
ASCET V5.2
Getting Started

2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH.

© Copyright 2007 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.

Document EC010010 R5.2.2 EN TTN F 00K 103 222

Contents

1 Introduction . 7

1.1 System Information . 7
1.2 User Information . 8

1.2.1 User Profile. 8
1.2.2 Manual Structure . 8
1.2.3 How to Use this Manual . 12

2 Program Installation . 15
2.1 Preparation . 15

2.1.1 Contents . 15
2.1.2 System Requirements . 15
2.1.3 Required User Privileges for Installation and Operation 16

2.2 Installation . 17
2.2.1 Initial Installation . 18
2.2.2 Special Installation Steps and Dialogs . 25

2.3 Network Installation . 29
2.3.1 Providing Data in the Network . 29
2.3.2 Customizing the Network Installation . 30
2.3.3 Installing ASCET from the Network Drive 33

2.4 Uninstalling ASCET . 34
Contents 3

4

2.4.1 Automatic Uninstall . 34
2.4.2 Custom Uninstall . 36

3 Licensing . 39
3.1 Obtaining Licenses . 39
3.2 Licensing Status . 42
3.3 Borrowing Licenses . 43

4 Understanding ASCET . 47
4.1 Increasing Efficiency in Control Unit Development 47

4.1.1 Modern Embedded Control Systems: Technical Mission 47
4.1.2 Development Processes: Economic Challenge 52
4.1.3 Innovative Technologies - Technological Visions. 54

4.2 Continuous Support for Embedded Control Systems 58
4.2.1 Entry-level Technology Bypass . 59
4.2.2 Prototyping . 60
4.2.3 Automatic Code Generation. 60
4.2.4 Other Application Options for ETAS Development Tools 62
4.2.5 Interfaces and Standards in the Tool Chain 63

4.3 ASCET Development Environment in Practise . 64
4.3.1 Physical Specification of Control Systems 66
4.3.2 Implementation and Code Generation 70
4.3.3 Prototyping with ASCET . 74
4.3.4 Bypass . 76
4.3.5 Reuse and Open Interfaces . 77

4.4 ASCET Software Structure . 78

5 General Operation of ASCET . 81
5.1 Window Structure . 82
5.2 Button Bars . 83

5.2.1 Buttons in the Component Manager . 83
5.2.2 Button Bars in the Block Diagram Editor 84
5.2.3 Button Bars in the C Code and ESDL Editor. 87
5.2.4 Button Bars in the CT Block Editors. 87
5.2.5 Button Bar Elements in the Project Editor 89
5.2.6 Button Bar Elements in the Offline Experiment 91

5.3 Operation Using The Keyboard . 92
5.3.1 General Keyboard Control . 92
5.3.2 Keyboard Control According to the Windows Conventions. . . . 93

5.4 Operation Using The Mouse . 94
5.4.1 Drag & Drop. 95
Contents

5.5 Hierarchy Trees . 95
5.6 Supporting Functions . 97

5.6.1 Monitor Window . 97
5.6.2 Keyboard Assignment. 97
5.6.3 Manual and Online Help. 97

6 Tutorial . 99
6.1 A Simple Block Diagram . 99

6.1.1 Preparatory steps . 99
6.1.2 Specifying a Class . 103
6.1.3 Summary . 114

6.2 Experimenting with Components . 115
6.2.1 Starting the Experimentation Environment 115
6.2.2 Setting up the Experimentation Environment 116
6.2.3 Using the Experimentation Environment 121
6.2.4 Summary . 124

6.3 To Specify a Reusable Component . 124
6.3.1 Creating the Diagram. 125
6.3.2 Experimenting with the Integrator . 133
6.3.3 Summary . 137

6.4 A Practical Example . 137
6.4.1 Specifying the controller . 137
6.4.2 Experimenting with the Controller . 141
6.4.3 A Project . 142
6.4.4 To set up the Project . 143
6.4.5 Experimenting with the Project . 146
6.4.6 Summary . 148

6.5 Extending the Project . 148
6.5.1 Specifying the Signal Converter . 148
6.5.2 Experimenting with the Signal Converter 151
6.5.3 Integrating the Signal Converter into the Project. 154
6.5.4 Summary . 158

6.6 Modeling a Continuous Time System . 158
6.6.1 Motion Equation . 159
6.6.2 Model Design . 160
6.6.3 Summary . 167

6.7 A Process Model . 168
6.7.1 Specifying the Process Model . 168
6.7.2 Integrating the Process Model . 173
6.7.3 Summary . 178
Contents 5

6

6.8 State Machines . 178
6.8.1 Specifying the State Machine . 179
6.8.2 How a State Machine Works . 187
6.8.3 Experimenting with the State Machine 189
6.8.4 Integrating the State Machine in the Controller 190
6.8.5 Summary . 192

6.9 Hierarchical State Machines . 192
6.9.1 Specifying the State Machine . 192
6.9.2 Experimenting with the Hierarchical State Machine. 200
6.9.3 How Hierarchical State Machines Work 201
6.9.4 Summary . 202

7 Glossary . 203
7.1 Abbreviations . 203
7.2 Terms . 204

8 Reference Lists . 215
8.1 Troubleshooting and User Feedback . 215
8.2 ASCET Directories . 217

8.2.1 Default Storage Directories . 217
8.2.2 Changing Default Directories . 218

8.3 Keyboard Control . 219
8.3.1 General Control Functions . 219
8.3.2 Keyboard Commands in the Component Manager 220
8.3.3 Keyboard Commands in the Monitor Window 220
8.3.4 Keyboard Commands in the Editors . 221
8.3.5 Keyboard Commands in the Offline Experiment

Environment. 222
8.3.6 Measure and Calibration Windows in General 222

9 Windows XP Firewall and ASCET . 227
9.1 Users with Administrator Privileges . 228
9.2 Users without Administrator Privileges . 231
9.3 Support and Problem Reporting . 232

10 ETAS Contact Addresses . 233

Index . 235
Contents

1 Introduction

ASCET provides an innovative solution for the functional and software devel-
opment of modern embedded software systems. ASCET supports every step of
the development process with a new approach to modelling, code generation
and simulation, thus making higher quality, shorter innovation cycles and cost
reductions a reality.

This manual supports the reader in getting to know ASCET, and quickly achiev-
ing results. It provides a step-by-step introduction to the system, while at the
same time making all information easily accessible for reference.

1.1 System Information

The ASCET product family consists of a number of products that provide inter-
faces to simulation processors, third-party software packages and for remote
access to ASCET. The following products are available for the current version
of ASCET:

• ASCET-MD—support for the development and simulation of models.

• ASCET-RP—support for experimental targets to allow hardware-in-the-
loop simulation and rapid prototyping applications. A toolbox for run-
ning ETK Bypass experiments is also integrated. ASCET-RP provides the
connection to INTECRIO.

• ASCET-SE—support for various microcontroller targets. Generation of
optimized executable code, including operating system configuration
and integration, for various microcontrollers and two real-time operat-
ing systems.

Various kinds of additional modules are optional:

• Configuration management—provides an interface to configuration
management tools.

• ASCET-MIP—This MATLAB integration package comes as a bundle that
provides two different means for accessing Matlab software. The first
part is an interface to the Matlab engine which allows you to couple
ASCET and MATLAB at simulation level. The second part is a model con-
verter that enables you to read Simulink models in ASCET.

• ASCET-DIFF—A comparison tool for ASCET models.

Various additional customer-specific products can be integrated in ASCET.
More detailed information is available upon request.
Introduction 7

8

1.2 User Information

1.2.1 User Profile

This manual addresses qualified personnel working in the fields of automobile
control unit development and calibration. Specialized knowledge in the areas
of measurement and control unit technology is required.

ASCET users should be familiar with the Microsoft Windows 98, Windows
NT 4.0, Windows 2000, or Windows XP, operating system. All users should be
able to execute menu commands, enable buttons, etc. Furthermore, the users
should be familiar with the Windows file storage system, especially the con-
nections between files and directories. The users have to know how to use the
basic functions of the Windows File Manager and Program Manager or the
Windows Explorer, respectively. Moreover, the users should be familiar with the
"drag-and-drop" functionality.

Any user who is not familiar with the basic techniques found in Microsoft Win-
dows should learn them before using ASCET. For more information on the
Windows operating system, please refer to the manuals published by
Microsoft Corporation.

Knowledge of a programming language, preferably ANSI C or Java, can be
helpful for advanced users.

1.2.2 Manual Structure

The ASCET manual consists of three volumes:

1. Volume "ASCET V5.2 – Getting Started"

This volume provides you with basic information on the ASCET working
principles.

2. Volume "ASCET V5.2 – User’s Guide"

This volume describes the operation of ASCET-MD.

3. Volume "ASCET V5.2 – Reference Guide"

This volume contains a detailed description of the ASCET modeling lan-
guage as well as numerous reference lists.

The contents of the individual volumes are described below in more detail.

Volume "ASCET V5.2 – Getting Started"

This volume contains the following chapters:
Introduction

• "Introduction" (this chapter)

This chapter provides an outline of the possible applications of ASCET.
Furthermore, it contains general information such as innovations in
ASCET V5.2, user and system information.

• "Program Installation"

This chapter targets both all users who install, maintain or uninstall
ASCET on a PC or a network as well as system administrators who pro-
vide ASCET on a file server so that the program can be installed via the
network. It contains important information on the scope of delivery,
hardware and software requirements for stand-alone and network
installations and the preparation required for installation. The chapter
also describes the procedures used to install and uninstall ASCET.

• "Licensing"

This chapter contains various licensing information, e.g. how to obtain
a license file or how to borrow a license.

• "Understanding ASCET"

This chapter provides an overview of the ASCET system, the develop-
ment process supported by it, and its place in the ETAS tool chain. This
chapter should be read first by all users new to ASCET.

• "General Operation of ASCET"

This chapter provides information on the window and menu structures
of ASCET, as well as control options using the mouse and the key-
board.

• "Tutorial"

The “Tutorial” mainly addresses users who are new to ASCET. It
describes the use of ASCET using practice-oriented examples. The
entire tutorial contents are subdivided into short individual compo-
nents based on each other. Before you start working on the tutorial,
you should have read chapter "Understanding ASCET" on page 47.

• "Glossary"

This chapter explains all technical terms used in the manual. The terms
are listed in alphabetic order.

Note

ETAS offers efficient training in the use of ASCET in order to provide an even
more thorough knowledge of ASCET, especially if the user has to gain a
comprehensive insight in the functionality of ASCET in a very short period of
time.
Introduction 9

10
• "Reference Lists"

This chapter contains information on troubleshooting, the directory
structure, and the reference files required. This chapter also includes a
list of all keyboard commands sorted by working windows.

Volume "ASCET V5.2 – User’s Guide"

This volume comprehensively describes all components of the ASCET system
and provides detailed instructions on using them. Before you start reading this
part, you should become acquainted with the ASCET software, i.e., work
through the chapters "Understanding ASCET" and "Tutorial" of the ASCET
Getting Started volume.

The description of the ASCET system is organized to reflect the chronological
order of the development process of an embedded control system in ASCET.

This volume contains the following chapters:

• "Introduction"

Description of the typical workflow

• "The Component Manager"

Getting familiar with the user interface, controls and menu options,
customizing ASCET, learning to use the Component Manager.

This chapter is relevant to all users of ASCET.

• "Adding User-Defined Functions"

This chapter describes how users can define own menu functions in
various ASCET windows.

• "Specification of Components and Projects"

This chapter explains how to work with the different specification edi-
tors and how to change the attributes of the elements.

• "Signals and Icons"

This chapter describes how to manage and integrate signals and icons
in the database.

• "Experimentation"

This chapter describes how to work with the experimentation environ-
ment during offline experiments, and gives an overview over the vari-
ous measurement and calibration windows.

Online experiments, as well as experimenting with INCA or INTECRIO,
are described in the ASCET-RP user’s guide.
Introduction

• "Automatic Documentation"

This chapter describes the automatic generation of documentation for
ASCET components and projects.

Volume "ASCET V5.2 – Reference Guide"

The first part, "The Modeling Language", is a comprehensive reference to the
various ways of describing embedded software systems in ASCET. It is advis-
able to work through the tutorial before reading any of the chapters of this
part.

The following chapters belong to this part:

• "Projects"

The specification of an embedded control system is called a project.
The structure of a project is described here.

• "Components"

Components are the building blocks of an embedded system. The var-
ious kinds of components are introduced in this chapter.

• "Types and Elements"

This chapter describes the kinds of variables and the data types sup-
ported by ASCET.

• "Data and Implementations"

Each variable in ASCET has data and an implementation, which are dis-
cussed here.

• "Body Specification in ESDL"

This chapter is about specifying components in ESDL, the model
description language of ASCET.

• "Body Specification with Block Diagrams"

In this chapter the specification of components as block diagrams is
described.

• "Body Specification in C"

Components can also be specified in C, which is discussed here.

• "Continuous Time Systems"

An overview of continuous time systems in ASCET, which are used to
build mathematical models of technical processes.

• "Continuous Time Basic Blocks"

Basic blocks describe individual components of a continuous time sys-
tem.
Introduction 11

12
• "Continuous Time Structure Blocks and Graphical Hierarchies"

Structure blocks integrate the basic blocks into complete models.

• "Projects and Hybrid Projects"

In hybrid projects continuous time systems can be run alongside
embedded system specifications.

The second part, "Reference Lists", describes the ASCET system library, and
other reference information.

This part consists of the following chapters:

• "The ASCET System Library"

This chapter provides a detailed description of each component of the
system library.

• "Troubleshooting"

Here, common user errors and known problems are listed together
with advice on how to solve them.

• "Code Generation Messages"

This chapter contains the error messages that may appear during code
generation, together with advice on how to adapt the software model
in ASCET to avoid such errors.

1.2.3 How to Use this Manual

Documentation Conventions

All actions to be performed by the user are presented in a a task-oriented for-
mat as illustrated in the following example. A task in this manual is a sequence
of actions that have to be performed in order to achieve a certain goal. The
title of a task description usually introduces the result of the actions, e.g. "To
create a new component", or "To rename an element". Task descriptions
often contain illustrations of the particular ASCET window or dialog box the
task relates to.

To achieve a goal:

Any preliminary information...

• Step 1

Explanations are given underneath an action.
• Step 2

Any explanation for Step 2...
Introduction

• Step 3

Any explanation for Step 3...

Any concluding remarks...

Specific example:

To create a new file:

When creating a new file, no other file may be open.

• Choose File → New.

The “Create file” dialog box is displayed.

• In the "File name" field, type the name of the
new file.

The file name must not exceed 8 characters.

• Click OK.

The new file will be created and saved under the name you specified. You can
now work with the file.

Typographic Conventions

The following typographic conventions are used in this manual:

Choose File → Open. Menu commands are shown in blue bold-
face.

Click OK. Buttons are shown in blue boldface.

Press <ENTER>. Keyboard commands are shown in angled
brackets and capitals.

The "Open File" dialog window
opens.

Names of program windows, dialog boxes,
fields, etc. are shown in quotation marks.

Select the file setup.exe. Text in drop-down lists on the screen, pro-
gram code, as well as path- and file names
are shown in the Courier font.

A distribution is always a one-
dimensional table of sample points.

General emphasis and new terms are set in
italics.

The OSEK group (see
http://www.osekvdx.org/) has
developed certain standards.

Links to internet documents are set in blue,
underlined font.
Introduction 13

14
Important notes for the users are presented as follows:

Note

Important note for users.
Introduction

2 Program Installation

The chapter entitled "Program Installation" targets both all users who install
ASCET on a PC or a network, or maintain and uninstall the program as well as
system administrators who provide ASCET on a file server so that the program
can be installed via the network. It contains important information on the
scope of delivery, hardware and software requirements for stand-alone and
network installations and the preparation required for installation. The chapter
also describes the procedures used to install and uninstall ASCET.

2.1 Preparation

Check the items supplied for completeness and your computer for compliance
with the system requirements. Depending on the operating system used and
the network connection, you have to make sure that you have the user privi-
leges required.

2.1.1 Contents

ASCET is supplied with the following:

• ASCET CD ROM

– ASCET program files

– ASCET manuals and ETAS hardware documentation in PDF format
(Acrobat Reader)

– Manual "FLEXnet Licensing End User Guide" in PDF format

– Acrobat Reader program files

• "ASCET Getting Started" manual (ASCET-MD only)

2.1.2 System Requirements

The following system requirements have to be met:

• 1 GHz Pentium PC (recommended: 2 GHz)

• WINDOWS® 2000, WINDOWS® XP

• 512 MB RAM (recommended: 512 MB)

• Hard disk with a minimum of 1 GB of free space (not incluging space
for program data; recommended: > 1 GB)

• CD ROM drive

• VGA graphics card with VGA monitor and a resolution of at least 800
x 600 with 256 colors
Program Installation 15

16
2.1.3 Required User Privileges for Installation and Operation

User privileges required for installation:

In order to install ASCET on a PC, you need the user privileges of an adminis-
trator. Please contact your system administrator, if necessary.

User privileges required for operation (under WIN 2000/XP):

In order to operate ASCET under Windows 2000/XP, each user must receive
the privilege called "Increase Scheduling Priority" from the administrator. This
can be set using the User Manager.

Recommendation: Assign the privilege "Increase Scheduling Priority" to the
local "User" group. To do so, proceed as follows:

To assign WIN 2000 – User Privilege "Increase Scheduling Priority":

• From the Windows Start Menu, choose
Settings → Control Panel → Administra-
tive Tools → Local Security Policy.

• Under Local Policies → User Rights Assign-
ment activate Increase scheduling
priority by double-clicking on it.

• Click on the Add button.

• Select the local workstation.

• Assign the "Increase Scheduling Priority" priv-
ilege to the User group by double-clicking on
it.

• Confirm by clicking the OK button.

• Close the "Local Security Policy" window by
clicking OK.

• Exit the local security policy settings.

To assign WIN XP – User Privilege "Increase Scheduling Priority":

• From the Start Menu, choose Settings →
Control Panel → Administrative Tools →
Local Security Policy.

Note

You need administrator rights to perform the settings described below.
Program Installation

• Under Local Policies → User Rights Assign-
ment activate Increase Scheduling
Priority by double-clicking on it.

The "Increase scheduling priority Properties"
window is displayed.

• Click on the Add User or Group button.

The "Select Users or Groups" window is dis-
played.

• Click on the Locations button.

The "Locations" window is displayed.

• Select the local workstation and close the
"Locations" window by clicking OK.

• In the "Select Users or Groups" window, click
on the Advanced button to enable the auto-
matic search feature.

• Click on the Find now button to display the
list of users registered for the local worksta-
tion.

• In the "Name (RDN)" column, choose the
names of the users or groups to whom you
want to assign the privilege to increase the
scheduling priority.

• Confirm by clicking the OK button.

• Close the "Select Users or Groups" window
by clicking OK.

• Close the "Increase scheduling priority Proper-
ties" window by clicking OK.

• Exit the local security policy settings.

2.2 Installation

To install one of the products ASCET-MD, ASCET-RP, or ASCET-SE (see chapter
4.4 on page 78), in any case you have to install the ASCET base system first.
This chapter describes the installation of the base system and ASCET-MD. The
installation of ASCET-RP and ASCET-SE is described in the respective manuals.

Installation is performed in the same way if you install ASCET from the CD or
the network drive.
Program Installation 17

18
Special issues to be observed during the installation (e.g., "Canceling the
Installation" or "Overwriting an Existing Program Version") are described in
chapter 2.2.2 on page 25.

2.2.1 Initial Installation

ASCET Base System

To start the ASCET installation:

• From the Start menu, select Run.

• In the command line, enter the path to the
installation file (e.g. if installed from the CD:
d:\ASCET5.2\ascet.exe).

• Confirm by clicking OK.

The installation program is started.

Follow the instructions:

• In the "EULA" window, activate the Accept
option to accept the license agreement.

• Click OK.

• Follow the instructions displayed on the
screen.

The Next button accepts your settings and
proceeds to the next window, the Back but-
ton returns to the previous window, and Can-
cel aborts the installation.
Program Installation

To register ASCET:

• In the registration window, enter your per-
sonal information.

• Click on the Next button.

To specify ASCET paths:

When you have registered ASCET, you will be prompted to specify target direc-
tories for the data. This is done in two separate windows:
Program Installation 19

20
Program files and program data are stored in different directories. When you
uninstall or update the program later, only the program files will be deleted or
overwritten. The program data will continue to be available to you. The pro-
gram data includes the following:

• Databases

• User profiles

• If you want to change the default directories,
click on the Browse button.

• In the dialog box, select the desired directory.

If you specify a directory which does not exist,
the installation routine will automatically cre-
ate it.

• Click on the Next button.

The "Select global directories" window opens.
Here, you can specify paths for log files and
temporary files. These paths are used by all
ETAS products.

• Use the Browse buttons to adjust the paths
settings according to your wishes.

• Click on the Next button.

Settings for common files:

In the "Select Handling of ETAS-Shared modules" window, you specify the
way the modules used in principle by all ETAS products are installed.

• Activate the share modules between prod-
ucts option when the modules are to be con-
jointly used.

This is reasonable when you intend to use sev-
eral ETAS products simultaneously.

• Activate the use local copies for each prod-
uct option when ASCET shall be installed with
its own copies of the modules, e.g., when you
intend to adjust the components.

Note

You can install ASCET i a directory with blanks in it’s path. Before you do so,
however, make sure that all external tools used with ASCET support path
names with blanks, too.
Program Installation

• Click on the Browse button to adjust the path
settings for the modules.

• Click on the Next button.

To specify the ASCET functional scope:

In the "Select options" window, you can specify the functional scope of
ASCET.

• Mark the modules you want to install.

The following options can be selected:

– AS-Editor – the arithmetic services editor.

– ASD-Database – installs the ETAS system
library and tutorial database in the export
directory of your ASCET installation.

– ASD-Manual – installs the ASCET manu-
als as PDF files in the ETAS\ETASManu-
als directory.

– ASD-OnlineHelp – the ASCET online help
is placed in the ETAS\ASCET5.2\help
directory.

– ASD-ToolAPI – installs the ASCET Auto-
mation interface.

• Click on the Next button.
Program Installation 21

22
To specify the ASCET folder in the Start menu:

• Accept the default folder name

or

• specify a different folder name.

• Click on the Next button.

Installing ASCET:

• In the "Ready for installation" window, click
Next to start the installation.

The program files will be copied. A bar chart
indicates the copy progress.

Note

With the next step, you start the installation.
Program Installation

When all files are copied, the "License Direc-
tory " selection window opens.

Specifying the license file location:

• In the "License Directory" window, enter the
directory where the license file will be stored.

Each time ASCET needs a license, this direc-
tory is searched.

• Click OK to confirm your selection.

The installation continues, and finally the
"Installation complete" window appears.

• In the "Installation complete" window, click
on the Finish button to finish the installation.
Program Installation 23

24
After restarting your PC, you will find the folder name you specified with the
following entries in the Start menu:

• ASCET Uninstall

Starts the uninstall routine (see chapter 2.4).

• ASCET V5.2

Starts the ASCET program.

• AS Editor

Starts the AS Editor (see chapter 4.14 in the ASCET user’s guide).

• ETAS Network settings

Starts the assistant for the configuration of the ETAS network.

• LicenseInfo

Starts the "Obtain License Info" window (cf. chapter 3).

• Online manuals

If you installed the online manuals, you can here open the
ETAS\ETASManuals directory. Here, the manuals are stored in sev-
eral subdirectories.

• PC RemoteControl

Enables the configuration of the remote interface.

• ReadMe

Provides current information on ASCET V5.2.

ASCET-MD

After installing the basic system, you can install ASCET-MD.

To install ASCET-MD:

• From the Start menu, select Run.
Program Installation

• In the command line, enter the path to the
installation file (e.g. if installed from the CD:
d:\ASCET-MD V5.2\ASCET-MD.exe).

• Confirm by clicking OK.

The installation program is started. Since the
ASCET base system is already installed, you do
not have to select path names, functional
scope, etc.

• Click on Next to proceed to the next installa-
tion window.

• Click on Back to return to the previous instal-
lation window.

• Click on Cancel to abort the installation.

2.2.2 Special Installation Steps and Dialogs

To cancel the installation:

At this time during the installation process, you can still cancel the installation
prematurely. Proceed as follows:

• Click the Cancel button in the current win-
dow.

• Click Resume to return to the previous dialog
box.
Program Installation 25

26
• Click the Exit Setup button to quit the setup
program.

• Confirm that you want to cancel the installa-
tion by clicking OK.

To overwrite an existing program version:

If an older version of the software to be installed is found on the target work-
station, or if an entirely different software exists in the selected installation
directory, a corresponding dialog box appears. The following sample dialog
box would appear during the installation of Version 5.2.0, if (beta) version
5.2.0b1 would have already been installed on the target workstation.
Program Installation

• Read the instructions carefully.

You are informed that an older installation has
been found, and that files will be overwritten
when you continue.

• To select a different directory, click the Back
button.

• If you want to overwrite the existing files, click
the Yes, overwrite it button.

• Acknowledge the confirmation prompt by
clicking Yes, overwrite it!

Click No to return to the previous window.
Program Installation 27

28
To overwrite existing directories:

If the directories specified during the installation already exist, and a complete
ASCET installation does not exist on the target workstation, the following dia-
log box appears. This case occurs, e.g., if a previous installation process has
been canceled.

• Read the instructions carefully.

You are informed that the directory you
selected already exists.

• To select a different directory, click the Back
button.

• If you want to overwrite the existing directo-
ries, click the Yes, overwrite it button.
Program Installation

• Acknowledge the confirmation prompt by
clicking Yes, delete all!

ASCET is installed; existing files are deleted.

Click No to return to the previous window.

Performing an installation without administrator privileges:

This message box appears if the user name under which you logged on to
Windows has no administrator privileges. After you acknowledge the mes-
sage, the installation is terminated because administrator privileges are pre-
requisites for the installation of ASCET.

• Confirm by clicking OK.

This installation is terminated.

• Please contact your system administrator.

• Try the installation again after you have
received the required privileges.

2.3 Network Installation

In addition to the installation from the CD, you can also install ASCET from a
network drive on the PC.

The network installation provides the benefit that you can adjust data even
before the actual installation on the workstation takes place (see section
2.3.2).

2.3.1 Providing Data in the Network

To provide data in the network, you have to copy the installation files from the
CD to the desired network drive.

To provide data on the network server:

• Create a source directory on the desired net-
work drive.
Program Installation 29

30
• Copy all data from the CD to the source direc-
tory.

Installation Log

The network installation of a user is logged in a file on the network. Therefore,
all users need write access to the x:\user directory or to the directory speci-
fied in install.ini for the registration.

2.3.2 Customizing the Network Installation

You can customize ASCET (modifying specific default settings) even before the
user installs ASCET on his workstation.

You have the following customizing options for the network installation:

• You can customize the installation dialogs (modifying the default set-
tings for, e.g., directories, etc.).

• You can perform the ASCET installation fully automatically and without
user intervention invisibly in the background.

• You can overwrite the files provided in the product data directory
(default setting: [drive]:\ETASdata\ASCET5.2\...) with your
customized files and/or add files to the existing directories.

Customizing Installation Dialogs

For the network installation in large enterprises, it is often necessary to cus-
tomize certain default settings during the installation to fit internal standards
and requirements. This is possible by means of the install.ini configura-
tion file. This file is located in the installation directory.

The following example will show you how to modify the default settings.

To customize the configuration file:

• Open the install.ini file with a text edi-
tor.

The following is a typical example of an entry
in this INI file:

;Sets the main directory of ASCET

;MainDir=c:\etas\ASCET5.2

• To modify the default setting, delete ";" (com-
ment) on the line with the MainDir keyword.

• Change the path to, e.g.,
H:\programs\etas\ASCET5.2.

The entry should now look like this:
Program Installation

;Sets the main directory of ASCET

MainDir=H:\programs\etas\ASCET5.2

• In the same way, modify all other entries in
install.ini as desired.

• Save your changes and then close the editor.

When you now start the installation with Ascet.exe, the dialog boxes will
show the new settings as defaults.

Automatic Installation

By calling Ascet.exe /s you can execute the ASCET installation fully auto-
matically and transparently in the background, i.e., without any required user
interaction. This will select the currently valid default settings. You can config-
ure these settings in the install.ini file (see "Customizing Installation Dia-
logs" on page 30).

If you as the system administrator create a batch file containing the
ascet.exe /s command, and configure the required settings in
install.ini, the users can run the installation process themselves by exe-
cuting this batch file without the need to enter any further information.

As this type of installation does not display any dialog boxes, you may want to
provide some mechanism to inform the user when the installation has finished.

Customizing ASCET Files

The customization feature described below allows you to control the installa-
tion routine so that certain default files are overwritten with your customized
files during the installation, or that other files are included in the installation.

In this way, you can integrate your customized databases, user profiles, and
window templates in the installation routine.

The mechanism is relatively simple. Create a subdirectory named
InstData\... in the installation directory and copy your customized files
into it while maintaining the proper directory structures.

To create your customized files, install ASCET on a test computer, and use this
to create the files.

Note

The modified path settings affect the functions described below.
Program Installation 31

32
After the default installation of ASCET, the ETASData\ASCET5.2\...
directory contains various subdirectories with files that determine the ASCET
default settings which you can customize. These include the following subdi-
rectories:

• Database\DB\

The db subdirectory contains the default database. Here you can, e.g.,
create another demo database under Database\DemoDB\.

• User\[user name], depending on the windows login

The [user name] subdirectory contains the default user profile. All
configurable options are stored in this subdirectory.

Customizing Data for Network Installation:

• Install ASCET on your PC.

• Start ASCET.

• Modify the user profile.

• Modify the database or add a new database.

• Exit ASCET.

You have finished your customization and now want to integrate these files in
the installation routine. You have two choices.

• Overwrite existing files having the same name with your customized
files. To be able to do this, you must create a folder named Inst-
Data\overwrite\ in the installation directory.

• Rename your customized files and add them to the existing files. There
are no files with the same name that will be overwritten. To be able to
do this, you must create a folder named InstData\add-only\ in
the installation directory.

To include your customized files in the installation routine, be sure to copy also
the parent directories. Note that the ETASData\ASCET5.2\ directory level
must be the same as InstData\overwrite\ or InstData\add-only\.

Examples:

InstData\overwrite\user\userDef.ini

InstData\add-only\database\additionalDB\
Program Installation

To integrate a modified user profile:

• Copy your customized file
ETASData\ASCET5.2\user\[user
name]\Ascetsd.ini into the
InstData\overwrite\user\ subdirec-
tory.

• Rename the Ascetsd.ini file to user-
Def.ini.

This ensures that this initialization file will be
used after the installation for each new user.

To integrate a modified database:

• Copy your customized database, i.e., the
\database\DB\ subdirectory into the
InstData\add-only\... subdirectory.

• Rename the db directory as desired, otherwise
the database will not be copied.

Of course, you could also overwrite the db
database by using the InstData\over-
write\ directory.

When starting the installation routine with ascet.exe, the default files will
be replaced with your customized files and/or your new files will be added in
the corresponding directories.

2.3.3 Installing ASCET from the Network Drive

The installation from a network drive is described under "Installation"
on page 17. You only need to know on which drive and in which source direc-
tory the installation files are located.

Note

To install ASCET from a network drive, you need write access to the log
directory on the network drive (see chapter 2.3.1).
Program Installation 33

34
2.4 Uninstalling ASCET

When ASCET is uninstalled, all add-ons on the computer are uninstalled, too.
You can uninstall only the entire ASCET product family, not separate products
as ASCET-MD, ASCET-SE or ASCET-RP.

2.4.1 Automatic Uninstall

To uninstall ASCET (automatically):

• From the program group of the start menu,
select ASCET Uninstall.

The following window is displayed:

• Select Automatic.
Program Installation

• Click the Next button.

• Click the Finish button to execute the unin-
stall process.
Program Installation 35

36
You can cancel the uninstall process. If you click the Cancel button, the follow-
ing window appears:

2.4.2 Custom Uninstall

To uninstall ASCET (user-defined):

• From the program group of the start menu,
select ASCET Uninstall.

The following window is displayed:

• Select Custom.

Note

If data has already been deleted, ASCET must be reinstalled.
Program Installation

• Click the Next button.

The "Select Private Files to Remove" window
opens.

• In the "Select Private Files to Remove" win-
dow, select the files you want to remove.

• Click the Next button.

• In the "Select Directories to Remove" window,
select the directories you want to remove.

• Click the Next button.

• In the "Select INI Files to Remove" window,
select the *.ini files you want to remove.

• Click the Next button.

• In the "Select INI Items to Edit" window, select
the *.ini entries you want to edit.

• Click the Next button.

• In the "Select Registry Keys to Remove" win-
dow, select the registry keys you want to
remove.

• Click the Next button.

• In the "Select Registry Trees to Remove" win-
dow, select the registry folders you want to
remove.
Program Installation 37

38
• Click the Next button.

• In the "Select Registry Keys to Edit" window,
select the registry keys to be edited.

• Click the Next button.

• In the "Select Sub-Systems to Remove" win-
dow, select the sub-systems you want to
remove.

• Click the Next button.

• In the "Perform Uninstall" window, click the
Finish button.

• The deinstallation is performed.

You can cancel the custom uninstall process, as well as the automatic deinstal-
lation, using the Cancel button.

Note

If data has already been deleted, ASCET must be reinstalled.
Program Installation

3 Licensing

Products and Add-Ons of the ASCET Product family are subject to license man-
agement. In order to work with an ASCET product, after the installation, you
need a license file for your computer. Without this file, ASCET products can be
installed, but you cannot use them.

3.1 Obtaining Licenses

The license file can be obtained from ETAS.

To obtain the license file:

The license is tied to username and workstation. To obtain the information
required for the creation of the license file, use the LicenseInfo tool in the
ASCET program group.

• In the Windows start menu, select the ASCET
folder of the current ASCET version.

• In the ASCET folder, select LicenseInfo.

The "Obtain License Info" window opens. It
shows the MAC and IP addresses for each net-
work board of your computer.

Note

If you would like to request the license file before installing an ASCET
product or add-on, you can start the program LicenseInfo.exe from the
product CD-ROM.
Licensing 39

40
• Select one of the listed Ethernet adapters and
click on Get License Info.

The information about your computer
required by ETAS to create a license file are
collected and displayed in the "License Info"
window.

• Click OK to store the information in a text file.

• In the file selection dialog window, enter path
and name for the text file.

• Click on Save.

The file is created and opened in a text editor.
Besides your host ID and user name, it con-
tains input lines for your E-mail address,
license number, and other specifications, as
well as the ETAS contact addresses.

• Close the "Obtain License Info" window.

• Send the completed text file to ETAS.

You find the required license number on the
license contract. You have to send a com-
pleted text file for each ASCET product you
want to use, e.g. ASCET-MD or ASCET-MIP.

ETAS will send you the license file with the
required license keys for your computer.

Note

The license file must not be edited. Otherwise,
it becomes invalid.
Licensing

• Store the license file in the license directory
intended for that purpose (see page 23).

By default this is the directory
ETAS\ETASShared3\Licenses. It is pos-
sible, however, to modify the license file direc-
tory by modifying the environment variable
ETAS_LICENSE_FILE.

In this license directory, the license file is rec-
ognized automatically when you start the pro-
gram.

If no valid license file is detected in the license directory specified during instal-
lation (see page 23), a trial mode is activated for ASCET-MD, ASCET-RP or
ASCET-SE. That is a limited period of time during which the tool is fully opera-
tional, but a license file is searched regularly, and a warning is issued when the
search fails.

Add-ons such as ASCET-MIP or INTECRIO-ASC do not have a trial mode. With-
out a valid license file, they do not work.
Licensing 41

42
Once the trial mode is expired, an error message is issued instead of the warn-
ing, and the tool does not work until a valid license is found.

3.2 Licensing Status

You can display the current licensing status at any time. The Help → License
Info menu option opens the "License Information" window.
Licensing

The upper part of this window contains information on the license location.
The lower part contains a table with the current licensing status.

Tab. 3-1 Description of "License Information" table

3.3 Borrowing Licenses

When you are using a server license, but need a local license (because, e.g.,
you want to use a notebook in a car), you can borrow the server license for a
limited time. (You do not need to borrow the license as long as you are con-
nected to the server.)

To change the borrowing time:

The borrowing time is set to 60 days; you can change that value in the ASCET
options window, "General Settings" tab.

• In the Component Manager, select Tools →
Help.

The "Options" window opens.

• In the "Options" window, open the "Licens-
ing" node.

• Enter the borrowing time in days in the "Bor-
row license for days" field.

Column Description

Feature installed ASCET products or add-ons

State licensing status; possible values are:
not used – no licence for this feature has been requested
licensed – licensed feature
grace mode – feature in trial mode
unlicensed – trial mode has expired

Version version number of the feature as derived from the license file

Source source of the license file; possible values are local license
or a server name (or empty, if no license was found)

Exp. Date expiration date of the license or the trial mode

Borrow Exp. expiration date of borrowing (see chapter 3.3)
Licensing 43

44
• Close the "Options" window.

The next time you borrow a licence, the bor-
rowing expiration date is derived from this
value.

Existing borrowing expiration dates are not
changed.

To borrow a license:

• In the Component Manager, select Help →
License Info to open the "License Informa-
tion" window.

You can borrow licenses for all features in not
used state.

• In the "License Information" window, right-
click the feature whose license you want to
borrow, and select Borrow license from the
context menu.

With that, you have borrowed the license. The
expiration date is filled in the "License Infor-
mation" table.

The full functionality of the selected feature is
now available locally on your computer.

As long as you hold the borrowed license, it cannot be accesed by someone
else. To avoid bottleneck situations, you can return the license before the bor-
rowing time expires.

To return a borrowed license (normal case):

To return a borrowed licence, your PC must be connected to the network.

• Open the "License Information" window.

• Right-click the feature whose license you want
to return, and select Return earlier from the
context menu.

The license is again available on the server.
Licensing

To return a borrowed license (error case):

If you borrow a server license, information regarding the borrowing is stored
both on the server and locally on your PC. If the information on the server gets
lost (this can happen, e.g., when the server was restarted without success, or
with server errors), return via Return earlier does not work. You can use the
command, hoewver, to delete the local information from your PC.

• Open the "License Information" window.

• Right-click the feature whose license you want
to return, and select Return earlier from the
context menu.

The "Blocked Borrows" window opens. It con-
tains a list of points you have to check.

• Check the following points:

– Is your PC connected to the network?

– Is the license server available?

– Is the license on the server available?

– What does the result of lmstat -s
ETAS look like?
Licensing 45

46
– Ask your administrator to chek the license
file on the server.

• Click Reset Borrow only if the server informa-
tion on your borrowed license is really lost.

The information regarding your borrowed
license stored locally on your PC is deleted.

Note

When you delete lhe local license information while the server license infor-
mation is still available, the license is unavailable until the regular end of
the borrowing time.
Licensing

4 Understanding ASCET

ASCET is a high quality, rapid development tool that ensures reuse of existing
components. Its unique graphic development environment allows target-inde-
pendent functional specifications. Control software for embedded systems can
be generated automatically from diagrams. Target-identical prototyping pro-
vides early tests in the development cycle. The ETAS tool chain makes your
investment safe and profitable.

Fig. 4-1 Advantages of the ASCET development environment

4.1 Increasing Efficiency in Control Unit Development

For the past 20 years electronic control units have gradually made inroads in
car production as well as other branches of industry. In the meantime there has
been a drastic rise in the requirements for functionality, speed and networking
capability. Technology and methods have changed enormously. Today, elec-
tronics are a key factor governing the success of new vehicle models. Develop-
ment costs and the speed of development are gradually increasing in
importance. The latest technologies are providing competitive advantages.
ETAS is breaking new ground in this sector.

4.1.1 Modern Embedded Control Systems: Technical Mission

A characteristic feature of present-day control unit technology is the integra-
tion of many high-quality functions on a single processor chip. The microcon-
trollers actually used in practice are often equipped with several I/O and
Understanding ASCET 47

48
communication channels. Since the outside world is embedded directly in the
processor in this way, we normally speak about Embedded Systems and, when
it comes to control technology, of Embedded Control.

Fig. 4-2 Principle of Embedded Control System

Embedded Control Systems implement complex control circuits. Information
on the current state of the controlled system is precisely recorded by sensors
and processed together with previous data. The result is the output of control
information via corresponding actuators. The coupling of a variety of system
aspects is becoming ever more important. Only by networking the various con-
trol units can we master the entire system now, and implement present and
future environmental requirements with respect to safety, emission cleanness
and fuel economy.

Fig. 4-3 The reality of Embedded Control
Understanding ASCET

Vehicle electronics have already penetrated nearly all parts of the system. His-
torically, development started with engine and transmission control. But now
the success story of electronic control units also includes the brakes and the
suspension. Electronics have also had a visible impact inside the vehicle (airbag,
cockpit, navigation systems, etc.).

Embedded Control Systems

Many details need to be considered when designing embedded control sys-
tems. Usually the control unit must incorporate numerous signals. In addition,
the physical relationships between the signals are highly complex. If the design
engineer wants to obtain fast results, he needs methods and tools that relieve
him of additional difficulties when it comes to implementing the control unit
on microprocessors. By abstracting the task and shifting it to the physical
plane, it must be possible to reduce complexity to an acceptable measure and
make the design "easy".

Fig. 4-4 Vision of Embedded Control

The vision of embedded control development systems is therefore based on
requirements for abstraction, simplicity and speed. ASCET meets these require-
ments. Using ASCET, the design engineer can fully concentrate on the physics
of the embedded control system, and design the control unit in an abstract
and simple environment in order to finally generate an automatic code for the
series launch. This achieves an exemplary speed during the design phase.

A call for abstraction, simplicity and speed have emerged from all sectors of
software development over the past few years. The results have been visual
methods for the analysis and design phases. The various techniques have now
been combined in a universal language called UML (Universal Modeling Lan-
guage). What are known as patterns are defined at this level. They translate
the design engineer’s experience into the most abstract shapes ever known.
However, this approach still offers no support for describing real-time behavior
and its transparency does not conform with our control approach. ASCET
Understanding ASCET 49

50
offers all this: a reasonable amount of abstraction, clear support of real-time
requirements and a visual description in the form of control block diagrams
and state machines. And whenever possible, specifications can be transferred
from UML to ASCET and back. The openness of ASCET opens up new per-
spectives here.

Fig. 4-5 Modern software development

With ASCET, the specification is translated into C code at the push of a button.
It is then transferred to executable binary code using target-specific tools (com-
pilers, linkers, debuggers) and loaded on the target. ASCET effectively shortens
development time and therefore reduces costs. Moreover, existing sources
(e.g. C code) can be reused, providing excellent support for migrating a pure
C-development to ASCET. The abstraction of real-time requirements is fully
met by our OSEK-compatible operating system ERCOSEK.

But after executable code is generated, there is still a long way before develop-
ment of embedded control systems is finished. During the application and test
phases, a wide range of measurements are performed and parameters are
optimized. This is where development systems must become application-
oriented. The unique requirement for continuity throughout the development
process is expressed by support for interfaces and format. ETAS meets these
requirements totally with ASCET, INCA-PC and LabCar. A matching range of
products with standardized interfaces offers the design engineer a high
degree of convenience, permitting him to focus his attention on the main task

UML
ASCET-SD

�C�

 ..011.
Understanding ASCET

in hand - the development of embedded control systems. A parallel, continu-
ous documentation is just as natural as the openness of the tools for integra-
tion in cross-project management (Configuration Management).

Fig. 4-6 Continuous process - open interfaces

No continuity within the process would mean time-consuming conversions of
data. Misunderstandings, gaps in the specification or even errors would be the
result. And these problems would crop up every time there is a change. On the
bottom line, this results in enormous costs which could be avoided by selecting
a continuous tool chain from the start. ASCET is continuous and open. Using
ASCET saves costs.

Focus on the Car Industry

ASCET was mainly developed for use in the car industry. The result is a number
of requirements which were previously undiscovered by other branches of
industry. On the other hand, many general concepts which can be of use to
other development tasks have flown into our tool chain.

A characteristic feature of automobile embedded control systems is require-
ments for simple control concepts such as maps. This is where the constraints
of memory size and performance (computer time) become very noticeable.
Only through simplified models of ideal controllers can we achieve the excel-
lent results desired in monitoring and controlling physical processes. Add to
this a large number of requirements which occur in other application areas, but
which are unique in a network: quality at this point is not a universal factor. But
when considered alone by the volume of the end product produced, it
becomes a critical factor for embedded control systems. Another factor is the
safety aspect. Many control units implemented in the motor vehicle affect
safety-relevant or even safety-critical operations. Brakes, engine control and
even window lifts (danger of jamming a limb) are characteristic examples. The
topic of networking has already been mentioned in this context.
Understanding ASCET 51

52
But the hardware used in development must also meet special requirements.
Simulation systems, measuring and adjustment systems as well as test systems
must be up to the aggressive conditions of summer and winter tests. They
must have excellent electromagnetic compatibility and, of course, satisfy the
highest performance demands.

Fig. 4-7 Requirements in the car industry

The innovation cycles in the car industry are mainly determined by trials. The
products themselves have a much longer life cycle and they are also face-lifted
in this period. Enhancements in microprocessor technology are therefore
viewed from a long-term aspect or must be adaptable without affecting devel-
opment activities (e.g. more advanced memory technology). The starting point
is therefore a relatively approximate model in which such things as register
width, i.e. the measure for processor performance, doubles only every five
years. It must be taken into account that large overlaps take place, i.e. when
the first 32-bit processors were introduced, there were many projects running
on 16-bit technology and even some that were still running on 8-bit technol-
ogy. The same applies to the upcoming innovation step from pure integer
arithmetic to floating point.

4.1.2 Development Processes: Economic Challenge

Development processes are always related to a particular company. However,
there are many general requirements which are ultimately reflected in the sup-
porting tools.

In all modern developments, the strategic foursome of time, costs, quality and
flexibility play a decisive role. Development processes must be measured by
these factors. The continuous tool chain is a vital step in this direction. But
success only happens if every member in the chain makes its full contribution.
ASCET and the other ETAS tools are more than up to this challenge. They help
Understanding ASCET

to save time through their standardized interfaces and their unique alignment
to the technical requirements of embedded control systems. This is also a
major contribution to reducing costs. There are also cost savings in the well-
arranged control-related modeling features. Together with early prototyping,
this helps to avoid superfluous recursions and failed developments. It also
improves the quality of development results. Quality is enhanced by the auto-
matic code generation feature in ASCET; this closes the usual implementation
gap. The specification and the product have a 100% match. Laborious rework
becomes a matter of the past. Together with the unique ASCET database
design, development work becomes flexible. Modules can be linked in any
combination and the automatic code generation feature performs the neces-
sary optimizations and adaptations. Finally, ASCET offers easy-to-modify inter-
faces. They provide flexible support for practically any development process.

Fig. 4-8 The strategic foursome—product development requirements

The special economic challenge in the car industry is handling large volumes.
This mainly has consequences for production processes. From a development
engineer’s viewpoint, there are other aspects, e.g. cooperation between sev-
eral suppliers on a project. The tool chain is therefore subjected to require-
ments which can be grouped under the term of team support. It must be
possible to manage data jointly and exchange data reliably and reproducibly
over large distances. And the topic of know-how protection must not be
neglected. ASCET offers the right concepts for this and has the necessary inter-
faces for the tools.

Fig. 4-9 Conventional development process
Understanding ASCET 53

54
In hotly contested markets, the pressure of costs and innovation is equally per-
manent. The aim here is to achieve synergy beyond projects. This can only be
achieved with cross-modular solutions (identical parts concept). When it comes
to developing embedded control systems, this means introducing standardized
interfaces at any level (hardware, operating system, protocols, functions) as far
as possible. This solution achieves the necessary shortening of development
cycles. Standards are common practice at ETAS: Our tools support or set the
standards in the field of embedded control systems (e.g. ASAM, ASAP, CAN,
MSR, NEXUS, OSEK, VME). We are actively engaged in upcoming standardiza-
tion requirements.

Fig. 4-10 Optimized development process with ASCET

Present economic requirements can only be met if development is both effi-
cient and effective. Doing the right thing is the guideline, both in small or large
companies. Everyday working with ASCET brings more efficiency in the devel-
opment of modern embedded control systems. The simplifications in everyday
development work described above liberates capacity that is necessary so that
the engineer can concentrate on the job she is supposed to do— inventing
and implementing new, innovative control units.

4.1.3 Innovative Technologies - Technological Visions

Software for Embedded Control Systems has been produced for several
decades. Over the years there have been many changes to the programming
languages and tools used. But the basic methodology has remained
unchanged. Only microcontroller experts have been able so far to carry out the
complex programming of these systems. The chances of using a debugger for
troubleshooting were and still remain very problematic. This is only possible to
a limited extent (real-time problem). Function developers have no chance of
obtaining results directly. In the meantime, ETAS has revolutionized this sector:
The leading technology of ASCET has made it possible for the first time to
verify a draft control design directly on the target system.

Future orientation and innovative strength are part of our character. They are
the driving forces of progress and improvements. Our products correspond to
this paradigm. We therefore set the standards. And we align ourselves fully to
the wishes of our customers when optimizing our products. Why don’t you
develop with us the future of embedded control systems? This will make sure
that progress will not overtake you.
Understanding ASCET

Code Generation

The era of bit coding is past. Assembler is also a rare choice for a serious imple-
mentation language for embedded control systems. Today many people are
developing in C. This high-level language marks the end point of a develop-
ment which has always been centered on the target system. But this cannot
implement any cross-platform control concept. Reusing physically identical
data has thus become a horror scenario. You start the same thing from the
beginning every time. Truly a Sisyphean task.

Fig. 4-11 From physical parameters to implementations

In this situation, ASCET offers something incomparable. For the first time it is
possible to move directly and automatically from the graphical control block
diagram to software on the microcontroller. The ASCET code generator is
unique, efficient and simple to use. The task given to the design developers at
ETAS was anything but trivial. The difficulty first lies in the correct abstraction
of the requirements: Microcontrollers still work with integer arithmetic. They
have limited memory space and a wide variety of hardware architectures.
Through the availability of ASCET-SE for various microcontroller targets, we
have succeeded in encapsulating these differences and obtaining a standard-
ized interface for the user. The result: There is no longer any problem in chang-
ing from one microcontroller to that of another vendor or even to the latest
Understanding ASCET 55

56
upgrade. Reuse is no longer simply a buzzword but has become practical real-
ity in the designer’s everyday work. And to keep it this way, we convert all the
main new processor developments into the corresponding ASCET-SE ports.

Fig. 4-12 Contradictory requirements of physical modeling and embedded
software implementation

ASCET-SE generates C code. It uses the usual tools for microcontroller pro-
gramming (compilers, linkers, locators and debuggers). But there are new chal-
lenges here, in particular in the configuration on handling these tools. Here,
too, ASCET has set milestones. But progress does not end at this point. For
example, innovative technologies link the topic of debugging with the applica-
tion of electronic control systems (measurement and adjustment). This
achieves complete control over real-time response on target systems. For the
first time you can work directly on the target system at physical control level.
The benefits are obvious: There is no more need for permanent thought trans-
fer from control level to processor bit level.

Prototyping

In the meantime simulation technology has become established as a fixed
component of complex control system development. It is a way of consolidat-
ing new functions at an early stage. In most cases, simulations are based on
offline time steps. The influence of real-time requirements on the control sys-
tem is not taken into account yet. Accordingly, sensors, actuators and the
physical systems on which they are based, what are known as process models,
are simulated for the simulation. It is therefore a purely software solution. This
is the reason for the term "software in the loop" (SIL). But it can only solve the
first step in the development of innovative control systems, i.e. the concept
itself. However, event-oriented online simulation requires sensors, actuators
Understanding ASCET

and the real process running in real-time. The operating system is then inte-
grated at this point for the first time. The first software prototypes therefore
arise from the simulation using hardware in the loop (HIL). The benefit here lies
in the more realistic simulation of control requirements. New control strategies
can be tested and adapted in the target environment under realistic condi-
tions. A distinction can be made between two cases here: At an early prototyp-
ing phase, the control algorithm is still treated on the basis of physical
parameters. Quantizations and overruns are largely neglected. They need only
be considered at system boundaries (sensors and actuators). The next phase
involves the implementation aspects. Finally it is only a small step from proto-
type to the product, which only consists in changing the computer hardware.
The path from the idea to the product is thus a step-by-step method. At any
time the designer has full control over the complex overall system and need
only concentrate his work on one aspect of the overall task.

Fig. 4-13 Bypass technology - the basic idea

Prototyping can also be performed using an existing control unit. A distinction
must be made here between the situation in which only part of the total con-
trol system is simulated and the rest runs on a series control unit (bypass) and
the case where only the signal conditioning system of a series control unit is
used (fullpass). There is also the possibility of supplying an existing control unit
(but different to the target system) with a completely new program (develop-
ment control unit). All these methods have one thing in common: the target
system uses identical prototyping. As early as the prototyping phase, func-
tional response can be studied in the necessary accuracy. The impact of quan-
tization, overflows and real-time effects can thus be mastered early on. One
condition for using this method is the equivalence of the simulation with the
software version on the target system, i.e. the series control unit. ASCET offers
Understanding ASCET 57

58
this special condition. In ASCET, online simulation as well as the series code are
based on our real-time operating system, ERCOSEK. Even quantization is
treated in the same way in the online simulation as in the series control unit.

Fig. 4-14 The principle of prototyping

Another important aspect in prototyping is how to handle the environment. As
already mentioned previously, it is useful to simulate the physical systems on
which the sensors and actuators are based. These are time-continuous systems
as opposed to the discrete modeling of control unit functions. They are nor-
mally presented by differential equation systems. However, only very simple
solution algorithms are available for real-time handling, since a step-width
control is not really suitable for this type of application. ASCET offers these
methods in a single tool, i.e. with identical interfaces and workflows, from a
single source, so to speak. Process models can therefore be integrated in the
control development homogeneously if, for example, not all the physical com-
ponents are available for prototyping at the same time. In the extreme, an
entire vehicle can be integrated in online simulation (LabCar). Integration in
continuous systems in ASCET brings benefits in day-to-day work. Providing
and updating special interfaces and the necessary change in mindset are no
longer necessary in a different tool environment.

4.2 Continuous Support for Embedded Control Systems

A major factor governing the increase of efficiency is the continuity of the tool
chain. Any rupture in this environment will inevitably lead to faults in the devel-
opment flow, cost, intensive recursions or to a manual rework. This can be
avoided by using the right interfaces and formats. This situation demands stan-
dards in the form of migrations to new systems, i.e. the interfaces and formats
must be supported by as many tool manufacturers as possible. Here, ETAS is
actively participating in setting and propagating standards, and offers the nec-
essary interfaces and formats in all the tools it produces. However, ETAS is the
Understanding ASCET

only vendor who can supply the customer with the complete tool chain from a
single source. Continuity for us, therefore, is not only a buzzword, it is a tried
and tested code of practice.

Fig. 4-15 Continuous development process

4.2.1 Entry-level Technology Bypass

New technologies and algorithms are introduced efficiently by the unique, exe-
cutable specification of functions in the bypass. Since the majority of control
functions can be taken from a particular series version, there is always a fixed
status on which to build. This procedure is therefore an excellent way of intro-
ducing innovative modeling and simulation technologies such as ASCET. On
the other hand, ASCET is also prepared for this situation. The Add-On
ASCET-RP provides a work environment which makes entry easy. It also pro-
vides results that are quick to implement and provide useful information.

Before a bypass can be integrated, a modification of a particular function must
be made in the control unit, i.e. in the series software or the near-series soft-
ware. This must be provided by the software producer. The modification can
redirect the normal function call from the function request to the bypass com-
puter. A software switch is set for this purpose. If the bypass fails to reply to
this request quickly enough (safety), an emergency program is switched and
the values are used from the series function running in parallel. This type of
modification is frequently provided for cooperation between suppliers and
manufacturers.

Sometimes it may be useful to access new or other data of the existing series
software. All that is needed for this are the addresses and the control unit
which are usually provided for calibration purposes in the form of a control
unit description file (ASAM-MCD-2MC). It is also possible to measure and
Understanding ASCET 59

60
adjust data using a calibration system in the series control unit at the same
time. This may become necessary as a result of interaction between the new
function and the old state.

ASCET has the necessary conditions for integrating series states, interfaces to
the control unit and the interfaces to actuators and sensors that are also fre-
quently required. We have tested and proven the joint use of ASCET with our
INCA calibration system.

4.2.2 Prototyping

A second area of application of ASCET is the field of prototyping. The prime
task here is to develop new ideas from the start. In many cases, there is not
even a series state to fall back on. Prototyping covers everything from the sim-
ple functional physical simulation, the study of quantization effects and real-
time estimates through to the complete transfer to a control unit. At any level,
it may be important or even necessary to fully implicate the control unit envi-
ronment in the form of sensors and actuators. This occurs either in the form of
a process simulation or by including real hardware in a closed control loop. It
ensures the feasibility of a control concept and reveals more information about
the exact requirements.

ASCET provides the necessary computer performance for these applications in
the form of universal processor boards and supplies the external interfaces
based on our ES1000 VME bus system and plug-in modules.

But the work does not stop here. It is possible to equip small fleets with these
prototypes and simply present cost-effective solutions for the entire develop-
ment process through to pilot run maturity by simply opening our simulation
environment for application systems, e.g. INCA-PC. Our unique code genera-
tion technology goes one step further: You can achieve series maturity very
fast by porting a few implementation data to a microprocessor target system
and the automatic code generator. If this has to be tested in advance under
aggressive conditions, the ETAS ES400 development control unit with ASCET
can be used.

4.2.3 Automatic Code Generation

Mapping a functional model on executable program code is the main chal-
lenge in developing embedded control systems. The objectives at the physical
modeling level and the control unit level could not be more divergent. Physical
modeling is expected to be graphical, hardware-independent, reusable and to
support physical data types (floating point arithmetic). It should also be easy to
understand through the use of block diagrams and state machines so that
designers can use the documentation as a reference during the application
phase. But at the control unit level, i.e. the embedded software, implementa-
tion is a totally different animal. What is expected here is a code specially opti-
Understanding ASCET

mized to the existing microprocessor with the appropriate memory devices.
The code size and runtime are the prime parameters. The data types are nor-
mally integer (fixed point arithmetic).

If you want to avoid laborious, error-prone manual coding, the only way to link
the two worlds is by devising automatic code generation. This is based on
splitting the specification into a physical modeling part and an implementation
information part. ASCET offers a step-by-step migration from pure C imple-
mentations to the new physical description methods. The C code generated in
this system can also be used in other developer projects.

This approach continues through the experimental environment, e.g. quanti-
zation effects or runtime problems can be examined at an early stage. Since
both the control unit program and the experimental environment are based on
the same mechanism, we prefer to speak here about executing specification
on different target systems than about simulation. To pursue this thought, we
arrive at the question whether it is possible to run the application on the exper-
imental system. When it comes to ETAS tools (hardware and software), we can
answer this question with a clear Yes. Development is therefore continuous
from start to finish.

Fig. 4-16 Using tools in the embedded control system environment
Understanding ASCET 61

62
4.2.4 Other Application Options for ETAS Development Tools

The unique ASCET code generator for series control units can be used in two
different ways, i.e. as an additional programmer or as an integration tool. In
the first case, it is very easy to imagine it as an entry scenario to the new tech-
nology, in particular for major projects. You can apply ASCET as an integration
tool in all projects with good results. But even in smaller projects, an entry-level
user can also obtain excellent results very quickly.

ASCET as Additional Programmer

When ASCET is used in this application scenario, it replaces a conventional
workplace (specification and manual coding). The results of these activities
flow as before into the total development in the form of C code modules. At
the same time existing code can be converted in ASCET step-by-step (re-engi-
neering). The result is executable code.

Transferring the remaining infrastructure, e.g. generating the control unit
description file (ASAM-MCD-2MC) for the application, managing data stocks,
etc., must be done by hand as before. On the other hand, ASCET generates
the necessary information for this.

Team cooperation is fully supported by ASCET. There is an interface for linking
configuration management (CM) tools. It is useful for the common manage-
ment of ASCET specifications. High-performance import/export functions help
you work without CM tools.

ASCET as Integration Tool

Complete development support on ASCET has the advantage that all compo-
nents are optimally harmonized. There is no additional effort needed for con-
verting between various tools or for integrating different sources. A single
environment will produce specifications, implementations and test cases for a
control unit. It also standardizes the management of different information
sources.

Integrating existing ASCET modules mainly involves configuring the operating
system. A definition is made regarding the form for invoking each of the func-
tions and how to exchange this information. A distinction is made between
cyclical tasks processed in a periodically recurring time pattern, and event tasks
which start when a particular event occurs (interrupt). The related parameters
can be simply set in ASCET. In addition, you can generate monitoring informa-
tion at this point in order to perform further analyses of the control algorithms
(e.g. run-time consistency).
Understanding ASCET

Operating System and Components

Planning the various tasks (scheduling) is based on priorities which the design
engineer stipulates. The ETAS operating system ERCOSEK supports both coop-
erative and preemptive scheduling. The main task of the operating system is to
transfer consistent data between processes. This takes place by using mes-
sages. When an interrupt occurs, the context of the current task is saved and
later restored after exception handling.

Drivers for HW components only belong partly to the operating system since
microprocessor peripheries can differ drastically depending on the application.
What is known as hardware encapsulation accesses partly the hardware
directly and partly the operating system. The abstraction of the functionality in
the form of a data interface can be kept relatively general and categorized
according to peripheral types (e.g. AD/DA converter, PWM, CAN). Above the
operating system and HW encapsulation plane, there are protocols for applica-
tion and measurement, diagnostics and bypass support. They are grouped as
automotive services. Together with HW encapsulation and the operating sys-
tem, they form the basis for the control unit application software. This modular
model for control unit software has a number of benefits: Elements can be
easily tested and exchanged. In many cases, different developer groups actu-
ally work on these parts. This division of labor supports rapid porting of an
executable state to a new control unit.

In addition to the ERCOSEK operating system, ETAS offers suitable HW encap-
sulation and automotive services. Based on this standard core, entry becomes
much easier to the development of control algorithms since there is little need
to bother about lower software planes.

4.2.5 Interfaces and Standards in the Tool Chain

Standards have a major significance worldwide in industry. Global operations
without standards is inconceivable nowadays. Standards secure communica-
tions both at functional and technical level as well as at human level. Standards
are an active contribution to protecting investment. Standards also offer the
flexibility of exchanging development results or tools from different origins.
They offer mechanisms to expand existing information easily and at low cost.

ETAS has made standards into a core concern. Our mission is to set and sup-
port standards. We do this by participating in standardization bodies and in the
development of our products. In this way, many significant milestones have
already been reached.

Our rapid prototyping hardware is based on the VME industry standard for
buses. Our systems are therefore easily expandable by just adding new plug-in
cards. Control unit interfaces have also been standardized in the car industry.
The ASAM-MCD standard defines the link between the control unit and the
Understanding ASCET 63

64
application system. The hardware is addressed via ASAM-MCD-1b drivers in
the application or development system. The ASAM-MCD-2MC description file
contains the necessary information about the addresses and conversion equa-
tions in the control unit software. ASAM-MCD-3MC defines unique interfaces
to test stands.

On the topics of documentation and data exchange at the development tool
level, an automobile standard has emerged from the MSR consortium. This
ensures consistent development at all times at different locations by different
partners using different tools.

At operating system level, the OSEK standard is becoming widespread for vehi-
cle control units. ETAS is making an active contribution here. Work is continued
both on the operating system kernel as well as on interfaces for communica-
tion and networks, i.e. the topics of HW encapsulation and automotive ser-
vices.

On request, ETAS can also offer interfaces to other tools which do not yet rank
as standards but which support the corresponding targets, e.g. data or model
exchange with other development tools (e.g. MATLAB Integration Package).
This simplifies the change-over to ASCET without losing expensive and costly
work results.

4.3 ASCET Development Environment in Practise

The ASCET development environment for electronic control units is the solu-
tion for all the requirements discussed above. The innovative technology of
ASCET is successful in improving the factors of time, costs, quality and flexibil-
ity in the strategic foursome. This is supported effectively by ASCET’s structure.
The basic ASCET package contains a number of specification options. Block
diagrams, state machines, text specifications and C interfaces provide the
design engineer with the right description options for control algorithms. Even
the operating system configuration is graphical and can therefore be per-
formed quickly and simply. The control process can be modeled and included
Understanding ASCET

in the development. A continuous database supports cross-project reuse. The
following sections concentrate on the technical characteristics of the ASCET
development environment.

Fig. 4-17 Structure of the ASCET development environment

Below the specification level comes code generation. It has variants for differ-
ent target systems and is based on the user’s implementation information. The
separation of physics and implementation makes the direct reuse of control
units possible. Code generation supports the following scenarios:

• Physics experiment

• Quantization experiment

• Implementation experiment

• Controller implementation

Code generation affects both arithmetic and memory handling as well as the
tasks and processes of the operating system. Platform dependencies and
project-specific modifications are encapsulated in a practical way. This is more
than just a pure code generation function, it is a general integration package
which contains all the characteristics for interfacing any target system.

A high-performance experimental environment permits direct access to all
data in the executable specification and the control unit program. Even during
the real-time execution of the program, data can be manipulated graphically
and displayed simultaneously. The user therefore has full control over the
program.
Understanding ASCET 65

66
Well thought-out hardware and software systems offer enormous flexibility in
prototyping work with ASCET. Existing sensors and actuators can be inte-
grated in a closed control loop, thus permitting a step-by-step development
from the prototype to the product.

Bypass techniques support this process and offer a cost-effective entry to this
innovative technology. The system provides continuous support for most con-
ventional hardware interfaces (ETK and CAN).

Another advantage for our customers are open interfaces. Data reuse and
investment protection have thus become practical reality.

4.3.1 Physical Specification of Control Systems

The specification of control algorithms must be based on the design engineer’s
viewpoint. Use is made of tried and tested graphical methods for block dia-
grams and state machines. However, in most cases it is much easier to formu-
late a mathematical expression directly than to create a block diagram. ASCET
therefore supports text specification in JAVA-conform syntax. This section
explains this method in more detail. It will take a closer look at the operating
system configuration and control process modeling.

Fig. 4-18 Relationship between ASCET specification elements

The specification in ASCET consists of a number of dependent elements. The
executable specification or the operating system configuration is continuously
managed in a project (partly for implicit simplification, i.e. with a non-visible
default project). Projects consist of a number of modules and tasks. These ele-
ments again contain several processes which are specified in the modules and
scheduled for execution in the tasks. Modules encapsulate several class
instances as objects. Nevertheless, modules only occur once. Each instance has
precisely one class which contains the related methods. As opposed to a mod-

N
Project

Module

Instance

Task

Method

Process

Class

NNNN

N
N

N

N

N

N
1

Understanding ASCET

ule, a class can have several instances. Methods differ from processes in that
they contain arguments and return values. Inter-process communication is pro-
vided by messages.

Both classes and modules can be implemented by block diagrams or text spec-
ifications. C code modules and classes are also offered. State machines are
treated as classes.

Classes are regarded as the main representatives of reusable elements. Accord-
ingly, ASCET offers a large library of useful classes from the field of control
technology as well as general software engineering in the database.

All the ASCET elements mentioned above contain implementation informa-
tion. In this way, they can handle target-specific or project-specific variants.

Block Diagrams

The block description of control systems is based on interfaces in the control
process. In ASCET, this approach is supplemented by the element of encapsu-
lation which is known from object-oriented programming languages. ASCET
blocks represent objects which encapsulate items of information and are inter-
connected by interfaces. Object-based presentation ensures that they can be
re-used easily and reliably. The block diagrams contain a purely physical presen-
tation of control algorithms. Implementation information is easy to add to the
elements using the block diagram by means of editors.

In traditional block diagrams, the precise order of computation is not always
defined precisely. In addition to typical data flow elements (e.g. variables, char-
acteristics, arithmetic operators, etc.) block diagrams in ASCET contain control
flow elements such as branches. The control flow is shown in a well-arranged
presentation by separate line and link types. In ASCET, you can also specify the
processing order of block operations directly by assigning block attributes to
the graphic. Complex algorithms can at last be presented precisely in graphic
form by means of sequencing and control flow elements. These are then very
easy to process.

An application-related view concept has been devised to support know-how
protection for cross-company work. The user defines in a number of different
views what blocks can be displayed or concealed in the documentation. ASCET
also lets you define password-protected access rights at class, module and
project levels.

State Machines

Hierarchical state machines are in widespread use in control systems. This mod-
eling method is of special interest for systems where different control strate-
gies are required depending on the working point. Trigger conditions and state
methods can also be specified by block diagrams or even by texts. The user can
select the best way of presentation.
Understanding ASCET 67

68
Text Specification in ESDL

Contrary to the development of C code, the text specification of control algo-
rithms in ESDL (Embedded Software Description Language) is a portable phys-
ical description. Instances are also encapsulated in classes and modules which
can be enriched with target-specific implementation information. ESDL is
based on JAVA since this C-like language is widespread and is easily learnable.
Specifications in ESDL, state machines and block diagrams can be mixed in any
combination, i.e. a class may contain some instances in block diagram form or
others as text specifications in ESDL. As opposed to C, ESDL requires no pointer
arithmetic since all the objects can be directly addressed. There is no dynamic
instantiation. In other words, in ASCET, all objects are fixed at compilation
time. This allows an early consistency check of the control unit programs and
shows that the available memory is indeed sufficient. This also applies to han-
dling arrays, matrices, characteristics and maps. These objects have a fixed
access protocol as classes and require no pointer arithmetic.

Integrating C

C code within the context of ASCET must be regarded at the implementation
level. Inevitably, it is target-specific and is also managed as such.

C sources can be integrated in two ways, i.e. as internal or external C code.
With internal C code, the sources are managed in the ASCET database in the
same way as ESDL classes. External C code, on the other hand, is stored in the
user’s final system and can therefore be used directly for other applications (see
above: "ASCET as Additional Programmer"). Binary code can also be inte-
grated if C-sources are not available.

The use of C code blocks is useful if the project includes special target-specific
drivers. The interface is bidirectional. Methods can be invoked from any class
by C code blocks. In addition, the C code also has an access option to other
physically specified objects. It is obvious that the interface deserves special
attention since the details of implementation are vital.

Operating System Configuration

The operating system interface is located in the so-called project see above).
Priorities are assigned for tasks incorporated in the scheduling. In addition,
each task has other attributes which are vital for scheduling the processing
order, e.g. whether they are cooperative or preemptive, whether they are cycli-
cal or whether they are started at an external event or only initially. The oper-
ating system is then configured on this basis. Other information is taken into
consideration. The processes invoked in the tasks communicate by means of
Understanding ASCET

messages. Messages from various modules are linked by identical names. In
the code generator, this information is checked for consistency (use of mes-
sages at several points, handling global variables, etc.).

Fig. 4-19 Processes and tasks within the project

The operating system is configured visually in a simple editor. This provides the
design engineer with a continuous overview over the total system. Changes
can be made to scheduling very easily and quickly. Finally, this is also supported
by the fact that the ETAS operating system ERCOSEK has a precompiled library.
As a result, hardly any effort is required when making changes to the operating
system configuration except for the link process.

Modeling the Control Process

Specifying complex control algorithms without modeling the related process is
no longer conceivable today. ASCET offers a special advantage: The control
process and the process model can be developed in the same system. This does
away with extra time consumed by conversions or simulator couplings. In small
projects, the process and the control stem from a single source, i.e. they are
developed by a single engineer.

ASCET also has the openness of integrating other systems. For example, ETAS
has created a link to Matlab which permits the design engineer to simulate
Simulink models together with ASCET specifications.

All in all, this technology takes a giant step forward in the direction of effi-
ciency and effectiveness. This applies above all when the laboratory car is avail-
able in the form of models and hardware. It can save a lot of time. Safety-

Project / Scheduling

 100 ms synchro 5 ms
Understanding ASCET 69

70
critical analyses can be speeded up from the desk at low cost and without
danger. The driver need only step into the car for the trials. ETAS offers this
technology now for many systems.

4.3.2 Implementation and Code Generation

Automatic code generation for series control units is the key to an efficient
development methodology. ASCET has set standards here. It is not only the
special challenge of fixed point arithmetic. Operating system interfaces must
also be configured for floating point processors. Memory management must
be optimized and hardware encapsulation must be integrated. Furthermore, a
distinction must be made in floating point systems between precise and dou-
ble precise data. This is at least important in the simulation.

Fig. 4-20 Principle of automatic code generation in ASCET: the inputs
Understanding ASCET

In ASCET, the implementation consists of the data types, value ranges and
memory storage information. Conversion equations form the link between
these implementation levels and the physical data description. In addition to
memory storage information, there is a definition whether functions are calcu-
lated in line or whether a utility should be used for analyzing characteristics.

Fig. 4-21 Principle of automatic code generation in ASCET: the outputs

Automatic code generation is not a one-way street. In parallel to the generator
C code, an ASAM-MCD-2MC description is required. It provides the necessary
address information for application and measuring systems. This is obtained by
reading back and interpreting the MAP file after generating the program.
ASCET-SE contains this function. You can even start from an ASAM-MCD-2MC
file, read it into ASCET and base a first data model in ASCET from it (re-engi-
neering an existing program).

Algorithms

The automatic conversion of block diagrams, text specifications and state
machines in target-specific C code runs over a common intermediate layer that
uses implementation information to optimize the mapping of algorithms on
the target system. In addition to mastering complex logic, the arithmetic poses
a special challenge here. The same goes for integer code generation. Even the
simple assignment

a = b
Understanding ASCET 71

72
of two variables is not a trivial operation for code generation if the implemen-
tations are different. Let a and b be implemented by the following equations
as unsigned 8 bit variables (range from 0 to 255):

a = 2 * a_impl, b = 3 * b_impl

This is followed by a simple substitution:

a_impl = 3 * b_impl / 2

Care must be taken here with the series of operations in order to consider the
requirement for maximum precision. If you first perform the division, the vari-
ous conversion equations would be ineffective due to the integer computation
and the results would be about 50% incorrect.

a_impl = (3 / 2)* b_impl = b_impl

The question of overflow must be taken into account. This means that if you
first multiply by 3, there is an overflow as soon as b_impl becomes greater
than 255 / 3 = 85. Similarly, you must always be careful of underflows and
rounding errors. If you first divide by 2, this is equivalent to a right shift opera-
tion, i.e. the last bit is dropped. No distinction can then be made whether
b_impl has the value 1 or 0. In both cases, the result for a_impl and thus
also for a is the value 0.

In fact, the assignment a = b only makes sense if the physical ranges are
identical (here max. 0 to 510). b_impl can therefore assume the maximum
value 510 / 3 = 170. An overflow can occur here and must be avoided at all
costs. You may then think of making a case distinction in the code generation,
i.e. first multiply for values from b_impl to 170 and first divide for values from
b_impl greater than 170. But this leads to a requirement for more code. So
here, you must accept a negligible error in precision of max. 1.5. within the
entire value range.

It is clear that the situation itself can become more difficult with regular arith-
metic operations with few operands, not to mention complex links and expres-
sions. The automatic code generation feature in ASCET relieves the user from
this type of problem.

Memory Handling

The control unit architecture defines memory areas which serve a variety of
purposes. Some areas are reserved for the program, others store applicable
data. A physical distinction must be made between ROM, RAM and Flash. In
many control units, special areas are reserved for storing bits. In many cases,
values can only be stored to even addresses. Some memory areas are also
reserved as inputs or outputs to and from the processor periphery. ASCET con-
siders this information continuously. The control unit architecture is available to
the user to describe the implementation and it can be adapted to the physical
conditions in every case.
Understanding ASCET

All standard data (e.g. measurement and calibration variables) automatically
receive a default memory area assigned. The automatic code generation func-
tion transfers these implementations to pragma statements in C code. Here
again, the user is relieved of annoying, error-prone management work.

Operating System Configuration

Configuring the operating system with ASCET is also very simple for the user.
The user is guided by a graphical user interface to specify the necessary infor-
mation in the ASCET project. C code is also generated automatically.

The main task of automatic code generation is to optimize communication
between various processes by means of messages. If interruptions occur, all
messages must be saved in order to continue working with consistent data
after the interruption. This requires an enormous effort which is frequently
superfluous. In fact, only data which can be inconsistent during an interruption
need be saved. This provides a high degree of potential optimization that is
exploited in the automatic code generation function.

As a result, the user saves a lot of work since the complex interruption options
are analyzed automatically and are considered in the code generation function.
It excludes errors caused by forgetting a backup operation. The greatest relief
from the burden of complex management operations come during the devel-
opment phase when the structure of processes and tasks can change. ASCET
offers both convenience and reliability here.

Platform Dependence and Project-specific Adaptation

The high performance of ASCET and automatic code generation are not only
reflected in successful product developments which our customers have
already carried out, but also in the capability of mastering future requirements
effortlessly. The key to this is the open, adaptable interface of this technology.
The expanded applicability has been proven by many instances, e.g. integrat-
ing non-proprietary operating systems, successful transfer of project-specific
requirements (e.g. in the form of naming rules or adaptation to customer-spe-
cific development processes).

Dividing the development into physical modeling and the specification of the
implementation forms the basis for extensive adaptation possibilities. The plat-
form-specific characteristics can be encapsulated at a central point (of the
implementation) and can therefore be exchanged in a single step. To this is
added the wide configuration options of the automatic code generation func-
tion. Building on a central intermediate layer in ASCET, code production rules
are used in ASCET-SE and they are adaptable to specific requirements. This
gives ASCET unprecedented access to the automatic code generation function,
if this is necessary or useful during development activities.
Understanding ASCET 73

74
4.3.3 Prototyping with ASCET

ASCET produces the first results very quickly and they can be transferred just
as quickly into products. The factors governing the success of the prototyping
feature is the experimental environment and the supported hardware. This sec-
tion describes this in more detail.

Experimental Environment for Extreme Requirements

The ASCET experimental environment lets the user carry out various analyses
on the development objects without changing them. It is therefore a universal
working environment in which to define and generate stimuli quickly and sim-
ply, record and analyze data, and change variables. The simulation can be
started or stopped at any point. Settings obtained, optimized datasets and
window configurations can be saved separately for re-use as a so-called exper-
iment and therefore re-used in the long term. Several experiments can be man-
aged for each model for a variety of purposes. There are several high-
performance graphical and text displays and editors for measuring and adjust-
ing and they can be combined flexibly. The ASCET experimental environment
offers this excellent functionality both offline or online in the real-time experi-
ment.

After the first analysis of the control algorithms as a physical experiment,
ASCET also supports the analysis of the quantization and implementations in
the same working environment. In this way, the development can be refined
step-by-step through to the actual product. Special support is also given by
providing special monitor variables in the experimental environment.

During the first analysis of new modules or classes, the experimental environ-
ment permits the step-by-step inclusion of single processes and methods in the
simulation. This dynamic operating system configuration directly in the experi-
mental environment permits a flexible, fast operating method and results very
quickly in realistic results.

The viewing and adjusting elements used in the ASCET experimental environ-
ment are identical to those used in our INCA-PC application and measuring
system. It ensures the continuity of the development environment at the oper-
ating system level from the concept through to the product.

Simulation Systems: Hardware and Software

Prototyping mainly lives from the hardware supported. The main part is the
execution platform for the simulation. ETAS offers a scalable concept here. A
high-performance computer node (PowerPC) performs the basic analysis of
new control algorithms. This platform has proved itself and offers a variety of
expansion options.
Understanding ASCET

The operating system on the simulation platform is ERCOSEK as in the series
control units. Prototyping is therefore highly realistic and all the necessary anal-
yses can be performed in real-time.

Fig. 4-22 ES1000 Universal VME bus System

Many cards can be included in the simulation as plug-in cards in our ES1000
VME bus system. The system therefore supports the main industry standard,
The possibilities cover the use of existing commercial cards for including exter-
nal sensors and actuators through to the use of special project-specific signal
conditioning cards that are made to measure.

Integrating Existing Sensors and Actuators in a Closed Control Loop

ETAS offers hardware and software solutions for all customary interfaces to
sensors and actuators. We have VME bus cards for

• AD/DA conversion

• PWM signal exchange

• CAN interface

• LIN interface

• Digital I/O

• FPGA

In addition we have special solutions for temperature measurement and
recording emission data. The solutions can be easily integrated in this architec-
ture.

The PC interface is implemented by ethernet. It can therefore work with
mobile laptops. Older hardware system using a parallel (printer) port are still
supported, as well. An efficient protocol exchanges data between the experi-
Understanding ASCET 75

76
mental hardware and experimental environment online in ASCET. This does
not disturb the execution of the closed local loop at hardware level. Working
with ASCET ranges from the concept to the realistic prototypes.

4.3.4 Bypass

We provide two physical interfaces for the use of our bypass technology:
Memory emulation via ETK and the CAN interface. Other hardware interfaces
can be customized on request. All bypass systems are based on an executable
control unit for which a function can be changed or developed. In order to
apply the bypass, there must be a modification of this function. The modifica-
tion contains the function scheduling. In other words, the time scale in which
the function is processed must be known in advance. Depending on the situa-
tion, the necessary safety precautions must be taken in case communication
errors occur. For example, if a timeout occurs in the CA communication, an
emergency program can be started or default data must be anticipated.

Bypass technology is mainly intended as a support for development joint ven-
tures where certain functions cannot be published for reason of know-how
protection. Since only one interface is freed up, design engineers can save
other more complex measures. What is more, a major part of the total system
is always stable and partners can fully concentrate on developing an innovative
function. The result is a cost-effective solution with the greatest utility.

ETK Interface— Memory Emulation

The emulator test probe (German acronym: ETK) is a unique interface to the
control unit developed by ETAS. It is based on the full or partial emulation of
the control unit memory in the form of a DPRAM. The control unit has direct
access to it from one side and from the PC side, it can be operated transpar-
ently and read out. This requires a change to the control unit since the memory
emulation can only be implemented over very short distances between the ETK
and the processor. Today ETKs are already very small and can be designed in
hybrid technology.

For our ES1000 VME system, we offer plug-in cards for connection to the ETK.
Since ETKs are offered or modified for many different processors, this is a uni-
versal solution for the application.

CAN Interface

In cases where an ETK is not used for various reasons, the solution is a CAN
interface. This requires no change to the control unit hardware and is a possi-
ble solution in almost all cases. However, this solution does not attain the per-
formance data of the ETK. In addition, a sufficient number of free messages
Understanding ASCET

must be available. Given these constraints, the CAN bypass in conjunction with
ASCET is still the first choice in many cases since it is particularly cost-effective,
not to speak of its characteristics already described.

4.3.5 Reuse and Open Interfaces

The topic of reuse has been discussed for many years with keywords such as
modularization, object orientation and interface compatibility. In ASCET, re-
use and open interfaces have become practical reality. This is the result of the
careful analysis of development steps and development results in real projects
and the direct transfer of these observations into useful characteristics in our
tools.

This is how we have put together a library of excellent blocks for specifying
control algorithms. These blocks have proved themselves in practice and repre-
sent the standard for our competitors.

Reusable experiments are linked to this library. They permit a reproducible
response for old and new development tasks. Our interfaces to tools for appli-
cation, trials and testing can include all the relevant work steps in the develop-
ment of the overall system. Not only do we offer interfaces to other ETAS tools
but also interface standards such as ASAP and MSR which are universally
accessible.

Reuse through Database Support

The ASCET database system is the basis for our reuse concept. It was imple-
mented in the ASCET kernel from the start and thus forms the backbone of the
tool. The benefits for the user are obvious. All data is saved reliably in a sepa-
rate work environment and is protected from unauthorized or unintended
manipulation or even destruction. In the end this data represents valuable
work results which require special protection. To manage this data, the ASCET
database provides all the necessary mechanisms for efficient day-to-day work
both for single users as well as for teamwork.

Program and Database Management Using Configuration Management
Tools

The use of purchased configuration management tools has frequently been
preferred in order to manage variants of development streams or to permit
large teams to work together on complex solutions. These tools also manage
other company data. In fact, tool selection is specified by the customer. To be
able to interface any configuration management tool, ASCET supplies the nec-
essary interfaces. In this solution, ASCET operates as a client to the configura-
tion management tool. However, if ASCET is used as a server, ASCET’s
complete database functionality can be harnessed for a detailed modification
Understanding ASCET 77

78
to the management mechanisms of the configuration management tool. All
that has to be done is to modify the interfaces in JAVA. ASCET can then be
used to implement innovative and complex control tasks.

If you intend to use a configuration management tool, please contact ETAS for
a solution adjusted to your particular requirements.

4.4 ASCET Software Structure

The ASCET software family is divided in four products, which support the dif-
ferent phases in the users’ working process.

Fig. 4-23 The modular structure of ASCET

The following sections briefly describe the functional scope of the individual
products.

ASCET Basic System

The ASCET base system is the foundation for the other products, which cannot
be installed without it.

ASCET Modeling & Developing

ASCET-MD allows the specification of models as block diagrams, in ESDL, or in
the C programming language. As in previous ASCET-SD versions, models can
be specified and managed, as well as simulated in offline experiments.

The same version of ASCET-MD can be installed only once on a given PC.

ASCET-RP

ASCET-RP offers the full functionality required for rapid prototyping. It is
described in a separate manual.

With ASCET-RP, you can view components; modeling or changing models or
model elements, however, is possible only in connection with ASCET-MD.

ASCET

Basic System

ASCET-SE

Software Engineering

ASCET-RP

Rapid Prototyping
ASCET-MD

Modeling & Design
Understanding ASCET

The same version of ASCET-RP can be installed only once on a given PC. It is
possible to install ASCET-RP, ASCET-MD, and ASCET-SE for one or multiple
micro controllers simultaneously.

ASCET-SE

ASCET-SE offers the full functionality required for the generation of ECU code.
It is described in a separate manual.

With ASCET-SE, you can view components; modeling or changing models or
model elements, however, is possible only in connection with ASCET-MD.

ASCET-SE is available in ports for several micro controller targets. Unlike the
other products of the ASCET family, ASCET-SE can be installed simultaneously
for different targets on the same PC. It is possible to install ASCET-SE for one
or multiple micro controllers, ASCET-MD, and ASCET-RP simultaneously, as
well.
Understanding ASCET 79

80
 Understanding ASCET

5 General Operation of ASCET

This section provides information on the window and menu structures, control
options using mouse and keyboard, and help features.

We encourage you to read this chapter since some of the control options are
described only here. Although all techniques explained are Windows stan-
dards, they might be unknown to a less experienced Windows user. They are
therefore described here as a central summary.

Simple operation using the keyboard has been emphasized during the devel-
opment process of ASCET. For special features and deviations from Windows
conventions regarding keyboard operation, please refer to "Keyboard Con-
trol" on page 219.
General Operation of ASCET 81

82
5.1 Window Structure

The ASCET window elements

• Title bar (1)

• Menu bar (2)

• Button bar (3)

• Window area (4)

• Bottom bar (5)

• Tab (6)

• Dialog box (7)

• Fields (8)

9

1

2

4

6 8

3

5

7

General Operation of ASCET

• Field caption (9)

5.2 Button Bars

The most common commands are also available as buttons. This way, a com-
mand can simply be executed with a click on the mouse.

All buttons located on the button bar are mouse-sensitive. If you place the
cursor on a button and hold it for one second, a text box is displayed right next
to the button selected which displays the button function.

5.2.1 Buttons in the Component Manager

1. New (creates a new database)

2. Open

3. Save

4. Cut

5. Copy

6. Paste

7. Delete

8. Expand all

9. Collapse all

10. Import

11. Export

note

All commands which can be executed using the individual buttons are also
provided in the corresponding menus.

1 2 3 4 5 6 7 8 9 10 11
General Operation of ASCET 83

84
12. Insert Folder

13. Insert Project

14. Insert Module - <Type>

15. Insert Class - <Type>

The arrows (14a and 15a) can be used to select the object type.

16. Insert State Machine

17. Insert Enumeration

18. Insert Boolean Table

19. Insert Conditional Table

20. Insert Container

21. Options

22. ? (opens the "AboutASCET" window with information on the installed
products of the ASCET product family)

23. Search - <criterion> (searches the database for a search string, using a
defineable search criterion)

The arrow 23a can be used to select the search criterion.

24. Input field for the search string

5.2.2 Button Bars in the Block Diagram Editor

1. Undo

2. Redo

3. arithmetic operators (Addition, Subtraction, Multiplication, Division,
Modulo)

12 13 1514 16 17 18

15a14a

20 2119 20

23 24

23a

1 2 43 5
General Operation of ASCET

4. logical operators (And, Or, Not)

5. comparison operators (Greater, Less, Less or Equal, Greater or Equal,
Equal, Not Equal)

6. Abs (returns the absolute value of the input)

7. Max (returns the largest input)

8. Min (returns the smallest input)

9. Between (checks whether the input lies between the limiting values)

10. Negation (reverses the input sign)

11. MUX

12. Case

13. If-Then

14. If-Then-Else

15. While

16. Switch

17. Break (specifies immediate exit from a process/method)

18. combo box to select the number of operator inputs

19. combo box to select a view

20. combo box for the zoom factor

21. Connect

22. elements in state machines (State, Junction, Input, Output), only avail-
able when you edit a state machine

23. variables (Logic, Signed Discrete, Unsigned Discrete, Continuous)

24. Enumeration

6 7 8 9 1110 12 13 14 15 16 17

18 19 20

21 22 23 24 2625 27 28 29
General Operation of ASCET 85

86
25. Array

26. Matrix

27. dT system parameter

28. Continuous Parameter

29. Implementation Cast

30. characteristic lines and maps (Distribution, One D Table Parameter, Two
D Table Parameter)

31. combo box to select the type of the characteristic line/map

32. Resource

33. messages (Receive, Send Receive, Send; only available for modules)

34. literals (String, True, False, 0.0, 1.0)

35. Self (reference to the current object itself)

36. Hierarchy

37. Comment

38. Generate Code

39. Open Experiment for selected Experiment Target

Unnumbered button bar elements are always disabled in the block diagram
editor.

note

The name dT is reserved for the system parameter. You cannot create
any other element with the name dT. Since upper and lower case letters
are not distinguished, the names DT, dt, and Dt are reserved, too.

31 33 3532 3430

393836 37
General Operation of ASCET

5.2.3 Button Bars in the C Code and ESDL Editor

The button bar elements (1) to (9) are available both in the C code editor and
in the ESDL editor. Button (7), however, is deactivated in the C code editor.
They correspond to the button bar elements (23) to (31) in the block diagram
editor (cf. page 85).

Buttons (10), (11), (13) and (15) are available in both editors, too. They corre-
spond to the buttons (32), (33), (38) and (39) in the block diagram editor (cf.
page 86).

12. External Source Editor (C code editor only; opens the editor for external
sources)

14. Compile Generated Code (activated in the C code editor only)

Unnumbered button bar elements are always disabled in the C code and ESDL
editor.

16. Activate External Editor (in the bottom bar of the respective editor; acti-
vates the possibility to edit the component code in any text editor out-
side ASCET.

5.2.4 Button Bars in the CT Block Editors

CT blocks can be specified in C code, ESDL or as block diagrams. The following
buttons are available in all three editors:

1. Input

2 3 4 5 8 96 71

10 12 14 1511 13

16

2 3 4 51 6
General Operation of ASCET 87

88
2. Output

3. Constant

4. combo box to select the parameter type

5. One D Table Parameter (characteristic line)

6. Two D Table Parameter (characteristic map)

The button bar elements (7) and (9) correspond to the elements (38) and (39)
in the block diagram editor (cf. page 86).

8. Compile Generated Code (activated in the C code editor for CT blocks
only)

Unnumbered button bar elements are always disabled in the CT block editors.

The following buttons are only available in the ESDL or C code editor for
CT blocks:

10. Discrete State

11. Continuous State

12. Steplocal (variable)

13. Parameter (type is selected in combo box (4))

14. Dependent Parameter (type is selected in combo box (4))

15. Activate External Editor (in the bottom bar of the editor; activates the
possibility to edit code in any external text editor)

The following button bar elements are only available in the C code editor
for CT blocks:

16. combo box to select direct or non-direct block behavior

17. External Source Editor (opens the editor for external sources)

8 97

11 12 13 1410 15

1716
General Operation of ASCET

The following buttons are only available in the block diagram editor for
CT blocks:

18. arithmetic operators (Addition, Subtraction, Multiplication, Division)

19. combo box to select the number of operator inputs

20. combo box to select a view

21. combo box for the zoom factor

22. Connect

23. Global Parameter (type is selected in combo box (4))

24. Hierarchy

25. Comment

5.2.5 Button Bar Elements in the Project Editor

1. Specify Code Generation Settings (opens the "Settings" dialog with
the code generation settings)

2. Edit Data (opens the data editor for the project)

3. Edit Implementation (opens the implementation editor for the project)

The button bar elements (4) to (11) correspond to the button bar elements (21)
and (23) to (29) in the block diagram editor (cf. page 85).

The button bar elements (12), (13), (15) and (16) correspond to the button bar
elements (30), (31), (36) and (37) in the block diagram editor (cf. page 86).

14. Send Receive Message

19 2018 21

22 23 24 25

1 4 6 7 98 1052 3 11

13 15 1612 14
General Operation of ASCET 89

90
Unnumbered buttons are always disabled in the project editor.

Button (17) corresponds to button (38) in the block diagram editor (cf.
page 86).

18. Compile Generated Code

19. Build Executable Code

20. Rebuild Executable Code

21. Transfer Project to selected Experiment Target (transfers the project to
the experiment selected in combo box (25))

The button is only enabled when you have selected the target ES1130
or ES1135 from the target options and the entry INCA or INTECRIO
from combo box (25).

22. Open Experiment for selected Experiment Target (generates code and
opens the experiment selected in combo box (25))

The button is disabled when you have selected the entry INTECRIO or
INCA from combo box (25).

23. Reconnect to Experiment of selected Experiment Target (restores the
connection to the experiment running on the target selected in (25))

The button is disabled when you have selected the target ES1130 or
ES1135 from the target options or the entry INCA from combo box
(25).

24. Experiment Target

The available entries depend on the target you chose in the target
options and on the other programs (e.g., INTECRIO or INCA installed
on your PC.

25. Refresh for the "Formulas" tab

26. Add missing Formulas

Finds undefined formulas in the active implementation, and adds a lin-
ear formula behaving like the identity for each detected formula name.

17 18 19 20 21 22 23 24

25 26
General Operation of ASCET

5.2.6 Button Bar Elements in the Offline Experiment

1. Exit to Component (closes the experiment and opens the component
editor; the appearance of the button depends on the component used
in the experiment)

2. Load Environment (loads an experiment environment, i.e. predefined
measure and calibration windows with assigned variables)

3. Save Environment

4. Save Environment As

5. Stop Offline Experiment

6. Start Offline Experiment

7. Pause Offline Experiment (pauses the experiment; continue with but-
tons (6) or (8))

8. Step Offline Experiment

9. input field for step size

10. Open CT Solver

This button is only available when you are experimenting with a
CT block or a hybrid project.

11. Open Event Generator

This button is not available when you are experimenting with a
CT block or a hybrid project.

12. Open Event Tracer (opens the "Event Tracer" window for data tracing)

13. Open Data Generator

14. Open Data Logger

15. Update Dependent Parameters

16. Expand / Collapse Window (shows/hides the component display)

17. Always on top (keeps the "Physical Experiment" window always in the
foreground of the monitor)

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 18 1916 17
General Operation of ASCET 91

92
18. Navigate down to child component

19. Navigate up to parent component

5.3 Operation Using The Keyboard

Simple operation using the keyboard has been emphasized during the devel-
opment process of ASCET. Individual keys are preferred over the function keys
<F1> to <F12>, which in turn are preferred over keyboard shortcuts using
<CTRL> and <ALT>. You can display a complete overview of the keyboard com-
mands currently used at any time by pressing <CTRL> + <F1>.

5.3.1 General Keyboard Control

This table lists the most important keys and keyboard shortcuts used to control
the New Experimentation Environment of ASCET. For a complete list of all key-
board commands, please refer to chapter "Keyboard Control" on page 219.

Key Function

<F2> change to Edit mode (e.g., for table entries)

<SHIFT> + <F10> open context menu for selected item (right mouse button)

<ALT> activate main menu

<ALT> + <F4> close active window;
in the Component Manager: exit ASCET

<ALT> + <F6> switch between open ASCET windows

<ALT> + <SPACE> open system menu of application window

<ALT> + <TAB> switch between open applications

<CTRL> + <F1> show hotkey assignment

<CTRL> + <A> select all items (e.g., in a list)

<CTRL> + <C> copies data to the clipboard

<CTRL> + <V> inserts data from the clipboard

<CTRL> + <X> cuts data to the clipboard

<CTRL> + <Y> redo last action (only in editors)

<CTRL> + <Z> undo last action (only in editors)

<DOWN ARROW> (↓),
<UP ARROW> (↑),
<LEFT ARROW> (←),
<RIGHT ARROW> (→)

move cursor to table item or list item with arrow keys,
 <RIGHT ARROW> also opens folder,
 <LEFT ARROW> also closes folder,

<ENTER> confirm input and quit input mode; expand or collapse
branches
General Operation of ASCET

5.3.2 Keyboard Control According to the Windows Conventions

The WINDOWS® conventions apply to the general operation of ASCET, such
as navigating through menus or activating a specific window.

Pressing the underlined letter in a menu while holding down the <ALT> key
activates the corresponding command. You can activate a subordinate menu
command by pressing the underlined letter together with the <SHIFT> key.

For example, to open the File menu in Component Manager with a keyboard
command, press the <ALT> + <F> key combination.

To switch to the next window or list box within the working windows, press
the <TAB> key (in the order from top left to bottom right). As an alternative,
you can use <ALT> key and the underlined character (number or letter) of the
field or list label to switch to the corresponding field or list box.

The arrow keys allow you to skip to the next item in list boxes. You can select
multiple items by making your selection while pressing the <SHIFT> key.

According to the WINDOWS® conventions, you can switch between the work-
ing windows using the keyboard shortcut <ALT> + <TAB>. In this sense, all
subsystems of ASCET, such as the component editors, the experiment environ-
ment, or implementation or data editor, are treated as individual applications.

If you need <TAB> within the window for other functions, e.g. when editing
text, you can switch to the next window element using the keyboard shortcut
<CTRL> + <TAB>.

Switching between several tabs in a window or field (e.g., in the Component
Manager, "3 Contents" field) is done—pursuant to the MS-WINDOWS® con-
vention—by pressing the <CTRL> + <TAB> key combination.

 delete selected item

<ESC> cancel input, discard changes

<SPACE> select table or list item or deselect active selection

<TAB> move focus to next item (option) in a window (<SHIFT> +
<TAB>: opposite direction)

Key Function
General Operation of ASCET 93

94
Within a window, you can use the underlined letter of the box or list title, while
holding down the <ALT> key, to switch to the corresponding list box. For
example, <ALT> + <2> would activate the "2 Comment" text field.

5.4 Operation Using The Mouse

In the office or lab, you can use the mouse to conveniently control ASCET. The
use of the mouse corresponds to WINDOWS® conventions.

You can select multiple items by making your selection while pressing the
<SHIFT> or <CTRL> key.

Right-clicking on the window elements opens respective context menus.
General Operation of ASCET

5.4.1 Drag & Drop

When creating block diagrams, or setting up measure or calibration windows,
you can use the drag and drop technique (left-clicking on the variable, keeping
the mouse button pressed and moving the variable to the target window/field
using the mouse).

It is as easy to copy a value from one window to another. Commands which
cannot be performed, such as copying a parameter to a measuring window,
will be ignored.

5.5 Hierarchy Trees

ASCET often displays information such as the contents of a database in a hier-
archical tree structure. In order to see all branches and the entire contents of
such a tree structure, you have to expand or collapse the branches. ASCETal-
lows you to expand several branches automatically or to expand specific partial
trees.
General Operation of ASCET 95

96
To expand several branches automatically:

• To expand or collapse all branches at once, you can use the View →
Expand All or View → Collapse All menu option or the buttons in
the button bar (see „Buttons in the Component Manager“
on page 83).

To expand individual partial trees:

• To open the desired branch, click with the mouse on the little "+" box
next to this item or press the <+> key. Clicking a second time on the
same little box or pressing the <-> key collapses the branch again.

Or

• Move the focus to the item with the <UP/DOWN ARROW> key and then
press the <RIGHT ARROW> key to expand the branch. Collapse the
branch by pressing the <LEFT ARROW> key.

A "+" box indicates
a branch trat can be
expanded.

A "-" box indicates
an expanded
branch.

If there is no box,
this is the end of the
structure. This
branch cannot be
further expanded.
General Operation of ASCET

5.6 Supporting Functions

5.6.1 Monitor Window

The monitor window (see chapter 2.4 in the ASCET user's guide) is used to log
the working steps performed by ASCET. All actions, including errors and noti-
fications, are logged. As soon as an event is logged, the monitor window is
displayed in the foreground.

In addition to displaying information, the monitor window also provides the
functionality of an editor.

• The display field in the "Monitor" tab of the monitor window can be
freely edited. This way, your own notes and comments can be added to
the ASCET messages.

• The ASCET messages can be saved as text files along with your com-
ments.

• Other ASCET text files already stored can be loaded so that you can
compare specific working steps.

5.6.2 Keyboard Assignment

You can display an overview of the keyboard commands currently used at any
time by pressing <CTRL> + <F1>.

5.6.3 Manual and Online Help

If not specified otherwise during installation, the entire ASCET manual is avail-
able electronically and can be displayed on the screen at any time, e.g., via the
menu options in the Manuals menu. The volumes, named ASCET V5.2
General Operation of ASCET 97

98
Quickstart.pdf, ASCET V5.2 Manual.pdf, ASCET V5.2 Refer-
ence.pdf, are stored in the ETAS\ETASManuals folder. Printed manuals
can be ordered here:

http://www.etasgroup.com/order_manual/ascet

Using the index, full text search, and hypertext links, you can find references
fast and conveniently.

The online help can be accessed via the <F1> key. It is stored in the
ETAS\ASCET5.2\Help folder.
General Operation of ASCET

http://www.etasgroup.com/order_manual/ascet

6 Tutorial

The tutorial mainly addresses users who are new to ASCET. It describes the use
of ASCET using practice-oriented examples. The entire tutorial contents are
subdivided into short individual components based on each other. Before you
start working on the tutorial, you should have read Chapter "Understanding
ASCET" on page 47.

6.1 A Simple Block Diagram

In ASCET you use components, such as classes and modules, as the main build-
ing blocks of your applications. You can either use predefined components,
which come with ASCET or have been developed earlier, or create your own,
which is what you will be doing in this tutorial.

In ASCET components are usually specified graphically. Once all the compo-
nents have been specified, they are assembled into a project, which forms the
basis of an ASCET software system. A software system consists of C code that
has been generated from the graphical model description, and which can be
run on a microcontroller or experimental target computer.

6.1.1 Preparatory steps

Before you can start, you have to open a database to work in. All the compo-
nents of this tutorial will be stored in this database, so you will only have to do
this once.

All components and projects for this tutorial can be found in the folder called
ETAS_Tutorial_Solutions in the database tutorial. It is therefore
not necessary to specify all the components described here yourself .

It is, however, advisable to specify at least the components of lessons one,
three and four, to get some practice using ASCET.
Tutorial 99

100
At the start of ASCET, the Component Manager opens, loading the database
that was last opened.

It is recommended that you create a new database for the tutorial to keep the
data transparent.

To create a new database:

• In the Component Manager, select File →
New Database

or

• click on the New button

or

• press <CTRL> + <N>.

The "New database" window opens.
Tutorial

• Enter the name Root.

• Click on OK.

The new database, containing only the data-
base name and the Default folder, opens.

To open a database:

When the tutorial database already exists, proceed as follows:

• In the Component Manager, select File →
Open Database

or

• click on the Open button

or

• press <CTRL> + <O>.

The "Open Database" dialog box is displayed.
It contains a list of the databases in the current
database path.

• If the tutorial database is on the list, select
it and click on OK.

The Component Manager displays the con-
tents of the tutorial database.

• If the tutorial database is stored some-
where else, use the <select path> option
to specify the database and click on OK.

• In the "Select database path" window, select
the database and click on OK.

The first step in creating your own components is to create a new top level
folder named Tutorial and a subfolder named LessonN for each lesson.
Tutorial 101

102
To create a new folder:

• In the "1 Database" field, select the database
name.

• Select the menu item Insert → Folder

or

• click on the Insert Folder button

or

• press <INSERT>.

A new top-level folder named Root appears
in the "1 Database" pane.

• Change the name of the top-level folder to
Tutorial. You can type over the highlighted
name and then press <ENTER>.

• Select the folder Tutorial.

• Select Insert → Folder once again.

A new folder named Folder is created in the
"1 Database" pane.

• Change the name of the new folder to
Lesson1.

All the components you create in this tutorial will be stored in the LessonN
folder. You should create a new folder for every lesson. Every database has at
least one top-level folder which can have any number of subfolders.

You can proceed by creating your first component in the Lesson1 folder.

Note

In ASCET 5.0, all folder and item names and the names of variables and
methods they contain must comply with the ANSI C standard.
Tutorial

To create a component:

• In the "1 Database" pane, click on the folder
Lesson1.

• Select Insert → Class → Block Diagram.

A new component named Class_Block-
diagram appears in the "1 Database" pane
under the Lesson1 folder. This component is
of type class, which is frequently used in
ASCET.

• Change the component name to Addition.

6.1.2 Specifying a Class

After you have created a new component in the Tutorial/Lession1
folder you can specify its functionality. First define the interface for the compo-
nent, i.e. its methods, arguments and return values. Then draw a block dia-
gram that specifies what the component does.

To specify the functionality of a component:

• In the "1 Database" pane, select the compo-
nent Addition.

• To open the component, select
Component → Edit

or

• double-click on the component

or

• press <RETURN>.

The block diagram editor opens. This is the
main window for specifying component func-
tionality.
Tutorial 103

104
• In the "Diagrams" pane, select the method
calc. This method is created by default.

• Select Diagram → Rename

or

• press <F2>.

The name of the method calc is highlighted.

Drawing Area

"Diagrams" Pane

"Elements" Pane

Drawing Area
Tutorial

• Change the name of the method to
doAddition.

• Select Diagram → Edit

or

• double-click on the method name.

The interface editor for the method opens.

Every class needs at least one method. Methods in ASCET are similar to meth-
ods in object-oriented programming, or functions in procedural programming
languages. A method can have several arguments and one return value (these
are all optional). Arguments are used to transmit data to a component. Return
values are used to return results of calculations within the component to the
"outside".

To specify the method interface, you can add two arguments of type contin-
uous and a return value using the interface editor.

To specify the method interface:

• In the interface editor, select Argument →
Add.

A new argument called arg appears in the
"Arguments" pane.

• Change the name of the argument to
input1.
Tutorial 105

106
• Add another argument called input2.

By default the data type of the arguments is
set to continuous (or cont for short), which is
what you need in the example.

• Activate the "Return" tab of the interface edi-
tor.

• Check the Return Value tick box.

The type of the return value is also set to cont
by default.

• Click on OK to close the interface dialog pane.

The names of the arguments and the return value for the method doAddi-
tion appear in the "Elements" pane on the left of the Block Diagram Editor.
Now you can specify the functionality of the component by drawing a block
diagram.

To specify the functionality of the component Addition:

• Drag the first argument from the "Elements"
pane and drop it onto the drawing area of the
block diagram editor.

The symbol for the argument appears in the
drawing area.

• Now add the other argument and the return
value using the same drag-and-drop process.
Tutorial

• Click on the Addition button.

The mouse is loaded with an addition opera-
tor.

• Click inside the drawing area, between the
symbols for the argument and for the return
value.

An addition symbol is displayed. By default it
has two input pins (indicated by arrows) and
one output pin. The output pin is located on
the right.

You can now arrange the elements and the operator by dragging them to their
places on the drawing area. Next, you need to connect the elements to specify
the flow of information.

To connect the diagram elements:

• Click on the Connect button.

• Alternatively, you can right-click in the draw-
ing area (but not on an element).

The cursor changes to a crosshair when it is
inside the drawing area.
Tutorial 107

108
• Click on the output pin of the first argument
symbol to begin a connection.

Now, as you move the mouse cursor, a line is
drawn after it. Every time you click inside the
drawing area, the line remains fixed up to that
point. That way you can determine the path of
the connection line

• Click on the left input of the addition symbol.

The argument symbol is now connected to the
input of the addition symbol.

• Connect the second argument symbol with
the other input of the addition symbol.

• Connect the return value symbol with the out-
put of the addition symbol.

The connection between the addition opera-
tor and the return value is displayed as a green
line to indicate that the sequencing for this
operation needs to be determined.
Tutorial

• Select Sequence Calls → Sequencing -
Ignore Info to determine the addition
sequence automatically.

The connection between the addition opera-
tor and the return value is displayed as a black
line.

Component specification is now complete. The last step in editing your com-
ponent is to specify its layout, i.e., the way it is displayed when used within
other components.

To edit the layout of a component:

There are two ways to edit a layout:

• Use the Browse tab to go to the "Informa-
tion/Browse" view.
Tutorial 109

110
• Double-click in the "Layout" tab to open the
Layout Editor.

• Alternatively, select Component → Edit Lay-
out.

The Layout Editor opens.

• Resize the block by clicking on it and then
dragging the handles to the size you want.

• Drag the pins of the arguments and the return
value to create a symmetrical design.

• Click on OK.
Tutorial

Now that you have finished your component, the last step in this lesson is to
save the component in the database.

To save the component Addition:

• Select Diagram → Store to Cache and close
the block diagram editor.

• In the Component Manager, select File →
Save Database.

or

• click on the Save button.

Your work is not written to disk until you per-
form this operation.
When you select Store to Cache, the changes
are only stored in the cache memory. It is
therefore advisable to click Save regularly as
work progresses.

You can have your changes saved automati-
cally by activating the appropriate user options
(see section "General Options" in the ASCET
user’s guide) for your ASCET session.

As an optional exercise, you could now model the same functionality in ESDL
(ESDL: Embedded Software Description Language). If you continue with this
exercise, you will familiarize yourself with the ESDL editor and will learn how
to use the external source code editor.

The first step is to copy the module interface to a new module with type ESDL
and rename it. Then create the functionality you want either directly in the
ASCET ESDL editor or use the external text editor.

To copy and specify the component (interface) Addition:

• In the "1 Database" pane of the Component
Manager, select the component Addition.

• From the context menu select Component →
Reproduce As → ESDL.

A copy of the component is created; it is
named Addition1.

• Rename the new component Addi-
tionESDL.
Tutorial 111

112
• In the "1 Database" list, double-click on the
name of the new component.

The ESDL editor for AdditionESDL opens,
making various functionalities available for
editing.

• Now enter this functionality in the "Edit"
pane of the internal text editor:

return input1 + input2;

• Use the Activate External Editor button to
switch to external editor mode.

You are asked if you want to save your
changes.

• Confirm with Yes.

The changes are saved, and the ESDL editor
switches to "external editor" mode.

"Edit" pane
(internal text editor)
Tutorial

The editor looks different in "external editor"
mode.

• In the process/method pane, select the
method or process you want to specify.

The functionality entered previously appears in
the specification field, and the Start Edit but-
ton is activated.

• Activate the external editor with Start Edit.

The End Edit and Update buttons are now
activated, whilst the Start Edit button is deac-
tivated.

• Edit the functionality in the external editor.

• Save the functionality in the external editor.

• In the ESDL editor, click Update, to transmit
the data from the external editor.

Note

When the external editor starts up, the application associated with the file
endings *.c and *.h in the operating system register database is called.
Data transfer is done via temporary files; this is why you have to ensure the
files are saved before closing the editor or before transferring to the ESDL
editor.

process/method pane

display for process and
method specification
Tutorial 113

114
• After you have finished, click End Edit to
close the connection to the external editor.

The external editor remains open after you
have clicked on End Edit. However, you can-
not transmit any more changes to the ESDL
editor.

• Click on Activate External Editor a second
time to end the external editor mode.

• Select Diagram → Analyze Diagram to
check the code you entered. Errors are listed in
the ASCET monitor window.

6.1.3 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Opening a database

• Creating and naming a folder

• Creating and naming a component

• Defining the interface for a method

• Placing diagram elements on the drawing area

• Connecting diagram elements

• Editing the layout of a component

• Switching between Specification and Browser views.

• Saving a component.

• Copying a component interface.

• Using the ESDL editor.

• Using the external editor.
Tutorial

6.2 Experimenting with Components

Having created the Addition or AdditionESDL components, you can
now experiment with them. Experimentation allows you to see how the com-
ponent works, just as it would in a real application. The experimentation envi-
ronment provides a variety of tools that can show the values of inputs,
outputs, parameters and variables within a component.

6.2.1 Starting the Experimentation Environment

The experimentation environment is called from the block diagram or the ESDL
editor. First open it with the component you want to experiment with.

To start the experimentation environment:

• From the ASCET Component Manager, open
the block diagram editor for your Addition
in the \Tutorial\Lesson1 folder.

• In the block diagram editor, select
Component → Open Experiment

or

• click the Open Experiment for selected
Experiment Target button.

The code for the experiment is generated.
ASCET analyses the model in your specifica-
tion and generates C code that implements
the model. It is possible to generate specific
code for different platforms.

In your example, you simply use the default
settings to generate code for the PC.

After the code has been generated and com-
piled, the experimentation environment
opens.
Tutorial 115

116
6.2.2 Setting up the Experimentation Environment

Before you can start experimenting, you have to set up the environment,
which means determining the input values generated for the experiment and
how you want to view the results. You have to carry out three steps. First set
up the event generator, then the data generator and finally the measurement
system.

To set up the Event Generator:

• Click on the Open Event Generator button.

The "Event Generator" window opens. For
each method to be simulated, you need to
create an event and also a generateData
Tutorial

event. The events simulate the scheduling per-
formed by the operating system of a real
application.

• Select the event doAddtion.

• Select Channels → Enable.

• Select the event doAddtion again.

• Select Channels → Edit.

Both functions are also available via the con-
text menu in the "Elements" field.

The "Event" dialog window opens.

• Set the dT value to 0.001.

• Click on OK.

• In the event generator, select the generate-
Data event and set its dT value to 0.001.

• Close the "Event Generator" window.
Tutorial 117

118
To set up the Data Generator:

• Click on the Open Data Generator button.

The "Data Generator" window opens.

• Select Channels → Create.

The "Create Data Generator Channel" dialog
window opens.

• If necessary, deactivate the Parameters only
option to have both parameters and variables
displayed in the list.

• Select the input1/doAddition and the
input2/doAddition variables from the
list.
Tutorial

• Click on OK.

Now both inputs are listed in the "Data Ele-
ments" pane of the "Data Generator" win-
dow.

• Select input1/doAddition in the "Data
Elements" pane.

• Select Channels → Edit.

The "Stimulus" dialog box appears.

• Set the values as follows.

• Click on OK to close the "Stimulus" dialog
pane.

• Set the values for input2 as follows:

• Close the "Data Generator" window.

Mode: sinus

Frequency: 1.0 Hz

Phase: 0.0 s

Offset: 0.0

Amplitude: 1.0

Mode: sinus

Frequency: 2,0 Hz

Phase: 0.0 s

Offset: 0.0

Amplitude: 2.0
Tutorial 119

120
With these settings you get two sine waves with different frequencies and dif-
ferent amplitudes. The Addition component adds the two waves and dis-
plays the resulting curve.

In order to see the three curves displayed on an oscilloscope, you will now set
up a measurement system.

To set up the measurement system:

• In the "Physical Experiment" window, select
<2. Oscilloscope> as data display type
from the "Measure View" combo box.

• In the "Elements" list, click on the box marked
by a "+" next to Addition to expand the
elements list.

The elements of the Addition component
are displayed.

• Select input1/doAddition.

• Select Elements → Measure.

An oscilloscope window opens with input1
as measurement channel. The "Measure
view" list in the experimentation environment
is updated to display the title of the measure-
ment window.
Tutorial

• In the "Elements" list of the "Physical Experi-
ment" window, select input2/doAddi-
tion.

• Select Elements → Measure.

input2 is added to the oscilloscope as mea-
sure channel.

• Add return/doAddition to the measure-
ment window.

• In the experimentation environment, select
File → Save Environment.

Now the experimentation environment is set up, and you are ready to start the
experiment. Since you have saved the experiment, it is automatically reloaded
next time you start the experimentation environment for this component.

6.2.3 Using the Experimentation Environment

The experimentation environment provides a set of tools that allow you to
view the values of all the variables in your component and also change the
setup while the experiment is running. You can also adjust the way the values
are displayed and choose from several ways of displaying them.

To start the experiment:

• In the "Physical Experiment" window, click on
the Start Offline Experiment button.

The experiment starts running and the results
are displayed in the oscilloscope.
Tutorial 121

122
• Click the Stop Offline Experiment button to
stop the experiment.

You will only see a small portion of the curves on the oscilloscope. To display
the curves on the oscilloscope, you need to alter the scale on the value axis.

To change the scale on the oscilloscope:

• Select all three channels from the "Measure
Channels" list in the oscilloscope window.

Hold the <CTRL> key while clicking on individ-
ual channels to select multiple items.

Now all the data elements are highlighted, so
the changes you make will affect all three of
them.

• Select Extras → Setup.

The "Display Setup" dialog box appears.

• Set the "Value Axis" to a range of -3 to 3.

• Set the "Time Axis Extent" to 3.

• Select a background color in the "Background
color" list.
Tutorial

• Press <ENTER>.

The oscilloscope now shows the output with the appropriate scaling on the
value axis. You will see the two input sine waves, together with the wave
resulting from their addition. You can now adjust the input values to see how
the output is affected.

To change the input values for experimentation:

• In the "Physical Experiment" window, select
Experiment → Data Generator to open the
"Data Generator" window.

• In the data generator, select the variable you
want to change.

• Select Channels → Edit.

The "Stimulus" dialog box appears.

• Adjust the values you want to change.

• Click Apply.

The curves in the oscilloscope change according to the new settings. You can
change all the settings in the experimentation environment while the experi-
ment is running.
Tutorial 123

124
6.2.4 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• To call the experimentation environment

• Setting up the event generator

• Setting up the data generator

• Setting up the measuring system

• Starting and stopping the experiment

• Saving the experiment

• Changing stimuli while the experiment is running

6.3 To Specify a Reusable Component

In this lesson you will create a class that implements an integrator, a standard
piece of functionality that is often used in microcontroller software. While this
is a slightly more complex diagram, the techniques for creating and experi-
menting with it are the same ones you have learned already.

In this example, you specify an integrator that calculates the distance covered
where time and speed are known. The input value will be given in meters per
second, and at each interval multiplied with a dT in seconds. The value for
each time slice is added up in an accumulator. The accumulator stores the dis-
tance in meters that has been covered after a certain length of time.

In ASCET, a standard block, such as an accumulator, can be realized with a
simple diagram.
Tutorial

6.3.1 Creating the Diagram

Before you start working on the diagram, you need to perform the same steps
as for the addition component. First create a new folder in the Tutorial
folder, then add a new class. Finally, you can specify the interface of the meth-
ods, then the block diagram and the layout.

You will start by creating the folder and the new class.

To create the integrator class:

• In the Component Manager, open the Tuto-
rial folder.

• Create a new folder and call it Lesson3.

• In the Lesson3 folder, create a new class and
call it Integrator.

To define the integrator interface:

• In the "1 Database" pane, select the element
Integrator.

• Double-click on the element or select
Component → Edit.

The block diagram editor opens.

• Rename the method calc to integrate in
the "Diagrams" pane.

• Edit the method integrate by adding one
argument (type cont) and a return value
(type cont).

• Click on OK.

The interface editor closes and you are back in
the block diagram editor.

• Place the argument and return value from
integrate on the drawing area.

The integrator uses two new types of elements that we have not used before:
a variable and a parameter.

Variables are used in the same way as they are used in programming lan-
guages; you can store values in them and read the values for further calcula-
tions. In contrast, parameters are read-only. They can only be changed from
outside, e.g. they can be calibrated in the experimentation environment, but
they cannot be overwritten by any of the calculations within the component
itself.
Tutorial 125

126
In addition, we want to specify a dependent parameter in this example. How-
ever, it is irrelevant for the functionality of the integrator. A dependent param-
eter is dependent on one or several parameters, i.e. its value is calculated
based on a change in another one. The calculation or dependency is only car-
ried out on specification, calibration or application. A dependent parameter
behaves in exactly the same way in the target code as a normal parameter.

To create a variable:

• Click on the Continuous button.

The element editor opens.

• In the "Name" field, enter the name buffer.

• Click OK.
Tutorial

The variable is now named buffer. The cur-
sor shape changes to a crosshair. It is loaded
with the continuous variable.

• Click inside the drawing area to place the vari-
able.

The variable is placed in the drawing area. Its
name is highlighted in the "Elements" list.

When the element editor does not open automatically, place the variable in the
drawing area. Afterwards, double-click on the variable in the "Elements" list to
open the element editor manually. Make the required settings and activate the
Always show dialog for new elements option. The next time you create an
element, the element editor opens automatically.

To create a parameter:

• Click on the Continuous Parameter button.

The element editor opens.

• In the "Name" field, enter the name Ki.

• Click OK.

• Click inside the drawing area to place the
parameter.

• In the "Elements" list, right-click on the
parameter and select Edit Data from the con-
text menu.

A data configuration window (numeric editor)
opens.

• Set the value in the window to 4.0 by typing
it into the scalar calibration window and press-
ing <ENTER>.

This value becomes the default value for the
parameter. You can assign default values to all
parameters or variables in a diagram.
Tutorial 127

128
To create a dependent parameter:

• Click on the Continuous Parameter button.

The element editor opens.

• Name the parameter WurzelKi.

• In the "Dependency" field, activate the option
Dependent.
Tutorial

• Open the formula editor using the Formula
button.

• Right-click in the "Identifier" field and select
Add from the context menu.

A formal parameter is created.

• In the "Identifier" field, enter the name x for
the new parameter.

• In the "Formula" field, specify the calculation
rule.

You can select different operators from the
"Operator" combo box for more complex for-
mulas. They are added to the "Formula" field
one by one with the >> button next to the
"Operator" field.

Likewise, various functions can be selected in
the "Function" combo box, and inserted into
the "Formula" field with the >> button next
to the "Function" combo box.

• For the example here, select the root calcula-
tion of the formal parameter.

Formal Parameter: x
Formula: sqrt(x)

• Exit with OK, and close the element editor,
too.

The cursor shape changes to a crosshair.
Tutorial 129

130
• Click into the drawing area to place the
parameter.

• In the block diagram editor, right-click on the
WurzelKi parameter in the "Elements" list,
and select Edit Data from the context menu.

• In the "Dependency Editor" window, assign a
model parameter from the combo box to the
formal parameter (in this example Ki).

• Complete data entry with OK.

You have now specified a parameter depen-
dent on the parameter Ki which on calibra-
tion will automatically be calculated based on
Ki. Later on in the experiment, you can check
the dependency or the calculation.

Now that you have added all the elements, you need to specify an integrator.
You can proceed by creating the remainder of the diagram.
Tutorial

To create the diagram:

• In the "Argument Size" combo box, set the
current value to 3 to specify the number of
input values for the multiplication operator.

• Create a multiplication operator and place it
on the drawing area.

• Click on the dT button to create a dT element.

The element editor opens. All setting options
are deactivated.

• Close the element editor with OK.

• Place the dT element inside the drawing area.

• Create an addition operator with two inputs
and place it on the drawing area.

Be sure to set the argument size back to two
before you create the operator.

• Connect the elements as shown below.

The input lines for both the buffer and the
return value are displayed in green.

Now all the elements of the diagram are in place. Next, you need to determine
the sequence of calculation by specifying the sequence calls.
Tutorial 131

132
To assign a value to a sequence call:

• Right-click on the sequence call above the
variable buffer.

• Select Edit from the context menu.

The sequence editor appears.

• Click on OK to accept the default settings.

The assignment comes first in the algorithm
for your integrator.

To adjust the sequence number in a sequence call:

• Right-click on the sequence call above the
return value for integrate.

• Select Edit from the context menu.

• In the sequence editor, set the value for
"Sequence Number" to 2.

• Click on OK.

The return value is assigned only after the vari-
able buffer has been updated.

Sequence calls
Tutorial

To adjust the layout:

• Select Component → Edit Layout.

The layout editor opens.

• Alternatively you can also get to the layout
editor from the "Information/Browse" view by
doubleclicking the layout within the "Layout"
tab.

• Drag the argument from integrate to the
middle of the left-hand side of the block.

• Drag the return value to the middle of the
right-hand side of the block.

• Click on OK.

The diagram for the integrator class is now complete. Now save the changes
to the diagram by selecting Diagram → Store To Cache Changes that do not
affect the diagram itself are stored automatically. Next save the changes to the
database by selecting File → Save Database in the Component Manager
window.

6.3.2 Experimenting with the Integrator

Again, first set up the event generator, then the data generator and finally the
measurement system.

To set up the experimentation environment for the integrator:

• Start the experimentation environment by
selecting Component → Offline Experi-
ment.
Tutorial 133

134
• Click the Event Generator button.

• Activate the event integrate using the
default dT value of 0.01.

• Close the "Event generator" window.

• Click on the Data Generator button.

• Create a data channel for the integrate
method by selecting Channels → Create and
selecting the argument from integrate.

• Set the values as follows:

• Close the Data Generator.

• Open an oscilloscope window with the arg
and return values from the integrate
method.

• Set the value axis to a range from -10 to 10
and the time axis extent to 10 seconds.

• Select Start Offline Experiment to start the
experiment.

Mode: pulse

Frequency: 0,2 Hz

Phase: 0.0 s

Offset: -1.0

Amplitude: 2.0
Tutorial

The output value of the integrate method increases when the argument is
positive, and decreases when it is negative. Because the positive and negative
parts of the input curve are equal, the output will remain within stable bound-
aries.

To reset an experiment:

If you stop an experiment and then restart it again, all the variable values will
be stored. Sometimes it may desirable to reset all the variables to their initial-
ization values.

• Select Elements → Reinitialize All → Vari-
ables or Parameters or Both.

Depending on your selection, either all vari-
ables or all parameters, or both, are reset to
their initialization values.

Next, you should experiment with various settings to illustrate the function of
the integrator. You can adjust the Ki parameter and change the input.

To experiment with the integrator:

• In the "Elements" pane, click on the plus sign
next to Integrator to expand the Inte-
grator element.

• Select the parameter Ki.

• Select Elements → Calibrate.

A numerical editor opens for the parameter.
Tutorial 135

136
• Set the value to 5 by entering the value and
then pressing <ENTER>.

The output curve on the oscilloscope becomes
steeper.

• Set the value to 3.

The output curve now becomes flatter again.

• Set the parameter back to 4 and close the
numeric editor.

• Open the "Data Generator" window.

• Set the offset of the input pulse to -0.5.

• Click on OK.

Now the positive part is greater, so the output will start to increase. At some
point it will exceed the oscilloscope limits. You can adjust the scale of the oscil-
loscope for each value individually by selecting only that value when you make
changes. You can also open a numerical display window to see the output
value.

To display a value numerically:

• Select <1.Numeric Display> in the
"Measure View" combo box in the experi-
mentation environment.

• In the "Elements" pane, select the return
value (return) from the integrate
method.

• Select Elements → Measure.

A "Numeric display" window shows the cur-
rent return value.

• Also display the dependent parameter Wur-
zelKi.

• Experiment with changing Ki and initiating
update using the Update Dependent
Parameters button.
Tutorial

6.3.3 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Creating a parameter

• Creating and specifying a dependent parameter

• Creating a variable:

• Creating an operator with multiple inputs

• Setting the sequence number of a sequence call

• Assigning a default value

• Calibrating a value during experimentation

• Displaying values in a "Numeric display" window

6.4 A Practical Example

In this lesson you will create a controller based on a slightly enhanced standard
PI filter. The controller will be used to keep the rotational speed of an idling car
engine constant.

When controlling the idling speed of an engine, you have to make sure that
the actual number of revolutions n stays close to the nominal value for idling
n_nominal. The value n is subtracted from n_nominal to determine the
deviation that is to be controlled.

The deviation in the actual number of revolution forms the basis for calculating
the value of air_nominal, which determines the throttle position, i.e. the
amount of air the engine gets.

6.4.1 Specifying the controller

The steps in creating the diagram for your controller are the same as earlier:

• adding a new folder and creating the component in the Component
Manager,

• defining the interface and drawing the block diagram.

The major difference is that you will implement the controller as a module.
Modules are used as the top-level components in projects. They define the
processes that make up a project.
Tutorial 137

138
To create the controller component:

• In the Component Manager, add a new sub-
folder to the Tutorial folder and rename it
Lesson4.

• Select the Lesson4 folder and select Insert
→ Module → Block diagram to add a new

module.

• Rename the new module IdleCon and open
the block diagram editor.

• In the "Diagrams" pane, rename the diagram
process to p_idle.

The functionality of modules is specified in processes, which correspond to the
methods in classes. Unlike methods, processes do not have arguments or
return values. Data exchange (communication) between processes is based on
directed messages, which are referred to as Receive messages (inputs) and
Send messages (outputs) in ASCET.

In your controller, you will use a receive message to process the actual number
of revolutions n and a send message to adjust the throttle position to
air_nominal.

To specify the interface of the controller:

• Create a receive message by clicking on the
Receive Message button and name it n.

• In the element editor for the message n, tick
the Set() option.

• Click on the Send Message button and then
inside the drawing area to create a send mes-
sage.

• Rename it air_nominal.
Tutorial

• In the element editor for the message air
nominal, tick the Get() option.

The controller element uses the integrator you created in Lesson 3.

To add the Integrator to the controller:

• Select Element → Add Item to open the
"Select item" dialog box.

• In the "1 Database" pane, select the item
Integrator from the Tuto-
rial\Lesson3 folder and click OK to add
the integrator.

The integrator is included in the component
IdleCon. A component is included by refer-
ence, i.e., if you change the original specifica-
tion of the integrator, that change will be
reflected in the included component.

In addition to the elements you have added so far, you need to add the follow-
ing elements to your controller:

• two continuous variables, named ndiff and pi_value
Tutorial 139

140
• three continuous parameters named n_nominal, Kp, and air_low

To specify the remainder of the controller:

• Create the operators and the other elements
needed, then connect them as shown in the
block diagram below.

• In the "Elements" list, select the n_nominal
parameter, then select Element → Edit
Data.

• Set the value for n_nominal to 900.

• Set the value for Kp to 0.5.

• Save your specification in the diagram and
apply the changes to the database.
Tutorial

6.4.2 Experimenting with the Controller

Experimentation with modules works like experimentation with other compo-
nents. First the data and event generators and then the measurement system
are set up.

To set up the experimentation environment:

• Select Component → Open Experiment to
start the experimentation environment.

• Open the "Event Generator" window and
enable the event for the process p_idle
using the default value of 0.01 for dT.

An event for a process works the same as an
event for a method.

• Open the "Data generator" window and set
up the channel for the receive message n with
the following values:

Mode: pulse

Frequency: 1.0 Hz
Tutorial 141

142
• Set up an oscilloscope with the variables
n_diff and air_nominal.

• In the oscilloscope, set the value axis to -500
to 500 and the time axis extent to 2.

• Click on the Save Environment button.

The experiment is now set up to display the relationship between the deviation
in the number of revolutions and the throttle position.

To experiment with the controller:

• Start the experiment by clicking the Start
Offline Experiment button.

• Open a calibration window for the variables
Ki and Kp. From here, you can adjust the val-
ues Ki and Kp and observe their effect on the
output.

From time to time, you may need to reinitialize
the model in order to get back to meaningful
values.

6.4.3 A Project

A project is the main unit of ASCET software representing a complete software
system. This software system can be executed on experimental or microcon-
troller targets in real-time with an online experiment. Individual components
can only be tested in the offline experimentation environment.

Phase: 0.0

Offset: 800.0

Amplitude: 200.0
Tutorial

Every experiment runs in the context of a project. Whenever code is generated
for a project, the operating system code is also generated. The operating sys-
tem specification is required to run on an ASCET software system in real-time.
Running a software system in real-time is called Online experimentation. So far,
we have experimented offline only, i.e. not in real-time.

6.4.4 To set up the Project

The project is created in the Component Manager. You can add it to the same
folder as the IdleCon module.

To create a project:

• In the Component Manager, select Insert →
Project or click on Insert Project to add a
new project.

• Name the project ControllerTest.

• Select Component → Edit or double-click
the project.

The project editor opens for the project.

Note

All ASCET experiments—both online and offline—run within the context of
a project. This is clearly seen with offline experiments, which use an (other-
wise invisible) default project. Creating and setting up a project for the
express purpose of specifying an operating system is only required for online
experiments. However, you also have the option of configuring the default
project for your own application.
Tutorial 143

144
The next step is to add the IdleCon controller to the "Elements" list of the
project.

To include components in a project:

• In the project editor, select Element → Add
Item to open the "Select item" dialog box.

• From the "1 Database" list, select the compo-
nent IdleCon in the Tutorial\Lesson4
folder.

• Click on OK to add the component.

The name of the component is shown in the
"Elements" list of the project editor.

Components are included by reference, i.e. if you change the diagram of an
included component, that change will also be effective in the project.

The operating system schedules the tasks and processes of a project. Before
you can generate code for the project, you have to create the necessary tasks
and assign the processes to them.

The operating system schedule is specified in the "OS" tab of the project edi-
tor. You will now specify the operating system schedule to have the p_idle
process activated every 10 ms.
Tutorial

To set up the operating system schedule for the project:

• Click on the "OS" tab.

• Select Task → Add to create a new task.

• Name it Task10ms.

Newly created tasks are by default alarm tasks,
i.e. they are periodically activated by the oper-
ating system.

• Assign the task a period of 0.01 seconds in the
"Period" field.

The period determines how often the task is
activated, which is every 10 ms in this case.

• In the "Processes" list, expand the IdleCon-
trol item by clicking on the plus sign next
to it.

• Select the process p_idle and select
Process → Assign.

The process is assigned to the Task10ms
task. It is displayed beneath the task name in
the "Tasks" list.
Tutorial 145

146
In projects, imported and exported elements are used for inter-process com-
munication. They are global elements that correspond to the send and receive
messages in the modules. Global elements must be declared in the project and
linked to their respective counterparts in the modules included in the project.

To define global elements:

• In the project editor, select Global
Elements → Resolve Globals.

The necessary global elements are created and
automatically linked to their counterparts. Ele-
ments with the same name are automatically
linked to each other.

Note here that send messages are defined in
the module (exported) by default.

6.4.5 Experimenting with the Project

You will now run an offline experiment with this project. Offline experimenta-
tion can be performed on the PC without the connection of any additional
hardware. Projects run on the PC by default. Therefore you do not have to
adjust any settings. Offline experimentation with projects works like offline
experimentation with components.

To set up the experimentation environment:

• In the Component Manager, select File →
Save Database.

It is always a good idea to apply your changes
to the database before you start the experi-
mentation environment.
Tutorial

• Click on the Open Experiment for selected
Experiment Target button.

Code for the project is generated and the
offline experimentation environment opens.

• Click on the Open Event Generator button.

In the event generator you see an event for
each task you want to use in the experiment,
rather than for each method or process, as in
experimentation with components.

• Enable the task generateData from the
event generator and use the default dT value
of 0.01 seconds.

The task Task10ms is already enabled by
default, and both events now have 0.01 sec-
onds as their dT value; therefore you do not
need to make any further adjustments.

• Close the event generator.

• Set up the data generator and measurement
system with the same values as in the previous
experiment (cf. "Experimenting with the Con-
troller" on page 141).
Tutorial 147

148
• Save the environment by selecting File →
Save Environment.

To run the experiment:

• Click on the Start Offline Experiment but-
ton.

• Adjust the Ki and Kp parameters as in the
previous section to see the effect of your
changes in the output.

6.4.6 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Creating modules

• Creating messages in modules

• Using components from the Component Manager in a block diagram.

• Creating a project

• Including components in projects.

• Creating tasks and assigning processes to them

• Experimenting with projects

6.5 Extending the Project

In this lesson you will add some refinements to make your controller more
realistic. You will create a signal converter that converts sensor readings into
actual values. Many sensors, used for instance in automotive applications,
return a voltage that corresponds to a particular measurement value, such as
temperature, position or number of revolutions per minute. The relationship
between the voltage and the measured value is not always linear. ASCET pro-
vides characteristic tables to model this kind of behavior efficiently.

6.5.1 Specifying the Signal Converter

The first step in modeling the signal converter is to create a folder and a mod-
ule that specifies the functionality. The signal converter uses two characteristic
lines to map its input values to the corresponding outputs.

To create the module:

• In the Component Manager, create a new
folder Tutorial\Lesson5.
Tutorial

• Create a new module and name it
SignalConv.

• Select Component → Edit or double-click
the element to open the block diagram editor.

• In the block diagram editor, select Diagram
→ Add Process to create a second process.

• Name the processes n_sampling and
t_sampling.

• In the "Elements" list, create two receive mes-
sages U_n and U_t and two send messages
t and n.

• Create a characteristic field by clicking on the
One-D Table Parameter button.

The element editor opens.

• Call the table t_sensor and close the ele-
ment editor.

The "Max Size" dialog window opens. Since
you created a one-dimensional characteristic
line, the "y-Max Size" field is deactivated.

• In the "x-Max Size" field, enter the value 13.

The characteristic field can now span a maxi-
mum of 13 columns.
As you have created a one-dimensional char-
acteristic line, the "y-Max Size" field is inac-
tive.

• Click OK to close the dialog box.

• Then click in the drawing area to place the
table.

The table is added to the "Elements" list.

• Create a second table with a maximum of 2
columns and call it n_sensor.
Tutorial 149

150
• Connect the elements as shown and edit the
sequencing to assign the corresponding pro-
cesses.

The next step is to edit the data for the two characteristic fields. ASCET pro-
vides a table editor for editing arrays, matrices and characteristic fields.

To edit the tables:

• Right-click on the table t_sensor and select
Edit Data from the context menu.

The table editor opens.

• Adjust the size of the table as follows:

The table is extended to 13 columns with all z-
values set to 0 by default.

• Enter the values listed in the following table.
The top row corresponds to the X row, the
bottom row to the Z row.

You should edit the table by entering the sam-
ple points (X values) first, starting from left to
right.

• Click on an X value and then enter the new
one in the dialog box.

The new X value must be between the limits
set left and right by the sample points.

0.00 0.08 0.30 0.67 1.17 2.5 5.00 7.50 8.83 9.33 9.70 9.92 10.00

-40.0 -26.0 -13.0 0.0 13.0 40.0 80.0 120.0 146.0 160.0 173.0 186.0 200.0
Tutorial

• Then enter the output values by clicking on a
value and typing over the highlighted value.

• Edit the second table in the same way using
the following data:

• In the block diagram editor, select
Diagram → Store to Cache.

• In the Component Manager, click on the Save
button to store your changes.

In this example, the second table represents a linear relationship between
input and output, therefore it needs only two sample points. This works
because you have specified the interpolation mode between values as linear.

In linear interpolation, for an input value between two sample points the out-
put value is determined from a straight line. In this case, an input of 0 returns
0 and an input of 10 returns 6000. If the input value is 5, the return value is
interpolated accordingly as 3000.

6.5.2 Experimenting with the Signal Converter

You can now experiment with the new component to observe the behavior of
the tables. Since the two tables have different value ranges, you will set up a
separate oscilloscope window for each of them.

0.0 10.0

0.0 6000.0
Tutorial 151

152
To set up the experimentation environment:

• Select Component → Open Experiment to
open the experimentation environment.

• Create an event for each process in the com-
ponent (n_sampling, t_sampling,
generateData) and assign a dT value of
4 ms to each event.

• In the data generator create a channel for the
message U_n and one for U_t and set up
both channels with the following values:

Mode: sinus

Frequency: 2,0 Hz

Phase: 0.0

Offset: 5.0

Amplitude: 5.0
Tutorial

• Create an oscilloscope window with the mes-
sages n and U_n and a second oscilloscope
with the messages t and U_t.

Before you create the second oscilloscope, be
sure to activate the <2. Oscilloscope>
entry in the "Select Measure View" combo
box.

The resolution of the sampling points and their corresponding interpolation
values differs so much that you should configure each channel in the two oscil-
loscopes individually in order to optimize the way the behavior of the two
tables is displayed.

To set up the oscilloscopes for measuring:

• Activate the oscilloscope for the process
n_sampling (channels U_n and n).

• In the "Measure Channels" list, select the
message n and select Extras → Setup.

The "Display Setup" dialog box for the mes-
sage n is displayed.

• Set the range of the value axis to 0 to 6000
and the time axis to 0.5

• Open the "Display Setup" dialog box for the
message U_n.
Tutorial 153

154
• Set its value axis to a range from -1 to 11.

The time axis must be the same for all vari-
ables in an oscilloscope window, so you do
not have to change that.

• Activate the oscilloscope for the process
t_sampling (channels U_t and t) and set
up its channels as follows:

• Save the experimentation environment by
clicking the Save Environment button.

You are now ready to run the experiment and see how your signal converter
works. Observe the differences between the two conversion modes.

To run the experiment:

• Click on the Start Offline Experiment but-
ton.

In the n_sensor table, only the amplitude of
the input sine wave changes. The input here is
a voltage signal ranging from 0 to 10 volts,
this is mapped to the rotational speed, rang-
ing from 0 to 6000 revolutions per minute.
The table t_sensor does not represent a lin-
ear relationship between the input voltage
and the output temperature. It matches the
characteristic behavior of temperature sensors
commonly used in the automotive industry.

• Change the data generator channels to differ-
ent wave-forms and observe the effect on
both output curves.

6.5.3 Integrating the Signal Converter into the Project

After you have specified the signal converter, you can integrate it in the project
you created in Lesson 4. The output signal for the signal converter is used as
the input signal for the motor controller.

U_t t

Min -1 -40

Max 11 200

Extent 0.5 0.5
Tutorial

To integrate the signal converter in the project, you will set up another task in
the operating system schedule for the new processes and declare and link the
global elements necessary for the processes to communicate.

To add the signal converter to the project:

• From the Component Manager, open the
project editor for the project
ControllerTest.

• Drag the module SignalConv from the
"1 Database" list of the Component Manager
to the "Elements" list of the project.

• Click on the "OS" tab to activate the operat-
ing system editor.

• Create a new task n_sampling.

• Set the period for the new task to 0.004 sec-
onds.

• Assign the process n_sampling to the task
n_sampling.
Tutorial 155

156
The project now has two tasks. The first task is activated every 10 milliseconds,
the second one every 4 milliseconds. All the processes assigned to a given task
are executed at the interval specified. In the example, each task has only one
process, but it is possible to have any number of processes per task.

The next step in integrating the signal converter is to resolve communication
between the modules. Communication between the processes works through
global elements. All global elements used within a project have to be defined
as messages in the corresponding modules.

By default, send messages are defined in a module while receive messages are
normally only imported into a module so they have to be defined now within
the context of the project.

To set up the global elements:

• Select Global Elements → Resolve Globals
to set up automatic links.

• Select Global Elements → Delete Unused
Globals to remove the links from the previous
lesson.

All the necessary global elements are created and linked automatically to the
corresponding elements with a matching name. The global message U_n, for
instance, is automatically linked to the message U_n in SignalConv.
Tutorial

Note that it is necessary to delete unused globals because the message n was
defined in lesson 4 in the project context while it is now defined in the module
SignalConv. The message n is now used for communication between the
processes of the modules.

To experiment with the project:

• Click on the Open Experiment for selected
Experiment Target button to activate the
experimentation environment.

• Open the event generator and enable the task
n_sampling.

• Set the dT value for the task to 4 milliseconds.

During offline experimentation with projects,
the event generator simulates the scheduling
that is performed by the operating system
during online experimentation.

• Open the data generator and delete the exist-
ing data channel.

• Then set up a new channel for the message
U_n.

• Set up the channel U_n as follows:

• Now activate U_n, the output voltage of the
rotational speed sensor.

The signal converter converts the voltage
value into the actual value for n using the
characteristic table n_sensor.

The values given above produce an output
range for n that matches the range from the
previous experiment (without signal process-
ing).

• Click on the Save Environment button.

• Start the experiment.

Mode: pulse

Frequency: 1.0 Hz

Phase: 0.0

Offset: 4/3

Amplitude: 1/3
Tutorial 157

158
The output curves should be the same as in the example without signal pro-
cessing. The stimulus created by the data generator is different, but is then
processed in the table so that it looks the same as before.

6.5.4 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Creating and using characteristic fields

• Adding components to a project

• Define the communication between different components in a project

6.6 Modeling a Continuous Time System

The realistic modeling of physical, mechanical, electrical, and mechatronical
processes, often described by differential equations, requires continuous time
methods. Before integrating a method like this in the project created in the
previous chapters, this chapter covers modeling a time continuous system
using a detailed example.

ASCET supports the modeling and simulation of continuous time systems by
means of so-called CT blocks. CT stands for "Continuous Time" and refers to
items that are modeled or calculated in quasi-continuous time intervals. The
continuous time modeling in ASCET is based on state space representation,
the standard description form used in the design of continuous time systems.
This representation allows the description of CT basic blocks by nonlinear ordi-
nary first-order differential equations and nonlinear output equations. ASCET
provides several real-time integration methods to find optimal solutions to
these differential equations (refer to chapter 8.2 "Solving Differential Equa-
tions – Integration Algorithms" of the ASCET reference guide).

The procedure for modeling a continuous time system will now be explained
using the example of a mass-spring pendulum with attenuation by the earth's
gravity.
Tutorial

6.6.1 Motion Equation

The mass m shown in the following illustration is subject to the following
forces:

• gravity: Fg = -mg
(g = gravitational acceleration)

• Spring force: FF = - c (x + l0)
(c = spring rate, l0 = length of spring at rest, and x = position of mass
m)

• Attenuation FD = - d x’
(d = attenuation constant and x’ = velocity of mass)

This gives the motion equation as follows:

mx’’ = -mg + F or x’’ = -g + F/m (with F = FF + FD)

Breaking the second-order differential equation into two first-order differential
equations (x = x, v = x’) results in:

x’ = v

v’ = -g + F/m

These differential equations will be used in the following model design.

m

x

c

d

Tutorial 159

160
6.6.2 Model Design

For simplicity, the model of the mass-spring pendulum will be designed using
a single CT block. However, to illustrate the "direct pass-through" or "non-
direct pass-through" properties and to demonstrate how to avoid an algebraic
loop by skillful setting of these properties, we will design this model using two
blocks.

• The Force block calculates spring force F from the position of the
pendulum’s mass m and the friction force from the velocity x’.

• From the spring force F the Mass block calculates the acceleration x’’
from the integration of which the velocity x’ and the position x result.

At first sight, this system looks like an algebraic loop: each block expects an
input value from the other block in order to calculate an output value required
by the other block.

This algebraic loop can be avoided by clever setting of the direct pass-through
or non-direct pass-through properties:

• In the Force block, the output variable F via the equation

F = -c(x + l0) - dx’

is directly dependent on the input variables x and x’. This block is thus
defined as having a direct pass-through.

• In the Mass block however, the output variables x and x’ do not
depend directly on the input variable F, but on the internal state vari-
ables of the block. These, at least at the start, have initial values from
which the output variables x and x’ can be calculated, when the input
variable F is unknown. Otherwise the output variables are calculated
using the following differential equations:

x’ = v
v’ = -g + F/m

This block is thus defined as having a non-direct pass-through.

Model Creation

• In the Component Manager, create a folder
with Insert → Folder and call it Lesson6.

Mass
x, x'

F
Force
Tutorial

• In this folder, use Insert → Continuous Time
Block → ESDL to create a block Force and a
block Mass.

• Double-click the Force block to open the
ESDL editor.

• Click on the Input button to create two inputs
x and v (type continuous).

• Click on the Output button to create an out-
put F (type continuous).

• Click on the Parameter button to create the
constants c (spring rate), d (attenuation con-
stant) and l0 (length of the spring at rest).

The methods in the "Diagram" pane are fixed
by default.

• Click on each constant in the "Element" pane
in turn to highlight it.

• Right-click the highlighted constant to open
the context menu.

• Select the Edit Data menu item.

The "Numeric Editor" dialog box opens.
Tutorial 161

162
• Assign realistic values to the constants (e.g.,
5.0 to the spring rate c, 1.0 to the attenuation
constant d, and 2.0 to the length of the spring
at rest l0).

• Click in the "Diagrams" pane on the method
directOutputs[] and in the "Edit" field,
specify the formula used to calculate the
force:
F = -c * (x + l0) - d*v;

• Click on the Generate Code button.

The CT block Force is compiled.

• Double-click the Mass block to open the ESDL
editor.

• As above, create an input F, two outputs x
and v, one parameter m (mass), and one con-
stant g (gravitational acceleration).

• Assign values to g and m as described above
(9.81 to g and, e.g., 2.0 to the mass m).
Tutorial

• Click on the Continuous State button to cre-
ate state variables x_local and v_local
for the internal calculation of the outputs.

• For the derivatives[] method, specify
the differential equations required for the cal-
culation:

x_local.ddt(v_local)
v_local.ddt(-g + F/m)

• In nondirectOutputs[] pass the state
variables x_local and v_local to the outputs
x and v.
Tutorial 163

164
• In the init[] method, you can provide the
system with realistic initial values for x and v
using the resetContinuousState() func-
tion.

• Click on the Generate Code button.

The CT block Mass is compiled.

The combination of the two basic CT blocks into one CT structure block is
done using the Block Diagram Editor (BDE).

To combine the two basic CT blocks.

• For this purpose, go to your directory in the
Component Manager.

• Select Insert → Continuous Time Block →
Block Diagram to create a new block
Mass_Spring.

• Double-click the new block to open it in the
Block Diagram Editor.
Tutorial

• In the Component Manager, drag and drop
the Mass and Force blocks (one at a time) to
the BDE window and file them.
Tutorial 165

166
• Connect the corresponding inputs and out-
puts with each other.

• Click on the Open Experiment for selected
Experiment Target button.

The CT block is now compiled, and the exper-
iment is started.

Note

Double-clicking one of the CT basic blocks makes it available for editing.
Note, however, that any modification to the blocks affects the entire library,
i.e., all structure blocks that use these basic blocks.
Tutorial

• Create the experimentation environment
required with numeric editors for the parame-
ters and graphical displays.

• Scale the channels in the oscilloscope sepa-
rately, from -10 to 0 for x, from -8 to +8 for v.

6.6.3 Summary

After finishing this lesson, you should be able to carry out the following tasks
in ASCET:

• Creating a model to simulate a process

• Using the ESDL editor to create CT blocks with direct and non-direct
pass-through

• Using the Block Diagram Editor to combine CT blocks

• Performing the physical experiment
Tutorial 167

168
6.7 A Process Model

Following the introduction of CT blocks in the last chapter, you will now use
them for testing your controller. In ASCET you can develop a model of the
technical process to be controlled, and then experiment with a closed control
loop. This means that way the controller can be thoroughly tested before it is
used in a real vehicle.

In our example here, the motor is the technical process. It returns a value U_n
which is a sensor reading of the rotational speed of the engine. This value is
processed by the controller, which returns a value air_nominal. The control-
ler output value determines the throttle- position of the engine, and thus in
turn influences the rotational speed.

Fig. 6-1 A closed-loop experiment

You will use a CT block for this process model. This type of component is par-
ticularly suitable for process models. The model is based on the following dif-
ferential equation, which models a PT2 - system:

T2 s’’ + 2DTs’ + s = Ku

Equ. 6-1 A PT2 - system

The parameters T, D and K have to be set up with appropriate values.

6.7.1 Specifying the Process Model

Creating continuous time components is different from creating other compo-
nents. They have inputs and outputs which are the equivalent of arguments
and return values. The main difference is that a continuous time block can
have multiple inputs and outputs which are not tied to a particular method.
There is a fixed set of methods defined in each continuous time block, that
cannot be modified by the user.

Controller

Technical Process

U
_
n

a
i
r
_
n
o
m
i
n
a
l

Tutorial

You will use ESDL Code for the example here. The syntax of the ESDL code is
similar to C++ or Java. An object method is called with the name of the object,
a dot, the name of the method and the arguments in brackets followed by a
semicolon. The method used for deriving is called ddt(). For example, the
equation is equivalent to the ESDL statement s.ddt(sp);.

To create a continuous time component:

• In the Component Manager create the folder
Tutorial\Lesson7.

• To add a continuous time block, select
Insert → Continuous Time Block → ESDL.

• Name the new component ProcModel.

• Select Component → Edit to open the ESDL
editor.

You can, of course, also use the external text
editor. There are instructions for this in the first
part of the tutorial.

To edit the process model, first add the elements required and then edit the
methods derivatives and non directOutput.

sp s·=
Tutorial 169

170
To edit the process model:

• In the ESDL editor, use the Continuous State
button to create two continuous states.

• Name the states s and sp.

• Create an input by clicking the Input button.

• Name the input u.

• Create an output by clicking the Output but-
ton.

• Name the output y.

Both elements are of type cont.

• Create a parameter by clicking on the Param-
eter button.

• Name the parameter D.

• Create the parameters K and T.

The "Elements" list for the process model
should look like this:

• Adjust the parameters as follows:

D = 0.4,

K = 0.002,

T = 0.05.
Tutorial

• In the "Diagrams" list, select the deriva-
tives method and edit the code as follows:

The illustration shows the internal text editor.

• In the "Elements" list, select the
nondirectOutputs method and type in
the following text.

• Adjust the layout in the layout editor.

Note that in a process model it is preferable to
put the outputs on the left and the inputs on
the right.

• Select Edit → Save.

• In the Component Manager, click on the Save
button to save the process model.

You can now start experimenting with the new model.

To experiment with the model:

• In the ESDL editor, select Component →
Open Experiment to open the experimenta-
tion environment.

Note

See Tab. 9-1 in chapter 9.1 of the ASCET refer-
ence guide for information on how to resolve a
differential equation.
Tutorial 171

172
• Click on the Open CT Solver button to open
the "Solver Configuration" dialog pane.

The configuration is displayed as follows:

• Click on OK to accept the default configura-
tion.

• Open the data generator and create a channel
for the input u.

• Set up the channel u with the following val-
ues:

• Open an oscilloscope window with the chan-
nels u and y.

• Set the Measure Channels for the oscilloscope
as follows:

• Click on the Save Environment button.

Mode: pulse

Frequency: 0,5 Hz

Phase: 0.0 s

Offset: -0.5

Amplitude: 1.0

u y

Min -1 -0.002

Max 2 0.004

Extent 3.0 3.0
Tutorial

• Start the experiment.

The output should look like this:

6.7.2 Integrating the Process Model

To create a closed control loop, we will now integrate the process model into
the controller project we created earlier. The steps required are the same as
before: including the module, setting up the operating system and linking the
global elements.

To include the process model:

• From the Component Manager, open the
project editor for ControllerTest.

• In the project editor, add the component
ProcModel to the "Elements" list.

• Activate the "OS" tab of the project editor to
specify the scheduling for the CT tasks.

Note

The process model is added to the same project for simplicity. This is often
useful in the early stages of testing closed loop simulation. In regular
projects, the process model would be distributed over a network in another
project since they are not part of the same embedded system.
Tutorial 173

174
• Select the task simulate_CT1 and set the
value in the "Period" field to 0.01 s.

The controller and the process model both run
in the same time interval.

Linking the continuous time blocks and the modules cannot be done automat-
ically. They have to be connected explicitly in a block diagram.

To adjust the linking between modules and CT block:

• Click the "Graphics" tab.

• From the "Elements" list, drag the three com-
ponents and drop them into the drawing area.

• Connect the messages of the modules with
the corresponding input and output of the CT
block.

To construct the example, connect the output
y of ProcModel with the global message
U_n and connect the input u of ProcModel
with the global message air_nominal.

• Right-click on each component and select
Unconnected Ports to remove these ports
from the diagram.

Linking the messages for communicating between modules is done automati-
cally. Messages that have the same name are linked with each other.
Tutorial

The project is now complete and ready for experimentation. We will now
experiment online, which requires an ASCET-RP installation and a real-time tar-
get (e.g. ES1000). If you do not have both, you will have to continue by exper-
imenting offline as before.

To set up the project for online experimentation:

• Click on the Specify Code Generation
Options button.

• In the "Settings" dialog window, "Build" tab,
select the target ES1130 and the GNU-C
(Power-PC) compiler.

These options specify the hardware and the
corresponding compiler for code generation.

• Click OK to close the dialog box.

The buttons Open Experiment for selected
Experiment Target and Reconnect to
Experiment of selected Experiment Target
are now available.

• Click on the "OS" tab to activate the operat-
ing system editor.

Note

If you continue by experimenting offline, be sure to remove the global mes-
sage U_n from the data generator.
Tutorial 175

176
• To copy the schedule you created earlier, select
Operating System → Copy From Target.

• From the "Selection Required" dialog, select
PC and click OK.

The project for the new target now has the
same scheduling as that specified before for
the offline PC simulation.

There are several differences from the offline experiment. In the online experi-
ment, there is no event or data generator. The event generator serves to simu-
late the scheduling of the operating system tasks generated for online
experiments.

In the online experiment the experimentation code and the measurements are
started separately, and have separate buttons in the toolbar. This is because the
measurements may influence the real-time behavior of the experiment, so it
may sometimes be necessary to switch them off.

To experiment with the project online:

• Select Online (RP) from the "Experiment
Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment

or
Tutorial

• click the Open Experiment for selected
Experiment Target button.

The code for the experiment is generated and
the experiment opens with the same environ--
ment as defined previously.

If your project contains several tasks, you
could well be prompted to select one acquisi-
tion task for each measure value.

• In the "Selection Required" window, select
the #3 simulate_CT1 task and click OK.

• Include n and n_nominal in the existing
oscilloscope and set their value range from 0
to 2000.
Tutorial 177

178
• Open numeric editors for the variables
n_nominal, Ki and Kp.

• Click on the Start ERCOS button and then
click on the Start Measurement button.

The experiment starts and the results are dis-
played on the oscilloscope. The value for n
should quickly approach n_nominal and stay
there.

• Modify n_nominal in the numeric Editor.

The value n should change in line with all the
changes to n_nominal.

• You can optimize the behavior of the control
loop by adjusting the Ki and Kp parameters.

6.7.3 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Creating and specifying continuous time blocks

• Experimenting with continuous time blocks

• Integrating continuous time blocks in a project

• Creating variable links

• Switching between different targets

• Experimenting online with a project

6.8 State Machines

State machines are useful for modeling systems that move between a limited
number of distinct states. ASCET provides a powerful mechanism for specify-
ing components as state machines. In this lesson we will specify and test a
simple state machine that implements a temperature dependent change in the
nominal number of revolutions of an idling engine. That state machine will
then be integrated into our project. In the next chapter we will then construct
hierarchical state machines.

If the engine is cold, it has to idle at a higher speed to keep it turning over.
Once the engine has warmed up, the rotational speed for idling can be
decreased to reduce fuel consumption. Our state machine thus has two states:
one when the engine is cold, and one when it is warm. It represents a two-
phase control.

Start ERCOS

Start Measurement
Tutorial

6.8.1 Specifying the State Machine

A state machine consists of the state graph itself and a number of specifica-
tions of actions and conditions. The actions and conditions can be specified
using either block diagrams or ESDL code. They determine what happens in
the various states and during the transitions between states.

The diagrams are specified in the block diagram editor. Another possibility is to
write ESDL code directly in a text editor which can be opened for every state
and every transition (i.e., without opening the ESDL editor). State machines
have inputs and outputs for data transfer with other components.

To create a state machine:

• In the Component Manager, create the folder
Tutorial\Lesson8.

• Select Insert → State Machine or click on
the Statemachine button to create a new
state machine.

• Name it WarmUp.

• In the "1 Database" list, double-click on the
name of the state machine to open the state
machine editor.

When you create a state machine, you specify the state graph diagram first
and then define the various actions and conditions associated with states and
state transitions.
Tutorial 179

180
The state machine controlling your motor has two states: one for when the
motor is cold and one for when the motor is warm.

To specify the state diagram:

• Click on the State button to load the cursor
with a state item.

• Click inside the drawing area, where you want
to place the state.

A state symbol is drawn where you clicked.

• Create a second state symbol and place it
below the first one in the drawing area.

• Right-click on the state symbol you created
first (the one on top) and choose Edit State
from the context menu to open the State Edi-
tor.
Tutorial

• In the "State" field, enter the name
coldEngine.

• Tick the Start State option to determine the
state the machine is in when it is first started.

There must be start state for each state
machine.

• Click on OK to close the State Editor.

The name is displayed in the state symbol.

• Name the second state symbol warmEngine.

• Right-click in the drawing area, outside any
symbol, to activate the connection mode.

• Click in the right half of the coldEngine
state symbol to begin a connection, then click
in the right half of the warmEngine state
symbol to connect the two states.

A line is drawn between the two state sym-
bols. It has an arrow at one end, pointing from
the top to the bottom symbol. The lines repre-
sent possible transitions between states.

• Create another transition from left half of the
bottom to the left half of the top symbol.

• Select Diagram → Store to Cache to store
the diagram.

• In the Component Manager, select File →
Save Database to save the database.
Tutorial 181

182
The next step in building the state machine is to specify its interface. You need
an input for the temperature value and an output for the number of revolu-
tions. In addition, parameters are required that specify high and low tempera-
ture and number of revolutions per minute.

To specify the interface of the state machine:

• Create an input by clicking the Input button.

• Name the input t.

• Create an output by clicking on the Output
button.

• Name the output n_nominal.

• Click on the Continuous button to create a
variable.

• In the element editor, enter the name t_up
and activate the Parameter option.

With that, the originally created variable has
become a parameter.

• Create three other parameters by the same
method.

• Name the parameters and set their values as
follows:

t_up = 70

t_down = 60

n_cold = 900

n_warm = 600

You can now proceed by specifying the actions and conditions for both the
states and the transitions between states. You can specify three actions for
each state:

• The entry action is executed each time the state is entered.
Tutorial

• The exit action is executed each time the state is left.

• The static action is executed while the state machine remains station-
ary.

Similarly, a trigger event, a condition, a priority and an action can be specified
for each transition. The name of the trigger and of the condition appear next
to the transition. One trigger is automatically created when the state machine
is created.

The actions and conditions are specified in ordinary diagrams or in ESDL code.
In this example you will use ESDL code.

To specify the trigger actions and conditions:

• Right-click on the transition from the cold-
Engine state to warmEngine.

• From the context menu, select Edit Transi-
tion to open the Transition Editor.

The condition for a transition from cold to
warm is that the actual temperature value t is
greater than t_up.

• On the "Condition" tab, select <ESDL> from
the combo box.

Note that you can influence the predefined
choice of options in this combo box.
Tutorial 183

184
• Enter the code shown below in the code pane
of the condition:

If the condition evaluates to true, the idle
speed of the engine is set to n_warm.

Note that this code is displayed in the state
machine diagram. In this example, an alias
name is created for the transition condition
and shown in the diagram.

Note

In the Transition Editor, the condition is not ter-
minated with a semicolon. This is also true for
regular ESDL code where conditions appear in
parentheses.
Tutorial

• Select <ESDL> for the action, too, and enter
the following code:

• Click OK to close the Transition Editor.

• Look at the diagram. Note that the condition
and the action from the state machine can be
seen.

• Open another editor for the transition from
warmEngine to coldEngine.

• Select <ESDL> for the condition and enter the
following code:

t < t_down

Note that this time the complete code is
shown in the diagram as no alias was assigned
(in a comment).

• Select <ESDL> for the action, too, and enter
the following code:

n_nominal = n_cold;

• Close the editor and select Diagram →
Store to Cache.

You can also specify the actions and conditions as block diagrams instead of
ESDL code. For that purpose, you first create a separate diagram for actions
and conditions.
Tutorial 185

186
To create a diagram for actions/conditions:

• In the state machine editor, select Diagram →
Add Diagram → Actions/Conditions BDE.

A diagram named ActionCondition_BDE is
created in the "Diagrams" pane.

• Accept the default name.

Now you can add, and specify, actions and conditions.

To specify the action/condition as block diagram:

• In the "Diagrams" field, click on the Action-
Condition diagram.

• Use Diagram → Add Action or Diagram →
Add Condition to create new actions and
conditions.

You can then select these actions and condi-
tions from the combo boxes in the tabs in the
"Transition Editor" dialog. Use the Edit but-
ton to go directly to the graphical specification
in the BDE.

The initial value for the output n_nominal is still missing. Unlike the parame-
ter values, this cannot be set. Instead you need to specify an action for the
coldEngine start state. Since the entry action of the start state is not exe-
cuted at the fist activation of a state machine, you have to specify the initial
value in the static action.
Tutorial

To specify an entry action:

• Right-click on the coldEngine start state.

• From the context menu, select Edit State to
open the State Editor.

• Select <ESDL> feom the combo box on the
"Static" tab to specify the entry action.

Note that you can influence the predefined
choice in this combo box via the "Defaults"
tab in the "Options" window of the Compo-
nent Manager.

• Enter n_nominal = n_cold; in the code
pane to set the initial value of n_nominal to
900.

• Click on OK to close the state editor.

That completes the specification of your state machine. Before you start exper-
imenting with it, you should understand the way it works.

6.8.2 How a State Machine Works

While it is usually easy to understand what a standard component does from
its graphical specification, the function of a state machine may, at first, be less
obvious. This section explains the principles of state machines using the exam-
ple from the previous section. A detailed description of state machines and
their functionality is given in chapter chapter 2.5 "State Machines" of the
ASCET reference guide.
Tutorial 187

188
Each state of a state machine has a name, an entry action, a static action and
an exit action. It has transitions to and from other states. Each transition has a
priority, a trigger, an action and a condition. All actions are optional.

Each state machine needs a start state. When the state machine is first called
up, it is in the start state. It then checks the conditions in all the transitions
pointing away from it. In our example there is just one such transition with the
condition t > t_up. This condition checks whether the input value exceeds
the value of the t_up parameter. If that is the case, the condition is true, and
a transition takes place.

The parameters t_up and t_down determine the temperature that the engine
has to reach, before the nominal rotational speed can be changed. In our
example, if the engine temperature rises above 70 degrees, the speed can be
reduced to 600 revolutions per minute. If it then falls below 60 degrees, the
nominal speed must be reset to 900 revolutions per minute.

Whenever a transition takes place, the transition action specified for the tran-
sition is executed. In our example the transition action n_nominal = n_warm,
which is executed when a transition from the state coldEngine to war-
mEngine takes place, sets the variable n_nominal to 600. The transition
action n_nominal = n_cold sets it to 900 in the reverse case. When a tran-
sition occurs, the state machine also executes the exit action of the state it
leaves, and the entry action of the state it enters. In our example, these are
empty and nothing happens.

Once the state machine has entered the second state, it stays in that state until
the condition in the transition from the second to the first state is fulfilled.
While the state machine stays in one state, the static action is executed every
time the state machine is triggered. Triggering is always an outside event which
starts one pass through the state machine.

A pass through a state machine consists of first testing all the conditions on
transitions leading away from the current state. Transitions and their condi-
tions are tested in order of their priorities. If a condition is true, the correspond-
ing transition is performed and the exit, transition and entry actions are
executed. Once the first condition checks out true, any other transitions lead-
ing from the same state but having lower priorities are not tested. If no condi-
tion is true, the machine remains in the current state and performs the static
action once for each pass.

Once the condition in the second transition of our state machine is true, i.e. if
the input value falls below the threshold, the state machine returns to the first
state. The machine then remains in that state (doing nothing, because there is
no static action) until the input value grows larger than the threshold again.
Tutorial

6.8.3 Experimenting with the State Machine

The experimentation environment works the same for state machines as for
other types of components. One extra feature for experimenting with state
machines is their animation, i.e. the current state is highlighted in the state
machine diagram while the experiment is running.

To experiment with the state machine:

• In the state machine editor, select
Component → Offline Experiment to
open the experimentation environment.

• Right-click on one of the states and select
Animate States from the context menu.

• Enable the trigger event.

• In the data generator, create a channel for the
variable t.

• Assign a sine-wave with frequency 1 Hz, off-
set 70, and amplitude 20 to the channel.

• Open an oscilloscope window for t and
n_nominal.
Tutorial 189

190
• Click on the Start Offline Experiment but-
ton to experiment with the state machine.

• Change the colors of the individual states to
improve clarity.

• To do this, use the Exit to Component but-
ton to leave the experimentation environ-
ment, and call the state editor.

• Select the color in the "Color" combo box.

• Start the experiment anew.

The value of n_nominal changes according to whether the sine-wave
exceeds or falls below the corresponding temperature threshold value. You can
change the threshold using the calibration system to observe the effect of dif-
ferent values on the output. Also, in the state diagram the current state is
highlighted.

6.8.4 Integrating the State Machine in the Controller

Like all other components in ASCET, a state machine can be used as a building
block within another component of any type. You can now integrate the state
machine into your controller module to adjust the rotational speed to the
engine temperature.

To integrate the state machine:

• From the Component Manager, open the
module Lesson4\IdleCon in a block dia-
gram editor.

• Remove the parameter n_nominal from the
diagram and then from the "Elements" list.

You will replace the parameter with the state
machine in the block diagram.

• Select Element → Add Item and add the
state machine to the "Elements" list of the
controller.
Tutorial

• Create a receive message and name it t.

• Connect the output of the component War-
mUp with the subtraction operator in place of
the deleted variable, and connect the input of
WarmUp with the receive message t.

• Adjust the diagram as shown below. Be sure
to adjust the sequencing in the diagram to
include all items in the correct order.

• Save the diagram and click on the Save but-
ton in the Component Manager.

In order to make the modified controller work with our project, we have to
make some adjustments to the project. At this point we will also integrate the
temperature sensor, which has been left unused so far.

To modify the project:

• Open the project editor for the project Con-
trollerTest.

• Switch to the "OS" tab.

• Assign the process t_sampling to the task
Task10ms.

• Use the command Task → Move Up to make
the process t_sampling the first in that
task.

• click the Open Experiment for selected
Experiment Target button.

• Open an additional scalar calibration window
for the value U_t.

• Add the variable t to the oscilloscope.
Tutorial 191

192
• Click on the Start ERCOS button.

• Click on the Start Measurement button.

• Adjust the value U_t and observe its effect.

If the value of t exceeds the 70 degree limit,
the state machine switches to nominal value
for n to the lower value of 600. If the temper-
ature falls to below 60 degrees (simulated by
adjusting U_t), the nominal value for n
regains the original value of 900.

6.8.5 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Creating a state diagram

• Creating and assigning conditions, actions and triggers

• Experimenting with state machines

• Integrating state machines into other components

6.9 Hierarchical State Machines

Now that you have familiarized yourself with the way state machines work in
the preceding lesson, we shall look at creating a more complex system. This
unit concentrates on hierarchical state machines. You will also learn how to
use the system libraries and components supplied with ASCET, such as timers.

ASCET permits structuring of state machines in closed and open hierarchies.
With closed hierarchies, the internal functionality is concealed, with open hier-
archies the substates are also shown graphically.

You will build a traffic light control system to run through the individual phases
of a traffic light using parameterizable timing. The traffic light will also have an
error status where it will flash.

6.9.1 Specifying the State Machine

First you will import the libraries you need and prepare for the task.

To import the system library SystemLibETAS.exp:

• In the Component Manager, click on Import.

The "Select Import File" window opens.

Start ERCOS

Start Measurement
Tutorial

• In the "Import File" field, use the button to
select the file SystemLibETAS.exp from
the Export directory of your ASCET installation
(e.g. C:\etas\ASCET5.2\export).

The OK button is now available.

• Click OK to start the import.

The "Import" window opens. All objects con-
tained in the file are selected.

• Confirm the import of all files with OK.

The files are imported. This can take up to sev-
eral minutes. When the import procedure is
finished, all imported items are listed in the
"Imported Items" window.

The second step is to specify the two main states possible for the traffic light
(NormalMode and ErrorMode).

To create the state machine:

• In the Component Manager, create the folder
Tutorial\Lesson9.

• Select Insert → State Machine to create a
new state machine, and call it Light.

• Select Component → Edit to open the state
machine editor.
Tutorial 193

194
You can start specifying the state machine
that will control your traffic light.

• Create the two states ErrorMode and
NormalMode.

Then add a timer to your project from the system library.

To add the timer object:

• Select Element → Add Item.

• In the "Select Item" dialog, select the timer
object Timer from the Counter_Timer
folder of the SystemLib_ETAS library.

• Confirm your selection with Ok.

You have now added an object Timer to the
"Elements" list for your state machine.

To specify the state diagram:

• Specify the necessary data elements as fol-
lows:

– An input error type Logic,

– three outputs (yellow, green, red)
type Logic to symbolize traffic light col-
ors,

– four continuous parameters (Blink-
Time, YellowTime, GreenTime,
RedTime) for the different traffic light
phases.

To get more practice with dependent parame-
ters, you will configure the parameters so that
only the green phase is specified and the other
parameters are given values dependent on
that.

RedTime = 2 * GreenTime
YellowTime = GreenTime/3
BlinkTime = YellowTime/10

• Now specify calculations and dependencies of
the individual parameters.
Tutorial

• To do this, select the check box Dependent
under "Dependency" in the element editor
for the parameters RedTime, YellowTime
and BlinkTime.

The element editor is started with a double-
click on the element name or via the Edit con-
text menu.

• Click on the Formula button to start the for-
mula editor.

• Using the formula editor, specify the calcula-
tion for each of the dependent parameters by
first creating a formal parameter x and then
entering the calculation in the formula pane.

Redtime : 2*x
YellowTime : x/3
BlinkTime : x/10

• Close the formula editor and the element edi-
tor.

• Open the dependency editor via the context
menu Edit Data.

• Assign the corresponding model parameter to
the formal parameter x for each of the depen-
dent parameters.
RedTime : x = GreenTime
YellowTime : x = GreenTime
BlinkTime : x = YellowTime

• Give the data elements meaningful values
(e.g. GreenTime = 5).

• Open the state editor for the ErrorMode
state.

You can open the state editor either by dou-
bleclicking on a state or via the Edit State
context menu.

• Define this state as the initial state and color it
red.

• Enlarge both states so that the hierarchies can
be inserted.

• Create the transitions between the two states.
Tutorial 195

196
• Open the transition editor via the Edit Transi-
tion context menu or with a double-click on
the graphic.

• Specify the transitions between the two states
by entering conditions in the transition dialog.
Enter the conditions in ESDL so that the nor-
mal state NormalMode is activated when the
input error is false (i.e. there has not been
an error), and ErrorMode is activated when
there is an error.

• Select Diagram → Store to Cache.

• Save your work in the Component Manager
by selecting File → Save Database.

• You might like to experiment with the main
states.

The next step towards creating the traffic light control system is to specify the
substates. First specify the performance in the error mode (state ErrorMode).
In this state, a yellow flashing light will be output. To do this, introduce two
Tutorial

substates YellowOff and YellowOn; with the timer as switch between
them. In the YellowOn state, the output yellow will be set to true, while
the YellowOff state sets it back to false.

To specify the substates for the error mode

• Create the states YellowOff and Yel-
lowOn and place them inside the state
ErrorMode.

• Define YellowOff as start state and color
YellowOn yellow.

• Define the response of the state YellowOff
in the state editor.

To do this, call the state editor either via the
Edit State context menu or with a double-
click on the state.

• For the entry action, select ESDL in the combo
box for the "Entry" tab and enter the follow-
ing code:

• For the static action, enter the following code
on the "Static" tab:

Timer.compute();

• Now define and describe the YellowOn state
in the same way.

Entry action:
yellow = true;
Timer.start (BlinkTime);

Static action:
Timer.compute();
Tutorial 197

198
• Now define the transitions between the two
substates.

The condition for a state transition is that the
timer has run out (Timer.out() ==
false).

This means that the ErrorMode state is started in the YellowOff state. As
well as switching off the color signals, the entry action starts the timer with the
parameterizable flashing time. The static action of the YellowOff state calls
the timer function compute() each time, which decrements the timer
counter. When this counter is 0, the timer function out() returns the code
false, thus fulfilling the transition condition. The state YellowOn works in
a similar way, however, in the entry action, the Yellow color signal is switched
on.

The next step is to specify the performance in normal operation. To do this,
create a start state, AllOff, and place it within the NormalMode state. Use
the exit action to set all the color signals to a defined state. Now think about a
suitable response for the traffic light control system.

In this example, you should describe the activation or deactivation of the indi-
vidual color signals in the transition actions, not in the entry actions of the
states.
Tutorial

To specify the substates in normal operation

• Create and place the states AllOff (start
state), Yellow, Red, RedYellow and
Green.

• Specify the response for the states by starting
the appropriate timer for each color (entry
action) and initiating timer processing in the
static action. (Timer.compute()).

• Define the state transitions and describe the
response of the states within the transition
actions.

The transition from AllOff to Yellow
should generally occur, all other transitions
should happen after the relevant timer has run
out.
Tutorial 199

200
• Enter the actions for each color signal in the
"Action" tab of the transition editor, e.g.

• Close the transition editor and select
Diagram → Store to Cache.

That completes the specification of your traffic light control system. Before you
can experiment with it, you should enter meaningful values for the parameters
in the various color timers.

6.9.2 Experimenting with the Hierarchical State Machine

You can experiment with the hierarchical state machine in the same way as
with the basic state machine. Please do not forget to activate the animation in
the experiment.

Experimenting with the State Machine:

• In the state machine editor, select
Component → Open Experiment to open
the experimentation environment.

• Right-click on one of the states and select
Animate States from the context menu.

• Enable the trigger event.

• Click on the Start Offline Experiment but-
ton to experiment with the state machine.

• Experiment with the state machine by chang-
ing the GreenTime parameter and then
updating the dependent parameters via
Update Dependent Parameter.

• Occasionally, set the error input to true.
Tutorial

6.9.3 How Hierarchical State Machines Work

Hierarchical state machines work in the same way as normal state machines. In
principle, hierarchical state machines only represent a graphic structure of the
total set of responses. As an extra task, consider or demonstrate how the
response described could be achieved without a hierarchy.

The traffic light example is constructed with two hierarchical states. The system
switches between the two states ErrorMode and NormalMode using the
logical input variable error. The sub-responses are defined within these
states.

To understand this, look at the processing in the ErrorMode hierarchy state.
Each time the trigger is called, the condition for the transition from the hierar-
chy state ErrorMode to the hierarchy state NormalMode is checked (condi-
tion: !error). If no transition is necessary, the transitions from substate
YellowOff to YellowOn or vice versa are checked, and the necessary
actions are performed.

If you now look at NormalMode, this means that, again, for each trigger call
it is first checked whether the input error is true, and therefore a transition
to ErrorMode is necessary. Only if this is not the case, the transitions from the
substates (AllOff, Yellow, Red, RedYellow, Green) are checked. In the
traffic light example, it is checked whether the timer has run out.

You can have a look at the code generated from the state diagram to clarify
this process.

Displaying generated code:

• In the state machine editor, select
Component → View Generated Code to
display the code generated.

The code from the components is written to a
temporary file and then opened with an appli-
cation defined in the operating system register
database.

Note

In order to display the code generated, a search
is made in the operating system register data-
base for an application with associated files of
type *.c and *.h. Depending on the file end-
ings registered, the relevant editor is started.
Tutorial 201

202
6.9.4 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

• Create hierarchical state diagrams

• Describe the way the states behave in actions and also in the transition
actions.

• Import modules, classes or components

• Import system components from ASCET libraries

• Use the Timer system component

• Use of dependent parameters

• Displaying generated code
Tutorial

7 Glossary

In this glossary the technical terms and abbreviations used in the ASCET docu-
mentation are explained. Many terms are also used in a more general sense,
but only the meaning specific to ASCET is explained here.

The terms are listed in alphabetic order.

7.1 Abbreviations

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems,
with the working groups Measuring, Calibration, Diagnosis
(German: Arbeitskreis zur Standardisierung von Automations- und Mess-
systemen, mit den Arbeitsgruppen Messen, Calibrieren und Diagnose)

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design

ASCET-RP

ASCET Rapid Prototyping

ASCET-SE

ASCET Software Engineering

BDE

Block Diagram Editor

CPU

Central Processing Unit

ECU

Embedded Control Unit

ERCOSEK

ETAS real-time operating system, OSEK-compliant

ESDL

Embedded Software Description Language

ETK

emulator test probe (German: Emulatortastkopf)

FPU

Floating Point Unit
Glossary 203

204
HTML

Hypertext Markup Language

INCA

Integrated Calibration and Acquisition Systems

INTECRIO

A new ETAS product family. INTECRIO integrates code from various behav-
ioral modeling tools, facilitates all necessary configurations, allows the gen-
eration of executable code, and provides an experiment environment for
the execution of the Rapid Prototyping experiment.

OS

Operating System

OSEK

Working group "open systems for electronics in automobiles"
(German: Arbeitskreis Offene Systeme für die Elektronik im Kraftfahrzeug)

RAM

Random Access Memory

ROM

Read-Only Memory

UML

Unified Modeling Language

XML

Extensible Markup Language

7.2 Terms

Action

An action is part of a state machine and associated with states or transi-
tions of the state machine. An action is a piece of functionality, whose exe-
cution is triggered by the state machine.

Application Modes

An application mode is part of the operating system of ASCET. An operat-
ing mode describes different conditions a system can be in, e.g. EEPROM-
programming mode, warm-up, or normal mode.

Argument

An argument is the input to a method of a class. Arguments can only be
used in the specification of the method they belong to, and not in other
methods of the class.
Glossary

Arithmetic Services

User-defined C functions to optimize elementary operations, such as addi-
tion operations, and to extend such operations with special properties,
such as value limits.

Array

An array is a one dimensional static list of elements of the basic scalar type
continuous or discrete, indexed by the basic scalar type discrete.

ASAM-MCD-2MC file

Default exchange format used for projects in ASCII format for the descrip-
tion of measurement and calibration values. The files have the extension
*.a2l.

Basic Model Types

Basic model types are used to model physical behavior. There are three
types: continuous, discrete and logical. A number of operations,
such as addition or comparison, are defined for the basic model types. The
implementation is used to transform the model types to implementation
types.

Block Diagram

A block diagram is a graphical description for a component in which the
various elements, operators and inputs/arguments and outputs/return val-
ues are connected by directed lines. A block diagram consists of several
diagrams. The description in terms of block diagrams is a physical descrip-
tion in contrast to the description with C-Code.

Bypass Experiment

In a bypass experiment, ASCET is directly connected to a microcontroller,
and parts of the microcontroller software are simulated by ASCET.

Calibration

Calibration is the manipulation of the values (physical / implementation) of
elements during the execution of an ASCET model (experiment).

Calibration Window

ASCET working window which can be used to modify parameters.

C Code

C code is an implementation dependent description of a component.

Characteristic

General term used for characteristic map, curve and value (see also
"Parameter".
Glossary 205

206
Characteristic Line

Two-dimensional parameter.

Characteristic Map

Three-dimensional parameter.

Characteristic value

One-dimensional parameter (constant).

Class

A class is one of the component types in ASCET. Classes in ASCET are like
object-oriented classes. The functionality of a class is described by methods.

Code

The executable code is the "actual" program with the exception of the
data (contains the actual algorithms). The code is the program part which
can be executed by the CPU.

Code Generation

Code generation is the first step in the transformation of a physical model
to executable code. The physical model is transformed into ANSI C-Code.
Since the C-Code is compiler (and therefore target) dependent, different
code for each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Compo-
nents can be specified as classes, modules, or state machines. Each compo-
nent is built up of elements which are combined with operators to build up
the functionality.

Component Manager

Working environment in which the user can set up ASCET and manage the
data he created and which are stored in the database.

Condition

A condition is used to describe the control flow in a state machine. It
returns a logical value which determines, whether a transition from one
state to another takes place.

Configuration dialog box

Dialog box used to configure the individual measuring and calibration win-
dows as well as the variables contained therein.

Constant

A constant is an element that cannot be changed during execution of an
ASCET model.
Glossary

Container

Containers serve as containers for projects, classes and modules. Their pur-
pose is to structure models and databases and place different database
items under a common version control.

Data

The data is the variables of a program used for calibration.

Data Generator

The data generator is part of the experimentation environment. It is used to
stimulate the inputs or variables in the model under experimentation.

Data Logger

With the data logger measurement data can be read from an experiment
and stored to disk for further analysis.

Data Set

A data set contains/references the initial data for all elements of a compo-
nent or project.

Database

All information specified or produced with ASCET is stored in a database. A
database is structured into folders.

Description file

Contains the physical description of the characteristics and measured val-
ues in the control unit (names, addresses, conversion formulae, functional
assignments, etc.).

Diagram

A diagram is used for the graphical specification of components as block
diagrams or state machines.

Dimension

The dimension is used to describe the ‘size’ of basic elements. The dimen-
sion can either be scalar (zero dimensional), array (one dimensional) or
characteristic line/table.

Distribution

A distribution contains the sample points for one or more group character-
istic lines/maps.

Editor

See Calibration Window.
Glossary 207

208
Element

An element is a part of a component which reads or writes data, for
instance a variable, parameter or other component used within a compo-
nent.

Event

An event is an (external) trigger that starts an action of the operating sys-
tem, e.g., a task.

Event Generator

The event generator is part of the experimentation environment. It is used
to describe the order and the timing in which events are generated for the
activation of tasks (methods/processes/time frames) in the case of an offline
experiment.

Experiment

An experiment defines the settings in the experiment environment that are
used to test the proper functioning of components or projects. It contains
information about the size, position and content of the measurement and
calibration windows, as well as the settings of the event generator, data
generator and the data logger. An experiment can be executed either
offline (non real-time) or online (real-time) and can be used to control a
technical process in a bypass or fullpass application. In all cases, instru-
mented code generated from an ASCET specification is used for experi-
ment execution.

Experiment environment

Main working environment in which the user performs his experiments.

Fixed Point Code

From the physical specification, fixed point code can be generated which
can be executed on processors without a floating point unit.

Folder

A folder is a management unit for structuring an ASCET database. A folder
contains items of any kind.

Formula

A formula is part of an implementation describing the transformation from
the model types to the implementation (data) types.

Fullpass Experiment

In a fullpass experiment, ASCET is directly connected with an experimental
microcontroller, and the entire application is simulated by ASCET.
Glossary

Group Characteristic Line/Map

Group characteristic lines/maps are characteristic lines/maps that share the
same distribution of axis points but have different return values. The distri-
bution of axis points and the individual group tables are specified as sepa-
rate elements.

HEX file

Exchange format of a program version as Intel Hex or Motorola S Record
file.

Hierarchy

A hierarchy block is used to structure the graphical specification of a block
diagram.

Icon

Icons can be used to illustrate the function of ASCET components.

Implementation

An implementation describes the transformation of the physical specifica-
tion (model) to executable fixed point code. An implementation consists of
a (linear) transformation formula and a bounding interval for the model
values.

Implementation Cast

Element that provides the users the possibility to control the implementa-
tions of intermediate results in arithmetic chains without changing the
physical representation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C program-
ming language, e.g., unsigned byte (uint8), signed word
(sint16), float.

Implementation Types

Implementation templates. Implementation types contain the main specifi-
cations of an implementation; they are defined in the project editor and
can be assigned to individual elements in the implementation editors.

Intel Hex

Exchange format used for program versions.

Interface

An interface of a component describes how the component exchanges
data with other components. It can be compared to the .h file in C.
Glossary 209

210
Kind

There are three kinds of elements: variables, parameters, and constants.
Variables can be read and written. Parameters can only be read but can
calibrated during experimentation. Constants can only be read and not
written to during experiments.

L1

The message format for exchanging data between the host and the target,
where the experiment is run. Data is transferred, e.g. for displaying values
in measure windows.

Layout

A component has a graphical representation that shows pins for the inputs/
arguments, outputs/return values and time frames/methods/processes.
Additionally, the layout contains an icon that graphically represents the
component when used within other components.

Literal

A literal is used in the description of components. A literal contains a string
that is interpreted as a value, e.g. as a continuous or logical value.

Measuring

Recording of data which is either displayed or stored, or both displayed and
stored.

Measure window

ASCET working window which displays measured signals during a mea-
surement.

Measured signal

A variable to be measured.

Measurement

A measurement is the representation of values (physical / implementation)
of variables/parameter during an experiment. The values can be displayed
with various different measurement windows like oscilloscopes, numeric
displays, etc.

Measuring channel parameters

Parameters which can be set for the individual channels of a measuring
module.

Message

A message is a real time language construct of ASCET for protected data
exchange between concurrent processes.
Glossary

Method

A method is part of the description of the functionality of a class in terms
of object oriented programming. A method has arguments and one return
value.

Model Type

Each element of an ASCET component specification is either a component
of its own or is of a model type In contrast to implementation types, model
types represent physical values.

Module

A module is one of the component types in ASCET. It describes a number
of processes that can be activated by the operating system. A module can-
not be used as a subcomponent within other components.

Monitor

With a monitor the data value of an element can be displayed in a diagram
during an experiment.

Motorola-S-Record

Exchange format used for program versions.

Offline experiment

During offline experimentation the code generated by ASCET can be run
on the PC or an experimental target, but it does not run in real-time. Offline
experimentation focuses on testing the functional specification of a system.

Online experiment

In the online experiment the projects are executed in real-time with the
behavior defined in the real-time operating system. The code always runs
on an experimental target in real-time. The online experiment focuses on
the operating system schedule and the corresponding real-time behavior of
the control system.

Operating System

The operating system is used to schedule the execution/activation of an
ASCET software system. The operating system also provides services for
communication (messages) and access to reserved parts of the hardware
(resources). The ASCET operating system is based on the real-time operat-
ing system ERCOSEK.

Oscilloscope

An oscilloscope is a type of measurement window that graphically displays
data values during experiments.
Glossary 211

212
Parameter

A parameter (characteristic value, curve and map) is an element whose
value cannot be changed by the calculations executed in an ASCET model.
It can, however, be calibrated during an experiment.

Priority

Every task has a priority in the form of a number. The higher the number,
the higher the priority. The priority determines the order in which tasks are
scheduled.

Process

A process is a concurrently executable piece of functionality that is acti-
vated by the operating system. Processes are specified in modules and do
not have any arguments/inputs or return values/outputs.

Program

A program consists of code and data and is executed as a unit by the CPU
of the control unit.

Project

A project describes an entire embedded software system. It conains compo-
nents which define the functionality, an operating system specification, and
a binding mechanism which defines the communication.

Resource

A resource is used to model parts of an embedded system that can be used
only mutually exclusively, e.g. timers. When such a part is accessed, it has
to be reserved and then released again, which is done using resources.

Scheduling

Scheduling is the assigning of processes to tasks and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component)
or global (defined inside a project).

State

A state is a part of a state machine. A state machine is always in a one of
its states. One of the states is marked as the start state which is the initial
state of the state machine. Each state is connected to other states by arcs.
A state has an entry action (that is executed upon entry of a state), an static
action (that is executed the state remains unchanged) and an exit action
(that is executed upon exit of the state).
Glossary

State Machine

A state machine is one of the component types in ASCET. The behavior is
described with a state graph consisting of states connected by transitions.

Target

A target is the hardware an experiment runs on. A target can either be an
experimental target (PC, Transputer, PowerPC) or a microcontroller target.

Task

A task is an ordered collection of processes that can be activated by the
operating system. Attributes of a task are its operating modes, its activation
trigger, its priority, the mode of scheduling. On activation the processes of
the task are executed in the given order.

Trigger

A trigger activates the execution of a task (in the scope of the operating
system) or of a state machine.

Transition

A transition is a connection between states. Transitions describe possible
state changes. Each transition is assigned to a trigger of the state machine,
has a priority, a condition, and an action.

Type

Variables and parameters are of type cont (continuous), udisc (unsigned
discrete), sdisc (signed discrete) or log (logic). Cont is used for physical
quantities that can assume any value; udisc for positive integer values,
sdisc for negative integer values, and log is used for Boolean values
(true or false).

User profile

A set of user-specific option settings.

Variable

A variable is an element that can be read and written during the execution
of an ASCET model. The value of a variable can also be changed with the
calibration system.

Also: General term used for parameters (characteristics) and measured sig-
nals.

Window elements

General term used for calibration and display elements.
Glossary 213

214
 Glossary

8 Reference Lists

The chapter "Reference Lists" contains information on troubleshooting, the
directory structure, and the reference files required. This chapter also includes
a list of all keyboard commands sorted by working windows.

8.1 Troubleshooting and User Feedback

While developing ASCET, the functional safety of the program was utmost
importance. Should an error occur nevertheless, please forward the following
information to ETAS:

• Which step were you about to perform with ASCET when the error
occurred?

• What kind of error occurred (wrong function, system error or system
crash)?

• Which model element or model was edited at the time of the error?

When you use the support function, ASCET compresses the entire contents of
the "log" directory (all *.log files) including a textual description into an
archive file named EtasLogFiles00.zip in the ...\ETAS\LogFiles\
subdirectory. For additional archive files, the file name is incremented automat-
ically (up to 19) to avoid that older archive files are immediately overwritten.

If a critical system error occurs, the following window is displayed:

Note

To allow ASCET to be updated and developed further, it is important that you
report any errors which have occurred with an application to ETAS. You can
use the "Problem Report" method for this purpose.
Reference Lists 215

216
What to do in case of an error:

1. Problem Report button

• Click on the Problem Report button.

The support function is started.

• Describe the error and forward the informa-
tion—together with the model—to ETAS.

2. Exit button

• Click on the Exit button.

ASCET is closed; all modifications that have
not been saved will be lost.

Close any message boxes prompting you to
save data without saving any data.

• Restart ASCET.

3. Continue button

• Click on the Continue button.

The application continues to run; the program
jumps back to the location where it was
before the error occurred.

• Save your data.

• Exit ASCET.

• Restart ASCET.

It is generally advisable to close the program (without saving) and to restart it.
Thus, the risk of possible subsequent errors is omitted.

Note

Use the Continue button only if you have to save important configura-
tion data. Subsequent errors or incorrect configurations cannot be
excluded!
Reference Lists

8.2 ASCET Directories

When installing ASCET, the following directory structure is created on the
installation disk (unless you modify the path settings):

8.2.1 Default Storage Directories

• Database
ETASData\Ascet5.2\Database

• Export
ETAS\Ascet5.2\Export

• automatically generated documentation
ETASData\Ascet5.2\Docu
Reference Lists 217

218
8.2.2 Changing Default Directories

You can use the "Options" dialog window to change the default storage direc-
tories. To do so, proceed as follows:

To change the default storage directories:

• In the Component Manager, select the menu
option Tools → Options.

The ASCET options window opens. You can
change the database path in the "Options"
node, the export path in the "Export" node,
and the documentation path in the "Docu-
mentation" node.

• Click on the button next to the path you want
to change.

The "Path selection" window opens.

• Specify the directory you want to use as
default for the selected option.

• Click OK.

The selected directory is displayed in the
"Options" window.

• Repeat these steps for each option you want
to change.
Reference Lists

• When you are ready, click OK in the
"Options" dialog to accept the changes, or
click Cancel to discard the changes.

8.3 Keyboard Control

8.3.1 General Control Functions

Tab. 8-1 General keyboard commands (in individual cases, a command
can have a different meaning in a particular window)

Key Function

ALT + TAB Switches between open calibration programs.

ALT + SPACE Opens the system menu of the calibration program win-
dow.

ALT + F4 Closes the current window.

CURSOR KEYS

(← ↑ → ↓)
Moves to a table item or list item,
↓ also opens the active list field.

TAB Moves the highlight (focus) to the next element (option) of
a window (use SHIFT + TAB for the opposite direction).

DEL Deletes a selected entry.

SPACE Activates the input mode in tables, selects or deselects a
table or list item.

ESC Closes the input mode without accepting the entry.

SHIFT Activates multiple selection; you can select a table area with
the cursor keys while keeping the Shift key depressed.

ENTER Confirms the entry and closes the input mode, and opens or
closes branches.

CTRL + A Selects all objects (e.g. in a list).

CTRL + C copies data to the clipboard (except measure windows)

CTRL + V inserts data from the clipboard

CTRL + X cuts data to the clipboard

CTRL + Y Repeats the last action.
(for calibration windows, use CTRL + D instead).

CTRL + Z Undoes the last action.
(for calibration windows, use CTRL + U).

CTRL + F1 Shows the most important keyboard commands

F10 activate main menu
Reference Lists 219

220
8.3.2 Keyboard Commands in the Component Manager

The following special keyboard commands are available in the Component
Manager:

8.3.3 Keyboard Commands in the Monitor Window

The following special keyboard commands are available in the ASCET monitor
window:

Key Function

CTRL + N create a new database

CTRL + O open database

CTRL + S save database

CTRL + E Activates the export function.

CTRL + M Activates the import function.

ALT + F4 close Component Manager and exit ASCET

F2 rename selected object

CTRL + F search a string in C code or ESDL components

CTRL + H replace a string in C code or ESDL components

CTRL + Q search the database from various points of view

F5 update Component Manager display

INSERT insert folder / insert object in container

RETURN open editor for selected database object

ALT + 1 switch to the "1 Database" field

ALT +2 switch to the "2 Comment" field

ALT +3 switch to the "3 Contents" field

ALT + F6 switch to the next window

ESC cancel cut (<CTRL> + <X>)

Key Function

Ctrl + o open log file for the "Monitor" tab

Ctrl + s save the content of the "Monitor" tab to a file

CTRL + F find/replace text in the "Monitor" tab
Reference Lists

8.3.4 Keyboard Commands in the Editors

The following special keyboard commands are available in the block diagram
editor:

The following special keyboard commands are available in the C Code and
ESDL editors:

The following special keyboard commands are available in the AS editor:

The following special keyboard commands are available in the data and imple-
mentation editors for components/projects:

CTRL + R delete text in the "Monitor" tab

CTRL + + enlarge monitor window

CTRL + - scale down monitor window

Key Function

F2 rename selected element

CTRL + CURSOR RIGHT show next sequence call

CTRL + CURSOR LEFT show previous sequence call

Key Function

CTRL + F find/replace

CTRL + S save method/process

Key Function

CTRL + N create new file

CTRL + O open file

CTRL + S save file

Key Function

ALT + C, ALT + O close editor window

F2 rename selected data set/implementation

Key Function
Reference Lists 221

222
8.3.5 Keyboard Commands in the Offline Experiment Environment

The following special keyboard commands are available in the offline experi-
ment environment:

8.3.6 Measure and Calibration Windows in General

The keyboard commands listed below equally apply to all measure and calibra-
tion windows. For specific keyboard commands for individual measure and cal-
ibration windows, please see further below.

Tab. 8-2 Keyboard commands in all measure and calibration windows

Key Function

ALT + F4 close offline experiment environment

F10 Activates the main menu

CTRL + C calibrate element

CTRL + M measure element

CTRL + S stimulate element

CTRL + L activates recording of selected elements in the Data Logger

CTRL + A activates recording of all elements in the Data Logger

CTRL + I view the implementation of an element

CTRL + U update dependent parameters

Key Function

CTRL + H Displays hexadecimal values in the active window.

CTRL + I Displays information on the selected variable.

CTRL + P Displays physical values in the active window.

CTRL + S Opens the display setup for the active window (except 3D
graphical editor).

DEL Deletes a variable from the active window (except graphical
and numerical table editors).
Reference Lists

Calibration Windows

The following keyboard commands are—in addition to those in Tab. 8-2—
available in all calibration windows:

The following keyboard commands are only available in the numerical editor:

The following keyboard commands are only available in the table editor:

Key Function

CTRL + M increments selected values (except 3D graphical editor)

CTRL + N decrements selected values (except 3D graphical editor)

CTRL + D Repeats the last action.

CTRL + U Undoes the last action.

Key Function

CTRL + R displays binary values

CTRL + Z displays decimal values

CTRL + PAGE UP moves the highlighted variable in a window one position
down

CTRL + PAGE DOWN moves the highlighted variable in a window one position up

Key Function

+ adds offset to selected values

* multiplies selected values by a factor

= fills selected cells with a value

CTRL + J decrements the x-axis value (only characteristic line/map)

CTRL + K increments the x-axis value (only characteristic line/map)

CTRL + R decrements the y-axis value (only characteristic map)

CTRL + T increments the y-axis value (only characteristic map)

CTRL + X assigns a specific value to the x-axis point (only characteristic
line/map)

CTRL + Y assigns a specific value to the y-axis point (only characteristic
map)
Reference Lists 223

224
The following keyboard commands are only available in the 1D or 2D graphical
editor:

The following keyboard commands are only available in the 3D graphical edi-
tor:

Measure Windows

The following keyboard commands are—in addition to those in Tab. 8-2—
available in all measure windows:

The following keyboard commands are available in the numerical display, bit
display, and horizontal and vertical bar display:

Key Function

X Switches to the xz representation (2D Map Editor only).

Y Switches to the yz representation (2D Map Editor only).

Z Reverses x (y)-axis and z-axis.

CTRL + B Allows several values on the curve to be selected.

Key Function

CURSOR LEFT,
CURSOR RIGHT

rotation around z-axis

CURSOR UP,
CURSOR DOWN

rotation around horizontal axis

<NUM 4>, <NUM 6> rotation around z-axis

<NUM 8>, <NUM 2> rotation around horizontal axis

Key Function

CTRL + C copies the settings of the current measure window to the
clipboard

CTRL + W copies the settings from the clipboard to the current mea-
sure window

CTRL + PAGE UP moves the highlighted variable in a window one position
down (vertical bar display: to the left)

CTRL + PAGE DOWN moves the highlighted variable in a window one position up
(vertical bar display: to the right)
Reference Lists

The following keyboard commands are only available in the numerical display:

The following keyboard commands are only available in the oscilloscope and
recorder window:

Key Function

CTRL + Z Displays decimal values in the active window.

CTRL + R Displays binary values in the active window.

Key Function

CTRL + A Adapts the Y-axis scaling for the selected measuring chan-
nel.

CTRL + U Undoes the last scaling.

CTRL + L Shows/hides the measuring channel list.

CTRL + X Shows/hides the selected variable.

CTRL + V Activates/deactivates the analysis mode.

CTRL + G Shows/hides display grid (oscilloscope only).

T Releases the trigger event manually.

PAGE DOWN Selects the last channel in the "Measure channels" or "Bit
channels" list.

PAGE UP Selects the first channel in the "Measure channels" or "Bit
channels" list.

CURSOR LEFT,
CURSOR RIGHT

Move selected measure cursor in single steps (analysis mode
only).

CTRL + CURSOR LEFT,
CTRL + CURSOR RIGHT

Move selected measure cursor several steps at once (analysis
mode only).
Reference Lists 225

226
 Reference Lists

9 Windows XP Firewall and ASCET

Windows XP comes with a built-in personal firewall. On many other systems it
is very common to have personal firewall software from third party vendors,
such as Symantec, McAffee or BlackIce installed.

Personal firewalls may interfere with access to Ethernet hardware using
ASCET-RP or ASCET-SE. The automatic search for hardware typically cannot
find any Ethernet hardware at all, although the configuration parameters are
correct. In that case, you may have firewall software installed on your system.

This chapter helps you to configure the Windows XP firewall if the hardware
access is prohibited under Windows XP with Service Pack 2.

The following actions in ETAS products may lead to some trouble if the Win-
dows XP firewall is not properly parameterized:

• ASCET

– opening an experiment

– reconnecting to an experiment

• Hardware Service Pack

– searching for hardware

– starting a firmware update

• INCA

– searching for hardware

– opening the hardware configuration editor

– opening an experiment
Windows XP Firewall and ASCET 227

228
9.1 Users with Administrator Privileges

If you have administrator privileges on your PC, the following dialog window
opens if the firewall blocks an ETAS product.

To unblock a product:

• In the "Windows Security Alert" dialog win-
dow, click on Unblock.

The firewall no longer blocks the ETAS product
in question (in the example: ASCET). This deci-
sion survives a restart of the program, or even
the PC.

Instead of waiting for the "Windows Security Alert" dialog window, you can
unblock ETAS products in advance.

Unblocking ETAS products in the firewall control:

• From the Windows Start Menu, select
Settings → Control Panel.
Windows XP Firewall and ASCET

• In the control panel, double-click the Win-
dows Firewall icon to open the "Windows
Firewall" dialog window.
Windows XP Firewall and ASCET 229

230
• In the "Windows Firewall" dialog window,
open the "Exceptions" tab.

This tab lists the exceptions not blocked by the
firewall. Use Add Program or Edit to add
new programs, or edit existing ones.

• Make sure that the ETAS products and ser-
vices you want to use are properly configured
exceptions.

– Open the "Change Setup" window.
Windows XP Firewall and ASCET

– To ensure proper ETAS hardware access,
make sure that at least the IP addresses
192.168.40.xxx are unblocked.

– Close the "Change Setup" window with
OK.

• Close the "Windows Firewall" dialog window
with OK.

The firewall no longer blocks the ETAS prod-
uct in question (in the example: ASCET). This
decision survives a restart of the PC.

9.2 Users without Administrator Privileges

This section addresses users with restricted privileges, e.g., no system changes,
write restrictions, local login.

Working with an ETAS product requires "Write" and "Modify" privileges
within the ETAS, ETASData, and ETAS temporary directories. Otherwise, an
error message opens if the product (e.g., ASCET) is started, and a database is
opened. In that case, no correct operation of the ETAS product is possible
because the database file and some *.ini files are modified during opera-
tion.

ASCET has to be installed by an administrator anyway. It is recommended that
the administrator assures that the ETAS program/processes are added tothe list
of the Windows XP firewall exceptions, and selected in that list, after the
installation. If this is omitted, the following will happen:

• The "Window Security Alert" window opens when one of the actions
listed above (cf. page 227) is executed.
Windows XP Firewall and ASCET 231

232
To unblock a program (no Admin privileges):

• In the "Windows Security Alert" dialog win-
dow, activate the option For this program,
don’t show this message again.

• Click OK to close the window.

An administrator has to select the respective
product (e.g., ASCET) in the "Exceptions" tab
of the "Windows Firewall" dialog window to
avoid further problems regarding hardware
access with that ETAS product.

9.3 Support and Problem Reporting

If you have any questions, contact the ETAS hotline.

Phone E-Mail

Europe
(w/o France, Belgium,
Luxembourg, Great
Britain)

+49–711–89661–311 (ASCET)
+49–711–89661–315 (INCA)

ec.hotline@etas.de
inca.hotline@etas.de

France, Belgium,
Luxembourg

+33–1–5670–0235 (ASCET)
+33–1–5670–0234 (INCA)

support.ascet@etas.fr
support.inca@etas.fr

Great Britain +44–1283–546–512 support@etas-uk.net

Japan +81–45–222–0951 (ASCET)
+81–45–222–0950 (INCA)

ec.hotline@etas.co.jp
inca.hotline@etas.co.jp

Korea +82(2)5747–101 (ASCET)
+82(2)5747–061 (INCA)

ec.hotline@etas.co.kr
inca.hotline@etas.co.kr

USA +1–888-ETASINC (382–7462) support@etasinc.com
Windows XP Firewall and ASCET

10 ETAS Contact Addresses

ETAS HQ

ETAS GmbH

North America

ETAS Inc.

Japan

ETAS K.K.

Great Britain

ETAS Ltd.

Borsigstraße 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-105

Germany E-mail: sales@etas.de

WWW: www.etasgroup.com

3021 Miller Road Phone: +1 888 ETAS INC

Ann Arbor, MI 48103 Fax: +1 734 997-9449

USA E-mail: sales@etas.us

WWW: www.etasgroup.com

Queen's Tower C-17F Phone: +81 45 222-0900

2-3-5, Minatomirai, Nishi-ku Fax: +81 45 222-0956

Yokohama 220-6217 E-mail: sales@etas.co.jp

Japan WWW: www.etasgroup.com

Studio 3, Waterside Court Phone: +44 1283 54 65 12

Third Avenue, Centrum 100 Fax: +44 1283 54 87 67

Burton-upon-Trent E-mail: sales@etas-uk.net

Staffordshire DE14 2WQ WWW: www.etasgroup.com

Great Britain
ETAS Contact Addresses 233

http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com

234
France

ETAS S.A.S.

Korea

ETAS Korea Co. Ltd.

China

ETAS (Shanghai) Co., Ltd.

1, place des Etats-Unis Phone: +33 1 56 70 00 50

SILIC 307 Fax: +33 1 56 70 00 51

94588 Rungis Cedex E-mail: sales@etas.fr

France WWW: www.etasgroup.com

4F, 705 Bldg. 70-5 Phone: +82 2 57 47-016

Yangjae-dong, Seocho-gu Fax: +82 2 57 47-120

Seoul 137-889 E-mail: sales@etas.co.kr

Korea

2404 Bank of China Tower Phone: +86 21 5037 2220

200 Yincheng Road Central Fax: +86 21 5037 2221

Shanghai 200120, P.R. China E-mail: sales.cn@etasgroup.com

WWW: www.etasgroup.com
ETAS Contact Addresses

http://www.etasgroup.com
http://www.etasgroup.com

Index

A
application mode 204
ASAM-MCD-2MC file 205
ASCET

firewall (Windows XP + SP2) 227
install basic system 18
path specifications 19
specify functional scope 21
specify license directory 23
store license file 41
structure 78
uninstall 34, 36

B
Block Diagram Editor

buttons 84
borrow license 44
buttons

Block Diagram Editor 84
C Code Editor 87
Component Manager 83
CT Block Editor 87

ESDL Editor 87
Offline Experiment 91
Project Editor 89

C
C code 205
C Code Editor

buttons 87
calibration windows 205
characteristic line 206
characteristic map 206
characteristic value 206
class 206
component 206
Component Manager 206

buttons 83
condition 206
Configuration dialog box 206
CT Block Editor

buttons 87

D
data 207
235

236
data generator 207
data logger 207
data set 207
database 207
default directories 218
description file 207
diagram 207
dimension 207
Distribution 207

E
editor 207

element 235
element 208
element editor

open 235
environment 208
error

continue 216
exit 216
support function "Problem

Report" 215
System Error window 215
what to do in case of ~ 216

ESDL Editor
buttons 87

event 208
event generator 208
experiment 208
experiment environment 208

F
fixed point code 208
folder 208
formula 208
fullpass experiment 208

G
General Operation

according to Windows conventions
93

drag & drop 95
function keys 219
hierarchy trees 95
monitor window 97
supporting functions 97
using the mouse 94

Glossary 203�213

H
HEX file 209
hierarchy 209

I
icon 209
implementation 209
Installation

assign user privilege (Win 2000) 16
assign user privilege (Win XP) 16
cancel 25
customize configuration file 30
customize data for network ~ 32
install ASCET-MD 24
integrate modified database 33
integrate modified user profile 33
network installation 29
obtain license file 39
overwrite existing version 26
path specifications 19
specify ASCET functional scope 21
specify license directory 23
start ASCET installation 18
store license file 41
system requirements 15
uninstall ASCET 34, 36
without administrator privilege 29

Intel Hex 209
interface 209

K
kind 210

L
layout 210
license

borrow 44
not found 41
return 45
return (normal case) 44

license file
obtain 39
store 41
Index

Licensing 39
borrow license 43
change borrowing time 43
no license detected 41
return borrowed license 44, 45
show ~ status 42
trial mode 41

literal 210

M
measure 210
measure window 210
measured signal 210
measurement 210
measuring channel parameters 210
message 210
methods 211
model type 211
module 211
monitor 211
Motorola-S-Record 211

O
obtain license file 39
Offline experiment

buttons 91
Oscilloscope 211

P
parameter 212
priority 212
Problem Report 215
process 212
program 212
program description 212
project 212
project editor

buttons 89

R
Reference Lists 215�225
resource 212
return borrowed license 44, 45

S
scheduling 212

scope 212
state 212
State machine 213
store license file 41
support function "Problem Report" 215

T
target 213
task 213
Transition 213
trial mode 41
type 213

U
user profile 213

V
variables 213

W
window elements 213
Index 237

238
 Index

	1 Introduction
	1.1 System Information
	1.2 User Information
	1.2.1 User Profile
	1.2.2 Manual Structure
	Volume "ASCET V5.2 - Getting Started"
	Volume "ASCET V5.2 - User’s Guide"
	Volume "ASCET V5.2 - Reference Guide"

	1.2.3 How to Use this Manual
	Documentation Conventions
	Typographic Conventions

	2 Program Installation
	2.1 Preparation
	2.1.1 Contents
	2.1.2 System Requirements
	2.1.3 Required User Privileges for Installation and Operation

	2.2 Installation
	2.2.1 Initial Installation
	ASCET Base System
	ASCET-MD

	2.2.2 Special Installation Steps and Dialogs

	2.3 Network Installation
	2.3.1 Providing Data in the Network
	Installation Log

	2.3.2 Customizing the Network Installation
	Customizing Installation Dialogs
	Automatic Installation
	Customizing ASCET Files

	2.3.3 Installing ASCET from the Network Drive

	2.4 Uninstalling ASCET
	2.4.1 Automatic Uninstall
	2.4.2 Custom Uninstall

	3 Licensing
	3.1 Obtaining Licenses
	3.2 Licensing Status
	3.3 Borrowing Licenses

	4 Understanding ASCET
	4.1 Increasing Efficiency in Control Unit Development
	4.1.1 Modern Embedded Control Systems: Technical Mission
	Embedded Control Systems
	Focus on the Car Industry

	4.1.2 Development Processes: Economic Challenge
	4.1.3 Innovative Technologies - Technological Visions
	Code Generation
	Prototyping

	4.2 Continuous Support for Embedded Control Systems
	4.2.1 Entry-level Technology Bypass
	4.2.2 Prototyping
	4.2.3 Automatic Code Generation
	4.2.4 Other Application Options for ETAS Development Tools
	ASCET as Additional Programmer
	ASCET as Integration Tool
	Operating System and Components

	4.2.5 Interfaces and Standards in the Tool Chain

	4.3 ASCET Development Environment in Practise
	4.3.1 Physical Specification of Control Systems
	Block Diagrams
	State Machines
	Text Specification in ESDL
	Integrating C
	Operating System Configuration
	Modeling the Control Process

	4.3.2 Implementation and Code Generation
	Algorithms
	Memory Handling
	Operating System Configuration
	Platform Dependence and Project-specific Adaptation

	4.3.3 Prototyping with ASCET
	Experimental Environment for Extreme Requirements
	Simulation Systems: Hardware and Software
	Integrating Existing Sensors and Actuators in a Closed Control Loop

	4.3.4 Bypass
	ETK Interface- Memory Emulation
	CAN Interface

	4.3.5 Reuse and Open Interfaces
	Reuse through Database Support
	Program and Database Management Using Configuration Management Tools

	4.4 ASCET Software Structure
	ASCET Basic System
	ASCET Modeling & Developing
	ASCET-RP
	ASCET-SE

	5 General Operation of ASCET
	5.1 Window Structure
	5.2 Button Bars
	5.2.1 Buttons in the Component Manager
	5.2.2 Button Bars in the Block Diagram Editor
	5.2.3 Button Bars in the C Code and ESDL Editor
	5.2.4 Button Bars in the CT Block Editors
	5.2.5 Button Bar Elements in the Project Editor
	5.2.6 Button Bar Elements in the Offline Experiment

	5.3 Operation Using The Keyboard
	5.3.1 General Keyboard Control
	5.3.2 Keyboard Control According to the Windows Conventions

	5.4 Operation Using The Mouse
	5.4.1 Drag & Drop

	5.5 Hierarchy Trees
	5.6 Supporting Functions
	5.6.1 Monitor Window
	5.6.2 Keyboard Assignment
	5.6.3 Manual and Online Help

	6 Tutorial
	6.1 A Simple Block Diagram
	6.1.1 Preparatory steps
	6.1.2 Specifying a Class
	6.1.3 Summary

	6.2 Experimenting with Components
	6.2.1 Starting the Experimentation Environment
	6.2.2 Setting up the Experimentation Environment
	6.2.3 Using the Experimentation Environment
	6.2.4 Summary

	6.3 To Specify a Reusable Component
	6.3.1 Creating the Diagram
	6.3.2 Experimenting with the Integrator
	6.3.3 Summary

	6.4 A Practical Example
	6.4.1 Specifying the controller
	6.4.2 Experimenting with the Controller
	6.4.3 A Project
	6.4.4 To set up the Project
	6.4.5 Experimenting with the Project
	6.4.6 Summary

	6.5 Extending the Project
	6.5.1 Specifying the Signal Converter
	6.5.2 Experimenting with the Signal Converter
	6.5.3 Integrating the Signal Converter into the Project
	6.5.4 Summary

	6.6 Modeling a Continuous Time System
	6.6.1 Motion Equation
	6.6.2 Model Design
	6.6.3 Summary

	6.7 A Process Model
	6.7.1 Specifying the Process Model
	6.7.2 Integrating the Process Model
	6.7.3 Summary

	6.8 State Machines
	6.8.1 Specifying the State Machine
	6.8.2 How a State Machine Works
	6.8.3 Experimenting with the State Machine
	6.8.4 Integrating the State Machine in the Controller
	6.8.5 Summary

	6.9 Hierarchical State Machines
	6.9.1 Specifying the State Machine
	6.9.2 Experimenting with the Hierarchical State Machine
	6.9.3 How Hierarchical State Machines Work
	6.9.4 Summary

	7 Glossary
	7.1 Abbreviations
	7.2 Terms

	8 Reference Lists
	8.1 Troubleshooting and User Feedback
	8.2 ASCET Directories
	8.2.1 Default Storage Directories
	8.2.2 Changing Default Directories

	8.3 Keyboard Control
	8.3.1 General Control Functions
	8.3.2 Keyboard Commands in the Component Manager
	8.3.3 Keyboard Commands in the Monitor Window
	8.3.4 Keyboard Commands in the Editors
	8.3.5 Keyboard Commands in the Offline Experiment Environment
	8.3.6 Measure and Calibration Windows in General
	Calibration Windows
	Measure Windows

	9 Windows XP Firewall and ASCET
	9.1 Users with Administrator Privileges
	9.2 Users without Administrator Privileges
	9.3 Support and Problem Reporting

	10 ETAS Contact Addresses
	ETAS HQ
	North America
	Japan
	Great Britain
	France
	Korea
	China

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

