode, which is 
shown by the cursor changing into a cross 
hair.

• Click on the pin of the first diagram element 
you want to connect to start a connection.

• Move the cursor to the end point of the con-
nection to create a connection.

A line follows the path of your cursor move-
ment. Whenever you click inside the drawing 
area but not on an element, you create an 
anchor point for the connecting line. Right-
clicking while dragging a connection line 
deletes the most recent anchor point.

• Click on a pin of the diagram item that you 
want to connect to complete the connection.

The connection is established and a line is 
drawn. 

The appearance of the line depends on the connected elements.

When you drag an element, the connection line follows. It may however be
necessary to change the path of a line to keep the diagram neat and clear. You
can do this by simply dragging the line. 

Color/Style Explanation

black/solid connection between two numerical pins

black/dashed connection between two logical pins

black/dash-dotted control flow connection (cf. page 214)

colored 
(default: green)

Comment line; the sequencing for this statement or opera-
tion is still unresolved (cf. chapter 4.1.6).
The color of commet lines can be selected in the ASCET 
options window (cf. ""Colors" node" on page 55).

red wrong connection, e.g., between numerical and logical pins.
The Block Diagram Editor



To end the connection mode:

The connection mode is ended when a connection is complete.  You can, how-
ever, end it at any time. Proceed as follows.

• Right-click in the drawing area (but not on an 
element)

or

• click again on the Connect button.

The connection mode ends.

Arrays, Matrices, Characteristic Curves and Maps

This section describes how to create arrays, matrices, characteristic lines and
maps. Chapter 4.11 "Editing Data"describes how to edit the table data. 

To create an array or matrix:

• Click on the Array or Matrix button. 

The element editor is opened. Since arrays and 
matrices are created as variables, the volatile 
attribute is set.

• Adjust the element’s properties according to 
your needs and click OK.

The "Max size" window opens.

• Adjust the maximum number of elements in 
the "x-Max Size" and "y-Max Size" fields.

The "y-Max Size" is only available when you 
created a matrix.

• Click OK.

If you exceeded the maximum size, the follow-
ing warning opens:

*-Max size exceeded. Reduce to 
limit <limit>.
The Block Diagram Editor 211



212
– Click OK to accept the limit,

or

– click Cancel to return to the "Max size" 
window.

• Place the element in the drawing area.

To create a normal or fixed characteristic line/map:

• In the button bar combo box, select the table 
type Normal or Fixed.

• Click on the One D Table Parameter or Two 
D Table Parameter button. 

The element editor is opened. Since all charac-
teristic lines/maps are created as parameters, 
the non-volatile attribute is set and the 
"Memory" field is deactivated.

• Adjust the element’s properties according to 
your needs and click OK.

The "Max size" dialog box opens.

• Adjust the maximum number of sample points 
in the "x-Max Size" and "y-Max Size" fields.

The "y-Max Size" field is only available when 
you created a haracteristic map.

• Click OK.

If you exceeded the maximum size, the follow-
ing warning opens:

*-Max size exceeded. Reduce to 
limit <limit>.

– Click OK to accept the limit,

or

– click Cancel to return to the "Max size" 
window.

• Place the element in the drawing area.

Note

Fixed characteristic lines/maps must have at 
least 2 sample points per axis. Otherwise, the 
monotony check will produce an error.
The Block Diagram Editor



To create a distribution:

Distributions are required when you are using group characteristic lines or
maps (cf. "Group Tables" on page 465).

• Click on the Distribution button. 

The element editor opens. Since distributions 
are created as parameters, the non-volatile 
attribute is set and the "Memory" field is 
deactivated.

• Adjust the element properties to your needs.

• Click OK.

The "Max size" dialog window opens.

• Adjust the maximum number of sample points 
in the "x-Max Size" fields.

The "y-Max Size" is not available.

• Click OK.

If you exceeded the maximum size, the follow-
ing warning opens:

x-Max size exceeded. Reduce to 
limit 2048.

– Click OK to accept the limit,

or

– click Cancel to return to the "Max size" 
window.

• Place the element in the drawing area.

To create a group characteristic line/map:

• In the button bar combo box, select the table 
type Group.

• Click on the One D Table Parameter or Two 
D Table Parameter button. 

The element editor is opened. Since all charac-
teristic lines/maps are created as parameters, 
the non-volatile attribute is set and the 
"Memory" field is deactivated.
The Block Diagram Editor 213



214
• Adjust the element properties to your needs 
and click OK.

The "Distribution for" dialog box opens.

• From the "x-Distribution" and "y-Distribu-
tion" combo boxes, select suitable distribu-
tions.

The "y-Distribution" combo box is only avail-
able for group characteristic maps.

• Click OK.

When you click on Cancel, no distribution is 
selected. The table is created nonetheless, but 
it is labeled undef. 
You have to select the distribution(s) via 
Element → Edit Distribution prior to using 
the table.

• Place the element in the drawing area.

Control Flow Statements

To use the If statements:

• Click on the If then or If then else button to 
load the mouse cursor with the respective 
block.

• Place the block in the drawing area.

The If…Then block and the If…Then…Else 
block look nearly alike, except that 
If…Then…Else has two control flow branches.

• Connect the input to a logical element.

• Specify the actions for the branches.
The Block Diagram Editor



• Right-click on the sequence call you want to 
connect to a branch, and select  Connector 
from the context menu.

The sequence call becomes a connector. The 
colored line of an unresolved sequencing 
changes to black.

• Connect the desired branch to the connector. 

You can connect a branch to more than one 
actions. In that case, edit the connector num-
bers (according to page 236); as for sequence 
calls, each number must be unique.

• Repeat these actions for the second branch of 
the If…Then…Else block.

To use the switch:

• From the "Argument Size" combo box, select 
the number of branches for the switch.

You must select at least two branches. The 
default branch is not counted. 

• Click on the Switch button to load the mouse 
cursor with the respective block.

• Place the block in the drawing area.

• To change the values for the alternative 
branches, right-click on the block and select 
Edit Literals from the context menu.

An editor window opens; it contains one input 
field for each branch.
The Block Diagram Editor 215



216
– In the "Literals" field, enter the values for 
the branches.

– Click OK to accept the changes.

• Connect the input at the top of the block to 
an sdisc or udisc element.

• Specify the actions for the branches.

• Right-click on the sequence call you want to 
connect to a branch, and select  Connector 
from the context menu.

The sequence call becomes a connector.

• Connect the desired branch to the connector.

You can connect a branch to more than one 
actions. In that case, edit the connector num-
bers (according to page 236); as for sequence 
calls, each number must be unique.

• Repeat these actions for the other branches.

To use the While loop:

The only loop construct available in block diagrams is the While loop.

• Click on the While button to load the mouse 
cursor with the respective block.

• Place the block in the drawing area.

• Specify the loop condition.

• Connect the condition to the loop input.

Note

If you connect the input to a cont pin, an error 
is displayed during code generation.
The Block Diagram Editor



• Specify the loop action.

• Right-click on the sequence call you want to 
connect to the loop output, and select Con-
nector from the context menu.

The sequence call becomes a connector.

• Connect the loop output to the connector.

You can connect the output to more than one 
actions. In that case, edit the connector num-
bers (according to page 236); as for sequence 
calls, each number must be unique.

Components as Complex Elements

Components can be used as complex elements within other components.
Whereas basic elements are defined in the component they are contained in,
complex elements are included by reference, i.e. if the included component is
changed, those changes are effective within the including component. You
can connect other diagram items to the inputs and outputs of the included
component.

To include a component as a complex element:

To include a component, proceed as follows.

• Select Element → Add Item

or

• Select Add Item from the context menu.

The "Select Item" dialog window opens. It 
shows the content of the current database.

Note

Make sure that you avoid infinite loops or loops 
unsuitable for real-time applications.
The Block Diagram Editor 217



218
• From the "1 Database" list, select the compo-
nent you want to add.

• Click OK to add the component.

The component is added to the "Elements" 
list with its instance name highlighted to allow 
in-place editing.

• Edit the instance name and press <ENTER>.

• Drag the component to the drawing area to 
add it to the diagram.

• Connect the pins of the component in the 
same way as the pins of other diagram items.

Note

As an alternative to adding database items using the menu options 
described here, you can drag items from the Component Manager onto the 
block diagram editor (drag and drop).
The Block Diagram Editor



When you include a component, its instance name is shown in the "Elements"
pane. The grey triangle in front of the instance name ( ) indicates that the
tree structure can be further expanded.

If you include the same component again, a new instance of the component is
created and assigned a unique instance name. In the diagram, the instance
name is displayed below the graphical block. In the "Elements" list, both the
instance and class name are displayed, using the following format: <instan-
ceName>::<className>. You can adjust the width of the list to view its
entire contents.

Comments and Notes

Comments do not in any way influence the functionality of a component. They
only contain explanatory text that can help document your software model.

To add a comment:

• Click on the Comment button.

A text box appears.

• Enter the text for your comment.

• Click on OK.

This loads the mouse cursor with the com-
ment. 

• Click in the drawing area to place the com-
ment.
The Block Diagram Editor 219



220
You can adjust its position by dragging it to another position. You can edit the
text of the comment by right-clicking on it and selecting Edit Comment from
the context menu. 

You can also attach notes to the entire component, or to an included compo-
nent. The notes for a database item are entered in a separate editor window.
When documentation is generated automatically, the notes are included.

To edit the notes for a component:

• If you want to change the notes of the edited 
component, select Component → Notes.

Or

• In the "Elements" pane or in the drawing 
area, highlight the included component 
whose notes you want to edit.

• From the context menu of the highlighted 
component, select Notes.

The notes editor opens for the selected data-
base item. For details, see "Notes" 
on page 693.

4.1.5 Editing Block Diagrams

This section describes the general editing features of the drawing area, and the
features that modify the appearance of diagram items.

In some cases it is useful to retrace actions taken or to return to an earlier
version of the diagram in order to rework it from there. To do this, the actions
carried out in the diagram are recorded step by step on the internal clipboard.
However, you can only return to an earlier version of the diagram if you are
working in an open editor. When you exit from the editor, only the most
recently edited version is saved; the versions recorded in the clipboard are
deleted.

To undo the most recent action:

• Select View → Undo

or

• click on the Undo button

or
The Block Diagram Editor



• press <CTRL> + <Z>.

The most recent action is reversed.

To reverse an undo command:

• Select View → Redo

or

• Click on the Redo button

or

• press <CTRL> + <Y>.

The action reversed most recently is carried 
out again.

Viewing Elements

To view all occurrences of an element:

• Select the element, either in the drawing area 
or in the "Elements" pane. 

• Select Element → Show Occurences

or

• select Show Occurrences from the context 
menu

All occurrences of the element in the current 
program are highlighted.

To view all elements connected to an item:

You do not have to change to the browser view if you want to look at or edit
the implementations of the elements connected directly to a graphic object
(element, operator, connection). This function is of particular interest for test-
ing the implementations of the inputs and outputs of an operator which is why
this is the only case described below.

Note

If you work on an earlier version of the diagram, all the later actions are 
deleted and the new actions are recorded.
The Block Diagram Editor 221



222
• Right-click on a graphic object and select 
Browse Connected Elements from the con-
text menu.

A field opens containing the tabs "Elements", 
"Data" and "Implementation". This field lists 
all the elements connected directly to this 
graphic object. 
If the graphic object is an element, it is dis-
played too. Operators are not contained in the 
list. 

The tabs have the same function and structure 
as those of the Component Manager (see 
chapter 2.1.3). The "Implementation" tab is 
activated by default.

• Work in the tabs as described in chapter 2.3.2.

The relevant editors to edit the element prop-
erties can be opened with a double-click.

• Click the  X at the top right of the field

or

• select View → Show/ Hide → Connected 
Elements to hide the field.

• You can redisplay the field using View → 
Show/ Hide → Connected Elements as well 
as with the context menu although the con-
tent is not adapted to the current selection in 
the drawing area in this case.
The Block Diagram Editor



Editing Elements

To rename or delete a diagram item:

• Select Element → Rename to rename the 
element.

• Select Element → Delete to delete the ele-
ment.

Before deleting an element, you must remove 
its occurrences from the diagram. You can use 
the Show Occurences command to select 
the occurrences in the diagram for removal.

• SelectComponent → Delete Unused Ele-
ments to delete all the elements which are 
listed in the "Elements" pane, but which do 
not appear in the diagram.

To replace a diagram item:

• Select an operator from the toolbar to load 
the mouse cursor with a new diagram item.

• Click on an existing operator in the diagram to 
replace it with the new operator.

A confirmation prompter dialog box is dis-
played.

• Click Yes to replace the diagram item.

You can replace an element using the same procedure. In that case, you have
to drag the element onto the diagram item you want to replace. Also, you can
replace an operator in the diagram with an element and vice versa.

To cut, copy and paste a diagram item:

• Click on the diagram item you want to cut or 
copy.

A selected item is marked by handles at its 
edges.

• Select Edit → Cut

or

• press <CTRL> + <X> to delete the selected dia-
gram item and move it to the clipboard.
The Block Diagram Editor 223



224
• Select Edit → Copy

or

• press <CTRL> + <C> to copy the selected dia-
gram item without deleting it from the draw-
ing area.

• Select Edit → Paste

or

• press <CTRL> + <V> to add the diagram item 
close to its previous location.

• Drag the new diagram item to its location.

ASCET uses its own internal clipboard for graphical information, so these oper-
ations will have no effect on the Windows clipboard. You can also copy dia-
gram items between components, but only graphical information is copied
and interface elements are excluded.

To delete a connection or an element:

• Select the connection or element in the draw-
ing area.

• Select Edit → Delete

or

• press <DEL> to delete the selected connection 
or item.

To select more than one diagram item:

• Click on all the diagram items you want to 
select while holding down the <CTRL> key.

Or
The Block Diagram Editor



• Drag a rectangle around the items you want 
to select in the drawing area.

The diagram items inside the rectangle are 
selected which is shown by the resize handles 
displayed along their edges.

• Cut, copy, paste, delete or move the group 
just as you would a single diagram item.

Appearance of Diagram Elements

To change the appearance of a diagram item:

These commands are only available in the context menu of an included com-
ponent which was selected in the drawing area. They only affect the appear-
ance of the respective occurrence.

• Select Show/Hide Name to show or hide the 
instance names of the occurrence.

• Select Ports → Get/Set to show or hide the 
get and set pins of the occurrence.

This command is, under the name of Get/ Set 
Ports, also available for arrays, matrices, and 
characteristic lines/maps. 

Note

Different from the settings described in "Layout of Included Components", 
the settings described here cannot be included in the default layout.
The Block Diagram Editor 225



226
To edit the views of a diagram item:

You can edit the display of individual diagram elements (basic elements,
included components, operators, connections, etc.) in the different views (see
chapter 7.3).

• Select the element whose display you want to 
edit.

• Select Edit → Views

or

• right-click the diagram element and select 
Views from the context menu.

The "Views" dialog window opens. It shows 
all views defined in the current database.

• Open the combo box of the required view.
The Block Diagram Editor



• Select the required representation for the dia-
gram element from the combo box.

– Normal - the default setting in which all 
available elements, such as symbols, 
names, sequence calls etc., are dis-
played.

– As Line - the element is replaced by 
one or more lines from the middle to the 
pins.

– Invisible - the element disappears 
from the graphic display and can no 
longer be selected in the drawing area. It 
is, however, still in the "Elements" list.

– Contour - only the contours of the ele-
ment and possibly the names of the pins 
are shown. Sequence calls, name, sym-
bol etc. disappear.

– Hide Content - the screen display is 
the same as Normal but the component 
or hierarchy can no longer be opened 
from the drawing area. 

The content of a hierarchy thus marked 
is left out of the documentation, the 
content of a component is included in 
the documentation. 
The Block Diagram Editor 227



228
• Activate the Apply to all graphical objects 
of the same type option if the selection shall 
apply to all diagram elements of this type.

• Activate the Apply to all occurrences of this 
element option if the selection shall apply to 
all occurrences of this element.

• Click OK to confirm your selection.

The element is displayed in the selected view 
in accordance with your selection. 

The command is available for all diagram ele-
ments. Views are explained in section 7.3 
"Views" on page 683.

In the As Line mode it is not always clear that this is an element. This is why the
following warning is displayed if you select an element in As Line mode or
select a connection to this kind of element:

CAUTION: Element shown in "As Line" view could be 
affected!

Layout of Included Components

If you add a component to your component (see page 217) and store it in the
drawing area, the default layout of the added component, defined in the lay-
out editor, is displayed. If this default layout does not suit your purposes, you
can react in two different ways.

One possibility is to adapt the default layout in the layout editor (see
chapter 4.13). Changes in the layout editor do not, however, have any influ-
ence on individual occurrences of the component in block diagrams. Existing
diagrams remain unchanged; you have to replace the occurrences manually to
load the changed layout.

The other possibility is to adapt the layout of a specific occurrence in the block
diagram. This feature is activated via the Activate flexible layout option in
the ASCET options window (see section "Options for Block Diagrams"
on page 54). Only the layout of the edited occurrence is modified; neither the
default layout nor the layout of other occurrences of the same component in
the diagram is changed automatically. This means that, if necessary, you can
assign each occurrence of the same component a different layout. 

You can change the size of a block and move, show or hide the ports. The
following must, however, be taken into consideration:

• An occurrence must at least be the size of an addition operator with 
two inputs.
The Block Diagram Editor



• The minimum size of an occurrence is also limited by the number of 
visible ports: two ports cannot have the same position.

• If the default layout contains an icon, it is cut off if the size of the occur-
rence is smaller than the icon itself.

If you copy or cut out an occurrence which has been edited in this way and
insert it at a different location as described on page 223, the inserted occur-
rence is assigned the layout of the copied/cut out occurrence.

To edit the size of an occurrence:

You can either edit the size of an occurrence manually or automatically set the
minimum size.

• In the drawing area, mark the occurrence of 
the added component you want to edit. 

Four handles appear at the corners.

• Drag the handles to set the size you require for 
the occurrence.

Other elements are not affected by this. Exist-
ing connecting lines remain as they are but 
could now look confusing.

• If necessary, rearrange the diagram elements 
so that everything is kept clear.
The Block Diagram Editor 229



230
• Right-click on the occurrence and select Mini-
mal Size from the shortcut menu.

The size of the occurrence is minimized in 
accordance with the number of ports. The 
names of the ports or the occurrence are 
ignored. 

• Select Show/Hide Name from the context 
menu of the occurrence to show or hide the 
name of the component.

To edit ports:

You can move the ports of an occurrence and show/hide their names.

• Use the mouse to drag the port you want to 
move to the required position.

You can position the port wherever there is no 
other port.

• Right-click on the port and select Pin Names 
<name> from the context menu to show/hide 
the display of the port name.

If the port name is displayed, Pin Names <pin 
name> has a tick beside it.

• Select Show Pin Names from the context 
menu of the occurrence to show the names of 
all ports of the occurrence.

• Select Hide Pin Names to hide the names of 
all ports of the occurrence.
The Block Diagram Editor



• Select Unconnected Ports to show or hide all 
unconnected ports of the occurrence. The 
ports of a method can only be shown or hid-
den together.

To show/hide ports:

The representation of a component can be modified by means of the context
menu Ports. Ports of a component can be added or removed by the method
this way.

1. Public Methods

• Select Ports → Methods from the context 
menu of the occurrence.

The port editor opens; the "Public Methods" 
tab is displayed. It contains a list of all public 
methods of the added component. 
The selected methods are shown with a tick 
beside them.

2. Private Methods

• Select Ports → Methods from the context 
menu of the occurrence.

Note

This way, ports are only hidden, not removed. Operations like Minimal Size 
behave as if the ports were visible.

Note

The ports of a method can only be added or removed together.
The Block Diagram Editor 231



232
• Select the "Private Methods" tab.

3. Direct Access

• Select Ports → Direct Access from the con-
text menu of the occurrence.

The port editor opens; the "Direct Access" tab 
is displayed. It contains a list of all direct access 
methods of the added component (e.g. the 
inputs/outputs of a state machine)

or

• select Ports → Methods from the context 
menu of the occurrence.

• Select the "Direct Access" tab.

4. Editing

• Double-click on an entry not marked to select 
it.

• Click on Select All to select all entries.

• Double-click on a marked entry to deselect it.

• Click on Deselect All to deselect all entries.

• Click on Revert to undo all changes made so 
far.

• Click on Default to restore the setting speci-
fied in the layout editor.

• Activate one of the tabs to make further set-
tings

or
The Block Diagram Editor



• click on Cancel to cancel the action

or

• confirm your selection with OK.

The ports of the marked methods/processes are displayed in the occurrence;
those of the methods/processes not marked are removed.

If you remove a port which is connected to another element, the connecting
line is removed with it.

The positions for newly added ports are determined automatically. Inputs are
created on the left-hand side; outputs on the right. If you want to add ports
for which the current size of the occurrence has no space, the layout is
enlarged automatically.

To use changes as a new default layout:

If you want to use the modified layout of an occurrence as the new default
layout, proceed as follows.

• Select Use as Default Layout from the con-
text menu of the occurrence.

The following query is displayed:

Do you want to use the current 
layout as the default layout for 
all future occurrences of this 
class?

• Cancel with Cancel

or

• confirm with OK. 

The modified layout is now the new default 
layout. It is available in the layout editor of the 
component. 

If you create new occurrences of the compo-
nent, the new default layout is used. Existing 
occurrences in diagrams are not, however, 
updated.
The Block Diagram Editor 233



234
To restore the default layout:

As long as you have not used the command Use as Default Layout, you can
restore the default layout defined in the layout editor of the component.

• Select Default Layout from the context 
menu of the occurrence.

The default layout defined in the layout editor 
of the component is restored.

If connected ports are removed in this process, 
the connecting lines are removed with them. 
If connected ports are moved, the connecting 
lines are moved with them. They are retained.

4.1.6 Sequence Calls

A sequence call is linked to every assignment operation or every method call of
an included component. Every sequence call represents an instruction in an
ASCET diagram. Sequence calls determine the control flow in diagrams by
assigning every instruction to a method and determining the order of the
instructions within a method.

In the Block Diagram Editor, connecting lines between elements and/or opera-
tors are shown as colored lines as long as the sequencing for the instruction or
operation linked to the element has not been resolved. The color indicates that
the sequencing still has to be resolved. All lines to which a sequence call has
been assigned are shown in black.

You can edit the sequence calls individually or in groups, manually or automat-
ically.

Sequence Calls
The Block Diagram Editor



Editing Individual Sequence Calls

The Sequence Editor is used to edit and configure individual sequence calls.

This contains the following elements:

• The "Sequence Number" field – this is where you can enter a number 
for the sequence call.

By default, the number 1 is shown for new sequence calls and the cur-
rent number for sequence calls which have already been assigned.

• The Next free button – this is used to set the next free number in 
accordance with specific rules (see page 236).

• The "Step size" box – this is where the step size for the search for the 
next free number is set. 

The value of the "Sequence Step Size" option from the ASCET option 
window (see ""Sequencing" node" on page 56) is already set by 
default. If you change the value in the Sequence Editor, the value in the 
option window is adjusted accordingly.

• The Including Gaps option – this is where it is determined whether 
gaps should be included between existing sequence numbers or not 
when using Next free. 

The value of the Use Gaps option is preset from the ASCET option 
window (see ""Sequencing" node" on page 56). If you change the 
setting of the Including Gaps option in the Sequence Editor, the set-
ting is adjusted in the option window.
The Block Diagram Editor 235



236
• The "Method/Process Name" combo box – this is where the sequence 
call is assigned to a process or method. 

The process or method selected in the "Diagrams" area of the Block 
Diagram Editor is preset for new sequence calls. The current process or 
method is displayed for assigned sequence calls.
If you change the selection in the Sequence Editor, the selection in the 
"Diagrams" area is also changed.

• OK accepts the changed settings and closes the Sequence Editor; Can-
cel closes the Sequence Editor without the changes being accepted.

To edit the sequence call in the Sequence Editor:

• Right-click a sequence call in the drawing area 
to open the context menu.

• Select Edit from the context menu to open 
the Sequence Editor.

• From the "Method/Process Name" combo 
box, select the process/method for the 
sequence call.

• In the "Step size" field, enter the step size for 
automatic determination of the sequence 
number.

• Activate the Including Gaps option if gaps 
between existing numbers are to be taken into 
consideration in the automatic determination 
of sequence numbers.

• In the "Sequence Number" field, set the num-
ber of the sequence call

or

• click Next free to set the next free number for 
the selected process/method.

• Click OK.

A check is carried out to see whether the set 
combination of number and process/method 
has already been assigned. If not, the combi-
nation is assigned to the sequence call and 
displayed in the block diagram.
"Step size" and Including Gaps are accepted 
in the ASCET option window.

The following rules apply for determining the number using Next free:
The Block Diagram Editor



1. Only whole multiples of the value in the "Step size" field (corresponds 
to "Sequence Step Size" in the "Sequencing" node of the ASCET 
option window, see page 56) are taken into consideration. If, for exam-
ple, the value 5 is set, only the numbers 5, 10, 15, 20, ... are checked.

2. If the Including Gaps option is activated, any gaps between existing 
sequence numbers are filled. The first condition still applies; gaps which 
are not whole multiples of the value in the "Sequence Step Size" box 
are not filled.

Example:

If, e.g., the numbers 1–3, 5–9 and 11 have already been assigned and 
5 has been specified in the "Sequence Step Size" box, 10 is assigned, 
not 4.

3. If the Including Gaps option is not activated, a search is carried out for 
the next whole multiple of the value in the "Sequence Step Size" field 
after the highest available number.

In the above example (1–3, 5–9 and 11 assigned), 15 is assigned.

To assign individual sequence calls automatically:

You can edit individual sequence calls simply and quickly as follows:

• In the "Diagrams" area, select the process/
method to which the sequence call is to be 
assigned.

• In the drawing area, double-click the 
sequence call you want to edit,

or

• right-click the sequence call.

Note

The system saves the sequence number last assigned. Gaps below this 
number are not filled!
When you leave the editor or reset one (page 239) or several sequence 
calls (page 243), the number saved is reset; automatic numbering starts 
again at 1.
The Block Diagram Editor 237



238
• Select Next Number from the context menu.

In both cases, you can select either a sequence 
call which has not yet been assigned or one 
which has already been edited.

The selected process/method as well as the 
next free number are assigned to the 
sequence call. 

The rules described on page 236 apply, using 
the values for "Sequence Step Size" and Use 
gaps set in the ASCET option window.

To increment/decrement individual sequence calls:

• Right-click the sequence call whose number 
you want to edit.

• Select Change → Increment from the con-
text menu to increase the sequence number of 
the call by 1.

• Select Change → Decrement to decrease the 
sequence number of the call by 1.

To use numbers already assigned:

If you want to assign an existing combination of process/method and number
in the Sequence Editor or when incrementing/decrementing, the following
warning is displayed.

It is possible to shift the existing number as well as all higher numbers by an
offset which can be defined. The order of the shifted sequence calls is retained.

Note

If no method/process has been selected, the 
Sequence Editor is opened with a double-click 
and the Next Number context menu.
The Block Diagram Editor



• In the "Offset" field, set the value for the off-
set of the sequence calls.

The value of the "Sequence Shift Offset" 
option from the ASCET option window (see 
""Sequencing" node" on page 56) is preset.

• Click Yes.

The edited sequence call is assigned the values 
set in the Sequence Editor. The other 
sequence call as well as the sequence calls 
with higher numbers which belong to the 
same process/method are shifted by the value 
specified under "Offset".

Or

• Click No to assign the existing combination 
anyway.

This can be useful if the first occurrence of the 
combination was a mistake, e.g. if the wrong 
number was entered.

Or

• Click Cancel to return to the Sequence Editor.

• Set a combination which has not yet been 
assigned.

To reset an individual sequence call:

Proceed as follows to reset an individual sequence call:

• Right-click a sequence call.

Note

You then have to edit the double sequence calls 
manually to resolve the conflict.
Otherwise corresponding error messages are 
created during code generation.
The Block Diagram Editor 239



240
• Select Change → Reset from the context 
menu.

The current values of the sequence call are 
reset; the connecting line is again shown col-
ored.

At the same time, the number last assigned 
saved internally is deleted so that automatic 
assignments start again at the lowest possible 
value.

To move between sequence calls:

• Select a sequence call in the drawing area.

• Select Sequence Call → Next Seq. Call to 
select the next call in the sequence.

• Select Sequence Call → Last Seq. Call to 
select the previous call in the sequence.

To change the visibility of individual sequence calls:

• Right-click the input port of the element to 
which the sequence call is linked.

• Deactivate the Sequence Call command in 
the context menu.

Or

• Right-click the sequence call.

• Select Hide from the shortcut menu.

The sequence call is hidden.

• Right-click the input port of the element to 
which the sequence call is linked.

• Activate the Sequence Call command in the 
context menu.

The sequence call is displayed.

• Select Select Complete Port to mark the port 
to which the sequence call is connected.

The input port of the relevant diagram ele-
ment is shown in blue. This feature is useful to 
be able to follow sequence calls in complex 
diagrams.
The Block Diagram Editor



To create a sequence of protected sequence calls:

• Select Atomic → Start to start a sequence of 
protected sequence calls. 

A sequence of protected sequence calls can-
not be interrupted in a real-time environment.

• Select Atomic → Stop to end a sequence of 
protected sequence calls.

Editing Several Sequence Calls

A large number of sequence calls may be necessary in complex diagrams. In
this case it is useful to be able to edit the sequence calls in groups. You can
change all sequence calls of selected blocks, individual processes or methods
or a complete diagram.

To assign sequence calls automatically:

• In the "Diagrams" area, select the process/
method to which the sequence calls are to be 
linked.

• Select all elements to which you want to 
assign sequence calls.

Sequence calls can only be assigned automat-
ically to one process/method at a time. There-
fore, you should only select elements which 
are to be linked to the same process or 
method.

• Select Sequence Calls → Sequencing - 
Ignore Info.

Note

Make sure you only select sequence calls. If connectors (see "Connectors" 
on page 244) are selected too, the automatic assignments do not work.
If only connectors are selected, only Sequence Calls → Sequencing - 
Ignore Info works.

Note

If you do not select any elements, there may 
well be incomplete and incorrect assignments if 
there are several processes/methods. 
The Block Diagram Editor 241



242
• This command analyzes the diagram and 
assigns the sequence calls in accordance with 
the integrated sequencing algorithm. 

The automatic sequencing algorithm requires a procedure based on the data
flow, i.e. the elements are sequenced in the order defined by the data flow. If
the diagram is to be sequenced in another order, the sequence calls have to be
set manually.

To automatically assign sequence calls from a specific number:

• In the "Diagrams" area, select the process/
method with which the elements are to be 
linked.

• Select all elements to which you want to 
assign sequence calls.

• Select Sequence Calls → Sequencing Start-
ing With.

• Enter a number in the input box.

The selected elements are sequenced with the 
selected process/method, starting with the 
specified sequence number.

To add sequence calls to an existing sequence:

It is possible to add sequence calls to a sequence which was defined earlier, i.e.
to a number of sequence calls which have already been assigned to a process/
method. In this case, the first of the newly assigned sequence calls receives a
number which is one higher than the last one in the sequence defined earlier.

• Select all elements which you want to add to 
a sequence which has already been defined.

• In the "Diagrams" area, select the method to 
which the elements are to be linked.

• Select Sequence Calls → Sequencing 
Appending.

The selected sequence calls are appended to 
the defined sequence for the selected process/
method.
The Block Diagram Editor



To shift several sequence calls:

Proceed as follows if you want to shift the sequence numbers of a group of
sequence calls:

• Right-click the sequence call with the lowest 
number.

• Select Change → Shift by offset from the 
context menu.

The sequence number of the call and all calls 
with a higher number which are linked to the 
same method or the same process are offset 
upwards with the value set in the "Sequence 
Shift Offset" option in the ASCET option win-
dow (see ""Sequencing" node" on page 56).

To scale sequence calls:

It is possible to scale all sequence calls of a process/method or the entire dia-
gram.

• From the "Diagrams" area, select the process/
method whose sequence calls you want to 
scale.

• Select Sequence Calls → Scale To Step 
Size → For Method/Process.

The sequence calls of the method/process are 
scaled in accordance with the value entered 
under "Sequence Step Size" in the ASCET 
option window (see page 56). 

Or

• Select Sequence Calls → Scale To Step 
Size → For Diagram to scale all sequence 
calls of the diagram.

To reset several sequence calls:

• Select Sequence Calls → Reset → For Dia-
gram to reset all sequence calls of the current 
diagram.

• Select Sequence Calls → Reset → For 
Method/Process to reset all sequence calls 
assigned to the method/process which is cur-
rently selected in the "Diagrams" areas. 
The Block Diagram Editor 243



244
• Select Sequence Calls → Reset → For 
Selected Blocks to reset all sequence calls 
which are assigned to the elements currently 
selected in the drawing area. 

All commands require a confirmation and 
then the relevant sequence numbers are set to 
0 and the sequence names are deleted. The 
connecting lines are again shown colored.

To change the visibility of several sequence calls:

• Select Sequence Calls → Hide → For 
Diagram to hide all sequence calls in the cur-
rent diagram.

• Select Sequence Calls → Hide → For 
Method/Process to hide all sequence calls 
which are assigned to the method/process 
currently selected.

• Select Sequence Calls → Hide → For 
Selected Blocks to hide all sequence calls 
which are assigned to the elements currently 
selected in the drawing area.

• Select Sequence Calls → Hide → Unused to 
hide all sequence calls which are not currently 
being used.

The Show command reverses the effect of the 
Hide command with the same four options 
being available.

Connectors

Connectors are used to connect an assignment with a control flow instruction
such as If...Then or If...Then...Else.

To create connectors:

• Right-click the sequence call you want to 
make into a connector.

• Select Connector from the context menu.

The sequence call becomes a connector. This 
can be connected with a control flow instruc-
tion.
The Block Diagram Editor



Connectors can be edited like sequence calls in the Sequence Editor (see "To
edit the sequence call in the Sequence Editor:" on page 236). The Next free
button and the "Method/Process Name" field are, however, deactivated. Dou-
ble-clicking the connector and the shortcut menu Next Number also open the
Sequence Editor.

Most possibilities for automatic editing are not available for connectors.

To assign connectors automatically:

• In the "Diagrams" area, select the process/
method with which the sequence calls are to 
be linked.

• Select all connectors which are to be used in 
the selected process/method.

• Select Sequence Calls → Sequencing - 
Ignore Info.

This command analyzes the diagram and 
assigns the numbers of the connectors in 
accordance with the integrated algorithm. 

Note

This is the only automatic assignment which works for connectors.

Note

Make sure you only select connectors as 
automatic assignment does not work 
otherwise.
The Block Diagram Editor 245



246
4.1.7 Implementation Casts in Block Diagrams

In the block diagram editor, implementation casts (see "Implementation
Casts" in the ASCET Reference Guide) can be inserted in the same way as all
other elements using the relevant button in the button bar (here: Implemen-
tation cast, ). Once generated, they can be added to the drawing area
from the element list by Drag&Drop and can be connected there in the same
way as all other elements. 

There are no sequence calls for implementation casts; the correct order is
determined from the context by code generation.

In the block diagram editor, there is another very convenient way of adding
implementation casts. This is particularly useful for existing arithmetical calcu-
lation chains. Using the context menu of the arithmetic operators +, -, *, /,
abs and neg you can add implementation casts automatically for all inputs
and outputs of the operation by selecting Add Implementation Casts.

Note

Implementation casts cannot be applied to logical elements. If you connect 
an implementation cast to a logical element, the connecting line is shown in 
red to indicate the error. 
The Block Diagram Editor



To add implementation casts to operators automatically:

• Activate the operator which is to have imple-
mentation casts added to it.

• Click the operator with the right-hand mouse 
button and select Add Implementation Cast 
from the context menu.

If there is sufficient space in the drawing area, 
implementation casts are added to all connec-
tions with inputs and outputs of the operator.

If there is not sufficient space, the following 
warning appears:

The layout is too tight to place an implementation 
cast automatically. Please rearrange the diagram.

• Lengthen the connections to the operator and 
try again.

The implementation casts are named automatically in accordance with the fol-
lowing scheme:

<operator><m>_<pin type><n>

Note

The procedure only works if none of the inputs and outputs of the operator 
is directly connected to an implementation cast. Otherwise the following 
error message appears:

This operator is already connected to at least one 
implementation cast. Please specify further implemen-
tation casts individually.
The Block Diagram Editor 247



248
• <operator> can, depending on the selected operator, have the val-
ues add, sub, mul, div, abs or neg.

• <m> is the number of the operator. The first operator of a type for 
which implementation casts are generated in this way is assigned the 
number 1; further operators of the same type are then numbered con-
secutively (2,3,....).

• <pin type> is the description of the operator pin connected to the 
implementation cast, i.e. in for inputs and out for outputs.

• <n> is the number of the implementation cast. Implementation casts 
connected tio the inputs and output of the operaor are nnumbered 
separately.

– The implementation cast connected to the first operator input is 
assigned the number 1; further inputs are numbered consecutively.
The number is omitted if the operator has only one input.

– If the operator output is connected to more than one element, the 
implementation casts are numbered, beginning with 1.
If the operator input is connected to one element, the number is 
omitted.

To add implementation casts to a connection automatically:

You can also add an implementation cast to all connecting lines (data paths) of
arithmetical values via the context menu.

• Select the connection you want to add an 
implementation cast to.

Note

This is not the case for connections with other operators than +, -, *, /, 
abs, neg, max, min, and mux, connections to to logical elements or control 
flow connecting lines.
The Block Diagram Editor



• Right-click on the connection and select Add 
Implementation Cast from the context 
menu.

An implementation cast is automatically 
added to the connection.

The implementation casts are named automatically in accordance with the fol-
lowing scheme: 

impl_cast_<n>

<n> is the number of the implementation cast. The first implementation cast
created automatically on a connection is not assigned a number; the second
one is assigned the number 1, further implementation casts created automat-
ically on any connections are then numbered accordingly.

This scheme applies to all implementation casts which were not created auto-
matically for an operator (see page 247).

To show/hide the display of implementation casts:

By default, the implementation casts are displayed like all other elements in the
"Elements" list. You can, however, hide the display.

• Open the submenu View → Show/Hide.

If the display is activated, Impl. Casts in Ele-
ments List is marked with a tick.
The Block Diagram Editor 249



250
• Select View → Show/Hide → Impl. Casts in 
Elements List.

The implementation casts are no longer dis-
played in the "Elements" list; the tick beside 
the menu function is removed.

In the drawing area, the implementation casts 
continue to be displayed in accordance with 
the settings for the current view. The imple-
mentation casts context menu, however, only 
contains a few functions.

• Select View → Show/Hide → Impl. Casts in 
Elements List again to reactivate the display.

Implementation casts can be used together with temporary variables. Please
note the following:

• If an implementation cast follows a temporary variable, the temporary 
variable is not influenced by the implementation cast.

• Temporary variables immediately after an implementation cast are sup-
ported.

4.1.8 Graphical Hierarchies

To organize complex diagrams more clearly, you can group parts of a diagram
into a hierarchy block, which is then only visible as a symbol on the top level of
the diagram. Whether any diagram item is inside a hierarchy block or not, does
The Block Diagram Editor



not in any way affect its functionality, hierarchies serve only for graphical struc-
turing. Hierarchies can be nested so that hierarchy blocks can contain other
hierarchy blocks.

To add a new hierarchy:

• Click on the Hierarchy button on the toolbar 
of the block diagram editor to load the mouse 
cursor with a hierarchy.

• Click inside the drawing area where you want 
to position the hierarchy.

The hierarchy block is added to the diagram.

To convert diagram elements into a hierarchy block:

• Select the diagram items you want to put in a 
hierarchy block.

• Click on the Hierarchy button.

A hierarchy block that contains the selected 
elements is added to the diagram.

The selected diagram items are placed inside a newly created hierarchy block.
A pin with a default name is created for each line that connects a diagram item
outside the hierarchy frame with a diagram item inside. It is not possible to
move diagram items into a hierarchy block directly, e.g. by drag-and-drop.
They always have to be copied via the clipboard or moved as described here.

To move elements into or out of a hierarchy frame:

• Use Cut or Copy to copy/move diagram ele-
ments from the higher level to the clipboard.

• couble-click on the hierarchy that is to contain 
the elements.

The hierarchy content is displayed.

• Use Paste to insert the diagram elements.

• Double-click in the drawing area to return to 
the higher level.
The Block Diagram Editor 251



252
Resolving a hierarchy block:

• right-click on the hierarchy block and select 
Resolve from the context menu.

The hierarchy block is removed and all dia-
gram items it contains are brought into the 
diagram one level up.

Or

• Select a hierarchy block.

• Select Edit → Delete.

The hierarchy block, and all diagram elements 
it contains, are deleted.

To change the appearance of a hierarchy block:

• Right-click inside the block and select 
Rename Hierarchy, from the context menu 
to rename the hierarchy block.

You are prompted for a name for the hierar-
chy.

• Type the name into the prompt box and click 
OK.

• Right-click inside the block and select Show/
Hide Name from the context menu. 

This hides the name. Select the command 
again to bring it back.

• Right-click inside the block and choose 
Change Icon to assign an icon file to the hier-
archy.

A file prompter is displayed from which you 
can select a bitmap image file in either TIFF, 
PCX or BMP format.

• Select the image file you want and click OK.

The image file is stored with the diagram in 
the ASCET database. 

• Select the hierarchy block and resize the frame 
by dragging the sizing handles.
The Block Diagram Editor



• Select Set To Default Size from the context 
menu to revert to the default size of the hier-
archy block.

The technique for navigating between hierarchy levels is the same as that for
navigating between included components of a diagram.

To navigate between hierarchy levels:

• Double-click on the hierarchy block

or

• right-click inside the block and select Next 
Level from the context menu.

You are inside the hierarchy block, the content 
of the current block is shown in the drawing 
area.

• Inside the hierarchy, double-click on the draw-
ing area (not on a diagram item).

You leave the hierarchy and the block you 
moved from is selected.

To add input and output pins to the hierarchy:

Data flow between the various hierarchy levels works via input and output
ports. These are simply connection lines that extend across the levels.

• Right-click on the hierarchy block.

• Select Add Inpin or Add Outpin from the 
context menu.

You can add any number of input and output 
pins to the hierarchy frame. The input and 
output pins are represented by arrow symbols 
containing the pin name inside the hierarchy 
block.

To change the appearance of input and output pins:

• Right-click on an input or output pin.
The Block Diagram Editor 253



254
• Select Rename Pin from the context menu to 
change the name of the pin.

• Type the name into the prompt box and click 
OK.

• Select Pin Name to hide the pin name.

• Select the command again to reveal it.

• Select Remove Pin to remove the input or 
output pin.

• Right-click on the hierarchy block and select 
Show Pin Names or Hide Pin Names to 
show or hide all the pin names for the hierar-
chy block.

When you connect a diagram item to a pin, and then connect the pin to
another item inside the hierarchy block, it is equivalent to connecting the two
elements directly.

4.1.9 Navigating Between Diagrams

Components with Multiple Diagrams

A component specification for a class or module can consist of more than one
diagram. This feature is useful for structuring complex specifications. A dia-
gram can either be public, i.e. contain only public methods, or private, i.e.
contain only private methods.

Public methods can be accessed from other components, private methods can-
not. Private methods can only be accessed from inside the component. Private
diagrams containing actions and conditions are a special case. These are used
in state machines only.

Each component specified as block diagram contains at least one public dia-
gram named Main. Classes can have any number of public or private dia-
grams, whereas modules only have public diagrams.

To create a new diagram:

• Select Diagram → Add Diagram → Public 
or Private

or
The Block Diagram Editor



• in the "Diagrams" pane, select Add 
Diagram → Public or Private from the con-
text menu. 

A new public or private diagram is added in 
the "Diagrams" pane. The name of the new 
diagram is selected automatically.

• Type in a name and press <ENTER>.

You can also rename the diagram later. To do 
so, select Diagram → Rename Diagram

• Add the methods or processes necessary to 
specify the functionality of the diagram. 

In the "Elements" list, the interface items, i.e. arguments, local variables and
return value, are displayed only for the methods in the current diagram. Other
elements, such as variables or parameters can be used across diagrams and are
always visible in the "Elements" list.

In the block diagram editor, you work on one diagram at a time. If a compo-
nent contains more than one diagram, you can switch between diagrams by
loading a new diagram into the drawing area.

To load a diagram:

• Select a diagram.

• Select Diagram → Load Diagram

or
The Block Diagram Editor 255



256
• select Load Diagram from the context menu.

The diagram is loaded in the drawing area. 

If there are unsaved changes in the current 
diagram, you are prompted to save the cur-
rent diagram before the new diagram is 
loaded.

To delete a diagram from a component:

• In the "Diagrams" list, select the diagram you 
want to delete.

• Select Diagram → Delete Diagram

or

• select Delete Diagram from the context 
menu.

The diagram is deleted from the component, 
together with all its methods/processes.

To move methods between diagrams:

• In the "Diagrams" pane, select the method 
you want to move.

• Select Diagram → Move to move the 
method.

The "Specification" window displays a list of 
all the diagrams for the current component. 

Note

The first diagram in the "Diagrams"pane cannot 
be deleted.
The Block Diagram Editor



• Select the diagram to which you want to 
move the method and click OK.

The selected method is moved to the target 
diagram. Any sequence calls present in the 
original diagram for the method are reset.

You can move methods only if their interface elements have no occurrences in
the diagram. Otherwise, remove the occurrences of interface elements first
and then move the method. 

Navigating Between Components

When you are editing a component that includes other components in the
block diagram editor, you can edit those sub-components without having to
go through the Component Manager to open the editor on an included com-
ponent.

To navigate between different levels of a block diagram:

•  In the drawing area or "Elements" pane, 
select the component you want to edit.

• Select Element → Edit Component

or

• select Edit Component from the context 
menu of the component 

or

• double-click on the included component.

An editor opens for the selected component. 
If the including component has unsaved 
changes, a new editor window opens. Other-
wise, the sub-component is loaded into the 
original editor window.

• To navigate upwards in a containment hierar-
chy, double click in the drawing area, not on a 
diagram item.

You are moved back up one level. If you have 
modified the sub-component, a new editor 
window opens for the previous component; 
the window for the sub-component remains 
open.

The mechanism described here is also used for navigating between different
levels of graphical hierarchies in the same component.
The Block Diagram Editor 257



258
4.1.10 Analyzing Components

After you have created a block diagram, you will usually want to experiment
with it to see whether it works as intended. This section describes how to pre-
pare for experimenting with a component, and how to start the experimenta-
tion environment.

To analyze a diagram:

• Select Diagram → Analyze Diagram to ana-
lyze the current diagram.

The diagram is checked for syntactic errors. 
Unassigned sequence calls, missing connec-
tions etc. are reported in the monitor window 
(see chapter 2.4 "The ASCET Monitor Win-
dow").

Note

For a single ASCET module, code can be generated and simulated without 
project context only with the Physical Experiment code generator (see 
page 371). For the other code generators the module must be integrated 
into a project. A so-called default project can be defined for each class or 
module for that purpose. This is the only way to access the implementation 
information. Without project context, the conversion formulas as well as all 
implementations of imported entities are missing.
The Block Diagram Editor



• Click on an error message in the monitor win-
dow, "Build" tab, to have the error high-
lighted automatically in the block diagram 
editor.

To generate code for a component:

• Select Component → Generate Code

or

• click on the Generate Code button.

The C code for the current component is gen-
erated.
The system will display any error messages 
returned by the Code Generator. Again, you 
can find the relevant diagram item by clicking 
on an error message.

When the code for a component has been generated successfully, you can
open the experimentation environment for the component.

The code generated by ASCET is stored in the database, where it cannot be
viewed by the user. It is, however, possible to write the code to a file where it
can be viewed with any text editor.

To view the generated code:

• Generate the code for the current component 
as described above.

• Select Component → File Out Generated 
Code → Flat or Recursive to store the code 
generated on the file system.

The files generated are written to the directory 
selected. If code has been stored recursively, a 
separate file is created for each component. 
The names of the files generated are listed in 
the ASCET monitor window.

• Open the files with a text editor to view them.

If you select Flat, only the code for the currently selected component will be
filed out; if you select recursive, the code for the components referenced by
the current component will also be written to a file. 
The Block Diagram Editor 259



260
Another way of viewing code is to select a user defined external editor from
ASCET (e.g. Notepad, Codewright, etc.), or an internet browser, respectively.
As the external editor is connected via a file system, files with the suffixes
"*.c" and "*.h" must be associated with the editor in the Windows config-
uration.

• Select Component → View Generated 
Code.

C code is generated and displayed in an exter-
nal editor.
The text editor can be selected in the ASCET 
options window, "ASCII Editor" node (cf. 
page 60).

To start an offline experiment:

• Select Component → Open Experiment

or

• click the Open Experiment for selected 
Experiment Target button.

Code is generated and compiled with the 
compiler specific to the current target, and the 
experimentation environment for the compo-
nent is opened. The generated files are stored 
in the cgen directory.

The experimentation environment is described in "The Experimentation Envi-
ronment" on page 561.

Under some circumstances, the global elements (see "Defining Global Com-
munication" on page 388) are not updated properly in the default project. The
following error message is displayed in the ASCET monitor window:

Error: need export for imported element <name> with 
type <type>

To correct this error, proceed as follows:

To define global elements in the default project: 

• In the block diagram editor, select 
Component → Default Project → Resolve 
Globals to resolve the global elements.
The Block Diagram Editor



• Select Component → Default Project → 
Delete Unused Globals to delete unused 
global elements.

You can now restart the experiment.

4.1.11 Data Exchange

A data set is always associated with the component it came from. To import
the data set, use the command File → Import in the Component Manager.
This command writes the imported data set back to the component it belongs
to. The same rules apply to exporting data sets as to exporting database items.
See chapter 2.3.3 "Exporting Folders and Database Items" on page 89 for
details.

To export the data set of a component:

• Select Component → Export Data.

The file selection dialog box opens.

• Select a file name and a path name.

• Click on OK.

The data set is written to the file selected.

It is possible to store parts of a diagram in a file and import them into another
component. All diagram items except interface elements can be stored in a file.

To store parts of a diagram in a file:

• Select the part of the diagram you want to 
write to a file.

• Select Edit → Copy.

• Select Edit → File Out Buffer.

The file selection dialog box opens.

• Select a path and type in a file name with the 
extension .asc.

• Click on OK.

The diagram items on the clipboard are stored 
in the file specified.

To read a diagram part from a file:

• Select Edit → File In Buffer to load the dia-
gram into another component. 

The file selection dialog box opens.
The Block Diagram Editor 261



262
• Select the file that contains the diagram ele-
ments you want to import.

• Click on OK.

The imported diagram parts are copied to the 
database clipboard.

• Select Edit → Paste.

The diagram items from the file are written 
into the current diagram of the current com-
ponent.

It is possible to write the data from a table or an array to a file and to read it in
again. The data is written in tab-delimited ASCII format, so it can be read and
edited with any spreadsheet or word processor.

To write the data from an array or a table to a file:

• Select the table or array in the "Elements" 
pane.

• Select Element → File Out Data.

The file selection dialog opens.

• Select a path and a filename with the exten-
sion .dat.

• Click on OK.

The data from the table or array selected is 
written to the file.

To read the data for an array or a table from a file:

• Select the table or array in the "Elements" 
pane.

• Select Element → File In Data.

The Windows file selection dialog box opens.

• Select the file that contains the data you want 
to read in.

• Click on Open.

The data in the file is written to the selected 
table or array.
The Block Diagram Editor



4.1.12 Using the Block Diagram Editor

Saving Diagrams

Saving a component specification:

To save the specified component, proceed as follows:

• Select Diagram → Store to Cache 

or

• in the "Diagrams" pane, select Store to 
Cache from the context menu.

The component is saved in the cache. This 
command does not  save the component per-
manently in the database.

• To make the changes permanent, select 
File → Save Database in the Component 
Manager.

or

• click on the Save button.

The Save command stores all the changes you 
have made in the database. 

Viewing and Printing Diagrams

To change the way a block diagram is displayed:

• Select View → Redraw to redraw the dia-
gram. 

Sometimes a diagram may become corrupted 
when you move elements around. Choosing 
this command will clean up the diagram.

• In the "Zoom" combo box, select a value to 
scale the diagram.

You can also enter any value directly.

• In the "Zoom" combo box, select Page Lay-
out to view one print page. 

The diagram is zoomed out so that the first 
print page is displayed in its entirety. Propor-
tions are kept.
The Block Diagram Editor 263



264
• In the "Zoom" combo box, select 100% to 
return to the default size.

To change the grid in the drawing area: 

• Select View → Grid.

The "Grid Options" dialog box opens.

• Click on the Points radio button to display 
grid points in the drawing area.

• Click the Lines radio button to display grid 
lines.

• Click the Invisible radio button to turn off the 
grid display.

• Adjust the grid multiples at which the points 
or lines are displayed. 

If, for instance, the Points option is selected 
and the display is set to two, the distance 
between the grid points will be twice the 
default.

• Click OK to set the grid options.

To set up the printing area:

• In the ASCET options window, "Paper Size" 
node (cf. page 57), select the paper size.

The settings becomes effective the next time 
you open the block diagram editor.

• Select View → Page frame Portrait to print 
the diagram in portrait format.
The Block Diagram Editor



• Select View → Page frame Landscape to 
print the diagram in landscape format.

The default for the orientation is set in the 
ASCET options window, "Paper Size" node 
(cf. page 57), "Paper Orientation" option.

When the drawing area exceeds the selected page format, print pages are
marked by dashed lines in the drawing area. In adition, you can use the ASCET
options dialog ("Block Diagram" node (cf. page 54), Show Page Number) to
switch on the display of page numbers in the block diagram editor. Dashed
lines and page numbers can be covered by diagram elements.

The color of lines and page numbers is set in the ASCET options window, "Col-
ors" node (cf. page 55), "Watermark Color" option.

To print a block diagram:

• Select View → Print Diagram to print the 
drawing area.

The "Print Diagram" window opens.

• In the "Print Diagram" window, set the print 
options.

• Click OK.

The "Printer Selection" window opens.

• In the "Printers" field, select a printer.

Use Setup to change the printer settings.
The Block Diagram Editor 265



266
• Click OK to accept the selection.

The component is printed according to your 
settings.

The "Print Diagrams" window contains the following options:

• All 

Prints the entire drawing area.

• Scale diagram to fit page 

Scales the diagram so that it fits on one print page. Only available if All 
is activiated. 

• Visible area 

Prints the visible part of the drawing area.

• User defined 

Prints a user-defined part of the drawing area.

• "Pages:" 

Input field for the pages to be printed. A ; separates individual pages, 
start and end of a page range are separated by two dots (..). Only avail-
able if User defined is activiated.

• Print empty pages 

Empty pages are printed.

• Print all diagrams 

All diagrams of the component are printed.

• Current component 

Only the diagrams of the current component are printed. Only available 
if Print all diagrams is activiated.

• All components 

The diagrams of included components are printed, too. Only available 
if Print all diagrams is activiated.

Note

If User defined is activated, the Print empty pages and Print all 
diagrams options are without effect.
The Block Diagram Editor



Using Referenced Components

There are several commands that apply to referenced components, i.e. those
included within the current component. These have the same function as the
commands in the Component menu, but they affect only the included com-
ponent currently selected.

To edit an included component:

• In the "Elements" pane, select an included 
component.

• Select Element → Edit Component to open 
the block diagram for the component 
selected.

This command has the same effect as double-
clicking on the referenced component.

• Select Element → Notes to view the notes 
for the imported component.

When you select this command, you get a 
read-only view of the notes associated with 
the component, i.e. you cannot edit them. 
Views are explained in section "Notes" 
on page 693.

• Select Element → Export Data to export the 
data set of the referenced component.

This command has the same effect as 
Component → Export Data but relates only 
to the referenced component selected in the 
"Elements" list.

4.2 The State Machine Editor

A state machine consists of a state diagram and additional normal block dia-
grams. The state diagram is a special block diagram, where the states are rep-
resented as rectangles with rounded corners, and the transitions by directed
arcs. Every state can be a hierarchy state i.e. a state containing another state
diagram. The actions and conditions of a state machine are specified in addi-
tional block diagrams or in ESDL. Additional public methods can be specified
in separate diagrams. Chapter "State Machines" in the ASCET reference guide
describes in detail what a state machine is and how it works.
The State Machine Editor 267



268
Specifying state machines is similar to specifying block diagrams, and you can
also use block diagrams as parts of a state machine. Many parts of the descrip-
tion of block diagram editor functionality are the same for the state machine
editor. These parts are not described separately here, so before reading this
chapter, you should be familiar with specifying block diagrams in the block
diagram editor. chapter 4.1 on page 178 describes the block diagram editor.

Specifying a state machine consists of the following steps, which are described
in subsequent sections of this chapter:

• Drawing a state diagram (i.e. arranging the states and transitions).

• Specifying the conditions and actions.

• Assigning the conditions and actions to the states and transitions in the 
state diagram.

• Specifying public methods in a separate diagram.

Special Menu Options

The menu options of the state machine are mostly identical to tohose in the
block diagram editor (see "Description of Menu Options" on page 184). Only
the Diagram menu contains some special menu options.

• Diagram

– Add Diagram

Creates a new diagram.
(Public → contains only public methods,
Actions/Conditions BDE → contains actions and conditions as block 
diagrams,
Actions/Conditions ESDL → contains actions and conditions in 
ESDL)

– Add Trigger

Creates a trigger.

– Add Action

Creates an action (only available in the block diagram editor for 
status

diagrams).

– Add Condition

Creates a condition

– Create State Code Comments 

Creates a comment in the first line of ESDL code in states and tran-
sitions (cf. page 298).
The State Machine Editor



4.2.1 Drawing the State Diagram

Creating a new state machine:

• In the Component Manager, select a folder 
for the new state machine.

• Select the menu function Insert → State 
Machine

or

• click on the Insert State Machine button.

A new state machine is created.

• Enter a name for the state machine.

• In the menu bar, select Component → Edit 
Item

or

• press <RETURN>

or 

• in the "Elements" list, double-click on the 
state machine name.

The state machine editor opens.

By default, the state diagram is open and the 
operator buttons on the toolbar are disabled. 
A state diagram does not contain operators.
The State Machine Editor 269



270
To lay out the states for the diagram:

• Click on the State button to load the mouse 
cursor with a new state.

• Click in the drawing area where you want to 
position the state.

A state symbol appears where you clicked. 

• Repeat these two steps for all other states you 
want to lay out.

Each state machine must have a start state. The state machine is in start state
when the class is initially activated.

Define the starting state:

• Right-click on the state intended as the start 
state and select Edit State from the context 
menu.

or

• Double-click on the state symbol.

The state editor ("State Editor" dialog box) is 
opened.

• Tick the Start State option.
The State Machine Editor



• Click OK.

The selected state displays a circled 'S' in the 
upper left corner to indicate that it is the start 
state. 

Editing a state:

• To move state symbols, simply drag them to 
the position you want in the drawing area.

When you move a symbol, the connection 
lines attached to it automatically follow and 
reroute as necessary. 

• To change the size of a state symbol, click on 
it.

• Drag the handles until the symbol has the 
desired size.

• You can cut, copy and paste state symbols just 
like other diagram elements using the clip-
board (see page 223). 

By default, the first state is named state, the next is state_1, etc. You can
change the names if you like, only keep in mind that each name has to be
unique and ANSI C compliant.

Renaming states:

• In the drawing area, select the state you want 
to rename.

• Open the state editor (page 270).

• Enter a name in the 'State' field.

Handles
The State Machine Editor 271



272
• Click OK.

If the name you entered is not ANSI C compli-
ant, an error message is displayed.

• Confirm the error message and enter a valid 
name.

If you have entered an existing name, the sym-
bol _n is attached. n is the smallest unissued 
number for this name.

The new name is shown in the state symbol.

Representing states in color:

As standard, each newly added state appears in white. You can change the
color as follows:

• Open the state editor for the state you want 
to edit.

• Select a color from the "Color" combo box.

The state symbol is shown in the selected 
color.

To copy a state layout:

You can copy the layout of a state, i.e. its size and color, to another state.

• Right-click on the state whose layout you 
want to copy.

• From the context menu, select State 
Layout → Copy Layout.

Size and color of the state are copied to the 
clipboard.

• Right-click on the state to which you want to 
copy the layout.
The State Machine Editor



• From the context menu, select State 
Layout → Paste Layout.

The layout in the clipboard is assigned to this 
state; it has the same size and layout as the 
first.

Besides the states, you can use the Junction diagram (see section "Junctions"
in the ASCET reference guide).

Creating junctions:

• Click on the Junction button to load the 
mouse cursor with a new junction.

• Click in the drawing area where you want to 
position the junction.

A circle without any name appears at the 
point you clicked as the symbol for the junc-
tion. 

• Repeat these steps, if you need more junc-
tions.

Editing junctions:

In contrast to states, you cannot assign actions to a junction. You can only
move it and change the size and color. 

• To move junctions, simply drag them to the 
position you want in the drawing area.

When you move a junction, the connection 
lines attached to it automatically follow and 
reroute as necessary. 

• If a junction and a state, or two junctions, 
overlap, the borders of both turn red. Pull one 
of the objects so that they are placed side by 
side.

• To change the size of a junction, click on it.

Handles
The State Machine Editor 273



274
• Drag the handles until the symbol has the 
desired size.

• You can cut, copy and paste junctions just like 
other diagram elements using the clipboard 
(see page 223). 

• To change the color of the junction, click on 
the junction with the right mouse button and 
select Edit Color from the context menu.

A selection box opens containing the possible 
colors.

• Select a color. 

The junction is shown in the selected color.

To create a transition:

• Click the Connect button

or

• right-click in the drawing area (but not on an 
element).

The connection mode is activated, the cursor 
changes to a crosshair.

• Click inside the state symbol or the junction 
where the connection is to start and drag the 
mouse cursor to the next state or junction.

A line is drawn after the cursor. The line starts 
on the edge of the symbol in which you 
clicked.

Note

It is not possible to create a transition from a 
junction to itself or to another junction.
The State Machine Editor



• Click inside the symbol you want to connect 
to.

A transition is drawn between the two sym-
bols. It has an arrowhead pointing from the 
first state/junction to the second state/junc-
tion symbol.

Changing the path of a transition:

• Click on the transition to display the path and 
connection handles in the diagram.

• Drag the path handles to change the path of 
the transition.

• Drag the connection handles to change the 
position of the connection on the state sym-
bol.

You can assign an existing connection to 
another source or target state simply by drag-
ging the connection handles.

Connection

handles
Path
handles
The State Machine Editor 275



276
Changing the appearance of a transition:

• Right-click on a transition and select Edit 
Transition from the context menu.

or

• Double-click on the transition.

The transition editor ("Transition Editor" dia-
log box) opens.

• Select a color from the "Color" combo box.

• Select the line width from the "Width" combo 
box.

• Click OK to confirm your changes.

The transition is shown with the selected color 
and line thickness.

One trigger is created with a new state machine by default. You can add more
triggers, but keep in mind that the use of several triggers in one state machine
leads to extended program code (see "Optimized for Code Size" in the ASCET
reference guide).
The State Machine Editor



Inserting a trigger:

• Select Diagram → Add Trigger to generate a 
new trigger.

The trigger is added in the 'Diagrams' pane. Its 
name is highlighted to allow editing of the 
location and position.

• Enter a name for the trigger and press 
<ENTER>.

4.2.2 Hierarchy States

State diagrams can be hierarchical (see "Hierarchy" in the ASCET reference
guide), i.e. a state can contain a different state diagram. When the state
machine enters a hierarchy state, it starts with the start state of the subdia-
gram contained in the hierarchy state. If, however, the hierarchy has a history
(see "History" in the ASCET reference guide), the substate activated upon a
transition to the hierarchy state is the one the subdiagram was in when the
hierarchy state was last left. 

A distinction is made between closed and open hierarchy states. Unlike a
closed hierarchy state, where the subdiagram is created on a new drawing
level, the subdiagram in an open hierarchy state is on the same drawing level.
However, both hierarchy types have the same functionality. This means that
when you are using open hierarchy states, there is not need to switch between
different drawing levels.

Open and closed hierarchy states can exist within a state diagram simulta-
neously; however, a single state can only have one hierarchy type. Incorrect
construction from overlapping states in the drawing area is displayed by a
change of color on the state symbols.

Code for a hierarchical state machine can be generated either flat (a single
switch statement for all (basis) states) or hierarchical (nested switch state-
ments according to the hierarchy); the latter can considerably reduce the code
size (see section "Hierarchical Code Generation" in the ASCET reference
guide).

To activate/deactivate hierarchical code generation:

to activate/deactivate hierarchical code generation, proceed as follows.

• Open the project that contains your state 
machine.

This may also be the default project.
The State Machine Editor 277



278
• In the project editor, open the "Project Proper-
ties" window (page 408).

1. deactivate

• In the "Statemachine" node (page 422), 
deactivate the Hierarchical Code-Genera-
tion (may be changed locally) option to 
deactivate hierarchical code generation for all 
state machines in the project.

In that case, the settings of individual state 
machines are irrelevant.

2. activate

• Activate the Hierarchical Code-Generation 
(may be changed locally) option to activate 
hierarchical code generation for all state 
machines in the project.

• Close the "Project Properties" window.

The global setting in the project properties 
alone is not sufficient to generate hierarchical 
code.
The State Machine Editor



• Select Component → Edit Implementation 
to open the implementation editor of each 
state machine in the project for which you 
want to generate hierarchical code.

• In the "Settings" tab, activate the Hierarchi-
cal code generation for State Machines 
option.

• Close the implementation editor.

Hierarchical code generation takes place only 
if both options are activated.

Closed Hierarchy State

To add a closed hierarchy state:

• Add the state that is to become a hierarchy 
state to the parent diagram.

• Right-click on the state and select Edit State 
from the context menu.

• In the state editor, activate the Hierarchy 
State option.
The State Machine Editor 279



280
• Click OK.

The state becomes a hierarchy state which is 
shown by the double-lines on the state sym-
bol.

To move between hierarchy levels:

• Double-click on a hierarchy state

or 

• right-click on the hierarchy state and select 
Next Level from the context menu.

You move one level down, i.e. the state dia-
gram contained inside the hierarchy state is 
shown. Here, you can specify the content of 
the hierarchy state.

• While inside a hierarchy state, double-click in 
the drawing area (not on a diagram item). 

You are moved back up one level.

To set up a hierarchy state with a history:

• Right-click on the hierarchy state and select 
History from the context menu.

The hierarchy state now has a history. When it 
is entered, the transition ends in that substate 
the hierarchy was in when it was left, even if 
that is not the start state of the hierarchy.

It is possible to connect states that are not in the same hierarchy with pins on
hierarchical state symbols. A connection between states via a pin is the same
as if the states were connected directly.

To add a pin to a hierarchy state:

• Right-click on a hierarchy state.
The State Machine Editor



• Select Add Pin from the context menu.

A pin with a default name is created on the 
state symbol. A corresponding pin is drawn 
inside the hierarchy.

You can now connect a transition to the pin 
on the state symbol, and then connect the pin 
inside the hierarchy to a state.

Resolving a hierarchy state:

• Right-click on a hierarchy state.

• Select Resolve Hierarchy from the context 
menu.

All the elements and their connections are 
copied from the hierarchy state to the higher-
level drawing area in the same position. This 
creates a second independent state diagram 
with a start state. The double lines which 

Pin Symbol
The State Machine Editor 281



282
highlighted the closed hierarchy state are 
deleted. If the selected state had a history, this 
is also deleted.

After resolving the hierarchy, the state machine is often unclear, and it (usually)
does not have the same functionality as before. In the example, the states B_1
and B_2 were, at the beginning, contained in the close hierarchy state
B_hierarchy. Now only B_1 is contained in B_hierarchy. If, therefore,
the transition from B_1 to B_2 (or vice-versa) occurs, other actions are also
executed (see also "Semantics: Hierarchical State Machines" in the ASCET ref-
erence guide). 

To create the required functionality and also to make the diagram clearer, post-
editing is required.

Open Hierarchy State

To add an open hierarchy state:

• Increase the area of the state that is to contain 
the hierarchy by dragging the handles.

• Add all the necessary states and transitions for 
the subdiagram to the state symbol in the 
selected hierarchy state.
The State Machine Editor



• Select a state intended as the start state for 
the subdiagram.

The method used to create a state diagram 
within a state symbol is identical to creating a 
state diagram in the drawing area.

Transitions from a substate to a state outside the hierarchy are possible. Keep
in mind, however, that different actions are performed upon a transition
between different hierarchy levels than upon a transition within the same hier-
archy level (see Example 12 and Example 15 in the in the ASCET reference
guide). A state is considered outside a hierarchy when it is placed fully or partly
outside the hierarchy state (state Level2_State2 in the figure). 

As with closed hierarchy states, the user can set up a hierarchy state with a
history.
The State Machine Editor 283



284
4.2.3 Specifying Conditions and Actions

Every state can have an entry, a static and an exit action, every transition can
have a trigger, a condition and a transition action attached to it. Conditions
(see "Conditions" in the ASCET reference guide) and actions (see "Actions" in
the ASCET reference guide) are similar to methods, and they are specified the
same way as the methods of classes.

A condition is tested each time the state machine is in a state that has a tran-
sition with this condition attached to it. If the condition is true, a transition
takes place. Therefore a condition always has true or false as its return
value. Entry, exit and transition actions - if present - are carried out each time
a transition takes place, static actions are carried out when no transition takes
place. Chapter 2.5.2 til chapter 2.5.6 in the ASCET reference guide describe
the functions of a state machine in detail.

You can specify conditions and actions either in separate diagrams (Action-
Condition diagrams) in the form of block diagrams or ESDL code. In that
case, the state machine then contains at least two diagrams. Alternatively, you
can specify actions or conditions in ESDL directly in the state or transition edi-
tor; in this case no separate diagram is required.

Static actions of hierarchy states can be optimized regarding code size; see
chapter 2.5.8, section "Static actions of hierarchy states", in the ASCET refer-
ence guide.

To activate/deactivate optimization of static actions:

to activate/deactivate optimization of static actions in hierarchy states, proceed
as follows.

• Open the project that contains your state 
machine.

This may also be the default project.

• In the project editor, open the "Project Proper-
ties" window (page 408).

1. deactivate

• In the "Statemachine" node (page 422), 
deactivate the Hierarchical Code-Genera-
tion (may be changed locally) option to 
deactivate hierarchical code generation for all 
state machines in the project.
The State Machine Editor



2. activate

• Activate the Optimize Static Action 
(Restricted Modeling) option to activate the 
optimization for all state machines in the 
project.

The optimization of static actions takes place. 
The changes in code generation thus intro-
duced can alter the behavior of the state 
machine. If you activate the option for an 
existing state machine, check it’s behavior 
carefully.

Conditions and Actions in Separate Diagrams

You can specify actions and conditions as block diagrams or ESDL code in sep-
arate ActionCondition diagrams. A state machine can contain any num-
ber of these ActionCondition diagrams; an individuakl diagram contains
either block diagrams or ESDL code.

First, you create the required diagrams. After that, actions and conditions can
be specified like normal block diagrams or ESDL code. Specifying block dia-
grams is explained in "Creating Block Diagrams" on page 206, specifying
ESDL code is explained in "The ESDL Editor" on page 328.

Note

When you activate the optimization, modeling is restricted as follows:
If a substate of the state machine contains a direct transition out of it’s 
hierarchy state, this transition must have the highest priority of all transi-
tions from that substate.
The State Machine Editor 285



286
Generating a diagram for actions/conditions:

1. Block Diagram

• Select Diagram → Add Diagram → 
Actions/Conditions BDE

or

• right-click in the "Diagrams" pane and select 
Add Diagram → Actions/Conditions BDE 
from the context menu.

The diagram ActionCondition_BDE is cre-
ated.

• Enter a name for the diagram in the "Dia-
grams" pane. 

2. ESDL

• Select Diagram → Add Diagram → 
Actions/Conditions ESDL

or

• right-click in the "Diagrams" pane and select 
Add Diagram → Actions/Conditions ESDL 
from the context menu.

The diagram ActionCondition_ESDL is 
created.

• Enter a name for the diagram in the "Dia-
grams" pane. 

Adding a condition:

• In the "Diagrams" pane, select the name of 
the diagram to which you want to add the 
condition.

• Select Diagram → Add Condition

or
The State Machine Editor



• right-click in the "Diagrams" pane and select 
Add Condition from the context menu.

A new condition is created and its name is 
shown in the "Diagrams" pane.

A condition has a logical return value. The 
return value for the condition is created auto-
matically. When you open the diagram that 
contains the condition, the return value is dis-
played in the "Elements" pane.

• Enter a name for the condition and press 
<ENTER>.

An action has, as standard, no arguments and no return value. Therefore, no
interface elements are created for an action, but other than that, adding
actions works analogous to adding conditions, using the menu Diagram →
Add Action or the context menu Add → Action.

Opening a diagram for actions/conditions:

• In the "Diagrams" pane, select the Action-
Condition diagram you want to open.

• Double-click on the diagram

or

• select Diagram → Load Diagram.

If the currently loaded diagram contains 
unsaved changed, you are asked whether you 
want to save the changes.

– Click Yes to save the changes

or
The State Machine Editor 287



288
– Click No to reject the changes

The ActionCondition diagram opens in a 
new editor window.

Specify the conditions and actions as for all the other block diagrams or ESDL
components, see chapters 4.1 "The Block Diagram Editor" and 4.4 "The ESDL
Editor". Only the menu options and buttons for code generation are disabled;
these are available only in the state machine editor.

Code for actions/conditions thus specified is generated either as separate func-
tions or inserted on the spot during code generation (auto-inlining; see "Opti-
mizing the State Machine" in the ASCET reference guide).

To activate/deactivate auto-inlining:

to activate/deactivate auto-inlining, proceed as follows.

• Open the project that contains your state 
machine.

This may also be the default project.

• In the project editor, open the "Project Proper-
ties" window (page 408).
The State Machine Editor



1. deactivate

• In the "Statemachine" node (page 422), 
deactivate the Auto-inline private methods 
(Smaller code size - may be changed 
locally) option to deactivate auto-inlining for 
all state machines in the project.

In that case, the settings of individual state 
machines are irrelevant.

2. activate

• Activate the Auto-inline private methods 
(Smaller code size - may be changed 
locally) option to activate auto-inlining for all 
state machines in the project.

• Close the "Project Properties" window.

The global setting in the project properties 
alone is not sufficient to activate auto-inlining.

• Select Component → Edit Implementation 
to open the implementation editor of each 
state machine in the project for which you 
want to activate auto-inlining.

• In the "Settings" tab, activate the Auto-
inline private methods (Smaller code size) 
option.
The State Machine Editor 289



290
• Close the implementation editor.

Auto-Inlining takes place only if both options 
are activated.

You can use this option to exclude individual 
state machines from auto-inlining.

Using Conditions and Actions

You must explicitly assign actions and conditions from an ActionCondition
diagram to the transitions or states in which they are used. 

Assigning triggers, priorities, conditions and actions to a transition:

Every transition has to have a trigger and a priority, but the condition and the
transition action are optional.

• Double-click on the transition or the transition 
segment 

or
The State Machine Editor



• right-click on the transition/segment and 
select Edit Transition from the context menu.

The transition editor appears.

• Enter a number in the "Priority" field to assign 
a priority to the transition. 

If there is more than one transition/segment 
with the same trigger leading from a state or 
junction, their conditions are checked in the 
order of priority. Each transition leading from a 
state/junction with the same trigger has to 
have a unique priority. 

Note

The higher the number selected, the higher the 
priority of the transition.
The State Machine Editor 291



292
• Select a trigger from the "Trigger" combo 
box.

All trigger events defined in the state diagram 
are listed in this box.

• Select a transition action from the combo box 
on the "Action" tab.

All the actions specified in an ActionCon-
dition diagram are listed in the combo box 
and can be assigned as transition actions.

• Select a condition from the combo box on the 
"Condition" tab.

All conditions specified in an ActionCondi-
tion diagram are listed in this box. 

• Click OK.

The trigger event name, the priority and the 
names of the condition and action of the tran-
sition/segments are shown in the diagram.

Each state can have an entry action, a static action and an exit action. All these
are optional.

Note

If a transition is split into two transition seg-
ments by a junction, only one of the segments 
may possess a trigger. 

Note

A transition segment leading into a junction 
may not possess an action. The combo box is 
deactivated.

Note

If no condition is specified, it means that the 
condition is always true, i.e. the transition 
always takes place.
The State Machine Editor



Assigning actions to a state:

• Double-click on a state

or

• right-click on the state and select Edit State 
from the context menu

or

• select Edit Action → <action> from the con-
text menu to edit a particular action.

The state editor opens.

• On the "Entry" tab, select an entry action 
from the combo box.

• On the "Static" and "Exit" tabs, select the 
static and exit actions.

You can use all the actions here.

• Click OK.

The names of the actions are displayed in the 
state symbol.
The State Machine Editor 293



294
If you have assigned actions or conditions wirh arguments, a test is carried out
when you leave the state or transition editor to see if all the relevant triggers
have the corresponding arguments with identical names and types. If this is
not the case, an error message appears in the ASCET monitor window.

Generate the trigger elements specified in the error message as described on
page 301.

If you have generated a trigger argument in reverse, and it is not used in any
action or condition, this has no effect on the function of the state machine. On
code generation, a warning is only displayed in the "ASCET Errors/Warnings"
window.

Once you have assigned actions or conditions from an ActionCondition dia-
gram, the Edit button on the various tabs becomes active. You can use it to
edit the action/condition assigned on the respective tab.

To edit actions/conditions:

• Open the state editor or transition editor.
The State Machine Editor



• In one of the tabs, assign an action or condi-
tion.

• To edit the action or condition, click Edit.

• In the "Confirm" window, confirm the saving 
of your input to the state or transition editor.

The state/transition editor is closed, the set-
tings are adopted. 

Another "Confirm" window appears.

• In the new window, confirm the save of your 
inputs to the state diagram.

The state diagram is saved.

The diagram containing the assigned action or 
condition open in a separate editor window.

Conditions and Actions in the State Diagram

It is possible to type the ESDL code for a condition or action in the state dia-
gram, directly into the state editor or transition editor. In this case it is not
necessary to create a specification in a separate diagram, the Edit button is
inactive.

You can declare variables and parameters by clicking on an element button in
the state machine editor and typing a name into the "Elements" pane. You
can then use those variables in the ESDL code by typing in their names. Like-
wise, you can refer to any trigger arguments, imported components, their
methods or the elements defined within them by typing the name. This makes
it possible to specify complex state machine behavior with just a few lines of
code, and without any additional diagrams. The ESDL language is described in
chapter 5 in the ASCET reference guide.

Specifying actions in the state editor: 

• Right-click on the state whose actions you 
want to specify.

• Select Edit Action → Entry from the context 
menu to edit the entry action.

• Select Edit Action → Static from the context 
menu to edit the static action.

• Select Edit Action → Exit from the context 
menu to edit the exit action.

The state editor opens in the requested tab.
The State Machine Editor 295



296
• Select <ESDL> from the combo box.

The input field below the combo box is acti-
vated.

• Type the ESDL code into the input field.

You can undo the last input with <CTRL> + 
<Z>.

• Click OK to accept your input.

The Edit menu in the state editor provides several functions to ease the speci-
fication of actions in ESDL. 

To cut, copy and paste ESDL code:

• Highlight the section of code you want to edit.

or

• Select Edit → Select All to highlight all the 
code of the current action.

• Select Edit → Cut to remove the selected 
code and store it on the clipboard.

• Select Edit → Copy to copy the highlighted 
code to the clipboard.

• Select Edit → Paste to paste the code from 
the clipboard to any tab.

You can search and replace code, see section "To search and replace C Code:".

Enter ESDL 
code here
The State Machine Editor



You can also insert code from an external source into the action, or save the
code you specified in an external file, see section "Integrating an external
source file:".

You can print the specified code, see section "Printing the C code:". 

The transition editor, which is used to specify conditions and transition actions,
has the same functionalities as the state editor.

Specifying conditions and transition actions the transition editor:

• Right-click on the transition.

• Select Edit Transition from the context 
menu.

or

• Double-click on the transition.

The transition editor opens.

• On the "Condition" or "Action" tab, select 
<ESDL> from the combo box.

The input field below the combo box is acti-
vated.

• Type the ESDL code into the input field.

• Click OK.

The ESDL code of all conditions and actions specified at a state or transition is
displayed in the state diagram. For complicated state machines, it can thus
quickly become rather crowded.
The State Machine Editor 297



298
You can avoid that by entering a comment in the first line when you add con-
ditions or actions. One-line comments are marked by two leading slashes //,
comments of any length are included in /* <Comment> */. In this
case, only the comments are displayed in the diagram.

You can also add the comment lines automatically at a later time.

Automatic insertion of comment lines:

• Open the state machine in the state machine 
editor.

• Select Diagram → Create State Code Com-
ments.

In each condition and action specified in the 
state diagram, a comment with the text of the 
first code line is added as first line. 

When code is generated for a state machine, parts of actions and conditions
specified at the state or transition are generated as separate methods (outlin-
ing). Thre prerequisites for outlining are desctibed in chapter "Optimizing the
State Machine" in the ASCET reference guide. You can disable outlining.
The State Machine Editor



To activate/deactivate outlining of actions/conditions:

to activate/deactivate outlining, proceed as follows.

• Open the project that contains your state 
machine.

This may also be the default project.

• In the project editor, open the "Project Proper-
ties" window (page 408).

1. deactivate

• In the "Statemachine" node (page 422), 
deactivate the Outline Generated Methods 
(may be changed locally) option to deacti-
vate outlining for all state machines in the 
project.

In that case, the settings of individual state 
machines are irrelevant.

2. activate

• Activate the Outline Generated Methods 
(may be changed locally) option to activate 
outlining for all state machines in the project.

• Close the "Project Properties" window.

The global setting in the project properties 
alone is not sufficient to activate outlining.

• Select Component → Edit Implementation 
to open the implementation editor of each 
state machine in the project for which you 
want to activate outlining.
The State Machine Editor 299



300
• In the "Settings" tab, activate the Outline 
automatically generated methods for 
State Machines option.

• Close the implementation editor.

Outlining takes place only if both options are 
activated.

If required, code for the actions/conditions is 
generated as separate methods during code 
generation.

Communication with Other Components

A state machine can communicate with other ASCET components. For this,
there are several options: inputs and outputs, trigger arguments and public
methods (see also section "State Machines as Classes" in the ASCET reference
guide). 

Adding inputs and outputs to the state machine:

• Click on the Input or Output button.

• In a block diagram editor for ActionCondi-
tion diagrams, click inside the drawing area 
where you want to position the input or out-
put.

The input or output is created. You can use 
the element the same way as an argument or 
a variable.
The State Machine Editor



If you want carry out external communication using trigger arguments, a series
of steps are necessary.

Firstly, you need one or more trigger arguments. The rules on which triggers
must to be added to arguments and in which cases are shown on "State
Machines as Classes" (page 85) in the ASCET reference guide.

Adding a trigger argument:

• Open the interface editor for the required trig-
ger (see page 192).

Different from the interfaces of normal meth-
ods, there is only one tab here, "Inputs", and 
one menu, Input.

• Add the necessary arguments in the "Inputs" 
tab (see page 193).

The trigger argument belongs to a public method in the same diagram as the
state diagram. Therefore, you can use it exactly as you would use variables or
parameters, if you specify conditions or actions in the transition or state (see
"Conditions and Actions in the State Diagram" on page 295).

If you want to use the trigger argument in an action or condition specified in
an ActionCondition diagram, you must generate an argument of the
same name and the same type in the action or condition. The arguments in
triggers and actions/conditions are mapped according to their name and their
type.

Adding arguments to conditions/actions:

• In the "Diagrams" pane, select the required 
action or condition.
The State Machine Editor 301



302
• Open the interface editor.

The interface editor for actions/conditions is 
the same as for normal methods.

• In the "Arguments" tab, add the necessary 
arguments. Make sure that the names and the 
types are the same.

With this generated argument you can create 
connections as with a parameter.

• If necessary, you can enter a comment for the 
return value of a condition in the "Return" 
tab.

Actions can have return values; however, 
those values are ignored during usage as 
action.

4.2.4 Public Methods

You have the option of specifying public methods in a separate diagram. You
can open these methods from within the state machine as well as from other
components.

To create a public diagram:

• Select Diagram → Add Diagram → Public

or

• Right-click in "Diagrams" pane and select 
Add Diagram → Public from the context 
menu.

A public diagram is created.

• Enter a name for the diagram in the "Dia-
grams" pane. 

• In the "Diagrams" pane, double-click on the 
name of the diagram.

The diagram opens in a separate editor win-
dow.

To add a public method:

• In the "Diagrams" pane, select a public dia-
gram.
The State Machine Editor



• Select Diagram → Add Method

or

• right-click in the "Diagrams" pane and select 
Add Method from the context menu.

A new method is created and its name is 
shown in the "Diagrams" pane.

• Enter a name for the method and press 
<ENTER>.

The methods are specified as described in chapter 4.1 "The Block Diagram
Editor". Some examples are listed in the following, but the list is by no means
complete.

Using a public method for external communication:

• Create a public method in a public diagram.

• Add the required arguments as described on 
page 193.

The arguments can be read only within the 
method. To be available in the state machine, 
their values have to be assigned to variables.

• Add the respective number of variables.

• Connect each argument with a variable.

The variables can be used in the entire state 
machine. The figure lists examples to process 
or check the input values in the method.
The State Machine Editor 303



304
To use public methods in actions and conditions:

A public method with no return value is available in the combo box on the
action tabs in the state or transition editor. A public method with a return value
is available in the combo box on the "Condition" tab in the transition editor. 

• Assign the public method to an action as 
described on page 293.

• Assign the public method to a condition as 
described on page 290.

If you specify actions or conditions in ESDL, you can call the public methods of
the state machine exactly like the methods of imported classes. The class name
is either replaced by this or self, or left out completely.

Both ways to specify the calling of the public method count in the above
figure obtain the same results.

4.2.5 Experimenting with state Machines

You can experiment with a state machine in the same way as with any other
component. To start the offline experimentation environment for a state
machine, perform the same steps as outlined in the section "Analyzing Com-
ponents" on page 258.

To analyze a diagram:

You can analyze the state diagram or one of the other diagrams of the state
machine.

• Load the diagram you want to analyze into 
the drawing area.
The State Machine Editor



• Select Diagram → Analyze Diagram to ana-
lyze the current diagram.

The diagram is checked for syntactic errors. 
Errors are reported in the ASCET monitor win-
dow (see chapter 2.4 "The ASCET Monitor 
Window").

• Click on an error message in the monitor win-
dow, "Build" tab, to have the error high-
lighted automatically in the state machine 
editor.

Setting up the experimentation environment also works in the same way for all
kinds of components and is described in "The Experimentation Environment"
on page 561. The state machine editor offers state machine animation as an
additional feature.

Using the state machine animation feature:

• Start the offline experiment for the state 
machine.

• Set up the experiment as required.

• Switch to the state diagram.

• Right-click on a state.

• Select Animate States from the context 
menu.

Note

ESDL code in conditions or actions is not ana-
lyzed.
The State Machine Editor 305



306
• Start the simulation.

The simulation runs as normal, but the current 
state is highlighted in the state diagram in the 
animation color.

Changing the animation color:

If you want to change the animation color, proceed as follows.

• In the Component Manager , select Tools → 
Options.

• In the "Options" window, select the "Fonts & 
Graphics" tab.

• From the "Color of Animated States" combo 
box, select the animation color you want.

• Click OK.

The animated states are displayed with the 
selected color. You can change the animation 
color while the experiment is running.

You can look at individual states or transitions while the experiment is running. 
The State Machine Editor



Displaying information about states or transitions:

• Right-click on a state and select State Info 
from the context menu

or

• right-click on a transition and select Transi-
tion Info from the context menu.

The state editor, or transition editor, opens. All 
editing facilities are disabled.

You can look at the actions/conditions 
assigned, or specified in ESDL, in the tabs.

• Click OK or Cancel to close the window.

You can reset the state machine to its original state while the experiment is
running. 

Resetting the state machine:

• Right-click on one of the states.

• Select  Reset Statemachine from the context 
menu.

The state machine is reset to the start state. 

This does not affect the values of any variables 
within the state machine. If the experiment 
has not been stopped, it continues normally 
from the start state.
The State Machine Editor 307



308
4.3 The C Code Editor

The C code editor is used to specify classes, modules, or continuous time
blocks in the C programming language. Components can be specified in
C code either by typing in the code for the class, or by including existing pro-
grams and modifying them as required.

This section describes how to use the C code editor for specifying classes and
modules. The C code editor is based on the same principles as the block dia-
gram editor For more information see "The Block Diagram Editor"
on page 178.

Creating a C Code component:

• In the Component Manager, select a folder 
for the new component.

• Select Insert → Class → C Code or 
Module → C Code.

Or

• use the Insert Class - <Type> or Insert Mod-
ule - <Type> buttons.

– Use one of the arrow buttons to select the 
type C Code.

– Click on Insert Class - C Code or Insert 
Module - C Code.

A new component is created.

• Type in a name for the component and press 
<ENTER>.

• On the menu bar, select Component → Edit 
Item

or

• press <ENTER>

or

• in the "1 Database" list, double-click on the 
component name.

The C code editor for the new component 
opens.

The following illustration shows the C code editor with the most important
parts labelled.
The C Code Editor



 

The "Elements" and "Diagrams" panes work in the same way as in the block
diagram editor. The diagram feature is available, but it only serves to structure
the methods of the component into groups of public and private methods. The
code for the body of each method or process of a C code component is shown
in the code pane, when the method or process is selected in the "Diagrams"
pane. The title bar shows the name of the component, the current project and
the current target.

The "Target" combo box shows the current target. A C code component can
contain code for several targets, but the code has to be specified for each
target individually. This is because C code is platform-dependent; you cannot
assume that C code developed for one platform will run on another platform
without modifications.

Different experimentation arithmetic, e.g. floating point or fixed point is possi-
ble for each target; the C code also has to be specified separately for each of
them. It is possible to copy the code for each target/arithmetic combination to
any other, so you only need to enter the code once, and it can then be adapted
as required.

You will specify the body of a method or process in the code pane. A method
corresponds to a function in C, i.e. it can have several arguments but only one
return value. A process has neither arguments nor return values. The declara-
tion of the function is generated by ASCET; the user has to define only the
content of the function.

"Target" combo box

method body
method header

"Arithmetic" combo box

"Elements" pane

"Diagrams" pane

code pane
The C Code Editor 309



310
calc (a,b)
  {

<user-defined content in C Code >
}

The arguments and return values of the function are specified as in the Block
Diagram Editor.

If you want to include any system libraries, you can do this with an ordinary
include statement. This is written in the header of the class or module. Click on
the "Header" tab of the "Code" pane to display the header. Variables local to
a method are also declared here with normal C-statements. The scope of a
variable is the method or process it has been declared in, i.e. you cannot refer-
ence a variable that was declared in one method or process in another one.

Basic elements are created as in the block diagram editor by clicking on one of
the element buttons. Elements work like elements in components described
by block diagrams, i.e. they can be used in all methods or processes of the
component, and can also be made global. Once you have created an element,
you can reference it by simply typing its name in the "Code" pane. 

Similarly, you can define arguments and return values for classes, and mes-
sages for modules, as you would in a block diagram component. However, if
the component is to reference other components there is a difference in syn-
tax; you should therefore decide early on whether the component references
others. 

Description of the Menu Options

• Component

– Clean code generation directory

Deletes all files in the code generation directory.

– Touch

Forced regeneration during the next code generation
(Flat →  the edited components, 
Recursive →  the referenced components also).

– Generate Code

Generates the code for a component

– Open Experiment

Starts an experiment.
The C Code Editor



– Default Project

Allows editing the default project used for experiments w. compo-
nents
(Edit → Opens an editor for the default project, 
Resolve Globals →  automatically creates a global element for each 
imported element in the component for which there is no exported 
element,
Delete Unused Globals → deletes unused global elements).

– Edit Layout

Opens the layout editor.

– Edit Data

Opens the data editor for a component. Search of component data 
is possible.

– Edit Implementation

Opens the implementation editor Search of component implemen-
tations is possible.

– Edit Notes

Opens the Notes editor—you can make notes about the compo-
nent here.

– Check Dependency

Checks whether the allocation of formal parameters to the model 
parameters is correct.

– Export Data

Exports a component data set.

– Show Path

Shows the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).
The C Code Editor 311



312
– File out Generated Code

Saves the code generated in the file system 
(Flat →  the edited component, 
Recursive →  the referenced components also)

– View Generated Code

Generates the code for the component and displays it in a text edi-
tor.
The text editor can be selected in the ASCET options window, 
"ASCII Editor" node (cf. page 60).

– File Out Generic Code For External Make

Saves the code generated in any directory for processing at a later 
point using external tools, e.g. an external Make/Build process.

– Exit

Closes the C code editor.

• Diagram

– Analyze Diagram

Analyzes the current diagram (deactivated in the C code editor). 

– Add Diagram

Creates a new diagram.
(Public → contains only public methods,
Private → contains only private methods)

– Rename Diagram

Renames a diagram 

– Delete Diagram

Deletes a diagram from the component.

– Add Method

Creates a method. Available for classes and modules.

– Add Process

Creates a process.

– Add Trigger / Action / Condition 

Deactivated; only available in the state machine editor.

Note

This menu is also available as context menu in the "Diagrams" pane.
The C Code Editor



– Edit

Editing the method/process interface.

– Rename

Renames a method/process.

– Delete

Deletes a method/process.

– Move Up

Moves a diagram or a method/process
(upwards).

– Move Down

Moves a diagram or a method/process
(downwards).

– Move
Moves methods/processes between diagrams.

– Edit Implementation

Specifies the implementation of a method / process.

• Element

– View → Collapse all used to collapse the tree structure in the "Ele-
ments" pane so that only the component is shown.

– View → Expand all expands the tree structure so that the entire 
content of the component is visible.

– Add Item

Accepts a component as a complex element.

– Rename (<F2>)

Renames a diagram element.

– Delete (<DEL>)

Deletes a diagram element.

Note

The Add Item, Rename, Delete and Edit functions are only avail-
able when ASCET-MD is installed.
This menu is also available as context menu in the "Elements" pane.
The C Code Editor 313



314
– Show Occurrences

Displays all occurrences of an element (only available for block dia-
grams).

– Edit

Editing the configuration of an element.

– Edit Data

Editing the data of an element.

– Edit Implementation

Editing the implementation of an element.

– Set Cache Locking

These menu options are used in connection with ASCET-RP. They 
are described in the ASCET-RP user’s guide.

– Edit Component

Opens the specification editor for an included component

– Replace Component

Replaces a component with another component. The name of the 
old component remains.

– Show Path

Displays the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– Notes

Opens the notes editor for an included component. 

– Edit Distribution

Opens an editor for distribution (only for group tables).

– Edit Max Size

Opens an editor where you can specify the maximum size of an 
array, a matrix or a table.
The C Code Editor



– Copy Elements (<CTRL> + <C>)

Copies an element from the "Elements" list.

– Paste Elements (<CTRL> + <V>)

Pastes a copied element into the "Elements" list.

– File Out Data

Writes the data from an array or a table to a file.

– File In Data

Reads the data for an array or a table from a file.

– Export Data

Exports the data set of an included component.

• Edit

– Element / Data / Implementation

Corresponds to the Edit / Edit Data / Edit Implementation entry 
from the context menu of the element list.

– Cut (<CTRL> + <X>)

Cuts the highlighted text.

– Copy (<CTRL> + <C>)

Copies the text highlighted.

– Paste (<CTRL> + <V>)

Inserts code from the Clipboard

– Find / Replace (<CTRL> + <F>)

Opens the editor for finding and replacing C code

– Select All (<CTRL> + <A>)

Highlights all the code of the current method or current process

– Load from file

Import/insert from a file.

– Store to file

Code is written to an external file.

– Print

Prints out the current code

– Printer Setup

Opens the "Printer Selection" window for printer selection and 
setup.
The C Code Editor 315



316
– Save (<CTRL> + <S>)

Saves a method or process

• View

– Show/Hide

Shows/hides several parts of the editor or the component.
(Element List →  "Elements" pane,
Diagram List →  "Diagrams" pane).

• Code Variants

– Copy C-Code to

The code is copied (without any changes) to the selected target/
arithmetic combination.

– Copy C-Code from

Copies a Target/Arithmetic combination.

4.3.1 Specifying Components in C Code

One method called calc is created by default. Creating methods and pro-
cesses, as well as specifying their interfaces, is the same as in the block diagram
editor and is described in "Defining a Component Interface" on page 192.
Creating of basic elements (cf. page 207) and enumerations (cf. page 208),
including components as complex elements (cf. page 217) and editing notes
(cf. page 220) also works the same way as in block diagrams.

Specifying a method or process:

• In the "Diagrams" pane, select the method or 
process you want to specify.

The name of the method appears on the left 
tab.

• From the "Target" combo box, select a target.

All targets installed on your ASCET system are 
available in the list.

• From the "Arithmetic" combo box, select an 
arithmetic for the code.

• Click on the "Header" tab.

• Enter the header information for the class or 
method, e.g. local variables, include state-
ments or macros.

• Click on the "<method name>" tab.
The C Code Editor



• Enter the code for the method.

Basic elements defined in the "Elements" 
pane can be referred to simply by typing their 
names. This is however only the case if no ref-
erenced components are used within the com-
ponent.

• Repeat for all methods or processes.

As C code is always platform-dependent, you have to specify the code of a
C code component for each platform and each piece of arithmetic individually.
However it is easy to copy code developed for one target/arithmetic combina-
tion for use with another one.

To copy C code for single classes or modules:

To copy existing C code of a single class or module to another target, experi-
ment type, or implementation, use one of the two possibilities described here.

1. Use the menu item Code Variants → Copy C-Code To.

• Open the module/class in the C code editor. 

• In the "Target" combo box, select the target 
the C code was written for.

• In the "Arithmetic" combo box, select the 
experiment type the C code was written for.

• In the "Implementation" combo box, select 
the implementation the C code was written 
for.

• Now select Code Variants → Copy C-Code 
To.
The C Code Editor 317



318
• The "Copy C Code to" dialog box opens.

• Select a target in the "Code for Target" pane.

• In the "Code Gen. Arithmetic" field, select the 
appropriate experiment type.

All experiments can evaluate an implementa-
tion. All implementations defined are shown 
in the "Implementation" pane.

• Select an implementation.

Once you have completed the selection, the 
OK button is activated.

• Click on OK.

The C code is copied to the selected controller. 

2. Use the menu item Code Variants → Copy C-Code From.

• In the C code editor, use the "Target", "Arith-
metic", and "Implementation" combo boxes 
to set up the target you are using with the 
appropriate experiment type and implementa-
tion.
The C Code Editor



• Now select Code Variants → Copy C-Code 
From.

The "Selection Required" window opens.

• Choose the target, experiment type, and 
implementation you want to copy the code 
from, and click OK.

The C code is copied to the current target.

To edit the code for a method or process:

• Highlight the section of code you want to edit

or

• select Edit → Select All to highlight the 
entire code of the current method or process.

• Select Edit → Cut to remove the code high-
lighted and store it on the clipboard.

• Select Edit → Copy to copy the highlighted 
code to the clipboard.

• Select Edit → Paste to paste the code from 
the clipboard.

The text you cut or copy is stored on the Windows clipboard and can be
exchanged between other applications (e.g. C development systems). You can
also copy and paste code between methods or processes, or between compo-
nents.
The C Code Editor 319



320
To search and replace C Code:

• Select Edit → Find/Replace.

The "Find/Replace" dialog box opens

• Type the text you want to find into the "Find" 
field.

You can use wild cards: # for character, * for a 
string of characters.

• Type the text that you want to replace the 
search text with into the "Replace With" field.

• Click the Find Next button to find the next 
occurrence of the search text.

The search text is found and highlighted. If the 
search text is not found, the message 
String Not Found is displayed in the sta-
tus line at the bottom of the dialog box.

• Click Replace Selection to replace the high-
lighted text with the text in the "Replace 
With" field.

This button is only available if the text has 
been found.

• Click Replace/Find to replace the highlighted 
text and find the next occurrence.

• Click Replace All to replace all occurrences.
The C Code Editor



• Click Close to close the "Find/Replace" dialog 
box.

Customizing the search criteria:

• Click the Forward option to search forward 
from the insertion point.

or

• Click the Backward option to search back-
ward from the insertion point.

• Tick the Case Sensitive box to make the 
search case sensitive.

• Tick the Wrap Search box to make the search 
wrap around the text.

If this option is checked, the search starts from 
the insertion point in the direction specified, 
and continues from the beginning or end of 
the text, back to the insertion point.

Saving a method or process:

• Select Edit → Save 

or

• press <CTRL> + <S> to save the current 
method or process.

This command is only available if the current 
method or process has been changed since it 
was last saved. If you switch between meth-
ods without saving, you are asked whether 
you want to save the current method.

Printing the C code:

• Select Edit → Print to print the code to your 
default printer.
The C Code Editor 321



322
• Select Edit → Printer Setup to select a 
printer.

The "Printer Selection" window opens.

• Select a printer in the "Printers" field.

• Click on Setup to change the printer setup.

• In the printer setup window, make the set-
tings.

• Click OK to accept the selection.

The "Printer Font Selection" window opens.

• Select the font you want to use.

• Click OK to accept the selection.

4.3.2 External Editor

The editor available for creating C code is limited and can only carry out simple
operations. Another way of creating code is to select a user defined external
editor (e.g. Notepad, Codewright, etc.). As the external editor is connected via
a file system, files with the suffixes "*.c" and "*.h" must be associated with
the editor in the Windows configuration. Without this association, the external
editor cannot be opened from the ASCET environment. However, an error
message indicates that the association is missing.

After using the button for the external editor, the view of the C code editor is
changed. It is divided into an upper section listing all the available methods or
processes of a component and a lower section showing the C code.
The C Code Editor



When the external editor is opened, the code for a method or a process is
written to one or more files which are stored in a temporary directory. After
you have finished working, the files first have to be saved in the external editor,
before they can be returned to the ASCET environment. Closing the external
editor from the ASCET environment writes the stored code changes from the
external editor to the ASCET environment, at the same time reading and delet-
ing the temporary file. Code changes made afterwards in the external editor
environment can no longer be returned to the ASCET environment. If you need
to re-edit the code, you must call the external editor from the ASCET environ-
ment again.

Opening an external editor:

• Click on the Activate External Editor button 
at the bottom of the editor window.

The view of the C code editor changes. The 
"Diagrams" pane disappears, the code pane is 
replaced by a selection field and a text field. 
All defined methods or processes are listed in 
the selection field.

Note

In order to return code changes made in the external editor to the ASCET 
environment, you must save the code in the external editor first.
The C Code Editor 323



324
• From the selection field, select the method or 
process for which you wish to change the 
code.

The valid code for the selected method or pro-
cess selected is displayed in the text field for 
checking purposes.

• Click on Start Edit to open the external editor 
with the code of the highlighted method or 
process. 

After the external editor has been opened, the 
method or process in the upper dialog field is 
marked with a red dot in the symbol. 

• Edit the code in the external editor.

Closing an external editor:

• Save the newly created or modified code in 
the external editor.

• In the C code editor, click on the Update but-
ton.

The current version of the code modifications 
in the external editor is transmitted to the 
ASCET environment. The code changes are 
displayed in the text field.
The C Code Editor



This does not close the connection to the 
external editor. Thus, you can continue work-
ing in the external editor, making changes 
and, when you have saved these changes, 
updating them in the ASCET environment.

• Click on the End Edit button to stop working 
with the external editor.

The connection to the external editor is 
closed, the red dot in the method or process 
symbol is deleted. Any changes made after-
wards in the open external editor are not 
applied.

• Close the external editor.

To end the external editor mode:

• Click on the Activate External Editor but-
ton.

When you did not click on End Edit first, a 
warning is displayed. You are informed that 
the content of the external editor is read to 
the ASCET environment.

– If necessary, save the file in the external 
editor to include the most recent alter-
ations.

– Confirm the warning.

The external editor mode is ended, and the 
original view of the C code editor is restored.

4.3.3 Using the External Source Editor

The external source editor allows you to integrate existing C-programs and use
them as part of the specification of a C code component. You can include
either C-source or object code. All the functions contained in an external
source file (for both source and object modules) have to be declared in a
header file that is also part of the component.
The C Code Editor 325



326
External modules also have to be specified separately for each target and arith-
metic. Target and arithmetic selection is as described earlier in this chapter.

Opening the external source editor:

• Click the External Source Editor button.

The external source editor opens

Integrating an external source file:

• Click the "Code" tab.

You can only have one external source file in a 
component; this can be either a C code mod-
ule or an object code module.

• Click on the C Code or Object Code option.

• Enter the functions of the external module 
(option C Code only)

or

• select Edit → Load from File.

The "File Selection" dialog box appears. 

• Select the external C code or object module.
The C Code Editor



• Click on Open.

The contents of the selected file is written in 
the text pane; the original file is not affected. 

• Select Edit → Store to File.

The "File Selection" window opens. The con-
tent of the text pane is written to the selected 
file.

• Select Edit → Save to save the external mod-
ule.

The same editing commands are available in the external source editor as in
the C code editor.

If an external class contains an external source module, there also has to be a
header file that declares the functions in the source module.

Adding a header file to the source module:

• Click on the "Header" tab.

You can add the header file before or after the 
source module.

• Type in the text of the header file or load it as 
described above.

• Tick the Use header global tick box to use 
the same header file for all your C code.

Header files thus marked are included in each generated *.c file.

Testing the external module:

• Select File →  Compile C-Code.

This command calls up the currently selected 
compiler and compiles the .c and .h files in 
the external module. This does not result in 
any executable code, but merely serves as a 
test whether the source code is syntactically 
correct. If it is not, the compiler will display the 
appropriate error messages.
The C Code Editor 327



328
4.4 The ESDL Editor

The ESDL editor is used to specify components in ESDL code. ESDL components
can either be classes, modules or continuous time blocks. A class in ESDL code
works in the same way as a class specified as a block diagram. When it is used
by another component, it looks and behaves just like a class specified as a
block diagram.

This chapter explains how to create classes and modules in ESDL code. Before
reading this chapter, you should be familiar with creating classes as block dia-
grams, as explained in chapter "The Block Diagram Editor" on page 178. The
ESDL language itself is described in chapter "Body Specification in ESDL" in the
ASCET reference guide.

Creating a class or module in ESDL code:

• In the Component Manager, select a folder 
for the new component.

• Select Insert → Class → ESDL or Module → 
ESDL.

Or

• use the Insert Class - <Type> or Insert Mod-
ule - <Type> buttons.

– Use one of the arrow buttons to select the 
type ESDL.

– Click on Insert Class - ESDL or Insert 
Module - ESDL.

A new component is created in the selected 
folder.

• Type in a name for the component and press 
<Enter>.

• On the menu bar, select Component → Edit 
Item

or

• press <ENTER>

or

• in the "1 Database" list, double-click on the 
component name.

The ESDL editor for the new component 
opens.
The ESDL Editor



As in the block diagram editor, components specified in ESDL code have meth-
ods or processes, which in turn can contain elements. The same kinds of ele-
ments are available, the interface and the methods are defined in the same
way. The diagrams feature is also available, but it only serves to structure the
methods of the components into groups of public and private methods. The
ESDL code of the class is displayed one method/process at a time in the code
pane of the ESDL editor.

The facilities in the menu bar correspond to the features in the C code editor
(see page 310), with two exceptions: the menu options Diagram → Analyze
Diagram and View → Show/Hide → Impl. Casts in Element List are avail-
able in the ESDL editor.

4.4.1 Specifying Classes in ESDL Code

Creating ESDL code:

• Add the methods needed, as described in 
"Defining a Component Interface" 
on page 192.

• Select a method in the "Diagrams" pane.

• Create the elements you want by clicking on 
the element buttons and typing in the names 
for the elements.

• Type the code for the method into the code 
pane.

You can use an external editor the same way 
as in the C code editor (cf. chapter 4.3.2).

"Elements" pane

"Diagrams" pane

code pane
The ESDL Editor 329



330
• Select Edit → Save 

or

• press <CTRL> + <S> to save the code of the 
current method.

You are asked whether you want to save every 
time you switch to another method.

In a textual specification there are no sequence calls; the order in which state-
ments are evaluated is determined by their order in the source code. Elements
and other methods are referred to in the code by their names.

To use implementation casts in ESDL:

Unlike the scenario in the block diagram editor, implementation casts can only
be added to the ESDL editor using a button.

• Add the required number of implementation 
casts using the Implementation cast button.

• Use the implementation casts in ESDL code in 
accordance with the rules listed in the "Imple-
mentation Casts in ESDL" chapter of the 
ASCET reference guide.

– Implementation casts are referenced by 
their names.

– They are always enclosed in parentheses.

– They are immediately in front of the ele-
ment they refer to.

– If an implementation cast refers to the 
result of an operation, this operation has 
to be enclosed in parentheses. The opera-
tion can be part of a larger calculation.

As in the block diagram editor, you can show and hide the display of imple-
mentation casts in the "Elements" list using View → Show/Hide → Impl.
Casts in Elements List (see page 249).

Note

When you apply an implementation cast to a logical variable or expression, 
an error message is generated during code generation.
The ESDL Editor



Editing ESDL code:

It is possible to cut, copy and paste ESDL code between methods or within a
method.

• Select the code you want to edit.

Or

• Select Edit → Select All to select all the code 
of the current method.

• Select Edit → Cut to cut the highlighted text 
or Edit → Copy to copy it to the clipboard.

• Click where you want to add the text.

• Select Edit → Paste to paste the text from the 
clipboard.

Searching/replacing and printing ESDL code:

A sophisticated search and replace feature is available in the ESDL editor. It
works in the same way as the one for the C code editor and is described in
detail in section "To search and replace C Code:" on page 320.

You can print out ESDL code the same way as C Code (cf. "Printing the
C code:" on page 321).

4.4.2 Specifying Modules in ESDL

Specifying modules in ESDL code works in the same way as specifying classes,
except that processes are defined rather than methods. Furthermore, it is pos-
sible to define messages in modules. When specifying classes, the message
buttons are greyed out in the ESDL editor, when specifying modules they are
active.
The ESDL Editor 331



332
4.4.3 Analyzing ESDL Components

After you have created a block diagram, you will usually want to experiment
with it to see whether it works as intended. The procedure is the same as for
block diagrams; see "Analyzing Components" on page 258.

As for block diagrams, you do not have to generate the complete code each
time, there is an analysis function.

To analyze a diagram:

• Select Diagram → Analyse Diagram to ana-
lyze the current ESDL component.

The diagram is checked for syntactic errors. 
Detected errors are listed in the ASCET moni-
tor window.

• Click on an error message to have the error 
highlighted automatically in the ESDL editor.

Note

For an individual ASCET module, code can be generated and simulated with-
out project context only in the physical experiment. For the other code gen-
erators the module must be integrated into a project. A so-called default 
project can be defined for each class or module for that purpose. This is the 
only way to access the implementation information. Without project con-
text, the conversion formulas as well as all implementations of imported 
entities are missing.
The ESDL Editor



4.5 Specifying Continuous Time Blocks

Continuous time blocks (CT blocks) are used to describe models of the techni-
cal processes controlled by ASCET embedded software specifications. Entire
control loops can be modelled and tested within ASCET in this way. CT blocks
are discussed in detail in chapter "Continuous Time Systems" in the ASCET
reference guide.

CT blocks are specified in the same way as other components, i.e. they can be
specified either as block diagrams, C code or ESDL code. There is, however, a
difference in functionality between CT blocks specified as block diagrams and
those specified in code.

Basic continuous time blocks specified in code are used to model basic physical
components, such as wheels, brakes, or hydraulic conduits. These components
are typically described in terms of differential equations, which are more easily
specified in code than as block diagrams. They are then combined into larger
assemblies with continuous time structure blocks specified as block diagrams.

It is possible to reference standard ASCET classes, but this only makes sense if
those classes are used as records, i.e complex variables. It is not possible to use
algorithms specified as standard classes in continuous time blocks.

This chapter shows how to specify continuous time blocks both as block dia-
grams and in code. The editors used are the same ones as for standard -ASCET
classes, with slight variations. Only the differences from standard class specifi-
cation are discussed here, so you should be familiar with the chapters "The
Block Diagram Editor" on page 178, "The C Code Editor" on page 308 and
"The ESDL Editor" on page 328.

4.5.1 Continuous Time Blocks as Block Diagrams

To specify a continuous time block:

• In the Component Manager, select a folder 
for the new block.

• Select Insert → Continuous Time Block → 
Blockdiagram.

• Type in a name for the component and press 
<ENTER>.

• From the menu bar, select ComponentEdit 
Item

or 

• press <ENTER> 

or
Specifying Continuous Time Blocks 333



334
• in the "1 Database" list, double-click on the 
component name.

The block diagram editor for CT blocks opens.

As mentioned elsewhere, a CT block specified as a block diagram consists
mainly of basic blocks which are then connected graphically to form a larger
assembly. Specifying the diagram is very similar to specifying classes, the most
important differences are listed below:

• There are only four operators available: addition, subtraction, multipli-
cation and division. If more complex non-linear operators are required, 
they can be specified as separate blocks.

• The basic elements that can be defined in a CT block are different, with 
the exception of characteristic lines and fields. These work in the same 
way as in classes. The basic elements that can be defined in CT blocks 
are discussed in section "Block Interfaces" in the ASCET reference 
guide.

• There is only one diagram in a CT block; additional diagrams cannot be 
defined. The diagram can be hierarchical, however.

• Interfaces need not be defined. A set of methods is predefined when 
the CT block is created. These cannot be changed and additional meth-
ods cannot be defined.
Specifying Continuous Time Blocks



• Only classes and other CT blocks can be referenced. Classes can only be 
used to define records, not to specify functionality. When a class is ref-
erenced, you are asked whether it is to be used as an input or an out-
put.

• There are no sequence calls in a CT block. The order for evaluation is 
determined automatically.

Apart from these considerations, all the block diagram editor features work in
the same way as for classes, and all the commands available here have the
same effect.

4.5.2 Continuous Time Blocks as C Code

The considerations applying CT blocks as block diagrams are valid for
CT blocks as C code. too, i.e. everything works in the same way as for classes,
except for the points listed above. One difference between continuous time
blocks specified as block diagrams and as C code is that the basic elements
that can be defined are different. CT blocks in C code are discussed in section
"Modeling in C" in the ASCET reference guide.

CT blocks specified as C code are used mainly to specify basic components for
a process model. The differential equations used to model these components
can be specified more quickly and concisely in code than in a block diagram.

To create a continuous time block:

• In the Component Manager, select the folder 
for the new block.

• Select Insert → Continuous Time Block → 
C Code.

• Type in a name for the component and press 
<ENTER>.

• Select Component → Edit Item

or 

• press <ENTER> 

or

• in the "1 Database" list, double-click on the 
component name.

The C code editor for CT blocks opens.
Specifying Continuous Time Blocks 335



336
• Select direct or nondirect from the right 
combo box in the button bar. 

• Type in the code or import external modules as 
required.

Using the C code editor is described in detail 
in chapter 4.3.

CT blocks specified in C code support either direct or nondirect outputs, but
not both. You can set this in the "Block Behavior" combo box. If you selected
direct, only the directOutputs[] method is available, with nondirect
only the nondirectOutputs[] method is available. See section "Algebraic
Loops" in the ASCET reference guide for details on direct and nondirect out-
puts.

4.5.3 Continuous Time Blocks in ESDL

Again, specifying CT blocks in ESDL is similar to specifying classes with the
exception of the differences listed above. The same basic elements are avail-
able in ESDL as for CT blocks specified in C code; the two types of blocks serve
the same purpose.

To create a continuous time block:

• In the Component Manager, select the folder 
for the new block.
Specifying Continuous Time Blocks



• Select Insert → Continuous Time Block → 
ESDL.

• Type in a name for the component and press 
<ENTER>.

• Select Component → Edit Item

or 

• press <ENTER> 

or

• in the "1 Database" list, double-click on the 
component name.

The ESDL editor for CT blocks opens.

• Type in the code for the block.

Using the ESDL editor is described in detail in "The ESDL Editor" on page 328.

4.5.4 Experimenting with Continuous Time Blocks

It is possible to run offline experiments with individual CT blocks. The blocks
can be complex, i.e. they can reference other blocks. It is not possible, how-
ever, to conduct hybrid experiments in this way. Hybrid experiments consist of
Specifying Continuous Time Blocks 337



338
both classes and CT blocks and are used to simulate control loops consisting of
a controller and a process model. These loops can be experimented within
projects. 

Experimenting offline with individual CT blocks works in the same way as
experimenting with classes (see "Analyzing Components"), except that there
is no event generator. A solver has to be specified instead.

To experiment with a continuous time block:

• In the Component Manager, select the block 
you want to experiment with.

• Select Build → Experiment → Offline to 
open the experimentation environment for 
the block.

You can also start the experiment from the 
editor.

• Set up the data generator, measurement and 
calibration windows and run the experiment.

Except for the solver configuration, the offline experimentation environment
works as normal. Using the experimentation environment is described in "The
Experimentation Environment" on page 561.
Specifying Continuous Time Blocks



To configure the solver:

• Select Experiment → Open CT Solver.

or

• Click on the Open CT Solver button.

The "Solver Configuration" dialog box opens.

• Select the solver from the "Integrator" combo 
box.

Depending on the selected method, different 
parameter fields are shown.

• Set the dT and h parameters.

• Click OK.

The solver is always specified for the entire model (global integration). When
experimenting in a project context, a separate solver can be specified for each
block separately (multirate). It is possible to change the solver during the exper-
iment. The following solvers are available:

• Adams-Moulton 2

• Euler

• Mulstep 2

Note

With online experimentation, (cf. "Online and 
Offline Experimentation" on page 437), dT is 
set in the "OS" tab of the project editor. The 
input field in the "Solver Configuration" win-
dow is disabled; changes during measurement 
are not possible.
Specifying Continuous Time Blocks 339



340
• Heun

• Runge-Kutta 4

• Variable-step Dormand/Prince RK5

• Variable-step Calvo 6(5)

• Variable-step Dormand/Prince RK8

• Variable-step implicit RK2

• Variable-step implicit RK4

• Variable-step implicit Gear 1

• Variable-step implicit Gear 2

For the first five solvers, only the dT and h parameters can be set. There are
additional parameters for the Gear 4 solver. The solvers are described in "Solv-
ing Differential Equations – Integration Algorithms" in the ASCET reference
guide. The parameters have the following meaning:

• dT is the communication time frame, i.e. the interval in which the block 
communicates with the outside.

• h is the integration step size, i.e. the interval for internal calculations.

• Initial h is the integration step size for solvers with variable step size.

• Minimum h and Maximum h are upper and lower limits for the h 
parameter which is calculated according to the model dynamics when 
the variable step size solvers are used. Maximum h must be less than or 
equal to dT.

• Relative error and Absolute error are the relative error and abslute error 
allowed for the calculation of h; available for solvers with variable step 
size.

• Max. iterations is the maximum number of iterations used to calculate 
the h parameter. Once the specified number of steps has been carried 
out, the h value at that point will be used.

Monitoring the Cycle Time

In the "OS" tab of the project editor, ASCET offers the possibility to measure
the cycle time of a timer task (see "The Monitoring Option" on page 400).

To activate the cycle time monitoring:

• Open a CT block. 
Specifying Continuous Time Blocks



• Select Component → Default Project → 
Edit to open the default project for the 
CT block.

Or

• Open a hybrid project (cf. chapter 4.8.7 
"Hybrid Projects" and "Projects and Hybrid 
Projects" in the ASCET reference guide).

• Activate the "OS" tab of the project editor.

In the "Tasks" list, you find the tasks automat-
ically defined for the CT block (cf. section 
"Combining Continuous Time Blocks With 
Modules" in the ASCET reference guide).

• Select the simulate_CT1 task.

• From the "Pre-/post hooks" combo box, select 
Monitoring.

The monitoring variables for each task are 
generated during the next code generation 
for an experiment. You can show them in the 
Specifying Continuous Time Blocks 341



342
measure windows or write them to the data 
logger (offline experiment only, cf. "The Data 
Logger" on page 597).

For CT blocks, you have to keep the following in mind. The simulation of
projects containing CT blocks allows the setting of two parameters for a
selected solver:

• the external communication interval dT (cf. "External Communication 
Interval dT" in the ASCET reference guide)

• and the integration step size h (cf. "Integration Step Size h" in the 
ASCET reference guide).

The cycle time for the simulation task simulate_CTn sums up all integration
steps performed during one dT step. Thus, the higher the ratio dT/h is, the
higher is the cycle time. A correction factor cannot be specified, however,
because other factors as the size and type of the model contribute as well.

A CT block specified with Simulink, on the other hand, does not distinguish
between dT and h; both have the same value. If such a CT block is imported
into ASCET, you have no possibility to change the solver or h within the exper-
iment. To obtain comparable cycle times for CT blocks specified with ASCET or
Simulink, the integration step size of the Simulink model has to be chosen for
both dT and h in the ASCET block.

4.6 The Boolean Table Editor

A Boolean table mirrors logical behavior. Its columns contain several logic
inputs and outputs whose values can be specified. The lines, so-called combi-
nations, contain the various combinations of input values and the respective
output values. In other components, a Boolean table is used as logic connec-
tion. You can attach notes to a Boolean table, like other components (cf.
page 220).

Monitoring
variables
The Boolean Table Editor



With the Boolean table editor, you can specify the Boolean table. ESDL code
describing the specified output behavior is generated automatically when the
editor is closed. The inputs are generates as logical variables; for each output,
a respective method is created.

Creating a Boolean table:

• In the Component Manager, select the folder 
for the new table.

• Select Insert → Boolean Table

or

• click on the Insert Boolean Table button.

A new Boolean table is created.

• Enter a name for the component and press 
<ENTER>.

• From the menu bar, select Component → 
Edit Item

or

• press <ENTER>

or

• Double-click on the selected element.

The Boolean table editor is opened.

table area
The Boolean Table Editor 343



344
Manipulations of the interfaces are not possible in this editor. In addition,
inputs and outputs cannot be edited from the "Elements" pane. Therefore,
most menu items from the other editors do not exist here; the browse display
mode has also been omitted.

The background colors of the table can be selected in the ASCET option win-
dow (see "Options for Table Editors" on page 57).

Description of the Menu Options

• Component

– Clean code generation directory

Deletes all files in the code generation directory.

– Touch

Forced regeneration during the next code generation 
(Flat →  the edited component, 
Recursive →  disabled for Boolean tables).

– Generate Code

Generates the code for a component.

– Compile

Compiles the generated code.

– Open Experiment

Starts an experiment.

– Default Project

Allows editing the default project used for experimenting with 
components
(Edit → opens an editor for the default project, 
Resolve Globals →  automatically creates a global element for each 
imported element in the component for which there is no exported 
element,
Delete Unused Globals → deletes unused global elements).

– Edit Layout

The layout editor opens.

– Edit Data

Opens the data editor for a component. Search of component data 
is possible.
The Boolean Table Editor



– Edit Implementation

Opens the implementation editor. Search of component implemen-
tations is possible.

– Edit Notes

Opens the Notes editor - you can make notes about the component 
here.

– Check Dependency

Checks whether the allocation of formal parameters to the model 
parameters is correct.

– Export Data

Exports a component data set.

– Show Path

Shows the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– File out Generated Code

Saves the code generated in the file system 
(Flat → the edited components, 
Recursive → the referenced components also)

– View Generated Code

Generates the code for the component and displays it in a text edi-
tor.
Generates the code for the component and displays it in a text edi-
tor.
The text editor can be selected in the ASCET options window, 
"ASCII Editor" node (cf. page 60).

– File Out Generic Code For External Make

Saves the code generated in any directory for processing at a later 
point using external tools, e.g. an external Make/Build process.
The Boolean Table Editor 345



346
– Exit

Exits the Boolean table editor.

• Inputs

– Add

Adds a new input and places it behind the last existing input.

– Insert

Adds a new input and places it to the left of the selected input.

– Delete

Deletes the selected input.

– Rename

Renames the selected input.

– Move Left 

Moves the selected input to the left.

– Move Right

Moves the selected input to the right.

• Outputs

The Outputs menu is used to edit outputs. The commands function in 
the same way as the Inputs menu.

• Combinations

– Add

Adds a new combination after the last line of the table.

– Insert

Adds a new combination and places it above the selected combina-
tion.

– Delete

Deletes the selected combination.

– Move Up 

Moves the selected combination upwards within the table.

– Move Down

Moves the selected combination downwards within the table.
The Boolean Table Editor



• View

– Show/Hide

Shows/hides several parts of the editor or the component.
(Element List →  "Elements" pane,
Diagram List →  "Diagrams" pane).

Specifying Boolean Tables

Two entries X1 and X2 and one output Y1 are created by default for a Boolean
table, as well as four combinations (1 - 4) for the possible input settings. The
output values of all combinations are set to 0 (false).

You can edit the input and output values of each combination.

Specifying inputs and outputs:

• In the table area, click on the input or output 
value you want to modify.

A combo box appears.

• Select the value you want to assign from the 
combo box (0 - false, 1 - true).

If you want to add further inputs or outputs, proceed as follows:

Adding inputs or outputs:

• Select Inputs → Add or Outputs → Add

or

• right-click in the table area and select 
Inputs → Add or Outputs → Add from the 
context menu.

One input or output is added.

Or

Note

Besides 0 and 1, entries can have the value * 
(undefined).
The Boolean Table Editor 347



348
• Adjust the number of inputs or outputs in the 
"Inputs" or "Outputs" field with the arrow 
buttons.

The specified number of inputs or outputs is 
created.
Newly created inputs are set to * (undefined) 
by default, new outputs to 0 (false).

Combinations can be added by Combinations → Add or via the "Combina-
tions" field.

You can now specify the input and output values as described above. Instead
of editing each value by hand, you can generate a default matrix automatically.

Generate a default matrix:

• Create the desired number of inputs.

• Click on the Default Matrix button.

Enough combinations are created to include 
every possible input setting. The number of 
outputs is unchanged; all output values are set 
to 0 (false). If, for example, you have cre-
ated three inputs and one output, Default 
Matrix will give the following result:

Deleting inputs and outputs or combinations: 

Inputs, outputs or combinations can be deleted as follows:

• Select tie input, output or combination you 
want to delete.

• In the table area, select the input, output or 
combination you want to delete.
The Boolean Table Editor



• Select Inputs → Delete, Outputs → Delete 
or Combinations → Delete

or

• right-click in the table area and select 
Inputs → Delete, Outputs → Delete or 
Combinations → Delete from the context 
menu.

The selected input, output or combination is 
deleted.

Or

• Adjust the number of inputs, outputs or com-
binations in the "Inputs", "Outputs" or 
"Combinations" field with the arrow but-
tons.

The appropriate number of inputs, outputs or 
combinations is deleted.

Renaming inputs or outputs:

You can rename inputs and outputs. Combinations cannot be renamed.

• In the table area, highlight the input or output 
you want to rename.

• Select Inputs → Rename or Outputs → 
Rename

or

• Right-click on the highlighted input or output 
and select Inputs → Add or Outputs → Add 
from the context menu.

A dialog window opens.

• Enter the new name and confirm with OK.

Shift Table Columns and Rows:

You can shift the columns containing the input and output values, as well as
the combination rows.

• In the table area, highlight the input you want 
to shift.

• Select Inputs → Move Left or Inputs → 
Move Right

or
The Boolean Table Editor 349



350
• right-click on the highlighted input and select 
Inputs → Move Left or Inputs → Move 
Right from the context menu.

The content of the column is shifted to the left 
or right, respectively. The names of the col-
umns keep their original order.

• Shift outputs with Outputs → Move Left or 
Outputs → Move Right.

• Shift combinations with Combinations → 
Move Up or Combinations → Move Down.

If you have inserted the input and output values manually, or if you have
deleted inputs or outputs, you should check the table for consistency.

Checking the Table:

• When you have set up the table according to 
your wishes, click on the Check Matrix but-
ton.

If different output values are assigned to com-
binations with identical input values, the 
respective lines are marked with red borders.

• Remove the redundant combinations with 
Combinations → Delete.

Note

Inputs can only be exchanged with inputs, and 
outputs with outputs. It is not possible to 
exchange the last input column with the first 
output column.
The Boolean Table Editor



To experiment with a Boolean table, you can start the ecperiment via the Open
Experiment for selected Experiment Target button, as with any other com-
ponent.

4.7 The Editor for Conditional Tables

A conditional table maps logical behavior (in the same way as the Boolean
table). Its columns and rows create a logical matrix with different conditions
and instructions. 

Basic elements can be used in a conditional table. It is also possible to access
public methods of added classes. The functionality of a conditional table is the
equivalent of an If…Then…ElseIf…Then construction. Every line corre-
sponds to an If or Elseif query. Fig. 4-1 shows an example of a conditional
table. The first three columns ("cont", "log" and "enum_1") contain the con-
ditions linked by AND; the following columns ("out", "disc" and "methods")
contain the relevant instructions.

Fig. 4-1 Conditional Table – Example

The example in Fig. 4-1 corresponds to the following code:

if ((cont > -1.0) && (cont < 0.0) && (log == true) 
 && (enum_1 == Speed)){

out = 100.0;

disc = 5;

ClassXYZ.doThis(cont,out);

} else 

if ((cont == 0.0) && (log == true)
 && (enum_1 == Speed)){

out = 0.0;

disc = 10;

ClassABC.doThat();

} else 
The Editor for Conditional Tables 351



352
if ((cont > 0.0) && (cont < 1.0) && (log == false) 
 && (enum_1 == Distance)){

out = -100.0;

disc = ClassX.GetA();

ClassABC.doThat();

ClassXYZ.doThis(out,cont);

} else {

out = 3.14159;

disc = 0;

}

A conditional table is activated by calling a trigger method. On activation, the
relevant row is detected and the instructions and calculations contained in it
are executed.

Conditional tables are ESDL classes which are specified in a special editor for
conditional tables. Conditions and instructions are entered in two separate
areas of the table, condition and instruction area. Each area has a settable
number of columns and its own freely selectable background color (see
"Options for Table Editors" on page 57).

To create a conditional table:

• In the Component Manager, select the folder 
for the new table.

• Select Insert → Conditional Table

or

• click on the Insert Conditional Table button.

• Enter the component name and press 
<RETURN>.

A new conditional table is created.

• Select Component → Edit Item

or

• press <RETURN>

or
The Editor for Conditional Tables



• double-click the selected element.

The conditional table editor opens.

The public trigger method trigger is created automatically in every case. It is
mandatory and cannot be deleted or renamed. You cannot add additional
methods or diagrams.

The "methods" column is also created automatically. It is always at the end of
the instruction area and cannot be deleted or repositioned. The table is empty
apart from the "methods" column.

Chapter 4.7.1 describes how to set up a conditional table, chapter 4.7.2
describes the specification of the conditions and instructions and chapter 4.7.3
describes experimenting with conditional tables.

Description of the Menu Functions

• Component

– Clean code generation directory

Deletes all files in the code generation directory.

– Touch

Forced regeneration during the next code generation
(Flat → the edited component, 
Recursive → the referenced components too).

– Generate Code

The code for one component is generated.

Table Area
The Editor for Conditional Tables 353



354
– Compile

Compiles the generated code.

– Open Experiment

An experiment is launched.

– Default Project

Allows the editing of the default project which is used when exper-
imenting with components
(Edit → opens an editor for the default project,
Resolve Globals → automatically generates a global element for 
every imported element of the component for which there is no 
exported element,
Delete Unused Globals → löscht nicht genutzte globale Elemente).

– Edit Layout

The layout editor opens.

– Edit Data

The data editor for a component opens. Data of one component 
can be searched.

– Edit Implementation

The implementation editor opens. Implementations of one compo-
nent can be searched.

– Edit Notes

Opens the notes editor – this is where notes on the component can 
be made.

– Check Dependency

A check is carried out to see whether the allocation of the formal 
parameters to the model parameters is correct.

– Export Data

Exports the dataset of a component.

– Show Path

Shows the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
The Editor for Conditional Tables



Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– File Out Generated Code

Saving the generated code in the file system
(Flat → the edited component, 
Recursive → the referenced components too).

– View Generated Code

Generates the code for the component and displays it in a text edi-
tor.
The text editor can be selected in the ASCET options window, 
"ASCII Editor" node (cf. page 60).

– File Out Generic Code For External Make

Saves the generated code in a directory of your choice to be pro-
cessed later with separate tools, e.g. in an external Make/Build pro-
cess.

– Exit

Exits the conditional table editor.

• Element
(is also available as a context menu in the "Elements" area)

– View → Collapse all collapses the tree structure in the "Elements" 
area so that only the component itself can be seen.

– View → Expand all expands the tree structure completely so that 
the entire content of the component is displayed.

– Add Item

Adds a component as a complex element.

– Rename (<F2>)

Renames a selected diagram element.

– Delete (<DEL>)

Deletes a selected diagram element.

Note

The Add Item, Rename, Delete and Edit functions are only avail-
able when ASCET-MD is installed.
The Editor for Conditional Tables 355



356
– Show Occurrences

Shows all occurrences of an element (only in the block diagram edi-
tor).

– Edit

Edits the configuration of a selected element.

– Edit Data

Edits the data of a selected element.

– Edit Implementation

Edits the implementation of a selected element.

– Set Cache Locking

These menu options are used in connection with ASCET-RP. They 
are described in the ASCET-RP user’s guide.

– Edit Component

Opens the specification editor for a selected added component.

– Replace Component

Replaces a component by another component. The name of the old 
component is retained.

– Show Path

Shows the path of a selected added component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– Notes

Opens the notes editor for a selected added component.

– Edit Distribution / Edit Max Size

As conditional tables can only contain scalar basic elements, these 
menu functions are disabled.

– Copy Elements (<CTRL> + <C>)

Copies one or more selected elements from the "Elements" list.
The Editor for Conditional Tables



– Paste Elements (<CTRL> + <V>)

Adds one or more copied elements into the "Elements" list.

– File Out Data / File In Data

As conditional tables can only contain scalar basic elements, this 
menu function is disabled.

– Export Data

Exports the dataset of an added component.

• Column
(is also available as a context menu in the table area)

– Add

Adds a new column
(Condition → in the condition area,
Instruction → in the instruction area).

– Delete

Removes the selected column (without deleting the relevant ele-
ment).

– Move Left 

Moves the selected column to the left.

– Move Right

Moves the selected column to the right.

• Row
(is also available as a context menu in the table area)

– Add

Adds a new row

– Delete

Deletes the selected row.

– Move Up 

Moves the selected row up.

– Move Down

Moves the selected row down.
The Editor for Conditional Tables 357



358
• View

– Show/Hide

Shows/hides different parts of the editor.
(Element List → "Elements" list,
Diagram List → "Diagrams" list,

Description of the Buttons

1. Variables (Logic, Signed Discrete, Unsigned Discrete, Continuous)

2. Enumeration

3. Add a Column

4. Delete a Column

5. Add a Row

6. Delete a Row

7. Move Column Left

8. Move Column Right

9. Move Row Up

10. Move Row Down

11. Generate Code

12. Open Experiment for selected Experiment Target

Unnumbered buttons are always disabled in the conditional table editor.

4.7.1 Setting Up a Conditional Table 

By default, the conditional table contains no elements. The table is empty apart
from the "methods" column. You have to add all the elements, columns and
rows required. You cannot add columns until you have created at least one
element; you cannot add rows until there is at least one column in the condi-
tion area.

2 3 4 5 6 7 8 9 101

11 12
The Editor for Conditional Tables



To add elements:

Conditional tables can contain scalar basic elements, enumerations and classes
as elements. The trigger method can contain arguments but no return
value.

1. Basic elements, enumerations

• Click on one of the variables or enumeration 
buttons to create a basic element or an enu-
meration.

A corresponding element is added to the "Ele-
ments" list. 

• Enter a name for the element and press 
<RETURN>.

2. Complex elements

• Add a class as described on page 217.

3. Arguments and method-local variables of the trigger method

• Select the trigger method from the "Dia-
grams" list.

• Select Edit from the context menu

or

• double-click the name of the method.

The interface editor opens. As trigger can-
not have a return value, the "Return" tab is 
missing.

• Add the required arguments as described on 
page 193.

• Add the required method-local variables as 
described on page 195.

Method-local variables are only available 
within the conditional table.

Note

You cannot add special classes such as state 
machines, CT blocks, Boolean tables or condi-
tional tables.
The Editor for Conditional Tables 359



360
You can edit the data and implementations of the elements in the usual way;
for more details consult the sections 4.11 "Editing Data" and 4.12 "Editing
Implementations". 

To make the elements accessible outside the conditional table, you have to
activate the get or set ports of the elements (if available) or declare the ele-
ments as global. There is no other way of accessing elements in a conditional
table.

To make elements accessible for external communication:

• Select an element from the "Elements" list.

• Select Element → Edit

or

• select Edit from the context menu to open the 
element editor.

Depending on the element selected, the 
appearance of the element editor may vary 
(see chapter 4.10.1). The "Scope" field as well 
as the options Set() and Get() are always 
available.

1. Using Get/Set Ports

• Activate the Set() option to add an input for 
the element.

The element can now be written from outside 
the conditional table.

• Activate the Get() option to add an output for 
the element.

The element can now be read from outside 
the conditional table.

The inputs and outputs created in this way can 
be seen as connections in the layout of the 
conditional table.
The Editor for Conditional Tables



2. Using global elements

• Select the Imported option in the "Scope" 
field if the element was defined in another 
component/another project and is to be used 
in the conditional table. 

• Select Exported if you define the element in 
the conditional table and want to use it in 
other components/projects.

Once you have added an element, the menu functions for creating columns for
conditions and instructions are activated. 

A variable, an enumeration or an argument is assigned to every column when
it is created. Complex elements cannot be assigned to the columns; they are
only used in the specification of conditions or instructions.

To create columns in the condition area:

You can create up to 100 columns in the condition area.

• Select Column → Add → Condition.

This function can be reached via the menu bar 
and the context menu of the table area

or

• activate the column next to which you want to 
add the new column.

Note

The Add a Column button can create columns in both the condition area 
and in the instruction area. Select an existing column to determine the area 
for the column to be created; this activates the button. 
The Editor for Conditional Tables 361



362
• Click Add a Column.

The "Select Variable" window opens. It con-
tains a list of all existing variables which as yet 
have not been assigned to a column of the 
condition area.

• Select a variable from the list.

You can assign each variable exactly once to a 
column of the condition area. 

• Click OK to close the window.

A column with the name of the selected vari-
able is generated in the condition area. If the 
column created is the first of the entire table, 
the "Default" row is created at the same time.

The new column is created on the right-hand side of the condition area if it
was created with the menu function Column → Add → Condition. If you
used the Insert a Column button, the new column is created to the right of
the selected column.

To create columns in the instruction area:

You can create up to 100 columns in the instruction area.

• Select Column → Add → Instruction from 
the menu bar or the context menu

or
The Editor for Conditional Tables



• activate the column next to which you want to 
add the new column.

• Click Insert a Column.

The "Select Variable" window opens. It con-
tains a list of all existing variables which as yet 
have not been assigned to a column of the 
instruction area.

• Select a variable from the list.

You can assign each variable exactly once to a 
column of the instruction area.

• Click OK to close the window.

A column with the name of the selected vari-
able is generated in the instruction area. Even 
if the column created is the first of the entire 
table, no row is created.

The new column is created to the left of the "method" column if it was cre-
ated with the menu function Column → Add → Instruction. If you used the
Insert a Column button, the new column is created to the right of the
selected column.

To create rows:

If at least one column has been created in the condition area, you can add
rows. A conditional table can contain up to 100 rows; as the "default" row is
already specified, you can add 99 rows.

• Select the row after which you want to add 
the new row.

Note

Arguments of the trigger method cannot be 
assigned in the instruction area.
The Editor for Conditional Tables 363



364
• Select Row → Add from the menu bar or the 
context menu 

or

• click Add a Row.

The new row is added after the one selected. 
If you have not selected a row or selected 
"default", the new row is added immediately 
before the "default" row.

The elements of the row all initially contain an 
asterisk. For details on how to specify condi-
tions and instructions, refer to chapter 4.7.2.

To move columns:

You can move columns but only within an area.

• Mark the column you want to move.

• Select Column → Move Left or Column → 
Move Right from the menu bar or the con-
text menu

or

• click Move Column Left or Move Column 
Right.

The column is moved one position to the left 
or right. 

The first column of an area cannot be moved to the left; the last column of an
area cannot be moved to the right. 
The "methods" column cannot be moved; it is always the last column in the
instruction area.

To move rows:

The further up the table a row is, the higher its priority. You can move the rows
and thus influence the priority of the condition specified in it.

• Mark the row you want to move.
The Editor for Conditional Tables



• Select Row → Move Up or Row → Move 
Down from the menu bar or the context 
menu

or

• click either Move Row Up or Move Row 
Down.

The row is moved up or down a row. 

The first row cannot be moved up; the last numbered row cannot be moved
down. 
The "default" row cannot be moved; it is always the last row of the table.

You can remove columns, rows and elements from the table. 

To remove columns:

• Select the column you want to remove.

• Select Column → Delete from the menu bar 
or the context menu

or

• click Delete a Column.

The selected column is removed. The assigned 
element is not, however, removed but still 
remains in the "Elements" list and can be 
reassigned.

To delete rows:

• Select the row you want to remove.

• Select Row → Delete from the menu bar or 
the context menu 

or

• click Delete a Row.

The selected row is deleted.

To delete elements:

• Mark the element you want to delete in the 
"Elements" list.

• Select Element → Delete

or
The Editor for Conditional Tables 365



366
• select Delete from the context menu

or

• press the <DEL> key.

A confirmation window opens.

• Confirm deletion with OK.

The element is deleted from the list. If it was 
assigned to a column, the column is also 
deleted.

4.7.2 Specifying a Conditional Table 

All cells of the newly created columns and rows initially contain an asterisk (*).
You have to enter the real conditions and instructions manually.

Conditions: The cells in the condition area can contain conditions in the fol-
lowing format:

== b, <= b, >= b, < b, > b, != b, *

• b is either a value, an element or the name of a public method of a 
referenced class. Complex expressions formed from these in ESDL syn-
tax are possible.

• The asterisk means that any value is possible; it is used when the col-
umn element is of no significance to the current row.

• Several conditions can be specified in one cell, separated by a line 
break. These are interpreted as being AND-operated.

Instructions: The cells in the instruction area can contain assignments in the
following format:

= b, class.method(<variables>), *

Note

If the deleted element was part of the specifica-
tion of a condition or instruction, this specifica-
tion is not deleted automatically. You must 
make any necessary changes manually.

Note

The cells in the condition area of the "defaults" row cannot be edited. They 
always contain an asterisk.
The Editor for Conditional Tables



• b is a value, an element or the name of a public method of a referenced 
class. Complex expressions formed from these in ESDL syntax are pos-
sible.

• Class.method(<variables>) denotes a method call; this form of 
the instruction is only permissible in the "methods" column. All public 
methods of the referenced classes can be invoked. 

• The asterisk means that no instruction (value assignment or method 
call) is defined in the relevant column.

You can only use elements and classes contained in the "Elements" list to
specify conditions and instructions. Otherwise an error message is created dur-
ing code generation.

To enter a condition or an instruction:

• Double-click the cell you want to edit.

The cell becomes an input box.

• Enter the condition or the instruction.

Conditions and instructions are entered as 
pure character strings.

A cell in the instruction area can also contain 
several rows. Each row is interpreted as an 
individual assignment (see figure) or method 
call ("methods" column).

• Click somewhere in the table area to accept 
the entry.

Note

Syntax and semantics are not checked during the specification of conditions 
and instructions. Make sure your entries are correct, particularly when enter-
ing method names. Error messages are not created until code generation.

Note

No check is made to see whether different rows 
in the condition area contain identical condi-
tions.
The Editor for Conditional Tables 367



368
To alter column width:

If the width of a column is too small for the instructions or conditions con-
tained in the cells, you can widen it.

• Move the mouse pointer to the right-hand 
vertical limitation of the column.

The mouse pointer becomes a double arrow.

• Drag the column limitation to the left or right 
to change the width of the column.

When you exit the editor, the column width is 
reset to the default value.

To use methods in conditions/instructions:

There is a way of avoiding errors when entering method names.

• Mark the cell in which you want to use a 
method.

• Click the table area with the right-hand mouse 
button and select Insert Method from the 
context menu.

The "Select Variable" window opens. It con-
tains a list of all public methods of all refer-
enced classes.

• Select the method you want to use.
The Editor for Conditional Tables



• Click OK.

The name of the method is inserted in an indi-
vidual row at the end of the cell. 
If the method has arguments, the names 
defined in the class are entered. 

• You have to edit the inserted method call.

– Enter existing variable names from your 
conditional table instead of the specified 
argument names.

– Insert a comparing operator in the condi-
tion area (see page 366).

– Add the assignment character = in the 
instruction area (apart from the "meth-
ods" column) and remove the asterisk if 
necessary.

4.7.3 Experimenting with Conditional Tables

Once you have specified the table completely, you can generate code and exe-
cute experiments as for other components (see chapter 4.1.10 "Analyzing
Components"). Only the Diagram → Analyze Diagram function available
for block diagrams and ESDL components is not available for conditional
tables.

The following problems may occur during code generation:

• Any incorrect entries made when specifying the conditions and 
instructions result in error messages.

• If you have specified identical conditions in different rows of the con-
dition area, all corresponding If…Then… rows are generated during 
code generation but only the first one is taken into consideration when 
the table is evaluated. 
No warning is displayed as there is no check of the content of the table.
The Editor for Conditional Tables 369



370
• If you delete, add or move enumerators in an enumeration used by 
the conditional table, this may lead to inconsistencies in the conditional 
table. A relevant error message may be displayed during code genera-
tion.

• If you delete an enumeration used by the conditional table from the 
database , the enumeration is treated as an undefined element in 
code generation; a corresponding error message is displayed.

The conditional table can only be invoked via the trigger method. The fol-
lowing steps are executed every time the table is invoked:

1. The method arguments of the trigger method are processed and 
the values assigned to the elements.

2. A search takes place for a suitable condition. As soon as a suitable con-
dition is found, the search is canceled, even if there are other suitable 
conditions specified further down.

If there is no suitable condition, the default condition ("default" row) 
is selected.

3. The instructions belonging to the condition found are executed.

As trigger cannot have a return value, the results of the instructions 
have to be transferred using Get Ports (see page 360). To ensure data 
consistency at all times, it is not recommended that you use global vari-
ables.

As with all ESDL components, the code is displayed for an offline experiment
in the "Physical Experiment" window. This is the only point at which the user
sees the ESDL code. 

You can set up and execute the experiment as described in chapter 6.1 "The
Experimentation Environment". 
The Editor for Conditional Tables



4.8 The Project Editor

A project in ASCET defines the functionality of an embedded software system
and is used as the basis for generating code for the embedded system. This
kind of specification can be executed on various experimental targets and is
capable of running in real-time. Fixed point code for microcontrollers can be
generated once an implementation transformation for the embedded soft-
ware system has been defined. This fixed point code can then be run on micro-
controller targets in fullpass or bypass experiments.

Alternatively, a project can be used to model a control loop consisting of a
combination of continuous time blocks and modules. In this case the continu-
ous time blocks are used to describe the process model, and the modules are
used to describe the controller. This model can then be experimented with on
an experimental target.

A project is developed in a modular manner, by first developing and testing the
individual components of the system, and then combining them into a project.
Developing a project involves the following steps:

• Selecting the modules that make up the system. The definitions of the 
components are referenced, i.e. if the definition of a component is 
changed, this change directly affects all the projects that use the com-
ponent.

• Defining the overall control flow of the embedded software system by 
setting up the real-time operating system.

• Specifying the implementation transformation for generating code 
with fixed point arithmetic. In order to define this implementation, the 
transformation formula must be included in the project. 

Like components, projects can have multiple data sets and implementations.
Therefore when executable code is generated from the formal definition the
appropriate variant has to be chosen. The current variant of a project is defined
by selection of the data set (this is also possible when experimenting with com-
ponents only) and of the implementation transformation.

Defining an implementation is only necessary for generating code with fixed
point arithmetic. When only floating point arithmetic is needed (e.g. in a
bypass environment) the implementation transformation need not be defined.

The code generation can be adjusted for a specific project by selecting the
code variant and the target platform for which code is to be generated. Code
can be generated for three types of arithmetic: floating point arithmetic, fixed
point arithmetic and quantized floating point arithmetic. The latter is a simula-
tion of fixed point arithmetic based on floating point arithmetic, where the
effects of quantization can be studied, and the quantization and the value
bounds can be changed interactively while executing the code.
The Project Editor 371



372
To create a new project:

• In the Component Manager, select a folder 
for the new project.

• Select Insert → Project

or

• click on the Insert Project button.

• Type in the name for the new project and 
press <ENTER>.

• A new project is created.

• From the menu bar, select Component → 
Edit Item

or

• press <RETURN>

or

• in the "1 Database" list, double-click on the 
project name.

The project editor opens.

Like components, projects are stored in the database with the exception of the
test projects generated by the specification editor. Individual projects are
assembled, set up and experimented with in the project editor. All the opera-
tions described above are accessible from the project editor.
The Project Editor



The "Elements" pane provides a tree-like view of the components making up
the project. This list displays the modules referenced by the project and also the
components they reference. It can be expanded and collapsed. The elements
of a project used for communication between the modules and components
are global in the context of the project.

4.8.1 Default Project for a Component

A test or default project can be created for each component created with a
specification editor. However, the default project does not appear in the Com-
ponent Manager, as it is created directly from the specification editor. Similarly,
the default project is set up in the project editor and this also includes experi-
menting with the default project. Project editor functions and operations are
described in the following chapters and sections. 

To edit a default project:

• In the specification editor, select 
Component → Default Project → Edit.

The project editor opens for the test project.

• In the specification editor, select 
Component → Default Project → Resolve 
Globals.

A global element is created for each imported 
element in the component for which there is 
no exported element (see also "Defining Glo-
bal Communication" on page 388). 
The project editor is not opened.

• In the specification editor, select 
Component → Default Project → Delete 
Unused Globals.

Global elements not used int he component 
are deleted from the component’s default 
project. 

The offline experimentation environment available for components is embed-
ded in the offline experimentation for the default project. Besides the offline
experimentation environment, ASCET provides an online experimentation
environment for projects. In the online experimentation environment the
projects are executed in real-time with the behavior defined in the real-time
operating system.
The Project Editor 373



374
4.8.2 Description of the Menu Options

• Component

– Clean code generation directory

Deletes all files in the code generation directory.

– Touch

Forced regeneration during the next code generation
(Flat → the edited component, 
Recursive → the referenced components also).

– Generate Code (<CTRL> + <F7>)

Generates the code for the project.

– Compile

Compiles the generated code.

– Link Only

Links the object files of a project to an executable hex file.

– Build (<F7>)

Generates, saves and builds executable code for the target 
selected. Results are stored in the database.

– Build from directory] (<ALT> + <F7>)

Generates, saves and builds executable code for the target 
selected. Results are written to a directory, but not stored in the 
database.

– Rebuild All (<SHIFT> + <F7>)

A complete regeneration of the entire project and all its compo-
nents. This command produces the same result as Component → 
Touch → Recursive followed by Component → Build.

– Transfer Project

Transfers the project to the selected experiment.

The button is only enabled when you have selected the target 
ES1130, ES1135, or Prototyping from the build options and the 
entry INCA or INTECRIO from combo box "Experiment Target".

– Open Experiment

Starts an experiment.
The Project Editor



– Flash Target

The code generated by ASCET is written to the flash memory of the 
experimental target instead of to the RAM. A startup routine for 
booting from the flash memory is integrated into the code. The tar-
get hardware will now execute the ASCET model after each reset.

– Reconnect to Experiment

Restores the connection to the experiment running on the selected 
target.

– Default Project

Allows editing of the default project used for experimenting with 
components. (Active in the component editors only.)

– Edit Data

The project editor opens for the project. Search of project compo-
nent data is possible.

– Edit Implementation

The implementation editor opens for the project. Search of project 
component implementations is possible.

– Edit Notes

Opens the Notes editor for notes about the component.

– Edit Project Properties

Opens the "Project Properties" dialog window used to specify the 
project settings (see "Project Settings" on page 407).

– Check Dependency

Checks whether the allocation of formal parameters to the model 
parameters is correct. 

– Export Data

Exports a component or project data set.

– Show Path

Shows the path of an included component.

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
The Project Editor 375



376
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– File Out Generated Code

Saves the code generated in the file system. 
(Flat → the edited component, 
Recursive → the referenced components also)

– View Generated Code

Generates the code for the project and displays it in a text editor.
The text editor can be selected in the ASCET options window, 
"ASCII Editor" node (cf. page 60).

– File Out Generic Code For External Make

Saves the code generated in any directory for processing at a later 
stage using external tools, e.g. an external Make/Build process.

– Exit

Exits the project editor.

• Diagram

– Store To Cache

The component specification is saved in the cache. (It is not saved 
permanently in the database.) 

– Analyze Diagram

Analyzes the current diagram.

– Load Diagram

Loads a diagram. 

• Element

– View → Collapse all used to collapse the tree structure in the "Ele-
ments" pane so that only the component is shown.

– View → Expand all expands the tree structure so that the entire 
content of the component is visible.

– Add Item

Accepts a component into a project.

– Rename (<F2>)

Renames a component.

– Delete (<DEL>)

Deletes an instance of a component.
The Project Editor



– Show Occurrences

Displays all the occurrences of an element (block diagram editor 
only).

– Edit

Edits an element configuration.

– Edit Data

Edits element data.

– Edit Implementation

Edits the implementation of an element.

– Set Cache Locking

These menu options are used in connection with ASCET-RP. They 
are described in the ASCET-RP user’s guide.

– Edit Component

Opens the specification editor for an included component.

– Replace Component

Replaces a component with another component. The name of the 
old component remains.

– Show Path

Displays the path of an included component. 

– Copy Path to Clipboard

Copies the path of an included component to the clipboard
(Model Path → model path,
Model asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in a model as hyperlink,
Database Path → database path
Dabase asd:// link → path in the ASCET protocol format that allows 
opening/referencing an ASCET component in the database as 
hyperlink).

– Notes

Opens the Notes editor for an included component. 

– Edit Distribution

Opens an editor for distribution (only in group tables).

– Edit Max Size

Opens an editor where you can specify the maximum size of an 
array, any table or matrix.
The Project Editor 377



378
– Copy Elements (<CTRL> + <C>)

Copies an element from the "Elements" list.

– Paste Elements (<CTRL> + <V>)

Pastes a copied element into the "Elements" list.

– File Out Data

Writes the data from an array or a table to a file.

– File In Data

Reads the data for an array or a table from a file.

– Export Data

Exports the data set from an included component.

• Extras

– Copy C-Code From

Copies C-code from another target.

– Global Replace Formula

Replaces a formula recursively.

– Update Implementations

Updates all the implementations of a project.

• Search

Apart from a more limited search range, the commands function in the 
same way as in described in "Browsing the Database" on page 133.

– Component

Searches the project for a component.

– References to component

Searches the project for references on a given component.

– Declaration of method

Searches the project for the defining component of a given 
method/process.

– References to methods

Searches the project for a method or process.

– Declarations of element

Searches the project for the defining component of a given ele-
ment.
The Project Editor



– References to element

Searches the project for a component using a given element.

– Senders of message

Searches the project for modules that send a given message.

– Receivers of message

Searches the project for modules that receive a given message.

– Find/Replace ESDL or C code

Searches/replaces a string in included C code or ESDL components

• ASAM-2MC

– Write

Creates application files.

– Read Hex. File

Reads application files.

• Global Elements

– Resolve Globals

This procedure automatically creates a global element for each 
imported element in a module for which there is no exported ele-
ment. 

– Delete Unused Globals

Deletes unused global elements.

The following menu options are only available when certain tabs have been
selected.

"Graphics" Tab

• View

– Show/Hide → Element List

Shows/hides the "Elements" list.

– Redraw

Redraws the diagram.

– Rebuild Connections

Smoothes fragmented connections that were created during auto-
matic conversion of operator implementations (see page 508).

– Undo (<CTRL> + <Z>)

Reverses the most recent action. 
The Project Editor 379



380
– Redo (<CTRL> + <Y>)

Reverses an undo command. 

– Show Hierarchy Path

Displays the highest hierarchy path level.

– Parent Component

Opens an editor for the including component. This option is only 
available when an included component is being edited.

– Parent Hierarchy Level

Displays the hierarchy path.

– Page frame Portrait

Displays the diagram in portrait format. 

– Page frame Landscape

Displays the diagram in landscape format. 

– Grid

Modifies the grid in the drawing area.

– Print Diagram

Prints the content of the "Graphics" tab (see page 265).

– Save as Postscript/ Bitmap/ RTF/ GIF

Saves the diagram in the format specified. 

"OS" Tab

• Operating System

– Copy From Target

Converts a project from a selected target to the current target.

– Copy To Target

Converts the project to a selected target.

• Application Mode

– Add

Creates a new operating mode.

Note

The menu functions are also available as context menu in the "Applica-
tion" field.
The Project Editor



– Rename

Renames an operating mode.

– Delete

Deletes an operating mode.

– As Start Mode

Defines the operating mode as start mode.

– As Default CT-Mode

Sets the operating mode as standard mode for CT blocks.

– Assign

Assigns an operating mode to a task.

– Show inTasks

Selects all the tasks to which the operating mode selected is 
assigned.

– Show Init Tasks

Selects all the initialization tasks to which the operating mode is 
assigned.

• Process

– Assign

Assigns a process to a task.

– Show in Tasks

Shows all occurrences of a process in the "Tasks" pane.

• Task

– Add

Creates a task.

Note

The menu functions are also available as context menu in the "Processes" 
pane.

Note

The menu functions are also available as context menu in the "Tasks" 
pane.
The Project Editor 381



382
– Rename

Renames a task.

– Delete

Deletes a task.

– Move Up

Moves the process upwards within the task.

– Move Down

Moves the process downwards within the task.

– Deassign Application Modes

Removes an operating mode from the current task.

– Deassign Processes

Removes a process from the current task.

– Delete Undefined Processes

Deletes undefined processes from the current task.

– Open Module

Opens the module which contains the selected process.

– Show in Processes

Shows all occurrences of a process in the "Processes" pane.

– Show in Application Modes

Selects all operating modes belonging to a task.

– Set Cache Locking

These menu options are used in connection with ASCET-RP. They 
are described in the ASCET-RP user’s guide.

"Formulas" Tab

• Global Formulas

– Add

Adds a formula.

– Rename

Modifies the formula name.

Note

The menu functions are also available as context menu in the tab.
The Project Editor



– Delete

Deletes the formula.

– Edit

Opens the Formula editor.

– File Out

Stores formulas in a file
(All → all the formulas,
Selected → selected formulas).

– File In

Adds formulas from a file
(All → all the formulas in the file,
Select → formulas selected in the file).

– Select all (<CTRL> + <A>)

Selects all formulas.

"Impl. Type" Tab

• Global Implementations

– Add

Add an implementation type
(cont → model type cont,
sdisc → model type sdisc,
udisc → model type udisc)

– Rename

Changes the name of an implementation type.

– Delete

Deletes the selected implementation types.

– Edit

Opens the editor for implementation types.

– Copy implementation

Copies the current settings of the selected implementation type to 
the database clipboard.

Note

The menu functions are also available as context menu in the tab.
The Project Editor 383



384
– Paste implementation

Pastes the current settings from the database clipboard to the 
selected implementation type.

– File Out

Files out implementation types into an XML file
(All → all implementation types,
Selected → selected implementation types).

– File In

Files in implementation types from an XML file
(All → all implementation types in the file,
Select → selected implementation types in the file).

– Select all (<CTRL> + <A>)

Selects all implementation types.

"Files" Tab

• Project Files

– View

Shows the project file with the associated application.

– Edit

Edits the project file with the associated application.

– Add

Adds an external file.

– Delete (<DEL>)

Deletes a file.

– Update

Updates selected project files.

– Write Selected File(s)

Writes selected project files to the default directory.

– Write Selected File(s) to

Writes selected project files to the selected directory.

Note

The menu functions are also available as context menu in the tab.
The Project Editor



– Write All Files

Writes all the project files belonging to the project to the default 
directory.

– Replace With Backup Contents

Replaces selected project files with backup versions from the data-
base.

– Show Default Path

Shows the path of the default directory.

– Explore Default Path

Opens the Explorer with the path of the default directory.

– Copy From Target

Converts a project from a selected target to the current target.

– Copy To Target

Converts the project to a selected target.

– Select all (<CTRL> + <A>)

Selects all project files.

4.8.3 Specifying a Project

Modules and continuous time blocks are included by adding them to the "Ele-
ments" pane of the project editor as in other specification editors.

To include a component in a project:

• In the project editor, select Element → 
Add Item.

The "Select Item…" dialog opens.

• From the "1 Database" list in the "Select 
Items..." window, select the component you 
want.

• Click OK.

The component is added to the "Elements" 
pane of the project.

Each module used in a project has an instance name. As in the specification
editors, each component is given a default name when it is included in a
project. This name only applies only to the instance of the module in the
project and has no influence on the original module.
The Project Editor 385



386
To rename a component:

• In the "Elements" pane, select the module 
you want to rename.

• Select Element → Rename.

• Type in the new name and press <RETURN>.

To delete an instance of a component:

• In the "Elements" pane, select the component 
you want to delete.

• Select Element → Delete.

The module instance is deleted. This has no 
effect on the component in the database.

It is possible to open the appropriate editor and edit any component that is
part of a project from within the project editor. Editing a component from
within a project has the same effect as editing it from the Component Man-
ager, namely that the functional description is changed which affects all the
instances of the component.

When opening a specification editor from within the project editor, the current
project settings become active in the specification editor. If, for instance, the
current project is set to fixed point code generation, the component editor will
also be set to fixed point code generation. Only floating point code generation
is available if the specification editor is started from the Component Manager.

To edit a component in a project:

• In the "Elements" pane of the project editor, 
select the component you want to edit.

• Double-click on the component name

or

• select Element → Edit Component

or

• press <RETURN>.

The editor opens for the component you want 
to edit.

It is possible to edit the data and implementation of elements within a project,
and to read and write data to and from them. All the commands work in the
same way as in the block diagram editor.
The Project Editor



You can attach notes to the project or to the included components. When
documentation is generated automatically, the notes are included.

To edit the notes for a project:

• If you want to edit the notes of the project, 
select Component → Notes.

Or

• In the "Elements" pane or in the "Graphics" 
tab, select the included component whose 
notes you want to edit.

• Select Element → Notes.

The notes editor opens for the database item 
selected. For details see "Notes" 
on page 693.

When editing a project that was written for a different target, the C code and
operating system (see page 392) settings may be copied from the other target,
experiment type, or implementation.

To copy the C code for an entire project:

To copy the C code for all classes and modules of a project from another tar-
get, experiment type, or implementation, proceed as follows. 

• In the project editor, select the appropriate tar-
get and code generation options for your tar-
get, as described in chapter 4.8.8.

• Select Extras → Copy C-Code From. 

The "Selection Required" window opens.

• Select the target you want to copy the code 
from, and click OK.

The target code is copied to your target.
The Project Editor 387



388
4.8.4 Defining Global Communication

In components, the flow of data is organized through the interface elements
of the components, i.e. by defining inputs and arguments and reading outputs
and return values. In a project, communication is defined via imported and
exported elements; these function like global variables. These elements are
mapped onto each other according to their names, which have to be identical
for two elements to be mapped. Therefore it is necessary to assign the names
in the modules so that they will match in the project.

An element can be exported either by a module or by the project itself. Each
exported element can be imported several times by other modules, but an ele-
ment can only be exported once. If two modules within a project contain an
exported element of the same name, an error message is displayed. 

Elements can also be created in the project. They are then linked to elements
with the same name in the modules. Binding is always automatic, i.e. the user
can only influence the binding of imported and exported elements by assign-
ing matching names to them.

To view the binding of variables in a project:

• In the project editor, click on the "Binding" 
tab.

The variable bindings for the project are 
shown. 

• You can tick the Unbound Only check box at 
the bottom of the dialog tab to filter the list.

There are two included components and four global elements in the example
above:
The Project Editor



• The variable dT exported by the MyProject project. This variable is 
always created by default in the project and imported by all the refer-
enced modules.

• The two included modules PI_Module and PT1_Module.

• The n_nominal message exported by the PI_Module. A Send mes-
sage is defined with this name. It is imported by the module 
PT1_Module, where a receive message with the same name is 
defined.

• The message temp, which is exported from PT1_Module and 
imported by PI_Module.

• The variable memory, which is exported by PT1_Module and 
imported by PI_Module.

By default, send messages and send&receive messages are defined as exported
elements, whereas receive messages are defined as imported elements. It is
possible to change these assignments. Variables always have to be declared
explicitly as either imported or exported elements. If an element is imported by
more than one module this is indicated by a hierarchical display, as in the case
of the dT variable in the example above.

If you find that an element is erroneously exported more than once, you can
open the exporting component from the "Binding" tab.

To open a component from the "Binding" tab:

• In the "Imported by" or "Exported by" col-
umn, right-click on a component and select 
Open Module from the context menu.

Or

• Double-click on the component you want to 
edit.

The editor for the selected component opens.
The Project Editor 389



390
Click the "Comm" tab for a different view of the element mappings showing
the messages defined within the project only. This shows the implicit data flow
through send and receive messages.

This view only shows the messages and in which modules they are defined as
send or receive messages. Activate the field at the bottom of the Dialog tab to
filter this view.

A global element is created automatically for each imported element in a mod-
ule for which there is no exported element. These two elements are then
bound to each other. 

To define global elements in a project:

• Select Global Elements → Resolve Globals 
to resolve the global elements. 

Global elements that are created and not used in the project can be removed
with the Delete Unused Globals command.

To delete unused global elements:

• Select Global Elements → Delete Unused 
Globals to delete all the unused global ele-
ments.

4.8.5 Defining the Scheduling in the OS Editor

The scheduling of processes is the second major operation performed in the
project editor. The operating system does not activate individual processes
directly. Instead, processes are grouped together by activation mode into

Note

This command must be executed before an 
experiment can be started with this project.
The Project Editor



sequences called tasks. These tasks are activated by the operating system and
on activation the sequence of processes assigned to the task is executed in the
given order.

Operating System Settings

To set up the operating system:

• Click on the "OS" tab in the project editor to 
open the operating system editor 

• In the "Preemp. Levels" and "Coop. Levels" 
fields, set the number of co-operative and pre-
emptive levels for the project.

The number available depends on the imple-
mentation of the real-time operating system 
on the current target. If the target is a PC, for 
instance, there are no pre-emptive levels avail-
able, because pre-emptive multitasking is not 
possible in the PC implementation of the 
operating system.

Note

All the settings in the operating system editor must be specified separately 
for each target. However, the settings can be copied between targets.
The Project Editor 391



392
• When you want to use the debugging func-
tion, activate the Enable Monitoring option.

The settings of the operating system for the current target can be copied to
another target, or the settings from another target can be copied to the cur-
rent target. Switching between targets is discussed in "Project Settings"
on page 407.

To copy operating system settings:

• Select Operating System → Copy To 
Target.

Or

• Select Operating System → Copy From Tar-
get.

The "Selection Required" dialog box opens.

• Select a target and click OK.

The settings are either copied from the current 
to the selected target, or the other way round, 
depending on which command was chosen.

Tasks and Processes

This section describes how to set up an operating system schedule using the
operating system editor.

To create a task:

• Select Task → Add.

A new task is created.

• In the "Tasks" pane, type in a name for the 
new task and press <ENTER>.

Once you have created the tasks required, you can add processes to each task.
The Project Editor



To assign a process to a task:

• In the "Tasks" pane, select the task to which 
you want to assign a process.

• In the "Processes" pane, select the process 
you want to assign to the selected task.

• Select Process → Assign

or

• click on the >> button

or

• select Assign from the context menu

or

• drag the process from the "Processes" pane 
onto the desired task using the mouse.

The process is assigned to the task and will be 
executed each time the task is scheduled.

To deassign a process from a task:

To deassign a process, proceed as follows.

• In the "Tasks" pane, select the process you 
want to deassign.

• Select Task → Deassign Processes 

or 

• click on the << button (see figure above)

or 

• select Deassign Processes from the context 
menu

or 

• drag the process from the "Tasks" pane into 
the "Processes" pane using the mouse.

The process is removed from the current task.

The order of processes within a task determines the order in which the pro-
cesses are executed.

To shift a process in a task:

To shift a process in a task, proceed as follows.
The Project Editor 393



394
• In the "Task" pane, select a process.

• Select Task → Move Up or Task → Move 
Down to specify the position of a process in 
the task. 

To open a component from the "Tasks" pane:

If you want to edit a process, you can open the corresponding component
from the "Tasks" pane.

• In the "Tasks" pane, select the process you 
want to edit.

• From the menu bar, select Tasks → Open 
Module

or

• select Open Module from the context menu

or

• Double-click on the process.

The corresponding component editor opens.

To check assignments of application modes, tasks and processes:

1. To see the origin of a process assigned to a task proceed as follows:

• In the "Tasks" pane, select a process.

• Right-click on the process and select Show in 
Processes from the context menu

or

• select Tasks → Show in Processes.

In the "Processes" pane, the selected process 
is highlighted.

2. To see the task a process is assigned to proceed as follows:

• In the "Processes" pane, select a process.

• Right-click on the process and select Show in 
Tasks from the context menu

or

• select Process → Show in Tasks.

In the "Tasks" pane, the selected process is 
highlighted.
The Project Editor



3. To see which application mode was assigned to a task, proceed as fol-
lows:

• In the "Tasks" pane, select a task.

• Right-click on the task and select Show in 
Application Modes from the context menu

or

• select Tasks → Show in Application 
Modes.

In the "Application Mode" pane, the assigned 
application mode is highlighted.

4. To see which tasks are assigned to an application mode, proceed as 
follows:

• In the "Application Mode" pane, select an 
application mode.

• Right-click on the application mode and select 
Show in Tasks from the context menu

or

• select Application Mode → Show in Tasks.

In the "Tasks" pane, the assigned tasks are 
highlighted.

Basic Task Settings:

The configuration of a task determines its priority among other tasks, its trig-
ger mode and other details relating to task activation and execution.

To set up a task (basic settings):

1. Trigger Mode

The following trigger modes are available:

– Alarm tasks are triggered once at the beginning of every period 
defined in the "Period" field.

– Init tasks are triggered only once, on start-up of the application 
mode they are assigned to.

– Software tasks are triggered by operating system commands.

– Interrupt tasks are triggered by hardware events. The hardware 
events available depend on the target. If, e.g., the target is a trans-
puter board, an event task could be triggered by data arriving on 
channel 0.
The Project Editor 395



396
– Timetable tasks (micro-controller targets with ERCOSEK support 
only) are alarm tasks written into a timetable. Thus, runtime can be 
saved (at the price of enhanced memory requirement). 

• From the "Type" combo box, select a trigger 
mode.

2. Scheduling

• In the "Scheduling" combo box, assign one of 
three possible scheduling modes to the task.

This option is not available for init and inter-
rupt tasks.

Since, in ERCOSEK, all preemptive Tasks have a higher priority than 
cooperative tasks, the effective interrupt behavior is as follows:

– Cooperative tasks never interrupt preemtive tasks.

– Cooperative tasks interrupt each other after the currently running 
proccess is finished (or even the task if the task to be interrupted 
has only one process assigned).

– Preemtive tasks always interrupt immediately. 

Details on the scheduling modes are given in 
chapter 1.1.1 "Scheduling" of the ASCET ref-
erence guide.

cooperative If you select cooperative, the task will interrupt a running 
task of lower priority only after the currently running pro-
cess is finished.

preemptive If you select preemptive, the task will interrupt a running 
task with lower priority immediately. The currently running 
process is interrupted and will be resumed after the inter-
rupting task is finished.

non-
preemptable

Neither the current process nor the running non-preempt-
able task are interrupted if a task with a higher priority is 
activated.

Note

With some microcontrollers (e.g., MPC555), the usage of non-pre-
emptable tasks is subject to certain conditions (see the respective 
ASCET-SE reference guide). When these conditions are neglected, 
corresponding error messages are generated by the code generation.
ASCET-SE for RTA-OSEK offers a different selection of scheduling 
modes. See the ASCET-SE user’s guide for details.
The Project Editor



3. Priority

If more than one task is scheduled for execution, their activation is 
determined by their priority.

If, for example, several alarm tasks have been scheduled for simulta-
neous triggering, the task with the highest priority is triggered first. 
Tasks are interrupted if a task with a higher priority than the currently 
running task is activated. The general priority scheme is presented in 
chapter 1.1.2 "Tasks" of the ASCET reference guide.

• Assign a priority to the task by entering a fig-
ure into the "Priority" field. 

This option is not available for init tasks.

4. Trigger

This setting determines which event acts as a trigger for an interrupt 
task. The combo box is unavailable for all other tasks.
The options available in the combo box depend on the current target.

• Select the trigger from the "ISR Source" 
combo box.

5. Others

The period value determines how often the task is activated. If, for 
instance, the period value is 0.01, the task will be activated once every 
hundredth of a second. 

• Type a period value in seconds into the 
"Period(s)" field.

This setting is only available for alarm and 
timetable tasks.

When a Delay is specified, the respective task will be activated for the 
first time after the set delay time. If the delay is 0, the task will be 
activated once the program starts, and then at the beginning of every 
period. 

• Type a delay value in seconds into the "Delay" 
field.

This setting is only available for alarm and 
timetable tasks.

Note

Non-preemptable and preemptive tasks share a common priority 
region. Cooperative tasks have their own priority region.
The Project Editor 397



398
The Max. number of Activations value determines how many times a 
task can be activated in parallel. If a task is re-activated before it has 
finished the execution following its previous activation, it is double acti-
vated. To save system resources, the maximum number of concurrent 
activations for each task can be limited. 

• Adjust the value in the "Maximum No. of Acti-
vations" field.

This setting is available for alarm, timetable, 
and software tasks.

Setting Up Hook Routines:

You can specify the generation of hook routines for debugging purposes for
each task.

To set up hook routines for a task:

• Make sure that the Enable Monitoring 
option is activated.

• From the "pre-/post hooks" combo box, select 
one of the following options.

Depending on the settings, suitable data structures are created during code
generation, and the appropriate ERCOSEK libraries are included. For this pur-
pose, ASCET generates the make variable E_HOOKS. The following table
shows the correlations between the settings in the OS editor and the
E_HOOKS variable:

Note

This does not apply to ASCET-SE for RTA-OSEK.

none no debug functions

monitoring complete debug functions

Enable 
Monitoring

pre-/post hooks generated value 
for E_HOOKS

dT available in 
the Code

yes "monitoring" for at least 
one task

MONITORING yes, additional 
debug information

no "monitoring" for at least 
one task

DTONLY yes

any "none" for all tasks DTONLY no
The Project Editor



For simulations with experimental targets, only the monitoring option is
important; it controls the generation of monitoring variables (s. page 400). The
options come fully into operation only in connection with a micro-controller
target, and are therefore described in the ASCET-SE user’s guide.

OSEK-Specific Settings:

In addition, you can set up OSEK-specific settings. Since these settings are rel-
evant only in connection with a micro-controller target, please refer to the
ASCET-SE V5.2 user’s guide for further information.

To set Deadline and Min. Period options:

• Activiate the Deadline option to make sure 
that two consecutive task activations do not 
exceed a certain time difference.

The associated input field becomes available.

• Enter the maximum difference in seconds 
between two activations.

The Deadline option is available for alarm, 
timetable, and software tasks.

• Activiate the Min. Periodoption to make sure 
that two consecutive task activations do not 
fall below a certain time difference.

The associated input field becomes available.

• Enter the minimum difference in seconds 
between two activations.

The Min. Period option is available only for 
interrupt tasks. 

To set the Autostart option:

The Autostart option is available for software tasks and alarm tasks. It has a
different meaning for either type.

• In the "Tasks" pane, select a software task.

• Activate the Autostart option.

Thus, the software task is executed once at 
the initialization of the associated application 
mode.

Or

• In the "Tasks" pane, select an alarm task.
The Project Editor 399



400
• Activate the Autostart option.

You have thus determined that the timer for 
the selected task is started at the initialization 
of the associated application mode.

The Monitoring Option

The monitoring option provides three variables for every task to be used for
monitoring and debugging purposes during experiments with projects, as well
as one further variable for monitoring of all tasks. The variables are created
automatically when the Enable Monitoring option is active, and when mon-
itoring was selected from the "pre-/post hooks" combo box for the task
during task setup. This has to be done individually for each task for which
monitoring variables are to be generated. The following three task-specific
monitoring variables are generated:

In addition, the following variable is created once for all tasks:

To activate the monitoring option:

• In the "Tasks" list, select one or more tasks.

• Activate the Monitoring option in the lower 
right corner of the tab.

The monitoring variables for each task are 
generated during the next code generation. 
You can show them in the measure windows 
or write them to the data logger (offline 
experiment only, cf. "The Data Logger" 
on page 597).

cycleStartTime_<taskname
>

shows the point in time in seconds the task 
was last activated.

cycleTime_<taskname> shows the time in seconds required for exe-
cuting the task.

dT_<taskname> shows the time difference between the previ-
ous and the current activation of the task in 
seconds.

runtime_violation shows the number of times the task has not 
met its schedule.
The Project Editor



Application Modes

The operating system can have several application modes, each of which has
its own set of tasks assigned to it. This means that different operating condi-
tions on the controlled system can be modeled, e.g. an engine can have sepa-
rate operating modes for the warm-up phase and for normal operation.

To create an application mode: 

• Select Application Mode → Add.

A new application mode is created and shown 
in the "Application Modes" field.

• Enter a name for the application mode and 
press <ENTER>.

• If the operating mode is to be the start mode, 
select Application Mode → As Start Mode.

The application mode declared the start mode 
is the one that the system is in at start-up. 
Operating system commands are used to 
switch between application modes.

To assign application modes to a task:

• Select one or more operating modes in the 
"Application Modes" pane.

You can select several application modes by 
clicking on them while pressing the < CTRL> 
key.

• Select the task you want to assign to the appli-
cation mode(s) in the "Tasks" pane.

• Select Application Mode → Assign

or 

• select the desired application modes and drag 
them from the "Application Modes" pane 
onto the desired Task using the mouse.

A task can have several application modes; it is 
scheduled according to its task settings when-
ever an application mode it is assigned to is 
active.
The Project Editor 401



402
• Select Task → Deassign Application Modes 
to deassign the application mode. 

Instead of the menu functions, you can use 
the buttons shown here.  

4.8.6 Administration of External Project Files

As a rule, there are more project files belonging to a project. These can be, for
example, protocols, correspondence documents or C files. So that these exter-
nal files can be assigned uniquely to the project, they are managed in the
project editor via the "Files" tab.

The "Files" tab contains a table with name, size (in byte), and creation date of
the files. The file paths are stored as absolute paths; relative paths are used
only if a file is located in one of six preset directories. In that case, the
"Abstract" column contains one of the following key words. 

Note

Switching from one application mode to another is done via an operating 
system service call. For details, see the API description in the ERCOSEK man-
ual.

Key Word Path

%MAIN% ETAS\Ascet5.2 (ASCET installation directory)

%CGEN% ETAS\Ascet5.2\cgen (target directory of code generation)

%MAINTARGET% ETAS\Ascet5.2\target (main target directory)

%TARGET% ETAS\Ascet5.2\target\<target name> 
(target directory for current target; if, e.g., the PC target is 
selected, TARGET means ETAS\Ascet5.2\target\PC.)

%DATA% ETASData\Ascet5.2 (product data directory)

%SPECIFIC% user-defined path, to be set in the options window (cf. page 49)
The Project Editor



To add an external project file:

• In the project editor, click on the "Project 
Files" tab.

This tab displays all the associated project files.

• Select Project Files → Add.

A file prompter dialog box is displayed.

• Select a file and press <ENTER>.

The selected file is linked to the project editor.

To view a project file:

You can view a project file from the "Files" tab.

• In the "Files" tab, select the project file you 
want to view.

• From the menu bar, select Project Files → 
View 

or

• select View from the context menu.

The project file is opened in the associated 
application. 
If no application is associated with the file 
type, the command has no effect.

To delete a project file in the project editor:

• Select the file you want to delete in the project 
editor.
The Project Editor 403



404
• Select Project Files → Delete.

The file is deleted from the project (but not 
from the hard disk).

To write project files:

• Select one or more files in the project editor.

• Select Project Files → Write Selected File(s) 
to write the files to their standard directories.

Or

• Select Project Files → Write Selected File(s) 
to to write the files to a selected directory.

Or

• Select Project Files → Write All Files to 
write all the files to their default directories.

• If you want to know where the standard direc-
tory of a project file is located, select Project 
Files → Show Default Path to display the 
path.

• Select Project Files → Explore Default Path 
to open the standard directory of the selected 
file in the Explorer.

Update the project file:

If you have changed project file versions stored on disk, you can update them
in the project as follows.

• Select one or more files in the project editor.

• Select Project Files → Update. 

The project file versions stored in the database 
are replaced with the versions stored on disk.

The database always keeps older versions as backup. If you need the backup
version, proceed as follows.

• Select one or more files in the project editor.

Note

Project Files → Show Default Path and Project Files → Explore Default 
Path are not available when more than one project files are selected..
The Project Editor



• Select Project Files → Replace With Backup 
Content. 

The actual versions of the selected project files 
are replaced with their backup versions.

To copy the project file:

• Select Project Files → Copy From Target.

Or

• Select Project Files → Copy To Target.

The "Selection Required" dialog opens.

• Select a target and click OK.

The file is either copied from the current to the 
selected target, or the other way round, 
depending on which command was chosen.

4.8.7 Hybrid Projects

Hybrid projects are projects that contain both continuous time blocks
(CT blocks) and modules. CT blocks implement process models, i.e. mathemat-
ical models of the processes that are controlled by embedded control systems.

To set up a hybrid project:

• Set up the modules of the project as described 
earlier in this chapter.

• Include the continuous time blocks you want.

• Click on the "Graphics" tab of the project edi-
tor.

• Drag the continuous time blocks and modules 
you want to include in the hybrid project into 
the drawing area.
The Project Editor 405



406
• Connect the CT  blocks and the modules in 
the same way as elements in block diagrams.

You can change the layout of the components as described in section "Layout
of Included Components".

The communication between CT  blocks and between continuous time blocks
and modules is formed by graphical connections like those in block diagrams.
In the current version of ASCET you can also connect modules in this way. The
connecting lines between modules, however, have no influence on the com-
munication between modules (which is always determined via the name-based
binding mechanism described earlier). Connecting lines between modules are
interpreted as "comment lines" and can be used for illustration. The color of
comment lines is set in the ASCET option window (see ""Colors" node"
on page 55)

All the tasks required for working with CT blocks are created automatically. No
additional tasks can be created for the activation of CT blocks. The initial-
ize and terminate_CT tasks are created only once for the whole hybrid
project. Additionally, a simulate task and an event task are created for
each CT block in the model. These tasks are set up like any other task (see
page 395).

To define the scheduling of continuous time blocks:

• Click on the "OS" tab. 

• Select a CT task in the "Task" pane.

• Adjust the settings for trigger mode etc. as 
necessary.
The Project Editor



You can now experiment with the hybrid project in the same way as with a
project containing only modules. In the experimentation environment a solver
has to be assigned to each continuous time block. Different solvers can be
assigned to blocks within the same project, which means that multi-rate exper-
iments are possible. Assigning solvers is described in section "Experimenting
with Continuous Time Blocks" on page 337.

4.8.8 Project Settings

ASCET Experimentation is available for different target platforms, e.g., PC,
experimental targets and microcontroller targets. For each target, a number of
build, experiment code or production code options are available, as well as
optimization options and ASAM-MCD-2MC generation options.  

Note

For an ASCET module, code can be generated and simulated without project 
context only with the Physical Experiment code generator (see 
page 412). For the other code generators the module must be integrated 
into a project. A so-called default project can be defined for each class or 
module for that purpose. This is the only way to access the implementation 
information. Without project context, the conversion formulas as well as all 
implementations of imported entities are missing.
The Project Editor 407



408
To adjust the project settings:

• Click on the Project Propertiesbutton.

The "Project Properties" dialog window opens 
in the "Build" node.

• Select the desired setting in the combo box.

Or 

• Activate or deactivate an option.

Or

• Enter an appropriate value in the input field.

Or

• Click on a link (blue text) to reach futhter 
options.

• Repeat the steps for the other options you 
want to adjust.
The Project Editor



• Click on System Defaults to restore the 
default settings.

• Switch to another node to set more options,

or

• click OK to confirm the settings and close the 
dialog window.

Changes in some of the nodes below the "Build" node invalidate existing gen-
erated code in the database. The selected code generator (page 412) deter-
mines the affected nodes; the table shows the various combinations.

To filter project settings:

You can filter the project settings to make the display more concise.

• Filter the project settings as described in "To 
filter options:" on page 40.

To save and load project settings:

You can save your settings to an XML file, and load previously saved settings.
However, this is possible only in the top-most node, "Project Properties".

1. Save project settings

• In the "Project Properties" window, select the 
"Project Properties" node.

Note

The System Defaults button affects all tabs.

Code Generator Node

Physical Experiment
Quantized Physical Experiment

"Code Generation" (page 414)
"Experiment Code" (page 420)
"Optimization" (page 421)

Implementation Experiment "Code Generation" 
"Integer Arithmetic" (page 417)
"Experiment Code"
"Optimization"

Object Based Controller 
Implementation

"Code Generation" 
"Integer Arithmetic"
"Production Code" (page 421)
"Optimization"
The Project Editor 409



410
• Click on Export Options of Selected Node 
into XML file button.

The Windows file selection dialog opens. The 
output format *.xml is fixed.

• Enter path and name for the file.

• Click on Save.

Your settings are saved to the file you speci-
fied.

2. Load project settings

• In the "Project Properties" window, select the 
"Project Properties" node.

• Click on the Import Options for selected 
Node from XML File button.

A confirmation window opens.

• If you want to suppress the confirmation win-
dow in the future, deactivate the Show next 
time option (see also page 45).

• Click OK to confirm overwriting existing 
options.

The Windows file selection dialog opens. 

• Select the XML file you want to load.

• Click on Open.

The settings in the specified file are loaded.

Project settings are divided into ASAM-MCD-2MC settings ("ASAM-2MC"
Node) and Build options ("Build" Node). Build options belonging together are
grouped into subnodes.

"ASAM-2MC" Node

The "ASAM-2MC" node offers the following settings:

• ROM Code toggles the generation of ROM code for experimental tar-
gets. 
When activated, the *.cod file contains both ROM and RAM code to 
enable stand-alone operation (see ASCET-RP user’s guide). An execut-
able file (*.cod) is generated for the experimental target.

• Hierarchical Names toggles between simple element names and full 
names in ASAM-MCD-2MC files.
The use of full names helps to avoid name conflicts in large projects. 
The Project Editor



When ASAM-MCD-2MC files are generated, full names are listed in 
reverse order: 
<elementName>[.<className>][.<moduleName>]

• Formulas with Unit defines whether the unit indicated in ASCET will be 
stored in ASAM-MCD-2MC together with the formulas (activated) or 
not (deactivated).

• Suppress exported Parameters determines whether exported parame-
ters are suppressed (activated) during ASAM-MCD-2MC generation or 
not (deactivated).

Some compilers optimize the access to exported parameters in the 
C code by replacing them with their values. When such parameters are 
calibrated, inconsistencies between exporting and importing compo-
nents can occur. The option prohibits the calibration of such parame-
ters.

• Suppress exported Elements determines whether the exported ele-
ments of prototype components are ignored (activated) during ASAM-
MCD-2MC generation or not (deactivated).

• Suppress grouping Information determines whether the structuring of 
measurement and calibration variables via the GROUP and SUBGROUP 
keywords during ASAM-MCD-2MC generation is inserted (deactivated; 
default) or suppressed (activated).
The Project Editor 411



412
"Build" Node

The following options are available in the "Build" node: 

• Target determines the experimental or micro-controller target. The 
ASCET base system provides only the PC target, ASCET-RP adds the 
experimental targets, the various ASCET-SE editions add the microcon-
troller targets. 
The choices available here depend on the ASCET products you have 
installed. 

• Code Generator determines what kind of arithmetic is used in the gen-
erated code. Available options are:

– Physical Experiment (floating point arithmetic)

– Quantized Physical Experiment (quantized floating point 
arithmetic)

– Implementation Experiment (fixed point arithmetic)

If ASCET-SE for a microcontroller target is installed on your computer, 
only one option is valid for that target:
The Project Editor



– Object Based Controller Implementation

• Compiler determines the compiler used to generate the code for the 
project. An appropriate compiler is supplied with ASCET for each 
experimental target.

• Edit Compiler Settings – This link opens the ASCET options window. In 
that window, use the appropriate subnode of the "Compiler" node to 
set the compiler path.

• Operating System shows the operating system of the current target. 
When you installed ASCET-SE for RTA-OSEK, and selected a respective 
target, you can select the RTA-OSEK version in the the edit field.

• Edit OS Configuration – This link opens the "OS Configuration" node 
(cf. page 414).

• Use Long File Names can be deactivated in order to guarantee that your 
system corresponds to the 8.3 filename pattern (filename.ext). Other-
wise long filenames (identical with the corresponding element names) 
will be generated.

• Generate Dependency Files switches the generation of make files con-
taining the dependencies of all generated header files on (activated) or 
off (deactivated; default). Header files included by the user via 
#include statements are not taken into account. A make file is cre-
ated for each generated *.c file.

Note

This option is available only for compilers that support long file names. It 
is deactivated for DIAB 4.1 and Borland compilers.
The Project Editor 413



414
• Header Structure controls the header file generation when using 
Component → File Out Generated Code.

The following selections are available: 

• Configure Code Generation Messages –This link opens the "CodeGen 
message Configuration" window. In that window, you can configure 
the messages from code generation and build process. For a detailed 
description, see "Configuring Messages in the "CodeGen Message 
Configuration" Window" on page 154.

"OS Configuration" Node

The options in this node is only available if ASCET-SE for RTA-OSEK is installed,
and a corresponding micro-controller target is selected in the build options
(see page 412). They are described in the ASCET-SE user’s guide.

"Code Generation" Node

This node contains the following options:

• Protected Division should be activated to make the generated code 
check for and intercept divisions by zero. This option entails a perfor-
mance penalty, so it should be deactivated to achieve maximum code 
efficiency.

Component A separate header file is created for each class and each 
module in the project. If a module contains a class, the 
header information of the class is inserted in the module 
header file.
If a class is included in several modules of the project, it’s 
header information is inserted in all module header files.

Module A separate header file is created for each module in the 
project. 

Project A single header file is created for the entire project. This file 
contains all information from the modules and classes in the 
project.
This header file must be included in all *.c files.

Note

Headers of internal and external C code classes and of the OS com-
ponent are not affected by this option (exception: use header glo-
bal is activated for an external C code class). The latter is always 
written to the conf.c and conf.h files.
The Project Editor



• Generate Define Directives for Enum Values: When this option is deac-
tivated (default), the respective integer values for the enumerators are 
generated in the code.

When the option is activated, the names of the enumerators (e.g., Red 
or Green) appear in the generated code, and additional macros of the 
following kind are generated:

#define Red 0

#define Green 1

Thus, the symbolic names are assigned to the respective integer values.

• Add Comment with Implementation Information for each Assignment 
Statement: When this option is activated, a comment is generated in 
front of each assignment or return statement. This comment contains 
implementation information on the right-hand side of the assignment..

Example:

/* return with expr from doAddition:   ↵
min=-65536, max=65534, hex=1phys+0,  ↵
limit=(maxBitLength: true, assign: true)*/

return ((sint32)input1 + input2);

• Add Comment with Specification Source for each Statement: When 
this option is activated, a comment is generated in front of each gener-
ated assignment. The comment contains the specification source of the 
assignment.

– ESDL: line number

– Block diagram: sequence call number

– State machine: name of action/condition and respective state/tran-
sition

Example (ESDL):

/* doAddition: line #1 */

self->cont->val = input1 + input2;

• Add Comment with Generation Information for each Component: 
When this option is activated, comments are created at the beginning 
of the generated code for each component. The first comment con-
tains information regarding the component and ASCET, the second 
contains all build and experiment/production code options.

Example:

/*************************************************

 * BEGIN: Generation Information

 *-----------------------------------------------
The Project Editor 415



416
 * Component:................Project

 * Name:....................."ControllerTest"

 * Implementation:..........."Impl"

 * Dataset:.................."Data"

 * Specification:............<not applicable>

 * Version:..................<empty String>

 *-----------------------------------------------

 * Generation Date:..........21.03.2006

 * Generation Time:..........16:34:44

 *-----------------------------------------------

 * ASCET-MD Version:.........V5.1.4 

 * ASCET-RP Version:.........V5.4.1 

 * ASCET-SE Version:.........V5.2.1 CID[514]

 *-----------------------------------------------

 * END: Generation Information

 ***********************************************/

/*************************************************
 * BEGIN: Project Options "Build"/"Code"
 *------------------------------------------------
 *    Build
 *------------------------------------------------
 * Code Generator:.......Implementation Experiment
 * Compiler:............Borland-C V4.5
 * Operating System:....<not applicable>
 * Target:..............PC
 *------------------------------------------------
 *    Code
 *------------------------------------------------
 * add comment with generation information for  ↵

each component [true]:.true
 ...
 *------------------------------------------------
 *    Code.Experiment
 *------------------------------------------------
 * data logging [false]:.....................false
 ...
 *------------------------------------------------
 *    Code.FixedPoint
 *------------------------------------------------
 * allow double bit size for division numerators ↵

[true]:.............true
 ...
 *------------------------------------------------
The Project Editor



 *    Code.Optimizations
 *------------------------------------------------
 * common subexpression elimination [true]:....true
 ...
 *------------------------------------------------
 * END: Project Options "Build"/"Code"
 ************************************************/

• Force Parenthesis for Binary Logical Operators enforces parentheses for 
binary logical operators, according to the MISRA1-C:2004 Guidelines 
for the use of the C language in critical systems.

• Add parentheses for readability adds parentheses for better readability, 
according to MISRA1 rule 12.1.

Example: If the option is deactivated, the following code is generated:

x = (a > b) ? a - b : a + b;

x = a + b * c;

if (a + b == c) {.. }

If the option is activated, the following code is generated for the same 
sample operations:

x = (a > b) ? (a - b) : (a + b); 

x = a + (b * c);

if ((a + b) == c) {.. }

"Integer Arithmetic" Node 

This node contains the following options:

• In the Arithmetic Services Set combo box, you select the set of arith-
metic services (cf. chapter 4.14) you want to use. The combo box lists 
all sets available in the services.ini file of the current target; in 
addition, you can select <None> to switch off the use of arithmetic 
services.
Use the Edit button to open the arithmetic services interface editor; see 
chapter 4.14.5.

• In the Result on Division by Zero combo box, you select the behavior 
upon division by zero. When you select numerator (default), the 
numerator is returned as result. When you select user defined, a 

1. Motor Industry Software Reliability Association, http://www.misra.org.uk 
The Project Editor 417

http://www.misra.org.uk/


418
call to the user-defined C macro protDiv0(num, 
result_type_max, result_type_min) is returned. This macro 
is specified in one of the included header files.

The macro arguments have the following meaning:

– num is the current numerator value,

– result_type_max is the maximum possible value of the result 
data type, 

– result_type_min is the minimum possible value of the result 
data type.

The second and third argument are used—in that order—to use the 
minimum and maximum of the result data type in the computation. It 
is possible, for example, to provide the macro

#define protDiv0(num,max,min) (num<0?min:max)

to get, depending on the result data type, the largest, or smallest, pos-
sible integer value.

• Maximum bit Length (int) determines whether the code generated for 
integer variables uses 8, 16 or 32 bit arithmetic in the expressions for 
fixed point arithmetic.

• Maximum bit Length (float) determines whether the code generated 
for floating-point variables uses 32 or 64 bit arithmetic in the expres-
sions for fixed point arithmetic.

• Allow Limit Service for Assignment Limitation defines, under which 
conditions a limiting arithmetic service is used. If this option is deactiva-
ted, limiting services are only used if an overflow of the processor bit 
width has to be avoided. If the option is activated, limiting services are 
also used at data type boundaries with a smaller bit width, e.g. 16 bit 
for a 32 bit processor.
In the first case, only overflows of the maximum possible processor 
type are handled by means of a limiting service. In the second case, 
limiting services are applied to overflows of the respective implemented 
data types, as well.

For projects from earlier ASCET versions, this option is deactivated 
automatically during conversion.

Note

Make sure that the protDiv0 macro exists, and is correct, when 
you want to use the user defined option. An automatic existence 
or syntax check is not performed.
The Project Editor



• Generate Limiters (may be changed locally) creates a limit for the allo-
cation operations if the calculated interval exceeds the interval speci-
fied for the target variable. If the option is deactivated, no limiters are 
generated (default: activated).
If the option is activated, the local settings for the elements apply.

• Allow Double bit Size for Division Numerators allows twice the bit size 
set in maximum bit length for intermediate results of multiplications 
followed by a division (default: activated).

• Use SHIFT Operation on Signed Values Instead of DIV Operation gener-
ates right shifts instead of division operations for divisions of signed 
numbers (default: activated). 
Some compilers use logical instead of arithmetic right shifts. This may 
lead to sign errors if the option is not deactivated.

• Use SHIFT Operation on Signed Values Instead of MUL Operation gen-
erates left shifts instead of multiplication operations for multiplication 
of signed numbers (default: activated). 
Some compilers use logical instead of arithmetic left shifts. This may 
lead to sign errors if the option is not deactivated. 

• Generate Round Operation on float to integer Assignment activates or 
deactivates rounding when a floating-point variable is assigned to an 
integer variable. Rounding is done by adding (positive values) or sub-
tracting (negative values) 0.5. If the option is deactivated, the decimal 
places are truncated (default: activated).

• Temp Vars always 32 bit (integer) creates 32 bits for all temporary inte-
ger variables. When this option is deactivated, bit widths are generated 
flexible, depending on the actual requirements (default: deactivated).

• Use power of 2 approximations of literals: When the option is acti-
vated, the code generation searches, for multiplications and divisions 
with fractions, another fractionas approximation where either numera-
tor or denominator is a power of 2.
The optimization is applied only if an approximation is found that devi-
ates at most 1 ‰ from the original fraction, and if the approximates 
literal induces no overflow.

An example: If the option is deactivated (default), the following code is 
generated:

result = input * (sint32)433 / (sint16)500;

If the option is activated, the generated code becomes

result = input * 28377 >> 15;

The precision is almost identical in both cases, but the runtime-con-
suming division operation is replaced by an effective and fast shift.
The Project Editor 419



420
"Experiment Code" Node

The following experiment code options are available:

• Max Number of Loop Iterations determines the maximum number of 
iterations the generated code will execute in a loop. This option is use-
ful for avoiding infinite loops.

• Prefix for Component Names inserts a character string as prefix for the 
component names in the generated code. 
This option can be useful if you want multiple versions of a component 
in INTECRIO, which is not possible when all versions have identical 
names.

• Data Logging must be activated, if you want to use the data logger in 
transient mode. The data logger is described in section "The Data Log-
ger" on page 597.

• Protected Vector Indices should be activated to make the generated 
code check for attempts to access an array or table with an out-of-
range index. If, for instance, an array has five elements, the errors 
resulting from access to the sixth element of that array are intercepted. 
This option entails a performance penalty, so it should be deactivated 
to achieve maximum code efficiency.

• Use OID for Generation of Component Names specifies whether the 
component OID (activated) or the model name (deactivated) is used as 
component name in the generated code.
If the option is deactivated, the user is responsible for avoiding name 
clashes.

• Add Comment with Specification Info for each Element: If this option is 
activated, a comment with specification information is generated for 
each element.

Example:

/*----Local variables object structure-------*/

struct MODULE_C_CODE_IMPL_Obj {

ASDObjectHeader objectHeader;

/* model: name=cont, type=cont,  ↵
kind=variable, scope=local,  ↵
memory=volatile */

Note

For microcontroller targets, these options are not available.
The Project Editor



real64_Obj *cont;

};

• Cache Loking, Cache Lock Code, Cache Lock Data, Used Cache Size: 
Cache locking is only meaningful when you are working with 
ASCET-RP. The options are described in the ASCET-RP user’s guide.

"Production Code" Node

These options are only available when ASCET-SE is installed, and a respective
target is selected in the build options (cf. page 412). They are described in the
ASCET-SE user’s guide.

"Optimization" Node 

This node contains the following options:

• Constant Folding on Arithmetic Operations replaces arithmetic opera-
tions with constant results with the result. As an example, the addition 
of two constants, C1 + C2, is replaced by the constant C3 (C3:= 
C1+C2); the comparison of two constants is replaced by the result, 
e.g., C1 >= C2 is replaced by TRUE (if C1>=C2) or FALSE (if C1<C2).

• Constant Folding on Logical Operations replaces logical operations 
with fixed results by the result. As an example, X_log AND TRUE is 
replaced by X_log, FALSE OR X_log is replaced by X_log, and 
FALSE != FALSE is replaced by FALSE.

• Constant Folding on Control Flow decides whether an expression for 
which the decision that the expression is always true or false can be 
made directly at the If statement, is replaced (activated; default) in the 
generated code or not (deactivated).

• Operator Simplification with Respect to Intervals simplifies expressions 
whose results are fixed due to interval calculations. If, for example, X 
has the interval [0,100], and Y has the interval [120,150], the 
expression X < Y becomes TRUE because Y is always larger than X.

• Operator Simplification (general) simplifies operations. For example, 
X - NEG(Y) is replaced by X + Y, and NOT(NOT(X_log)) by 
X_log.

• Common Subexpression Elimination replaces operations with identical 
parts that can be simplified. For example, X / X is replaced by 1 , 
X < X is replaced by FALSE, and X_log AND X_log is replaced by 
X_log.
The Project Editor 421



422
• Optimize Direct Access Methods (one level) should be activated to have 
direct access methods resolved in the generated code. Otherwise, a 
function call is generated for each direct access method call. The option 
should be deactivated if problems occur during code generation. 

• Optimize Direct Access Methods (multiple levels) should be activated to 
have nested direct access methods resolved in the generated code. 
Nesting direct access methods is possible only when specifying compo-
nents in ESDL. The effect of this option is the same as for the optimiza-
tion of simple method calls.

"Statemachine" Node

This node contains the following options:

• Outline Generated Methods(may be changed locally): If identical code 
is required for different transitions out of the same hierarchy state, a 
separate method is created (Outlining) for this code under certain con-
ditions. This method is called wherever required.

If you do not want to create separate methods and method calls, deac-
tivate the option. In that case, the action code is inserted directly wher-
ever required.

• Auto-inline private methods (smaller code-size - may be changed 
locally): If small private functions (or functions with a low number of 
callers) are inlined, both code size and runtime are saved.
If the option is activated, the code generator recognizes such functions 
automatically and directs the compiler to inline them.

• Hierarchical Code-Generation (may be changed locally): Code for state 
machines can be generated either flat (one switch statement with a 
case expression for each base state) or hierarchical (nested switch 
statements according to the state hierarchy). Flat code generation 
(deactivated) optimizes for runtime, hierarchical code generation (acti-
vated) optimizes for code size.

Note

For classes specified as method arguments, optimize direct access to 
their elements is not supported.
The Project Editor



• Optimize Static Actions (Restricted Modeling): When the option is 
deactivated (default), code for the static action of a hierarchy state is 
generated separately for each transition that does not leave the hierar-
chy state. 

When the option is activated, the static action of a hierarchy state is 
generated only once for each substate. Thus, the code size is reduced. 

• Generate well-formed switch: If the option is activated, state machine 
code is generated that complies with the MISRA1 rules 14.7, 15.2, and 
15.3.

• Initialize history variable with zero: If the option is activated, the history 
variables of hierarchy states in the project are initialized with 0 instead 
of the respective start state.

This causes an additional assignment in the code and may violate the 
MISRA rule 15.3.

4.8.9 Defining the Implementation for Fixed Point Arithmetic

When generating production code for microcontrollers, the arithmetic of the
physical ASCET specification often has to be mapped to fixed point arithmetic,
since many microcontrollers used in electronic control units do not support
floating point arithmetic. This mapping is described by the implementation
transformation, or implementation for short. 

Like data sets, each component or project may have any number of implemen-
tations. Like data sets, implementations can be viewed, edited, renamed,
deleted, browsed, exported (both flat and recursive), added, and copied.

As with data sets there are special editors for the basic elements which form
the leaves of the hierarchical tree structure of a project or component. Imple-
mentation of the basic elements of types continuous or discrete requires
specification of a range for the physical values and a transformation formula. 

Note

Optimization with this option changes the order for the execution of 
actions and evaluation of conditions—and thus possibly the state 
machine behavior. In addition, this optimization is not possible for some 
models.
A more detailed description is given in chapter "Optimizing the State 
Machine" in the ASCET reference guide.

1. Motor Industry Software Reliability Association, http://www.misra.org.uk 
The Project Editor 423

http://www.misra.org.uk/


424
Many elements within a project usually have the same transformation formula,
for instance all the velocities processed in the embedded software. It is possible
to define formulas only once within a project, and then use them across all the
elements in that project. Formulas can also be exchanged between projects
with an import/export mechanism.

ASCET also supports the intermediate step of generating quantized floating
point code. With this type of code fixed point arithmetic is emulated, but the
links and the quantization of the fixed point arithmetic can be changed inter-
actively during execution of the code. This intermediate step allows develop-
ment of the optimum implementation for the elements in a specific project.

Formulas

To add a formula:

• In the project editor, click on the "Formulas" 
tab.

The ident formula is always there. It is 
selected by default in the implementations of 
newly created elements.

• Select Global Formulas → Add to create a 
new formula.

• Type in a name for the formula and press 
<ENTER>.

To edit the formula:

• In the "Formulas" tab, select the formula you 
want to edit.

• Select Global Formulas → Edit 

or

• select Edit from the context menu

or
The Project Editor



• double-click on the formula.

The formula editor for global formulas opens..

• In the "Type" combo box, select the type of 
formula to be edited.

• Enter the required values in the respective 
fields.

• Enter a unit into the "Unit" field.

The unit is used for documentation purposes 
only and does not influence the functionality.

• Type a comment into the "Comment" field.

• Click OK.

You should not rename or delete the ident formula. When you edit the ident
formula and select another type from the "Type" combo box, the following
warning is displayed:

The <ident> formula is used for newly created elements 
to provide an identity conversion and changing this 
formula may corrupt your implementation. Do you 
really want to change the <ident> formula?

When you really want to change the type of the ident formula, click Yes.
Otherwise, click No.

The transformation formula for the implementation must be a linear formula.
Four types of conversion formulas are supported for displaying this formula.
The display of the formula editor adjusts to reflect the formula type you
choose.
The Project Editor 425



426
• The Identity formula represents an identity mapping. 

• The Linear formula represents a linear mapping with the coefficients c0 
(offset) and c1 (gradient). 

• The Moebius formula represents a rational mapping as the quotient of 
two linear mappings, with the coefficients c0 (numerator offset), c1 
(numerator gradient), d0 (denominator offset), and d1 (denominator 
gradient). The Moebius formula is mainly used to avoid a conversion to 
the linear formula format when the specification of a linear formula is 
given in the Moebius formula format.

• The Five Parameters formula also represents a rational mapping of the 
same kind in a different format with the coefficients p1, p2, p3, p4 
and p56. This formula is also used to avoid a conversion to the linear 
formula format when the specification of a linear formula is given in 
the five parameters formula format.

To rename a formula:

• In the "Formulas" tab, select a formula.

• Select Global Formulas → Rename

or

• select Rename from the context menu to 
rename the formula.
The Project Editor



To delete a formula:

• In the "Formulas" tab, select one or more for-
mulas.

• Select Global Formulas → Delete

or

• select Delete from the context menu to delete 
the formula.

• In the "Confirm" window, confirm the com-
mand with OK.

The formulas are deleted. A list of the deleted 
formulas is shown in the ASCET monitor win-
dow.

To sort the display:

• Click on a column name.

The display is sorted by that column. The col-
umns are sorted alphabetically, except "Type". 
That column is sorted as follows:

Identity → Linear → Moebius → 5 Parameters 

A second sorting reverts the sorting order.

To filter the display:

You can apply several filters to the formulas displayed in the "Formulas" tab.

• In the "Filter Rule" combo box, select a filter.
The Project Editor 427



428
• The following filters are available:

If you select, e.g., the Not used filter, you 
can easily delete unused formulas.

• Click on Update to update the formula dis-
play.

This is necessary when you have edited the 
implementation of the project or one of its 
components in another editor.

To add missing formulas:

If elements in the project use formulas that are not defined in the project, code
generation produces error messages. To add the missing formulas, proceed as
follows.

• In the project editor, "Formulas" tab, select 
Global Formulas → Add missing

or 

• click on Add missing formulas.

• For each undefined formula in the active 
implementation, a new formula with the 
respective name, and behaving like the iden-
tity, is added.

To import formulas:

• In the project editor, click on the "Formulas" 
tab.

Flter displayed formulas

All all formulas

Used in ACTIVE 
implementations

formulas used to imple-
ment an element in the 
project

Not used in ACTIVE 
implementations

formulas not used to 
implement an element in 
the project

Used in ANY 
implementation

formulas either used to 
implement an element or 
used within a currently 
unused implementation

Not used unused formulas
The Project Editor



429
• Select Global Formulas → File In → Select 
or All.

The Windows file dialog box opens.

• Select the file that contains the formulas you 
want to add.

• Click on Open.

If you have selected the All command, all formulas in the selected file are
imported. Otherwise you can choose the formulas to import from a dialog box.

To file out formulas:

• Select Global Formulas → File Out → 
Selected or All.

The Windows file dialog box opens.

• Select a directory and filename.

• Click Save.

If you have selected the All command, all the formulas in the current project
are filed out. Otherwise only the formula selected is exported. Formulas are
filed out in ASCII format, which can be read with any text editor.

An array has one implementation which is defined like that of a scalar element.
A 1-D table has two implementations, one for the input and one for the out-
put value. A 2-D table has three implementations, two for the inputs and one
for the output value.

Global Changes in Implementations

When a formula is edited or an existing formula has been replaced by another
one, you can now update your implementations recursively. Also, you can
replace a formula throughout all the implementations of a project to adjust
your implementation settings.
The Project Editor



430
Changes are not propagated automatically, you must update your implemen-
tations whenever a formula has either been replaced or modified.

To replace a formula recursively:

• In the project editor, activate the "Formulas" 
tab so you can see a list of existing formulas.

• Select Extras → Global Replace Formula.

A dialog box prompts for the name of the old 
and the new formula.

• Enter the names as needed and click OK.

The formula is replaced recursively in the 
entire implementation.

To update all implementations:

• In the project editor, select Extras → Update 
Implementations to make changes to the 
formulas in all the implementations.

A protocol of changes is written to the ASCET 
monitor window. Changes in the implementa-
tions are made according to the master page 
selected in the implementation editor of each 
primitive element.

Implementation Types

To be able to edit the implementations of individual variables more easily and
to be able to easily assign the same implementations to elements with compa-
rable physical significance, you can define what are referred to as implementa-
tion types in the project context. This is also true of the default project (see
chapter 4.8.1) of a class or a module. These implementation types contain the
essential specifications of an implementation and can be assigned to individual
elements in their implementation editors. 

This section describes how to create and set up implementation types. How
these are used during implementation is described in the section "Using Imple-
mentation Types" on page 491. 
The Project Editor



431
To add an implementation type:

• In the project editor, click the "Impl. Type" 
tab.

• Select Global Implementations → Add → 
<model type>

or

• select Add → <model type> from the con-
text menu. 

A new implementation type is created with a 
default name. Automatic settings (see follow-
ing figure) are selected which correspond to 
your selection for <model type>.

To manage implementation types:

You can delete several implementation types simultaneously, but you have to
rename them one by one.

• Select an implementation type.

Note

The model type you select when generating an 
implementation type, determines which vari-
ables you can assign this implementation type 
(see "Using Implementation Types" 
on page 491).
The Project Editor



432
• Select Global Implementations → Rename

or

• select Rename from the context menu. 

The corresponding cell in the "Name" column 
becomes an input box.

• Enter a name for the implementation type and 
press <RETURN>.

• Select Global Implementations → Delete

or

• select Delete from the context menu. 

The selected implementation type is deleted.

To edit implementation types:

• Select the implementation type you want to 
edit in the "Impl. Type" tab.

• Select Global Implementations → Edit

or

• select Edit from the context menu 

or
The Project Editor



433
• double-click the implementation type.

The implementation editor for implementa-
tion types opens in the "Value" tab.

• Select a conversion formula in the "Formula" 
dropdown list.

• If necessary, enter the quantization in the 
"Qu.Exp" field.

The field is only activated if you selected the 
Quantized Physical Experiment code 
generator in the build options (see page 412). 
In all other cases, it is only used as a display.

• Select the master page of the implementation 
in the "Master" field.

1. Master Model:

Select this setting if physical model properties are the main reason for 
selecting the implementation.
All fields in the "Model" area except model type can be edited. This is 
The Project Editor



434
determined when the implementation type is created. 
The "Implementation" area is locked apart from the option Zero not 
included.

• Enter the limits for the interval in the "Min." 
and "Max." boxes.

• To set the upper or lower bound of a model 
type ("infinite" in case of "cont"), click one of 
the fields with the right-hand mouse button 
and select Default Value from the context 
menu.

The values for the implementation are 
updated automatically.

2. Master Implementation:

Select this setting if certain code properties (e.g. a required bit width) 
are the main reason for selecting the implementation.
The fields in the "Implementation" area can be edited; the "Model" 
area is locked.

• Select the type of implementation in the 
"Type" dropdown list. 

• Enter the limits for the interval in the "Min." 
and "Max." fields.

• To set the default limits for the current data 
type, click one of the fields with the right-
hand mouse button and select Default Value 
from the context menu.

The values for the model are updated auto-
matically.

3. Other settings:

• If the interval cannot have the value "zero", 
activate the option Zero not included.

• Select the "Comment" tab if you want to 
enter a comment.

Note

If you activate the option Zero not included, no check is carried out in 
the generated code during runtime to see if the denominator of a divi-
sion is zero. This can lead to critical run-time behavior of the code. If in 
doubt, disable the option.
The Project Editor



435
• Enter the comment in the text box of the tab.

This comment is not transferred during assign-
ment to an element. 

• Click OK to confirm your settings.

You cannot make any settings for the memory area and limiting behavior for
an implementation type during assignments or overflow or enter any addi-
tional information. These settings are made individually for each element.

To copy implementation type settings:

Once you have set up an implementation type, you can copy the settings to
another implementation type.

• Select the implementation type whose set-
tings you want to copy.

• Select Global Implementations → Copy

or

• select Copy from the context menu.

The settings are copied to the database clip-
board.

• Select the implementation type into which 
you want to copy the settings.

• Select Global Implementations → Paste

or

• select Paste from the context menu.

The settings are copied from the database 
clipboard into the implementation type.

To swap settings of implementation types and scalar elements:

You can also swap the settings between implementation types and scalar ele-
ments of the database. 

• In the "Impl. Type" tab of the project editor, 
select the implementation type whose settings 
you want to copy.

• Select Global Implementations → Copy

or

• select Copy from the context menu.

The settings are copied to the clipboard.
The Project Editor



436
1. Via the "Implementation" tab of the Component Manager 

• Select the component which contains the 
scalar element to which you want to copy the 
settings from the "1 Database" list in the 
Component Manager.

• Select the "Implementation" tab from the 
"3 Contents" field.

• Select the element from the 
"Implementation" tab.

• Select Paste from the context menu

or

• press <CTRL> + <V>.

2. Via the implementation editor of a component

• Open the implementation editor of the 
component that contains the scalar element 
to which you want to copy the settings.

• Select the tab which contains the element.

• Select the element.

• Select Element → Paste Implementation 
From Buffer

or

• select Paste Implementation From Buffer 
from the context menu.

The settings are copied from the clipboard to 
the scalar element.

If you want to copy the implementation of a scalar element into an implemen-
tation type, proceed in the reverse order: copy the implementation in the Com-
ponent Manager or in the implementation editor and add it to the "Impl.
Type" tab of the project editor.

4.8.10 Experimenting with Projects

The code generation and experimentation facilities are much more powerful
for projects than for components. Only offline experimentation with floating
point arithmetic (build option Physical Experiment, see page 412) is
available for components. Projects offer online experimentation, and both
offline and online experimentation can be combined with either floating point
arithmetic or quantized floating point arithmetic (build option Quantized
The Project Editor



437
Physical Experiment) or fixed point arithmetic (build option Imple-
mentation Experiment). The same code generation facilities are available
for components, when they are experimented with in a project context.

Online and Offline Experimentation

It is possible to experiment with a project offline just as with any component.
All facilities for offline experimentation are available and work in the same way
as for components. Offline experimentation with a component is equivalent to
project offline experimentation, with the default project containing the com-
ponent. The offline experimentation environment is described in detail in chap-
ter "The Experimentation Environment" on page 561. 

The main difference between offline experimentation with components and
projects is that in projects, the tasks created in the operating system editor are
stimulated in the event generator, rather than the methods or processes of any
components.

With online experimentation a project can be tested under more realistic con-
ditions and in real-time. During offline experimentation the code generated by
ASCET can be run on the PC or an experimental target, but it does not run in
real-time. During online experimentation the code always runs on an experi-
mental target in real-time. Online experimentation forms the basis for using
ASCET in practical applications. It focuses on the operating system schedule
The Project Editor



438
and the corresponding real-time behavior of the control system, whereas
offline experimentation often revolves around testing the functional specifica-
tion of a system.

The main differences between online experimentation and offline experimen-
tation are:

• Online experiments have to be run on real-time hardware, e.g. the 
ETAS targets ES1130 and ES1135.

• There is no stimulation, i.e. there are no event and data generators. The 
scheduling is determined by the integrated operating system and the 
data is read from e.g. the technical process.

• The sampling rate at which data is measured must be specified explic-
itly, by selecting an activation task for each measurement window.

• The experiment and the measurements can be started independently 
of each other.

Online experiments are possible only in connection with ASCET-RP; therefore,
you find the description in the ASCET-RP user’s guide.

It is possible to generate code for the project without starting the experimen-
tation environment. This is useful for testing whether the code generated is
syntactically correct. If the code is incorrect, the program displays the error
messages issued by the compiler.

To generate code:

• In the project editor, select Component → 
Generate Code

or

• click on Generate Code.

The code for the project is generated. Any 
error messages are displayed in a message 
window.

Or

• Select Component → View Generated 
Code.

C code is generated and displayed automati-
cally in a text editor.
The editor can be selected in the ASCET 
Options window, "ASCII Editor node" (cf. 
page 60).
The Project Editor



439
To save generated code:

• Select Component → File Out Generated 
Code → Flat or Recursive to write the code 
for a project to a file.

The Windows path selection window opens.

• Select a path.

• Click OK to write the code to the directory you 
selected.

The generated code is written to the specified 
location. You can open the file with any text or 
C code editor. The names of the generated 
files are logged in the monitor window.

To generate executable code:

• In the project editor, select Component → 
Build 

or

• click on Build Executable Code to generate 
an executable file.

The code for the entire project is gebnerated, 
compiled, ans linked. When no errors occur, 
an executable file is generated.
The source and object code generated in that 
process is stored in the ASCET database.

Or

• Select Component → Build from directory 
to generate an executable file without storing 
the generated code in the ASCET database. 

The time required for storing the files is thus 
saved.

This option can be necessary particularly when 
generating code for large projects, in case the 
computer does not have enough main mem-
ory.
The Project Editor



440
When an executable file is generated, all files (including source code) are writ-
ten by default into the .\cgen\ directory.

If you want, you can link existing object files to an executable file without new
code generation and compilation. This is primarily of interest when your
project contains external C code files which are integrated during the make
process.

To link object files to an executable file:

• Perform the necessary changes in the external 
files, and create object files.

• In the project editor, select Component → 
Link Only.

The internal object files belonging to the 
project are written from the database to the 
hard disk and, together with the external 
object files, linked to an executable hex file.

Experimenting with Quantized Floating Point Code

Code with quantized floating point arithmetic is generated from the same
physical model as code with floating point arithmetic. You only need to switch
the code generation over.

To switch to quantized floating point arithmetic:

• Click on the Project Propertiesbutton.

• In the "Code Generator" option select Quan-
tized Physical Experiment.

Note

When the Keep files in Code Generation Directory option is deactivated 
in the options window (cf. page 49), the content of the ASCET code genera-
tion directory .\cgen\ is deleted whenever you exit your ASCET session. To 
store them permanently, you have to file them out as described on 
page 439.
Retrospectively activating the option has no effect for the running session.

Note

Link Only works corrdctly only when the internal files have been created 
using Component → Build or the Build Executable File button. Only with 
these commands, the files are stored in the database.
The Project Editor



441
• Click OK.

The next time you start the experiment, your 
code is generated with the current settings. 

Experimenting with models with quantized floating point arithmetic works in
the same way as with standard floating point arithmetic. The difference is that
for experimentation with quantized floating point arithmetic, there is a special
calibration window to adjust the limits of the interval and the quantization of
the value.

To open the quantized calibration window:

• In the "Elements" pane of the experimenta-
tion environment, select the element you 
want to calibrate.

• Select Elements → Calibrate.

A dialog box prompts for the type of editor 
you want to use.

• From the list, select the [Numeric Editor 
[MMQ]] and click OK.

The quantized calibration window opens with 
the values of the current data set and the val-
ues from the current implementation. 

Quantized floating point arithmetic only affects the assignment to variables.
Each time a variable is written or its value is changed in the calibration window,
the value is adjusted to the quantization information.

To work with the quantized calibration window:

• Select the value field.

• Change the value as you wish.
The Project Editor



442
• Press <ENTER>.

The value is changed in the experiment and 
automatically adjusted to the quantization 
and interval chosen.

• Select one of the fields "Min", "Max" or 
"Quant" and change the value to what you 
want.

• Press <ENTER> or select another field.

The new information is transferred to the 
experiment and the value is adjusted automat-
ically to the new interval and the quantization.

Quantized floating point arithmetic can also be used for experimentation with
components, but only with components not described in C code. The compo-
nent to be experimented with must be opened from the project editor, instead
of from the database browser.

To experiment with a component in quantized floating point arith-
metic:

• In the project editor click on the Specify Code 
Generation Settings button.

• In the "Code Generator" option select Quan-
tized Physical Experiment.

• Select the component in the "Elements" 
pane.

• Select Element → Edit Component.

• The relevant specification editor opens.

• Experiment with the component.

4.8.11 Generating Application Data

In the project editor, you can generate all files required for running your code
on a controller target, and measuring/calibrating it with a calibration system
(e.g., INCA). ASCET uses the ASAM-MCD norm to generate information
needed in the calibration system. The ASAM-MCD file represents the interface
to all calibration systems that recognize the standard ASAM-MCD format.
The Project Editor



443
To generate application files:

• In the project editor, select ASAM-2MC → 
Write to create the ASAM-MCD-2MC files for 
your system. 

A file prompter dialog box is displayed.

• Select a path and enter a filename for the 
ASAM-MCD-2MC files.

• Click Save to have the application files written 
to the file system.

ASCET generates the ASAM-MCD-2MC data 
file and the hexadecimal file that contains the 
code for your system.

You can set options for the ASAM-MCD-2MC file generation in the "ASAM-
2MC" node of the "Project Properties" window. The procedure is described in
section "Project Settings" on page 407.

4.9 Containers

The Containers available since ASCET 5.0 are used as containers for projects,
classes and modules. Their purpose is to structure models and databases and
place different database items under a common version control. When
upgrading from an earlier ASCET version, networks are converted to contain-
ers (see chapter 4.9.2). Unlike the networks in earlier ASCET versions, contain-
ers have no other function.

Containers can contain all kinds of database items apart from folders, even
other containers. Direct (the container contains itself) and indirect (the con-
tainer contains a second container, which in turn contains the first) recursions
are admissible. Each database item can only be contained once in the same
container.

4.9.1 Working with Containers

Containers are (like enumerations) not edited in a special editor but in the
Component Manager. A context menu, similar to those of other views, is avail-
able to you there in the container view in the "Container components" tab.

To invoke the container view:

• In the Component Manager, mark an existing 
container in the "1 Database" field

or
Containers



444
• create a new container (see page 75).

The "Container components" tab is displayed 
in the "3 Contents" field.

• Click anywhere in the "Container compo-
nents" tab to bring it into focus.

To add a database item (context menu/keyboard):

• Select  Add from the context menu

or

• press <INS>.

The "Select Item" window opens.

• Select the component you want to add from 
the "1 Database" list.

• Click OK to add the item and close the 
"Selected Items" window.

The item is added to the container and dis-
played in the "Container components" tab.

To add a database item (Drag & Drop):

• In the "1 Database" list of the Component 
Manager, expand the folder containing the 
container to which the item is to be added.

• In the "1 Database" list, select the folder con-
taining the database items to be added to the 
container. 

The content of the folder is displayed in the 
"3 Contents" field.
Containers



445
• Drag the database items from the "Compo-
nents" tab to the container in the 
"1 Database" list.

The items are added to the container.

You can drag items from one container to another in the same way. The items
are not removed from the first container.

To rename added items:

• Mark the item you want to rename in the 
"Container components" tab.

• Select Rename from the context menu

or

• press <F2>.

The name of the item is highlighted.

Note

You cannot drag the database item from the 
"1 Database" list into the container.

Note

If you rename an item in a container, the original database item is also 
renamed; this is not the case when items added to components or projects 
are renamed.
Containers



446
• Enter a new name and press <RETURN>.

The item is renamed both in the container and 
in the database.

To edit items:

You can open an item you want to edit from within the container the same
way as from a folder. 

• Mark the item you want to edit.

• Select Component → Edit Item

or

• select Edit from the context menu

or

• press <RETURN>.

or

• double-click the item to open the component 
editor.

If the item is a container, it is selected in the 
"1 Database" field and displayed in the 
"3 Container components" field.

To delete items from the container:

• Mark the items you want to delete in the 
"Container components" tab.

• Select Select All from the context menu

or

• press <CTRL> + <A> if you want to select all 
items. 

• Select Delete from the context menu

or

Note

These two options are not available for contain-
ers contained in containers.
Containers



447
• press <DEL> to delete the selected items from 
the container.

The items are only deleted from the container, 
not from the database.

To sort the container view:

• Select Sort by → <column> from the context 
menu

or

• click on the name of a column to sort the dis-
play according to the relevant column.

4.9.2 Containers and Networks

The containers in ASCET 5.2 replace the networks of earlier ASCET versions. If
you open an old database which contains networks, these networks are auto-
matically converted into containers. The projects assigned to the different
nodes of the network are added to the containers. Other information available
in the network is not added. 

4.10 Editing Element Properties

Elements are interface elements, variables, tables, arrays and complex ele-
ments (referenced components). 

Each element has a number of properties, which can be configured according
to requirements in the model.

The configuration selected is valid for all occurrences of an element within a
component.
Editing Element Properties



448
Instances and Occurrences

An element can have several occurrences. An occurrence of an element is the
equivalent to writing down the name of the element in a text-based program-
ming language. Changes in one occurrence of an element affect all the other
occurrences of that same element. 

Care has to be taken when using referenced components as elements. Here,
every component can have multiple instances, each of which can in turn have
multiple occurrences. 

4.10.1 Element Configuration

An element configuration is edited in the element editor. The element editor
can be called from any specification editor and from the Component Manager.

To open the element editor:

• In the "Elements" pane of a specification edi-
tor, highlight the element you want to edit.

– Select Element → Edit

or

– right-click on the element and select Edit 
from the context menu

or

– double-click the element you want.

Or

• In the drawing area (BDE) or "Graphics" tab 
(project editor), right-click on the element and 
select Edit from the context menu.

Or

• In the Component Manager or the Browser 
view of the specification editor, select the 
"Elements" tab.

• Highlight the element you want to edit.

– Press <ENTER>.

or

– Right-click on the "Elements" tab and 
select Edit from the context menu.

The "Element Editor" window opens.
Editing Element Properties



449
When the Edit Primitive Elements (or Edit Implementation Cast) option in
the ASCET option dialog (cf. "Options for Confirmation Dialogs" on page 45)
is activated, the element editor opens automatically when a new element is
created.

This option can be overwritten with the Always show editor for new ele-
ments option present in each element editor.

Depending on the type of the selected element, the element editor can look
differently; not all fields exist in every case. The functions of the available fields
are identical in all cases.

Fig. 4-2 Element editor for basic elements. Depending on the element, 
some fields or options can be deactivated.
Editing Element Properties



450
Abb. 4-3 Element editor for CT block elements. The possibilities to set Get 
and Set ports, as well as some other fields, do not exist, other 
fields are used as displays only.

Abb. 4-4 Element editor for an included component. Only a few fields 
exist.

Abb. 4-5 Element editor for an implementation cast. Only the name and 
the comment can be edited.
Editing Element Properties



451
To edit an element configuration:

Configure the element as you wish. Proceed as follows:

• In the element editor, enter a unit into the 
"Unit" field.

Each element can be assigned a unit. The unit 
is for documentation purposes only, and does 
not influence the functionality of the element.

• Type a comment into the "Comment" field.

The comment is displayed when documenta-
tion is generated for the component.

• Assign the element type in the "Model Type" 
field.

When you select the Enumeration type, the 
combo box next to the "Model Type" field 
(see Fig. 4-2) is activated. It contains all enu-
merations available in the database.

• In the "Kind" field, assign the element kind.

Here, you can define constants or system con-
stants (cf. "The Kind of Elements" in the 
ASCET reference guide).

The options Input and Output are only avail-
able for inputs and outputs of state machines.

• In the "Scope" field, determine the scope of 
the element (cf. "The Scope of Elements" in 
the ASCET reference guide).

• In the "Existence" field, determine whether 
the element is virtual or not.

This field is only available for variables and 
parameters (enumerations excluded).

• In the "Dependency" field, determine 
whether a parameter is dependent or inde-
pendent. 

This field is only available for parameters (enu-
merations excluded).
Editing Element Properties



452
• In the "Memory" field, determine whether 
the element is written to the volatile or non-
volatile memory of the ECU.

Data stored in the non-volatile memory of the 
ECU will not be overwritten upon initializa-
tion.

• In the "Calibration" field, determine whether 
a parameter can be calibrated in an applica-
tion system (Yes) or not (No). 

When you select No, the READ ONLY key-
word is generated for the parameter during 
ASAM-MCD-2MC generation.

This field has no influence on other elements 
or the offline experimentation environment.

• Click OK to close the element editor.

It is possible to enable individual elements within a component. Enabling an
element means that the element can be accessed from outside of the current
component.Parameters and constants can be read out from the current com-
ponent. Variables, however, can be read in and out.

To enable or disable elements:

• Open the element editor.

• Click on the Set() option.

A tick mark appears in the box. The element is 
enabled and can be written from outside the 
component. 

Note

The sm state variable of a state machine cannot 
be edited in the element editor. To assign the 
non-volatile attribute to this variable, open its 
context menu in the "Elements" pane and select 
Settings → Non-Volatile.
Editing Element Properties



453
• Click on the Set() option again to reverse the 
setting.

• Activate the Get() option to add an output.

• Click OK.

In the layout, an input or output is added for 
the element.

The type of pin displayed in the layout depends on the kind of element being
enabled. For parameters (including characteristic lines and maps), constants
and system constants, as well as send messages, only an output pin can be
added. For receive messages, only an input can be added. For variables, as well
as send&receive messages, both an input and an output pin can be added. 

4.10.2 Dependent Elements

Dependent elements can be parameters and model constants. This means that
they are affected by another element.

To create the formula for dependent parameters:

• In the Element editor, select the option 
Dependent from the "Dependency" field.

The Formula button is activated.

You have to actively set the Get() and Set() options for messages to add the 
respective inputs and outputs to the module layout. However, these are 
merely a visualization feature; assignment is performed using identical 
names.

When you are using Get/Set ports without activating one of the Optimize 
Direct Access Methods (...) code optimization options (cf. section ""Opti-
mization" Node"), separate methods for the direct access on the respective 
elements are created in the generated code, which are called via funcion 
calls.
When the Optimize Direct Access Methods (one level) option is acti-
vated, the direct access is used instead of separate methods. 
When the Optimize Direct Access Methods (multiple levels) option is 
activated, this is also true for nested classes.
Editing Element Properties



454
• Click on the Formula button. 

The "Formula Editor" for dependent parame-
ters opens.

Here, you can enter the element dependency 
as a formula (C-Syntax). The cursor position in 
the "Formula" field is indicated in the "Posi-
tion" field.

• Right-click in the "Identifier" field and select 
Add from the context menu.

This is how you create formal parameters. 
These parameters are independent of the 
model. 

• Enter a name in the "Identifier" field.

A list of available operators can be found in 
the "Operator" combo box.
A list of available functions can be found in 
the "Function" combo box.

You can create the formula for the depen-
dency in the "Formula" field using formal 
parameters, operators and functions.

There are two ways for doing so:

1. Enter the formula directly in the "Formula" 
field.

Or
Editing Element Properties



455
2. Use the >> buttons.

– In the "Function" combo box, select a 
function.

– Click on the neighboring >> button.

The selected function appears in the "For-
mula" field, at the cursor position.

– In the "Operator" combo box, select an 
operator.

– Click on the neighboring >> button to 
add the operator to the formula.

– Highlight a formal parameter in the "For-
mal Parameter" field.

– Use the neighboring >> button to add the 
parameter to the formula.

Operators, functions and formal parame-
ters can be inserted in any number or 
sequence. However, only one can be 
added at a time.

To edit the formula of a dependent parameter:

You can edit the formula of a dependent parameter at a later state.

• Open the formula editor for the dependent 
parameter whose formula you want to 
change.

• Edit the formula as described in the previous 
passage.

• In the "Formal Parameter" field, right-click on 
a formal parameter you want to rename and 
select Edit from the context menu.

• Enter the new name.
Editing Element Properties



456
• In the "Formal Parameter" field, right-click on 
a formal parameter you want to remove and 
select Delete from the context menu.

In order to make the dependency of the element in the model effective, the
formal parameters must be specified according to the model.

To specify the formal parameters:

• Highlight the element you want to edit in the 
"Elements" pane.

• Select Element → Edit Data.

or

• Right-click on the element in the "Elements" 
pane or the drawing area, and select Edit 
Data from the context menu.

or

• In the Browser view, select the "Data" tab.

– Highlight the element you want to edit.

– Press <ENTER>

or

Note

The changes made by renaming or deleting for-
mal parameters affect only the "Formal Parame-
ter" field. The formula in the "Formula" field has 
to be updated manually.
Editing Element Properties



457
– right-click on the "Data" tab and select 
Edit from the context menu.

The "Edit Dependency" dialog opens.

• In the "Model Parameter" column, right-click 
on the [undefined] field.

A combo box opens that lists the parameters 
in the component.

• Select one of the listed elements.

This way you assign the formal parameter a 
model parameter which determines the value 
of the dependent parameter.

• Close the "Edit Dependency" window.

Temporary variables can be used to store the results of statements or opera-
tions and avoid multiple execution within the same method or process (see
section "Temporary Variables" in chapter "The Kind of Elements" of the
ASCET reference guide).

To use temporary variables:

• Right-click on the operator for which you 
want to use a temporary variable.
Editing Element Properties



458
• Select Temporary Variable from the context 
menu.

The operator displays a solid rectangle on the 
output pin to indicate that the result of the 
operation is stored in a temporary variable.

• Repeat the command to reverse the setting.

4.11 Editing Data

When specifying a component, you can assign an initial value to each element
in your specification. All of these values can be changed at a later stage. You
can specify different data sets, i.e. sets of initialization values between which
you can toggle, or you can change individual values during experimentation.
This section describes the different editors for the various kinds of elements.

Usually a data editor is first called from within the component development
environment, e.g. the block diagram editor, to assign a default value to an
element. Then the editor can be opened again from within the experimenta-
tion environment to calibrate the value of the element during an experiment
(see "The Numerical Editor" on page 622). Data editors can also be used to
define data sets for components or projects.

Data sets are independent from implementations (cp. chapter 4.12). Neverthe-
less inconsistencies between both can arise. In the context of a project, the
value of an element defined in its data set can exceed the value range defined
in the implementation. It is the user’s responsibility to use consistent project
settings.

To open an editor

• In the "Elements" pane of the component 
editor, highlight the element you want.

Note

At code generation time, the initialization values of basic elements must fit 
the value ranges defined by their implementations. Otherwise an error mes-
sage is generated for parameters, a warning for variables.
Editing Data



459
• Select Element → Edit Data on the menu 
bar.

Similar to opening the element editor (cp. 
chapter 4.10.1) further possibilities to open 
the data editor exist.

Depending on what you selected, one of the 
editors described below opens.

4.11.1 Editors for Scalar Types

Numerical Editor

The numerical editor shows the value of a numeric element and lets you edit
that value.

To edit a value:

• Enter the value you want.

or

• Click on the numeric display and edit the value 
as required.

• Click OK to import the modification.

Logical Editor

The logical editor shows the value of a logical element and allows you to edit
that value.

To edit a logical value:

• Tick the option box to set the value to true.

• Untick the option box to set the value to 
false.
Editing Data



460
• Click on OK to import your modification.

Enumeration Editor

The Enumeration editor displays the enumerator assigned to the element and
allows you to select another enumerator from the current enumeration. 

To select an enumerator:

• Click on the combo box.

• Select the enumerator you want.

• Click OK to confirm your changes.

4.11.2 The Editor for Combined Types (Table Editor)

Tables are ASCET data structures for describing characteristic lines and maps.
The curves in a table are not defined by a mathematical function, but rather by
defining individual data points that form the output of particular input values.
The maximum number of data points is specified in the specification editor
after the table element is selected. ASCET supports one- and two-dimensional
tables.

The creation of a table is described in the section "Arrays, Matrices, Character-
istic Curves and Maps" on page 211. You can edit the table element from the
"Elements" pane. The table editor (also multi editor) contains a menu bar, the
"v:" combo box which contains the names of the currently edited tables, a
data display field and varying setup fields for table size and interpolation. The
data display field shows the sample points (array/matrix: index values) and out-
put values which can be edited according to the type of the edited table. The
editors briefly introduced in the following sections are the different forms of
the table editor. A more detailed description is given in chapter 6.2.3 "Working
with Calibration Windows".

While you can add sample points dynamically during specification and experi-
ments, the actual number of sample points must not exceed the maximum
number defined at the creation of the table. The maximum number of values
can only be changed in the specification editor with the Element → Max Size
command.
Editing Data



461
Array Editor

An array is a 1-D table where the values on the x-axis are fixed, i.e. they always
start at 0 and are always incremented by one. An array in ASCET corresponds
to a one-dimensional array in a conventional programming language.

The array editor is the simplest form of the table editor. 

In the data display area, the index values and their associated output values are
displayed; two setup fields for the array size are present.

To set up an array:

• Adjust the number of actual x-axis points in 
the "x-Size" field.

The specified number of cells is created. Dur-
ing an experiment additional x-axis points can 
be added, but only up to the maximum size.

• In the editor window, double-click on a cell on 
the z-axis.

The cell becomes an input field.

• Type in a value and press < ENTER>.

• Repeat for all the other values.

Two-dimensional arrays are also available in the form of matrixes.
Editing Data



462
The matrix editor shows the index and output values of both axes and contains
four setup fields for the size. Otherwise, it is used exactly as the array editor.

The 1-D Table Editor

A one-dimensional table has one input value and one output value. Internally,
a number of sample points is defined and an output value is given for each
sample point. If, for instance, you have defined the value 2 at a sample point
with the value 0.5, the output of the table will be 2 whenever the input value
is 0.5. If the input value falls between two sample points, the result is interpo-
lated between the two values. 

Thesample points and their respective output values are shown in the data
display field; two setup fields for the table size, as well as interpolation setup
fields, are present.

The 1-D table editor works in the same way as the array editor. The only differ-
ence between the editors is that in the table editor the values on both axes can
be edited.

To edit a 1-D table:

• In the block diagram editor, right-click on a 1-
D table element and select Edit Data from the 
context menu.

Or

• Highlight the 1D-table element in the "Ele-
ments" pane and select Element → Edit 
Data on the menu bar.

The 1-D table editor opens.

• Modify the z-axis values as described on 
page 461.
Editing Data



463
• Adjust the number of sample points in the "x-
Size" box.

This creates a table with n sample points on 
the x-axis of the table. By default they are 
assigned values from 0 to n-1.

• Select an interpolation mode from the "Inter-
pol." combo box.

– Linear means that the two sample 
points are connected by a straight line, 
e.g. if we have a sample point 1 with the 
value 2 and a sample point 2 with the 
value 4, the result for an input value 1.5 
will be 3.

– Rounded means that the values between 
two sample points are always the same as 
the value at the smaller sample point. 
With the two sample points given above, 
the output would be 2 for every input 
value greater than 1 and smaller than 2.

• Click OK.

The extrapolation mode is always set to Constant. For all the x-values greater
than the highest x-value defined in the table, the value returned is the z-value
of the highest x-value. For values that fall below the lowest x-value, the z-value
of the lowest x-value is returned.

The sample points are shown on the x-axis of the data area, the values are on
the z-axis. By default the number of sample points that you entered in the 1-D
Table Setup dialog box is created. The default sample points form a range
between 0 and the number of sample points minus 1.

The 2-D Table Editor

The difference between the 2-D table and the 1-D table editor is that there are
two dimensions of sample points instead of just one. The 2-D table has two
inputs and returns one output value for each pair of inputs.

Rounded Interpolation

Linear Interpolation
Editing Data



464
The sample points are shown in the top row and left-most column of the table
in the data display area. The 2-D table editor is the most elaborate version of
the table editor.

Fixed Tables

A fixed table is a table where the distance between the axis points cannot be
altered. You can select any value for the distance, but it is always the same for
all points. If, for instance, the distance between the sample points has been set
to 3 and the offset to 4, the first axis point has the value 4, the second one 7,
the third one 10 etc. 

To set up the axis points:

• Open the fixed characteristic line you want to 
edit in the table editor.

The adjacent image shows a simple example.

• In the table editor, select Axis → X Support-
ing Point Setup.

The "X Supporting Point Setup" window 
opens.

• In the "Offset" field, enter the offset for the 
first axis point (in the example: 1).
Editing Data



465
• In the "Distance" field, enter the distance 
between the axis points (in the example: 2).

• Click OK.

The values you entered are accepted, and the 
axis points are adjusted accordingly.
The adjacent image shows the updated exam-
ple.

Or

• Click Cancel to discard the values and return 
to the original state.

Fixed tables are available as 1-D tables and 2-D tables. The Y axis points of a
2D fixed table are adjusted via Axis → Y Axis Support Points Setup. With
the exception of the axis point treatment, the editor for fixed tables functions
in the same way as the table editor. 

Group Tables

Group tables are tables that share the same distribution of axis points but have
different return values. This means that it is possible to obtain different return
values for the same input. The distribution of axis points and the individual
group tables are specified as separate elements; the former are called distribu-
tions.

Axis points, but no return values, are specified in a distribution. Once a distri-
bution has been defined, group tables using that distribution can be specified.
In a block diagram, a distribution has only an input, whereas group tables only
have an output, as shown below:

Group tables are available as 1-D tables and 2-D tables.

Note

Enter integer numbers in both fields, because 
otherwise errors will occur when working with 
implementations.
Editing Data



466
Group Table Editor: The group table editor works in the same way as the
table editor. When creating a group table, you are prompted for a distribution.
This distribution is then assigned to the table, i.e. all the sample points defined
in the distribution are also defined for the group table. It is not possible to
make any changes to the x axis in this editor; however, it is possible to switch
to another distribution from the specification editor using Element → Edit
Distribution. Assigning values on the z-axis works in the same way as in the
1-D table editor.

Distribution Editor: The distribution editor works in the same way as the
array editor. The main difference is that the sample point axis values are added
to the z axis on the table. The x-axis serves for navigation purposes only and
cannot be changed. None of the commands for changing the x-axis are avail-
able in this editor.

4.11.3 Data Sets

Every component or project can have a number of data sets. Data sets deter-
mine the initial values of the elements, i.e. parameters and variables, and of
the components. A data set contains one initialization value for each element
of the component or project. Therefore, data sets define variants of compo-
nents and projects.

Data sets are handled in the same way as for components and projects. Each
component data set includes the initial values for all the basic elements used in
that component. For complex elements, which have their own data sets, the
component data set has a reference to one of the data sets of the complex
element.

Each component can have several data sets. When a component is first cre-
ated, a default data set with the name Data is created with it. 
Editing Data



467
To view data sets

• In the specification editor, select 
Component → Edit Data to view the data 
for the current project or component.

The "Data for: <Component>" dialog win-
dow opens. 

The names of all the project data sets are dis-
played in the "Data" pane. 
All components included in the project or 
component are displayed in the "Elements" 
pane, together with elements. With basic ele-
ments, the value is specified after the element 
name and type. With complex elements the 
name of the referencing dataset is displayed.

• Select the data set you want to view in the 
"Data" pane.

The values for the data set selected are dis-
played in the "Elements" pane.

• Click OK.
Editing Data



468
The data set currently selected, for which the values are shown, becomes the
active data set when you close the data editor. You can also open the dataset
editor from the browser by selecting a referenced component in the "Data"
tab.

To create/copy a new data set:

• Select Data → Add.

A new data set is created. All elements have a 
default value. This is either 0.0 or true for 
basic elements, or the corresponding default 
data set for complex elements.

Or

• Select Data → Copy → Flat.

The active data set is copied, i.e. the newly 
created data set contains the same values. If 
there are references to other data sets, they 
are copied as well.

Or

• Select Data → Copy → Recursive.

An input window opens.

• Enter a prefix for the names of the copied 
datasets and click OK.

The active data set is copied, and recursive 
copies made of all the referenced data sets, 
i.e. the copies of those data sets are also recur-
sive. The new data set has references to the 
copies of the referenced data sets.

Note

This process only works for local variables.
Editing Data



469
To delete a data set:

• In the "Data for: <Component>" window, 
select the data set you want to delete.

• Select Data → Delete.

The data set is deleted. If other data sets have 
referenced that data set, they now reference 
the data set that becomes active after dele-
tion. The default data set cannot be deleted.

To rename a data set:

• Select the data set you want to rename

• Select Data → Rename.

• Type in the new name and press <ENTER>.

When a data set in the "Data for: <Component>" dialog box is selected, it
becomes the active data set. If you close the component or project editor and
then open it again, the default data set will however be active again. There is
always one default data set associated with each component and project; ini-
tially it is the one that is created automatically when the component or project
is created.

To make a data set the default:

• Open the "Data for: <Component>" dialog.

• Select the data set you want to make the 
default.

• Select Data → Become Default.

The selected data set becomes the default. 
Whenever the component or project is 
opened, this data set will be active.

If a data set contains references to other data sets, it is possible to browse the
data sets those references point to.

To browse a data set:

• Select the data set you want to browse.

• Select the complex element (component) with 
the data set you want to browse.

• Select Element → Edit

or
Editing Data



470
• double-click the complex element you want in 
the "Elements" pane.

The "Data for: <Component>" dialog win-
dow for the referenced data set opens.

• Use this procedure recursively to browse 
through an entire data set hierarchy. 

To edit data in a data set:

You have several possibilities to edit the data of sindividual elements.

1. Open data editor

• Select the basic element you want to edit.

If you want to edit a basic element in a refer-
enced data set, you have to open it first as 
described above.

• Select Element → Edit.

The appropriate data editor opens, e.g., the 1-
D table editor opens if the element is a charac-
teristic line.

2. Copy data

• Select the basic element whose data you want 
to copy.
Editing Data



471
• Select Element → Copy Data To Buffer

or

• select Copy Data to Buffer from the context 
menu.

The element data are copied to the database 
clipboard.

• Select the basic element you want to copy the 
data to.

• Select Element → Paste Data From Buffer

or

• select Paste Data From Buffer from the con-
text menu.

The data are copied from the database clip-
board to the element.

The data set of a project or a component can be exported separately from the
functional specifications. With this feature the data sets and the specification
can be developed in parallel.

To export a data set:

• In the "Data for: <Component>" dialog, 
select the data set you want to export.

• Select Data → Export.

The Windows file selection dialog box opens.

• Type in a data set name and press <ENTER>.

The data set selected is exported.

The same commands are also available in the main menus of the specification
editors (Component → Export Data) and the project editors. 

Note

You can exchange data only between elements 
of the same kind. For composite types (arrays, 
matrices, tables), the current size has to be the 
same, too.
Editing Data



472
To show the differences between two data sets:

• Select two of the of the component or project 
data sets in the "Data" pane.

You can select multiple data sets by clicking on 
them while holding down the <CTRL> key.

• Select Data → Show Differences → Flat.

The data sets are compared on the first level, 
i.e. only the values for the basic elements con-
tained in the project or component are com-
pared. Referenced data sets are not taken into 
account. The "Differences" dialog box opens 
showing the differences in the data sets. The 
differences for scalar elements are shown 
directly, non-scalar elements with different 
data are only listed. 

Or

• Select Data → Show Differences → Recur-
sive.

The data sets are compared recursively, i.e. 
independent of the data sets referenced, the 
values of the basic elements in all referenced 
components are compared.
Editing Data



473
• In the "Differences" window, select 
Differences → Copy To Clipboard to copy 
the results of the comparison to the clipboard.

They can now be pasted into another applica-
tion.

It is possible to write the data from a table or an array to a file and to read it in
again. The data is written in tab-delimited ASCII format.

To write array or table data to a file:

• In the "Elements" pane of the data editor or 
the specification editor, select a table or array.

• Select Element → File Out Data.

The Windows file selection dialog box opens.

• Select a path and a filename.

• Click on Save.

The data from the table or array selected is 
written to the file.

To read the data for an array or a table from a file:

• In the "Elements" pane, select the table or 
array.

• Select Element → File In Data.

The Windows file selection dialog box opens.

• Select the file that contains the data you want 
to read.

• Click on Open.

If the file format does not match the selected element, the data set is left
unchanged and a message box appears. This happens, for instance, if the sam-
ple points are not given in monotonous rising order. If the file contains missing
numbers, these are treated as zeroes (for instance if the number of sample
values does not match the number of sample points). If the file contains invalid
characters, these are interpreted as zero. The size of the element is adjusted to
the data that is read in.

There is one major difference between components and projects, namely that
projects have global elements as well as the components they reference. In
contrast to the data for the components, where a project can have several data
sets, there is only one data set for the global elements.
Editing Data



474
To work with the global elements data set:

• In the project editor, select Component → 
Edit Data to open the data editor dialog win-
dow.

• Click on the "Global" tab of the dialog to 
view the data for the global elements in the 
project.

Even if more than one data set is shown in the 
"Data" pane, you cannot select ot edit them.

An additional tool set for data exchange is available in ASCET. Users can per-
form flat and recursive file in and file out operations for the parameters in data
sets using various filter and data exchange options and file formats.

To set the data exchange options:

• In the Component Manager, open the ASCET 
options window.

• In the "Data Exchange" node, adjust the 
desired options.

The data exchange options are described in 
section "Data Exchange Options" 
on page 65.
Editing Data



475
Once you have set the data exchange options for your system, you can use the
data exchange tool set to import and export data sets. The tool set can be
accessed through the corresponding menu choices in the data set editor.

To use the data exchange tool set:

• In the data set editor, select the data set you 
want to edit.

• Select Data → File Out Recursive to file out 
the selected data set and all referenced data 
sets.

• Select Data → File Out to file out the 
selected data set.

• Select Data → File In Recursive, to file in a 
data set with all referenced data sets.

• Select Data → File In to file in a data set.

• Select Data → Show Data File to view a data 
file. 

• Select Data → Show File In Log File to view 
the log file for read processes. 

• Select Data → Show File Out Log File to 
view the log file for write processes. 

4.12 Editing Implementations

Three implementation editors are available, one for components and projects,
one for basic elements – i.e. variables, parameters, and system constants – and
one for methods and processes. Depending on the kind of the elements, fields
are deactivated, or additional tabs appear, in the implementation editor for
basic elements, however, the structure is always the same.

Implementations are independent from data sets (cp. chapter 4.11). Neverthe-
less inconsistencies between both can arise. In the context of a project, the
value of an element defined in its data set can exceed the value range defined
in the implementation. It is the user’s responsibility to use consistent project
settings.

Note

At code generation time, the initialization values of basic elements must fit 
the value ranges defined by their implementations. Otherwise an error mes-
sage is generated for parameters, a warning for variables.
Editing Implementations



476
For literals, the most suitable implementation is derived automatically by the
code generation, so it does not have to be specified. Their implementation is
derived from the first assignment made to them. The same is true for con-
stants.

4.12.1 Implementations of Components/Projects

You can open the implementation editor for components/projects

• from the Component Manager (cf. section  "To edit the implementa-
tion:" on page 86), 

• from any specification editor

or—for included components— 

• from the implementation editor of the containing component,

and edit the values for the current component or project.

To open the implementation editor of a component:

1. edited component/project

• In the specification editor, select 
Component → Edit Implementation to edit 
the implementation for the current project or 
the current component.

2. included component (specification editor)

• In the "Elements" list, select an included com-
ponent.

• Select Element → Implementation

or

• select Edit Implementation from the context 
menu

or

• use the Browser view of the specification edi-
tor: 

– Click on the Browse tab.

– In the Browser view, open the implemen-
tation editor for the included component 
as described on page 86.

3. included component (implementation editor)

• In the "Elements" list, select an included com-
ponent.
Editing Implementations



477
• Select Element → Edit

or

• double-click on the component

or

• select Edit from the context menu

or

• press the <RETURN> key.

The implementation editor for the selected component opens.

The names for all implementations defined for this component or project are
shown in the "Implementation" pane. 

All the components and local elements included in the project or component
are displayed in the "Locals" tab; the "Impl. Cast" tab contains the implemen-
tation casts (see "Implementation Casts" in the ASCET reference guide). The
"Globals" tab lists global elements. With basic elements, the formula is speci-
fied after the element name and type.- With complex elements the name of
the referenced implementation is displayed.

The "Settings" tab contains several setup options.
Editing Implementations



478
To select an implementation:

• Select the implementation you want to edit in 
the "Implementation" pane.

The formulas for the implementation selected 
are displayed in the "Elements" pane.

You can open the implementation editor for 
an element or included component by double-
clicking on an entry in the "Elements" pane.

• Click OK to close the window.

All the operations available for data sets are also available for implementations
and work as described in chapter "Data Sets". You can specify implementa-
tions for local and global elements, as well as implementation casts, by select-
ing the corresponding tab of the implementation editor.

To adjust the implementation settings:

• Select the "Settings" tab.

Only the "Memory location" and "Cache 
Locking" combo boxes are available for all 
components (classes, modules, projects), the 
options are deactivated for modules and 
projects.

Note

The "Settings" tab has no meaning until you select the experiment Object 
Based Controller Implementation in the build options.
Editing Implementations



• In the "Memory location" combo box, select 
the memory area where the data structure for 
the component is to be stored. 
The memory class for the code is defined in 
the implementation editor of the respective 
method or process (cf. chapter 4.12.8 on 
page 500).

• When you are editing the implementation of a 
class, make sure that the Generate method 
body option is activated so that code is gener-
ated for the class.

The options Hierarchical code generation 
for State Machines, Outline automatically 
generated methods for State Machines 
und Auto-inline private methods (Smaller 
code-size) are available only for state 
machines. Their usage is described in "To acti-
vate/deactivate outlining of actions/condi-
tions:" and "To activate/deactivate auto-
inlining:".

Cache locking is described in the ASCET-RP user's guide, the other settings are
described in the ASCET-SE user's guide. 

4.12.2 Implementation of Scalar, Non-logical Elements

The implementation of non-logical elements describes the transformation
from an infinite model domain (either continuous or discrete) to a finite
implementation domain. Therefore the range for the values in the model has
to have interval limits. Additionally, a linear formula describing the transforma-
tion from the physical to the implemented representation has to be defined.

For the model type continuous, which has an infinitely fine resolution, the
formula determines the quantization in the implementation domain using spe-
cial fixed point arithmetic. The quantization is the reciprocal of the gradient of
the linear formula since the implementation is assumed to be in integer arith-
metic.
Editing Implementations 479



480
To open the implementation editor for basic elements:

1. from the Component Manager:

• In the "1 Database" list, select a component 
or project.

• In the d "3 Contents", "Implementation" tab, 
select the basic element whose implementa-
tion you want to edit.

• Select Component → Edit Item

or

• double-click on the element

or

• select Edit from the context menu

or

• press the <RETURN> key.

2. from the specification editor:

• In the "Elements" list, select the basic element 
whose implementation you want to edit.

• Select Element → Edit Implementation

or

• select Edit Implementation from the context 
menu

or

• use the Browser view of the specification edi-
tor: 

– Click on the Browse tab.

– In the Browser view, open the implemen-
tation editor as described on page 86.

3. from the implementation editor of a component/project: 

• In the "Elements" list, select the basic element 
whose implementation you want to edit.

• Select Element → Edit

or

• double-click on the element

or
Editing Implementations



• select Edit from the context menu

or

• press the <RETURN> key.

The implementation editor for the basic element opens. The model 
type is given by the element.

Similar to the element editor (cp. chapter 4.10.1), further possibilities 
exist to open the implementation editor for basic elements. 

For newly created elements, the system does not assume the assign-
ment of an implementation type defined in the project context (cf. 
"Implementation Types" on page 430), it assumes the assignment of a 
local implementation. For the cont and sdisc model types, the 
implementation data type selected in the "Implementation" node of 
the options window (see page 52) is selected. For the value ranges, the 
maximum limits for the type are set.
Editing Implementations 481



482
The implementation editor for scalar, non-logical elements looks like this:

The "Implementation for" dialog window offers the possibility to select a pre-
defined implementation type (see "Implementation Types" on page 430) via
the Use Implementation Type option and the adjacent combo box, or to
specify an individual implementation in the "Implementation" field. In each
case, the limiting behavior ("Implementation Interval Adaptation" field) and
the memory area in which the element is located ("Memory Location" combo
box, only relevant for micro-controller targets) are set individually. The "Consis-
tency" field displays warnings and error messages.

In the "Additional Information" tab, you can enter information relevant to
individual code generators, which is only evaluated where applicable. The
exact nature of the information you can enter here depends on your target and
code generator.
Editing Implementations



Specifying Individual Implementations

For scalar basic elements, the Use Implementation Type option is deacti-
vated by default; the adjacent combo box is grayed out. You do not have to
change anything here to specify an individual implementation.

To select a formula:

• Select the transformation formula from the 
"Formula" combo box. All the formulas 
included in the project are available.

The quantization in the "Calculated" field is 
determined automatically based on the for-
mula. If the implementation data type real* 
is selected, the quantization 1is displayed.

In addition, a quantization can be entered in 
an extra field ("Qu. exp."), which is used 
exclusively for the Quantized Physical 
Experiment. 

If the variable has the model data type cont and the implementation data
type real32 or real64, or if the variable has a model data type different
from cont, only the identity formula should be selected because only this for-
mula is supported by the code generation. If you select another formula, a
warning is displayed.
Editing Implementations 483



484
• To switch to the identity formula, select 
ident from the "Formula" combo box.

• Click OK to close the implementation editor.

Or

• Click OK without selecting the identity for-
mula.

The selected formula is accepted.

Or

• Click Cancel to close the dialog and restore 
the original settings.

When you edit an element of sdisc or udisc type for which a formula other
than the identity was selected in a previous ASCET version, an error message
appears.

When you make changes in a formula, or recursively replace a formula in a
project implementation, you can have all your implementations updated auto-
matically to match the new value ranges and data types. For information on
replacing formulas and updating implementations see section "Global
Changes in Implementations" on page 429.

To set the master page of an implementation:

ASCET can either use the model or the implementation page of an implemen-
tation as the starting point for automatic updates. The starting point is set with
the options in the "Master" field. You can set the default master page in the
"Implementation" node of the options window (see "Implementation
Options" on page 52).

• In the implementation editor, click on the 
Model option to specify that the settings on 
the "Model" side are used as the starting 
point for updating an implementation.

The "Min" and "Max" fields in the "Model" 
pane are activated. 

The model data type cannot be edited, it is 
determined by the element and merely dis-
played in the "Type" field.

Note

Models from earlier ASCET versions can used unchanged. During code gene-
ration however warnings are generated if they contain formulas for discrete 
elements.
Editing Implementations



The fields in the "Implementation" pane are 
disabled, except for the Zero not included 
option; they are solely used as displays.

Or

• In the implementation editor, click on the 
Implementation option to specify that the 
settings on the "Implementation" side are to 
be used as the starting point for updating an 
implementation.

The  fields in the "Implementation" pane are 
activated. 
The fields in the "Model" pane are disabled 
and serve as displays only.

To specify an implementation (master: model): 

The Model option should be selected as master if physical model properties
are the main reason for selecting the implementation. In this case, proceed as
follows to specify the implementation.

• In the "Min" and "Max" fields, enter the lim-
its of the physical interval.

• To enter the default limits for the model data 
type, right-click in one of the fields and select 
Default Value from the context menu.

The maximal values for the respective model 
data type are inserted. 

The implementation values are updated auto-
matically, according to the values you entered 
and the formula.

To specify an implementation (master: implementation): 

The Implementation option should be selected as master if certain code
properties (e.g., a required bit width) are the main reason for selecting the
implementation. In this case, proceed as follows to specify the implementa-
tion.

Type Min. Max.

cont -oo -oo

sdisc -2147483648 2147483647

udisc 0 4294967295
Editing Implementations 485



486
• In the "Type" combo box, select the imple-
mentation data type.

The combo box contains all available types for 
the element.

• In the "Min" and "Max" fields, enter the lim-
its of the interval.

• To enter the default limits for the implementa-
tion data type, right-click in one of the fields 
and select Default Value from the context 
menu.

The maximal values for the respective type are 
inserted. 

The model values are updated automatically. 

The values inserted for the model or implementation are checked for consis-
tency, together with the formula.

Note

When you selected a real* implementation 
data type, the code generation ignores the lim-
its you entered and uses ±oo for model and 
implementation.

Type Min. Max.

real64a -oo -oo

real32a -oo -oo

int32 -2147483648 2147483647

uint32 0 4294967295

int16 -32768 -32767

uint16 0 65535

int8 -128 127

uint8 0 255

a: model data type cont only
Editing Implementations



• If the model side is the master, the min. and max. values on the imple-
mentation side are adapted automatically using the formula.

If the input causes a larger interval in the "Implementation" column 
than the allowed range of the selected data type, the data type is 
adjusted automatically (exception: real* is selected as implementa-
tion data type). In doing so, the first data type suitable for the interval 
and larger than or equal to the minimum type set in the ASCET options 
(cf. "Implementation Options" on page 52) is selected. 

Example: If the type uint8 has been entered in the "Implementation" 
pane, and the interval [-100..255] results from the "Model" set-
tings, 

– the type int16 is chosen instead, provided the "Minimum cont 
Data Type" is int16 or smaller;

– the "Minimum cont Data Type"is chosen, if it is larger than int16.

The "sizes" of the data types are assumed according to the following 
sequence:

int8 → uint8 → int16 → uint16 → int32 → uint32

If even uint32 is too small, an error message is issued (even though 
the element is of model type cont and the implementation data types 
real32 and real64 are available).

When you answer the error message with Auto Correction, a value is 
inserted on the master page which is chosen to ensure that the imple-
mentation side, after the automatic update, uses the maximum value 
for one of the 32 bit integer formats. If you click on Cancel, the dialog 
is closed and the original settings are restored.

If a smaller interval is selected on the "Model" side later, the implemen-
tation data type is scaled down again, if appropriate. However, it will 
never be smaller than the "Minimum ... Data Type".

• If the implementation side is the master, the values on the model side 
are adapted automatically using the formula.

When creating an element, it receives the default type set in the ASCET 
options (cf. "Implementation Options" on page 52) at first. If the user 
enters a bigger interval in the "Implementation" column than the data 
Editing Implementations 487



488
type allows, the data type is adjusted automatically. In this case, the 
smallest data type fitting the interval is selected. In contrast, however, 
no automatic adjustment is done if the user enters an interval, which 
would permit smaller data types.

Example: If for a cont element the type uint8 is selected in the 
"Implementation" pane and 

– the user enters the interval [-100..255], the int16 type will be 
selected automatically instead.

– the user enters the interval [0..100], the uint8 type will be 
kept.

For the "sizes" of the data types, again the following order is assumed:

int8 → uint8 → int16 → uint16 → int32 → uint32

If even uint32 is too small, the maximum value for one of the 32 bit 
integer formats will be used automatically without generating an error 
or a warning. 

• If the new value conflicts with one of the other values, for instance if 
the new minimum value is greater than the maximum value, an error 
message will be shown, which you can acknowledge with Auto Cor-
rection or Cancel.

• If the implementation is the master, and if you edit an element with 
model data type udisc and implementation data type int*, an error 
message is shown in the "Consistency" field when you leave the imple-
mentation editor after entering negative values for the implementation 
interval.

Model type udisc minimum cannot store 
<negative value>.

• If the computed min and max values differ from the stored values, the 
system assumes the current formula as cause of the error. The follow-
ing error message is shown:

Values for min/max are not consistent with
current formula.

This happens, e.g., when you edit a formula in the project, but do not 
update the implementations afterwards (cf. page 429).
Editing Implementations



You can always make the following settings, regardless of the master page.

To exclude Zero from the implementation interval:

By default, the code generation assumes that the implementation interval can
include zero, i.e. the Zero not included option is deactivated. It is checked
whether the denominator of a division contains zero. If required, C code is
generated that prevents a possible division by zero at runtime (cf. page 417).
You can switch off this check.

• When the implementation interval does not 
contain zero, activate the Zero not included 
option.

The code generation now assumes that this 
variable cannot become zero. If the variable is 
used as the denominator of a division, no 
check is performed.

When working with older models, Zero not included is deactivated for all
elements not connected to an implemented operator. The handling of opera-
tor implementations from previous ASCET versions is described in
chapter 4.12.11.

To set the limitation:

A calculation might result in values outside the interval limits for a variable. The
limiter takes into account the interval limits of a variable for all assignments to
this variable, i.e. the code generator creates a limiting code. The limits obviate
the need for manual limitation of individual variable values.

Note

A division by zero can bring about critical states. If you deactivate the auto-
matic check, it is your responsibility to avoid divisions by zero through appro-
priate measures in the ASCET model.

Note

This option, Limit Assignments, is activated by default for newly created 
elements. When you set the model type to udisc (cf. page 451), the option 
is deactivated automatically.

If the implementation data type real64 or real32 was selected for an 
element, the option cannot be edited.
Editing Implementations 489



490
• Activate the Limit Assignments option.

You have thus determined that the value 
range of a variable, defined by "Min" and 
"Max", is considered when the code genera-
tor makes assignments.

A variable value is limited by the value range. 
If the assigned value is out of range, the rele-
vant "Min" or "Max" limit value is used.

Or

• Deactivate the Limit Assignments option.

You have thus determined that the defined 
value range of a variable is not considered 
when the code generator makes assignments.
In this case, the value of a variable is not lim-
ited by the value range, the maximum limit is 
determined by the implementation data type 
(int8, int16, etc.).

Instead of the  Limit Assignments option, the implementation editor of pre-
vious ASCET versions contained the "Use Limiters" field with the options Yes
and No. When you are working with older models, Limit Assignments is set
according to the settings in that field.

To set the overflow handling:

You can define the overflow behavior. Most options are available in connection
with arithmetic services (see chapter 4.14 "Arithmetic Services").

• Activate the Limit to maximum bit length 
option when the result of an operation shall 
be limited in case of overflow.

When the result value range exceeds the 
range specified in the "Integer Arithmetic" 
node (cf. page 417), code is generated that 
avoids the overflow.

The combo box next to the option is activated.

Note

Code generation with Physical Experi-
ment (cf. page 412) ignores the option.
Editing Implementations



• From the combo box, select Reduce Reso-
lution when the resolution can be reduced 
upon limiting.

This option avoids an overflow by right-shift-
ing the inputs, if necessary. The shift is deter-
mined automatically.

• Select Keep Resolution when the resolu-
tion shall not be reduced upon limiting.

If arithmetic services are activated, this option 
avoids an overflow by using limiting services, if 
necessary.
If not, code generation is aborted with an 
error message.

• Select Automatic to make overflow han-
dling dependent on the use of arithmetic ser-
vices.

If this is enabled, the "Keep resolution" 
method is used in case of overflow limiting. If 
not, the "Reduce resolution" method is used.

When working with older models, Limit to maximum bit length is set
according to the former "Use Limiters" field. Automatic is selected for all
elements. The handling of operator implementations from previous ASCET ver-
sions is described in chapter 4.12.11.

To select a memory location:

• In the "Memory Location", select the memory 
area where the element is located.

The available selection depends on the target.

Using Implementation Types

Instead of the individual implementation, you can also assign a predefined
implementation type. For details on how to create this, refer to the section
"Implementation Types" on page 430; this section looks at how to use it.

The implementation types from the current project context are available to
you. That is the default project (see chapter 4.8.1), if you are editing the imple-
mentation from a component editor, or the project from which you are editing
the implementation.
Editing Implementations 491



492
To assign an implementation type:

• Open the implementation editor for a basic 
element.

• Actibvate the Use Implementation Type 
option.

The adjacent combo box is now available. It 
contains all available implementation types.

• Select an implementation type.

The settings for model and implementation 
are accepted. These values cannot be 
changed; all fields in the "Implementation" 
area are locked for entries.

• Set the limitation as described on page 489.

Note

You can only assign an implementation type for 
variables of the same model type, i.e. an imple-
mentation type with the model type cont can 
only be assigned to continuous variables, not 
those of type sdisc or udisc.
Editing Implementations



• Select the memory location for the element in 
the "Memory Location" dropdown list.

Implementation types are referenced by the implementations of basic ele-
ments. If it is intended to use a copy of an implementation type, e. g. for a
subsequent modification, an implementation type can be first activated and
then de-activated again. In this case, the settings of the implementation type
are adopted by the implementation of the basic element.

4.12.3 Implementations of Method- and Process-Local Variables

Method- and process-local variables can be implemented automatically or
explicitly. Default is automatic implementation; the implementation is derived
from the first variable assigned to the method-/process-local variable. If you do
not want to use the default, proceed as follows:

To implement a method-/process-local variable:

• In the implementation editor of the compo-
nent, select the "Local" tab.

• In the "Elements" field, select the method-/
process-local variable.

The menu item Element → Use automatic 
Implementation is marked and grayed out if 
no explicit implementation was specified.

• Open the implementation editor for the 
method-/process-local variable.

When automatic implementation is activated, 
a warning window opens:

• Confirm by clicking OK.

The implementation editor opens.

Note

As soon as an implementation type is activated for a basic element, the pre-
viously used implementation gets lost.
Editing Implementations 493



494
• Implement the variable as described in "Imple-
mentation of Scalar, Non-logical Elements" 
on page 479.

The menu item Element → Use automatic 
Implementation is now available. It is no 
longer marked.

The automatic implementation of a method-/process-local variable can only be
reactivated in the implementation editor of the component.

To activate automatic implementation:

• In the "Elements" field, select the local vari-
able.

• Select Element → Use automatic Imple-
mentation

or

• right-click onto the variable name and select 
Use automatic Implementation from the 
context menu.

With that, the automatic implementation of 
the method-/process-local variable is acti-
vated. The menu item Element → Use auto-
matic Implementation is marked and grayed 
out.

Automatic implementation is deactivated by explicitly implementing the vari-
able.

4.12.4 Implementations for Temporary Variables

Temporary variables can be specified at the outputs of operators and complex
model elements. For these temporary variables, the code generator determines
the implementation automatically: when a temporary variable is assigned an
Editing Implementations



implemented quantity for the first time, it obtains the corresponding conver-
sion formula and value range. The implementation data type is chosen so that
it is appropriate for the conversion formula and value range.

4.12.5 Implementations of Arrays, Matrices, and Tables

Arrays and matrices have implementations which are defined like that of a
scalar element. A 1-D table has two implementations, one for the input value
and one for the output value. A 2-D table has three implementations, two for
the inputs and one for the output value.

Note

The insertion of temporary variable in a mathematical expression does not 
affect the generation of mathematical operations for this expression. Tem-
porary variables should not be used in different branches of the control flow 
(e.g., in the branches of an If statement). The result and the implementa-
tion (e.g., quantization) may be different for the separate branches. This 
could cause serious arithmetical errors in the generated code.
Editing Implementations 495



496
To define the implementation of tables:

• Open the implementation editor for a 1-D or 
2-D table.

The "Value", "X Distribution" and 
"Y Distribution" (2-D table only) determine 
which implementation you are editing.

• Select the tab for the implementation you 
want to edit.

• Edit the implementation.

This is like editing the implementation of a 
scalar element (see chapter 4.12.2 on 
page 479).
Editing Implementations



• Select another tab to edit the next implemen-
tation.

• Click on OK.

4.12.6 Implementation of Logical Elements

To specify an implementation for a logical element:

• Open the implementation editor as described 
in "To open the implementation editor for 
basic elements:" on page 480.

All fields in the "Value" tab, except the "Type", "Memory Location",
and"Cache Locking" combo boxes, are disabled because they are irrelevant for
the implementation of logical elements.
Editing Implementations 497



498
• In the "Type" combo box, select the imple-
mentation data type.

The following types are available: bit, int8, 
int16, int32, uint8, uint16 and 
uint32.
The logical element is represented by a vari-
able of the selected data type.

• In the "Memory Location", select the memory 
area where the element is located.

The available selection depends on the current 
target. This setting is only relevant for experi-
ments on microcontroller targets and is 
ignored in all other cases.

• In the "Additional Info" tab, enter  enter 
information for your code generator.

This information is only evaluated where appli-
cable. The exact nature of the information you 
can enter here depends on your target and 
code generator.
Editing Implementations



4.12.7 Implementations of Enumerations

To specify an enumeration implementation:

• Open the implementation editor for the enu-
meration as described in "To open the imple-
mentation editor for basic elements:" 
on page 480.

All fields in the "Value" tab, except the "Memory Location" and "Cache Lock-
ing" combo boxes, are disabled because they are irrelevant for the implemen-
tation of logical elements.
Editing Implementations 499



500
• In the "Memory Location", select the memory 
area where the element is located.

The available selection depends on the current 
target. 
This setting is only relevant for experiments on 
microcontroller targets and is ignored in all 
other cases.

• In the "Additional Info" tab, enter  enter 
information for your code generator.

This information is only evaluated where appli-
cable. The exact nature of the information you 
can enter here depends on your target and 
code generator.

4.12.8 Method and Process Implementations

In ASCET, it is possible to have implementations not only for data sets but also
for the processes or methods defined in modules and classes. With that, you
can improve the overall behavior of your system.-

The implementation of methods and processes is edited from the specification
editor. It cannot be edited from the project editor directly. Process and method
implementations are available for both block diagram and ESDL components.

The implementation of a process (or a method) determines how the process is
represented in the C code generated and where it is located during execution
of the program. 

To edit a process/method implementation:

• Open the specification editor for the module 
or class you want to edit.

• In the "Diagrams" pane, select the process or 
method you want to edit.

• Select Diagram → Edit Implementation 

or
Editing Implementations



• select Edit Implementation from the context 
menu.

The implementation editor for the process/
method opens.

• Activate the Inline option so that the method 
code is inserted directly into the model code.

By this means, no function call for the method 
is necessary. Thus, runtime is optimized, how-
ever, at the cost of enhanced memory require-
ments in case the method is used multiply.

• Activate the Use FPU option when you want 
to save the Floating Point Unit registers of your 
microcontroller target upon task switching.

This option is part of the ERCOSEK operating 
system. It is effective only in connection with a 
microcontroller target; details are given in the 
ASCET-SE V5.2 User's Guide as well as the 
ERCOSEK User's Guide.

• From the "Memory Location" combo box, 
select the memory area where the code 
should run.

As a general rule, processes that are slow and 
rarely called should run in external memory 
whereas fast and frequently called processes 
should run in internal memory to improve per-
formance.

Note

The Inline option is not available for processes.
Editing Implementations 501



502
4.12.9 Implementations of Arguments and Return Values of Methods

The arguments and return value of a method are implemented exactly as ele-
ments of the same type (see chapter 4.12.1, 4.12.2, 4.12.5, 4.12.6, and
4.12.7). 

For scalar and logical arguments and return values, and arguments and return
values of type <enumeration>, the "Memory location" combo box is deac-
tivated. These elements are stored in the STACK memory class.

If references are used as arguments ad return values, i.e. the type
<array[*]>, <mat[*]> or <user defined> is selected, a memory class
can be selected in the "Memoy location" combo box. This memory class does
not apply to the reference in this case, it applies to the target of the reference.

4.12.10 Implementations of Implementation Casts

Implementation casts can be implemented the same way as scalar elements
(see chapter 4.12.2).  The only new thing is the possibility not to implement
them at all—by selecting <No implementation> in the "Implementation
Type" combo box. <No implementation> is the default selection for newly
created implementation casts. 

Note

When <No implementation>  is selected for an implementation cast, it 
is treated as nonexistent by each code generation.
Editing Implementations



4.12.11 Operator Implementation

In previous ASCET versions, operators in block diagrams could be imple-
mented, too. This made it possible to improve the accuracy of operations in
fixed-point arithmetic.

Operators do not have a name in the graphic representation and do not
appear in the "Elements" list.   Therefore, the implementation viewer for an
operator is only accessible from its icon in the graphic block. 

If an implementation is specified, the operator is marked in the graphic by a
small line in the top left-hand corner ( ). This allows the user to see where
there has been an intervention.

Use the Tools → Database → List Operator Implementations command in
the Component Manager to easily detect operator implementations.

Note

The implementation options Limit to maximum bit length and Zero not 
included replace operator implementations. In addition, implementation 
casts can be used to insert requantizations in concatenated arithmetic oper-
ations without creating additional storage space requirements.  
Therefore, no new operator implementations can be created. Existing oper-
ator implementations in older projects can be viewed, replaced by imple-
mentation casts (see"Automatic Conversion of Operator Implementations") 
or removed, but not edited.
Editing Implementations 503



504
To search for operator implementations:

• In the Component Manager, select Tools → 
Database → List Operator Implementa-
tions.

The database is searched. Depending on its 
size, the search can take several seconds. The 
detected operator implementations are listed 
in the "Operator Implementations" window.

The "Element" column lists all components/
projects containing operator implementations. 
The "Implementation" column lists the name 
of the respective implementation, and the 
"Diagram" column lists the diagram that con-
tains the operator implementation. 

• In the "Element" column, double-click on a 
component.

The editor for the component opens. The 
affected operators are highlighted. You can 
view or delete the implementations.

To remove an individual operator implementation:

• Open the respective block diagram.

• Right-click on an operator with an implemen-
tation and select Implementation → Reset 
from the context menu.

The implementation is deleted, and the line in 
the corner of the operator is removed.

To remove operator implementations in a component/the entire data-
base:

• In the Component Manager, select a compo-
nent from the "1 Database" field.
Editing Implementations



• Select Component → Remove Operator 
Implementation → Flat to remove the oper-
ator implementations of the component.

• Select Component → Remove Remove 
Operator Implementation → Recursive to 
remove the operator implementations of the 
component and its referenced components.

Or

• Select Tools → Database → Convert → 
Reset Operator Implementations to 
remove all operator implementations of the 
entire database.

To view an operator implementation:

• Open the respective block diagram.

• Right-click on an operator with an implemen-
tation and select Implementation → View 
from the context menu.

A warning  is displayed, indicating that opera-
tor implementations are no longer supported. 
Editing Implementations 505



506
• Click OK to open the "Implementation for" 
window.

The window serves as a display only, you can-
not change any setting.

• Click on OK.

The implementation for a mathematical operator determines the procedure if
there is an overflow and/or the quantization (e.g. the accuracy) in the result. As
with variables, this information can vary across different implementations for
the relevant module. The information available for each operator is described
below.

Addition and Subtraction:

Overflow Handling: 

• Reduce Resolution avoids overflow by shifting both inputs to the right.  
The shift is determined automatically.

• Keep Resolution And Limit does not perform a shift and uses mathe-
matical service routines with clipping if available.

Note

The integer code generator treats the basic operations completely differ-
ently.  Additional information, therefore, also depends on the specific oper-
ation.  
Editing Implementations



• Keep Resolution And Don't Limit does not perform a shift and uses 
normal arithmetic, thus allowing overflow to occur. This variant is used 
for counters which should overflow cyclically, for example.

Select Quantization:

• Auto selects a quantization using an optimization strategy.

• 1 selects quantization and data type of the first input.

• 2 selects quantization and data type of the second input.

Multiplication:

Overflow Handling:

• Reduce Resolution avoids overflow by shifting both inputs to the right.  
The shift is determined automatically.

• Keep Resolution And Limit does not perform a shift and uses mathe-
matical service routines if available. 

• Keep Resolution And Don't Limit does not perform a shift and uses 
normal arithmetic, thus allowing overflow to occur. 

Pre-shift:

Both operands can be shifted before the operation to avoid an overflow and
to re-scale each operand in a numerically meaningful way. The pre-shift can
also allow full use of the value range. Integer numbers between -31 and 31 are
possible for either operand; a positive number indicates left shift, negative
indicates right shift. Zero means no shift at all. The following settings can
occur:

• The activated Auto option indicates no pre-shift.

• When Auto is deactivated, the pre-shift is performed according to the 
settings in the "Pre Shift" field.

– Line 1 determines the shift for the first operand (-31 to 31).

– Line 2 determines the shift for the second operand (-31 to 31).

Division:

Overflow Handling:

• Reduce Resolution avoids overflow by shifting both inputs to the right.  
The shift is determined automatically.

• Keep Resolution And Limit does not perform a shift and uses mathe-
matical service routines if available. 

• Keep Resolution And Don't Limit does not perform a shift and uses 
normal arithmetic, thus allowing overflow to occur. 
Editing Implementations 507



508
The Allow zero in phys. interval option could be activated when the gener-
ated code should not test for division by zero, even though the denominator
interval includes zero. Therefore, option is an assurance to the code generator
that the user himself will take care that the denominator does not assume the
value zero.

Pre-shift:

Indicates if the numerator should be maximized automatically by left shift to
improve numerical accuracy.  The following settings can occur:

• Auto left-shifts the numerator automatically.

• When Auto is deactivated, the pre-shift is performed according to the 
settings in the "Pre Shift" field.

– Line 1 determines the shift for the first operand (-31 to 31).

– Line 2 determines the shift for the second operand (-31 to 31).

Multiplexer, Maximum, Minimum:

Select Quantization:

• Auto selects a quantization using an optimization strategy.

• 1 selects quantization and data type of the first input.

• 2 selects quantization and data type of the second input.

Because these operations do not perform calculations, no overflow handling is
required.

Automatic Conversion of Operator Implementations 

You can delete operator implementations in older models (see page 504) or
replace them automatically by the newly introduced implementation casts (see
section "Implementation Casts" in the ASCET Reference Guide). Automatic
replacing applies to the entire database and not individual components.

Rules for automatic conversion: The following conditions have to be ful-
filled for an operator implementation to be converted automatically.

Note

Wrong usage of this option can lead to severe exception errors in the control 
unit.
Editing Implementations



• The operator implementation must not contain any other quantization 
than Auto (addition, subtraction, MIN, MAX and MUX; see e.g. 
page 506).

• The operator output has to be connected.

• The operator output can only be connected to primitive elements.

It cannot be connected to a component or operator or hierarchy.

• If an implementation cast is connected to the operator output, some-
thing other than <No implementation> has to be selected for this 
implementation cast in the combo box next to the Use Implementa-
tion Type option.

• The operator implementation must not contain any special pre-shift 
(multiplication and division; see page 507).

• If the operator is a division operator and the Allow zero in phys. 
interval option is activated in the operator implementation, the fol-
lowing rules also apply for the denominator input:

– The denominator input has to be connected.

– The denominator input can only be connected to primitive ele-
ments.

It cannot be connected to a component or operator or hierarchy.

– If an implementation cast is connected to the denominator input, 
something other than <No implementation> has to be 
selected for this implementation cast in the combo box next to the 
Use Implementation Type option.

If one of these conditions is not fulfilled in any implementation of the compo-
nent (see chapter 4.12.1), the relevant operator has to be converted manually.

To replace an operator implementation with an implementation cast:

• Select Tools → Database → Convert → 
Operator Implementations to Impl. Casts 
in the Component Manager.

The operator implementations of the entire 
database are converted into implementation 
casts in accordance with the above rules. 

Note

This is the only condition which has to be fulfilled for automatic conver-
sion for MIN, MAX and MUX operators. The other conditions only apply 
to +, -, *, /.
Editing Implementations 509



510
If an operator (apart from MIN, MAX, MUX) can be converted automatically,
the following occurs:

• An implementation cast is created on every connection of the operator 
output.

• If the operator is a division operator and the Allow zero in phys. 
interval option is activated in the operator implementation, an imple-
mentation cast is created on the connection to the denominator input.

• The implementation information of the following element is accepted 
for every implementation cast at the output of an implemented opera-
tor.
This is not the case for the model type; this is always cont for imple-
mentation casts.

• The implementation information (apart from the model type) from the 
previous element is accepted for implementation casts which were 
added at the denominator input of a division operator.

• The overflow handling is converted accoring to the following scheme: 

Each row shows the settings set for the implementation cast to replace 
the corresponding setting of the operator implementation.

• The operator implementation is removed.

If a MIN, MAX or MUX operator can be converted automatically, only the oper-
ator implementation is removed. No implementation cast is added.

According to the definitions above, under certain conditions implementation
casts would be created with the same implementation as the element con-
nected to their output. In these cases, no implementation cast is inserted.

If an operator cannot be converted automatically, the following occurs:

Note

For implementations of the component (see chapter 4.12.1) in which the 
operator has no implementation, <No implementation> is selected 
for newly created implementation casts.

Reduce resolution

Keep resolution and
limit
Keep resolution and
don't limit

Limit to
maximum
bit length

X

X

Reduce
Resolution

X

Keep
Resolution

X

X

Operator
Implementation:

Implementation
Cast:
Editing Implementations



• An implementation cast is created on every connection of the operator 
output—even with components, operators etc. . <No implementa-
tion> is selected for these implementation casts in all implementa-
tions of the component.
This implementation cast is given the relevant implementation informa-
tion during manual conversion of the operator implementation.

If this kind of implementation cast already exists on one of these con-
nections, no other implementation cast is added to this connection.

• If the Allow zero in phys. interval option is activated in the operator 
implementation of a division operator, an implementation cast with 
<No implementation> is created on the connection of the denom-
inator input.

If this kind of implementation cast already exists, another one is not 
added.

• The operator implementation remains unchanged.

If it is not possible to convert all operator implementations automatically in the
database, the following message is issued:

Not all operator implementations could be replaced 
automatically. Please do the conversion manually.

Confirm this message with OK. The "Operator Implementations" window (see
page 504) opens; it shows the components which contain the remaining oper-
ator implementations. You can now convert these manually.

4.13 Editing the Layout of a Component

When you include a component, it appears as a graphical block in the drawing
area of the block diagram or project editor, with the interface elements of the
component represented by the input and output pins of the block.
Editing the Layout of a Component 511



512
You can change the appearance of the graphical block with the layout editor.
It is possible to add an icon, move the input and output pins around and to
change the size and color of the block. Depending on the type of component,
you can also enable or disable component methods or processes to determine
its public interface.

The layout editor can be called from all component editors and the Compo-
nent Manager.

To open the layout editor:

• Open the specification editor for the compo-
nent with the layout you want to change.

• Select Component →  Edit Layout.

Or

• In the browser view, select the "Layout" tab.

• Double-click the graphical block.

The layout editor opens for the component 
you selected.

If you want to include a component in another component or project, you can
determine whether the layout of the included component can be edited in the
block diagram editor or project editor (flexible layout). Globally, you enable
flexible layout via the Activate flexible layout option in the ASCET options
window ("Options for Block Diagrams" on page 54). Indepentent of this
option, you can enable or disable flexible layout for each class or module
locally. By default, flexible layout is disabled globally and locally.

4.13.1 Editing a Class Layout

In the layout editor, you can change the appearance of the block, as well as
enable and disable individual methods. If a method is disabled in the layout
editor, it cannot be used when the class is referenced by another component.

To modify the diagram block:

• In the layout editor, click on the block in the 
drawing area.

When you are editing a layout that includes a 
symbol, you may easily select the symbol 
instead of the block—particularly if both are 
of similar size. The symbol, however, cannot 
Editing the Layout of a Component



be edited in the layout editor.
In such a case, click on the border of the 
block.

The block is selected; it displays resize handles 
on all its corners.

• Drag the handles to resize the block.

When the block becomes smaller than the symbol, you can no longer resize
the former in the layout editor because you will always select the symbol.

To change the block size, you have to insert the component into a block dia-
gram, place it in the drawing area, change the layout according to section
"Layout of Included Components" on page 228, and define the changed lay-
out as default, according to page 233.

To move the ports:

The default location for inputs is on the left side of the block, the default loca-
tion for the outputs is on the right side. The default location for methods is on
the top side. You can move all ports.

• Drag the inputs and outputs along the sides of 
the block to the positions you want. 
Editing the Layout of a Component 513



514
• Drag the methods along the sides of the block 
to the positions you want. 

You cannot place one port at a position 
already occupied by another port.

To modify the block attributes:

• In the layout editor, select Layout → Modify 
Attributes to open the "Layout Settings" dia-
log. 

• Select the fill color from the "Fill color" box.

• Adjust the block size by selecting values from 
the "Horizontal" and "Vertical" boxes. This 
has the same effect as dragging the sizing 
handles.

• Adjust the visibility options by checking or 
unchecking the boxes:
Editing the Layout of a Component



– Name of Pins: The input and output pins 
are labeled with the interface element 
names.

– Icon: The icon referenced by the compo-
nent is shown in the middle of the block.

– Name of Component: The name 
assigned to the component in the Com-
ponent Manager. The instance name, i.e. 
the name assigned to an individual 
instance of a component when it is refer-
enced by another one, can be made visi-
ble or invisible on the drawing area.

• Click OK to modify the attributes for the cur-
rent block.

It is possible to modify the default attributes that apply to all new blocks in a
database.

To change the default attributes for new blocks:

• Select Layout → Edit Default Attributes.
This brings up the "Layout Settings" dialog 
box again. You can enter the same settings as 
described above, but they will not affect the 
current block. The settings define the default 
attributes that are applied to all newly created 
components.

• Select Layout → Set Attributes to Default 
to apply the default attributes to the current 
graphical block. 

You can use an icon in a component which will then be shown in the graphical
block of that component. ASCET icons are stored in the database and can be
accessed via the Component Manager.
Editing the Layout of a Component 515



516
To assign an icon to a class:

• In the layout editor, select Layout → Select 
Icon to open the "Select Icon" dialog.

• From the "Items" list select the icon you want 
to assign to the block. 

• Click OK to assign the icon.

The icon is assigned to the component in the 
layout editor.

Creating and editing symbols is described in chapter "The Icon Editor"
on page 558.

The layout editor offers severel possibilities to set up the dispaly.

To modify the layout editor display: 

• Select View → Redraw to modify the display.

• Select View → Grid to open the "Grid 
Option".

This dialog box is described in section "View-
ing and Printing Diagrams" on page 263.

• Select View → Print to print the layout. 

• Click OK to exit the layout editor.
Editing the Layout of a Component



You can modify the public interface by enabling or disabling public access to
methods and variables.

To enable and disable methods:

• In the "Methods" list of the layout editor, 
select the method you want to enable or dis-
able.

• Select Method → Disable to disable public 
access to the selected method.

• Select Method → Disable or Enable to 
enable public access to the selected method.

By default, all the methods are enabled. They 
are displayed in red in the "Methods" list of 
the Layout Editor. A disabled method is not 
displayed in the layout pane and is displayed 
in black in the "methods" list.

4.13.2 Editing the Layout of Other Components

• Modules: Editing the layout of a module is the same as for classes, 
except that processes instead of methods and messages instead of ele-
ments can be enabled and disabled.

• Continuous time blocks. Methods and elements cannot be enabled or 
disabled in the layout editor. The appearance of the block is modified 
in the same way as that of a class.

• State machines and conditional tables: The same as for classes.

• Boolean Tables: Same as for classes, except that methods cannot be 
disabled.
Editing the Layout of a Component 517



518
 Editing the Layout of a Component



4.14 Arithmetic Services 

ASCET offers its users the ability to define so-called arithmetic services and use
them to optimize elementary operations, such as addition operations, and to
extend such operations by special properties, such as limiters or overflow han-
dling.

An arithmetic service is a C function, which is made available by the user and
can be called, in place of a standard operation, from within the code gener-
ated by ASCET. For example, in place of the normal add operation,

c = a + b;

a function call is generated:

c = add(a, b);

The code generator can replace, among others, the following standard opera-
tions with user-defined service function calls:

• addition, subtraction, multiplication and division 

• negation and absolute value

• interpolation point search and interpolation

• combined operations, such as multiplication with subsequent division

Arithmetic services can be used for all physical specification types (ESDL, block
diagrams) and all complex elements (classes, modules, finite automata or state
machines), and are supported for all target types (micro-controller targets,
experimental targets [rapid prototyping] and PC) both in off-line and in online
experiments with one of the implementation code experiments (see
page 412).

ASCET finds the information on the presence and type of services from a ser-
vices.ini file, which is stored for each target in a corresponding target
directory (Ascet5.2\target\<target>). These files match the Windows
standard for *.ini files; they can be created and edited using any common
text editor or using the AS Editor provided (see chapter 4.14.5).

The arithmetic services are not made available by ASCET directly. The user has
the option of making the service functions available in a form best suited for
the pertinent application of them: as a library, object code, C code or with the
aid of the ASCET C code editors.

4.14.1 The Functionality of an Arithmetic Service

In addition to C code descriptions of classes, modules etc., ASCET offers the
ability to describe these graphically (in block diagrams) or in an abstract lan-
guage (ESDL). In order to generate executable code for a control unit or an
experiment from such descriptions, the descriptions have to be converted into
519



520
C code. For this purpose, ASCET is equipped with a code generator. The fol-
lowing example is provided to illustrate why the code generator needs an
arithmetic service and what effect this has. .

The block diagram above graphically depicts two operations: one addition and
one multiplication. There are two possible ways of converting this function into
C code.

1. using standard C operations, + and *

2. using separate functions for the addition and multiplication operations

For the addition operation, the standard operation would look like this:

output := input_1 + input_2;

The following would be feasible as a second option:

uint8 add(uint8 summand_1, uint8 summand_2)

{

return summand_1 + summand_2

}

...

output := add(input_1, input_2);

By default, ASCET would apply the standard + operator for the simple addi-
tion. By creating an arithmetic service, the user can specify that the second
variant is to be applied.

This requires to steps:

1. First, prepare the function code for the
uint8 add(uint8 summand_1, uint8 summand_2) function.

This is typically done outside of ASCET, for example in the form of a 
function library, but can also be carried out within the model.

2. Then define the service call to be applied.

For the simple addition in the example above, this would appear as such:



+|u8|u8|u8 = add(%i1%, %i2%)

The syntax of this definition is explained in the sections below.

Based  on  th i s  de f in i t ion ,  the  code  genera to r  genera tes  the
add(%i1%, %i2%) function call in place of the standard "+" operation for
each addition of two uint8 values that yield one uint8 result. In doing so,
the formal arguments %i1% and %i2% are replaced by the corresponding,
concrete arguments (e.g. input_1 and input_2).

4.14.2 Defining Arithmetic Services

Arithmetic services consist of two parts: the definition of the service call and
the preparation of the function code. While the function code does not have
to follow any hard rules except that it must be valid C code, which has to be
provided to ASCET (see chapter 4.3.3), the definition of these service calls must
be of a form that can be understood by ASCET. The definition of the service
call for an arithmetic service follows a strict syntax:

operation|opType1|opType2|opType3|resType=function

Every definition consists of two parts:

• Function key
- operation|opType1|opType2|opType3|resType

• Function call in C syntax
- function

The function key serves to unambiguously assign a standard operation to an
arithmetic service. The function call exactly represents the function call to be
used by the code generator.

Every theoretically possible standard operation is to be described by exactly
one key, and there can be only one defined service per key.

Function Key

Function keys are always formed according to the following syntax:

operation|opType1|opType2|opType3|resType

The individual elements of the key carry the following meanings:

• operation - a character string that unambiguously identifies the cor-
responding operation;

• opType - a character string that unambiguously describes the type of 
operands necessary;

• resType - a character string that unambiguously describes the type of 
result of the operation;
521



522
Allowable Arithmetic Services

For all calculations that occur in ASCET, there is a corresponding arithmetic
service, which the user can customize and optimize to suit specific needs. The
table below lists all of the arithmetic services that are understood by ASCET, as
well as the corresponding number and the type of the parameters (O = opera-
tion; 1,2,3 = operand1, 2, 3; R = result) and the meaning of the function. In
addition, it specifies a standard function definition as can be generated auto-
matically by the AS Editor (see chapter 4.14.5).

Function Key Standard Function Definition Parameters Meaning

abs|*|* abs_%t1%_%tr% (%i1%) O|1|R Deriving the absolute 
value

neg|*|* neg_%t1%_%tr% (%i1%) O|1|R Negating a value

+|*|*|* add_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Addition of two values

+l|*|*|* addl_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Addition of two values 
with saturationa

-|*|*|* sub_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Subtraction of two val-
ues

-l|*|*|* subl_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Subtraction of values 
with saturationa

*|*|*|* mul_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Multiplication of two 
values

*l|*|*|* mull_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Multiplication of values 
with saturationa

/|*|*|* div_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Division of two values

/l|*|*|* divl_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Division of two values 
with saturationa

%|*|*|* mod_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Modulo calculation of 
two values

%l|*|*|* modl_%t1%%t2%_%tr%
(%i1%, %i2%)

O|1|2|R Modulo calculation of 
two values with satura-
tiona

*>|*|*|*|* mul_r_%t1%%t2%_%tr%
(%i1%, %i2%, %i3%)

O|1|2|3|R Multiplication of two 
values with subsequent 
right shift

a: Saturation refers to the act of limiting results to within maximum possible range of 
values for the relevant type of result.



*>l|*|*|*|* mul_rl_%t1%%t2%_%tr%
(%i1%, %i2%, %i3%)

O|1|2|3|R Multiplication of two 
values with subsequent 
right shift and result 
limitation

/>|*|*|*|* div_r_%t1%%t2%_%tr% 
(%i1%, %i2%, %i3%)

O|1|2|3|R Division of two values 
with subsequent right 
shift

/>l|*|*|*|* div_rl_%t1%%t2%_%tr%
(%i1%, %i2%, %i3%)

O|1|2|3|R Division of two values 
with subsequent right 
shift and saturationa

*/|*|*|*|* muldiv_%t1%%t2%%t3%_%tr%
(%i1%, %i2%, %i3%)

O|1|2|3|R Multiplication of two 
values with subsequent 
division

*/l|*|*|*|* muldivl_%t1%%t2%%t3%_%tr
%(%i1%, %i2%, %i3%)

O|1|2|3|R Multiplication of two 
values with subsequent 
division and saturationa

getAt1|*|* CharTable1_getAt_%t1%_%t
r%(%ct%, %x%)

O|1|R Characteristic access

getAt1R|*|* CharTable1_getAtR_%t1%_%
tr%(%ct%, %x%)

O|1|R Rounded characteristic 
access

getAt2|*|*|* CharTable2_getAt_%t1%&t2
%_%tr%(%ct%, %x%, %y%)

O|1|2|R Characteristic diagram 
access

getAt2R|*|*|
*

CharTable2_getAtR_%t1%&t
2%_%tr%(%ct%, %x%, %y%)

O|1|2|R Rounded characteristic 
diagram access

getAtFixed1|
*|*

CharTable1_getAtFixed_%t
1%_%tr%(%ct%, %x%)

O|1|R Access to fixed charac-
teristic curve

getAtFixed1R
|*|*

CharTable1_getAtFixedR_%
t1%_%tr%(%ct%, %x%)

O|1|R Rounded access to 
fixed characteristic 
curve

getAtFixed2|
*|*|*

CharTable2_getAtFixed_%t
1%&t2%_%tr%(%ct%, %x%, 
%y%)

O|1|2|R Access to fixed charac-
teristic map

getAtFixed2R
|*|*|*

CharTable2_getAtFixedR_%
t1%&t2%_%tr%(%ct%, 
%x%, %y%)

O|1|R Rounded access to 
fixed characteristic map

interpolGrou
p1|*|*

GroupTable1_getAt_%t1%_%
tr%(%ct%, %x%)

O|1|R Interpolation routine 
for group characteristic 
curve

a: Saturation refers to the act of limiting results to within maximum possible range of 
values for the relevant type of result.

Function Key Standard Function Definition Parameters Meaning
523



524
Tab. 4-1 Arithmetic Services Supported by ASCET

Allowable Types

Tab. 4-2 Allowable Types for Operands and Results

The presence of a result type and the number of operands depend on the
selected operation. For example, an addition has two operands, while a nega-
tion has only one, and a multiplication with right shift requires three. 

interpolGrou
p1R|*|*

GroupTable1_getAtR_%t1%_
%tr%(%ct%, %x%)

O|1|2|R Interpolation routine 
(rounded) for group 
characteristic curve

interpolGrou
p2|*|*|*

GroupTable2_getAt_%t1%&t
2%_%tr%(%ct%, %x%, %y%)

O|1|2|R Interpolation routine 
for group characteristic 
map

interpolGrou
p2R|*|*|*

GroupTable2_getAtR_%t1%&
t2%_%tr%(%ct%, %x%, 
%y%)

O|1|2|R Interpolation routine 
(rounded) for group 
characteristic map

searchDis-
trib|*|*

Distribution_search_%t1%
_(%i1%)

O|1 Distribution search

getHighPart _(%i1%) O Returns the highest bit 
of a value

Note

The number and order of the parameters in Tab. 4-1 is the default. In princi-
ple, kind, number and order of the parameters is not restricted (as long as 
the C syntaxt is correct); you can add more parameters for special purposes 
(cf. "Specifying an entry:" on page 549).

Character String Type

u8 unsigned integer 8 bit

u16 unsigned integer 16 bit

u32 unsigned integer 32 bit

s8 signed integer 8 bit

s16 signed integer 16 bit

s32 signed integer 32 bit

* All of the types mentioned above are allowed

Function Key Standard Function Definition Parameters Meaning



Function Declaration

The function declaration describes in C syntax the function call that is to be
applied by the code generator in place of the standard operation. If, for exam-
ple, a function is defined in C as

int Add(int operand1, int operand2){...},

then the corresponding function call would be

Add(operand1, operand2);

Because the concrete character strings for operand1 and operand2 are not
known for the declaration of the function in the services.ini file, formal
arguments are used in place of these. These placeholders are recognized by
the code generator, which replaces them by corresponding character strings
during the code generation process. The function call above would appear as
follows in the services.ini file:

Add(%i1%, %i2%);

Tab. 4-3, Tab. 4-4, and Tab. 4-5 provide a list of all arguments supported by the
code generator.

Argument Meaning

%i1% Expression for the 1st operand

%i2% Expression for the 2nd operand

%i3% Expression for the 3rd operand

%t1% Short type (e.g. u8) for the 1st operand

%t2% Short type (e.g. u8) for the 2nd operand

%t3% Short type (e.g. u8) for the 3rd operand

%ft1% Long type (e.g. uint8) for the 1st operand

%ft2% Long type (e.g. uint8) for the 2nd operand

%ft3% Long type (e.g. uint8) for the 3rd operand

%tr% Short type (e.g. u8) for the result

%ftr% Long type (e.g. uint8) for the result

%c1% Automatically determined type-cast of the first operand

%c2% Automatically determined type-cast of the second operand
525



526
Tab. 4-3 Formal arguments for the Mul und Div (with and without shift 
and limitation), Add, Sub, Muldiv (with and without limitation), 
Mod, Neg, Abs, getHighPart operations.

%c3% Automatically determined type-cast of the third operand

%op% Name of the operation

%il% Bit length of input

Argument Meaning

%ct% Expression for characteristic curve or map

%x% Expression for x interpolation point

%y% Expression for y interpolation point (characteristic map only)

%tx% Short type (e.g. u8) for the x value

%ty% Short type (e.g. u8) for the y value (characteristic map only)

%tv% Short type (e.g. u8) for the result

%ftx% Long type (z.B. uint8) for the x value (fixed characteristic curve/ 
map only)

%fty% Long type (z.B. uint8) for the y value (fixed characteristic curve/ 
map only)

%ftv% Long type (e.g. uint8) for the result (fixed characteristic curve/ map 
only)

%fmst% Long type, determined by the maximum size (maxSize) of the table 
(fixed characteristic curve/ map only)

%xd% Expression for x distribution (group characteristic curve/map only)

%yd% Expression for y distribution (group characteristic map only)

%xlen% Number of x distribution points

%ylen% Number of y distribution points (characteristic map only)

%xdind% Index of lower sample point (x dimension; distribution and group 
characteristic curve/map only)

%xdoff% Expression for offset between lower and upper sample point (x 
dimension; distribution and group characteristic curve/map only)

%xddis% Expression for distance between lower sample point and interpola-
tion point (x dimension; distribution and group characteristic curve/
map only)

Argument Meaning



Tab. 4-4 Formal arguments for the Getat1, Getat2, Getatfixed1, 
Getatfixed2, Interpolgroup1, Interpolgroup2 opera-
tions.

Tab. 4-5 Formal arguments for the Searchdistrib operation.

The multitude of possible arguments is based on the syntax of possible C func-
tion calls:

(%ftr%)functionname(%i1%, %i2%, %i3%);

Additionally, the code generator can generate the concrete function names as
long as these follow this syntax:

%op%_%t1%%t2%%t3%_%tr%

Function names can be selected in any manner, though we recommend using
the syntax described above.

4.14.3 Creating and Saving Arithmetic Services

The definitions of arithmetic services are maintained outside of ASCET in a
services.ini file. A file of this type is stored separately for each target in a
corresponding target directory. The file complies with the Windows standard
for *.ini files. 

%ydind% Index of lower sample point (y dimension; group characteristic map 
only)

%ydoff% Expression for offset between lower and upper sample point (y 
dimension; group characteristic map only)

%yddis% Expression for distance between lower sample point and interpola-
tion point (y dimension; not fixed characteristic map)

Argument Meaning

%i1% Expression for the input value of a distribution

%t1% Short type for the distribution input value

%ft1% Long type for the distribution input value

%c1% Automatically determined type-cast of the input value of a distribu-
tion

%d% Distribution

%xdind% Index of a value within an x distribution

%xdoff% Offset of a value within an x distribution

%xddis% Distance between two values within an x distribution

Argument Meaning
527



528
To be able to quickly change the ASCET code generator for different require-
ments within a target, and thus gain the ability to use self-defined arithmetic
service routines with great flexibility, it is possible to define and keep various
sets of arithmetic services within one services.ini file. When it initializes,
ASCET loads all of the information from the file for the current target, thus
making it possible to apply any of the defined sets each time the code gener-
ator is run.

The entries in these files must follow this syntax (in BNF):

SERVICE-FILE ::= [ENTRY]+

ENTRY ::= [FUNCTION] | [COMMENT] | [SET]

COMMENT ::= ";" Σ*

SET ::= "["Σ+"]"

FUNCTION ::= [OPERATION]("|"[OPERAND])+ "=" Σ*

OPERATION ::= "abs" | "neg" | "+" | "-" | "*" | "/" 
| "%" | "+l" | "-l" | "*l" | "/l" | "*>" | "/>" 
| "*>l" | "/>l" | "*/" | "*/l" | "getAt1" 
| "getAt1R" | "getAt2" | "getAt2R" | "getAtFixed1" 
| "getAtFixed1R" | "getAtFixed2" | "getAtFixed2R" 
| "interpolGroup" | "interpolGroup1" 
| "interpolGroup1R" | "interpolGroup2" 
| "interpolGroup2R" | "searchDistrib" 
| "searchDistribR" | "getHighPart"

OPERAND ::= "*" | "u8" | "u16" | "u32" | "s8" | "s16"
| "s32"

For more details regarding the services.ini files and how to create and
edit them, see chapter 4.14.5 "The Interface Editor for Arithmetic Services".

4.14.4 Using Arithmetic Services in ASCET

ASCET supports the use of arithmetic services: 

• for physical specifications in ESDL and in the block diagram;

• in classes, modules and state machines;

• for off-line and online experiments;

• for micro-controller targets, experimental targets (rapid prototyping) 
and PC.

The use of arithmetic services is directly linked to the code generation. The
code generator takes the information regarding the function to be selected
from the data types of the elements, which are linked with the corresponding
inputs and outputs of an operation.



If, for example, an addition has two inputs of the "unsigned integer 8 bit" type
(uint8) and one output of the "unsigned integer 16 bit" type (uint16), the
code generator searches the current set for the +|u8|u8|u16 key. If the key
is found, the code generator uses the function call stored there; otherwise,
depending on the type of the operation, it either uses the standard operation
or generates an error message.

Selecting a Set

Selecting a set of arithmetic services takes place within the scope of a projects
in ASCET.

To select a set of arithmetic services:

• Open the project to whose scope the arith-
metic services you want to use apply.

• In the project editor, click the Project Proper-
ties button.

The "Project Properties" dialog window opens 
in the "Build" node.

• In the "Code Generator" combo box, select 
the Implementation Experiment or 
Object Based Controller  entry.

• Open the Integer Arithmetic node.

All available sets of arithmetic services are 
listed in the "Arithmetic Service set" combo 
box.

• Select the set you want to use from the combo 
box.

Note

The settings for the "Fixed Point Codegenera-
tion" are not available for Physical Exper-
iment or Quantized Physical 
Experiment.

Note

When a new project is created, the first set found in the current ser-
vices.ini file is applied automatically for the project. If the current file 
does not contain any sets, or contains only an empty set, or the first set in 
the file is an empty set labeled [None], <None> is preselected automati-
cally in the "Arithmetic Service set" combo box.
529



530
You can use a different set (if available) each time you run the code generator.
You can also choose not to use a set (by selecting <None>). In this case, the
code generator applies the standard operations.

ASCET saves the information regarding the set that was last selected and last
used for each individual project. If a set that is not stored in the current ser-
vices.ini file is configured for a project (for example if a project has been
loaded from another computer, which uses another file), the following error
message is generated:

The selected set of arithmetic services <...> is not 
available. Please check the services.ini file.

If a set does not yet have functions defined in it, which are required by the
code generator to generate code, either an error message is displayed, or the
standard operation is applied and a warning displayed – depending on the
type of operation. For more information on this, refer to the section "Potential
Error Conditions".

A special case for using arithmetic services arises when constants are used in
an operation. Constants defined in ASCET and literals do not have any specific
type. If the user has selected to use arithmetic services, types are automatically
assigned to these values during the code generation process. In this case, the
code generator selects the first type from the list that is suitable for the value
of the constant:

sint8, uint8, sint16, uint16, sint32, uint32

An exception to this rule occurs if a binary operator has as its input both a
constant of an undefined type and a variable with a defined type.

• If the value of the constant is positive and the type of the variable is 
unsigned, the constant is assigned the same type as the variable. The 
purpose of this exception is to achieve, in as many cases as possible, a 
uniform type for the inputs of an operation.

• If the value of the constant is negative, a signed type must be selected 
for it. There are two possibilities:

– The variable is unsigned: In this case, type uniformity is impossi-
ble.

– The variable is signed: If the value of the constant conforms to the 
type of the variable, the type of the variable is assigned to the con-
stant. Otherwise, type uniformity is impossible.

Potential Error Conditions

If the use of arithmetic services is enabled, the code generator depends on the
validity and completeness of the arithmetic services.



The following error message is generated for all targets if an arithmetic service
is required for an operation but is not found in the selected set:

Arithmetic service <name> required but not defined

 This behavior is limited to all operations that are derived from purely arithmetic
operations (+, -, *, /, abs, neg).

To ensure that a corresponding arithmetic service is defined for each operation,
the standard operations can be integrated into the corresponding set by add-
ing wildcard functions. In this case, a corresponding entry must be present for
each operation that is derived from an arithmetic operation (+, -, *, /, abs,
neg). 

For an addition, this entry would appear as follows:

+|*|*|*=(%i1% + %i2%)

For a combined multiplication/division, it would appear as such:

*/|*|*|*|*=((%i1% * %i2%) / %i3%)

The code generator then replaces the wildcards *) with all theoretically possi-
ble combinations of types.

ASCET generates this warning 

Usage of arithmetic service <name> requires extra 
code for requantization

if all elements that are directly connected to an arithmetic operation (+, -, *,
/, abs, neg) are implementation casts and the user has specified differing
quantizations for these.

Note

Unlike earlier versions of ASCET, no standard operations are used in this case 
by this version!

Note

If, for a special type combination (such as +|u8|s8|s8 = 
add_u8s8_s8(%i1%, %i2%)), there is a function definition in the cur-
rent set, it takes precedence over the standard operation.

Note

If there are no defined functions in the current set for the services, 
getAt.., searchDistrib, interpolGroup.., getHighPart and 
modulo, the code generator uses the standard operations from ASCET 
without generating a warning message or notification.
531



532
4.14.5 The Interface Editor for Arithmetic Services 

The arithmetic services interface editor (henceforth AS editor) is included with
ASCET as a tool which can be used for creating and editing files that contain
interface definitions for arithmetic services. These files are named ser-
vices.ini, and they have to be located in each ASCET target directory.

The files for arithmetic services (AS files) contain the interface definitions that
are necessary for generating code with ASCET. The structure of AS files con-
forms to the Windows standard for *.ini files. These files contain only defi-
nitions of sets, interface definitions and comments.

A set definition is a character string enclosed in square brackets ([ ]), an inter-
face definition takes the form of any character string that conforms to prede-
termined syntax, and a comment is any character string that starts with a
semicolon.

An AS file should contain at least one set and no more than 255 sets of arith-
metic services. A set begins with the declaration of its name and contains all of
the interface definitions below it up to the next set definition or the end of the
file.

An AS file might look like this:

[Set name]

Function

Function

...

[Set name]

;Comment

Function

Function

...

See chapter 4.14.3 for a detailed description of the syntax of the AS file layout. 

The Functions of the AS editor

The AS editor can open existing AS files, create new AS files and save changes
made to these files.

Furthermore, the AS editor provides these functions:

• creating a new (empty) set

• deleting a set

• duplicating a set



• renaming a set

• creating a new (empty) interface definition

• deleting an interface definition

• modifying an interface definition in all of its parts

• creating a standard function call for an interface definition

• verifying the syntax of an entry

• converting an interface definition to a comment

• converting a comment to an interface definition

• finding interface definitions within a set

All changes made to an interface definition are done so by selecting various,
predefined values from selection lists. Changes to an AS file cannot be entered
manually in the AS editor.

The AS editor only allows the user to create entries that are syntactically cor-
rect, and only creates AS files that conform completely to the requirements of
the ASCET code generator.

Launching the AS Editor

The AS editor is a separate tool, which can be launched independently of or
from within ASCET.

Launching the AS editor from ASCET:

• In the component manager, open the 
Tools → Arithmetic Service Editor menu.

This menu contains all of the targets that are 
installed on your computer. The >PC< entry is 
always available.

• Select the target whose AS file you want to 
edit, such as Tools → Arithmetic Service 
Editor → >PC<.

The AS editor starts and opens the AS file for 
the target you have selected. 

If there is no services.ini file in the target 
directory, the AS editor automatically creates a 
new file and names it accordingly.

Launching the AS editor from Windows Explorer:

You can launch the AS Editor independently of ASCET from the Windows
Explorer.
533



534
• Open Windows Explorer.

• Switch to the ETAS\Ascet5.2\ASEditor 
subdirectory of your ASCET installation.

• From here, run the Editor.exe application.

The AS editor starts.

Launching the AS editor from the ASCET Start menu:

As a third option, you can launch the AS editor from the ASCET Start menu.

• In the Windows taskbar, click Start.

• From the ETAS program group, select the 
ASCET5.2 → AS-Editor entry.

The AS editor starts.



The User Interface of the AS Editor

After you start the AS editor, the program window opens. The following
screenshot provides an overview of its most important components.

Descriptions of the Menu Commands:

The commands provided on the menu bar allow you to call up all file functions
(File), edit sets (Sets) and entries (Entries), change the appearance of the AS
Editor (View) and call up information about the program (?).

• File

– New (<CTRL> + <N>)

Creates a new (empty) AS file.

Menu bar

Toolbar

Statusbar

Editor interface
535



536
– Open (<CTRL> + <O>)

Opens an existing AS file.

– Save (<CTRL> + <S>)

Saves the current AS file.

– Save as

Saves the current AS file under a new name.

– 1 .. 4 

Opens one of the 4 AS files that have been opened most recently.

– Exit

Closes the AS editor.

• Sets

– New 

Creates a new (empty) set.

– Copy

Creates a copy of the current set.

– Rename 

Renames the current set.

– Delete

Deletes the current set.

• Entries

– New 

Creates a new (empty) entry.

– Update

Applies the changes for the current entry.

– Delete 

Deletes the current entry.

– Comment 

Converts the current entry to a comment.

– Find 

Searches for an entry.

• View



– Symbolbar

Hides/shows the standard toolbar.

– Statusbar

Hides/shows the statusbar.

– Toolbar 

Hides/shows the specific toolbar.

• ?

– About Editor

Displays information about the program.

Descriptions of the Toolbars:

The AS editor provides two toolbars. The first is a standard Windows toolbar,
and the other contains commands specific to the AS Editor.

1. Creates a new (empty) AS file.

2. Opens an existing AS file.

3. Saves the current AS file.

4. Creates a new (empty) set.

5. Deletes the current set.

6. Renames the current set.

7. Creates a copy of the current set.

8. Creates a new (empty) entry.

9. Deletes the current entry.

10. Applies the changes for the current entry.

11. Converts the current entry to a comment.

1 2 3

4 5 6 7 8 9 10 11
537



538
The Statusbar:

The statusbar provides tips and information on the functions of graphic oper-
ating elements and displays the index of the current set and of the current
entry. It also shows the status of the <NUM>, <CAPS LOCK> and <SCROLL LOCK>
buttons.

Changing the view of the AS editor:

Use the View menu to toggle the view of various elements of the AS editors. 

• Click the View → Symbolbar menu item to 
hide or show the standard toolbar.

This menu item is checked when the toolbar is 
visible.

• Click the View → Toolbar menu item to hide 
or show the editor toolbar.

• Click the View → Statusbar menu item to 
hide or show the statusbar.



The Editor Interface

The editor interface is split into three areas.

The browse area displays all of the information and entries of an AS file. The
edit area is where you can make changes to these entries, and you can create,
update and delete the entries using the commands provided in the button
area.

The Elements of the Browse Area:

The browse area displays all of the information and entries of the current AS
file. After a file has been loaded successfully, all of the sets found within it are
listed by name in the "Set" combo box. All of the entries belonging to the set

Browse area

Edit area Button area
539



540
selected in the combo box are listed in the "Entries" area. If a different set is
selected in the combo box, the entries in the "Entries" field are updated
accordingly.

The "Set" field is a combo box, allowing you to open a list by clicking the
arrow and then select exactly one element by mouse. The entries in this list
cannot be edited directly and are generated by the program.

The "Entries" field is a list box. It also allows you to select exactly one element
from the list. Likewise, the entries here cannot be edited directly and are
entered into the field by the program.

The LED symbol in front of each entry indicates the current status of the entry.
Green means that the entry is syntactically correct; red means the entry con-
tains a syntax error. Yellow identifies entries that are syntactically correct, but
do not fulfill the rules of an AS file (for example in the case of duplicate
entries).

The Elements of the Edit Area:

The edit area displays the data pertaining to an entry in expanded form. Here
you can also modify any of the values that form the entry.



The "Operation" field is a combo box from which you can select exactly one
entry. The entries in this list show all possible and permitted operations and
cannot be edited. If you select an operation from this list, any fields that are
impertinent to the operation are automatically disabled. The following opera-
tions are available:

ABS, NEG, ADD, SUB, MUL, DIV, MOD, MULDIV, GETAT, 
GETATFIXED, INTERPOLGROUP, SEARCHDISTRIB, GETHIGHPART

The "Shift", "Operand1", "Operand2", "Operand3" and "Result" fields are
also combo boxes. The entries for all five of these fields are the same, and list
all permissible types. These are:

ALL, UINT8, UINT16, UINT32, SINT8, SINT16, SINT32

The ALL type does not stand for any particular type, but is provided as a wild-
card. You can also choose not to select a type. This option, however, is only
allowed for operations that allow the use of optional parameters.

The Limitation and Rounded options can be enabled for some operations.

The "Generated Key" field displays the key for the function, which is needed
by ASCET (see the section entitled, "Function Key"). This field cannot be edited
because these keys can be generated only by the program.

The "Code for representation" field shows the function call used for generat-
ing code in ASCET (see the section entitled, "Function Declaration") . In prin-
ciple, any entry is allowed here because this does not have to follow any
particular syntax and cannot be verified for correct syntax by the program.

The "Parameters" field is a combo box where you can select a parameter (such
as %i1%) from a list. The parameter you select is added to the "Code for rep-
resentation" automatically.
541



542
The Elements of the Button Area:

This area provides the command buttons for the most frequently called-for
functions. 

Using the AS Editor

Loading a file:

• Click the Open button

or

• select the File → Open menu command.

This opens the file selection dialog.

• Select the file you want to open.

• Click the Open button to load the file

or

• click Cancel to cancel the procedure.

 

• New Set – Creates a new (empty) set.

• New Entry – Creates a new (empty) entry.

• Delete Entry - Deletes the current entry. 

• Comment – Converts the current entry to a comment.

• Uncomment (replaces the Comment button if a com-
ment is selected) – Converts the current comment to an 
entry.

• Update Entry - Applies the changes for the current 
entry.

• Find Entry - Searches for an entry.

Note

Buttons can be enabled or disabled based on the current status of the pro-
gram. 

Note

You can open one of the four last opened files directly from the File menu.



When you open a file, the program loads the contents of the file. If, during this
process, the program detects errors in entries, it generates messages accord-
ingly and lists the results in the "Parsing Summary" window after it has fin-
ished loading the file.

Entries with errors are converted automatically to comment lines and provided
with a description of the error. Such entries as easy to find in the "Entries"
field, as they are indicated with a red or yellow LED symbol.

After all entries have been loaded, those entries belonging to the first set
found in the file are listed in the "Entries" field.

Saving a file:

• Click the Save button in the toolbar

or

• select File → Save from the menu to save the 
current file. 

If you have just created the current file, the 
standard dialog for saving a file opens. 

• If this is the case, select a file name and a 
directory for the new file.

Note

When loading a file, the program ignores all entries that are located above 
the first set definition (i.e. above the first left square bracket "["). Likewise, 
all empty lines are ignored and are not loaded.
543



544
• Confirm your input by clicking Save

or

• click Cancel to cancel the procedure.

Managing Sets:

After a file has been loaded, all of the sets it contains are listed for selection in
the "Sets" combo box.

Selecting a set:

• Click in the "Set" combo box directly, or on 
the arrow button to its right.

• Select an entry from the drop-down list that 
appears.

If the number of sets it too large to fit within 
the drop-down list box, a scrollbar appears to 
the right of the list.

The set you select is activated and its entries 
are listed in the "Entries" field.

Creating a set:

• Select the Sets → New menu command

or

• click the New Set button in the toolbar

or



• click the New Set button in the button area.

The dialog window entitled, "Please enter 
name of new set," opens.

• Enter a name for the new set.

• Confirm your input by clicking OK.

The new set is appended to the end of the list 
of existing sets and then automatically 
selected as the currently active set. The 
"Entries" field is now empty, as the new set 
does not yet contain any entries.

Or

• Click Cancel to cancel the procedure.

Deleting a set:

• Select the Sets → Delete menu command

or

• click the Delete Set button in the toolbar.

You are asked to confirm that you want to 
delete the set and all of the entries that 
belong to it.

• Confirm to delete the set by clicking OK. 

Or

Note

Because the sets are distinguished from each other by their names, each set 
must be given a unique name.A name must contain at least 1 and no more 
than 255 characters, and may not contain the [ or ] characters.
545



546
• Click Cancel to cancel the procedure.

Duplicating a set:

• Select Sets → Copy

or

• click the Copy Set button.

The dialog window entitled, "Please enter 
name of new set," opens.

• Enter a name for the new set. 

• Confirm the procedure by clicking OK.

The duplicate copy of the current set is 
assigned the new name, appended to the end 
of the list of existing sets, and then automati-
cally selected as the currently active set.

Or

• Click Cancel to cancel the procedure.

Renaming a set:

• Select Sets → Rename. 

Or

• Click the Rename button.

• Enter the new name for the set in the "Please 
enter name of new set" dialog. 

• Confirm the procedure by clicking OK. 

Or

• Click Cancel to cancel the procedure.

Managing Entries:

If a file has been loaded and a set selected, all of the entries belonging to the
current set are displayed in the "Entries" field. If there too many entries to be
displayed in the list box, a scrollbar is provided to the right of the field. To view
in the edit area all of the information pertaining to an entry, simply select one
of the listed entries by clicking it with the mouse.

Note

This permanently deletes the set and all of its entries. 



Selecting an entry:

• Click an entry in the "Entries" field.

The values that belong to the entry are dis-
played in the edit area.The arrow in the illus-
tration above indicate which component of 
the entry is represented by which field in the 
edit area.

If the entry contains errors (indicated by a yel-
low or red LED symbol), it is handles automat-
ically like a comment.

Basically, there are two types of entries: functions and comments. Comments
always begin with a ";". If the entry you have selected is a comment, all of the
fields in the edit area are disabled except the "Code for representation" and
"Parameters" fields. If the entry you have selected is a function, fields are
enabled and disabled based on the operation and the relevant values are dis-
played in these fields.
547



548
Creating an entry:

• Select Entry → New. 

Or

• Click the New Entry button in the toolbar.

Or

• Click the New Entry button in the button 
area.

This creates a new, empty entry in the current 
set below the entry previously selected, and 
causes all of the elements of the edit area to 
become enabled.

The new entry is a function. To create a comment, simply convert the entry you
have just created directly into a comment (see "Converting an entry into a
comment:" on page 552).

You cannot directly modify entries in the AS editor by editing the character
string. Instead, you can influence the individual parameters of the entry by
selecting different inputs. To prevent an entry from being modified inadvert-
ently, all changes have to be applied manually by executing an update.



Specifying an entry:

• In the list of entries in the "Entries" field, 
select the entry you want to change.

You can edit any of the values in the combo 
boxes provided in the edit area as needed. To 
do so, simply select the entries you want from 
the corresponding combo boxes.

• In the "Operation" combo box, select the 
desired arithmetic operation.

• In the "Shift" combo box, select the desired 
type of shift.

If you do not want to apply a shift, simply 
select the blank entry.

• In the "Operand*"" combo box, select the 
desired types of operators.

If you select an operator for the access to 
parameters (GETAT, GETATFIXED, INTER-
POLGROUP), the "Operand1" and 
"Operand2" fields are enabled. If you want to 
access a characteristic diagram, select a value 
in each of the two fields. If you want to access 
a characteristic curve, leave "Operand2" 
empty.

• Select the type of result from the "Result" 
combo box.

• Enable the Limitation option if you want to 
limit the operation.

• Enable the Rounded option if you want 
rounded access to characteristic curves/dia-
grams.

Note

Depending on the entry you select, various ele-
ments in the edit area may be disabled.Those 
entries which are not allowed for the selected 
operation are automatically disabled.
549



550
• Specify a definition of the function or the text 
for a comment in the "Code for representa-
tion" field

or

• delete the present content of the field, if there 
is any, to create a standard function definition 
(see page 551).

• When you need further parameters, you can 
select them one by one from the "Parame-
ters" combo box.

The selected parameter is inserted at the end 
of the string in the "Code for representation" 
field.

After you have completed all necessary changes, you have to update the entry
(see "Updating an entry:" on page 550).

Updating an entry:

• Select Entry → Update

or

• click the Update Entry button in the toolbar.

or

• click the Update Entry button in the button 
area.

This applies the values from the edit area and 
initiates a syntax check. If all of the inputs are 
correct, the changes are applied to the current 
entry.

When entries are updated to apply new changes, the program automatically
runs a check on the values. This consists of the following criteria:

• complete input,

• correct syntax of the input,

• check for duplicates within the current set.

Note

The entry in the "Generated Key" field cannot be edited. This value is gener-
ated by the program automatically as soon as the changes have been 
applied.



The changes are only applied if all input is complete and syntactically correct
and there is not a duplicate entry for this function key present in the set
already. Otherwise, an error message is generated and the entry is left
unchanged.

If you leave the "Code for representation" field blank, the program derives a
standard function definition from the other input data. This definition should
be considered a suggested definition, which can be replaced by another at any
time.

A list of code that can be generated by the editor is provided in the section
entitled, "Allowable Arithmetic Services". The following example is intended
to better illustrate the process:

The user can change how the editor generates function definitions. To do so,
you have to edit both the operations.ini and type.ini files, which are
loca ted  in  the  same d i rec to ry  a s  the  ed i to r  (by  de fau l t ,
..\ETAS\Ascet5.2\ASEditor). In these files, a character string can be
defined for each operation and each type. These will then be used by the edi-
tor in place of the standard strings.

Example: In the operations.ini file, the entry, 

add = add_

is replaced by

add = doAddition_

Note

If the user manually specifies the input in the "Code for representation" field, 
the input is not checked. In all cases, the user is solely responsible for ensur-
ing that the functional definition specified is also actually available when 
code generation is carried out using ASCET!

Function key: Generates standard function definition:

+l|*|*|* addl_%t1%%t2%_%tr%(%i1%, %i2%)

+l|*|u8|* addl_%t1%u8_%tr%(%i1%, %i2%)

+l|u16|u8|* addl_u16u8_%tr%(%i1%, %i2%)

+l|u16|u8|u32 addl_u16u8_u32(%i1%, %i2%)

Note

When editing the operations.ini and type.ini files, be careful not to 
change the file names, as the AS editor would otherwise not be able to find 
them and would resort to using the standard settings.
551



552
 Now the code for the key, 

+|*|*|*

will no longer be

add_%t1%%t2%_%tr%(%i1%, %i2%)

but instead it will be

doAddition_%t1%%t2%_%tr%(%i1%, %i2%)

Deleting an entry:

• Select the Entries → Delete menu command. 

Or

• Click the Delete Entry button.

This deletes the selected entry without any 
further prompts.

When an entry is deleted, the selection automatically moves down to the next
entry in the list. If the deleted entry was the last in the list, the previous entry
is selected. This allows you to delete several entries quickly in succession.

The AS editor provides the ability to insert comments in an AS file, for example
to provide short descriptions or explanations of the individual entries. This
function can also be applied, however, in order to convert existing entries into
comments. This simply entails inserting a ";" in front of the actual entry. Both
ASCET and the AS editor handle lines preceded with ";" as comments.

Converting an entry into a comment:

• Select an entry in from the list of entries in the 
"Entries" field.

• Select the Entries → Comment menu com-
mand.

Or

• Click the Make Comment button in the tool-
bar.

Or

Note

The delete process does not provide a prompt for confirmation. An entry 
that has been deleted cannot be restored. Use this function with caution.



• Click the Comment button in the button 
area.

The selected entry is converted into a com-
ment. 

In certain circumstances, comments can be converted to entries. This is possi-
ble only if the comment, without its preceding ";", would represent a valid
entry. This function can also be used to correct entries that contain errors.

If you choose to convert a comment into an entry, the text contained in the
"Code for representation" field is again checked by the parser. If the parser
does not detect any errors, the comment is converted into an entry. On the
other hand, if the text found in the field does not correspond to a valid entry,
the comment is left as a comment (i.e. an entry with an error remains an entry
with an error). 

Converting a comment into an entry:

• Select a comment in the "Entries" field.

The name of the Comment button in the but-
ton area now toggles to Uncomment.

• Select the Entries → Comment menu com-
mand.

Or

• Click the Uncomment button in the button 
area.

The selected comment is converted into an 
entry, if it is syntactically correct. If it is not syn-
tactically correct, no changes are made.

Searching for an entry:

Sometimes you may need to find a particular entry within a set. To do so, it is
possible to search for an entry by its unique function key.

• In the edit area, select the values of the func-
tion you are looking for in the "Operation", 
"Operand1", "Operand2", "Operand3", 
"Shift" and "Result" fields.

• Set the Limitation and Rounded options to 
match those of the function you are looking 
for.

• Select Entries → Find

or
553



554
• click the Find Entry button in the button area.

If the values you have specified match those of 
an existing entry, the entry is selected auto-
matically and displayed in the "Entries" field.

If no matching function exists, or if the matching function is already selected,
a corresponding message is displayed. 



5 Signals and Icons

This section describes how to work with signals and icons in the ASCET data-
base. Signals and icons are supplementary data for a control system that can
be stored together with the system itself in the ASCET database.

Both signals and icons can be imported into the database or exported to the
file system. Signals are used by the system, icons can be assigned to elements
and hierarchies. The following sections explain how to work with each type of
item.

5.1 The Signal Viewer

With the signal viewer signals can be loaded into ASCET database and viewed.
The viewer can read a variety of signal formats and convert signals between
formats. 

The following measurement data formats are supported by ASCET:

• Tab delimited ASCII. Almost every spreadsheet or database can read 
and write in this format.

• ETAS Format. This is a highly efficient binary format that is used only 
internally by ASCET.

• FAMOS Channel Format. 

• FAMOS Record Format. 

• Matlab Format. This is the MATLAB/Simulink ASCII format.

• MDF Format. 

The last four are third-party formats for measurement data. Please refer to the
relevant documentation for details. Internally ASCET can process ASCII, ETAS
and both types of FAMOS format. MDF and Matlab can be read and written.

To create and open a signal:

• In the Component Manager, select Insert → 
Signal.

A new signal is created.

• Double-click on the signal

or

• select Component → Edit Item

or
Signals and Icons 555



556
• press <RETURN>.

The signal viewer opens.

To import measurement data to a signal:

• Open the signal in the signal viewer.

• In the signal viewer, select File → File In 
Data → <format> to import the signal data 
from the file system.

The Windows file selection dialog box opens.
Signals and Icons



• Select the path and file name of the data file 
you want to import.

The data is imported and automatically con-
verted to the specified format. After conver-
sion the data is displayed in the viewer.

When you selected the MDF or FAMOS format 
for the import, you can select and view differ-
ent time frames.

To view measurement data:

• Choose Navigation → Show Next to move 
to the next data column.

Or 

• Click the Show Next Column button.

• Choose Navigation → Fast Forward to 
move to the next screenful of data.

Or

• Click the Fast Forward button.

If, for instance, the screen shows five data col-
umns, the next five columns are shown.

Note

Here, you can use measurement data you have 
created and saved during an experiment before.
Signals and Icons 557



558
• Choose Navigation → Show Last to move 
to the last data column.

Or

• Click the Show Last Column button.

For each of these three commands there is an 
equivalent command or button for moving in 
the opposite direction.

5.2 The Icon Editor

Icons can be assigned to the layout of components. The icon is shown in the
graphical block, when the component is included in other components in the
block diagram editor. A selection of icons is provided with ASCET, and you can
also create your own.

To start the icon editor:

• In the Component Manager, select Insert → 
Icon to create a new icon. 

Or

• Select an existing icon from the database.

• Double-click on the selected symbol

or

• select Component → Edit Item

or
Signals and Icons



• press <RETURN>.

The icon editor opens.

If you have created a new icon, the drawing area is empty. If you have opened
an existing icon, it is displayed in the drawing area.

You can load any bitmap file (BMP, PCX and TIFF) and use it as an icon in
ASCET. Thus, you can either design your own icons with a drawing program,
or use existing ones. You should make sure that the bitmap files you are
importing are of an appropriate size, i.e. no larger than the graphical block the
icon is to be assigned to. One grid unit in ASCET corresponds to 5 pixels.

To load an icon:

• In the icon editor, select Icon → Load.

The "Image File" dialog box opens.

• Select the name of the icon file you want to 
load.

• Click OK. 

The selected icon is displayed in the icon edi-
tor.

Icons can be scaled up or down to make them fit the block in which they are
to be used. Scaling will, however, result in a degradation of image quality. Scal-
ing by large factors should therefore be avoided. 
Signals and Icons 559



560
To scale an icon:

• Open the icon editor for the icon you want to 
scale.

• Adjust the vertical and horizontal size of the 
icon with the two "Size" boxes underneath 
the icon pane.

• The icon size changes immediately, each time 
you adjust a value in the "Size" boxes.

• Click OK.

It is possible to save ASCET icons as bitmap files. This is useful, for instance, if
you want to illustrate the documentation of your components.

To save an icon to a file:

• Open the icon editor for the icon you want to 
store to a file.

• Select Icon → File Out → <file format>.

The "Image File" dialog window opens.

• Select the filename and the path where you 
want to save the icon.

• Click OK.

The icon is stored in the appropriate format 
(BMP, PCX or TIFF). 
Signals and Icons



6 Experimentation

6.1 The Experimentation Environment

ASCET supports a highly modular approach to software development. The
individual components of a project can be developed independently of each
other, and combined after they have been tested thoroughly. ASCET provides
the experimentation environment for testing components and projects.

Projects can be tested in offline and online experiment. If the project is con-
nected to any external hardware, that connection can only be tested in an
online experiment.

With the experimentation environment it is possible to stimulate (in an offline
experiment) the processes and methods, as well as the elements of a compo-
nent or project. The data values of the elements can be measured in various
visualizations, written to a file, and calibrated interactively. The main elements
of the experiment window are shown in the following illustration (showing an
offline experiment):

Note

Online experiments are only possible when ASCET-RP is installed. Therefore, 
online experimentation is described in detail in the ASCET-RP user’s guide.

"Elements"
Pane

"Diagrams"
Pane

"Calibration Window" "Measure Display Rate" 
Adjustment Box

"Measurement Window"
Combo BoxCombo Box

Component Display
Experimentation 561



562
The elements of the component are listed in the "Elements" pane to the left
of the component display. The component display shows the block diagram, if
the component was specified as a block diagram. For components specified in
C code or ESDL, the code is shown. For projects, the project editor tabs are
shown.

Beneath the "Elements" pane is the "Diagrams" pane, which lists all diagrams
of the current component. The "Measurement Window" combo box is under-
neath the button bar. It lists all measurement windows available. To the left of
the "Measurement Window" combo box is the "Calibration Window" combo
box, which lists all available calibration windows. The title bar shows the name
of the current component or project and the current target.

6.1.1 Description of the Menu Options

• File:

– Load Environment

Loads an environment (configuration) for the current experiment.

– Save Environment

Saves the current experiment configuration.

– Save Environment As

Saves the current experiment configuration with a different name.

– Export Environment

Exports the experiment configurations of the current component.

– Exit 

Leaves the Offline experimentation environment.

• Elements:

– Show Component

Displays the selected referenced component.

– Calibrate (<CTRL> + <C>)

Opens a calibration window for the selected elements.

– Stimulate (<CTRL> + <S>)

Opens the "Stimulus" dialog for the selected element.

Note

This menu option is only available in offline experiments.
Experimentation



– Measure (<CTRL> + <M>)

Opens a measurement window for the selected elements.

– Log (<CTRL> + <L>)

Adds selected elements to the Data Logger.

– Log All (<CTRL> + <A>)

Adds all elements to the Data Logger.

– Reinitialize

Reads the values of certain elements from the current data set of 
the component;
→ Variables – of variables,
→ Parameters – of parameters,
→ Both – of variables and parameters.

– Write Back Data

Writes the values of the selected elements to the current data set of 
the component.;
→ Selected Elements – selected elements,
→ Calibrated Elements – elements calibrated during the experi-

ment.

– Show Element Implementation (<CTRL> + <I>)

Shows the implementation of the selected element (read only).

– Update Dependent Parameters (<CTRL> + <U>)

Updates the values of dependent parameters.

– Load Data

Loads data from a file. The options for this procedure are set in a 
special window.

– Save Data

Writes the data of selected parameters or variables to a file. The 
options for this procedure are set in a special window.

• Diagrams:

– Show Diagram 

Displays the selected diagram.
Experimentation 563



564
– Stimulate 

Opens the "Event" window for the selected process or method. 
The event can be set up.

• Experiment:

– Event Generator → Open

Opens the event generator.

– Event Generator → Step Mode

Sets the step mode type:
→ Steps – single step mode (default),
→ Timed [s] – timed step mode,
→ Break At Condition – breakpoint step mode.

– Event Generator → Edit Break Condition

Opens the breakpoint condition editor.

– Event Tracer

Opens the "Event Tracer" window for data tracing.

– Data Generator

Opens the data generator.

– Data Logger

Opens the data logger.

– Automatic Stop

Stops the experiment automatically when the end of the stimulat-
ing signal is reached (cf. page 581).

– Stop Experiment

Stops the experiment.

– Start Experiment

Starts the experiment.

– Pause Experiment

The experiment is paused.

Note

This menu option is only available in offline experiments.

Note

These menu options are only available in offline experiments.
Experimentation



– Step Experiment

The experiment is performed in step mode.

– Open Target Debugger

Opens the debug window for C code components.

– Update Calibration Windows

Updates the contents of the calibration windows.

– Close Calibration Windows

Closes all open calibration windows.

– Close Measure Windows

Closes all open measurement windows.

• View:

– Redraw

Redraws the block diagram.

– Hide Seq. Calls

Hides the sequence calls of the displayed block diagram.

– Show Seq. Calls

Shows the sequence calls of the displayed block diagram.

– Monitor All

Assigns monitors to all elements.

– Delete Monitors

Deletes all monitors in the diagram.

– Show Parent Component

Returns to the previous component.

6.1.2 Opening and Setting Up the Experimentation Environment

You can start the experimentation environment for a component or project
either from within the respective component editor or the project editor.

To open the experimentation environment for an offline experiment:

• Open the appropriate component or project.
Experimentation 565



566
• If you want to experiment offline with a 
project, select the target PC from the build 
options.

The "Experiment Target" combo box now 
contains the entry Offline (PC).
For components, the combo box is disabled.

• Select Component → Open Experiment

or

• click on the Open Experiment for selected 
Experiment target button.

The default experimentation environment 
opens for the component or project. If more 
than one environment has been stored, you 
can choose which one to open. For details see 
section "Loading and Saving Environments" 
on page 594.

When experimenting with components, the global elements (see "Defining
Global Communication" on page 388) are under some circumstances not
updated properly in the default project. The following error message is dis-
played in the ASCET monitor window:

Error: need export for import element <name> with type 
<type>

To correct this error, proceed as follows:

Define global elements in the default project:

• In the component editor, select 
Component → Default Project → Resolve 
Globals to resolve the global elements.

You can now restart the experiment.

Now you can set up the experiment. Setting up an offline experiment consists
of four steps:

• Starting the experimentation environment from the Component Man-
ager or the respective component editor. The experimentation environ-
ment works the same for all types of component.

• Setting up the event generator. The event generator determines which 
methods or processes are triggered in which mode. When a project is 
experimented with offline, the tasks are stimulated, rather than the 
methods or processes.
Experimentation



• Setting up the data generator. Here some elements of the component 
are stimulated with a configurable flow of data.

• Setting up the measurement and calibration windows. The values of all 
elements can be displayed in a variety of forms, e.g. numerically or in 
an oscilloscope.

6.1.3 The Event Generator

In an online experiment the various tasks and processes of a project are sched-
uled by the real-time operating system. During offline experiments the sched-
uling is simulated by the event generator. The event generator determines
which methods or processes of the component under experimentation are
activated in which order and in which mode. An event has to be defined for
each method or process that is to be activated.

To set up the event generator:

• Select Experiment → Event Generator → 
Open

or

• click on the Open Event Generator button.

The "Event Generator" window opens. It con-
tains an event for every method (for classes) or 
process (for modules) defined in the compo-
nent. By default, all events are disabled, so you 
have to enable the ones you want to use in 
the experiment.

• Select an event.

• Select Channels → Enable

or
Experimentation 567



568
• right-click on the event and choose Enable 
from the context menu.

• Repeat these steps for each event you want to 
enable.

• Select Channels → Enable again to disable 
an event again.

Methods or processes for which no event has been enabled are not activated
and therefore will have no influence on the experiment.

In addition to the events for the methods and processes, a generateData
event is always created by default. This event triggers the generation of data
that have been defined in the data generator. If your experiment does not
require any data to be generated, you can leave this event disabled, otherwise
it must always be enabled.

To set up an event:

Once you have created an event, it is assigned default values for all the event
options. It may not always be necessary to edit these options.

• Select the event you want to set up.

• Select Channels → Edit.

The "Edit Event" dialog box appears.

• Adjust the event options.

The meaning of the various options is 
explained on page 569.

• Click OK.

• Repeat for each event you want to set up.

To set up an event directly:

• In the "Diagrams" pane, select the process or 
method for which you want to generate an 
event.
Experimentation



• Right-click on the process or method and 
choose Stimulate from the context menu.

Or

• Select Diagrams → Stimulate.

The event is enabled and the "Event" dialog 
box is opened for the event. Using this com-
mand is equivalent to first enabling the event 
in the "Event Generator" window and then 
editing it.

Event Options

The "Event" dialog box offers various options for every event. 

• Every event has a mode. There are four modes:

– A time synchronous event (timeSynchronous) is triggered once 
at the beginning of every interval. The length of an interval is deter-
mined by the value set in the "dT [s]" field.

– A segment event (segment) is used in automotive application 
where the triggering of the event depends on the rotational speed 
of the engine, see "To set up a segment event:" for details.

– A single event (singleShot) is triggered only once, when the 
simulation is started. This is useful e.g. for initialization methods. 
You can re-trigger the singleShot event, by choosing Channels → 
Reactivate Event in the "Event Generator" window.

– An asynchronous event (signalled) is stimulated with the data 
of a real measurement. Thus, real-world data can be used as trigger 
even during offline experimentation. Setting up an asynchronous 
event is described on page 571.

• The priority of an event determines the order in which events are calcu-
lated. Often several events are assigned to the same time frame, e.g. 
10 milliseconds. In that case the event with the highest priority (i.e. the 
highest number) is triggered first, the other ones are triggered in turn.
Experimentation 569



570
• The dT value of an event determines the interval in which it is triggered. 
If the dT value is 0.01 seconds, the event is triggered every 10 millisec-
onds. The smallest possible dT value is one microsecond (10-6 seconds).

To set up a segment event:

• Open the "Event" dialog box for the event.

• Select segment from the "Mode" combo 
box.

A dialog box opens that lists all variables of 
your component.

• Select the variable that is to serve as the seg-
ment variable and click OK.

The segment variable should represent the 
rotational speed in revolutions per minute.

• Adjust the crankshaft angle in the "call every 
°CS" field of the "Event" dialog box.

• Click OK.

The segment event is now triggered at the beginning of every segment interval
tseg (in degrees), which is calculated according to the following formula:
Experimentation



n is the rotational speed in revolutions per minute, and CS is the crankshaft
angle that specifies the revolution.

To set up an asynchronous event:

• Open the "Event" dialog box for the event.

• Select signalled from the "Mode" combo 
box.

If no signal has been selected in the data gen-
erator (see "The Data Generator" 
on page 573), the following error message is 
displayed:

• To remove the error, proceed as follows:

– Confirm the error message with OK.

– If you set up the event directly (cf. 
page 568), close the "Event" window.

– In the "Physical Experiment" window, 
click on the Open Data Generator but-
ton to open the data generator.

– Define a signal as described in "To define 
a signal:" on page 578.

tseg s[ ] CS deg[ ]

n 1
min
---------- 6Þ

-----------------------------=
Experimentation 571



572
– Repeat the first two steps of the instruc-
tion.

– Choose the desired time raster, if the sig-
nal contains multiple rasters.

• Click OK to accept the settings.

A dependent event is activated whenever the event it depends on is activated.
This does not affect the other settings of the event. It is still activated normally
in addition to being activated as a dependent event, but the activation is syn-
chronized with the event it depends on.

To set up a dependent event:

• Select an event in the event generator win-
dow.

• Choose Channels → Dependent Event.

The "Define Dependent Event" dialog box 
opens.

• Select the event the first event is to depend 
on.

• Click OK.
Experimentation



6.1.4 The Data Generator

In an offline experiment, the data generator provides the stimuli for the ele-
ments of the component being experimented with. Usually the elements that
are stimulated are the interface elements of the component, but any element
can be stimulated with the data generator. The data generator provides a num-
ber of different stimulus modes, such as sine waves, pulses, etc.

To set up the data generator:

• In the experimentation environment, click on 
the Open Data Generator button

or

• choose Experiment → Data Generator.

The "Data Generator" window is opened.

Note

In offline experiments, you often stimulate variables and parameters that use 
actual model values when the experiment runs in online mode. You may 
need to adjust your experiment settings accordingly.
Experimentation 573



574
• Select Channels → Create to open the corre-
sponding dialog box.

By default, the dialog lists only the parameters 
for the current component. You can stimulate 
all basic elements for a component.

• Deactivate the Parameters only option to 
view all basic elements for the component.

• Select the element or elements for which you 
want to create a channel.

You can select more than one element by 
clicking on them while holding down the 
<CTRL> key.

• Click OK.

• Repeat for the other elements for which you 
want to create data channels.

To set up a channel in the data generator:

• Select a channel in the "Data Generator" win-
dow.

• Select Channels → Edit

or
Experimentation



• double-click on the selected channel.

The "Stimulus" dialog box opens. It shows the 
name of the channel being set up in its title 
bar.

• Alternatively, select an element from the "Ele-
ments" list in the experimentation environ-
ment.

• Select Stimulate from the context menu

or

• select Elements → Stimulate. 

This adds the element to the "Data Genera-
tor" window and opens the "Stimulus" dialog 
box.

• Select a mode for the channel. The mode 
determines what kind of curve is generated. 
Possible modes are constant, sinus, 
ramp, pulse, step, table, matrix, ran-
dom and gaussian.

To set up a stimulation mode:

• Perform the necessary steps for each channel 
in the data generator.

Note

You can modify the settings for a signal channel while your experiment is 
running. To test different settings, simply press Apply to change the signal 
without closing the dialog.
Experimentation 575



576
1. constant mode

• In the "Stimulus" dialog, insert the value of 
the constant in the "Value" field.

All other setup fields are deactivated.

• Click OK to assign the value and close the 
window.

• Click Apply to assign the value without clos-
ing the window.

• Click Cancel to discard the setting and close 
the window.

2. cyclic modes (sinus, ramp, pulse und step) and random generator 
(random; equal distribution)

• Set the frequency for the wave.

• Set the phase for the wave.

The phase determines the offset from the time 
axis. If, e.g. the phase of a sine-signal is 0.5 
seconds, the signal will be shifted to the right 
by half a second.

• Set the offset of the y-axis (Offset).

• Adjust the amplitude.

• Click OK or Apply.

3. table mode

The table mode uses a table as stimulus.

Note

The "Frequency" and "Phase" fields are not 
available for random mode.
Experimentation



• Klick on the Edit Table button to edit the 
table used as stimulus.

The table editor for one-dimensional tables 
opens.

• In the table editor, enter the desired values 
directly 

or 

• select Edit → File In Data to load an existing 
table.

Details about working with the table editor 
are given in sections "The Editor for Com-
bined Types (Table Editor)" on page 460 and 
"Working with Calibration Windows" 
on page 620.

• In the "Time Scale" field, enter a factor for the 
time scale.

The X axis values of the table are multiplied 
with this factor, and the results are used as 
time steps (in seconds) for stimulation.

• Click OK to accept the settings.

4. matrix mode 

The setup of the matrix mode is described in 
the two sections on page 578.

5. gaussian mode

This mode is only available for numerical variables. It stimulates the 
variable using a random number generator with Gaussian distribution.

• In the "Mean" field, enter the mean value of 
the Gaussian distribution.

• In the "Variance" field, enter the variance of 
the Gaussian distribution.

• Click OK or Apply.

Note

The table is processed only once. If you want to 
use it a second time to stimulate a channel, you 
have to restart the experimnent.
Experimentation 577



578
To delete channels:

• Choose Channels → Delete to delete the 
selected channel from the data generator.

• Choose Channels → Delete All to delete all 
channels from the data generator.

It is possible to use the data of actual measurements as a stimulus in the data
generator. That way, components can be tested with real-world data even dur-
ing offline experimentation. Such data is stored in signal items in the database
and can be read in from a variety of formats. Importing signals is described in
chapter "Signals and Icons" on page 555. Individual channels from a signal
can be assigned as channels in the data generator.

To define a signal:

You can only define a signal when the experiment is stopped. Proceed as fol-
lows:

• In the data generator, select Signal → Define 
Signal .

The "Select a Signal Item" dialog box opens.

• Select a signal from the "1 Database" pane.

• Click OK.

The signal is now defined. You can have only 
one signal item per experiment.
Experimentation



To define data generator channels as signal channels:

• In the data generator window, select a chan-
nel.

• Choose Channels → Edit

or

• double-click on the channel.

• Choose matrix from the "Mode" combo 
box in the "Stimulus" dialog box.

The "Stimulus" combo box appears under-
neath the "Mode" combo box. It lists all chan-
nels contained in the signal defined earlier.

• Select the signal channel you want to assign 
to the data generator channel.

• Click OK.

When you have defined a signal (cf. page 578), new menu items appear in the
Signals menu in the data generator. However, these are only available when
the experiment is stopped.
Experimentation 579



580
To remove a signal:

• In the data generator, select Signal → 
Remove Signal.

The defined signal is removed. A channel stim-
ulated with the signal keeps the matrix 
mode, but the entry in the "Stimulus" combo 
box is reset.

When the signal channels and the data generator channels are named equally,
you do not have to select each channel separately in the "Stimulus" combo
box (cf. page 579). You can assign channels with identical names automati-
cally.

To assign channels with identical names:

• In the "Stimulus" dialog, select the matrix 
mode for each desired channel.

• In the data generator, select Signal → Map 
same names.

Signal channels are assigned to data generator 
channels with identical names.

Each time data is generated in the experiment (cf. page 568), the signal is eval-
uated. If the actual time stamp falls between two signal points, the lower sig-
nal value is assigned to the channel by default. As an alternative, you can select
linear interpolation.

To interpolate the signal:

• In the data generator, select Signal → Inter-
polate.

• Start the experiment.

The assigned value is linearly interpolated 
from the signal points enclosing the actual 
time stamp.
Experimentation



If nothing else is specified, the experiment continues after the end of the signal
is reached. The stimulated channel retains the last signal value. You can select
a repeat mode for the signal or an automatic stop of the experiment.

To select signal repetition:

• In the data generator, select Signal → 
Repeat Mode.

• Restart the experiment.

When the end of the signal is reached, stimu-
lation begins anew.

To set up the automatic stop:

This command is available only when at least one data generator channel is
stimulated with a signal.

• In the "Physical Experiment" window, select 
Experiment → Automatic Stop.

The menu function is marked. When you start 
the experiment now, it will automatically stop 
when the end of the signal is reached.

• Select Experiment → Automatic Stop once 
more to deactivate the automatic stop.

The setting of Experiment → Automatic Stop is kept when the experiment
is ended, and the experiment environment is closed. The next time you exper-
iment with this component, the old setting is assumed.

6.1.5 The Measurement System

The measurement system offers a variety of ways of displaying the values of
elements, such as an oscilloscope, bar displays and numerical displays. Each
measurement window has to be set up with the values it is to show. The dis-
plays offer a variety of customizing options which can be adjusted during setup
of the experiment, but also while it is running. All measurement windows are
opened by assigning elements to them from the experimentation environ-
ment. The measurement windows are described in chapter "Measurement
Windows" on page 648.

Note

The automatic stop overrules the repeat mode; when both are selected, the 
experiment stops at the end of the signal..
Experimentation 581



582
To assign an element to a new measurement window:

• Select the type of measurement window that 
you want to assign the element to from the 
"Measurement Window" combo box.

The available types are listed in brackets, e.g. 
<1. Oscilloscope>.

• Select the element that you want to assign to 
a measurement window in the "Elements" 
pane.

• Select Elements → Measure.

Or

• Drag the element from the "Elements" pane 
to the "Measurement Window" combo box.

Or

• Drag an occurrence of the element from the 
block diagram display to the "Measurement 
Window" combo box.

A new measurement window is opened and 
the selected element is added to the measure-
ment window. You can select more than one 
Experimentation



element by clicking on them while holding 
down the <CTRL> key, in that case all selected 
elements are assigned to the window.

The "Measurement Window" combo box also shows the titles of all measure-
ment windows that are already open. The entries for open windows are dis-
played without brackets, e.g. Oscilloscope; 1. If you have changed the
title of a measurement window, that title is listed in the combo box.

To assign an element to an existing measurement window:

• Select the entry for the existing measurement 
window from the "Measurement Window" 
combo box.

• Drag one or more elements to the "Measure-
ment Window" combo box.

Or

• Drag the elements to the measurement win-
dow.

The monitor displays the current value of the element above the selected
occurrence in the drawing area. For details see section "Monitor"
on page 677.
Experimentation 583



584
To assign a monitor to an element:

• Right-click an occurrence of an element in the 
drawing area.

• Select Monitor from the context menu.

The current value of the element is shown in 
the component display.

To close all measurement windows:

• Select Experiment → Close Measurement 
Windows to close all currently open measure-
ment windows.

6.1.6 The Calibration System

The calibration system is the same for online and offline experiments. The
"Calibration Window" combo box lists all currently open calibration windows
and offers the option of opening a new one. It is possible to have several ele-
ments in the same window, but only if they are of the same type, i.e. several
tables can be in a table editor, several scalar elements can be in a numerical
editor, etc. Assigning elements to calibration windows works like assigning ele-
ments to measurement windows. The calibration windows are described in
chapter 6.2 on page 615.

To calibrate an element:

• In the "Elements" pane of the experimenta-
tion environment, select the element you 
want to calibrate.

• Choose Elements → Calibrate

or

• double-click on the element.

A data editor for the selected type of element 
is opened.

Or
Experimentation



• Drag the element from the "Elements" pane 
or the drawing area and drop it into the "Cal-
ibration Window" combo box.

If you drop the element on the entry <New 
Calibration Window>, a new window is 
opened, otherwise the element is added to 
the selected window. You can drag an ele-
ment directly into an existing calibration win-
dow.

• Select Experiment → Update Calibration 
Windows to update the calibration windows 
content.

• Select Experiment → Close Calibration 
Windows to close all calibration windows.

6.1.7 Running Offline Experiments

After you have set up the experiment, you can start it. During offline experi-
ments you can change the display options on all the measurement windows,
you can open and close measurement windows, you can change the settings
in the data and event generators, and you can change data values with the
calibration system.
Experimentation 585



586
To start the offline experiment:

• Open the experimentation environment for 
the component or project you want to experi-
ment with.

• Adjust the measurement rate in the "Mea-
surement Rate" box.

If the rate is set to 1, all measurement values 
will be displayed. If it is set to a higher value, 
only multiples of that value will be displayed, 
e.g. if the rate is set to 10, only every tenth 
measurement value is displayed.

• Click the Expand / Collapse Window button 
to hide the component display of the experi-
mentation environment.

Only the menu and button bars of the experi-
mentation environment remain visible. Click 
the button again to make the component vis-
ible again.

In addition, the Always on top button is acti-
vated.

• Klick on the Always on top button, and the 
"Physical Experiment" window will always 
remain in the foreground.

• Select Experiment → Start Experiment

or

• click the Start Offline Experiment button.

If you set the relevant options in the ASCET 
options window, "Experiment" node (cf. 
"Experiment Options" on page 59), variables 
and parameters are initialized each time this 
command is called.
Experimentation



The experiment is started and all the values 
you have set up in the measurement system 
are displayed in their respective windows.

• Make any necessary adjustments in the data 
generator, event generator, measurement sys-
tem or calibration system.

To stop the offline experiment:

• Select Experiment → Stop Experiment.

or

• Click the Stop Offline Experiment button.

The experiment stops but all settings remain 
active. The measurement data remains in the 
oscilloscope window and you can now ana-
lyze the data (see section "To analyze mea-
surement data:" on page 665). 
Once you start the experiment again, the time 
axis is reset to 0, parameters and variables are 
initialized, if required (cf. page 59).

To leave the experiment environment:

• Click the Exit to Component button 

or
Experimentation 587



588
• Select File → Exit to quit the experimentation 
environment and get back to the relevant edi-
tor for the component you have been simulat-
ing.

You are asked if you want to save the current 
experiment environment.

• Activate the option Remember my Decision 
if you want to give the same answer to all 
questions of this type.

• In that case, the "Save Experiment" window 
no longer opens. You can revoke this setting 
in the ASCET options window, "Confirmation 
Dialogs" node (see "Options for Confirmation 
Dialogs" on page 45).

• Click Yes to confirm the saving.

The experiment environment is stored under 
the suggested name. You return to the com-
ponent editor.

• Click No to reject the saving.

You return to the component editor without 
saving the experiment environment.

• Click Cancel to abort closing the experiment 
environment.

It is also possible to perform the experiment in single steps. At every step one
event is activated in order of their priority.

To step through an experiment:

• Select Experiment → Pause Experiment

or 

• click the Pause Offline Experiment button.

The experiment is paused, i.e. no calculations 
are performed, but all settings remain active. 
When you start the experiment again, all data 
values remain intact.

• Select Experiment → Step Experiment 

or
Experimentation



• click on the Step Offline Experiment but-
ton.

The experiment is performed in single step 
mode.

Repeat as necessary. You can also start step-
ping through an experiment when it is not 
running. In that case, its state automatically 
changes from stopped to paused.

• You can adjust the number of steps to be per-
formed in the "Steps" box before you step 
through the experiment.

If, for instance, the number of steps is set to 5, 
five calculation steps are performed.

In the current version of ASCET, you can choose between three different types
of step mode. An experiment either runs a number of steps, a number of sec-
onds or until it reaches a breakpoint condition. 

To switch to timed step mode:

• In the experimentation environment, choose 
Experiment → Event Generator → 
Step Mode → Timed [s] to activate the 
timed step mode.

The experimentation environment displays a 
text field for entering the number of seconds 
the experiment is to run. You can specify the 
number of seconds and then step through the 
experiment as described above.

The third possibility to step through an experiment using a breakpoint condi-
tion lets you specify a condition for an element in your component (e.g., num-
ber of revolutions is greater than 5,000). The experiment runs until the
condition evaluates to true.
Experimentation 589



590
To set up a breakpoint condition:

• In the experimentation environment, choose 
Experiment → Event Generator → 
Step Mode → Break At Condition to enable 
the breakpoint step mode.

The "Edit Break Condition" dialog box is dis-
played. In this dialog, you specify the condi-
tion up to which the experiment is to run.

This editor can be opened later with the 
Experiment → Event Generator → Edit 
Break Condition command.

• Click the Assign button to choose the name 
of the element you want to use in the condi-
tion.

A selection prompter dialog box displays a list 
of elements.

• Select the desired element and click OK to use 
the element name.

• Edit the remainder of the condition by select-
ing an operator from the list and enter the cor-
responding value.

• Click OK to confirm.

The experimentation environment displays a 
text field with the breakpoint condition. You 
can step through the experiment as described 
above.
Experimentation



You can view the implementation of the component you are experimenting
with at any time during experimentation. You can also view the implementa-
tion of each element included in the component. It is of no importance
whether the experiment is running or stopped.

To view the implementation:

• In the "Elements" list, select the element or 
component whose implementation you want 
to view.

• Select Elements → Show Implementation.

The implementation editor for the selected 
object opens. Its usage is described in chapter 
4.12 "Editing Implementations"; please note 
that the OK button is deactivated so that you 
cannot make any changes.

Components that are specified in C code provide additional facilities to display
either debug information or error messages during experimentation. You can
embed debug or error messages in your C code. Debug information is dis-
played in the target debug viewer that can be opened during experimentation.
Error messages are printed to the ASCET monitor window.

When editing C code, use the functions asdWriteUserDebug() and
asdWriteUserError() to specify the information to be displayed. Both
functions take an argument string which contains the message to be dis-
played. A typical statement could look like this:

asdWriteUserError("Overflow: \n Upper Limit exceeded.")

The string argument follows standard ANSI C rules, the example is printed in
two lines.

Note

This command is not available when you 
selected two or more elements.
Experimentation 591



592
To view debug information:

• Choose Experiment → Open Target 
Debugger to open the "C-Target Debug-
Window".

1. Automatic display

• In the "C-Target Debug-Window" window, 
activate the on option

or

• activate the File → Continuous Update 
menu function.

Debugger information is displayed as soon as 
it is generated, and updated continuously.

2. Manual display

• Activate the off option

or

• deactivate the File → Continuous Update 
menu function to disable continuous update.

With continuous update disabled, new debug 
information is only displayed upon request.

• For that purpose, click the Update button

or

• select File → Update Text.

3. Clear text window

• Click the Clear Text button 

or
Experimentation



• select File → Clear Text to clear the debug 
window.

4. Save text window

• Select File → Save as.

The file selection dialog opens.

• Choose a path and file name.

• Click Save.

The content of the debugger window is writ-
ten to a text file with the specified name and 
path.

You can monitor which events are being triggered in which order with the
event tracer. The event tracer shows the time in seconds for every point of time
at which any events are triggered. For each point the events are listed in the
order in which they have been triggered.

To monitor events with the event tracer:

• Set up the experimentation environment for 
the component you want to experiment with.

• Click on the Open Event Tracer button.

or

• Choose Experiment → Event Tracer to open 
the "Event Tracer" window.

• In the "Event Tracer" window, click the Start 
Tracer button to start the event tracer.
Experimentation 593



594
• In the experimentation environment, start the 
experiment.

• To stop tracing events, click the Stop Tracer 
button.

You can start and stop tracing events while 
the experiment is running.

• Click the Reset Tracer button to clear the 
"Event Tracer" window.

6.1.8 Loading and Saving Environments

Experiments for complex models may consist of numerous measurement win-
dows and measurement channels. It is therefore useful to be able to save the
experimentation environment, so that the settings can be re-used between
experimentation sessions. In ASCET you can save several such environments
for every component.

When you save an environment, all settings in the data and event generators
and the data logger are stored. Furthermore all open calibration editors and
measurement windows are saved with their settings intact. Later you can load
the environment, and the experimentation environment is restored. There is
always a default experiment, which is loaded, if no other environments have
been defined.

To save an environment:

• Open the experimentation environment and 
make all necessary adjustments.

• Click on the Save Environment button

or

• select File → Save Environment to save the 
current environment.

To save an environment under a different name

• Click on the Save Environment As button

or 
Experimentation



• select File → Save Environment As.

The "Save Environment As" dialog box opens.

• Enter a name for the experiment.

• Enter a comment describing the experiment in 
the "Comment" pane.

• Click OK.

The experiment is stored under the name you 
entered.

To load an environment:

• Open the experimentation environment.

If there is only the default environment, it is 
loaded automatically on opening the experi-
mentation environment. If you have saved 
Experimentation 595



596
more than one environment for the compo-
nent, the Environment Browser opens with a 
list of all available environments.

• Select the environment you want to load.

• Click Load.

The experimentation environment opens with 
the selected environment.

It is possible to load environments, while the experimentation environment is
already open. In that case, the currently open measurement and calibration
windows remain open, but all other settings from the loaded environment
become active, and all windows defined there are opened.

To switch environments:

• Click on the Load Environment button

or

• select File → Load Environment.

The "Browse Environment" window opens.

• Select the environment you want to open.

• Click Load.

To export environments:

• Select File → Export Experiment.

The "Export File" dialog box opens.

• Enter a path- and filename for the export file.
Experimentation



• Click on Save.

The environments currently defined within the 
component are exported. Use the import 
mechanism of the Component Manager to 
import environments. The same rules apply to 
importing environments as to importing other 
data. 

6.1.9 The Data Logger

With the data logger you can log the values of variables within a component
or project during offline, or a project during online experimentation. The val-
ues are written to a file and can later be analyzed with a measurement data
analysis application (e.g., the MDA). There are three logging modes:

• Transient Sampling

For Transient Sampling, the code generation settings have to be 
adjusted. Code is then generated so that every time the value of a 
logged variable is changed, that change is automatically recorded. That 
way all changes in a value can be logged. Because the code is changed, 
transient sampling influences the runtime behavior of the model. The 
amount of data generated by the data logger increases, because a time 
stamp has to be generated for each logged value.

• Periodic Sampling

Periodic sampling does not require any code modifications and there-
fore only minimally influences the runtime behavior of the model. Here, 
logging is triggered by a particular task, i.e. every time a selected task 
is triggered, the current value of all logged channels is recorded. This 
does not influence the runtime behavior of the selected task, as log-
ging is performed only after the task is finished. If the value of a logged 
variable changes several times between subsequent logging opera-
tions, only the last change is recorded. No time stamp needs to be gen-
erated, because logging happens at pre-defined, fixed intervals.

Logged data is stored on a ring buffer in the target and written to the 
PC-host after the recording is stopped, where it is written to another 
ring buffer. A ring buffer always stores a pre-defined number of values 
and, once that number is exceeded, overwrites the previously stored 
values on a first-in-first-out basis. Therefore, Data can be logged only 
for a limited time. To avoid this problem, you can activate Continuous 
Polling. With that, data is transferred to the PC-host at regular intervals 
during the logging operation. However, the communication with the 
host may affect the target processor, and gain and loss have to be 
weighed for each application.
Experimentation 597



598
• Periodic to File

If a longer registering time is desired, the target, as a rule, cannot pro-
vide sufficient RAM for the recording. In that case, you can select Peri-
odic to File. Here, too, logging is triggered by a particular task, but, 
different from Periodic Sampling, the data is transferred to the to the 
PC-host at regular intervals during the logging operation. Thus, data 
can be registered 

For each of the three logging modes, data is written from the PC-host to a file
once the logging operation is stopped (cf. page 607).

There are three limiting factors on the number of channels that can be logged
and the rate at which data can be recorded:

• A portion of the target RAM is allocated to storing the logged data. The 
more RAM the target has, the more values can be logged.

• The data transfer between host and target influences the data logging. 
If, for instance, the target has little RAM, but the data can be trans-
ferred to the host very quickly, more values can be recorded.

• The logged values are stored on the host RAM (physical plus virtual), 
the more free RAM the PC has, the more data can be held.

Before you can log data in transient sampling mode, you have to modify the
code generation settings. 

To prepare for transient sampling:

• Open the project you want to experiment 
with.

• In the project editor, click on the Project 
Properties button.

The "Project Properties" window opens in the 
"Build" node.

• Open the "Experiment Code" node.

Note

The transient sampling mode can only be activated from within a project.
Experimentation



• Activate the Data Logging option to switch 
on data logging.

• Click OK.

• Generate the code for the project and open 
the desired experimentation environment.

If you want to log data in Periodic Sampling or Periodic to File mode, you do
not have to modify the code generation settings. It is possible to generate code
with or without data logging enabled. When you generate code with data
logging enabled, the code will run more slowly, regardless of whether you are
logging data or not.

To open the data logger:

• Open the experimentation environment for 
the component or project.

• Click on the ASCET Data Logger button

or
Experimentation 599



600
• select Experiment → Data Logger.

The "Data Logger" window opens.

This window contains the following elements:

• File menu

– Open (<CTRL>+<O>) 

Opens a list (in the *.lab INCA format) with logged elements, see 
page 602.

– Save (<CTRL>+<S>)

Opens a list (in the INCA format *.lab) with elements currently 
logged in the data logger.

– Save As

Opens a list (in the INCA format *.lab) with logged elements 
under an arbitrary name.

– Import

Imports a list (in *.csv or SelectX – *.cfg – format) of logged 
elements.

– Exit

Closes the data logger.
Experimentation



• Control menu 

– Enable Logging

Starts logging.

– Disable Logging

Stops logging.

• Options menu

– Logging Options

Opens the "Logging Options" window, see page 603.

– Change Filename

Changes the default name for the log file. 

• Extras menu

– Convert MDF to FAMOS

Converts MDF data to FAMOS data, see page 609.

• Toolbar 

• "Logged Data" field

Lists the logged elements.

• Option Trigger Condition 

Activates/deactivates using a trigger condition (see page 606).

• Trigger definition

Two combo boxes and an input field to define the trigger condition 
(see page 606).

• Status bar

Status information for the data logger.

To set up the channels to be logged:

• In the experiment environment, select the 
desired elements from the "Elements" pane.

Stops logging.

Starts logging.

Changes the default name for the log file.

Shows/hides the data logger pars below menu bar and toolbar.
Experimentation 601



602
• Select Elements → Log to activate logging 
for the selected elements. 

When you have not yet opened the data log-
ger, it opens now. The selected elements are 
listed in the "Logged Data" field. 

• Alternatively, you can drag elements directly 
into the data logger. 

• Select Elements → Log All to activate log-
ging for all elements.

To use label lists:

If you close the data logger, the setup of registered elements gets lost. To ease
setup for the next experiment, you can create a label list (*.lab format) for
the elements currently in the data logger. This list can also be used for
exchange with INCA, e.g. to make sure that the same elements are used in
both tools.

• Open the data logger (page 599).

• Set up the channels you want to log 
(page 601).

• Select File → Save to save a list of the ele-
ments.

If you save a list for the first time, you are 
asked for path and name of the file.

• Select File → Save As to save a list of the ele-
ments under an arbitrary name.

• Select File → Open to open an element list in 
the data logger.

If the list contains elements not present in the 
current experiment, warnings are issued in the 
monitor window.

Note

The number of logged elements is limited by 
several factors, see page 598.
Experimentation



• Select File → Import to import a list in the 
*.csv (comma-separated values) or *.cfg 
(SelectX format).

You can use these formats to create and man-
age label lists outside of ASCET.

To adjust the logging options:

1. Logging Mode

• In the data logger, select Options → Logging 
Options to open the "Logging Options" dia-
log window.

• Click either the Transient Sampling, the 
Periodic Sampling, or the Periodic to File 
radio button.

You can only select Transient sampling if 
data logging has been enabled in the code 
generation settings (cf. page 598).
Experimentation 603



604
• Select a task from the "Log At" combo box.

During online experiments, the combo box 
shows all tasks defined in the project. Logging 
then always occurs after the selected task has 
been executed. 

During offline experiments, logging always 
happens after every event defined in the event 
generator; you do not have to select anything 
in that case.

• In the "Host Logging Buffer" field, adjust the 
channel length for the host logging buffer.

This setting determines how many values are 
stored in the ring buffer on the host-PC for 
each channel.

2. Data transfer to the host

• Tick or untick the Continuous Polling 
option.

Without Continuous Polling, the data is 
stored on the target buffer and only written to 
the host at the end of a logging operation.

Note

The "Log at" combo box is invisible when Tran-
sient Sampling has been selected.

Note

The "Host Logging Buffer" field is deactivated 
when Periodic to File has been selected.

Note

Continuous Polling is activated automatically 
when Periodic to File has been selected.
Experimentation



• In the "Cycle Time (Cont. Polling)" field, 
adjust the cycle time for continuous polling.

If Continuous Polling is activated, the log-
ging values that are stored on the target ring 
buffer are written to the host-PC at every 
interval defined in the "Cycle Time" field. 

When the cycle time cannot be kept, due to a 
long transportation period, the excess is indi-
cated in the header of the data logger win-
dow. Optimization has to be done manually 
because computing speed, target load, and 
communication type have a strong influence.

• In the "Data Rate per Channel and Cycle" 
field, enter a data rate.

The data rate setting determines, how many 
values per polling interval are read for every 
channel.

If Continuous Polling is deactivated, the 
polling interval corresponds to the entire log-
ging time; if Continuous Polling is activated, 
the polling interval corresponds to the cycle 
time entered in the "Cycle Time (Cont. Pol-
ling)" field.

3. Target register buffer

• In the "Target Logging Buffer" and "Total 
Amount" fields, adjust the target logging 
buffer settings.

The target has a maximum amount of RAM 
that can be used as a buffer for logged data. If 
you want to use less RAM, you can adjust this 
setting. The channel length setting determines 
how many values for each channel are stored 
in the target ring buffer.

Note

The "Cycle Time (Cont. Polling)" field is not 
available when Continuous Polling is deacti-
vated.
Experimentation 605



606
4. Output format

• Select a storage format for the log file by click-
ing either the FAMOS or MDF options.

• Click OK.

The settings in this dialog box determine the number of channels that can be
logged simultaneously. The number is shown at the bottom of the dialog box
and updated every time you change any settings. The current limiting factor is
also shown here. If you enter a setting that exceeds any limits set by other
settings or the available resources, an error message is shown, and the setting
is not changed.

To log data:

• Start the experiment.

• In the data logger, click on the Enable Log-
ging button

or

• select Control → Enable Logging.

The logging of the selected elements is 
started.

When you select this command before start-
ing the experiment in the experiment environ-
ment, logging is initiated. Data will be logged 
only after the experiment is started.

With that, data logging starts immediately when the experiment is running.
The Trigger Condition option offers the possibility to define a condition for
the start of data logging. To do so, proceed as follows:

To define a trigger condition:

• In the data logger, activate the Trigger Condi-
tion option.

This option is only available when logging has 
stopped, and at least one element is listed in 
the "Logged Data" field.
Experimentation



• From the left combo box, select one of the 
logged variables (e.g., air_nominal in the 
example).

• From the combo box in the middle, select a 
comparison operator.

You can choose >= (greater or equal) or <= 
(smaller or equal).

• In the right field, enter a threshold value (e.g., 
380).

When you start the data logging now, the data logger postpones the actual
logging until the condition is fulfilled. The data logger headline shows the sta-
tus.

Once the condition is fulfilled, data logging starts, which is again shown in the
headline. Data logging continues until it is switched off, even if the condition
is no longer fulfilled.

To stop data logging:

• Click on the Disable Logging button 

or
Experimentation 607



608
• Select Control → Disable Logging.

Data Logging is stopped. The "Logging Infor-
mation" dialog box opens.

• Fill in the information fields as needed.

All information in this dialog is optional.

• Click the Save button to save the file,

or 

• click Discard to discard the data.

The data is stored in a log file at the end of each logging operation. This file is
named datalog<n>.dat by default, <n> being an integer number which is
incremented each time data is saved, provided Auto Increment DataLogger
File Name is activated in the ASCET options, "Datalogger" node (cf. page 58).
If the option is deactivated, the log file is overwritten at the next logging. The
log file is placed in the data directory of your ASCET installation, e.g., ETAS-
Data\Ascet5.2.

To change the log file:

You can change the default name and path of the log file.

• Click on the Change Filename button

or

• select Options → Change Filename.

The "File Selection" dialog window appears.
Experimentation



• Set the new path and filename.

• Click OK to adjust the log file.

The filename at the bottom of the data logger 
window changes and the data is now written 
to the new file.

When you set the respective option in the 
ASCET options window (cf. page 58), an inte-
ger number is added to the name you 
selected. This number is incremented each 
time data is saved.

To convert MDF data to FAMOS format:

• Select Extras → Convert MDF to FAMOS.

The file selection dialog box opens for the 
input file.

• Select the MDF file you want to convert.

The file selection dialog box opens for the 
FAMOS output file.

• Select a path- and filename for the FAMOS 
file.

The MDF input file is read, converted to 
FAMOS, and written to the selected output 
file.

6.1.10 Experimentation Environment Options

Block Diagram Navigation

If a component or project includes other components, it is possible to view
these components, without leaving the experimentation environment.

To navigate between block diagrams:

1. Navigate down

• Select the referenced component whose block 
diagram you want to view.

• Select Elements → Show Component

or
Experimentation 609



610
• click on the Navigate down to child com-
ponent button

or

• in the component display, double-click on the 
occurrence of an included component.

The selected component is shown in the 
experimentation environment.

2. Navigate up

• Select View → Show Parent Component

or

• click on the Navigate up to parent compo-
nent button

or

• double-click on an empty place in the compo-
nent display.

The parent component is displayed.

To switch between the diagrams of a component:

• Select the diagram you want to switch to in 
the "Diagrams" pane of the experimentation 
environment.

• Select Diagrams → Show Diagram.

The selected diagram is displayed.

Display Options

To change the block diagram display:

• Select View → Show Seq. Calls to have the 
sequence calls of the current block diagram 
displayed.

• By default the sequence calls are not shown.

Note

Upward and downward navigation by double-
click works only in block diagrams and state 
machines.
Experimentation



• Select View → Hide Seq. Calls to hide the 
sequence calls.

• Select View → Redraw to redraw the block 
diagram.

The four buttons above the Elements pane offer a variety of different views on
the elements of the component.

To change the element display:

• Click the Elements Hierarchical button to 
switch from a flat list display to the default 
hierarchical view of elements.

• Click the Elements Flat button to switch to a 
list display.

• Click the Exported button to have only 
exported elements (i.e. messages and global 
elements) displayed in the "Elements" pane.

• Click the Parameter Elements button to 
have only parameter elements displayed.

6.1.11 Data Manipulation

During an experiment, the values of the elements are usually changed, e.g. to
find the right parameter setting for a particular function. Once the right values
have been found, they can be saved in the current data set of the component.
For details see chapter "Data Sets" on page 466.

To read or write data from the current data set:

• Select the element whose value you want to 
write in the "Elements" pane.

• Select Elements → Write Back Data → 
Selected Elements or Calibrated Elements.

A list of variables is displayed. If the command 
Selected Elements has been chosen, all ele-
ments currently selected in the "Elements" 
pane are shown in the list. 
If Calibrated Elements has been chosen, all 
elements that have been calibrated in the 
course of the experiment are shown. At first, 
all variables are selected.
Experimentation 611



612
• Deselect the variables you do not want to 
write back and click OK.

The values of the selected elements are writ-
ten to the current data set of the component. 
The old values of that data set is overwritten. 
The current data set is the one that was 
selected when the experiment was started.

• Select Elements → Reinitialize → Variables 
or Parameters or Both to read the data from 
the current data set.

All variables and/or parameters are assigned 
the values from the current data set, the val-
ues in the experiment are overwritten. This 
command is not available while the experi-
ment is running.

You can also write the parameter values to external files, or read them from
external files.

To set up data exchange options:

• In the Component Manager, open the ASCET 
options window.

• In the "Data Exchange" node, adjust the 
options.

• Select Elements → Data Exchange 
Options.

The available options are described in section 
"Data Exchange Options" on page 65.

To write data to external files:

• In the "Elements" pane, select the parameters 
whose values you want to write to a file.

Note

When you are experimenting with the ES1135 simulation controller, you can 
also file out the data of non-volatile variables to an external file.
Experimentation



• Select Elements → Save Data.

The "Save DCM File" window opens.

• Set the required options.

• Click on OK.

The values of the selected parameters are writ-
ten to the specified file. If required, the write 
log file is displayed.

The "Save DCM File" window offers the following options:

• In the "Filename" field, enter path and name of the file either directly 
or via the Browse button. 

The file format is chosen according to the selection in the "Data 
Exchange" node of the ASCET options window (see page 65).

• Use the All and Selected only options to determine whether the data 
of all or selected elements are saved.

• Use the Non Volatile Variables and Parameters options to deter-
mine the element type(s) whose data will be saved.

• Use the Show Log File after save option to determine whether the 
log file is shown after the write process.

Note

The file name and at least one of the Non Volatile Variables and Parame-
ters options must be set explicitly. Otherwise, you cannot complete the pro-
cedure.
Experimentation 613



614
• Use the More Options button to open the ASCET options window in 
the "Data Exchange" node; the options are described in section "Data 
Exchange Options" on page 65.
Experimentation



To read data from external files:

• Select Elements → Load Data.

The "Load DCM File" window opens.

The optons are the same as in the "Save DCM 
File" window (cf. page 613). However, the All 
and Selected only options are irrelevant for 
reading data.

• Set the required options.

• Click on OK.

The values of the selected parameters are writ-
ten to the specified file. If required, the write 
log file is displayed.

6.2 Calibration Windows

You can use the calibration system to modify the values of the basic elements
of the components you are experimenting with. You can alter the values when
you set up the experiment, or while it is executing. It is also possible to assign
initial values to elements during specification; however, modified values take
priority over default settings in the calibration system.

If you assign a value to an element with the calibration system, this value
remains until it is changed by a calculation within the component or overwrit-
ten by a value from the data generator. The data editors are the same as the
ones used to specify components. They are described in the chapter "Editing
Data" on page 458.
Experimentation 615



616
When specifying a component, you can assign an initial value to each element
in your specification. All of these values—except constants—can be changed
at a later stage. You can specify different data sets, i.e. sets of initialization
values between which you can toggle, or you can change individual values
during experimentation. This section describes the different editors for the var-
ious kinds of elements.

Usually a data editor is first called from within the component development
environment, e.g. the block diagram editor, to assign a default value to an
element. Then the editor can be opened again from within the experimenta-
tion environment, to calibrate the value of the element in the course of an
experiment. Data editors can also be used to define data sets for components
or projects. Data editors always work the same, regardless of which part of
ASCET they were opened from.

How to open data editors from within the offline experimentation environ-
ment is described in section "The Calibration System" on page 584.

6.2.1 General Description of Menu Options

Not all menu functions are available in each editor.

• Edit:

– Undo Last Change (<CTRL> + <U>)
Undoes the last change.

– Redo Last Change d
Restores the last change.

– Copy (<CTRL> + <C>)
Copies a calibration variable into the clipboard.

– Paste (<CTRL> + <V>)
Pastes a calibration variable from the clipboard into the window.

– Copy Entire Data Into Clipboard 
The calibration variable (curve or map) active in the table editor is 
copied into the clipboard and can be inserted into other applica-
tions (e.g. Excel) from there and then processed further.

– Select All Values (<CTRL> + <A>)
Selects all values.

– Block Selection (<CTRL> + <B>)
Allows you to select several values on a curve.

Note

The Edit menu is not available in the 3D graphical editor.
Experimentation



– Decrement or Decrement Value (<CTRL> + <N>)
Decrease by the preset value.

– Increment or Increment Value (<CTRL> + <M>)
Increase by the preset value.

– Add Offset
Adds one or several values.

– Multiply By Factor
Multiplies by one or several values.

– Fill With Values
Replaces one or several values by another value.

– Decrement X Axis Point (<CTRL> + <J>)
Shifts x axis point to the left.

– Decrement Arg (<CTRL> + <J>)
Shifts axis point in 2D graphical editor to the left.

– Increment X Axis Point (<CTRL> + <K>)
Shifts x axis point to the right.

– Increment Arg (<CTRL> + <K>)
Shifts axis point in 2D graphical editor to the left..

– Add X Axis Point
Adds x axis point.

– Remove X Axis Point
Removes the x axis point.

– File In Data
Reads the data for an array or a table from a file 

– File Out Data 
Writes the data from an array or a table to a file.

• Axis:

– X Supporting Points Setup
Assigns values with a constant distance to the x supporting points.

– Decrement X Axis Point (<CTRL> + <J>)
Decreases x axis point.

– Increment X Axis Point (<CTRL> + <K>)
Increases the x axis point.

Note

The Axis menu is only available when characteristic lines or maps are 
edited in the table editor.
Experimentation 617



618
– Edit X Axis Point (<CTRL> + <X>)
Assigns a specific value to the x axis point.

– Add X Axis Point
Adds x axis point.

– Remove X Axis Point
Removes the x axis point.

– Y Supporting Points Setup..
Assigns values with a constant distance to the y supporting points.

– Decrement Y Axis Point (<CTRL> + <R>)
Decreases y axis point.

– Increment Y Axis Point (<CTRL> + <T>)
Increases the y axis point.

– Edit Y Axis Point (<CTRL> + <Y>)
Assigns a specific value to the y axis point.

– Add Y Axis Point
Adds y axis point.

– Remove Y Axis Point
Removes the y axis point.

• View:

– Larger font
Displays the calibrated value in a larger font size. If the command is 
reselected, the value returns to the original size.

– Display unit
Shows/hides the size unit. 

– Reset Change Marks
Resets change marks.

– Show Process Point 
Marks working point. 

– Set Editor on Process Point (<CTRL> + <W>)
Scrolls to working point.

– Grid 
Shows/hides display grid. 

– xz-Viewpoint 
xz representation.

– yz-Viewpoint
yz representation.
Experimentation



– Show Key Help
Shows the most important keyboard commands in the bottom line 
of the window.

• Extras:

– Change Title
Changes the name of the measurement window highlighted.

– Optimize Size
Optimizes the size of the dialog window.

– Display Setup (<CTRL> + <S>)
Displays the setup window (the "Setup" dialog box depends on the 
editor type selected).

– Colors
Changes the color settings for the 1D graphical editor:
Black & white → monochrome display,
Default colors → default colors,
Invert colors → inverts the current colors.

– Physical Representation (<CTRL> + <P>)
Represents the calibration variable(s) currently highlighted as a 
physical value.

– Hexadec. representation (<CTRL> + <H>)
Represents the calibration variable(s) currently highlighted in hexa-
decimal format.

– Decimal Representation (<CTRL> + <Z>)
Represents the calibration variable(s) currently highlighted in deci-
mal format.

– Binary Representation (<CTRL> + <R>)
Represents the calibration variable(s) currently highlighted in binary 
format.

– Move Variable Into Window
Moves the calibration variable highlighted to another data editor 
Each variable can only be in one data editor at a time.

– Remove Variable
Removes the calibration variable highlighted from the data editor. 

– About Variable (<CTRL> + <I>)
Displays a window containing information on the calibration vari-
able highlighted.
Experimentation 619



620
– Move (only when a window contains several calibration variables)
Up → Moves the calibration variable highlighted up one position.
Down → Moves the calibration variable highlighted down one 
position.

6.2.2 Data Editors for Calibration Variables

Calibration is carried out directly in the display; this applies to all editors. In the
numerical editors and table editors, calibration is carried out by changing the
numeric values. Characteristic lines and maps can also be changed graphically
by intuitively moving the break points.

When you have carried out a calibration, a red arrow is displayed next to the
calibrated value. This indicates that the value of the corresponding calibration
variable has been increased or decreased. This applies to all modified values,
regardless of which editor you use.

6.2.3 Working with Calibration Windows

Every calibration window can display different variables; it is possible to move
the variables between windows. When moving variables, each variable is
deleted from one window and added to another. Each variable can only
appear in one editor.

To move variables between calibration windows:

• Select one or more variables you want to 
move in a calibration window.

• Select Extras → Move Variable Into 
Window.

The "Move variable" dialog box opens. It con-
tains a list of all calibration windows corre-
sponding to the data type.
Experimentation



• Select the window to which you want to move 
the marked variables.

• Click OK.

The marked variables are moved to the 
selected window (new or existing) and 
removed from the original window. If the old 
window is empty after this action, it is closed.

To remove variables from a calibration window:

To remove variables from a calibration window, proceed as follows:

• Select one or more variables you want to 
remove by clicking on the relevant field.

• Select Extras → Remove Variable.

The marked variables are removed from the 
window. If the window is empty after this 
action, it is closed. 

To change the title of a calibration window:

To change the title of a calibration window, proceed as follows:

• Select Extras → Change Title in the calibra-
tion window whose title you want to change.

• Enter the new title in the input window.

• Click OK.

The new title appears in the header of the cal-
ibration window.

To display information about variables:

To display information about one or more variables, proceed as follows:

• In a calibration window, select one or more 
variables.

• In the same window, select Extras → About 
Variable

or
Experimentation 621



622
• press <CTRL> + <I>.

An "Information" window displaying infor-
mation about the respective variable opens for 
each selected variable. 

• Click OK to close the "Information" window.

The different calibration windows are described in the following sections.

The Numerical Editor

To set up a numerical editor:

• Select Extras → Physical Representation 

or

• press <CTRL> + <P> to view the values as phys-
ical quantities.

• Select Extras → Hexadec. Representation 

or

• press <CTRL> + <H> to view the values in hexa-
decimal format.

• Select Extras → Binary Representation 

or
Experimentation



• press <CTRL> + <R> to view the values in 
binary format.

• Select Extras → Decimal Representation 

or

• press <CTRL> + <Z> to view the values in 
whole numbers.

• Select Extras → Display Setup 

or

• press <CTRL> + <S> .

The "Display setup" dialog box appears.

• Adjust the number of decimal places.

This determines the number of decimal places 
with which the value is displayed.

• Adjust the value in the "INC/DEC Step" field.

This value determines the step size for incre-
mentation or decrementation.

• Click OK.

To edit a numeric value:

• Click inside the numerical display in the win-
dow.

• Edit the value and press <ENTER> to confirm 
your changes.

Alternatively, you can adjust the value with the 
arrow keys displayed on the right of the value. 
This increments or decrements the value by 
the step size specified on setup. The new 
value is displayed immediately.
Experimentation 623



624
• Select Edit → Undo Last Change

or

• press <CTRL> + <U> to revert to the value 
before the last change. 

• Select Edit → Redo Last Change

or

• press <CTRL> + <D> to reverse the undo oper-
ation.

To edit several numerical values:

When several variables are contained in the same numerical editor window,
you can change them together.

• Select one or more variables you want to 
change.

• Select Edit → Increment

or

• press <CTRL> + <M> to increment all the high-
lighted values by the step size specified on 
setup. 

• Select Edit → Decrement

or

• press <CTRL> + <N> to decrement all the high-
lighted values by the step size specified on 
setup. 

Note

The last 10 changes of each variable are stored.
Experimentation



• Select Edit → Add Offset to add a number to 
all the highlighted values.

You are first prompted for an offset value, 
then that value is added to the value in the 
display.

• Select Edit → Multiply By Factor to multiply 
all the highlighted values with a factor.

You are first prompted for a factor, then the 
multiplication is performed with that factor.

• Select Edit → Fill With Values to overwrite 
all the highlighted values.

You are first prompted for a constant, which 
then replaces the value. 

It is possible to exchange data with other applications via the Windows clip-
board. These may be other calibration windows, but also other programs, like
spreadsheets or databases.

To exchange data with other applications:

• Highlight the values you want to copy to the 
clipboard.

• Select Edit → Copy

or

Note

When you selected more than one value, you 
cannot undo the changes collectively.

Note

Even though a numerical editor can contain sev-
eral variables, you can only copy one variable at 
once.
Experimentation 625



626
• press <CTRL> + <C> to copy all the values 
selected to the clipboard.

• To paste the data to another variable in a 
numerical editor, highlight that variable.

• To paste the data to a cell of a table, highlight 
the cell to which you want to paste it.

• Select Edit → Paste

or

• press <CTRL> + <V>.

The data is pasted from the clipboard to the 
selected variable or cell, respectively.

• You can also paste the data into any other 
application. 

The Logical Editor

The menu functions correspond to the numerical editor menu functions of the
same name.

To edit a logical value:

• Tick the option box to set the value to True.

• Untick the option box to set the value to 
false.

Note

Even if you select several cells, the value is cop-
ied only to the first one.
Experimentation



The Enumeration Editor

The menu functions correspond to the numerical editor menu functions of the
same name.

To edit an enumeration:

The combo box contains all available enumer-
ators.

• Select an enumerator from the combo box.

The Array Editor

You can have several arrays open at the same time in a single table editor
window while experimenting with a component. In this case the tables cur-
rently open are shown in the "v:" combo box, and you can switch between
them by selecting them from there. It is also possible to open tables of different
kinds, e.g. arrays and 1-D tables, in the same editor window.

To set up the array editor:

• Select Extras → Display Setup

or

Note

Two dimensional arrays are also available in the form of matrixes.
Experimentation 627



628
• press <CTRL> + <S>.

The "Display Setup" dialog box appears.

• Adjust the number of decimal places with 
which numbers are displayed in the array edi-
tor.

• Adjust the increment and decrement step size.

• Adjust the column width of the array editor.

• Click OK to close the "Display Setup numeric" 
dialog box.

To edit a single output value:

• Click on the value you want to edit.

The value is highlighted for in-place editing.

• Enter the new value in the table cell.

• Press <ENTER>.

The changed value is accepted and marked 
with an arrow.

• Select Edit → Undo Last Change to undo 
the last change. 

• Select Edit → Redo Last Change to reverse 
the undo operation. 

• Select View → Reset Change Marks to hide 
the arrows.

To edit several output values:

• Highlight the output value on the z axis you 
want to edit by moving the cursor over the 
value. 
Experimentation



• Select Edit → Select All Values

or

• press <CTRL> + <A> to highlight all output val-
ues on the z axis.

• Select Edit → Increment

or

• press <CTRL> + <M> to increment all the val-
ues by the preset step size.

• Select Edit → Decrement

or

• press <CTRL> + <N> to decrement all the val-
ues by the preset stepsize.

• Select Edit → Add Offset to add a number to 
all the values highlighted.

When you choose this command, you are first 
prompted for a value which is then added to 
all the output values highlighted.

• Select Edit → Multiply By Factor to multiply 
all the values highlighted with a factor.

When you choose this command, you are first 
prompted for a factor which is then used to 
perform the multiplication.

• Select Edit → Fill With Value to overwrite all 
the values highlighted. 

When you choose this command, you are first 
prompted for a constant which then replaces 
all the output values highlighted.
Experimentation 629



630
To change the display:

• Select View → Show Key Help to display the 
keyboard shortcuts for the array editor at the 
bottom of the window.

• Select Extras → Optimize Size to adjust the 
window size automatically when toggling 
between tables.

This command is activated by default.

It is possible to exchange data with other applications via the Windows clip-
board. These may be other array or table editor windows, but also other pro-
grams, like spreadsheets or databases.

To exchange data with other applications:

• Highlight the values you want to copy to the 
clipboard.

Or

• Select Edit → Select All Values to highlight 
all the values.

• Select Edit → Copy to copy the selected val-
ues to the clipboard.

• Select Edit → Copy Entire Data Into Clip-
board to copy all the data in the array to the 
clipboard.

Note

For tables, only the actual data values are cop-
ied, not the sample points.
Experimentation



• If you want to paste the data into another 
table or array editor, highlight the range of 
cells to which you want to paste (there must 
be the appropriate number of cells in the 
table).

• Select Edit → Paste.

The data is pasted from the clipboard to the 
selected cells, respectively.

You can also paste the data into any other application. The data is stored in
tab-delimited format in the standard Windows clipboard.

The 1-D Table Editor

Several tables can be edited in the same table editor window, e.g. when you
have selected several tables for calibration in the experimentation environ-
ment. In this case, all the available tables are shown in the "v:" combo box,
and you can switch between them by selecting them from the said combo box.

The 1-D table editor works in the same way as the array editor. The only differ-
ence between the editors is that in the table editor the values on both axes can
be edited. This section describes the differences between the two editors only;
please refer to the previous section for all other information.

To set up the table editor:

• You can set up the table editor the same way 
as the array editor; see "To set up the array 
editor:" on page 627.

To use the sample point display:

With curve and map editors, you can display the sample point during a mea-
surement.
Experimentation 631



632
• Select View → Show Process Point to acti-
vate the sample point display.

The sample points enclosing the current value 
will be highlighted in the table (red border) 
during the next measurement.

• Select View → Set Editor on Process Point 

or

• press <CTRL> + <W> to edit the sample pint 
next to the current value.

To edit existing sample points:

• Click on the sample point you want to 
change.

A prompt box appears containing the current 
x value of the sample point.

• Enter the new value.

The value has to be in between those of the 
previous and following sample points. If it is 
not, the change will not take effect.

• Click OK.

When you have changed a value, a red arrow 
appears to the left of it.

• Select Axis → Increment X Axis Point

or

• press <CTRL< + <K> to increment the value of 
the axis point selected.

• Select Axis → Decrement X Axis Point

or

• press <CTRL< + <J> to decrement the value of 
the axis point selected. 

• Select View → Reset Change Marks to hide 
the arrows.

• Select Edit → Undo Last Change to reverse 
your most recent action.

• Select Edit → Redo Last Change to cancel 
the undo operation.
Experimentation



To edit all sample points simultaneously:

• Select Axis → X Supporting Points Setup.

The "X Supporting Points Setup" dialog box 
opens.

• Enter an offset and a distance into the relevant 
fields.

• Click OK to confirm your changes.

The x axis points of the entire table are set up 
as specified. The first point gets the value 
specified as the offset, all other values are 
incremented by what is specified as the dis-
tance.

To insert new sample points:

• Select Axis → Add X Axis Point to insert a 
new sample point.

A prompt box appears.

• Enter the x value for the sample point.

The new sample point will be inserted in the 
correct position within the table. It assumes 
the value of the sample point to its left.

• Click OK.

• Select Axis → Remove X Axis Point to 
remove the selected axis point.

Note

If the table has already reached its maximum 
size, you cannot add any more sample points. 
Experimentation 633



634
To edit a single output value:

• Click on the value you want to edit.

The value is highlighted for in-place editing.

• Enter the new value in the table cell.

• Press <ENTER>.

To edit several output values:

• Highlight the values you want to edit by mov-
ing the cursor over the value. 

Or

• Select Edit → Select All Values to highlight 
all the output values on the z axis. 

• Select Edit → Increment

or

• press <CTRL< + <M> to increment all the val-
ues highlighted. 

• Select Edit → Decrement

or

• press <CTRL< + <N> to decrement all the val-
ues highlighted. 

• Select Edit → Add Offset to add a number to 
all the values highlighted. 

When you choose this command, you are first 
prompted for an offset value which is then 
added to all the output values highlighted.

• Select Edit → Multiply By Factor to multiply 
all the values highlighted with a factor.

When you choose this command, you are first 
prompted for a factor which is then used to 
perform the multiplication.

• Select Edit → Fill With Values to overwrite 
all the values highlighted. 

When you choose this command, you are first 
prompted for a constant which then replaces 
all the output values highlighted. 
Experimentation



To change the display:

• Select View → Show Key Help to view the 
keyboard shortcuts for the 1-D table editor at 
the bottom of the window.

• Select Extras → Optimize Size to adjust the 
window size automatically when toggling 
between tables.

This command is activated by default.

The 2-D Table Editor

The 2-D table editor works in the same way as the 1-D version described in the
previous section. The only difference is that there are two dimensions of sam-
ple points instead of just one.

Editing the sample points and output values is the same as described in the
previous section; the difference is that in the Axis menu there are separate
commands for the x and y axis sample points. The 2-D Table also contains pairs
of input boxes for the x and y values respectively.
Experimentation 635



636
Fixed and group tables are also available as 2-D tables and work in the same
way as their 1-D equivalents.

1-D Graphical Editor

Characteristic lines and maps can also be graphically displayed and edited. This
section explains how to view and edit a 1-D table graphically.

Not all the graphical editor commands are dealt with here. The commands that
are not explained here are identical to those in the 1-D table editor. The graph-
ical editor is only available in the experimentation environment.

To launch the 1-D graphical editor:

• In the offline experimentation environment, 
right-click on the table you want to edit, and 
select Calibrate from the context menu.

A prompter is displayed with a list of all the 
editors available for the table selected.

• Select the Graphical Curve Editor 
entry.

• Click OK to open the editor.

The graphical editor shows the x axis points as 
small squares connected by a red line.
Experimentation



To edit a table in the 1-D graphical editor:

• Click on the square representing the x axis 
point you want to edit.

• Drag the square up or down to change the 
value.

The current value for the x axis point are dis-
played in the title bar of the editor window.

• To change the value of the point on the x axis, 
move the vertical line cursor for the x-axis 
point selected.

The x axis value is adjusted accordingly. You 
can move the cursor up to one of the neigh-
boring sample points.

Or

• Select Edit → Decrement X Axis Point to 
decrement the selected x axis point. 

Or

• Select Edit → Increment X Axis Point to 
increment the selected x axis point. 

• Select Edit → Block Selection

or
Experimentation 637



638
• press <CTRL> + <B> to adjust more than one 
sample point. 

You can drag the mouse cursor around multi-
ple sample points to select them. You can 
change the values of all these points together 
by moving them with the mouse.
Adjusting multiple values only works along 
the z axis.

• Select Edit → Block Selection again to adjust 
one sample point only. 

To add or remove sample points:

• Select Edit → Remove X Axis Point to 
remove the axis point selected.

• Select Edit → Add X Axis Point to insert a 
new x axis point.

A prompt box appears.

• Enter the x value for the sample point.

• Click OK.

The new sample point will be inserted in the 
correct position within the graphic. It assumes 
the value of the sample point to its left.

To change the graphical table editor display:

• Select View → Grid to hide the grid in the 
graphical display. 

This is a toggling menu choice, so you can 
choose it again to show the grid.

• Select Extras → Colors → Black & white to 
switch to monochrome display on the editor. 

• Select Extras → Colors → Default colors to 
switch back to the default colors. 

Note

If the table has already reached its maximum 
size, you cannot add any more sample points. 
Experimentation



• Select Extras → Colors → Invert colors to 
invert the current colors. 

To set up the 1-D graphical editor:

• Select Extras → Display Setup to open the 
"Display setup" dialog box.

• In the "Value axis" and "X-axis" fields, adjust 
the upper and lower limits of the value and 
the x axis.

• In the "Line color" field, select a color for the 
characteristic line.

• In the "Background color" field, select a back-
ground color.

• In the "INC/DEC Step" field, adjust the incre-
ment and decrement step size.

• Activate the Grid option if you want to display 
a grid.

• Click OK to confirm your changes.

Note

The colors used for the coordinate system and 
the labeling cannot be changed. The represen-
tation is usually in black, or if you select Black & 
White or Invert colors, in white.
Experimentation 639



640
The 2-D Graphical Editor

With the 2-D graphical editor it is possible to edit 2-D tables graphically. This
editor is similar to the 1-D graphical editor; it presents the 2-D table as a col-
lection of 1-D tables that can be edited individually.

To start the 2-D graphical editor:

• In the offline experimentation environment, 
right-click on the table you want to edit and 
select Calibrate from the context menu.

A prompter is displayed with a list of editors 
available for the table selected.

• Select the Graphical 2D Map Editor 
entry from the list.

• Click OK to open the editor.

To edit a table in the 2-D graphical editor:

• Select the line you want to edit by clicking on 
it. 

The selected line displays a rectangle for each 
sample point. 
Experimentation



• Drag the sample point values for the selected 
line as in the 1-D graphical editor (see 
page 636).

Here, the menu functions for incrementing/
decrementing the sample points are named 
Edit → Increment Arg or Edit → Decre-
ment Arg, respectively. According to the 
selected perspective (cf. page 641), they affect 
either the x or y axis.

• Switch to the previous or next line by pressing 
<CURSOR UP> or <CURSOR DOWN> or click to select 
another line.

The menu functions for adding or removing sample points are not available in
the 2-D graphical editor.

To toggle the perspective of the 2-D editor:

• Select View → yz-Viewpoint to swap the 
axes and the view the table from a different 
perspective.

• Select View → xz-Viewpoint to revert to the 
default perspective. 
Experimentation 641



642
To change the 2-D editor display:

• Select Extras → Display Setup to open the 
"Display setup" dialog box.

• Adjust the ranges of the value axis and the x 
axis in the respective boxes.

• Check the line visibility option you want.

If you enter 1, only the line currently selected 
is shown. However, you can still switch 
between lines with <CURSOR UP> and <CURSOR 
DOWN>.

• Uncheck the Grid option, if you do not want 
the grid to be shown.

• Adjust the increment and decrement step size.

• Click OK to confirm your changes.
Experimentation



The 3-D Graphical Editor

The 3-D table graphical editor shows a 2-D table as a three-dimensional graph.
It is possible to rotate the graph in all directions and to measure and edit the
values contained in the graph. The 3-D graphical editor is only available in the
experimentation environment.

To start the 3-D graphical editor:

• In the offline experimentation environment, 
right-click on the table you want to edit and 
select Calibrate from the context menu.

A prompter is displayed with a list of editors 
available for the table selected.

• Select the Graphical 3D Map Editor 
entry from the list:

• Click OK to open the editor.

The graphical 3-D editor opens. The numerical 
table view is invisible while the graphical view 
is active.
Experimentation 643



644
The input area is displayed below the graphical representation. If the Select
Access Point option is enabled, the values of the net point currently high-
lighted are displayed and can be calibrated by entering different values. 

To highlight the net points in the 3-D Editor:

• Select the Select Access Point option located 
above the list.

or

• press the <S> key. 

A cross consisting of four arrows is displayed 
to the right of the list.

Also, one net point is already highlighted: The 
point closest to the origin of the 3D coordi-
nate system is highlighted by means of white 
connecting lines to its neighboring points.

• Now click on the direction arrows to move the 
highlight up and down or to the left and right

or

• use the ← ↑ ↓ →  cursor keys.

The x axis and y axis sample points, together 
with the corresponding output value, are 
shown in the "Value" column of the table. 
The table also shows the ranges of all three 
axes.

• Highlight the net point you want o edit.

• Enter the new values for X, Y and Z in the 
"value" column. 

Note

For group and fixed characteristic maps, only 
the z axis values can be changed.
Experimentation



• Click on the square in the center of the arrows

or

• press the <0> (zero) key to reset the highlight 
to its original state. 

To highlight points in an awkward position, you may have to rotate the coor-
dinate system.

To rotate the coordination system:

• Select the Rotate option located above the 
list

or

• press the <R> key. 

• Click on one of the arrows in the rotation con-
trol at the bottom right of the 3-D graphical 
editor window.

You can rotate the display horizontally or ver-
tically in either direction.

• Click the 0 button to revert to the original 
viewing angle.
Experimentation 645



646
• Click and hold down an arrow button to 
rotate the graph more quickly.

The coordinate system is reduced to allow for 
faster rotation. 

6.2.4 Calibrating Sample Points in the Table Editor

Apart from the calibration commands described above for the Edit menu, the
table editor offers additional commands for editing the sample points on the x
axis and the y axis (Axis menu). 

When you edit sample point values, the value you entered is checked for the
required monotony. When the monotony is not kept, a dialog box will appear
to inform you about this problem.
Experimentation



The sample point values of characteristic lines or maps can be edited in the x
and y (y only for maps) table cells using the table editor. You cannot modify
several sample points simultaneously, however. The corresponding commands
are not available for arrays and matrices, even if these are displayed in the
same editor window as characteristic lines/maps.

To calibrate sample points in the table editor:

The procedure described below applies both to characteristic lines and maps.
For lines, however, the Axis menu contains only the commands for customiz-
ing the x axis. 

• Using the mouse, directly click on the x axis 
value that you want to edit

or

• press <CTRL> + <X>

or

• select Axis → Edit X Axis Point.

The following dialog box appears:

• Enter the value you want. 

• Confirm with OK

or

• click on Cancel to cancel the operation.

• If you want to decrease the value by the preset 
amount:

– Select Axis → Decrement X Axis Point

or

– press <CTRL> + <J>.

• If you want to increase the value by the preset 
amount:
Experimentation 647



648
– Select Axis → Increment X Axis Point

or

– press <CTRL> + <K>.

• If you want to remove the sample point you 
selected, select Axis → Remove X Axis 
Point.

• If you want to add a sample point, select 
Axis → Add X Axis Point.

The procedure for editing the sample points on the y axis (maps only) is identi-
cal. Just use the corresponding commands for the y axis.

The sample points of fixed or group characteristic lines and maps, or distribu-
tions, cannot be edited. The Axis menu is deactivated (group/fixed character-
istic lines/maps) or not present (distributions).

6.3 Measurement Windows

You select the appropriate measurement window as well as the appropriate
display and measurement options depending on which measurement variables
are to be used. The measurement windows can display measurements of the
values for any element during an experiment in ASCET. A measurement chan-
nel is created for each element measured, and it is also possible to create sev-
eral measurement channels for one element, e.g. if it is to be displayed in two
different measurement windows. It is also possible to display measurement
data without saving it, to display it and simultaneously start and stop recording
or to record data without previously displaying it.

Note that offline experimentation is not real-time, whereas online experimen-
tation always is.

6.3.1 Selecting Measurement Windows

In the experimentation environments, you have the choice of a number of
measurement windows. The following measurement windows can be
selected, sorted into experimentation environments. 

• Oscilloscope

• Numerical display

• Vertical bar display

• Horizontal bar display

• Bit display

• Recorder
Experimentation



Section "The Measurement System" on page 581 describes how to open a
measurement window. 

6.3.2 General Description of Menu Options

The entries presented change depending on the window selected and on the
experimentation environment.

• Extras:

– Change title
Changes the name of the measurement window highlighted.

– Message when out of bounds
Informs the user when a measurement value is above or below the 
measurement limit defined. 

– Setup (<CTRL> + <S>)
Opens the setup window.

– Colors
Changes the color setting for the entire measurement window.
Black & white – switches to monochrome display.
Default colors – switches back to the default colors.
Invert colors  - inverts the current colors.

– Physical representation (<CTRL> + <P>)
Represents the measurement variable(s) currently highlighted as a 
physical value.

– Hexadec. representation (<CTRL> + <H>)
Represents the measurement variable(s) currently highlighted in 
hexadecimal format.

– Decimal representation (<CTRL> + <Z>)
Represents the measurement variable(s) highlighted in decimal for-
mat.

– Binary representation (<CTRL> + <R>)
Represents the measurement variables(s) in binary format.

– Copy variable to window
Copies the measurement variable highlighted to another measure-
ment window.

– Move variable to window
Moves the measurement variable highlighted to another measure-
ment window.

– Remove variable
Removes the measurement variable highlighted from the measure 
window.
Experimentation 649



650
– Change measure rate
Changes the sample rate (depends on the hardware configuration).

– About Variable (<CTRL> + <I>)
Displays a window containing information on the measurement 
variable highlighted.

– Attributes
Copy → copies the representation options for the measurement 
variable highlighted.
Paste - assigns a representation option to the measurement vari-
able highlighted. (Only possible if Copy performed previously.)

– Move (only available with several measurement variables contained 
in one window)
Up → Moves the measurement variable highlighted up one posi-
tion.
Down → Moves the measurement variable highlighted down one 
position.
Left → Moves the measurement variable highlighted one position 
to the left (in the vertical bar display).
Right → Moves the measurement variable highlighted one position 
to the right (in the vertical bar display).

• File:

– Print
Opens a dialog box for printing the oscilloscope or recorder win-
dow contents.

– Copy To Clipboard
Copies the oscilloscope or recorder window contents to the clip-
board (screenshot) from which they can be pasted into any applica-
tion.

– Save Selected Channels
Saves the measurement channel selected.
MDF → Saves the measurement channel in MDF format.
FAMOS → Saves the measurement channel in FAMOS format.

– Save All Channels
Saves all the measurement channels.
MDF → Saves all the measurement channels in MDF format.
FAMOS → Saves all the measurement channels in FAMOS format.

• Edit:

– Define trigger
Allows a trigger condition to be defined (only affects the display).
Experimentation



– Activate trigger
Activates or deactivates the trigger.

– Trigger manually
Sets off the trigger signal manually.

– Autoscale (<CTRL> + <A>)
Adjusts the y axis scaling to a highlighted measuring channel.

– Autoscale all channels
Adjusts the y axis scaling to all measuring channels.

– Undo last scaling (<CTRL> + <U>)
Undoes the last scaling command.

– Autodistribution
Distributes the channels highlighted to separate display areas.

– Analyze measure data (<CTRL> + <V>)
Switches to analysis mode.

– Analysis setup
Defines preferences for analysis mode (active only in analysis 
mode).

– Analyze next point
Moves the measuring cursor to the next measurement point (active 
only in analysis mode).

– Analyze previous point
Moves the measuring cursor to the previous measurement point 
(active only in analysis mode).

• View:

– Show selected channel
Shows/hides the measuring channel(s) highlighted.

– Grid
Allows you to define a background grid. The available options are 
"none", "dynamic" or "fixed" grid.

– Show measure channel lists 
Shows/hides the list containing the measuring channels.

– Min/Max
Shows/hides the Min./Max. display in the measuring channel list.

– Rate
Shows/hides the sample rate in the measuring channel list.
Experimentation 651



652
– Value at active cursor
Toggles on/off the display of the measuring channel values at the 
active cursor position in the measuring channel list (only in analysis 
mode).

– Differences between cursors
Toggles on/off the display of the difference between the two cursor 
positions for the measurement variables in the measuring channel 
list (only in analysis mode).

– Show key help
Show/hides the most important keyboard commands in the footer.

– Show Setup
Shows/hides setting options in the footer.

– Larger font
Switches the display to a large font size.

6.3.3 Working with Measurement Windows

Every measurement window can display the data from several measurement
channels, and it is possible to copy and move measurement channels between
windows. If a channel is moved, it is deleted from one window and added to
another. If a channel is copied, a new measurement channel for the same ele-
ment is created in a new window.

To copy channels between measurement windows:

• Select the channel or channels you want to 
copy by clicking on the relevant pane of the 
measurement window.

• Select Extras → Copy variable to window.

The "Copy variable" dialog box opens. It con-
tains a list of the available measurement win-
dows.
Experimentation



• Select the window you want to copy the vari-
able to.

• Click OK.

If you select a new window, it is opened with 
the copied channels. Otherwise, the channels 
are copied to the existing window.

To move channels between measurement windows:

• Select the channel or channels you want to 
move.

• Select Extras → Move variable to window.

The "Move variable" dialog box opens. It con-
tains a list of the available measurement win-
dows.

• Select the window you want to copy the vari-
able to.

• Click OK.

The selected channels are moved into the 
selected window (either new or existing) and 
deleted from the old one. If the old window 
becomes empty, it is closed.

To delete channels from measurement windows:

To delete channels from a measurement window, proceed as follows.

• Select the channel or channels you want to 
move.

• Select Extras → Remove variable 

or

• press <Del> (oscilloscope/recorder only).

The selected channels are removed from the 
window. If the old window becomes empty, it 
is closed.

Settings from one measurement window can be copied to another one, to
facilitate setting up complex experiments. Only the settings applicable to a par-
ticular measurement window are copied, and you can choose which ones to
copy.
Experimentation 653



654
To exchange attributes between measurement windows:

• In the measurement window from which you 
want to copy the settings, select Extras → 
Attributes → Copy. 

• In the measurement window to which you 
want to copy the settings, select Extras → 
Attributes → Paste.

The "Filter Attributes Dialog" dialog box 
opens. It lists all the attributes applicable to 
the new measurement window, together with 
the settings they had in the old one.

• In the "Values" column, click on the value of 
an attribute.

The field becomes a combo box.

• From the combo box, select Yes to select the 
attribute.

• From the combo box, select No to deselect the 
attribute.

If you select No, that attribute is not applied to 
the new measurement window.

• Click OK.

The attributes selected are copied to the new 
measurement window.
Experimentation



To change the display of a measurement window:

The menu functions described below are used to change the measurement
windows display.

• In a measurement window, select oone or 
more channels whose display you want to 
change.

• Select Extras → Physical representation if 
you want to view the physical values. 

• Select Extras → Hexadec. representation if 
you want a hexadecimal representation of the 
measurement values. 

This option is useful for experiments with fixed 
point code.

• Select Extras → Change title to change the 
title in the title line. 

• Select Extras → About variable to open a 
dialog window with information about the 
element.

• Select Extras → Message when out of 
bounds to display a message window each 
time a measured value falls outside the moni-
toring limits set up for the channel. 

This command is not available in the oscillo-
scope or recorder.

To change a measurement window title:

To change the title of a measurement window, proceed as follows:

• In the measurement window whose title you 
want to change, select Extras → Change 
Title.

• Enter the new title in the input window.

Note

The following two menu items are only avail-
able in the numerical display.
Experimentation 655



656
• Click OK.

The new title appears in the header of the 
measurement window.

To display information about variables:

To display information about one or more channels, proceed as follows:

• In a measurement window, select one or more 
channels.

• In the same window, select Extras → About 
Variable

or

• press <CTRL> + <I>.

• An "Information" window displaying infor-
mation about the respective variable opens for 
each selected channel. 

• Click OK to close the "Information" window.

6.3.4 The Different Measurement Windows

Numerical Display

The numerical display shows the values of the measurement channels it is
launched for, in either decimal, binary or hexadecimal representation.

To set up a numerical display:

• Select the numerical display you want to set 
up by clicking on it. 

You can select more than one representation 
within the same window by clicking on the 
selection and holding down the <CTRL> key.
Experimentation



• Select Extras → Setup.

The following dialog box appears.

• In the "Value Decimals" field, enter the num-
ber of decimal places with which the mea-
sured value is displayed.

• The fields under "Monitoring bounds" allow 
you to define one or two monitoring limits. 

• Clock OK to close the setup window.

When a value falls below or exceeds the mon-
itoring limits, a red warning lamp lights up in 
the title bar. In addition to this, a blue square 
to the left of the display indicates that the 
value fell below the lower limit, and a red 
square indicates that the value exceeded the 
upper limit.
In addition, a message window opens that 
closes automatically once the measurement 
value falls again between the limits.

To change the display options for a numerical display:

• Select Extras → <Format> representation 
to view the measurement values as described 
on page 655. 
Experimentation 657



658
• Select Extras → Move → Up or Down to 
move the measurement channel selected in 
the numerical display window up or down. 

This command is only available if there is more 
than one channel in the window.

• In the offline experimentation environment, 
select View → Larger font to view the mea-
surement in a larger font size.

Oscilloscope

The oscilloscope provides a set of highly flexible display options, which are sim-
ilar to those of a real oscilloscope. It is often a good idea to open several oscil-
loscope windows at the same time, as too many channels can clutter up the
display.

When you use the oscilloscope, you usually start by setting up the display
options, i.e. define the way the various values are shown in the window. Dur-
ing the experiment you can perform various operations on the data displayed,
e.g. store it, analyze it, define triggers etc.

The "Signals" pane shows the curves for the numerical values being measured.
Underneath is the "Bit Channels" display area which shows the logical values
being measured. To the right of the "Signals" pane is the "Measure Channels"
field, where the names of the channels are displayed, together with various
user-definable pieces of information about them. The following illustration
shows the oscilloscope in the offline experiment environment.
Experimentation



Changing the Oscilloscope Display:

The following options affect the measurement channels selected. You can
select one channel, all channels or any combination of channels. The options
can be set both before and during a measurement.

To set up measurement channels:

• In the "Measure Channels" pane, select the 
channels you want to set up.

You can select more than one channel by 
clicking on them and holding down the 
<CTRL> key.

• Select Extras → Setup

or

• double-click on the channel you want

or

• press the <S> key.

The "Display setup " dialog box opens.

Note

Bit channels cannot be set up.
Experimentation 659



660
• In the "from" and "to" fields, adjust the lower 
and upper limits.

The values you enter here form the upper and 
lower limits of the y axis in the oscilloscope 
display. The default range is 0–100.

• In the "Line Color" field, select a color for the 
channel. 

The channel you selected is now displayed in 
that color. You can display several values with 
the same color, but that may make the display 
less clear. By default, every value is assigned a 
different color.

• From the "Display type" combo box, select 
the line style.

If you select steps, a step is drawn between 
each two measurement values, if you select 
line, they are connected by a straight line.

• Click OK to accept the settings.

The "Display Setup" dialog box contains some options that do not affect indi-
vidual channels, but are applied to the entire oscilloscope window.

To set up the oscilloscope window:

• Open the "Display Setup" dialog box as 
described above.

• Adjust the value in the "Time Axis" box.

The value you enter here determines the time 
slot that is displayed by the oscilloscope, e.g. if 
you set the value to 1, the oscilloscope will 

Note

This option os available only when you selected 
a single channel in the "Measure channels" 
pane.
Experimentation



show the output of one second, if you set it to 
0.5 of half a second etc. The default value is 1 
second.

• From the "Background Color" field, select a 
background color.

• Tick or untick the Grid option button to dis-
play the axis grid in the display area or hide it.

• Click OK.

The settings become active. When you 
changed the time slot, the curves already dis-
played in the display area are deleted..

To change the color settings for the oscilloscope:

• Select Extras → Colors → Black & white to 
select a monochrome display.

• Select Extras → Colors → Default colors to 
restore the default colors. 

• Select Extras → Colors → Invert colors to 
invert the current color settings. 

The following options are used to scale the channels; the measurement can be
running or paused. Automatic scaling uses the current window content to
compute the adjustment. You can select one channel, all channels or any com-
bination of channels.

To scale measurement channels:

• Select Edit → Autoscale.

• The y axis is adjusted for each channel to fit 
the values of the particular channel. 

• Select Edit → Autoscale all channels to per-
form auto-scaling on all the channels simulta-
neously. 

This has the same effect as performing the 
operation for each channel individually.

Note

Keep in mind that, during offline experiments, 
these values do not correspond to the real time 
the calculations take.
Experimentation 661



662
• Select Edit → Autodistribution to distribute 
the selected channels to separate display 
areas.

Using the current window content, the chan-
nels are sccaled in a way that they do not over-
lap in the display area.

• Select Edit → Undo last scaling 

or

• press <CTRL> + <U> to undo the last scaling 
operation.

To show/hide measurement channels:

You can hide one or more channels without deleting them from the oscillo-
scope (or recorder). Proceed as follows.

• Select one or more channels.

• Select View → Show selected channel

or

• Press the <X> key.

The selected channels are hidden or shown in 
the display area, but they remain visible in the 
"measure channels" list.

To show/hide lists:

To show or hide the "Measure channels" and "Bit channels" lists, proceed as
follows.

• Select View → Show measure channel lists

or

• Press the <L> key.

The "Measure channels" and "Bit channels" 
lists are hidden.

Note

When Autoscale all channels was used with-
out selecting all channels, the scaling of the 
unselected channels is not undone with this 
command.
Experimentation



• Repeat the step to display the lists again.

To set up the lists (acquisition mode):

To set up the "Measure channels" and "Bit channels" lists, proceed as follows.

• Select View → Min/Max.

• The "Min..Max" column is added to the 
"Measure channels" and "Bit channels" lists. 
It contains the minimum and maximum values 
for each channel.

• Select View → Rate.

The "Rate" column is added to the "Measure 
channels" and "Bit channels" lists. It contains 
the sample rate used for each channel.

To display keyboard commands:

To display the keyboard commands, proceed as follows.

• Select View → Show key help.

The keyboard commands are shown at the 
bottom of the oscilloscope window. 

Only those keyboard shortcuts that are rele-
vant in a particular context are displayed, e.g. 
the shortcuts for analysis mode are not dis-
played in acquisition mode.

• Repeat the command to switch off the display.

To display the setup:

To display the current setup for a channel, proceed as follows.

• Select a channel.

• Select View → Show Setup.

The current settings for the axes at the bottom 
of the oscilloscope window. 

When you select another channel while the 
display is switched on, the settings of the new 
channel are shown.

Note

The lists cannot be hidden or shown individu-
ally.
Experimentation 663



664
• Repeat the command to switch off the display.

By default the oscilloscope is in acquisition mode, i.e. it displays the data gen-
erated by the experiment. There is also an analysis mode, to analyze your data
further. Analysis mode is only available when the experiment is stopped or
paused.

To start the analysis mode:

To start the analysis mode, proceed as follows.

• Select Edit → Analyse measure data 

or

• press <CTRL> + <V>.

Two vertical lines appear in the display area. 
The originally left line is number 1, the other is 
number 2. These lines are the measurement 
cursors, which define two points at which 
data is measured. The active measurement 
cursor is yellow, the other one is gray.
At the bottom of the oscilloscope window, the 
time values, i.e. the position of both cursors 
on the x axis, as well as their difference, are 
shown.

To set up the lists (analysis mode):

To set up the "Measure channels" and "Bit channels" lists, proceed as follows.
Experimentation



• Select View → Value at active cursor.

The "wx" column appears in the "Measure 
channels" and "Bit channels" lists. It displays 
the value of the active measurement cursor. 
"x" can be 1 or 2, depending on which cursor 
is active.

• Select View → Difference between cur-
sors.

The "wx - wy" column is added. It displays the 
difference between the value at the active cur-
sor and the value at the inactive cursor. "x" is 
the number of the active cursor, "y" is the 
number of the inactivbe cursor.

• Resize the window or the display area so that 
all the information is visible.

• If necessary, drag the vertical separation lines 
to asjust the column width so that you can 
read all the information.

To analyze measurement data:

To analyze the data measured in the oscilloscope, proceed as follows.

• Start the analysis mode (cf. page 664).

• Select the measurement cursor you want to 
move.

The measurement cursor becomes active. The 
"wx" and "wx - wy" columns in the "Measure 
channels" and "Bit channels" lists are 
updated. "x" is the number of the active cur-
sor, "y" is the number of the inactive cursor.

• Drag the measurement cursor to the desired 
position

or

• use the cursor keys to move the cursor.

The current measurement values at the cursor 
position are displayed in the "Measure chan-
nels" list. The x axis values are displayed at the 
bottom of the oscilloscope window.

• If necessary, resize the oscilloscoope window.
Experimentation 665



666
• If necessary, drag the vertical separation lines 
to asjust the column width so that you can 
read all the information.

There are various options that affect the way measurements can be analyzed.
These options are available only when the oscilloscope is in analysis mode.

To set up analysis:

• Select Edit → Analysis setup. 

The "Measure analysis setup" dialog window.

• In the "measure cursor jump mode" field, 
select the jump mode that is appropriate for 
you. 

– Jump to next time means that the cur-
sor moves continuously from one value to 
the next.

– Jump for a constant time distance of 
… means that the cursor moves stepwise. 
You can specify the step size. 

If, for instance, you set the value to 0.1, 
each move of the cursor will result in a 
jump by 0.1 seconds on the x-axis.

• In the "time steps" box below "Jump distance 
of jumps by multiple time steps", enter a mul-
tiplier for the value in the s box.

If, for instance, the step value is set to 0.1, and 
the multiplier is set to 3, the actual jump dis-
tance on the x-axis for each cursor movement 
will be 0.3 seconds. 
Experimentation



• In the "Time" box below "Number of Deci-
mals", enter the number of decimals for the 
time values.

• In the "Values" box, enter the number of dec-
imals for tne measurement values.

• Click OK.

The new settings are accepted. They will 
become active only when you move a mea-
surement cursor.

If a trigger condition is active, the oscilloscope will not display any data until
the trigger condition is met. Once the condition has been met, the oscilloscope
will display the values as normal. Triggering only relates to the display of values
in the oscilloscope, it does not influence the calculations in the experiment in
any way.

You can only define a trigger if the experiment is stopped or paused.
Experimentation 667



668
To define simple trigger events:

To define a simple trigger, proceed as follows.

• Select Edit → Define trigger.

The "Define display trigger condition" dialog 
opens. 

• Select a trigger mode by clicking the Ana-
logue channels or the Bit channel option.

Trigger conditions can only be defined for 
either analog or bit channels.

• In the "Channel" combo box, select a chan-
nel.

• In the "Compar. operator" combo box, select 
a comparison operator.

The following operators are available: == 
(equal), > (greaterTo defin than), < (less than), 
exceeds and false.
Experimentation



• In the "Compare with" combo box, select the 
channel you want to compare with the first,

or

• enter a number, true or false.

• Click on Accept.

The condition you devined in the previous 
steps is written to the text field.

• As an alternative to the preseecing three 
steps, you can enter the condition directly in 
the text field.

• Click OK to close the window.

The trigger condition is now defined. It is 
automatically, and will be used when you start 
the experiment.

In the example shown here the condition is triggered when the value of the
input1/addition channel is greater than 0.01. It is also possible to com-
pare channels by selecting a channel in the "Compare With" combo box.

To define a multipart trigger:

The condition can have several parts which are combined by a logical and or a
logical or. To define a multipart trigger, proceed as follows:

• Open the "Define display trigger condition" 
window.

• Select a trigger mode by clicking the Ana-
logue channels or the Bit channel option.

Trigger conditions can only be defined for 
either analog or bit channels.

• Define the first part of the trigger condition.

The procedure is the same as for simple trig-
gers (cf. page 668).

• In the "Combination" combo box, select & 
(and) or | (or) as operation.

Note

You must use a point as decimal point. Using a 
comma will produce an error message.
Experimentation 669



670
• Define the second part of the trigger condi-
tion.

Repeat the necessary steps if you want to add 
more parts.

• Click on OK.

The trigger condition is now defined. It is 
automatically, and will be used when you start 
the experiment.

Since the oscilloscope buffers the values even if the trigger condition is not yet
fulfilled, values can be displayed afterwards for a definable time (pre-trigger
time) before the trigger event happens. The post-trigger time determines the
length of time for which the values are shown after the trigger event has hap-
pened. The pre- and post-trigger time is collected along the extent of the time
axis on the oscilloscope window. If, for instance, the time axis extent of the
oscilloscope window is set to 2 seconds, and the ratio between pre-trigger and
post-trigger time is 0.4/0.6, the pre-trigger time is 0.8 seconds, and the post-
trigger time is 1.2 seconds.

To set pre-/post-trigger time:

Pre- and post-trigger time can only be set in acquisition mode, with the exper-
iment paused or stopped. To set the times, proceed as follows.

• Open the "Define display trigger condition" 
window.

• Define a trigger condition.

• Adjust the ratio between pre- and post-trigger 
time by moving the Ratio between pre- and 
posttrigger time slider

or

• in the "Pretrigger [s]" field below the slider, 
enter the pre-trigger time in seconds.

The pre-trigger time cannot be longer than 
the length of the time axis in the oscilloscope 
window. The post-trigger time is calculated 
automatically; it is the difference between the 
length of the time axis and the pre-trigger 
time.

• Activate the Enable after posttrigger again 
option if triggering is to restart after the post-
trigger time has expired.
Experimentation



• Click OK.

The settings are accepted.

Once you have defined a trigger condition, it is activated automatically. It will
be used as soon as the experiment is started the next time. You can also acti-
vate, deactivate and actuate the trigger manually.

To activate/deactivate a trigger:

You can activate or deactivate a trigger only in acquisition mode, when the
experiment is stopped. To activate a trigger, proceed as follows.

• In the oscilloscope window, select the Edit 
menu.

The trigger is activated wen the Activate trig-
ger menu option is checked. It will be used 
when you start the measurement.

• Select the Activate trigger menu option to 
deactivate the active trigger condition. 

• Select Edit → Activate trigger again to re-
activate the trigger. 

To actuate the trigger manually:

Manual actuation of a trigger is only possible in acquisition mode while the
measurement is running. To activate a trigger manually, proceed as follows.

• Select Edit → Trigger manually.

This has the same effect as if the trigger con-
dition was met.

You can copy the oscilloscope window to the clipboard and paste it into other
applications. It is also possible to print out the oscilloscope window. 

To copy the oscilloscope window. 

• Stop the experiment.

• Highlight the oscilloscope window you want 
to copy to the clipboard.

• Select File → Copy to Clipboard.

This copies the oscilloscope window to the 
clipboard. 

To print the oscilloscope output:

To print the display area Signals in the old experiment environment, proceed as
follows:
Experimentation 671



672
• Stop the experiment.

• Select File → Print.

The "Header information" window opens.

• Enter the necessary information about author, 
department, project, and vehicle in the respec-
tive fields.

• In the "Comment" field, enter additional 
comments.

• Click OK.

Your settings are accepted, and the "Printer 
Selection" window opens.

• Select a printer and click OK.

The "Signals" pane is printed on the printer 
you selected.
The "Measure channels" and "Bit channels" 
lists are not printed.
Experimentation



You can store the measurement data in the file system in either MDF or FAMOS
format. The file format is standardized and can be read by other ETAS prod-
ucts.

Due to the multitasking behavior of Windows, the data set saved in the file
may not always be complete during an offline experiment. Use the data log-
ging feature (see section"The Data Logger" on page 597) in an online experi-
ment for complete accuracy.

To save the oscilloscope data in a file:

• Stop the experiment.

• Select one or more channels you want to save.

• Select File → Save Selected Channels → 
<format>.

You can select either MDF or FAMOS. 

Or

• Select File → Save All Channels → 
<format> to save the contents of all channels 
in the oscilloscope.

The "Store measure data" dialog box opens.

• Select a path and file name for the output file.

• Click Open.

The data of the curves in the current oscillo-
scope window are stored in the selected for-
mat and file.

Recorder

The recorder works in a similar fashion to the oscilloscope. The major differ-
ence is that the display area is not updated between passes. The oscilloscope
is described in the previous section. In an oscilloscope window, the content of
the display area is deleted every time the output curves reach the right-hand
side of the window.

This is not the case in a recorder window; the output curves remain on the
display until they are overwritten explicitly. A cursor in the form of a white
vertical line indicates up to which point the curves have been overwritten; the
curves to the right of the line are those from the previous pass.
Experimentation 673



674
The only other difference between the recorder and the oscilloscope is that you
cannot display a grid in the display area of a recorder window, because that
grid would have to move with the cursor. The display options, measurement
data analysis and trigger feature work in the same way as in the oscilloscope.
However, only those parts of the curves belonging to the current pass are avail-
able for analysis; the parts to the right of the white line cannot be analyzed.

Horizontal and Vertical Bar Display

The bar display represents measured data as colored bars. You can define the
upper and lower limits of the display as you wish. If the measured value falls
below the lower limit specified, the display remains blank. The measured value
is also displayed numerically in the middle below the bar. The vertical bar dis-
play can only be selected in the offline experimentation environment.
Experimentation



To set up the bar display:

• Select the bar display you want to set up. 

• You can also select several bar displays simul-
taneously by clicking on them while holding 
down the <CTRL> key.

• Select Extras → Setup. 

The following dialog box is displayed:

• In the "Value Decimals" field, select the num-
ber of decimals for displaying the numeric 
value.

• In the "Min" and "Max" fields, set the display 
range.

• In the "Lower" and "Upper" fields, define 
one or two monitoring limits. 

In the bar display, the monitoring limits are 
marked by colored triangles. If the measured 
value falls below the lower limit, the bar color 
changes to blue. If the measured value 
Experimentation 675



676
exceeds the upper limit, the bar color changes 
to red. If the measured values stay within the 
two limits, the bar color is green..

• Click OK to accept the settings.

Bit Display

The bit display represents measured values as a bit array. It is especially useful
for representing binary channels as well as for a quick reading of dual digits
when measurement is paused.

The bit display cannot be set up. You can copy (cf. page page 652), move (cf.
page 653) and delete (cf. page 653) channels, exchange attributes with other
measurement windows (cf. page 654), change the window title (cf. page 655)
and display channel information (cf. page 656). 

To move channels in the bit display window:

• Select Extras → Move → Up to move the 
selected channel up in the bit display window 
.

Experimentation



• Select Extras → Move → Down to move the 
selected channel down in the bit display win-
dow.

This command is only available if there is more 
than one channel in the window.

Monitor

Monitors are a simple way of viewing numerical and logical values inside a
block diagram. They can be particularly useful for keeping track of the way
different values influence each other in complicated diagrams with many ele-
ments.

To monitor an element:

• In the drawing area of the offline experimen-
tation environment, right click on the element 
you want to monitor.

• Select Monitor from the context menu.

When you start the experiment, the value is 
displayed above the element in the "Physical 
Experiment" window.

• Select the Monitor command again to deas-
sign the monitor.

• Select View → Monitor All to assign moni-
tors to all elements.

• Select View → Delete Monitors to delete all 
the monitors in the diagram. 
Experimentation 677



678
 Experimentation



7 Automatic Documentation

ASCET can automatically generate a documentation file for each folder or
database item. The documentation file contains information about the docu-
mented item, e.g. the interface and specification diagrams, plus any notes the
user adds. Documentation can be generated in either RTF, HTML, ASCII or
Postscript format, and then printed or used within other documents.

7.1 Generating Documentation

Before the documentation can be generated, the folders or items that should
be documented must be added to the contents of the documentation. It is
possible to generate documentation for one or more entire folders, or just for
one or more database items.

To set the options for documentation generation:

• In the Component Manager, select Tools → 
Documentation → Options to open the 
"ASCET Document Options" dialog window.

• Type your name into the "Author" field and 
type a title for the generated document into 
the "Title" field.

• Select the view of the documentation file from 
the "View" combo box (see chapter 7.3 for 
details).

• Select the language for the documentation 
file from the "Language" combo box.

You can generate documentation in either 
English or German.
Automatic Documentation 679



680
• Select the document format from the "Output 
Format" combo box.

The documentation file can be generated in 
ASCII, RTF, HTML or Postscript format.

• Click OK.

To select the items for generating documentation:

• In the Component Manager, select Tools → 
Documentation → Contents to open the 
"Documentation Contents" window.

• Activate the Referenced Items option at the 
bottom of the window to have referenced 
items included in the documentation contents 
as you add new items.
Automatic Documentation



• Drag the item or folder from the database 
browser and drop it onto the "Items" pane of 
the "Documentation Content" window.

If you drag a folder into the window, all items 
are shown in the "Items" pane; the name of 
the top folder is shown in the upper pane.

To change the selection:

• Open the "Documentation Contents" win-
dow.

• In the "Items" pane, select a database item.

• Right-click on the item and select Delete from 
the context menu.

The item is deleted from the items pane, i.e. it 
will not be included when documentation is 
generated.

• Select Move Up or Move Down to change 
the position of the item in the "Items" pane.

The position determines the order in which 
items appear in the generated documenta-
tion.

You can store the contents of generated documentation as a list of database
items and their order to the file system.
Automatic Documentation 681



682
To save/load the documentation contents:

• In the "Documentation Contents" window, 
select Document → Save Document Items 
to File.

A file selection dialog window opens. The file 
extension *.cfg is 

• Select the path and file name for the contents 
file and click Save.

The file is stored at the specified location.

• Select Document → Load Document Items 
From File to load a previously saved docu-
mentation content.

To generate documentation:

• In the "Documentation Contents" window, 
select Document → Generate Document.

A naming window opens.

• Enter a file mane and click OK.

The documentation is generated for all items 
shown in the "Documentation Contents" 
window. 

The generated files are stored in the documentation directory of your ASCET
installation. This directory is specified in the "Options" window, "Documenta-
tion" node (see chapter 2.2.5 on page 53). Every time you generate documen-
tation any older files with identical names are overwritten.

To view the generated documentation:

• In the "Documentation Contents" window, 
select Document → Preview Document.

The viewer for the type of documentation you 
have generated opens with the generated file.

7.2 Documentation File Output Formats

All documentation you generate is written to the documentation directory.
This directory is specified in the "Options" window, "Documentation" node
(see "Options for Automatic Documentation" on page 53). The file names
ASCET uses for the documentation files are, by default, always the same, any
old files in the directory will be overwritten.
Automatic Documentation



ASCII Format

If you have selected ASCII as the output format, all generated text is written to
a file called text.txt. If the database item being documented contains any
diagrams, they are written to Postscript files, one for each diagram. The text
file contains the filename of each diagram. If the class contains C-code, it is
incorporated into the text file.

You can load the ASCII text produced by ASCET into any editor or word-pro-
cessor, and use it as a basis for your own documentation of applications devel-
oped with ASCET.

RTF Format

RTF is a standard format for exchanging formatted documents. It can be read
by most word processing programs, such as Microsoft Word or WordPerfect.
The formatted documentation can be edited or incorporated into other docu-
ments. The document is written to a file called docu.rtf.

HTML Format

HTML is the standard format of information interchange on the World Wide
Web. HTML documents can be viewed with any World Wide Web browser,
such as Netscape or Internet Explorer. The HTML source text of the document
is written to a file called docu.htm. All diagrams are stored in the GIF format,
which is also standard on the World Wide Web.

Postscript Format

If you have selected Postscript as the output format, everything will be written
to one Postscript file, the diagrams will be positioned inside the text. The out-
put file is called docmain.ps.

7.3 Views

In the ASCET block diagram editor and state machine editor, so-called views
exist. Automatic documentation and diagrams can be designed differently in
different views by hiding parts of the information. 

Views can be set up individually. The settings include global and element-spe-
cific options for presentation in the block diagram or state machine editor and
for automatic documentation. 

The following information can be shown/hidden globally:

• sequence calls and connectors

• method names for method-local elements, process names for process-
local elements
Automatic Documentation 683



684
• graphical comments

• A default representation can be defined for various element groups for 
each view (e.g., all cont parameters are displayed as line).

The element-specific settings are described in section "To edit the views of a
diagram item:" on page 226.

When a view is selected, all global and element-specific settings become
active. A diagram's representation in the editor conforms to it's representation
in the documentation. 

General Remarks

Creating and managing views:

• In the Component Manager, select Tools → 
Views.

The "Views" window opens.

At first, it contains only one view named 
view.

• Click on Add.

A new view is added.

• Enter a name for the view and press <Enter>.

• Click Rename to rename a selected view.

• Click Delete to remove a selected view.

Note

The buttons Add, Rename, Edit, Delete and 
Default are also available as context menu.
Automatic Documentation



• Click OK to close the window and accept the 
settings.

• Click Cancel to close the window without 
accepting the settings.

To select a default view:

You can choose one of the views as default view. When you open a compo-
nent in the block diagram editor afterwards, it is shown in the default view.

• In the "Views" window, select one of the 
available views.

• Click on Default

or

• select Default from the context menu.

The selected view is marked as default; the 
Default context menu is tick-marked.

• To undo the selection as default, proceed as 
follows:

– Select the default view.

– Click once more on Default

The default selection is undone and the 
mark removed. No view is now marked as 
default.

• To select another view as default, proceed as 
follows:

– Select the new view.

– Click on Default

The marking of the old default view is 
removed; the new view is selected as 
default. 
Automatic Documentation 685



686
The view selection in the state machine or block diagram editor (see page 184)
is not affected by selecting a default.

To edit a view:

You determine, for a given view, which information will be written to the gen-
erated documentation.

• In the "Views" window, select the view you 
want to edit.

• Click on Edit.

The "ASCET Document Contents for " win-
dow opens. It contains three tabs, one for the 
documentation content, one for representa-
tion in the block diagram/state machine edi-
tor, and one for the representation of special 
elements.

• In these tabs, make your settings for the 
edited view.

The meaning of the options is explained in 
sections "Documentation Options", "Options 
for Editors", and "Options for Element 
Types".

• Click on OK.
Automatic Documentation



The views you have thus set up are not included in the export of database
items. Instead, the "Views" window offers the possibility to export one or
more views to an XML file, and to import previously exported views.

To export views:

• In the "Views" window, select one or more 
views.

• Click on Export.

The "Export File" window opens. It shows all 
XML files in the ASCET export directory (cf. 
page 61). 

• Enter path and name (with extension *.xml) 
of the export file.

• Click on Save

The selected views are written to the file.

An export file for views has a very simple structure. The name of a view is
stored in the <View> element, the settings in the tabs of the "ASCET Docu-
ment Contents" window are stored in the <Components> and <Projects>
elements. Each option in a tab corresponds to an attribute of the respective
element; the attribute sequence corresponds to the option sequence first in
the left column, then in the right column of the respective tab.

<Views>

<View name="view">

<DocumentationSettings>

<Components notes="true" 
layout="true" 
publicMethods="true" 
privateMethods="true" 
processes="true" 
graphic="true" 
elements="true" 
importedElements="true" 
exportedElements="true" 
data="true" 
implementation="true" />

<Projects notes="true" 
codegenOptions="true" 
targetOptions="true" 
operatingSystem="true" 
Automatic Documentation 687



688
taskSettings="true" 
taskSchedule="true" 
elements="true" 
bindings="true" data="true" 
implementation="true" 
formulas="true" />

</DocumentationSettings>

<BDESettings sequenceCalls="true" 
processNameLocals="false" 
graphicalComments="true" />

<ElementDefaults>

<AsLine>

<Element type="Scalar"
modelType="Continuous" 
kind="Parameter" 
scope="*" 
existence="Non-Virtual" 
dependency="*" 
memory="*" 
calibration="*"/>

</AsLine>

<Invisible></Invisible>

<Contour></Contour>

<HideContents></HideContents>

</ElementDefaults>

</View>

</Views>

Only the <View> element containing the name of the view is mandatory, the
other elements and attributes are optional. Missing attributes are set to true
during import.

When you export several views, separate <View> elements are created for
each. 
Automatic Documentation



To import views:

You can import previously exported views. If an export file contains several
views, all of them are imported.

• In the "Views" window,  click on Import.

A warning opens that existing views (identical 
names) are overwritten upon import.

• Confirm the warning with Yes.

The "Import File" window opens. It shows all 
XML files in the ASCET export directory (cf. 
page 63). 

• Select the file you want to import.

• Click on Open.

The views in the selected file are imported in 
the ASCET database.

Documentation Options

The "Documentation" tab in the "ASCET Document Contents for" window
contains the  documentation content settings, for components (top) and
projects (bottom).  

Options for Components:

Elements All elements of the component are displayed.

Notes The notes associated with the current view are 
displayed.

Imported Elements All imported elements of the component, i.e. 
messages and global variables, are displayed.

Exported Elements All exported elements are displayed.

Layout The block layout of the component is displayed.

Public methods All methods in a public diagram are displayed.

Data All data sets of the component are displayed.

Implementations All implementations of the component are dis-
played.

Private Methods All methods in a private diagram are displayed.

Processes All processes of the component are displayed 
(modules only).
Automatic Documentation 689



690
Diagrams / C Code If the component contains block diagrams or 
state machine diagrams, they are shown.  If the 
component contains C code, that is shown.

Options for Projects:

Global Elements All global elements that are defined within the 
project are displayed.

Data All data sets of the project are displayed.

Implementations All implementations of the project are dis-
played.

Bindings Shows to which elements the global elements 
declared within the project are bound.

Formulas All global formulae declared in the project are 
displayed.

Target Options The current target settings for the project are 
displayed.

Operating System all task and process settings made in the oper-
ating system editor are displayed.

Task Settings The settings for each task of the project are dis-
played.

Task Schedule Information about the scheduling of the tasks 
in the project is displayed.

Code Generation Options The current code generation settings for the 
project are displayed.

Notes The notes associated with the current view are 
displayed.

Options for Editors

The "BDE" tab contains options for representation in the block diagram and
state machine editor. The following options are available:

• Show Sequence Calls 

If this option is deactivated for a view, all sequence calls and connectors 
in the diagrams are hidden in this view.

Option activated Option deactivated
Automatic Documentation



The option  is not identical with the Sequence Calls → Show → * and 
Sequence Calls → Hide → * menu options. The menu options are 
ineffective if  Show Sequence Calls is deactivated for the current 
view.

• Show Method/Process for Locals 

If this option is deactivated, the method names in method-local ele-
ments and the process names in process-local elements are hidden. The 
/ separator remains visible.

• Show Graphical Comments 

If this option is deactivated for a view, all comments in the diagrams are 
hidden for this view.

If the option is activated, comments are displayed. If the Invisible 
attribute was selected in the element-specific options for one or more 
comments, these comments are hidden nonetheless. For more infor-
mation on element-specific options, see sections "To edit the views of 
a diagram item:" on page 226 and "Options for Element Types" 
on page 691.

Options for Element Types

The "Elements" tab is the central place to adjust the representatin of several
element groups in the block diagram or state machine editor. These global
options apply to all elements of the group, anywhere in the database, for
which no individual settings are available.

Note

Diagram elements with an individual setting other than Normal (see 
"Appearance of Diagram Elements", page 226) are not affected by the glo-
bal settings.

Option activated Option deactivated

Option activated Option deactivated
Automatic Documentation 691



692
To make global settings for element groups:

• Open the "ASCET Document Content for" 
window, "Elements" tab, for a selected view.

• In the combo box, select the representation 
you want to assign to the element group. 

The representations are described on 
page 226.

• Click on the + button to add an element 
group.

The "Element Properties" window opens.
Automatic Documentation



• Select type, model type, kind, scope, and the 
attributes.

The fields here have the same meaning as the 
fields with identical names in the element edi-
tor (cf. Fig. 4-2 on page 449).

If no explicit selection is made, (* in a field), 
the representation selected in the "Elements" 
tab applies to all possible selections.

• Click OK to accept the settings and close the 
window.

The element group is shown in the "ASCET 
Document Content" window, "Elements" 
tab, below the combo box.

• Click OK to accept the settings and close the 
window.

If the element groups for a view are defined in a way that some elements
belong to more than one group (e.g., As Line for exported system constants,
Hide for logical system constants), the actual representation results from the
processing sequence of the view options in ASCET, it is not clearly defined.  In
the example, a logical, exported system constant can be displayed as line, or
hidden. 

7.4 Notes

Every folder or database item can have notes associated with it. These are not
the same as comments, which are incorporated in block diagrams and printed
with those. A note is associated with a folder or database item, and becomes
part of the text of the generated documentation. In notes, information can be
included that is not part of the functional specification.

To create a note:

• Select the folder or database item that the 
note is to belong to.

Note

When defining element groups, take care to avoid conflicts by multiple 
assignments of elements to groups.
Automatic Documentation 693



694
• Select Component → Notes to add a new 
note.

The notes editor opens.

A note consists of a number of text segments, each of which is assigned to a
view.  A text segment can be assigned to more than one view. That way it is
not necessary to re-type the same text for different views. When a document
is generated, all text segments that belong to the selected view are included.

To create a text segment:

• In the notes editor, select Text Segments → 
Add.

• Enter a name for the text segment and press 
<ENTER>.

The name of the text segment is listed in the 
"Text Segments" pane. The new text segment 
is assigned to all currently selected views.

• Type in the text for the segment in the text 
entry pane underneath the "Text Segment" 
pane.

The name of the current text segment is 
shown as the title of the text entry pane.

• Select Text Segment → Rename to rename 
the text segment.
Automatic Documentation



• Select Text Segment → Delete to delete the 
text segment.

To edit a text segment:

• SelectEdit → Cut, Copy or Paste to edit the 
text in the window.

These operations work with the standard Win-
dows clipboard and can thus be used to 
exchange text with other applications.

• Select Edit → Select All to select all the text 
in the text entry pane.

• Select Edit → Read from File to read in data 
from an external file.

A copy of the source text is created, the source 
file is not changed by this operation. 

• Select Edit → Write to File to write the text 
of a note to an external file.

You are prompted for a path and a filename 
and the file is stored at that location.

• Select Edit → Save to save the current text 
segment.

To assign a text segment to a view:

When it is created, a text segment is assigned to all the views selected in the
"Views" pane.

• Select a text segment in the "Text Segment" 
pane.

• Select a view in the "Views" pane.

• Select Views → Assign Views

or

• click on the >> button.

A text segment can be assigned to more than 
one view. To do so, select all views in the 
"Views" pane while pressing the <CTRL> key.

To deassign a view:

• Select a text segment.

• Select a view in the "Views" pane.
Automatic Documentation 695



696
• Select Text Segment → Deassign Views

or

• click on the << button.

To view text segment assignments:

• Select a view in the "Views" pane.

• Select Views → Select Text Segments.

The text segments assigned to the view are 
highlighted in the "Text Segments" pane.

• Select a text segment in the "Text Segments" 
pane.

• Select Text Segments → Select Assigned 
Views.

All views the text segment is assigned to are 
highlighted in the "Views" pane.
Automatic Documentation



Index

Symbols
"CodeGen Message Settings" window 

154
exporting settings 158
hiding messages 156
importing settings 158
promoting information 157
promoting warnings 157
revoking a promotion 158
setting up the display 155
showing messages 157

Numerics
3-D map editor

rotate 645

A
Action 267

add 287
as block diagram 285, 288
assign 293
in ESDL 285, 288
in separate diagram 285

in state diagram 295
in state editor 295
in transition editor 297
specify 284

action
outlining 299

Actions/Conditions diagram
block diagram 286
ESDL 286

Adams-Moulton 339
Administration of external project files 

402
AMD file 90

consistency check 98
import 95

AMD import
"Import Problems" window 100
automatic problem solution 102
special features 98

appearance options 42
application mode 401

assign to task 401
create 401
697



698
argument
add 193
comment 194
implementation 502

arithmetic
fixed point 371, 412, 423
floating point 371, 412, 436
quantized floating 

point 371, 412, 440
arithmetic services 519–554

allowable ~ 522
allowable types 524
creating 527
definition 521
editor (see AS editor)
function 519
function declaration 525
function key 521
saving 527
services.ini 519
usage in ASCET 528

Array
as interface element 198
create 211
editing 461, 628
return 199

Array editor 461, 627
change display 630
data exchange 625, 630
edit several output values 628
edit single output value 628

AS editor 532–554
browse area 539
buttons 537
convert comment into entry 553
convert entry into comment 552
creating a set 544
Creating an entry 548
deleting a set 545
deleting an entry 552
duplicating a set 546
edit area 540
editor interface 539
load file 542
managing entries 546
managing Sets 544
menu commands 535
renaming a set 546

searching for an entry 553
selecting a set 544
specifying an entry 549
starting 533
updating an entry 550

ASAM-MCD-2MC file
import 94

ASAM-MCD-2MC options 410
ASAM-MCD-2MC project 74
ASCET

exporting options 39
general options 36
importing options 39
launch 13
options 36
setting options 38
setup 36
user-specific options 36

auto-inlining 288
activate/deactivate 288

B
bar display 581, 674

setup 675
basic element

create 207
Bit display 676
block

continuous time 333
block diagram

analyze 258
create 206
edit 220
grid 264
navigate 257
page layout 263
redraw 263

block diagram editor 178–267
display modes 180
drawing area 206
drawing area size 181
menu options 184

Block diagram options 54
Boolean table 342

add combination 348
add in-/output 347
check 350
combination 348
Index



Boolean table 
create 343
create default matrix 348
delete combination 348
delete in-/output 348
experiment 351
rename in-/output 349
shift column 349
shift row 349
specify in-/outputs 347

Boolean Table Editor 342
menu options 344

Build options 49
build options 412

Generate Dependency Files 413
buttons

AS editor 537
component manager 17
editor for conditional tables 358

C
C code 308

body of function 309
copy (module/class) 317
copy (project) 387
declaration of function 309
editor 308
external ~ 325
external C code 326
find/replace in database 112
replace 320
search 320
specify component 316

C code debugger 591
view information 592

C code editor 308–327
menu options 310

calibration
array 461, 627
numeric 622
quantized 441
sample points 647
scalar 622
values 615

Calibration System 584

calibration windows 567, 615–648
"Axis" menu 617
"Edit" menu 616
"Extras" menu 619
"View" menu 618
array editor 627
changing the title 621
enumeration editor 627
graphical editor (1-D) 636
graphical editor (2-D) 640
graphical editor (3-D) 643
information about variables 621
logical editor 626
menu options 616
moving variables 620
numerical editor 622
options 58
quantized 441
removing variables 621
table editor 631
table editor (2-D) 635
work with ~ 620–646

channel
data ~ 574
measurement ~ 648

characteristic line 460
as argument 204
create 212

characteristic map 460
as argument 204
create 212

class
argument 192
interface 192
specify in ESDL 329

Code generation
ASAM-MCD-2MC options 410
build options 412
experiment code options 420

code generation
adjust settings 408
load settings 409
save settings 409
state machine optimization 422

code generation options
code optimization options 421
integer arithmetic 417
Index 699



700
code generation settings
code generation node 414

comment 219
Compiler options 60
complex element 217
component 73, 259

Code generation 259
code of 259
copy structure 81
create 75
edit notes 220
ESDL 328
in C code 316
interface 192
layout 511
offline experiment 260
save 263

Component Manager 15–142
buttons 17
container view 32
context-sensitive menu options 26
data view 30
editing elements 81
element view 29
enumeration view 33
export 89
folder view 29
icons 18
implementation view 30
import 93
layout view 31
menu options 19
send problem report 35
set up "Problem Report" function 34
set up ASCET 36
update references 104
views 28

Condition 267
add 286
as block diagram 285, 288
in ESDL 285, 288
in separate diagram 285
in transition editor 297
specify 284

condition
outlining 299

Conditional table 351–370
adding an element 359
code generation 369
creating 352
creating a column (action area) 362
creating a column (condition area) 

361
creating rows 363
deleting elements 365
deleting rows 365
editor 352
entering a condition 367
entering an action 367
experimenting 369
making elements accessible 360
moving columns 364
moving rows 364
removing columns 365
setting up 358
using methods 368

Conditions
in state diagram 295

connection
of diagram items 209

Connectors 244
assigning automatically 245
creating 244

Container 74
Containers 443–447

adding a database item 444
converting ~ networks to 447
deleting items 446
editing items 446
renaming items 445

CT block 333–342
block diagram 333
C code 335
cycle time 340
ESDL code 336
experiment 337, 338
Solver 338
specifying 333

Cycle Time 340
Index



D
data

exchange 625, 630
export 261
file in 262
generate 568
logging 597
read 615
read from external file 615
read/write from current data set 611
reinitialise 612
stimulus 574
write 262, 613
write back 611
write to external file 612

Data exchange options 65
data generator 567, 573–581

assign automatically 580
channel 574
define signal 578
delete channel 578
interpolate signal 580
remove signal 580
set up channel 574
set up stimulation mode 575
setup 573
signal repetition 581

data logger 597–609
change log file 608
continuous polling 597
define trigger condition 606
label list 602
log data 606
open 599
options 603
periodic sampling 597
periodic to file 598
prepare transient sampling 598
set up channels 601
stop logging 607
Transient Sampling 597

data manipulation 611
data set 466

copy 468
create 468
default 469
delete 469
differences 472

edit data 470
export 471
for global elements 473
reference to 468

database
browse 133–139
browse ("Query" window) 133
browse (toolbar) 134
close 124
compare 127
convert (ASCET 4.x) 128
convert (older than ASCET-SD 

V4.0) 130
convert to ANSI C 131
create 119
create item 75
delete 124
delete item 78
find/replace C code 112
find/replace ESDL 112
load 120
maintenance routines 132
optimize 125
password protection 141
save 81, 121
save with different name 122
use old ~ 128

Database Access 139
database item

ASAM-MCD-2MC project 74
change access rights 140
component 73
Container 74
copy 79
create 75
cut 79
edit 78
edit notes 111
Enumeration 74
export 89
icon 74
import 93
move 80
project 74
rename 78
Replace 109
replace references 105
signal 74
Index 701



702
Default options 51
default project 373
Define autostart action 166
Define menu items 161–166

variables 162
window names 163

Define shutdown action 166
dependent parameter

create formula 453
edit formula 455

diagram 254
Actions/Conditions (BDE) 286
Actions/Conditions (ESDL) 286
analysis of 258
create 254
delete 256
load 255
multiple 254
navigate between multiple ~ 254
printing of 265
private 254
public 254
rename 255

diagram item 223
appearance 225
connection of 209
get and set pins 225
Replace 223
view 226

display
critical bounds 657

distribution
create 213

distribution editor 466
documentation 679

ASCII format 683
content 686
create note 693
create view 684
edit view 686
file formats 682
generate 682
generation 679
HTML format 683
manage views 684
note 693
options 679
postscript 683

preview 682
RTF format 683
select default view 685
view 683

Documentation options 53
documentation view

see view
drawingf area

set size 181

E
editor

array 461, 627
AS editor 532
Boolean table 342
C code 308
conditional tables 351, 352
distribution 466
element 448, 697
enumeration 460
graphical ~ 636, 640, 643
group table 466
icon ~ 558
layout 512
logical 459
numerical 459
project 371
state machine 267
table ~ 462, 463, 631, 635

Editor for conditional tables
buttons 358
menu functions 353

Editor options 54
element

array (create) 211
assign to measurement window 582
basic ~ 207
calibration 458, 584, 615, 616
characteristic line/map (create) 212
complex 217
data 458, 616
dimension 451
disable 452
distribution (create) 213
enable 452
enumeration (create) 208
fixed characteristic line/map 

(create) 212
Index



element
Get/Set port 452
group characteristic line/map 

(create) 213
instance 448
kind 451
local to method 310
matrix (create) 211
monitoring of 584
note 267
occurrence 448
pin 210
properties 447
quantized calibration 441
scope 451
type 451

element editor
edit configuration 451
open 448, 697

Enumeration 74
create 76
implementation 499
insert in BDE 208

Enumeration editor 460, 627
edit value 627

environment 594
export 596
load 595
options 609
save 594
switch between ~ 596

ESDL 328
editor 328
find/replace in database 112
specify class 329
specify modules 331

ESDL code
editing 331
replace 331
search 331

ESDL editor 328–332
Euler 339
event

asynchronous 569, 571
dependent 572
generate 567
priority 569
segment 569

segment variable 570
setup 568
single shot 569
stimulate 568
time synchronous 569
tracing 593

event generator 566, 567–572
set up event 568
setup 567

event tracer 593
Executable files

options 66
EXECUTE 167
experiment

automatic stop 581
offline 437, 561
online 437, 561
options 59
run offline ~ 585–594
with CT block 338
with quantized floating point 

code 440
with state machines 304

experiment code options 420
experiment environment

leave 587
Experimentation environment 561–615

C code debugger 591
calibration system 584
data logger 597–609
environment 594
measurement system 581–584
menu options 562
navigation 609
offline experiment 561
online experiment 561
open offline experiment 565
set up 565
start 565
view implementation 591

experimenting 561–615
export 89

AMD 90
binary 90
data 261
data set 471
folder 91
format *.a2l 91
Index 703



704
export 
format *.amd 90
format *.axl 91
format *.exp 90
format *.xml 91
item 91

Export options 61
external editor 322

close 324
end ~ mode 325
open 323

External options 66
external options

example 70
External tools

options 59

F
FILE 174
Find

C code in database 113
ESDL in database 113

fixed characteristic line
create 212

fixed characteristic map
create 212

fixed point arithmetic 371, 412, 423
fixed table 464
Flexible layout

see Layout of included components
floating point arithmetic 371, 412, 436
FORK 175
formula 424

add 424
delete 427
edit 424
filter display 427
five parameters 426
identity 426
import/export 428
linear 426
Moebius 426
rename 426
replace 430

Function
user-defined
(see user-defined function)

function key 521

G
General options 41

automatic saving 41
Send E-Mail 41
user profiles 41

Get/Set ports 198
conditional table 360
diagram item 225
element 452

Graphical editor (1-D) 636
change display 638
edit table 637
set up display 639
start 636

Graphical editor (2-D) 640
change display 642
edit table 640
start 640
toggle perspective 641

Graphical editor (3-D) 643
highlight/measure net points 644
rotate 645
Select Access Point 644
start 643

grid
of block diagram 264

group characteristic line
create 213

group characteristic map
create 213

Group Table editor 466
group tables 465

distribution 466

H
Heun 340
hierarchy 250

appearance 252
block 250
graphical 250
navigate 253
pin 253
resolve 252

Hierarchy state 277
closed 279
open 282

hook routines 398
hybrid project 405
Index



I
icon 74

editor 558
format 560
load 559
save to file 560
scaling 560

icons 18
if…then in block diagram 214
if…then…else in block diagram 214
Implementation

argument 502
assign implementation type 492
default options 52, 53
return value 502
temporary variables 494

implementation 371, 423, 475
arrays 495
component 476
edit 86, 475–502
Enumerations 499
exclude zero 489
handling 423
Implementation cast 502
logical elements 497
method 500
method-local variable 493
of non-logical elements 479
operator 503
process 500
process-local variable 493
project 476
select formula 483
select memory location 491
set limiter 489
set master page 484
specify (master: implementation) 485
specify (master: model) 485
tables 495
Zero not included 489

Implementation cast
adding automatically 

(connection) 248
adding automatically (operator) 247
convert operator implementation 

to ~ 508
element editor 450
implementation 502

in block diagrams 246–250
in ESDL 330
showing/hiding the display 249

Implementation code generation
options 417

implementation editor
arithmetic elements 482
basic elements 480
characteristic lines/maps 496
component 476
Enumerations 499
logical elements 497
method 500
process 500
scalar elements 482
tables 496

Implementation options 52
Implementation type 430

adding 431
assigning 492
copying settings 435
editing 432

import 93
AMD file 95
ASAM-MCD-2MC file 94
directory content 97
disallow overwriting 94
from export file (prior to ASCET-SD 

4.0) 104
from export files 94
project 103

Import options 63
include statement 310
inclusion

of complex element 217
instance 219
instance name 219
integrating

external sources 326
Integration options 61
interface 192

of a class 192

J
Junction

create 273
edit 273
Index 705



706
L
Launching the program 13
layout 512

assign icon 516
attributes 514
default attributes 515
edit 88, 512
grid 516
of included components 228–234
pin 512

layout editor 512–517
Layout of included components

activating (global) 55
editing ports 230
editing the size 229
new default layout 233
restoring the default layout 234
showing/hiding ports 231

license options 65
Link Only 440
local variable

add 195
Logical editor 459, 626

edit value 626

M
Make Variables

E_HOOKS 398
Matrix

as argument 198
as interface element 198
create 211
return 199

measurement 648
bar display 581
channel 648
monitor 677
numerical display 581
online 438
oscilloscope 581
window 567

measurement data
analyze 665

measurement windows 648–677
bar display 674
Bit display 676
change display 655

changing the title 655
copy channels 652
delete channels 653
exchange attributes 654
information about variables 656
menu options 649
monitor 677
move channels 653
numerical display 656
options 58
Oscilloscope 658–673
Recorder 673
select 648
types 656–677
work with ~ 652

memory
non-volatile 112, 452
volatile 112, 452

menu options
AS editor 535
block diagram editor 184
Boolean table editor 344
C code editor 310
calibration windows 616
component manager 19
editor for conditional tables 353
experiment 562
measurement windows 649
monitor window 143
options window 37
project editor 374
state machine editor 268

MENUITEM 174
invoke available menu item 174

methods
add argument 193
add local variable 195
add return value 194
argument 192
create 192
delete 196
disable 517
edit interface 192
enable 517
private 254
public 192, 254
public ~ in state machine 302
return value 192
Index



module 198
interface 198
process 198
specify in ESDL 331

monitor 677
for element 584

Monitor window 142
"Build" tab 148
"CodeGen Message Settings" 

window 154
"Monitor" tab 145
configuring messages 150, 154
context menus 144
hiding messages 151, 156
menu functions 143
promoting information 152, 157
promoting warnings 152, 157
revoking a promotion 158
revoking promotion 153
showing messages 157
showing messages (all) 151
user interface 143

Monitoring 400
cycle time 340
cycleStartTime 400
cycleTime 400
dT 400
runtime_violation 400

Mulstep 339

N
non-volatile 112, 452
note 693

assign text segment 695
create 693
create text segment 694
view 695

notes
component 220
database item 111
project 387

NOWAIT 168
numerical display 581, 656
Numerical editor 459, 622

quantized 441
numerical editor (experiment)

edit value 623
set up 622

O
object

access control 452
OBJECT (see script file) 169

help 169
log 169
message 169
popWindow 169
wait 170
windows 170

Object ID
display 170

offline experiment 561
breakpoint condition 590
data generator 573–581
data manipulation 611
display options 610
event generator 567–572
event tracer 593
leave 587
open 565
pause of 588
run 585–594
set up 566
start 586
step mode 588
stop 587
timed step mode 589

one-dimensional table 460
online experiment 561
operating system 371

settings 391
Operation

atomic 241
operator

position 209
Operator implementation

automatic conversion 508
conversion rules 508
Find 504
remove ~ in component 504
remove individual ~ 504
remove~ in database 504
view 505

Options
"Appearance" node 42
"ASCII Editor" node 60
"Autofixes" node 64
Index 707



708
Options
"Block Diagram" node 54
"Build" node 49
"Calibration" node 58
"Colors" node 55
"Compiler" node 60
"Confirmation Dialogs" node 45
"Data Exchange" node 65
"Defaults" node 51
"Documentation" node 53
"Editors" node 54
"Export" node 61
"External Tools" node 59
"HexFile" node 66
"Implementation" node 52
"Import" node 63
"Integration" node 61
"Measurement" node 58
"Options" node 41
"Paper Size" node 57
"Sequencing" node 56
"Statemachine" node 58
"Text" node 57
appearance options 42
block diagrams 54
build options 49
calibration window 58
compiler options 60
data exchange 65
default options 51
documentation options 53
executable files 66
experiment 59
export 61
exporting 39
external ~ 66
for editors 54
for external tools 59
general 36
general options 41
implementation options 52
import 63
importing 39
integration 61
license 65
measurement window 58
restoring system default 38
setting 38

state machines 58
Table editors 57
text editors 57
user profile 70
user selection 70
user-specific 36

OS editor 390–402
Application Mode 401
monitoring 400
OSEK settings 399
set up hook routines 398

Oscilloscope 581, 658–673
acquisition mode 664
activate trigger 671
actuate trigger manually 671
analysis mode 664
analyze data 665
autoscale 661
Bit display 658
change display 659
color settings 661
copy ~ window 671
deactivate trigger 671
define simple trigger 668
grid 661
numerical display 658
print output 671
save data 673
scale measurement channels 661
set up ~ window 660
set up analysis 666
set up lists (acquisition) 663
set up lists (analysis) 664
set up measurement channels 659
show keyboard commands 663
show setup 663
show/hide lists 662
show/hide measurement 

channels 662
trigger 667

OSEK settings 399
Autostart option 399
Deadline option 399
Min. Period option 399

outlining
activate/deactivate 299
Index



P
parameter

dependent ~ 453
password protection 141
periodic sampling 597
periodic to file 598
pin 254

of element 210
POST 175
Problem Report 26

send problem report 35
setup 34

process 198, 390, 393
project 74, 371

adjust settings 408
ASAM-MCD-2MC options 410
build options 412
code generation 371
communication 388
compiler 413
copy C code 387
create 372
default ~ for component 373
edit notes 387
editor 371
experiment 373, 436
experiment code options 420
formula 424
generate code 438
generate executable code 439
hybrid 405
Import 103
include component 385
load settings 409
monitoring option 400
project files 402
save code 439
save settings 409
scheduling 390

Project Editor 371–443
define global communication 388
implementation type 430
Link Only 440
menu options 374
OS editor 390

project file
add 403
administration of external ~ 402
copy 405
delete 403
update 404
write 404

project settings 407
"ASAM-2MC" node 410
"Build" node 412
"Experiment Code" node 420
"Integer Arithmetic" node 417
"Optimization" node 421
"OS Configuration" Node 414
"Production Code" node 421
"Statemachine" node 422

Q
quantized floating point 

arithmetic 371, 412, 440

R
Recorder 673
Redo 221
reference

display ~ to item 105
replace ~ to item 105
update 104

Replace 320
C code 320
C code in database 112
C code in database (all) 119
C code in database (component) 118
C code in database (selected) 116
diagram item 223
ESDL 331
ESDL in database 112
ESDL in database (all) 119
ESDL in database (component) 118
ESDL in database (selected) 116

return value 192
add 194
Array 199
comment 194
implementation 502
Matrix 199

Runge-Kutta 340
Index 709



710
S
sample points

calibrate 647
scheduling 390
Script file 167–175

EXECUTE 167
FILE 174
FORK 175
MENUITEM 174
NOWAIT 168
OBJECT 169
POST 175
SELECTOR 170
SEND 175

search 320
C code 320
ESDL 331

SELECTOR 170
available commands 171
display object IDs 170

SEND 175
Sequence call 234

assigning automatically 241
connectors 244
editing (individual) 235
editing (Sequence Editor) 236
editing (several) 241
protected order 241
resetting (individual) 239
resetting (several) 243
showing/hiding (individual) 240
showing/hiding (several) 244

Sequence Editor 235
Sequencing 234
signal 74

as stimulus 579
automatic stop 581
create 555
define 578
import measurement data to ~ 556
interpolate 580
load 555
open 555
repetition 581
view 555

Solver 338
Adams-Moulton 339
configure 339
Euler 339
Heun 340
Mulstep 339
Runge-Kutta 340
Variable-step Calvo 6(5) 340
Variable-step Dormand/Prince 

RK5 340
Variable-step Dormand/Prince 

RK8 340
Variable-step implicit Gear 1 340
Variable-step implicit Gear 2 340
Variable-step implicit RK2 340
Variable-step implicit RK4 340

Specifying a conditional table 366
Start state 270
State 267

animation 305
arrange 270
assign action 293
create transition 274
edit 271
Hierarchy 277
rename 271

State diagram 267
State editor 293, 295
State machine 267

action 267
add trigger argument 301
animate states 305
auto-inlining 288
condition 267
create 269
editor 267
experiment 304
hierarchical code generation 277
input 300
insert comment line 298
optimize static actions 284
outlining 298, 299
output 300
public methods 302
start state 270
transition 267
trigger 277
use public method 303
Index



State machine editor 267–307
menu options 268

State machine options 58
stimulate

constant mode 576
cyclic modes 576
gaussian mode 577
matrix mode 579
matrix mode 577
random generator 576
set up stimulation mode 575
table mode 576

stimulus
of data 575
of event 569
stimulusmatrix 578

Support 33
switch in block diagram 215

T
table

Boolean 343
condition~ 351
fixed 464
group ~ 465
insert sample points 633
interpolation mode 463
one-dimensional 460
sample point 632
two-dimensional 460, 463, 635

Table Editor 631, 635
1D 462
2D 463
calibrate sample points 647
change display 635
edit several output values 634
edit single output value 634

table options 57
target

options 407
target options 407
task 391, 392, 395

alarm ~ 395
assign application mode 401
assign process 393
create 392
deassign process 393
init ~ 395

interrupt ~ 395
OSEK settings 399
set up hook routines 398
setting up 395
software ~ 395
timetable 396

temporary variable 457
Text options 57
timer

delay 397
period 397

transient sampling 597
prepare 598

Transition 267
action 290
condition 290
create 274
edit appearance 276
edit path 275
priority 290
trigger 290

Transition editor 291, 297
Trigger

insert 277
of state machine 277
Oscilloscope 668

two-dimensional table 460

U
Undo 220
User interface

options window 37
user interface

AS-Editor 535
block diagram editor 180
boolean table editor 342
C code editor 308
component manager 15
editor for conditional tables 351
ESDL editor 328
monitor window 143
project editor 371

user profile 70
activate 72
add 71

user selection 70
711



712
User-defined function 161
define autostart action 166
define menu items 161–166
define shutdown action 166
script file 167–175

V
variable

public and private 452
temporary ~ 457

Variable-step Calvo 6(5) 340
Variable-step Dormand/Prince RK5 340
Variable-step Dormand/Prince RK8 340
Variable-step implicit Gear 1 340
Variable-step implicit Gear 2 340
Variable-step implicit RK2 340
Variable-step implicit RK4 340
view 683

create 684
edit 686
export 687
import 689
manage 684
select default view 685

view concept 28
edit data 85
edit database item 82
edit element 83
edit implementation 86
edit layout 88
select data set 89
select implementation set 89
sort 83
working with ~ 81

volatile 112, 452

W
while in block diagram 216


	1 Introduction
	1.1 Typical Workflow
	1.2 Launching the Program

	2 The Component Manager
	2.1 Component Manager - User Interface
	2.1.1 General Description
	2.1.2 User Interface Component Manager
	Description of the Window Elements
	Description of the Control Elements in the Button Bars
	Description of the Symbols for the Database Items
	Description of Menu Options
	Context-Sensitive Menu Options

	2.1.3 Views in the Component Manager
	2.1.4 ETAS "Problem Report" Support Function

	2.2 Component Manager - Setting Up ASCET
	2.2.1 General Options
	2.2.2 Appearance Options
	Options for Confirmation Dialogs

	2.2.3 Build Options
	2.2.4 Default Options
	Implementation Options

	2.2.5 Options for Automatic Documentation
	2.2.6 Options for Editors
	Options for Block Diagrams
	Options for Text Editors
	Options for Table Editors
	Options for State Machines
	Options for Calibration Windows
	Options for Measurement Windows

	2.2.7 Experiment Options
	2.2.8 Options for External Tools
	ASCII Editor Options
	Compiler Options

	2.2.9 Options for Integration
	Export Options
	Import Options
	Licensing Options
	Data Exchange Options
	Executable File Options

	2.2.10 External Options
	2.2.11 Working with User Profiles
	Using the User Selection Feature


	2.3 Component Manager - Managing Data
	Database Items
	2.3.1 Managing Database Items
	2.3.2 Working with View Concepts
	Editing Components and Projects in the Component Manager
	Selecting Another Data or Implementation Set

	2.3.3 Exporting Folders and Database Items
	Binary Export
	AMD Export
	Other Export Formats
	Performing the Export

	2.3.4 Importing Folders and Database Items
	Performing the Import
	Importing a Directory Content
	Special Features of the AMD Import
	Importing Projects
	Importing Items from Old ASCET Versions

	2.3.5 Working with Database Items
	References on Items
	Editing
	Find and Replace in C Code and ESDL Components

	2.3.6 Managing Databases
	Basic Tasks
	Using Databases from Previous ASCET Versions
	ANSI C Conversion
	Resolving Name Conflicts
	Database Maintenance Routines
	Generated Code
	Browsing the Database

	2.3.7 Database Access

	2.4 The ASCET Monitor Window
	User Interface
	2.4.1 "Monitor" Tab
	2.4.2 "Build" Tab
	Configuring Messages in the "Build" Tab
	Configuring Messages in the "CodeGen Message Configuration" Window



	3 Adding User-Defined Functions
	3.1 Defining Menu Items
	3.2 Defining an Autostart Action
	3.3 Defining a Shutdown Action
	3.4 Structure of the Script Files
	3.4.1 EXECUTE
	3.4.2 NOWAIT
	3.4.3 OBJECT
	3.4.4 SELECTOR
	3.4.5 MENUITEM
	3.4.6 FILE
	3.4.7 FORK
	3.4.8 SEND
	3.4.9 POST


	4 Specification of Components and Projects
	4.1 The Block Diagram Editor
	4.1.1 The Block Diagram Editor User Interface
	Description of Menu Options

	4.1.2 Defining a Component Interface
	Classes
	Modules

	4.1.3 Complex Types as Interface Elements
	Arrays and Matrices
	Characteristic Lines and Maps

	4.1.4 Creating Block Diagrams
	Elements, Operators and Connections
	Arrays, Matrices, Characteristic Curves and Maps
	Control Flow Statements
	Components as Complex Elements
	Comments and Notes

	4.1.5 Editing Block Diagrams
	Viewing Elements
	Editing Elements
	Appearance of Diagram Elements
	Layout of Included Components

	4.1.6 Sequence Calls
	Editing Individual Sequence Calls
	Editing Several Sequence Calls
	Connectors

	4.1.7 Implementation Casts in Block Diagrams
	4.1.8 Graphical Hierarchies
	4.1.9 Navigating Between Diagrams
	Components with Multiple Diagrams
	Navigating Between Components

	4.1.10 Analyzing Components
	4.1.11 Data Exchange
	4.1.12 Using the Block Diagram Editor
	Saving Diagrams
	Viewing and Printing Diagrams
	Using Referenced Components


	4.2 The State Machine Editor
	Special Menu Options
	4.2.1 Drawing the State Diagram
	4.2.2 Hierarchy States
	Closed Hierarchy State
	Open Hierarchy State

	4.2.3 Specifying Conditions and Actions
	Conditions and Actions in Separate Diagrams
	Using Conditions and Actions
	Conditions and Actions in the State Diagram
	Communication with Other Components

	4.2.4 Public Methods
	4.2.5 Experimenting with state Machines

	4.3 The C Code Editor
	Description of the Menu Options
	4.3.1 Specifying Components in C Code
	4.3.2 External Editor
	4.3.3 Using the External Source Editor

	4.4 The ESDL Editor
	4.4.1 Specifying Classes in ESDL Code
	4.4.2 Specifying Modules in ESDL
	4.4.3 Analyzing ESDL Components

	4.5 Specifying Continuous Time Blocks
	4.5.1 Continuous Time Blocks as Block Diagrams
	4.5.2 Continuous Time Blocks as C Code
	4.5.3 Continuous Time Blocks in ESDL
	4.5.4 Experimenting with Continuous Time Blocks
	Monitoring the Cycle Time


	4.6 The Boolean Table Editor
	Description of the Menu Options
	Specifying Boolean Tables

	4.7 The Editor for Conditional Tables
	Description of the Menu Functions
	Description of the Buttons
	4.7.1 Setting Up a Conditional Table
	4.7.2 Specifying a Conditional Table
	4.7.3 Experimenting with Conditional Tables

	4.8 The Project Editor
	4.8.1 Default Project for a Component
	4.8.2 Description of the Menu Options
	"Graphics" Tab
	"OS" Tab
	"Formulas" Tab
	"Impl. Type" Tab
	"Files" Tab

	4.8.3 Specifying a Project
	4.8.4 Defining Global Communication
	4.8.5 Defining the Scheduling in the OS Editor
	Operating System Settings
	Tasks and Processes
	The Monitoring Option
	Application Modes

	4.8.6 Administration of External Project Files
	4.8.7 Hybrid Projects
	4.8.8 Project Settings
	"ASAM-2MC" Node
	"Build" Node
	"OS Configuration" Node
	"Code Generation" Node
	"Integer Arithmetic" Node
	"Experiment Code" Node
	"Production Code" Node
	"Optimization" Node
	"Statemachine" Node

	4.8.9 Defining the Implementation for Fixed Point Arithmetic
	Formulas
	Global Changes in Implementations
	Implementation Types

	4.8.10 Experimenting with Projects
	Online and Offline Experimentation
	Experimenting with Quantized Floating Point Code

	4.8.11 Generating Application Data

	4.9 Containers
	4.9.1 Working with Containers
	4.9.2 Containers and Networks

	4.10 Editing Element Properties
	Instances and Occurrences
	4.10.1 Element Configuration
	4.10.2 Dependent Elements

	4.11 Editing Data
	4.11.1 Editors for Scalar Types
	Numerical Editor
	Logical Editor
	Enumeration Editor

	4.11.2 The Editor for Combined Types (Table Editor)
	Array Editor
	The 1-D Table Editor
	The 2-D Table Editor
	Fixed Tables
	Group Tables

	4.11.3 Data Sets

	4.12 Editing Implementations
	4.12.1 Implementations of Components/Projects
	4.12.2 Implementation of Scalar, Non-logical Elements
	Specifying Individual Implementations
	Using Implementation Types

	4.12.3 Implementations of Method- and Process-Local Variables
	4.12.4 Implementations for Temporary Variables
	4.12.5 Implementations of Arrays, Matrices, and Tables
	4.12.6 Implementation of Logical Elements
	4.12.7 Implementations of Enumerations
	4.12.8 Method and Process Implementations
	4.12.9 Implementations of Arguments and Return Values of Methods
	4.12.10 Implementations of Implementation Casts
	4.12.11 Operator Implementation
	Automatic Conversion of Operator Implementations


	4.13 Editing the Layout of a Component
	4.13.1 Editing a Class Layout
	4.13.2 Editing the Layout of Other Components

	4.14 Arithmetic Services
	4.14.1 The Functionality of an Arithmetic Service
	4.14.2 Defining Arithmetic Services
	Function Key
	Allowable Arithmetic Services
	Allowable Types
	Function Declaration

	4.14.3 Creating and Saving Arithmetic Services
	4.14.4 Using Arithmetic Services in ASCET
	Selecting a Set
	Potential Error Conditions

	4.14.5 The Interface Editor for Arithmetic Services
	The Functions of the AS editor
	Launching the AS Editor
	The User Interface of the AS Editor
	The Editor Interface
	Using the AS Editor



	5 Signals and Icons
	5.1 The Signal Viewer
	5.2 The Icon Editor

	6 Experimentation
	6.1 The Experimentation Environment
	6.1.1 Description of the Menu Options
	6.1.2 Opening and Setting Up the Experimentation Environment
	6.1.3 The Event Generator
	Event Options

	6.1.4 The Data Generator
	6.1.5 The Measurement System
	6.1.6 The Calibration System
	6.1.7 Running Offline Experiments
	6.1.8 Loading and Saving Environments
	6.1.9 The Data Logger
	6.1.10 Experimentation Environment Options
	Block Diagram Navigation
	Display Options

	6.1.11 Data Manipulation

	6.2 Calibration Windows
	6.2.1 General Description of Menu Options
	6.2.2 Data Editors for Calibration Variables
	6.2.3 Working with Calibration Windows
	The Numerical Editor
	The Logical Editor
	The Enumeration Editor
	The Array Editor
	The 1-D Table Editor
	The 2-D Table Editor
	1-D Graphical Editor
	The 2-D Graphical Editor
	The 3-D Graphical Editor

	6.2.4 Calibrating Sample Points in the Table Editor

	6.3 Measurement Windows
	6.3.1 Selecting Measurement Windows
	6.3.2 General Description of Menu Options
	6.3.3 Working with Measurement Windows
	6.3.4 The Different Measurement Windows
	Numerical Display
	Oscilloscope
	Recorder
	Horizontal and Vertical Bar Display
	Bit Display
	Monitor



	7 Automatic Documentation
	7.1 Generating Documentation
	7.2 Documentation File Output Formats
	ASCII Format
	RTF Format
	HTML Format
	Postscript Format

	7.3 Views
	General Remarks
	Documentation Options
	Options for Editors
	Options for Element Types

	7.4 Notes

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


