ASCET V5.2

Getting Started

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH.

© Copyright 2007 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

The name INTECRIO is a registered trademark of ETAS GmbH.
Document ECO10010 R5.2.2 EN TTN F 00K 103 222

Contents

1

INtroductiono 7
1.1 SystemInformation 7
1.2 UseriInformation 8
1.21 User Profile. 8
1.2.2 Manual Structure 8
1.23 How to Use thisManual 12
Program Installation 15
2.1 Preparation 15
2.1.1 Contents ... 15
2.1.2 System Requirements 15
213 Required User Privileges for Installation and Operation 16
2.2 nstallation ... 17
2.21 Initial Installation 18
2.2.2 Special Installation Steps and Dialogs 25
2.3 Network Installation 29
2.3.1 Providing Data in the Network 29
2.3.2 Customizing the Network Installation. 30
233 Installing ASCET from the Network Drive 33
2.4 Uninstalling ASCET 34

Contents

2.4.1 Automatic Uninstall 34

24.2 CustomUninstall 36

3 LICeNSING .« ot 39
3.1 Obtaining Licenses 39
3.2 Licensing Statuso 42
3.3 Borrowing Licenses 43
4 Understanding ASCET 47
4.1 Increasing Efficiency in Control Unit Development 47
411 Modern Embedded Control Systems: Technical Mission 47

4.1.2 Development Processes: Economic Challenge. 52

413 Innovative Technologies - Technological Visions. 54

4.2 Continuous Support for Embedded Control Systems 58
4.2.1 Entry-level Technology Bypass. 59

4.2.2 Prototyping 60

423 Automatic Code Generation., 60

42.4 Other Application Options for ETAS Development Tools 62

4.2.5 Interfaces and Standards in the Tool Chain 63

4.3 ASCET Development Environment in Practise 64
4.3.1 Physical Specification of Control Systems 66

4.3.2 Implementation and Code Generation 70

433 Prototyping with ASCET 74

43.4 BYpass 76

43.5 Reuse and Open Interfaces. 77

4.4 ASCET Software Structure 78
5 General Operation of ASCET 81
5.1 Window Structure 82
5.2 ButtonBars 83
5.2.1 Buttons in the Component Manager 83

5.2.2 Button Bars in the Block Diagram Editor 84

5.2.3 Button Bars in the C Code and ESDL Editor. 87

5.24 Button Bars in the CT Block Editors. 87

5.2.5 Button Bar Elements in the Project Editor 89

5.2.6 Button Bar Elements in the Offline Experiment 91

5.3 Operation Using The Keyboard 92
5.3.1 General Keyboard Control 92

5.3.2 Keyboard Control According to the Windows Conventions. . .. 93

5.4 Operation Using The Mouse 94
5.4.1 Drag & Drop. . .o oo 95

Contents

6

5.5 Hierarchy Trees 95
5.6 Supporting Functions 97
5.6.1 Monitor Window 97
5.6.2 Keyboard Assignment. 97
5.6.3 Manual and OnlineHelp. 97
Tutorial. . . 99
6.1 ASimpleBlock Diagram 99
6.1.1 Preparatory steps 99
6.1.2 Specifyinga Class. 103
6.1.3 SUMMANY .« oo 114
6.2 Experimenting with Components 115
6.2.1 Starting the Experimentation Environment 115
6.2.2 Setting up the Experimentation Environment 116
6.2.3 Using the Experimentation Environment. 121
6.2.4 SUMMANY .« oo 124
6.3 To Specify a Reusable Component 124
6.3.1 Creatingthe Diagram. 125
6.3.2 Experimenting with the Integrator 133
6.3.3 SUMMANY .« .o 137
6.4 APractical Example 137
6.4.1 Specifying the controller. 137
6.4.2 Experimenting with the Controller 141
6.4.3 AProject 142
6.44 TosetuptheProject. 143
6.4.5 Experimenting with the Project. 146
6.4.6 SUMMANY .« .o 148
6.5 ExtendingtheProject 148
6.5.1 Specifying the Signal Converter 148
6.5.2 Experimenting with the Signal Converter 151
6.5.3 Integrating the Signal Converter into the Project. 154
6.5.4 SUMMANY .« oo 158
6.6 Modeling a Continuous Time System 158
6.6.1 Motion Equation 159
6.6.2 Model Design. 160
6.6.3 SUMMANY .« oo 167
6.7 AProcessModel 168
6.7.1 Specifying the Process Model 168
6.7.2 Integrating the Process Model 173
6.7.3 SUMMANY .« oo 178

Contents

6.8 State Machines 178

6.8.1 Specifying the State Machine 179
6.8.2 How a State MachineWorks 187
6.8.3 Experimenting with the State Machine. 189
6.8.4 Integrating the State Machine in the Controller 190
6.8.5 SUMMANY .« oo 192
6.9 Hierarchical State Machines 192
6.9.1 Specifying the State Machine 192
6.9.2 Experimenting with the Hierarchical State Machine. 200
6.9.3 How Hierarchical State Machines Work 201
6.9.4 SUMMANY .« .o 202
7 GloSSary . .. 203
7.1 Abbreviations 203
7.2 TermMS 204
8 Reference Lists 215
8.1 Troubleshooting and User Feedback 215
8.2 ASCET DIreCtOriesot 217
8.2.1 Default Storage Directories. 217
8.2.2 Changing Default Directories 218
8.3 Keyboard Control 219
8.3.1 General Control Functions 219
8.3.2 Keyboard Commands in the Component Manager. 220
8.3.3 Keyboard Commands in the Monitor Window 220
8.34 Keyboard Commands in the Editors 221

8.3.5 Keyboard Commands in the Offline Experiment
Environment. 222
8.3.6 Measure and Calibration Windows in General 222
9 Windows XP Firewall and ASCET 227
9.1 Users with Administrator Privileges 228
9.2 Users without Administrator Privileges 231
9.3 Support and Problem Reporting L. 232
10 ETAS Contact Addresses.o 233
INdeX . oo 235

Contents

1.1

Introduction

ASCET provides an innovative solution for the functional and software devel-
opment of modern embedded software systems. ASCET supports every step of
the development process with a new approach to modelling, code generation
and simulation, thus making higher quality, shorter innovation cycles and cost
reductions a reality.

This manual supports the reader in getting to know ASCET, and quickly achiev-
ing results. It provides a step-by-step introduction to the system, while at the
same time making all information easily accessible for reference.

System Information

The ASCET product family consists of a number of products that provide inter-
faces to simulation processors, third-party software packages and for remote
access to ASCET. The following products are available for the current version
of ASCET:

e ASCET-MD—support for the development and simulation of models.

e ASCET-RP—support for experimental targets to allow hardware-in-the-
loop simulation and rapid prototyping applications. A toolbox for run-
ning ETK Bypass experiments is also integrated. ASCET-RP provides the
connection to INTECRIO.

e ASCET-SE—support for various microcontroller targets. Generation of
optimized executable code, including operating system configuration
and integration, for various microcontrollers and two real-time operat-
ing systems.

Various kinds of additional modules are optional:

e Configuration management—provides an interface to configuration
management tools.

e ASCET-MIP—This MATLAB integration package comes as a bundle that
provides two different means for accessing Matlab software. The first
part is an interface to the Matlab engine which allows you to couple
ASCET and MATLAB at simulation level. The second part is a model con-
verter that enables you to read Simulink models in ASCET.

e ASCET-DIFF—A comparison tool for ASCET models.

Various additional customer-specific products can be integrated in ASCET.
More detailed information is available upon request.

Introduction

1.2

1.21

1.2.2

User Information

User Profile

This manual addresses qualified personnel working in the fields of automobile
control unit development and calibration. Specialized knowledge in the areas
of measurement and control unit technology is required.

ASCET users should be familiar with the Microsoft Windows 98, Windows
NT 4.0, Windows 2000, or Windows XP, operating system. All users should be
able to execute menu commands, enable buttons, etc. Furthermore, the users
should be familiar with the Windows file storage system, especially the con-
nections between files and directories. The users have to know how to use the
basic functions of the Windows File Manager and Program Manager or the
Windows Explorer, respectively. Moreover, the users should be familiar with the
"drag-and-drop" functionality.

Any user who is not familiar with the basic techniques found in Microsoft Win-
dows should learn them before using ASCET. For more information on the
Windows operating system, please refer to the manuals published by
Microsoft Corporation.

Knowledge of a programming language, preferably ANSI C or Java, can be
helpful for advanced users.

Manual Structure

The ASCET manual consists of three volumes:
1. Volume "ASCET V5.2 — Getting Started"

This volume provides you with basic information on the ASCET working
principles.

2. Volume "ASCET V5.2 — User's Guide"
This volume describes the operation of ASCET-MD.
3. Volume "ASCET V5.2 — Reference Guide"

This volume contains a detailed description of the ASCET modeling lan-
guage as well as numerous reference lists.

The contents of the individual volumes are described below in more detail.
Volume "ASCET V/5.2 — Getting Started"

This volume contains the following chapters:

Introduction

"Introduction” (this chapter)

This chapter provides an outline of the possible applications of ASCET.
Furthermore, it contains general information such as innovations in
ASCET V5.2, user and system information.

"Program Installation”

This chapter targets both all users who install, maintain or uninstall
ASCET on a PC or a network as well as system administrators who pro-
vide ASCET on a file server so that the program can be installed via the
network. It contains important information on the scope of delivery,
hardware and software requirements for stand-alone and network
installations and the preparation required for installation. The chapter
also describes the procedures used to install and uninstall ASCET.

"Licensing”

This chapter contains various licensing information, e.g. how to obtain
a license file or how to borrow a license.

"Understanding ASCET"

This chapter provides an overview of the ASCET system, the develop-
ment process supported by it, and its place in the ETAS tool chain. This
chapter should be read first by all users new to ASCET.

"General Operation of ASCET"

This chapter provides information on the window and menu structures
of ASCET, as well as control options using the mouse and the key-
board.

"Tutorial"

The “Tutorial” mainly addresses users who are new to ASCET. It
describes the use of ASCET using practice-oriented examples. The
entire tutorial contents are subdivided into short individual compo-
nents based on each other. Before you start working on the tutorial,
you should have read chapter "Understanding ASCET" on page 47.

ETAS offers efficient training in the use of ASCET in order to provide an even
more thorough knowledge of ASCET, especially if the user has to gain a
comprehensive insight in the functionality of ASCET in a very short period of

"Glossary"

This chapter explains all technical terms used in the manual. The terms
are listed in alphabetic order.

Introduction

10

"Reference Lists"

This chapter contains information on troubleshooting, the directory
structure, and the reference files required. This chapter also includes a
list of all keyboard commands sorted by working windows.

Volume "ASCET V5.2 — User’s Guide"

This volume comprehensively describes all components of the ASCET system
and provides detailed instructions on using them. Before you start reading this
part, you should become acquainted with the ASCET software, i.e., work
through the chapters "Understanding ASCET" and "Tutorial" of the ASCET
Getting Started volume.

The description of the ASCET system is organized to reflect the chronological
order of the development process of an embedded control system in ASCET.

This volume contains the following chapters:

Introduction

"Introduction”
Description of the typical workflow
"The Component Manager"

Getting familiar with the user interface, controls and menu options,
customizing ASCET, learning to use the Component Manager.

This chapter is relevant to all users of ASCET.
"Adding User-Defined Functions"

This chapter describes how users can define own menu functions in
various ASCET windows.

"Specification of Components and Projects"

This chapter explains how to work with the different specification edi-
tors and how to change the attributes of the elements.

"Signals and Icons"

This chapter describes how to manage and integrate signals and icons
in the database.

"Experimentation”

This chapter describes how to work with the experimentation environ-
ment during offline experiments, and gives an overview over the vari-
ous measurement and calibration windows.

Online experiments, as well as experimenting with INCA or INTECRIO,
are described in the ASCET-RP user’s guide.

"Automatic Documentation"

This chapter describes the automatic generation of documentation for
ASCET components and projects.

Volume "ASCET V5.2 — Reference Guide"

The first part, "The Modeling Language", is a comprehensive reference to the
various ways of describing embedded software systems in ASCET. It is advis-
able to work through the tutorial before reading any of the chapters of this

part.

The following chapters belong to this part:

"Projects”

The specification of an embedded control system is called a project.
The structure of a project is described here.

"Components"

Components are the building blocks of an embedded system. The var-
ious kinds of components are introduced in this chapter.

"Types and Elements”

This chapter describes the kinds of variables and the data types sup-
ported by ASCET.

"Data and Implementations"

Each variable in ASCET has data and an implementation, which are dis-
cussed here.

"Body Specification in ESDL"

This chapter is about specifying components in ESDL, the model
description language of ASCET.

"Body Specification with Block Diagrams"

In this chapter the specification of components as block diagrams is
described.

"Body Specification in C"
Components can also be specified in C, which is discussed here.
"Continuous Time Systems"

An overview of continuous time systems in ASCET, which are used to
build mathematical models of technical processes.

"Continuous Time Basic Blocks"

Basic blocks describe individual components of a continuous time sys-
tem.

Introduction

1

12

e "Continuous Time Structure Blocks and Graphical Hierarchies"
Structure blocks integrate the basic blocks into complete models.
e "Projects and Hybrid Projects"

In hybrid projects continuous time systems can be run alongside
embedded system specifications.

The second part, "Reference Lists", describes the ASCET system library, and
other reference information.

This part consists of the following chapters:
e "The ASCET System Library"

This chapter provides a detailed description of each component of the
system library.

e "Troubleshooting”

Here, common user errors and known problems are listed together
with advice on how to solve them.

e "Code Generation Messages"

This chapter contains the error messages that may appear during code
generation, together with advice on how to adapt the software model
in ASCET to avoid such errors.

1.2.3 How to Use this Manual

Documentation Conventions

All actions to be performed by the user are presented in a a task-oriented for-
mat as illustrated in the following example. A task in this manual is a sequence
of actions that have to be performed in order to achieve a certain goal. The
title of a task description usually introduces the result of the actions, e.g. “To
create a new component”, or "To rename an element". Task descriptions
often contain illustrations of the particular ASCET window or dialog box the
task relates to.

To achieve a goal:

Any preliminary information...
e Step 1
Explanations are given underneath an action.
e Step2
Any explanation for Step 2...

Introduction

e Step 3
Any explanation for Step 3...
Any concluding remarks...
Specific example:
To create a new file:

When creating a new file, no other file may be open.
e Choose File » New.
The “Create file” dialog box is displayed.

* Inthe "File name" field, type the name of the
new file.

The file name must not exceed 8 characters.
e Click OK.

The new file will be created and saved under the name you specified. You can
now work with the file.

Typographic Conventions

The following typographic conventions are used in this manual:

Choose File - Open. Menu commands are shown in blue bold-
face.

Click OK. Buttons are shown in blue boldface.

Press <ENTER>. Keyboard commands are shown in angled

brackets and capitals.

The "Open File" dialog window Names of program windows, dialog boxes,
opens. fields, etc. are shown in quotation marks.

Select the file set up. exe. Text in drop-down lists on the screen, pro-
gram code, as well as path- and file names
are shown in the Cour i er font.

A distribution is always a one- General emphasis and new terms are set in
dimensional table of sample points. italics.

The OSEK group (see Links to internet documents are set in blue
http://www.osekvdx.org/) has underlined font.

developed certain standards.

Introduction

13

14

Important notes for the users are presented as follows:

Note

Important note for users.

Introduction

2.1

2.1.1

2.1.2

Program Installation

The chapter entitled "Program Installation" targets both all users who install
ASCET on a PC or a network, or maintain and uninstall the program as well as
system administrators who provide ASCET on a file server so that the program
can be installed via the network. It contains important information on the
scope of delivery, hardware and software requirements for stand-alone and
network installations and the preparation required for installation. The chapter
also describes the procedures used to install and uninstall ASCET.

Preparation

Check the items supplied for completeness and your computer for compliance
with the system requirements. Depending on the operating system used and
the network connection, you have to make sure that you have the user privi-
leges required.

Contents

ASCET is supplied with the following:
e ASCET CD ROM
— ASCET program files

— ASCET manuals and ETAS hardware documentation in PDF format
(Acrobat Reader)

— Manual "FLEXnet Licensing End User Guide" in PDF format
— Acrobat Reader program files

e "ASCET Getting Started" manual (ASCET-MD only)

System Requirements

The following system requirements have to be met:
e 1 GHz Pentium PC (recommended: 2 GHz)
e WINDOWS® 2000, WINDOWS® XP
e 512 MB RAM (recommended: 512 MB)

e Hard disk with a minimum of 1 GB of free space (not incluging space
for program data; recommended: > 1 GB)

e CD ROM drive

* VGA graphics card with VGA monitor and a resolution of at least 800
x 600 with 256 colors

Program Installation

15

16

2.1.3

Required User Privileges for Installation and Operation

User privileges required for installation:

In order to install ASCET on a PC, you need the user privileges of an adminis-
trator. Please contact your system administrator, if necessary.

User privileges required for operation (under WIN 2000/XP):
In order to operate ASCET under Windows 2000/XP, each user must receive
the privilege called "Increase Scheduling Priority" from the administrator. This
can be set using the User Manager.

Note

You need administrator rights to perform the settings described below.

Recommendation: Assign the privilege "Increase Scheduling Priority" to the
local "User" group. To do so, proceed as follows:

To assign WIN 2000 - User Privilege "Increase Scheduling Priority":

e From the Windows Start Menu, choose
Settings — Control Panel -~ Administra-
tive Tools - Local Security Policy.

e Under Local Policies - User Rights Assign-
ment activate | ncr ease schedul i ng
priority by double-clicking on it.

e (Click on the Add button.
e Select the local workstation.

e Assign the "Increase Scheduling Priority" priv-
ilege to the User group by double-clicking on
it.

e Confirm by clicking the OK button.

e Close the "Local Security Policy" window by
clicking OK.

e Exit the local security policy settings.
To assign WIN XP — User Privilege "Increase Scheduling Priority":

e From the Start Menu, choose Settings —
Control Panel —. Administrative Tools -
Local Security Policy.

Program Installation

2.2

Installation

Under Local Policies - User Rights Assign-
ment activate | ncr ease Schedul i ng
Priority by double-clicking on it.

The "Increase scheduling priority Properties”
window is displayed.

Click on the Add User or Group button.
The "Select Users or Groups" window is dis-
played.

Click on the Locations button.

The "Locations" window is displayed.

Select the local workstation and close the
"Locations" window by clicking OK.

In the "Select Users or Groups" window, click
on the Advanced button to enable the auto-
matic search feature.

Click on the Find now button to display the
list of users registered for the local worksta-
tion.

In the "Name (RDN)" column, choose the
names of the users or groups to whom you
want to assign the privilege to increase the
scheduling priority.

Confirm by clicking the OK button.

Close the "Select Users or Groups" window
by clicking OK.

Close the "Increase scheduling priority Proper-
ties" window by clicking OK.

Exit the local security policy settings.

To install one of the products ASCET-MD, ASCET-RP, or ASCET-SE (see chapter
4.4 on page 78), in any case you have to install the ASCET base system first.
This chapter describes the installation of the base system and ASCET-MD. The
installation of ASCET-RP and ASCET-SE is described in the respective manuals.

Installation is performed in the same way if you install ASCET from the CD or

the network drive.

Program Installation

17

18

Special issues to be observed during the installation (e.g., "Canceling the
Installation" or "Overwriting an Existing Program Version") are described in
chapter 2.2.2 on page 25.

2.2.1 Initial Installation

ASCET Base System

To start the ASCET installation:

e From the Start menu, select Run.

e In the command line, enter the path to the
installation file (e.g. if installed from the CD:
d: \ ASCET5. 2\ ascet . exe) .

e Confirm by clicking OK.
The installation program is started.
Follow the instructions:

e Inthe "EULA" window, activate the Accept
option to accept the license agreement.

e C(lick OK.
e Follow the instructions displayed on the
screen.

The Next button accepts your settings and
proceeds to the next window, the Back but-
ton returns to the previous window, and Can-
cel aborts the installation.

Program Installation

To register ASCET:

e In the registration window, enter your per-
sonal information.

SL ASCET installation (]

Registration information

Flease enter uzer information in the fields below:

First name M Last name |Doe

Company |M}'CDmDan}' Department |><Y

Phore |O0+123 | [456733

E-mail Imyaddress@mycompany.com

Shreet IMyroad 93

ZIP code |1 2345 | City IMyEity

Country IMyﬁountry

< Back | Mest » I Lancel |

e (Click on the Next button.

To specify ASCET paths:

When you have registered ASCET, you will be prompted to specify target direc-
tories for the data. This is done in two separate windows:

SL ASCET installation (]

Select destination directories
Fleaze select a directory for the ASCET files:

CAETAS\ASCETR S Browse... |

Current free disk space: 16335976 k
Free disk space after install: 1343602 |

Fleaze zelect a directory for the ASCET data files:

cAETASDataASCETS Brawse... |

Current free disk space: 16335976 k
Free disk space after install: 1343602 |

Lancel

< Back

Program Installation

20

Program files and program data are stored in different directories. When you
uninstall or update the program later, only the program files will be deleted or
overwritten. The program data will continue to be available to you. The pro-
gram data includes the following:

e Databases

e User profiles

Note

You can install ASCET i a directory with blanks in it’s path. Before you do so,
however, make sure that all external tools used with ASCET support path

names with blanks, too.

Settings for common files:

If you want to change the default directories,
click on the Browse button.

In the dialog box, select the desired directory.

If you specify a directory which does not exist,
the installation routine will automatically cre-
ate it.

Click on the Next button.

The "Select global directories" window opens.
Here, you can specify paths for log files and
temporary files. These paths are used by all
ETAS products.

Use the Browse buttons to adjust the paths
settings according to your wishes.

Click on the Next button.

In the "Select Handling of ETAS-Shared modules” window, you specify the
way the modules used in principle by all ETAS products are installed.

Program Installation

Activate the share modules between prod-
ucts option when the modules are to be con-
jointly used.

This is reasonable when you intend to use sev-
eral ETAS products simultaneously.

Activate the use local copies for each prod-
uct option when ASCET shall be installed with
its own copies of the modules, e.g., when you
intend to adjust the components.

Click on the Browse button to adjust the path
settings for the modules.

Click on the Next button.
To specify the ASCET functional scope:

In the "Select options" window, you can specify the functional scope of

ASCET.

42 ASCET W% ! ¥ installation

Select options

Chooze which options to ingtall by checking the boxes below.

[45 -E ditor 2k
¥ &50-Database 82861 k
¥ ASD-DatMetz0 25486 k
W ASD-Manual 23447 k.
[A5D-OnlineHelp 2926 k
[A50-ToolsPl 13104 k
Dizk space required for components: 147952 |k
Dizk space remaining: 1343602 |
< Back Lancel |

Mark the modules you want to install.

The following options can be selected:

AS-Editor — the arithmetic services editor.

ASD-Database — installs the ETAS system
library and tutorial database in the export
directory of your ASCET installation.

ASD-Manual — installs the ASCET manu-
als as PDF files in the ETAS\ ETASManu-
al s directory.

ASD-OnlineHelp — the ASCET online help
is placed in the ETAS\ ASCET5. 2\ hel p
directory.

ASD-ToolAPI — installs the ASCET Auto-
mation interface.

Click on the Next button.

Program Installation

21

22

To specify the ASCET folder in the Start menu:

L ASCET installation

Select folder in start menu

Enter the name of the folder to add Ascet icons to the start
menu:

IETAS\ASCET 1

Lancel |

< Back

e Accept the default folder name

or
e specify a different folder name.
e (lick on the Next button.

Installing ASCET:

Note
With the next step, you start the installation.

e In the "Ready for installation" window, click
Next to start the installation.

The program files will be copied. A bar chart
indicates the copy progress.

Installing x|

Copying Smalltalk. kemel:
cHETASWASCETY MCTSTDSGL.DLL

Program Installation

When all files are copied, the "License Direc-
tory " selection window opens.

License Directory x|

On every start, ASCET will search for license files
needed to work, with ASCET. Pleaze specify where
you want ASCET to look for these licenze files.
MOTE: Do not uge any ETAS product directory as
your licenze directory! Otherwize your licenze files wil
be deleted when uninstalling the product!

(£ cebra
(7 License
£ utilities
£ Utility

Specifying the license file location:

* In the "License Directory" window, enter the
directory where the license file will be stored.

Each time ASCET needs a license, this direc-
tory is searched.

e Click OK to confirm your selection.

The installation continues, and finally the
"Installation complete" window appears.

e In the "Installation complete" window, click
on the Finish button to finish the installation.

Program Installation

After restarting your PC, you will find the folder name you specified with the
following entries in the Start menu:

] 53 ASCET Uninstal

B ASEditor
F,}‘J ET&S Wetwork settings
a Licenzelnfa

"1 Online manuals
E FC RemoteCaontral
Readte

e ASCET Uninstall
Starts the uninstall routine (see chapter 2.4).

e ASCET V5.2
Starts the ASCET program.
e AS Editor

Starts the AS Editor (see chapter 4.14 in the ASCET user’s guide).
e ETAS Network settings

Starts the assistant for the configuration of the ETAS network.
¢ Licenselnfo

Starts the "Obtain License Info" window (cf. chapter 3).
¢ Online manuals

If you installed the online manuals, you can here open the
ETAS\ ETASManual s directory. Here, the manuals are stored in sev-
eral subdirectories.

e PC RemoteControl
Enables the configuration of the remote interface.

¢ ReadMe
Provides current information on ASCET V5.2.
ASCET-MD

After installing the basic system, you can install ASCET-MD.
To install ASCET-MD:

e From the Start menu, select Run.

24 Program Installation

2.2.2

e In the command line, enter the path to the
installation file (e.g. if installed from the CD:
d: \ ASCET- MD V5. 2\ ASCET- MD. exe).

e Confirm by clicking OK.

The installation program is started. Since the
ASCET base system is already installed, you do
not have to select path names, functional
scope, etc.

e Click on Next to proceed to the next installa-
tion window.

e Click on Back to return to the previous instal-
lation window.

¢ Click on Cancel to abort the installation.

Special Installation Steps and Dialogs

To cancel the installation:

At this time during the installation process, you can still cancel the installation
prematurely. Proceed as follows:

e Click the Cancel button in the current win-
dow.

Install [%]
Setup iz not complete. 1F you quit the setup
program now, the program will not be installed.
“f'ou may run the setup program at a later time
to complete the installation.

To continue installing, click Resume. To quit
the Setup program, click Exit Setup.

Exit Setup |

e Click Resume to return to the previous dialog
box.

Program Installation

25

e (lick the Exit Setup button to quit the setup
program.

Unfinished or unsuccessful installation E

“r'ou have either

CAMCELLED your installation
or

the: inztallation program FAILED for some
reazon [e.g. no space left on drive, ...).

The ASCET software will not run without a
successiul installation!!!

Please re-install or contact ETAS for
assistance

Cancel |

e Confirm that you want to cancel the installa-
tion by clicking OK.

To overwrite an existing program version:

If an older version of the software to be installed is found on the target work-
station, or if an entirely different software exists in the selected installation
directory, a corresponding dialog box appears. The following sample dialog
box would appear during the installation of Version 5.2.0, if (beta) version
5.2.0b1 would have already been installed on the target workstation.

42 ASCET W% ! ¥ installation

Previous installation found.

Thiz inztallation program found a previous installation of Ascet
S8 LN in your selected installation directory.

In order to install ASCE T, some files in cETASNMASCETE & will
be avenwritten.

A backup of the files you need is strongly recommended.

ez, ovenwite it

Presz 'Back' button and change the directory to change the
installation directory and keep the old version.

dEwt Lancel

26 Program Installation

e Read the instructions carefully.

You are informed that an older installation has
been found, and that files will be overwritten
when you continue.

e To select a different directory, click the Back
button.

e |f you want to overwrite the existing files, click
the Yes, overwrite it button.

Are you sure?

e Acknowledge the confirmation prompt by
clicking Yes, overwrite it!

Click No to return to the previous window.

Program Installation

27

To overwrite existing directories:

If the directories specified during the installation already exist, and a complete
ASCET installation does not exist on the target workstation, the following dia-
log box appears. This case occurs, e.g., if a previous installation process has
been canceled.

SL ASCET installation (]

Directory already exists.

The directory you have chozen already exists.
Perhaps it belongs to a different program.

Al fileg in this directory tree will be deleted.

Do you want to install Ascet in cAETASYWASCETS 7

‘res, | know what | am doing! I

Prezz 'Back' button and change the directory to change the
installation directory and keep the old version.

< Back | dEwt | Lancel |

e Read the instructions carefully.

You are informed that the directory you
selected already exists.

e To select a different directory, click the Back
button.

e If you want to overwrite the existing directo-
ries, click the Yes, overwrite it button.

x

Do you really want to delete all the files in the cAETAS\Ascett |
directory tree ?

A backup of the files you need is strongly recommended.

No | ‘Yes, delete all |

28 Program Installation

2.3

2.3.1

e Acknowledge the confirmation prompt by
clicking Yes, delete all!

ASCET is installed; existing files are deleted.
Click No to return to the previous window.

Performing an installation without administrator privileges:

This message box appears if the user name under which you logged on to
Windows has no administrator privileges. After you acknowledge the mes-
sage, the installation is terminated because administrator privileges are pre-
requisites for the installation of ASCET.

Eror x|

“Y'ou do not have access to make the required
zyztem configuration modifications. Please
terun this installation from an administrators
account.

e Confirm by clicking OK.
This installation is terminated.
e Please contact your system administrator.

e Try the installation again after you have
received the required privileges.

Network Installation

In addition to the installation from the CD, you can also install ASCET from a
network drive on the PC.

The network installation provides the benefit that you can adjust data even
before the actual installation on the workstation takes place (see section
2.3.2).

Providing Data in the Network

To provide data in the network, you have to copy the installation files from the
CD to the desired network drive.

To provide data on the network server:

e Create a source directory on the desired net-
work drive.

Program Installation

29

30

232

e Copy all data from the CD to the source direc-
tory.

Installation Log

The network installation of a user is logged in a file on the network. Therefore,
all users need write access to the x: \ user directory or to the directory speci-
fied ini nstall.ini forthe registration.

Customizing the Network Installation

You can customize ASCET (modifying specific default settings) even before the
user installs ASCET on his workstation.

You have the following customizing options for the network installation:

e You can customize the installation dialogs (modifying the default set-
tings for, e.qg., directories, etc.).

* You can perform the ASCET installation fully automatically and without
user intervention invisibly in the background.

¢ You can overwrite the files provided in the product data directory
(default setting: [dri ve] : \ ETASdat a\ ASCET5. 2\ . . .) with your
customized files and/or add files to the existing directories.

Customizing Installation Dialogs

For the network installation in large enterprises, it is often necessary to cus-
tomize certain default settings during the installation to fit internal standards
and requirements. This is possible by means of the i nstal | . i ni configura-
tion file. This file is located in the installation directory.

The following example will show you how to modify the default settings.

To customize the configuration file:

e Opentheinstall.ini filewith a text edi-
tor.

The following is a typical example of an entry
in this INI file:

;Sets the main directory of ASCET
; Mai nDi r=c: \ et as\ ASCET5. 2

e To modify the default setting, delete ";" (com-
ment) on the line with the Mai nDi r keyword.

e Change the path to, e.qg.,
H: \ pr ogr anms\ et as\ ASCET5. 2.

The entry should now look like this:

Program Installation

;Sets the main directory of ASCET
Mai nDi r =H: \ pr ogr ans\ et as\ ASCET5. 2

e In the same way, modify all other entries in
install.ini asdesired.

e Save your changes and then close the editor.

When you now start the installation with Ascet . exe, the dialog boxes will
show the new settings as defaults.

Note
The modified path settings affect the functions described below.

Automatic Installation

By calling Ascet . exe /s you can execute the ASCET installation fully auto-
matically and transparently in the background, i.e., without any required user
interaction. This will select the currently valid default settings. You can config-
ure these settings in the i nst al | . i ni file (see "Customizing Installation Dia-
logs" on page 30).

If you as the system administrator create a batch file containing the
ascet.exe /s command, and configure the required settings in
i nstall.ini, the users can run the installation process themselves by exe-
cuting this batch file without the need to enter any further information.

As this type of installation does not display any dialog boxes, you may want to
provide some mechanism to inform the user when the installation has finished.

Customizing ASCET Files

The customization feature described below allows you to control the installa-
tion routine so that certain default files are overwritten with your customized
files during the installation, or that other files are included in the installation.

In this way, you can integrate your customized databases, user profiles, and
window templates in the installation routine.

The mechanism is relatively simple. Create a subdirectory named
I nstData\... in the installation directory and copy your customized files
into it while maintaining the proper directory structures.

To create your customized files, install ASCET on a test computer, and use this
to create the files.

Program Installation

31

32

After the default installation of ASCET, the ETASDat a\ ASCET5. 2\ . ..
directory contains various subdirectories with files that determine the ASCET
default settings which you can customize. These include the following subdi-
rectories:

e Dat abase\ DB\

The db subdirectory contains the default database. Here you can, e.g.,
create another demo database under Dat abase\ DenoDB\ .

e User\[user nane], depending on the windows login

The [user nane] subdirectory contains the default user profile. All
configurable options are stored in this subdirectory.

Customizing Data for Network Installation:

e Install ASCET on your PC.

e Start ASCET.

e Modify the user profile.

* Modify the database or add a new database.
e Exit ASCET.

You have finished your customization and now want to integrate these files in
the installation routine. You have two choices.

e Overwrite existing files having the same name with your customized
files. To be able to do this, you must create a folder named | nst -
Dat a\ overwri t e\ in the installation directory.

e Rename your customized files and add them to the existing files. There
are no files with the same name that will be overwritten. To be able to
do this, you must create a folder named | nst Dat a\ add- onl y\ in
the installation directory.

To include your customized files in the installation routine, be sure to copy also
the parent directories. Note that the ETASDat a\ ASCET5. 2\ directory level
must be the same as | nst Dat a\ overwr i t e\ orl nst Dat a\ add- onl y\ .

Examples:
I nst Dat a\ overwrit e\ user\userDef.ini
I nst Dat a\ add- onl y\ dat abase\ addi ti onal DB\

Program Installation

2.33

To integrate a modified user profile:

Copy your customized file

ETASDat a\ ASCET5. 2\ user\ [user
nane] \ Ascet sd. i ni into the

I nst Dat a\ overw i t e\ user\ subdirec-
tory.

Rename the Ascet sd. i ni file to user -
Def.ini.

This ensures that this initialization file will be
used after the installation for each new user.

To integrate a modified database:

Copy your customized database, i.e., the
\ dat abase\ DB\ subdirectory into the
I nst Dat a\ add- onl y\ . .. subdirectory.

Rename the db directory as desired, otherwise
the database will not be copied.

Of course, you could also overwrite the db
database by using the | nst Dat a\ over -
writ e\ directory.

When starting the installation routine with ascet . exe, the default files will
be replaced with your customized files and/or your new files will be added in

the corresponding directories.

Installing ASCET from the Network Drive

The installation from a network drive is described under "Installation"”

on page 17. You only need to know on which drive and in which source direc-

Note

tory the installation files are located.

To install ASCET from a network drive, you need write access to the log
directory on the network drive (see chapter 2.3.1).

Program Installation

33

34

2.4 Uninstalling ASCET

When ASCET is uninstalled, al/l add-ons on the computer are uninstalled, too.
You can uninstall only the entire ASCET product family, not separate products
as ASCET-MD, ASCET-SE or ASCET-RP.

2.4.1 Automatic Uninstall

To uninstall ASCET (automatically):

e From the program group of the start menu,
select ASCET Uninstall.

The following window is displayed:

Select Uninstall Method [%]

‘welcome to the Azcet uninstall program.

*f'ou can chooge to automatically uninstall this software or ta
choose exactly which changes are made to pour system.

Select the Custom button to select which modifications are to
be made during the uninstall. Select the Automatic button for
the default uninstall options. Press the Mext button to continue.

* Automatic
= Custam
" Bepair

“Wise Installation ‘Wizard®

Cancel

< Back

e Select Automatic.

Program Installation

Perform Uninstall

“Wise Installation ‘Wizard®

e (lick the Next button.

“Y'ou are now ready to uninstall the Azcet from pour system.

Prezz the Finish button to perform the uninstall. Press the Back
button ta change any of the uninstall options. Press the Cancel
buttan to exit the uninstall.

< Back Cancel |

Perform Uninstall

“Wise Installation ‘Wizard®

e C(lick the Finish button to execute the unin-
stall process.

Performing uninstall of ASCET...

Prezz the Cancel button to cancel the uninztall process and
exit thiz program.

Fiemoving File:
CAETAS\Azcett Mbehincludeimmsystem.inc

L]

< Hack | Eitiisk | Cancel I

Program Installation

36

You can cancel the uninstall process. If you click the Cancel button, the follow-
ing window appears:

Uninstall B

Are you sure pou want to cancel the uninstall?

Note
If data has already been deleted, ASCET must be reinstalled.

242 Custom Uninstall

To uninstall ASCET (user-defined):

From the program group of the start menu,
select ASCET Uninstall.

The following window is displayed:

Select Uninstall Method

[]
‘welcome to the Azcet uninstall program.

*f'ou can chooge to automatically uninstall this software or ta
choose exactly which changes are made to pour system.

Select the Custom button to select which modifications are to
be made during the uninstall. Select the Automatic button for
the default uninstall options. Press the Mext button to continue.

= Automatic
* Custam
" Bepair

“Wise Installation ‘Wizard®

< Back

Cancel

e Select Custom.

Program Installation

Select Private Files to Remove

“Wise Installation ‘Wizard®

The following files should be deleted to remove the software
from wour system. Press the Select All button ta remove all of
the listed files or select the files individually.

Click the Next button.

The "Select Private Files to Remove" window
opens.

CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
CAETASWASCETH
C:ADocuments and Settingziall UsershStart Menu\Program

C:ADocuments and Settingzhall UsershDeskloph&SCET vI

r-]nnm wnents and QnHin]w\All |lzmrsh Shart b era i Proara
4 3
Select Al | Select Mone |

SDACQUISLDLL ﬁl
WFaMOS.di

wmdf2fam. exe

“MOFDLL.DLL

“onlinesd.dil

\Azcetbrp

WASCET.ico

\EtazReshinfoenglish. bmp

< Back I Mext » I Cancel |

e |nthe "Select Private Files to Remove" win-
dow, select the files you want to remove.

e (lick the Next button.

e |nthe "Select Directories to Remove" window,
select the directories you want to remove.

e C(lick the Next button.

e |n the "Select INI Files to Remove" window,
select the *. i ni files you want to remove.

e (Click the Next button.

e Inthe "Select INIIltems to Edit" window, select
the *. i ni entries you want to edit.

e (Click the Next button.

e In the "Select Registry Keys to Remove" win-
dow, select the registry keys you want to
remove.

e (lick the Next button.

[]

In the "Select Registry Trees to Remove" win-
dow, select the registry folders you want to
remove.

Program Installation

37

38

Click the Next button.

In the "Select Registry Keys to Edit" window,
select the registry keys to be edited.

Click the Next button.

In the "Select Sub-Systems to Remove" win-
dow, select the sub-systems you want to
remove.

Click the Next button.

In the "Perform Uninstall" window, click the
Finish button.

The deinstallation is performed.

You can cancel the custom uninstall process, as well as the automatic deinstal-
lation, using the Cancel button.

Note

If data has already been deleted, ASCET must be reinstalled.

Program Installation

3.1

Licensing

Products and Add-Ons of the ASCET Product family are subject to license man-
agement. In order to work with an ASCET product, after the installation, you
need a license file for your computer. Without this file, ASCET products can be
installed, but you cannot use them.

Obtaining Licenses

The license file can be obtained from ETAS.

To obtain the license file:

The license is tied to username and workstation. To obtain the information
required for the creation of the license file, use the Licenselnfo tool in the
ASCET program group.

Note

If you would like to request the license file before installing an ASCET
product or add-on, you can start the program Li censel nf 0. exe from the
product CD-ROM.

e |n the Windows start menu, select the ASCET
folder of the current ASCET version.

e |nthe ASCET folder, select Licenselnfo.

The "Obtain License Info" window opens. It
shows the MAC and IP addresses for each net-
work board of your computer.

r:\' Obtain License Info

To obtain a license file from ETAS, wou must chose a network adapter, the license
will be bound ko, You can then send this information to ETAS.

Mame | MAC Address | IP Address
3Com EtherLink PCT O00ASE4SFOCE 0.0.0.0
Intel(R) PRO Adapter 0004231 B96ES 10.103.13.80

Get License Info |

Licensing

39

e Select one of the listed Ethernet adapters and
click on Get License Info.

The information about your computer
required by ETAS to create a license file are
collected and displayed in the "License Info"
window.

Licenszelnfo %]

To obtain a license you have to provide the following information:
HostlD=00045E 45F OCE

USER=tester

This information can be saved to a file and send to ETAS.

e (Click OK to store the information in a text file.

e In the file selection dialog window, enter path
and name for the text file.

e C(Click on Save.

The file is created and opened in a text editor.
Besides your host ID and user name, it con-
tains input lines for your E-mail address,
license number, and other specifications, as
well as the ETAS contact addresses.

e Close the "Obtain License Info" window.
e Send the completed text file to ETAS.

You find the required license number on the
license contract. You have to send a com-

pleted text file for each ASCET product you
want to use, e.g. ASCET-MD or ASCET-MIP.

ETAS will send you the license file with the
required license keys for your computer.

Note

The license file must not be edited. Otherwise,
it becomes invalid.

40 Licensing

e Store the license file in the license directory
intended for that purpose (see page 23).

By default this is the directory

ETAS\ ETASShar ed3\ Li censes. It is pos-
sible, however, to modify the license file direc-
tory by modifying the environment variable
ETAS_LI CENSE_FI LE.

In this license directory, the license file is rec-
ognized automatically when you start the pro-
gram.

If no valid license file is detected in the license directory specified during instal-
lation (see page 23), a trial mode is activated for ASCET-MD, ASCET-RP or
ASCET-SE. That is a limited period of time during which the tool is fully opera-
tional, but a license file is searched regularly, and a warning is issued when the
search fails.

ASCET has not found a valid license
far the feature ASCET-HD
ASCET-MD has been enabled in
Trial Mode until 04.04. 2006

Please contact ETAS for a valid licence.

Add-ons such as ASCET-MIP or INTECRIO-ASC do not have a trial mode. With-
out a valid license file, they do not work.

Licensing 41

Once the trial mode is expired, an error message is issued instead of the warn-
ing, and the tool does not work until a valid license is found.

Ei MONITOR =13 x|

File Edit “iew
Moritor Build |
%0 CODE GEMERATION

% @ Code Manager
@ ERROR: The system has Found no valid license For the Feature ASCET-SE with requested version 5.1

Error x|

ASCET has not found a valid license

far the feature ASCET-SE

The trail mode for the feature ASCET-SE
expired on 10.04. 2006

Flease contact ETAS for a new licence.

I~ show hidden messages @ al © Errors © Warnings ¢ Information

W|Errors: 1f1 Warnings: 0/0 Infos: 0f0

3.2 Licensing Status

You can display the current licensing status at any time. The Help - License
Info menu option opens the "License Information" window.

IE License Information x|

FLExnet Library version 10,1

i~ License Location

ETAS_LICENSE_FILE: =]
CAETAS\ETASShared3iLicenses

Default Path:
CAETASIASCETS. 2

i

~License Information

Feature State Version Source Exp. Dake Borrow Exp,

ASCET-RP not used
ASCET-SE not used

Close

Licensing

3.3

The upper part of this window contains information on the license location.
The lower part contains a table with the current licensing status.

Column Description
Feat ure installed ASCET products or add-ons
State licensing status; possible values are:

not used - no licence for this feature has been requested
|'i censed - licensed feature

grace node — feature in trial mode

unl i censed - trial mode has expired

Ver si on version number of the feature as derived from the license file

Sour ce source of the license file; possible values are | ocal 1i cense
or a server name (or empty, if no license was found)

Exp. Date expiration date of the license or the trial mode

Bor r ow Exp. expiration date of borrowing (see chapter 3.3)

Tab. 3-1 Description of "License Information" table

Borrowing Licenses

When you are using a server license, but need a local license (because, e.g.,
you want to use a notebook in a car), you can borrow the server license for a
limited time. (You do not need to borrow the license as long as you are con-
nected to the server.)

To change the borrowing time:

The borrowing time is set to 60 days; you can change that value in the ASCET
options window, "General Settings" tab.

e In the Component Manager, select Tools -
Help.

The "Options" window opens.

e Inthe "Options" window, open the "Licens-
ing" node.

e Enter the borrowing time in days in the "Bor-
row license for days" field.

Licensing

43

44

Licensing

To borrow a license:

Close the "Options" window.

The next time you borrow a licence, the bor-
rowing expiration date is derived from this
value.

Existing borrowing expiration dates are not
changed.

Feature State Wersion Source o
ASCET-MD nok used

not used
Eeturm earlier

License Information

In the Component Manager, select Help -
License Info to open the "License Informa-
tion" window.

You can borrow licenses for all features in not
used state.

In the "License Information" window, right-
click the feature whose license you want to
borrow, and select Borrow license from the
context menu.

With that, you have borrowed the license. The
expiration date is filled in the "License Infor-
mation" table.

Feature State Version Source Exp. Dake Borrow Exp,

ASCET-MD not used

T-RP not used

The full functionality of the selected feature is
now available locally on your computer.

As long as you hold the borrowed license, it cannot be accesed by someone
else. To avoid bottleneck situations, you can return the license before the bor-

rowing time expires.

To return a borrowed license (normal case):

To return a borrowed licence, your PC must be connected to the network.

Open the "License Information" window.

Right-click the feature whose license you want
to return, and select Return earlier from the
context menu.

The license is again available on the server.

To return a borrowed license (error case):

If you borrow a server license, information regarding the borrowing is stored
both on the server and locally on your PC. If the information on the server gets
lost (this can happen, e.g., when the server was restarted without success, or
with server errors), return via Return earlier does not work. You can use the
command, hoewver, to delete the local information from your PC.

e Open the "License Information" window.

e Right-click the feature whose license you want
to return, and select Return earlier from the

context menu.

The "Blocked Borrows" window opens. It con-
tains a list of points you have to check.

% Blocked Borrows %]

~Blocked Borrows

The system has discovered a problem in returning a borrowed license,
The following license canot be returned:

ASCET-RP

In most cases the root cause for this problem is related to some server issues
Therefore it is necessary ko check the Following points:

* check plug For network connection

* check availability of license server

* check license availability on the server

* check results of Imstat -5 ETAS

* request the administrator to check the license file

Output of call ko Imstat.exe For vendor ETAS:

Imstat - Copyright {c) 1989-2004 by Macrovision Corporation. Al rights reserved,
Flexible License Manager status on Wed 5/9/2007 11:52

|

[Detecting Imgrd processes...]
Error getting status:

K|

i

Cancel |

e Check the following points:

Is your PC connected to the network?
Is the license server available?
Is the license on the server available?

What does the result of | nstat -s
ETAS look like?

Licensing

45

46

Licensing

— Ask your administrator to chek the license
file on the server.

e (Click Reset Borrow only if the server informa-
tion on your borrowed license is really lost.
Note

When you delete lhe local license information while the server license infor-
mation is still available, the license is unavailable until the reqular end of
the borrowing time.

The information regarding your borrowed
license stored locally on your PC is deleted.

4.1

411

Understanding ASCET

ASCET is a high quality, rapid development tool that ensures reuse of existing
components. Its unique graphic development environment allows target-inde-
pendent functional specifications. Control software for embedded systems can
be generated automatically from diagrams. Target-identical prototyping pro-
vides early tests in the development cycle. The ETAS tool chain makes your
investment safe and profitable.

> & Target-

o specific graphic independent
Objectives: development function
« rapid enviroment development

developMent

+ high Quality i

(little rewor I.« /

* re-usable

roduction
code

terface to
N pplication
¥ &
=3

Target-system
identical

other control units .
prototypin

Fig. 4-1 Advantages of the ASCET development environment

Increasing Efficiency in Control Unit Development

For the past 20 years electronic control units have gradually made inroads in
car production as well as other branches of industry. In the meantime there has
been a drastic rise in the requirements for functionality, speed and networking
capability. Technology and methods have changed enormously. Today, elec-
tronics are a key factor governing the success of new vehicle models. Develop-
ment costs and the speed of development are gradually increasing in
importance. The latest technologies are providing competitive advantages.
ETAS is breaking new ground in this sector.

Modern Embedded Control Systems: Technical Mission

A characteristic feature of present-day control unit technology is the integra-
tion of many high-quality functions on a single processor chip. The microcon-
trollers actually used in practice are often equipped with several I/0 and

Understanding ASCET

47

438

communication channels. Since the outside world is embedded directly in the
processor in this way, we normally speak about Embedded Systems and, when
it comes to control technology, of Embedded Control.

Embedded Software
Faocisr . Development

Objectives:

+ rapid development

+ high quality

Sensors Actuators| ittle rework)

¢ re-usable for
other control units ¥ b4

Fig. 4-2 Principle of Embedded Control System

Embedded Control Systems implement complex control circuits. Information
on the current state of the controlled system is precisely recorded by sensors
and processed together with previous data. The result is the output of control
information via corresponding actuators. The coupling of a variety of system
aspects is becoming ever more important. Only by networking the various con-
trol units can we master the entire system now, and implement present and
future environmental requirements with respect to safety, emission cleanness
and fuel economy.

Fig. 4-3 The reality of Embedded Control

Understanding ASCET

Vehicle electronics have already penetrated nearly all parts of the system. His-
torically, development started with engine and transmission control. But now
the success story of electronic control units also includes the brakes and the
suspension. Electronics have also had a visible impact inside the vehicle (airbag,
cockpit, navigation systems, etc.).

Embedded Control Systems

Many details need to be considered when designing embedded control sys-
tems. Usually the control unit must incorporate numerous signals. In addition,
the physical relationships between the signals are highly complex. If the design
engineer wants to obtain fast results, he needs methods and tools that relieve
him of additional difficulties when it comes to implementing the control unit
on microprocessors. By abstracting the task and shifting it to the physical
plane, it must be possible to reduce complexity to an acceptable measure and
make the design "easy".

7 \\
/ Abstract |
(Simple ! }

. Fast ! S

Fig. 4-4 Vision of Embedded Control

The vision of embedded control development systems is therefore based on
requirements for abstraction, simplicity and speed. ASCET meets these require-
ments. Using ASCET, the design engineer can fully concentrate on the physics
of the embedded control system, and design the control unit in an abstract
and simple environment in order to finally generate an automatic code for the
series launch. This achieves an exemplary speed during the design phase.

A call for abstraction, simplicity and speed have emerged from all sectors of
software development over the past few years. The results have been visual
methods for the analysis and design phases. The various techniques have now
been combined in a universal language called UML (Universal Modeling Lan-
guage). What are known as patterns are defined at this level. They translate
the design engineer's experience into the most abstract shapes ever known.
However, this approach still offers no support for describing real-time behavior
and its transparency does not conform with our control approach. ASCET

Understanding ASCET

49

50

offers all this: a reasonable amount of abstraction, clear support of real-time
requirements and a visual description in the form of control block diagrams
and state machines. And whenever possible, specifications can be transferred
from UML to ASCET and back. The openness of ASCET opens up new per-
spectives here.

s\\\\\///%
—=(UML)=
—
ASCET

S
o
o

Fig. 4-5 Modern software development

With ASCET, the specification is translated into C code at the push of a button.
It is then transferred to executable binary code using target-specific tools (com-
pilers, linkers, debuggers) and loaded on the target. ASCET effectively shortens
development time and therefore reduces costs. Moreover, existing sources
(e.g. C code) can be reused, providing excellent support for migrating a pure
C-development to ASCET. The abstraction of real-time requirements is fully
met by our OSEK-compatible operating system ERCOSEK.

But after executable code is generated, there is still a long way before develop-
ment of embedded control systems is finished. During the application and test
phases, a wide range of measurements are performed and parameters are
optimized. This is where development systems must become application-
oriented. The unigue requirement for continuity throughout the development
process is expressed by support for interfaces and format. ETAS meets these
requirements totally with ASCET, INCA-PC and LabCar. A matching range of
products with standardized interfaces offers the design engineer a high
degree of convenience, permitting him to focus his attention on the main task

Understanding ASCET

in hand - the development of embedded control systems. A parallel, continu-
ous documentation is just as natural as the openness of the tools for integra-
tion in cross-project management (Configuration Management).

% + realtime, # 4 +ECU- & D/
Idea, + techn. info. &
Analysis progress, \ JZ
Time
Function development SW- development Application

Fig. 4-6 Continuous process - open interfaces

No continuity within the process would mean time-consuming conversions of
data. Misunderstandings, gaps in the specification or even errors would be the
result. And these problems would crop up every time there is a change. On the
bottom line, this results in enormous costs which could be avoided by selecting
a continuous tool chain from the start. ASCET is continuous and open. Using
ASCET saves costs.

Focus on the Car Industry

ASCET was mainly developed for use in the car industry. The result is a number
of requirements which were previously undiscovered by other branches of
industry. On the other hand, many general concepts which can be of use to
other development tasks have flown into our tool chain.

A characteristic feature of automobile embedded control systems is require-
ments for simple control concepts such as maps. This is where the constraints
of memory size and performance (computer time) become very noticeable.
Only through simplified models of ideal controllers can we achieve the excel-
lent results desired in monitoring and controlling physical processes. Add to
this a large number of requirements which occur in other application areas, but
which are unique in a network: quality at this point is not a universal factor. But
when considered alone by the volume of the end product produced, it
becomes a critical factor for embedded control systems. Another factor is the
safety aspect. Many control units implemented in the motor vehicle affect
safety-relevant or even safety-critical operations. Brakes, engine control and
even window lifts (danger of jamming a limb) are characteristic examples. The
topic of networking has already been mentioned in this context.

Understanding ASCET

51

52

But the hardware used in development must also meet special requirements.
Simulation systems, measuring and adjustment systems as well as test systems
must be up to the aggressive conditions of summer and winter tests. They
must have excellent electromagnetic compatibility and, of course, satisfy the
highest performance demands.

Perfarmance
Memuory

Metwork node

EmOO

Register width

1980 1985 1990 1995 2000 2005 2010
Fig. 4-7 Requirements in the car industry

The innovation cycles in the car industry are mainly determined by trials. The
products themselves have a much longer life cycle and they are also face-lifted
in this period. Enhancements in microprocessor technology are therefore
viewed from a long-term aspect or must be adaptable without affecting devel-
opment activities (e.g. more advanced memory technology). The starting point
is therefore a relatively approximate model in which such things as register
width, i.e. the measure for processor performance, doubles only every five
years. It must be taken into account that large overlaps take place, i.e. when
the first 32-bit processors were introduced, there were many projects running
on 16-bit technology and even some that were still running on 8-bit technol-
ogy. The same applies to the upcoming innovation step from pure integer
arithmetic to floating point.

Development Processes: Economic Challenge

Development processes are always related to a particular company. However,
there are many general requirements which are ultimately reflected in the sup-
porting tools.

In all modern developments, the strategic foursome of time, costs, quality and
flexibility play a decisive role. Development processes must be measured by
these factors. The continuous tool chain is a vital step in this direction. But
success only happens if every member in the chain makes its full contribution.
ASCET and the other ETAS tools are more than up to this challenge. They help

Understanding ASCET

to save time through their standardized interfaces and their unique alignment
to the technical requirements of embedded control systems. This is also a
major contribution to reducing costs. There are also cost savings in the well-
arranged control-related modeling features. Together with early prototyping,
this helps to avoid superfluous recursions and failed developments. It also
improves the quality of development results. Quality is enhanced by the auto-
matic code generation feature in ASCET; this closes the usual implementation
gap. The specification and the product have a 100% match. Laborious rework
becomes a matter of the past. Together with the unique ASCET database
design, development work becomes flexible. Modules can be linked in any
combination and the automatic code generation feature performs the neces-
sary optimizations and adaptations. Finally, ASCET offers easy-to-modify inter-
faces. They provide flexible support for practically any development process.

Time
Costs
Quality
Flexibility
Fig. 4-8 The strategic foursome—product development requirements

The special economic challenge in the car industry is handling large volumes.
This mainly has consequences for production processes. From a development
engineer’s viewpoint, there are other aspects, e.g. cooperation between sev-
eral suppliers on a project. The tool chain is therefore subjected to require-
ments which can be grouped under the term of team support. It must be
possible to manage data jointly and exchange data reliably and reproducibly
over large distances. And the topic of know-how protection must not be
neglected. ASCET offers the right concepts for this and has the necessary inter-
faces for the tools.

Manual coding
respecification

Fct.Dev.
Tool

Understanding ASCET

53

54

In hotly contested markets, the pressure of costs and innovation is equally per-
manent. The aim here is to achieve synergy beyond projects. This can only be
achieved with cross-modular solutions (identical parts concept). When it comes
to developing embedded control systems, this means introducing standardized
interfaces at any level (hardware, operating system, protocols, functions) as far
as possible. This solution achieves the necessary shortening of development
cycles. Standards are common practice at ETAS: Our tools support or set the
standards in the field of embedded control systems (e.g. ASAM, ASAP, CAN,
MSR, NEXUS, OSEK, VME). We are actively engaged in upcoming standardiza-
tion requirements.

e -
Development time saved

Fig. 4-10 Optimized development process with ASCET

Present economic requirements can only be met if development is both effi-
cient and effective. Doing the right thing is the guideline, both in small or large
companies. Everyday working with ASCET brings more efficiency in the devel-
opment of modern embedded control systems. The simplifications in everyday
development work described above liberates capacity that is necessary so that
the engineer can concentrate on the job she is supposed to do— inventing
and implementing new, innovative control units.

Innovative Technologies - Technological Visions

Software for Embedded Control Systems has been produced for several
decades. Over the years there have been many changes to the programming
languages and tools used. But the basic methodology has remained
unchanged. Only microcontroller experts have been able so far to carry out the
complex programming of these systems. The chances of using a debugger for
troubleshooting were and still remain very problematic. This is only possible to
a limited extent (real-time problem). Function developers have no chance of
obtaining results directly. In the meantime, ETAS has revolutionized this sector:
The leading technology of ASCET has made it possible for the first time to
verify a draft control design directly on the target system.

Future orientation and innovative strength are part of our character. They are
the driving forces of progress and improvements. Our products correspond to
this paradigm. We therefore set the standards. And we align ourselves fully to
the wishes of our customers when optimizing our products. Why don’t you
develop with us the future of embedded control systems? This will make sure
that progress will not overtake you.

Understanding ASCET

Code Generation

The era of bit coding is past. Assembler is also a rare choice for a serious imple-
mentation language for embedded control systems. Today many people are
developing in C. This high-level language marks the end point of a develop-
ment which has always been centered on the target system. But this cannot
implement any cross-platform control concept. Reusing physically identical
data has thus become a horror scenario. You start the same thing from the
beginning every time. Truly a Sisyphean task.

[Iid] Uiy
[[
] 1

Imnplement ation
values

Min M
Physical values

Fig. 4-11 From physical parameters to implementations

In this situation, ASCET offers something incomparable. For the first time it is
possible to move directly and automatically from the graphical control block
diagram to software on the microcontroller. The ASCET code generator is
unigue, efficient and simple to use. The task given to the design developers at
ETAS was anything but trivial. The difficulty first lies in the correct abstraction
of the requirements: Microcontrollers still work with integer arithmetic. They
have limited memory space and a wide variety of hardware architectures.
Through the availability of ASCET-SE for various microcontroller targets, we
have succeeded in encapsulating these differences and obtaining a standard-
ized interface for the user. The result: There is no longer any problem in chang-
ing from one microcontroller to that of another vendor or even to the latest

Understanding ASCET

55

56

upgrade. Reuse is no longer simply a buzzword but has become practical real-
ity in the designer’s everyday work. And to keep it this way, we convert all the
main new processor developments into the corresponding ASCET-SE ports.

@ysical Model 0 /Embedded Software\

- has & general approach - has & particular approach

with direct physical hackground 8-, 16-, 32-bit) and is optimizad for

- based on a physical model description f - Is processor-dependent
{e.g enging, vehicle dynamics) / special processor resources

in an easy-to-understand form code size, memary requirements and

- the specification is at graphical level -~ - restricted due to conflicts between
(block diagrams, state machines / delay differences (inlining, optimized

. . T
- physical aquations and units are used / BMiAmEe)
with floating point arithmetic / - uses fixed point arithmetic =>

e Inrdhwers indemencent 2 quantization affacts, ovarflows, etc

tharefore ra-usable - restricted re-usability due to use of

pregramming languages, operating
\ / ksystems, atc /

Fig.4-12 Contradictory requirements of physical modeling and embedded
software implementation

ASCET-SE generates C code. It uses the usual tools for microcontroller pro-
gramming (compilers, linkers, locators and debuggers). But there are new chal-
lenges here, in particular in the configuration on handling these tools. Here,
too, ASCET has set milestones. But progress does not end at this point. For
example, innovative technologies link the topic of debugging with the applica-
tion of electronic control systems (measurement and adjustment). This
achieves complete control over real-time response on target systems. For the
first time you can work directly on the target system at physical control level.
The benefits are obvious: There is no more need for permanent thought trans-
fer from control level to processor bit level.

Prototyping

In the meantime simulation technology has become established as a fixed
component of complex control system development. It is a way of consolidat-
ing new functions at an early stage. In most cases, simulations are based on
offline time steps. The influence of real-time requirements on the control sys-
tem is not taken into account yet. Accordingly, sensors, actuators and the
physical systems on which they are based, what are known as process models,
are simulated for the simulation. It is therefore a purely software solution. This
is the reason for the term "software in the loop" (SIL). But it can only solve the
first step in the development of innovative control systems, i.e. the concept
itself. However, event-oriented online simulation requires sensors, actuators

Understanding ASCET

and the real process running in real-time. The operating system is then inte-
grated at this point for the first time. The first software prototypes therefore
arise from the simulation using hardware in the loop (HIL). The benefit here lies
in the more realistic simulation of control requirements. New control strategies
can be tested and adapted in the target environment under realistic condi-
tions. A distinction can be made between two cases here: At an early prototyp-
ing phase, the control algorithm is still treated on the basis of physical
parameters. Quantizations and overruns are largely neglected. They need only
be considered at system boundaries (sensors and actuators). The next phase
involves the implementation aspects. Finally it is only a small step from proto-
type to the product, which only consists in changing the computer hardware.
The path from the idea to the product is thus a step-by-step method. At any
time the designer has full control over the complex overall system and need
only concentrate his work on one aspect of the overall task.

ECU -eRealimeLink . Experimental

e.g. CAN Target

Scheduling & Cooperation

e - o k-
¥

- I8
o4

100 ms

Ce]
ECU functions: new functions under
e.g.: ignition, injection, lambda contol, ... development

Fig. 4-13 Bypass technology - the basic idea

Prototyping can also be performed using an existing control unit. A distinction
must be made here between the situation in which only part of the total con-
trol system is simulated and the rest runs on a series control unit (bypass) and
the case where only the signal conditioning system of a series control unit is
used (fullpass). There is also the possibility of supplying an existing control unit
(but different to the target system) with a completely new program (develop-
ment control unit). All these methods have one thing in common: the target
system uses identical prototyping. As early as the prototyping phase, func-
tional response can be studied in the necessary accuracy. The impact of quan-
tization, overflows and real-time effects can thus be mastered early on. One
condition for using this method is the equivalence of the simulation with the
software version on the target system, i.e. the series control unit. ASCET offers

Understanding ASCET

57

58

4.2

this special condition. In ASCET, online simulation as well as the series code are
based on our real-time operating system, ERCOSEK. Even quantization is
treated in the same way in the online simulation as in the series control unit.

‘ Prototyping-SW |

F

h

Prototyping-HW

$

Power Stage
&
Signal Conditioning

F 3 r F 3

k4 k 4 L 4

Technical Process
Fig. 4-14 The principle of prototyping

Another important aspect in prototyping is how to handle the environment. As
already mentioned previously, it is useful to simulate the physical systems on
which the sensors and actuators are based. These are time-continuous systems
as opposed to the discrete modeling of control unit functions. They are nor-
mally presented by differential equation systems. However, only very simple
solution algorithms are available for real-time handling, since a step-width
control is not really suitable for this type of application. ASCET offers these
methods in a single tool, i.e. with identical interfaces and workflows, from a
single source, so to speak. Process models can therefore be integrated in the
control development homogeneously if, for example, not all the physical com-
ponents are available for prototyping at the same time. In the extreme, an
entire vehicle can be integrated in online simulation (LabCar). Integration in
continuous systems in ASCET brings benefits in day-to-day work. Providing
and updating special interfaces and the necessary change in mindset are no
longer necessary in a different tool environment.

Continuous Support for Embedded Control Systems

A major factor governing the increase of efficiency is the continuity of the tool
chain. Any rupture in this environment will inevitably lead to faults in the devel-
opment flow, cost, intensive recursions or to a manual rework. This can be
avoided by using the right interfaces and formats. This situation demands stan-
dards in the form of migrations to new systems, i.e. the interfaces and formats
must be supported by as many tool manufacturers as possible. Here, ETAS is
actively participating in setting and propagating standards, and offers the nec-
essary interfaces and formats in all the tools it produces. However, ETAS is the

Understanding ASCET

4.2.1

only vendor who can supply the customer with the complete tool chain from a
single source. Continuity for us, therefore, is not only a buzzword, it is a tried
and tested code of practice.

Functions- and SW developer Applicators

Test system .
- = Vehide

Process model

Fig. 4-15 Continuous development process

Entry-level Technology Bypass

New technologies and algorithms are introduced efficiently by the unique, exe-
cutable specification of functions in the bypass. Since the majority of control
functions can be taken from a particular series version, there is always a fixed
status on which to build. This procedure is therefore an excellent way of intro-
ducing innovative modeling and simulation technologies such as ASCET. On
the other hand, ASCET is also prepared for this situation. The Add-On
ASCET-RP provides a work environment which makes entry easy. It also pro-
vides results that are quick to implement and provide useful information.

Before a bypass can be integrated, a modification of a particular function must
be made in the control unit, i.e. in the series software or the near-series soft-
ware. This must be provided by the software producer. The modification can
redirect the normal function call from the function request to the bypass com-
puter. A software switch is set for this purpose. If the bypass fails to reply to
this request quickly enough (safety), an emergency program is switched and
the values are used from the series function running in parallel. This type of
modification is frequently provided for cooperation between suppliers and
manufacturers.

Sometimes it may be useful to access new or other data of the existing series
software. All that is needed for this are the addresses and the control unit
which are usually provided for calibration purposes in the form of a control
unit description file (ASAM-MCD-2MC). It is also possible to measure and

Understanding ASCET

59

60

4.2.2

4.2.3

adjust data using a calibration system in the series control unit at the same
time. This may become necessary as a result of interaction between the new
function and the old state.

ASCET has the necessary conditions for integrating series states, interfaces to
the control unit and the interfaces to actuators and sensors that are also fre-
guently required. We have tested and proven the joint use of ASCET with our
INCA calibration system.

Prototyping

A second area of application of ASCET is the field of prototyping. The prime
task here is to develop new ideas from the start. In many cases, there is not
even a series state to fall back on. Prototyping covers everything from the sim-
ple functional physical simulation, the study of quantization effects and real-
time estimates through to the complete transfer to a control unit. At any level,
it may be important or even necessary to fully implicate the control unit envi-
ronment in the form of sensors and actuators. This occurs either in the form of
a process simulation or by including real hardware in a closed control loop. It
ensures the feasibility of a control concept and reveals more information about
the exact requirements.

ASCET provides the necessary computer performance for these applications in
the form of universal processor boards and supplies the external interfaces
based on our ES1000 VME bus system and plug-in modules.

But the work does not stop here. It is possible to equip small fleets with these
prototypes and simply present cost-effective solutions for the entire develop-
ment process through to pilot run maturity by simply opening our simulation
environment for application systems, e.g. INCA-PC. Our unique code genera-
tion technology goes one step further: You can achieve series maturity very
fast by porting a few implementation data to a microprocessor target system
and the automatic code generator. If this has to be tested in advance under
aggressive conditions, the ETAS ES400 development control unit with ASCET
can be used.

Automatic Code Generation

Mapping a functional model on executable program code is the main chal-
lenge in developing embedded control systems. The objectives at the physical
modeling level and the control unit level could not be more divergent. Physical
modeling is expected to be graphical, hardware-independent, reusable and to
support physical data types (floating point arithmetic). It should also be easy to
understand through the use of block diagrams and state machines so that
designers can use the documentation as a reference during the application
phase. But at the control unit level, i.e. the embedded software, implementa-
tion is a totally different animal. What is expected here is a code specially opti-

Understanding ASCET

mized to the existing microprocessor with the appropriate memory devices.
The code size and runtime are the prime parameters. The data types are nor-
mally integer (fixed point arithmetic).

If you want to avoid laborious, error-prone manual coding, the only way to link
the two worlds is by devising automatic code generation. This is based on
splitting the specification into a physical modeling part and an implementation
information part. ASCET offers a step-by-step migration from pure C imple-
mentations to the new physical description methods. The C code generated in
this system can also be used in other developer projects.

This approach continues through the experimental environment, e.g. quanti-
zation effects or runtime problems can be examined at an early stage. Since
both the control unit program and the experimental environment are based on
the same mechanism, we prefer to speak here about executing specification
on different target systems than about simulation. To pursue this thought, we
arrive at the question whether it is possible to run the application on the exper-
imental system. When it comes to ETAS tools (hardware and software), we can
answer this question with a clear Yes. Development is therefore continuous
from start to finish.

Measurement,
Modeling and ASCET-SD INCA Calibration,
Simulation Product Family Product Family Diagnostics and
Systems Validation Systems

Test and Validation
Systems

Rapid
Prototyping
Systems

Software
Engineering 1
Systems

21BMY0S
uonedlddy

aiemyos
wioge|d

v

Fig. 4-16 Using tools in the embedded control system environment

Understanding ASCET

61

62

424

Other Application Options for ETAS Development Tools

The unique ASCET code generator for series control units can be used in two
different ways, i.e. as an additional programmer or as an integration tool. In
the first case, it is very easy to imagine it as an entry scenario to the new tech-
nology, in particular for major projects. You can apply ASCET as an integration
tool in all projects with good results. But even in smaller projects, an entry-level
user can also obtain excellent results very quickly.

ASCET as Additional Programmer

When ASCET is used in this application scenario, it replaces a conventional
workplace (specification and manual coding). The results of these activities
flow as before into the total development in the form of C code modules. At
the same time existing code can be converted in ASCET step-by-step (re-engi-
neering). The result is executable code.

Transferring the remaining infrastructure, e.g. generating the control unit
description file (ASAM-MCD-2MC) for the application, managing data stocks,
etc., must be done by hand as before. On the other hand, ASCET generates
the necessary information for this.

Team cooperation is fully supported by ASCET. There is an interface for linking
configuration management (CM) tools. It is useful for the common manage-
ment of ASCET specifications. High-performance import/export functions help
you work without CM tools.

ASCET as Integration Tool

Complete development support on ASCET has the advantage that all compo-
nents are optimally harmonized. There is no additional effort needed for con-
verting between various tools or for integrating different sources. A single
environment will produce specifications, implementations and test cases for a
control unit. It also standardizes the management of different information
sources.

Integrating existing ASCET modules mainly involves configuring the operating
system. A definition is made regarding the form for invoking each of the func-
tions and how to exchange this information. A distinction is made between
cyclical tasks processed in a periodically recurring time pattern, and event tasks
which start when a particular event occurs (interrupt). The related parameters
can be simply set in ASCET. In addition, you can generate monitoring informa-
tion at this point in order to perform further analyses of the control algorithms
(e.g. run-time consistency).

Understanding ASCET

425

Operating System and Components

Planning the various tasks (scheduling) is based on priorities which the design
engineer stipulates. The ETAS operating system ERCOSEK supports both coop-
erative and preemptive scheduling. The main task of the operating system is to
transfer consistent data between processes. This takes place by using mes-
sages. When an interrupt occurs, the context of the current task is saved and
later restored after exception handling.

Drivers for HW components only belong partly to the operating system since
microprocessor peripheries can differ drastically depending on the application.
What is known as hardware encapsulation accesses partly the hardware
directly and partly the operating system. The abstraction of the functionality in
the form of a data interface can be kept relatively general and categorized
according to peripheral types (e.g. AD/DA converter, PWM, CAN). Above the
operating system and HW encapsulation plane, there are protocols for applica-
tion and measurement, diagnostics and bypass support. They are grouped as
automotive services. Together with HW encapsulation and the operating sys-
tem, they form the basis for the control unit application software. This modular
model for control unit software has a number of benefits: Elements can be
easily tested and exchanged. In many cases, different developer groups actu-
ally work on these parts. This division of labor supports rapid porting of an
executable state to a new control unit.

In addition to the ERCOSEX operating system, ETAS offers suitable HW encap-
sulation and automotive services. Based on this standard core, entry becomes
much easier to the development of control algorithms since there is little need
to bother about lower software planes.

Interfaces and Standards in the Tool Chain

Standards have a major significance worldwide in industry. Global operations
without standards is inconceivable nowadays. Standards secure communica-
tions both at functional and technical level as well as at human level. Standards
are an active contribution to protecting investment. Standards also offer the
flexibility of exchanging development results or tools from different origins.
They offer mechanisms to expand existing information easily and at low cost.

ETAS has made standards into a core concern. Our mission is to set and sup-
port standards. We do this by participating in standardization bodies and in the
development of our products. In this way, many significant milestones have
already been reached.

Our rapid prototyping hardware is based on the VME industry standard for
buses. Our systems are therefore easily expandable by just adding new plug-in
cards. Control unit interfaces have also been standardized in the car industry.
The ASAM-MCD standard defines the link between the control unit and the

Understanding ASCET

63

64

4.3

application system. The hardware is addressed via ASAM-MCD-1b drivers in
the application or development system. The ASAM-MCD-2MC description file
contains the necessary information about the addresses and conversion equa-
tions in the control unit software. ASAM-MCD-3MC defines unique interfaces
to test stands.

On the topics of documentation and data exchange at the development tool
level, an automobile standard has emerged from the MSR consortium. This
ensures consistent development at all times at different locations by different
partners using different tools.

At operating system level, the OSEK standard is becoming widespread for vehi-
cle control units. ETAS is making an active contribution here. Work is continued
both on the operating system kernel as well as on interfaces for communica-
tion and networks, i.e. the topics of HW encapsulation and automotive ser-
vices.

On request, ETAS can also offer interfaces to other tools which do not yet rank
as standards but which support the corresponding targets, e.g. data or model
exchange with other development tools (e.g. MATLAB Integration Package).
This simplifies the change-over to ASCET without losing expensive and costly
work results.

ASCET Development Environment in Practise

The ASCET development environment for electronic control units is the solu-
tion for all the requirements discussed above. The innovative technology of
ASCET is successful in improving the factors of time, costs, quality and flexibil-
ity in the strategic foursome. This is supported effectively by ASCET's structure.
The basic ASCET package contains a number of specification options. Block
diagrams, state machines, text specifications and C interfaces provide the
design engineer with the right description options for control algorithms. Even
the operating system configuration is graphical and can therefore be per-
formed quickly and simply. The control process can be modeled and included

Understanding ASCET

in the development. A continuous database supports cross-project reuse. The
following sections concentrate on the technical characteristics of the ASCET
development environment.

ASCET Development Enviroment

Database El Block diagrams H OS specification

Model, EEE Em Block editors | Experimental enviroment
Data, .
Experiment State machines Document generator

i~ b

| Fixed point generator

Integrated code generator

Production

Simulation(offline)

Microcontroller-
target, CU

Host, Experimental
Target

Power PC
b Transputer

Power PC
80C167 g

Fig. 4-17 Structure of the ASCET development environment

Below the specification level comes code generation. It has variants for differ-
ent target systems and is based on the user’s implementation information. The
separation of physics and implementation makes the direct reuse of control
units possible. Code generation supports the following scenarios:

® Physics experiment

e Quantization experiment

¢ Implementation experiment
e Controller implementation

Code generation affects both arithmetic and memory handling as well as the
tasks and processes of the operating system. Platform dependencies and
project-specific modifications are encapsulated in a practical way. This is more
than just a pure code generation function, it is a general integration package
which contains all the characteristics for interfacing any target system.

A high-performance experimental environment permits direct access to all
data in the executable specification and the control unit program. Even during
the real-time execution of the program, data can be manipulated graphically
and displayed simultaneously. The user therefore has full control over the
program.

Understanding ASCET

65

66

4.3.1

Well thought-out hardware and software systems offer enormous flexibility in
prototyping work with ASCET. Existing sensors and actuators can be inte-
grated in a closed control loop, thus permitting a step-by-step development
from the prototype to the product.

Bypass techniques support this process and offer a cost-effective entry to this
innovative technology. The system provides continuous support for most con-
ventional hardware interfaces (ETK and CAN).

Another advantage for our customers are open interfaces. Data reuse and
investment protection have thus become practical reality.

Physical Specification of Control Systems

The specification of control algorithms must be based on the design engineer’s
viewpoint. Use is made of tried and tested graphical methods for block dia-
grams and state machines. However, in most cases it is much easier to formu-
late a mathematical expression directly than to create a block diagram. ASCET
therefore supports text specification in JAVA-conform syntax. This section
explains this method in more detail. It will take a closer look at the operating
system configuration and control process modeling.

- N
Project P Task
N N
Y A 4
N
Module »| Process
: fi
Y
Instance Method
A 1
N N
Class

Fig. 4-18 Relationship between ASCET specification elements

The specification in ASCET consists of a number of dependent elements. The
executable specification or the operating system configuration is continuously
managed in a project (partly for implicit simplification, i.e. with a non-visible
default project). Projects consist of a number of modules and tasks. These ele-
ments again contain several processes which are specified in the modules and
scheduled for execution in the tasks. Modules encapsulate several class
instances as objects. Nevertheless, modules only occur once. Each instance has
precisely one class which contains the related methods. As opposed to a mod-

Understanding ASCET

ule, a class can have several instances. Methods differ from processes in that
they contain arguments and return values. Inter-process communication is pro-
vided by messages.

Both classes and modules can be implemented by block diagrams or text spec-
ifications. C code modules and classes are also offered. State machines are
treated as classes.

Classes are regarded as the main representatives of reusable elements. Accord-
ingly, ASCET offers a large library of useful classes from the field of control
technology as well as general software engineering in the database.

All the ASCET elements mentioned above contain implementation informa-
tion. In this way, they can handle target-specific or project-specific variants.

Block Diagrams

The block description of control systems is based on interfaces in the control
process. In ASCET, this approach is supplemented by the element of encapsu-
lation which is known from object-oriented programming languages. ASCET
blocks represent objects which encapsulate items of information and are inter-
connected by interfaces. Object-based presentation ensures that they can be
re-used easily and reliably. The block diagrams contain a purely physical presen-
tation of control algorithms. Implementation information is easy to add to the
elements using the block diagram by means of editors.

In traditional block diagrams, the precise order of computation is not always
defined precisely. In addition to typical data flow elements (e.g. variables, char-
acteristics, arithmetic operators, etc.) block diagrams in ASCET contain control
flow elements such as branches. The control flow is shown in a well-arranged
presentation by separate line and link types. In ASCET, you can also specify the
processing order of block operations directly by assigning block attributes to
the graphic. Complex algorithms can at last be presented precisely in graphic
form by means of sequencing and control flow elements. These are then very
easy to process.

An application-related view concept has been devised to support know-how
protection for cross-company work. The user defines in a number of different
views what blocks can be displayed or concealed in the documentation. ASCET
also lets you define password-protected access rights at class, module and
project levels.

State Machines

Hierarchical state machines are in widespread use in control systems. This mod-
eling method is of special interest for systems where different control strate-
gies are required depending on the working point. Trigger conditions and state
methods can also be specified by block diagrams or even by texts. The user can
select the best way of presentation.

Understanding ASCET

67

68

Text Specification in ESDL

Contrary to the development of C code, the text specification of control algo-
rithms in ESDL (Embedded Software Description Language) is a portable phys-
ical description. Instances are also encapsulated in classes and modules which
can be enriched with target-specific implementation information. ESDL is
based on JAVA since this C-like language is widespread and is easily learnable.
Specifications in ESDL, state machines and block diagrams can be mixed in any
combination, i.e. a class may contain some instances in block diagram form or
others as text specifications in ESDL. As opposed to C, ESDL requires no pointer
arithmetic since all the objects can be directly addressed. There is no dynamic
instantiation. In other words, in ASCET, all objects are fixed at compilation
time. This allows an early consistency check of the control unit programs and
shows that the available memory is indeed sufficient. This also applies to han-
dling arrays, matrices, characteristics and maps. These objects have a fixed
access protocol as classes and require no pointer arithmetic.

Integrating C

C code within the context of ASCET must be regarded at the implementation
level. Inevitably, it is target-specific and is also managed as such.

C sources can be integrated in two ways, i.e. as internal or external C code.
With internal C code, the sources are managed in the ASCET database in the
same way as ESDL classes. External C code, on the other hand, is stored in the
user's final system and can therefore be used directly for other applications (see
above: "ASCET as Additional Programmer"”). Binary code can also be inte-
grated if C-sources are not available.

The use of C code blocks is useful if the project includes special target-specific
drivers. The interface is bidirectional. Methods can be invoked from any class
by C code blocks. In addition, the C code also has an access option to other
physically specified objects. It is obvious that the interface deserves special
attention since the details of implementation are vital.

Operating System Configuration

The operating system interface is located in the so-called project see above).
Priorities are assigned for tasks incorporated in the scheduling. In addition,
each task has other attributes which are vital for scheduling the processing
order, e.g. whether they are cooperative or preemptive, whether they are cycli-
cal or whether they are started at an external event or only initially. The oper-
ating system is then configured on this basis. Other information is taken into
consideration. The processes invoked in the tasks communicate by means of

Understanding ASCET

messages. Messages from various modules are linked by identical names. In
the code generator, this information is checked for consistency (use of mes-
sages at several points, handling global variables, etc.).

Project / Scheduling

100 ms synchro 5ms

7

Fig. 4-19 Processes and tasks within the project

The operating system is configured visually in a simple editor. This provides the
design engineer with a continuous overview over the total system. Changes
can be made to scheduling very easily and quickly. Finally, this is also supported
by the fact that the ETAS operating system ERCOSEK has a precompiled library.
As a result, hardly any effort is required when making changes to the operating
system configuration except for the link process.

Modeling the Control Process

Specifying complex control algorithms without modeling the related process is
no longer conceivable today. ASCET offers a special advantage: The control
process and the process model can be developed in the same system. This does
away with extra time consumed by conversions or simulator couplings. In small
projects, the process and the control stem from a single source, i.e. they are
developed by a single engineer.

ASCET also has the openness of integrating other systems. For example, ETAS
has created a link to Matlab which permits the design engineer to simulate
Simulink models together with ASCET specifications.

All'in all, this technology takes a giant step forward in the direction of effi-
ciency and effectiveness. This applies above all when the laboratory car is avail-
able in the form of models and hardware. It can save a lot of time. Safety-

Understanding ASCET

69

70

432

critical analyses can be speeded up from the desk at low cost and without
danger. The driver need only step into the car for the trials. ETAS offers this
technology now for many systems.

Implementation and Code Generation

Automatic code generation for series control units is the key to an efficient
development methodology. ASCET has set standards here. It is not only the
special challenge of fixed point arithmetic. Operating system interfaces must
also be configured for floating point processors. Memory management must
be optimized and hardware encapsulation must be integrated. Furthermore, a
distinction must be made in floating point systems between precise and dou-
ble precise data. This is at least important in the simulation.

Parameter
sets I

Function blocks

ESDL Code,
Block diagrams State machines Internal C-Code 1/0-
[— - drivers

[
N
- o]
T Ee projea ‘

&
[05]

o000
FOH

Implementation

Fig. 4-20 Principle of automatic code generation in ASCET: the inputs

Understanding ASCET

In ASCET, the implementation consists of the data types, value ranges and
memory storage information. Conversion equations form the link between
these implementation levels and the physical data description. In addition to
memory storage information, there is a definition whether functions are calcu-
lated in line or whether a utility should be used for analyzing characteristics.

Doku

Fast-view66
Debugger

Fig. 4-21 Principle of automatic code generation in ASCET: the outputs

Automatic code generation is not a one-way street. In parallel to the generator
C code, an ASAM-MCD-2MC description is required. It provides the necessary
address information for application and measuring systems. This is obtained by
reading back and interpreting the MAP file after generating the program.
ASCET-SE contains this function. You can even start from an ASAM-MCD-2MC
file, read it into ASCET and base a first data model in ASCET from it (re-engi-
neering an existing program).

Algorithms

The automatic conversion of block diagrams, text specifications and state
machines in target-specific C code runs over a common intermediate layer that
uses implementation information to optimize the mapping of algorithms on
the target system. In addition to mastering complex logic, the arithmetic poses
a special challenge here. The same goes for integer code generation. Even the
simple assignment

a=o>b

Understanding ASCET

71

72

of two variables is not a trivial operation for code generation if the implemen-
tations are different. Let a and b be implemented by the following equations
as unsigned 8 bit variables (range from 0 to 255):

a=2%*a_inmpl, b=3%* b_inpl
This is followed by a simple substitution:
a_impl =3 * b_inpl / 2

Care must be taken here with the series of operations in order to consider the
requirement for maximum precision. If you first perform the division, the vari-
ous conversion equations would be ineffective due to the integer computation
and the results would be about 50% incorrect.
ainmpl = (3/ 2)* b_inmpl = b_inpl

The question of overflow must be taken into account. This means that if you
first multiply by 3, there is an overflow as soon as b_i npl becomes greater
than 255 / 3 = 85. Similarly, you must always be careful of underflows and
rounding errors. If you first divide by 2, this is equivalent to a right shift opera-
tion, i.e. the last bit is dropped. No distinction can then be made whether
b_i npl has the value 1 or 0. In both cases, the result for a_i npl and thus
also for a is the value 0.

In fact, the assignment a = b only makes sense if the physical ranges are
identical (here max. 0 to 510). b_i npl can therefore assume the maximum
value 510/ 3 = 170. An overflow can occur here and must be avoided at all
costs. You may then think of making a case distinction in the code generation,
i.e. first multiply for values from b_i npl to 170 and first divide for values from
b_i npl greater than 170. But this leads to a requirement for more code. So
here, you must accept a negligible error in precision of max. 1.5. within the
entire value range.

It is clear that the situation itself can become more difficult with regular arith-
metic operations with few operands, not to mention complex links and expres-
sions. The automatic code generation feature in ASCET relieves the user from
this type of problem.

Memory Handling

The control unit architecture defines memory areas which serve a variety of
purposes. Some areas are reserved for the program, others store applicable
data. A physical distinction must be made between ROM, RAM and Flash. In
many control units, special areas are reserved for storing bits. In many cases,
values can only be stored to even addresses. Some memory areas are also
reserved as inputs or outputs to and from the processor periphery. ASCET con-
siders this information continuously. The control unit architecture is available to
the user to describe the implementation and it can be adapted to the physical
conditions in every case.

Understanding ASCET

All standard data (e.g. measurement and calibration variables) automatically
receive a default memory area assigned. The automatic code generation func-
tion transfers these implementations to pragma statements in C code. Here
again, the user is relieved of annoying, error-prone management work.

Operating System Configuration

Configuring the operating system with ASCET is also very simple for the user.
The user is guided by a graphical user interface to specify the necessary infor-
mation in the ASCET project. C code is also generated automatically.

The main task of automatic code generation is to optimize communication
between various processes by means of messages. If interruptions occur, all
messages must be saved in order to continue working with consistent data
after the interruption. This requires an enormous effort which is frequently
superfluous. In fact, only data which can be inconsistent during an interruption
need be saved. This provides a high degree of potential optimization that is
exploited in the automatic code generation function.

As a result, the user saves a lot of work since the complex interruption options
are analyzed automatically and are considered in the code generation function.
It excludes errors caused by forgetting a backup operation. The greatest relief
from the burden of complex management operations come during the devel-
opment phase when the structure of processes and tasks can change. ASCET
offers both convenience and reliability here.

Platform Dependence and Project-specific Adaptation

The high performance of ASCET and automatic code generation are not only
reflected in successful product developments which our customers have
already carried out, but also in the capability of mastering future requirements
effortlessly. The key to this is the open, adaptable interface of this technology.
The expanded applicability has been proven by many instances, e.g. integrat-
ing non-proprietary operating systems, successful transfer of project-specific
requirements (e.g. in the form of naming rules or adaptation to customer-spe-
cific development processes).

Dividing the development into physical modeling and the specification of the
implementation forms the basis for extensive adaptation possibilities. The plat-
form-specific characteristics can be encapsulated at a central point (of the
implementation) and can therefore be exchanged in a single step. To this is
added the wide configuration options of the automatic code generation func-
tion. Building on a central intermediate layer in ASCET, code production rules
are used in ASCET-SE and they are adaptable to specific requirements. This
gives ASCET unprecedented access to the automatic code generation function,
if this is necessary or useful during development activities.

Understanding ASCET

73

74

433

Prototyping with ASCET

ASCET produces the first results very quickly and they can be transferred just
as quickly into products. The factors governing the success of the prototyping
feature is the experimental environment and the supported hardware. This sec-
tion describes this in more detail.

Experimental Environment for Extreme Requirements

The ASCET experimental environment lets the user carry out various analyses
on the development objects without changing them. It is therefore a universal
working environment in which to define and generate stimuli quickly and sim-
ply, record and analyze data, and change variables. The simulation can be
started or stopped at any point. Settings obtained, optimized datasets and
window configurations can be saved separately for re-use as a so-called exper-
iment and therefore re-used in the long term. Several experiments can be man-
aged for each model for a variety of purposes. There are several high-
performance graphical and text displays and editors for measuring and adjust-
ing and they can be combined flexibly. The ASCET experimental environment
offers this excellent functionality both offline or online in the real-time experi-
ment.

After the first analysis of the control algorithms as a physical experiment,
ASCET also supports the analysis of the quantization and implementations in
the same working environment. In this way, the development can be refined
step-by-step through to the actual product. Special support is also given by
providing special monitor variables in the experimental environment.

During the first analysis of new modules or classes, the experimental environ-
ment permits the step-by-step inclusion of single processes and methods in the
simulation. This dynamic operating system configuration directly in the experi-
mental environment permits a flexible, fast operating method and results very
quickly in realistic results.

The viewing and adjusting elements used in the ASCET experimental environ-
ment are identical to those used in our INCA-PC application and measuring
system. It ensures the continuity of the development environment at the oper-
ating system level from the concept through to the product.

Simulation Systems: Hardware and Software

Prototyping mainly lives from the hardware supported. The main part is the
execution platform for the simulation. ETAS offers a scalable concept here. A
high-performance computer node (PowerPC) performs the basic analysis of
new control algorithms. This platform has proved itself and offers a variety of
expansion options.

Understanding ASCET

The operating system on the simulation platform is ERCOSEK as in the series
control units. Prototyping is therefore highly realistic and all the necessary anal-
yses can be performed in real-time.

Fig.4-22 ES1000 Universal VME bus System

Many cards can be included in the simulation as plug-in cards in our ES1000
VME bus system. The system therefore supports the main industry standard,
The possibilities cover the use of existing commercial cards for including exter-
nal sensors and actuators through to the use of special project-specific signal
conditioning cards that are made to measure.

Integrating Existing Sensors and Actuators in a Closed Control Loop

ETAS offers hardware and software solutions for all customary interfaces to
sensors and actuators. We have VME bus cards for

e AD/DA conversion

e PWM signal exchange
e CAN interface

e LINinterface

e Digital I/O

e FPGA

In addition we have special solutions for temperature measurement and
recording emission data. The solutions can be easily integrated in this architec-
ture.

The PC interface is implemented by ethernet. It can therefore work with
mobile laptops. Older hardware system using a parallel (printer) port are still
supported, as well. An efficient protocol exchanges data between the experi-

Understanding ASCET

75

76

434

mental hardware and experimental environment online in ASCET. This does
not disturb the execution of the closed local loop at hardware level. Working
with ASCET ranges from the concept to the realistic prototypes.

Bypass

We provide two physical interfaces for the use of our bypass technology:
Memory emulation via ETK and the CAN interface. Other hardware interfaces
can be customized on request. All bypass systems are based on an executable
control unit for which a function can be changed or developed. In order to
apply the bypass, there must be a modification of this function. The modifica-
tion contains the function scheduling. In other words, the time scale in which
the function is processed must be known in advance. Depending on the situa-
tion, the necessary safety precautions must be taken in case communication
errors occur. For example, if a timeout occurs in the CA communication, an
emergency program can be started or default data must be anticipated.

Bypass technology is mainly intended as a support for development joint ven-
tures where certain functions cannot be published for reason of know-how
protection. Since only one interface is freed up, design engineers can save
other more complex measures. What is more, a major part of the total system
is always stable and partners can fully concentrate on developing an innovative
function. The result is a cost-effective solution with the greatest utility.

ETK Interface— Memory Emulation

The emulator test probe (German acronym: ETK) is a unique interface to the
control unit developed by ETAS. It is based on the full or partial emulation of
the control unit memory in the form of a DPRAM. The control unit has direct
access to it from one side and from the PC side, it can be operated transpar-
ently and read out. This requires a change to the control unit since the memory
emulation can only be implemented over very short distances between the ETK
and the processor. Today ETKs are already very small and can be designed in
hybrid technology.

For our ES1000 VME system, we offer plug-in cards for connection to the ETK.
Since ETKs are offered or modified for many different processors, this is a uni-
versal solution for the application.

CAN Interface

In cases where an ETK is not used for various reasons, the solution is a CAN
interface. This requires no change to the control unit hardware and is a possi-
ble solution in almost all cases. However, this solution does not attain the per-
formance data of the ETK. In addition, a sufficient number of free messages

Understanding ASCET

435

must be available. Given these constraints, the CAN bypass in conjunction with
ASCET is still the first choice in many cases since it is particularly cost-effective,
not to speak of its characteristics already described.

Reuse and Open Interfaces

The topic of reuse has been discussed for many years with keywords such as
modularization, object orientation and interface compatibility. In ASCET, re-
use and open interfaces have become practical reality. This is the result of the
careful analysis of development steps and development results in real projects
and the direct transfer of these observations into useful characteristics in our
tools.

This is how we have put together a library of excellent blocks for specifying
control algorithms. These blocks have proved themselves in practice and repre-
sent the standard for our competitors.

Reusable experiments are linked to this library. They permit a reproducible
response for old and new development tasks. Our interfaces to tools for appli-
cation, trials and testing can include all the relevant work steps in the develop-
ment of the overall system. Not only do we offer interfaces to other ETAS tools
but also interface standards such as ASAP and MSR which are universally
accessible.

Reuse through Database Support

The ASCET database system is the basis for our reuse concept. It was imple-
mented in the ASCET kernel from the start and thus forms the backbone of the
tool. The benefits for the user are obvious. All data is saved reliably in a sepa-
rate work environment and is protected from unauthorized or unintended
manipulation or even destruction. In the end this data represents valuable
work results which require special protection. To manage this data, the ASCET
database provides all the necessary mechanisms for efficient day-to-day work
both for single users as well as for teamwork.

Program and Database Management Using Configuration Management
Tools

The use of purchased configuration management tools has frequently been
preferred in order to manage variants of development streams or to permit
large teams to work together on complex solutions. These tools also manage
other company data. In fact, tool selection is specified by the customer. To be
able to interface any configuration management tool, ASCET supplies the nec-
essary interfaces. In this solution, ASCET operates as a client to the configura-
tion management tool. However, if ASCET is used as a server, ASCET’s
complete database functionality can be harnessed for a detailed modification

Understanding ASCET

77

78

4.4

to the management mechanisms of the configuration management tool. All
that has to be done is to modify the interfaces in JAVA. ASCET can then be
used to implement innovative and complex control tasks.

If you intend to use a configuration management tool, please contact ETAS for
a solution adjusted to your particular requirements.

ASCET Software Structure

The ASCET software family is divided in four products, which support the dif-
ferent phases in the users’ working process.

ASCET

Basic System

ASCET-RP ASCET-SE

_ , ASCET-MD o
Rapid Prototyping .., e Software Engineering

Modeling & Design

Fig. 4-23 The modular structure of ASCET

The following sections briefly describe the functional scope of the individual
products.

ASCET Basic System

The ASCET base system is the foundation for the other products, which cannot
be installed without it.

ASCET Modeling & Developing

ASCET-MD allows the specification of models as block diagrams, in ESDL, or in
the C programming language. As in previous ASCET-SD versions, models can
be specified and managed, as well as simulated in offline experiments.

The same version of ASCET-MD can be installed only once on a given PC.
ASCET-RP

ASCET-RP offers the full functionality required for rapid prototyping. It is
described in a separate manual.

With ASCET-RP, you can view components; modeling or changing models or
model elements, however, is possible only in connection with ASCET-MD.

Understanding ASCET

The same version of ASCET-RP can be installed only once on a given PC. It is
possible to install ASCET-RP, ASCET-MD, and ASCET-SE for one or multiple
micro controllers simultaneously.

ASCET-SE

ASCET-SE offers the full functionality required for the generation of ECU code.
It is described in a separate manual.

With ASCET-SE, you can view components; modeling or changing models or
model elements, however, is possible only in connection with ASCET-MD.

ASCET-SE is available in ports for several micro controller targets. Unlike the
other products of the ASCET family, ASCET-SE can be installed simultaneously
for different targets on the same PC. It is possible to install ASCET-SE for one
or multiple micro controllers, ASCET-MD, and ASCET-RP simultaneously, as
well.

Understanding ASCET

79

80 Understanding ASCET

General Operation of ASCET

This section provides information on the window and menu structures, control
options using mouse and keyboard, and help features.

We encourage you to read this chapter since some of the control options are
described only here. Although all techniques explained are Windows stan-
dards, they might be unknown to a less experienced Windows user. They are
therefore described here as a central summary.

Simple operation using the keyboard has been emphasized during the devel-
opment process of ASCET. For special features and deviations from Windows
conventions regarding keyboard operation, please refer to "Keyboard Con-
trol" on page 219.

General Operation of ASCET 81

82

5.1 Window Structure

The ASCET window elements

0—> ASCET-MD =[O x]
e/—’ File Edit “iew Inseit Component Build Tools Manuals Help

DEE BeXBE AR EUe-¢-090 ¢ 0H D
1 Database ¥ | 3 Contents b4
= o8 [F= Campanents |
Mame ITypa IDate IAccess ISpecification
2 Comment 2 nd/Replace 7
N
Find: |
= &
LI _’|_I <| F\eplaceW\thl : \ | _’I
<
9—} |? none |g <Dih.. \DB> |g kemaltha | REeeloy [~ Case Sensitive \ 4
' Forwa [~ “Wrap Seaich
Ej MONITOR [Ascet_Monitor.log] ‘) S

File Edit “iew

onitor |Build I - =
Find Mest I Fieplace/Find I

Different Components in d:Yetasdatahascets. 2vdatabasetbutoria

IdieCon - Misc Eeplere Selscliunl Replace All I
Different Data ¢ Implementations in d:\etazdatatasceth 2\datab

Impl [Implementation) - ldleCon_DEFALULT Status: Cloze |
Different Global Yariables - Data / Implementations in d. \etasdata: TS S T

Global Datafor: - 1dleCon_DEFAULT

Different Blockdiagrams in d \etasdata\ascetd. 24databasestutonial_test:
BlockDiagram for: - Migc/ldieCon

.. Ready)

[«]

@lEnors: - ‘wamings: - Infos: -

e Title bar (1)

e Menu bar (2)

e Button bar (3)

e Window area (4)
e Bottom bar (5)

e Tab (6)
¢ Dialog box (7)
e Fields (8)

General Operation of ASCET

5.2

521

¢ Field caption (9)

Button Bars

The most common commands are also available as buttons. This way, a com-
mand can simply be executed with a click on the mouse.

note

All commands which can be executed using the individual buttons are also
provided in the corresponding menus.

All buttons located on the button bar are mouse-sensitive. If you place the

cursor on a button and hold it for one second, a text box is displayed right next
to the button selected which displays the button function.

=2 8 e

Comment

Buttons in the Component Manager

1 2 3 4 5 6 7 8 9 10 1
DR s B2@aX BFE &

New (creates a new database)

Open
Save
Cut
Copy
Paste

Delete

© N o vk W=

Expand all
9. Collapse all
10. Import

11. Export

General Operation of ASCET

83

12 13 14 15 16 17 18 19 20 20 21

SFYe-e-Tooée 20
14a 15a
12. Insert Folder

13. Insert Project
14. Insert Module - <Type>
15. Insert Class - <Type>
The arrows (14a and 15a) can be used to select the object type.
16. Insert State Machine
17. Insert Enumeration
18. Insert Boolean Table
19. Insert Conditional Table
20. Insert Container
21. Options

22.7? (opens the "AboutASCET" window with information on the installed
products of the ASCET product family)

23 24

L

|
23a

[

23. Search - <criterion> (searches the database for a search string, using a
defineable search criterion)

The arrow 23a can be used to select the search criterion.
24. Input field for the search string
522 Button Bars in the Block Diagram Editor

1 2 | 3 | | 4 | | 5

[
o+ - X+ 2821 g 2 2 = #

1. Undo
Redo

3. arithmetic operators (Addition, Subtraction, Multiplication, Division,
Modulo)

84 General Operation of ASCET

4.
5.

logical operators (And, Or, Not)

comparison operators (Greater, Less, Less or Equal, Greater or Equal,
Equal, Not Equal)

6 7 8 9 10 11 12 13 14 15 16 17
XIMX MH | %2 2~ B | = IF iy wE o
6. Abs (returns the absolute value of the input)
7. Max (returns the largest input)
8. Min (returns the smallest input)
9. Between (checks whether the input lies between the limiting values)
10. Negation (reverses the input sign)
11. MUX
12. Case
13.1f-Then
14.1f-Then-Else
15. While
16. Switch
17. Break (specifies immediate exit from a process/method)
18 19 20
|12 =]]|<Show all> x| |100% =

21

18
19
20

. combo box to select the number of operator inputs
.combo box to select a view
. combo box for the zoom factor

22 || 23 |24 25 26 27 28 29

T AP TEFTTETREA

21
22

23
24

. Connect

.elements in state machines (State, Junction, Input, Output), only avail-
able when you edit a state machine

.variables (Logic, Signed Discrete, Unsigned Discrete, Continuous)
. Enumeration

General Operation of ASCET

85

86

25. Array
26. Matrix

27.dT system parameter

note

The name dT s reserved for the system parameter. You cannot create
any other element with the name dT. Since upper and lower case letters
are not distinquished, the names DT, dt, and Dt are reserved, too.

28. Continuous Parameter

29. Implementation Cast

30 | 31 32| 33 I 34 | 35

B Nomal =] O O G R T WG

30. characteristic lines and maps (Distribution, One D Table Parameter, Two
D Table Parameter)

31. combo box to select the type of the characteristic line/map

32. Resource

33. messages (Receive, Send Receive, Send; only available for modules)
34, literals (String, True, False, 0.0, 1.0)

35. Self (reference to the current object itself)

36 37 38 39

E= B2 |38 12 & | & |offine (PC) 7]

36. Hierarchy
37. Comment
38. Generate Code

39. Open Experiment for selected Experiment Target

Unnumbered button bar elements are always disabled in the block diagram
editor.

General Operation of ASCET

523

524

Button Bars in the C Code and ESDL Editor

! 1 |234567};‘9

TETEELEAS o[m i & Nomay]

The button bar elements (1) to (9) are available both in the C code editor and
in the ESDL editor. Button (7), however, is deactivated in the C code editor.
They correspond to the button bar elements (23) to (31) in the block diagram
editor (cf. page 85).

10 n 122 13 14 15
o O ¢ | B8R NS | &E|ome P

|E stemal Source E ditor|

Buttons (10), (11), (13) and (15) are available in both editors, too. They corre-
spond to the buttons (32), (33), (38) and (39) in the block diagram editor (cf.
page 86).

12. External Source Editor (C code editor only; opens the editor for external
sources)

14. Compile Generated Code (activated in the C code editor only)

Unnumbered button bar elements are always disabled in the C code and ESDL
editor.

16

x|

[&sctivate Extemal Editor|

16. Activate External Editor (in the bottom bar of the respective editor; acti-
vates the possibility to edit the component code in any text editor out-
side ASCET.

Button Bars in the CT Block Editors

CT blocks can be specified in C code, ESDL or as block diagrams. The following
buttons are available in all three editors:

1 2 3 4 5 6
B = ||5calale =5

1. Input

General Operation of ASCET

87

Output
Constant
combo box to select the parameter type

One D Table Parameter (characteristic line)

o vk WwN

Two D Table Parameter (characteristic map)
7 8 9

Y2 33 sl 8 | & |offline (PC) £

The button bar elements (7) and (9) correspond to the elements (38) and (39)
in the block diagram editor (cf. page 86).

8. Compile Generated Code (activated in the C code editor for CT blocks
only)

Unnumbered button bar elements are always disabled in the CT block editors.

The following buttons are only available in the ESDL or C code editor for
CT blocks:

10 11 12 13 14 15

Frroayg &

| Activate Estemal Editor|

10. Discrete State

11. Continuous State

12. Steplocal (variable)

13. Parameter (type is selected in combo box (4))

14. Dependent Parameter (type is selected in combo box (4))

15. Activate External Editor (in the bottom bar of the editor; activates the
possibility to edit code in any external text editor)

The following button bar elements are only available in the C code editor
for CT blocks:

16 17
| Idilect j i

16. combo box to select direct or non-direct block behavior

17. External Source Editor (opens the editor for external sources)

88 General Operation of ASCET

525

The following buttons are only available in the block diagram editor for
CT blocks:

! 18 |19 20 21
+ - x + | |2 =] |<Show all> x| [100% =]

18. arithmetic operators (Addition, Subtraction, Multiplication, Division)

19. combo box to select the number of operator inputs
20. combo box to select a view

21. combo box for the zoom factor

22 23 24 25

"

22. Connect

23. Global Parameter (type is selected in combo box (4))
24. Hierarchy

25. Comment

Button Bar Elements in the Project Editor

1 2 3 4 5 6 7 8 9 10 11
e n [TETEEFLEELG =

1. Specify Code Generation Settings (opens the "Settings" dialog with
the code generation settings)

2. Edit Data (opens the data editor for the project)
3. Edit Implementation (opens the implementation editor for the project)

The button bar elements (4) to (11) correspond to the button bar elements (21)
and (23) to (29) in the block diagram editor (cf. page 85).

12 13 14 15 16
s B2 [Nomal =] | @0 & & | B B2

The button bar elements (12), (13), (15) and (16) correspond to the button bar
elements (30), (31), (36) and (37) in the block diagram editor (cf. page 86).

14. Send Receive Message

General Operation of ASCET

89

920

Unnumbered buttons are always disabled in the project editor.

17

18 19 20 21 22 23 24

22955 &5 & otne PO]

Button (17) corresponds to button (38) in the block diagram editor (cf.

page 8
18.
19.
20.
21.

22.

23.

24.

{i‘ Farmulas |{ﬁ} Impl. Type I ﬁ:’ o, | ﬂ?;.ﬂ Bindingl Filesl ‘

25.
26.

6).

Compile Generated Code
Build Executable Code
Rebuild Executable Code

Transfer Project to selected Experiment Target (transfers the project to
the experiment selected in combo box (25))

The button is only enabled when you have selected the target ES1130
or ES1135 from the target options and the entry | NCA or | NTECRI O
from combo box (25).

Open Experiment for selected Experiment Target (generates code and
opens the experiment selected in combo box (25))

The button is disabled when you have selected the entry | NTECRI Oor
I NCA from combo box (25).

Reconnect to Experiment of selected Experiment Target (restores the
connection to the experiment running on the target selected in (25))

The button is disabled when you have selected the target ES1130 or
ES1135 from the target options or the entry I NCA from combo box
(25).

Experiment Target

The available entries depend on the target you chose in the target
options and on the other programs (e.g., INTECRIO or INCA installed
on your PC.

25 26

Bl

Filter Rule |al

Refresh for the "Formulas" tab
Add missing Formulas

Finds undefined formulas in the active implementation, and adds a lin-
ear formula behaving like the identity for each detected formula name.

General Operation of ASCET

5.2.6 Button Bar Elements in the Offline Experiment

1

2 3 4 5 6 7 8 9

& |

1.

N o kW

©

EEE|[[m > op| St

Exit to Component (closes the experiment and opens the component
editor; the appearance of the button depends on the component used
in the experiment)

Load Environment (loads an experiment environment, i.e. predefined
measure and calibration windows with assigned variables)

Save Environment

Save Environment As
Stop Offline Experiment
Start Offline Experiment

Pause Offline Experiment (pauses the experiment; continue with but-
tons (6) or (8))

Step Offline Experiment
input field for step size

10 11 12 13 14 15 16 17 18 19

fF 72| N B AE S

10.

11.

12.
13.
14.
15.
16.
17.

Open CT Solver

This button is only available when you are experimenting with a
CT block or a hybrid project.

Open Event Generator

This button is not available when you are experimenting with a
CT block or a hybrid project.

Open Event Tracer (opens the "Event Tracer" window for data tracing)
Open Data Generator

Open Data Logger

Update Dependent Parameters

Expand / Collapse Window (shows/hides the component display)

Always on top (keeps the "Physical Experiment" window always in the
foreground of the monitor)

General Operation of ASCET

91

92

18. Navigate down to child component

19. Navigate up to parent component

53 Operation Using The Keyboard

Simple operation using the keyboard has been emphasized during the devel-
opment process of ASCET. Individual keys are preferred over the function keys
<F1> to <F12>, which in turn are preferred over keyboard shortcuts using
<CTRL> and <ALT>. You can display a complete overview of the keyboard com-
mands currently used at any time by pressing <CTRL> + <F1>.

5.3.1 General Keyboard Control

This table lists the most important keys and keyboard shortcuts used to control
the New Experimentation Environment of ASCET. For a complete list of all key-
board commands, please refer to chapter "Keyboard Control" on page 219.
Key Function

<F2> change to Edit mode (e.g., for table entries)

<SHIFT> + <F10> open context menu for selected item (right mouse button)

<ALT>

<ALT> + <F4>

<ALT> + <F6>
<ALT> + <SPACE>
<ALT> + <TAB>
<CTRL> + <F1>
<CTRL> + <A>
<CTRL> + <C>
<CTRL> + <V>
<CTRL> + <X>
<CTRL> + <Y>

<CTRL> + <Z>

<DOWN ARROW> (1),

<UP ARROW> (1),
<LEFT ARROW> (),

<RIGHT ARROW> (—)

<ENTER>

General Operation of ASCET

activate main menu

close active window;
in the Component Manager: exit ASCET

switch between open ASCET windows
open system menu of application window
switch between open applications

show hotkey assignment

select all items (e.g., in a list)

copies data to the clipboard

inserts data from the clipboard

cuts data to the clipboard

redo last action (only in editors)

undo last action (only in editors)

move cursor to table item or list item with arrow keys,
<RIGHT ARROW> also opens folder,
<LEFT ARROW> also closes folder,

confirm input and quit input mode; expand or collapse
branches

53.2

Key Function

 delete selected item

<Esc> cancel input, discard changes

<SPACE> select table or list item or deselect active selection

<TAB> move focus to next item (option) in a window (<SHIFT> +

<TaB>: opposite direction)

Keyboard Control According to the Windows Conventions

The WINDOWS® conventions apply to the general operation of ASCET, such
as navigating through menus or activating a specific window.

Pressing the underlined letter in a menu while holding down the <ALT> key
activates the corresponding command. You can activate a subordinate menu
command by pressing the underlined letter together with the <SHIFT> key.

For example, to open the File menu in Component Manager with a keyboard
command, press the <ALT> + <F> key combination.

To switch to the next window or list box within the working windows, press
the <TAB> key (in the order from top left to bottom right). As an alternative,
you can use <ALT> key and the underlined character (number or letter) of the
field or list label to switch to the corresponding field or list box.

The arrow keys allow you to skip to the next item in list boxes. You can select
multiple items by making your selection while pressing the <SHIFT> key.

According to the WINDOWS® conventions, you can switch between the work-
ing windows using the keyboard shortcut <ALT> + <TaB>. In this sense, all
subsystems of ASCET, such as the component editors, the experiment environ-
ment, or implementation or data editor, are treated as individual applications.

If you need <TaB> within the window for other functions, e.g. when editing
text, you can switch to the next window element using the keyboard shortcut
<CTRL> + <TAB>.

Switching between several tabs in a window or field (e.g., in the Component
Manager, "3 Contents" field) is done—pursuant to the MS-WINDOWS® con-
vention—by pressing the <CTRL> + <TAB> key combination.

General Operation of ASCET

93

94

54

Within a window, you can use the underlined letter of the box or list title, while
holding down the <ALT> key, to switch to the corresponding list box. For
example, <ALT> + <2> would activate the "2 Comment" text field.

%' ASCET-MD =] 3
File Edit “iew Inzet Component Buld Tools Manualz Help

DsH BeX B8 ascue-¢ - 99068 0
1 Database ® | 3 Contents

= ®pe [= Components |
Mame: IType |Date Access ISpeciFication

2 Commenk *

o—— || |

|Y none |§ <Dl \DE= |ﬁ kemaltha | A

Operation Using The Mouse

In the office or lab, you can use the mouse to conveniently control ASCET. The
use of the mouse corresponds to WINDOWS® conventions.

You can select multiple items by making your selection while pressing the
<SHIFT> or <CTRL> key.

Right-clicking on the window elements opens respective context menus.

General Operation of ASCET

5.4.1

55

Drag & Drop

When creating block diagrams, or setting up measure or calibration windows,
you can use the drag and drop technique (left-clicking on the variable, keeping
the mouse button pressed and moving the variable to the target window/field
using the mouse).

& BDE for: Mass_Spring [Main] Project: Mass_Spring DEFAULT>PC<

Component Diagram Element Edit iew

+ = x = [[2 [z|[[<Show an> x||[100% =l

WM P %= |[Scalar 7|} B2 | By & |offfine (PC) |
Elements Sorted by IName
{E O self::Mass_Spring
T‘ 8D Force::Forc Farce F —
Mass, ..
<L £
% =

Farce

It is as easy to copy a value from one window to another. Commands which
cannot be performed, such as copying a parameter to a measuring window,
will be ignored.

il—'_-,' Dscilloscope: 1
File Edit ‘iew Estras

Signaks Measure channels — r—
= o i8]
Measure va)

— Wigw Exbraz
20 putl
Q & dosddition/input? | dotdditiondinputd | oz 0
10 i

tiondinput2 138 0
oAdditionreturn

NIy

-0

Hierarchy Trees

ASCET often displays information such as the contents of a database in a hier-
archical tree structure. In order to see all branches and the entire contents of
such a tree structure, you have to expand or collapse the branches. ASCETal-
lows you to expand several branches automatically or to expand specific partial
trees.

General Operation of ASCET

95

To expand several branches automatically:

e To expand or collapse all branches at once, you can use the View -

Expand All or View - Collapse All menu option or the buttons in
the button bar (see ,Buttons in the Component Manager”
on page 83).

To expand individual partial trees:

e To open the desired branch, click with the mouse on the little "+" box

next to this item or press the <+> key. Clicking a second time on the
same little box or pressing the <-> key collapses the branch again.

Or

Move the focus to the item with the <Ur/DOwWN ARROW> key and then
press the <RIGHT ARROW> key to expand the branch. Collapse the
branch by pressing the <LEFT ARROW> key.

A "+" box indicat 1 Database
a branch trat can be = ® DE_svs
expanded. —m® CIETAS TconLib

A COETAS_SystemLib_CT
—E EIETAS_TutoriaI_Solutions
[CO5ystemlib_ETAS

@ COTest

— & O Tutorial

'— @ Csreference

1 Dakabase
® pp_svs
CIETAS Icorlib
COETAS_SystemLib_CT
CJETAS_Tutorial_Salutions
= [F=raystemnlib_ETAS

B [FrBitoperations

A "-" box indicat
an expanded
branch.

(=
If there is no box, E
this is the end of th&

structure. This

branch cannot be

& and

further expanded.

General Operation of ASCET

@ clearBit

5.6

5.6.1

5.6.2

5.6.3

Supporting Functions

Monitor Window

The monitor window (see chapter 2.4 in the ASCET user's guide) is used to log
the working steps performed by ASCET. All actions, including errors and noti-
fications, are logged. As soon as an event is logged, the monitor window is
displayed in the foreground.

Ei MONITOR [Ascet_Monitor.log] o [=] 3
File Edit “iew

Maonitor | Build |

Different Components in d:\etasdatahascetd 2vdatabasehtutorial_test: ;I
IdleCon - Misc

Different Data / Implementations in d:\etazdatahasceth. 24databazehtutorial_test:
Impl (Implementation] - |dleCon_DEFALLT

Different Global Yariables - Data / Implementations in d:\etazdatahasceth. 24databazehtutorial_test:
Global Data for: - IdleCon_DEFALLT

Different Blockdiagrams in d:\etasdatahaszceth. 2hdatabasehtutonial_test:
BlockDiagram for: - Mizc/dieCon

...Ready] z

|5|Enors: - Warings: - Infos: -

In addition to displaying information, the monitor window also provides the
functionality of an editor.

e The display field in the "Monitor" tab of the monitor window can be
freely edited. This way, your own notes and comments can be added to
the ASCET messages.

e The ASCET messages can be saved as text files along with your com-
ments.

e Other ASCET text files already stored can be loaded so that you can
compare specific working steps.

Keyboard Assignment

You can display an overview of the keyboard commands currently used at any
time by pressing <CTRL> + <F1>.

Manual and Online Help

If not specified otherwise during installation, the entire ASCET manual is avail-
able electronically and can be displayed on the screen at any time, e.g., via the
menu options in the Manuals menu. The volumes, named ASCET V5. 2

General Operation of ASCET

97

Qui ckstart. pdf, ASCET V5.2 Manual . pdf, ASCET V5.2 Refer-
ence. pdf, are stored in the ETAS\ ETASManual s folder. Printed manuals
can be ordered here:

http://ww. et asgroup. com order nanual / ascet

Using the index, full text search, and hypertext links, you can find references
fast and conveniently.

The online help can be accessed via the <F1> key. It is stored in the
ETAS\ ASCETS5. 2\ Hel p folder.

98 General Operation of ASCET

http://www.etasgroup.com/order_manual/ascet

6.1

6.1.1

Tutorial

The tutorial mainly addresses users who are new to ASCET. It describes the use
of ASCET using practice-oriented examples. The entire tutorial contents are
subdivided into short individual components based on each other. Before you
start working on the tutorial, you should have read Chapter "Understanding
ASCET" on page 47.

A Simple Block Diagram

In ASCET you use components, such as classes and modules, as the main build-
ing blocks of your applications. You can either use predefined components,
which come with ASCET or have been developed earlier, or create your own,
which is what you will be doing in this tutorial.

In ASCET components are usually specified graphically. Once all the compo-
nents have been specified, they are assembled into a project, which forms the
basis of an ASCET software system. A software system consists of C code that
has been generated from the graphical model description, and which can be
run on a microcontroller or experimental target computer.

Preparatory steps

Before you can start, you have to open a database to work in. All the compo-
nents of this tutorial will be stored in this database, so you will only have to do
this once.

All components and projects for this tutorial can be found in the folder called
ETAS Tutorial _Sol utions in the database tut ori al . It is therefore
not necessary to specify all the components described here yourself .

It is, however, advisable to specify at least the components of lessons one,
three and four, to get some practice using ASCET.

Tutorial

929

100

At the start of ASCET, the Component Manager opens, loading the database
that was last opened.

1 [=] F3

% ASCET-MD
File Edit “iew Inset Component Buld Tools Manuals Help

DR Bex PR ascwe-9-v90o o8 F D)
1 Database » | 3 Contents

o ®oE [Components |

— Mame |Type Date |Access |Specification

2 Cornment 4

T—— || | 2

|Y one |g <Dl DB |ﬂ kemaoltha | | |

It is recommended that you create a new database for the tutorial to keep the
data transparent.
To create a new database:

e In the Component Manager, select File —
New Database

or

D | e click on the New button

or
e press <CTRL> + <N>.
The "New database" window opens.

%% Mew database B3

Enter a database name

[utoia]
(1] I Cancel

Tutorial

To open a database:

Enter the name Root .
Click on OK.

The new database, containing only the data-
base name and the Def aul t folder, opens.

When the t ut ori al database already exists, proceed as follows:

=

or

or

In the Component Manager, select File -
Open Database

click on the Open button

press <CTRL> + <O>.

The "Open Database" dialog box is displayed.
It contains a list of the databases in the current
database path.

% Open database H=1E3

Select Database

<new database:

<select path=

diietasdatalascets, 2idatabase\DE

diietasdatalascets, 2\databasetproject_1

d: 2 atabase RTIOTutorlaI
dat ORI

OF I Cancel |

Ifthet ut ori al database is on the list, select
it and click on OK.

The Component Manager displays the con-
tents of the t ut ori al database.

If the t ut ori al database is stored some-
where else, use the <sel ect pat h> option
to specify the database and click on OK.

In the "Select database path" window, select
the database and click on OK.

The first step in creating your own components is to create a new top level
folder named Tut ori al and a subfolder named LessonN for each lesson.

Tutorial

101

To create a new folder:

e |nthe "1 Database" field, select the database
name.

e Select the menu item Insert — Folder
or
@ e click on the Insert Folder button
or
® press <INSERT>.

A new top-level folder named Root appears
in the "1 Database" pane.

e Change the name of the top-level folder to
Tut ori al . You can type over the highlighted
name and then press <ENTER>.

e Select the folder Tut ori al .
e Select Insert - Folder once again.

A new folder named Fol der is created in the
"1 Database" pane.

e Change the name of the new folder to
Lessonl.

All the components you create in this tutorial will be stored in the LessonN
folder. You should create a new folder for every lesson. Every database has at
least one top-level folder which can have any number of subfolders.

Note

In ASCET 5.0, all folder and item names and the names of variables and
methods they contain must comply with the ANSI C standard.

You can proceed by creating your first component in the Lesson1 folder.

102 Tutorial

To create a component:

e Inthe "1 Database" pane, click on the folder
Lessonl.

e Select Insert - Class — Block Diagram.

A new component named C ass_BIl ock-
di agr amappears in the "1 Database" pane
under the Lesson1 folder. This component is
of type class, which is frequently used in
ASCET.

e Change the component name to Addi ti on.

Specifying a Class

After you have created a new component in the Tutori al / Lessi onl
folder you can specify its functionality. First define the interface for the compo-
nent, i.e. its methods, arguments and return values. Then draw a block dia-
gram that specifies what the component does.

To specify the functionality of a component:

e Inthe "1 Database" pane, select the compo-
nent Addi ti on.

e To open the component, select
Component - Edit

or
e double-click on the component
or

® press <RETURN>.

The block diagram editor opens. This is the
main window for specifying component func-
tionality.

Tutorial

103

4 BDE for: Addition [Main] Project: Addition_DEFAULT>PC<

f-tealkc ()

"Diagrams" Pane

e Inthe "Diagrams" pane, select the method
cal c¢. This method is created by default.

e Select Diagram - Rename
or
e press <F2>.
The name of the method cal c is highlighted.

104 Tutorial

e Change the name of the method to

doAddi ti on.
e Select Diagram - Edit

or

e double-click on the method name.

The interface editor for the method opens.

Interface Editor for: doAddition []

Argument Return Local Variable
Arguments | Hetuml Localsl

Arguments Add Del

Argument Type
Lt

Comment

—

Lancel |

Every class needs at least one method. Methods in ASCET are similar to meth-
ods in object-oriented programming, or functions in procedural programming
languages. A method can have several arguments and one return value (these
are all optional). Arguments are used to transmit data to a component. Return
values are used to return results of calculations within the component to the

"outside".

To specify the method interface, you can add two arguments of type cont i n-

uous and a return value using the interface editor.
To specify the method interface:

* In the interface editor, select Argument -

Add.

A new argument called ar g appears in the

"Arguments" pane.

e Change the name of the argument to

i nput 1.

Tutorial

105

106

Tutorial

e Add another argument called i nput 2.

By default the data type of the arguments is
set to continuous (or cont for short), which is
what you need in the example.

e Activate the "Return" tab of the interface edi-
tor.

e Check the Return Value tick box.

The type of the return value is also set to cont
by default.

e Click on OK to close the interface dialog pane.

The names of the arguments and the return value for the method doAddi -
tion appear in the "Elements" pane on the left of the Block Diagram Editor.
Now you can specify the functionality of the component by drawing a block
diagram.

To specify the functionality of the component Addi ti on:

e Drag the first argument from the "Elements"
pane and drop it onto the drawing area of the
block diagram editor.

The symbol for the argument appears in the
drawing area.

4 BDE for: Addition [Main] Project: Addition_DEFAULT>PC<

Component Diagram Element Edit View Sequence Calls

oo+ - x 4|2 211> < 2 2 = F XIMOH o[
W0 /B TE T TR TEQ = o | kg B Nomal 3
Elements Sorted by IName j ®

& [self::addiion
*= P input!{doaddition: :cont
2 input2{doaddition: :conk;
*& P returnjdodddition: :cont

[Fr 1—
input/doAddition

.\> anputZ,l’doAddition. L

Diagrams 4

% @ [Main
{..} doaddition (input1::cont;input2::o

e Now add the other argument and the return
value using the same drag-and-drop process.

Click on the Addition button.

The mouse is loaded with an addition opera-
tor.

Click inside the drawing area, between the
symbols for the argument and for the return
value.

An addition symbol is displayed. By default it
has two input pins (indicated by arrows) and
one output pin. The output pin is located on
the right.

You can now arrange the elements and the operator by dragging them to their
places on the drawing area. Next, you need to connect the elements to specify

the flow of information.

4 BDE for: Addition [Main] Project: Addition_DEFAULT>PC<

Component Diagram Element Edit View Sequence Calls

Voo [+ - x 2 /2> < 22 = Famm o[>
W0 B[P T T RO =k ENoma 5[& D O ¢
Elements Sorted by IName j ®
— 0fdoaddition
& [self::addiion 7
: o [1— + —HE
8 B inputt {doAddition: :cont input1/doAddition . returnfdoaddition

*E W input2/dosddition: :cont
* W return/dosddition: :cont

Diagrams

x

% @ [Main
{..} doaddition (input1::cont;input2::o

[Fr 1—
input2doAddition

To connect the diagram elements:

)

Click on the Connect button.

Alternatively, you can right-click in the draw-
ing area (but not on an element).

The cursor changes to a crosshair when it is
inside the drawing area.

Tutorial

107

108

Tutorial

Click on the output pin of the first argument
symbol to begin a connection.

Now, as you move the mouse cursor, a line is
drawn after it. Every time you click inside the
drawing area, the line remains fixed up to that
point. That way you can determine the path of
the connection line

Click on the left input of the addition symbol.

The argument symbol is now connected to the
input of the addition symbol.

4 BDE for: Addition [Main] Project: Addition_DEFAULT>PC<

Component Diagram Element Edit View Sequence Calls

ook [+ = X + /(8 21> 2 £ a2 = #F KIMCH oW [N

EEEE T

BB G =0 [b B Nomal]| & 2 O ¢

Elements Sorted by IName j ®

& [self::addiion
*& P inputl{doaddition: :cont
*E W input2/dosddition: :cont
*& P returnjdodddition: :cont

Diagrams 4

|L@ [Main

{..} doaddition (input1::cont;input2::o

/0idaaddition

[+ —{ >]
input/doAddition return/dosddition

[*r 1—
input2doAddition

Connect the second argument symbol with
the other input of the addition symbol.

Connect the return value symbol with the out-
put of the addition symbol.

The connection between the addition opera-
tor and the return value is displayed as a green
line to indicate that the sequencing for this
operation needs to be determined.

e Select Sequence Calls - Sequencing -
Ignore Info to determine the addition
sequence automatically.

The connection between the addition opera-
tor and the return value is displayed as a black
line.

4 BDE for: Addition [Main] Project: Addition_DEFAULT>PC<

Component Diagram Element Edit View Sequence Calls

Voo [+ - x 2 /2> < 22 = Famm o[>
MO S AP [ET TR NEDG o ok i Nomal 1] & D O ¢
Elements Sorted by IName j ®
& [self::addiion = S /IIdUAddltlorzl

E' input1fdoAddition: :cont input/doAddition return/dosddition

© I inputZ/doaddition: :cont

*& P returnjdodddition: :cont

input2doAddition

Component specification is now complete. The last step in editing your com-
ponent is to specify its layout, i.e., the way it is displayed when used within
other components.

To edit the layout of a component:

There are two ways to edit a layout:

i e Use the Browse tab to go to the "Informa-
Ky Browse | : "o
tion/Browse" view.

A2 BDE for: Addition [Main] Project: Addition_DEFAULT >PC<

Component Diagram Element Edit Wiew Sequence Callz
oo+ - X 2 8 21 1> « = 2 = F ximim o (%> = IF ¢ ~E A |2 2] |[<Show aip 7] |[100x
T B | TEF R ERELG s Ehm[d0 00 bt f W we =621

Elements Sorted by [Name 7] x| ¥ Eements | @ peta| € mmplementation | 25 Layout | &
@ [self::Addition Mame Type [MaxSize|Scope Kind Existence|Dependency| Memary| Calibration|Unit| Comment ?:1
€ I inputl/doaddition:; cont B inputLidoaddition*E cont|--- doaddition| Method Argument|-—- =3
= z
£ B input2/doaddition: :cont - P v &
5 b raburn/dodddition: cont P input2idodddition "8 cont |- doAddition|Methad Argument|-— g
I return/dodddtion 6" cont|-— |doAddition|Return Yalue
P
@
2
S
&
Diagrams *
? Main
1.} dodddition {input 1::cont}inputz:
«] 5 | |

Tutorial 109

110

Tutorial

e Double-click in the "Layout" tab to open the
Layout Editor.

4 BDE for: Addition [Main] Project: Addition_ DEFAULT>PC<

Comporent Diagram Element Edit View Seguence Calls

ook |+ - X 2 R 2T r < o2 2 o= F X MXHH oW R

MG B EE R TF A = 0 [B Nomal o] & D O & &t

Elements Sorted by IName ‘l x E Elements | . Data | Q Implementation f} Layout |

@
& [self:addition %‘:
*€ W input1/doAddition: :cont =
*€ P input2{dodddition: :cont B
& W returnfdodddition:: cont g
- inputdAddition |— s
—#| inpaedition j=d
] =
o
Diagrams x T
?] Main
{..} dodddition (inputl: contjinput2: o
<] | |
e Alternatively, select Component -, Edit Lay-
out.
The Layout Editor opens.
B Layout Editor for: Addition H=1E3

Layout “iew bethod

Methods Layout oK |
- doAddition [inputl::co ————— ;I
Cancel |
inputfl Addition
| doadition
input J
Addition
m & 1 _>l_I

e Resize the block by clicking on it and then
dragging the handles to the size you want.

e Drag the pins of the arguments and the return
value to create a symmetrical design.

e (lick on OK.

Now that you have finished your component, the last step in this lesson is to
save the component in the database.

To save the component Addi ti on:

E .

Select Diagram -. Store to Cache and close
the block diagram editor.

In the Component Manager, select File —
Save Database.

click on the Save button.

Your work is not written to disk until you per-
form this operation.

When you select Store to Cache, the changes
are only stored in the cache memory. It is
therefore advisable to click Save regularly as
work progresses.

You can have your changes saved automati-
cally by activating the appropriate user options
(see section "General Options" in the ASCET
user’s guide) for your ASCET session.

As an optional exercise, you could now model the same functionality in ESDL
(ESDL: Embedded Software Description Language). If you continue with this
exercise, you will familiarize yourself with the ESDL editor and will learn how
to use the external source code editor.

The first step is to copy the module interface to a new module with type ESDL
and rename it. Then create the functionality you want either directly in the
ASCET ESDL editor or use the external text editor.

To copy and specify the component (interface) Addi ti on:

In the "1 Database" pane of the Component
Manager, select the component Addi ti on.

From the context menu select Component -
Reproduce As - ESDL.

A copy of the component is created; it is
named Addi ti onl.

Rename the new component Addi -
ti onESDL.

Tutorial

11

112

ESDL for: AdditionESDL Project: AdditionESDL_DEFAULT [PC/Physicall

Component Diagram Element Edit “iew

In the "1 Database" list, double-click on the
name of the new component.

The ESDL editor for Addi t i onESDL opens,
making various functionalities available for
editing.

Tutorial

TETETEDED o< | wizENmax] &0 @ & [@EE @ | &[0mnere
Elements Sorted by vl » | dofddition {inpukl:cont;input2:icont) reburn: iconk | @
& 0 salf: AdditiorE30L | &
*& B input1jdoAddition::cont =3

*E P inputz/dofddition::cont 2

*& P returnjdosddition::cont g
5

m

2

b

b

Diagrams 4

% [2] Main
{...t dosddition (inputl::conk;input2: :cor

"Edit" pane
(internal text editor)

-

4 | |

-
ol L
% Line 1 f Calumn 1

B

[&.ctivate External Editor|

e Now enter this functionality in the "Edit"
pane of the internal text editor:
return inputl + input?2;

e Use the Activate External Editor button to
switch to external editor mode.
You are asked if you want to save your
changes.

e Confirm with Yes.

The changes are saved, and the ESDL editor
switches to "external editor" mode.

The editor looks different in "external editor"
mode.

#¢ ESDL for: AdditionESDL Project: AdditionESDL_DEFAULT>PC<

Component Diagram Element Yiew

TETeELEHO |k ENm]| &2 0 & @®E WD B[00

Elements Sorted by |Mame =] x oAddition [input : icontjinp:] Start Edit | &
& [self:: AdditionESDL - =
*& W inputl/doaddition: :cont Eqrd Bl | %:,
EP inputzdoaddition: :cont pl’OCQSS/methOd pane %

€ P return/doAddition: :cont g
pdate | sl

=

return inputl + inputz; ;I %

&

display for process and
method specification

Bs

e

e In the process/method pane, select the
method or process you want to specify.

The functionality entered previously appearsin
the specification field, and the Start Edit but-
ton is activated.

e Activate the external editor with Start Edit.

Note

When the external editor starts up, the application associated with the file
endings *. ¢ and * . h in the operating system register database is called.
Data transfer is done via temporary files; this is why you have to ensure the
files are saved before closing the editor or before transferring to the ESDL

editor.

The End Edit and Update buttons are now
activated, whilst the Start Edit button is deac-
tivated.

e Edit the functionality in the external editor.
e Save the functionality in the external editor.

e |n the ESDL editor, click Update, to transmit
the data from the external editor.

Tutorial 113

e After you have finished, click End Edit to
close the connection to the external editor.

The external editor remains open after you
have clicked on End Edit. However, you can-
not transmit any more changes to the ESDL
editor.

e Click on Activate External Editor a second
time to end the external editor mode.

e Select Diagram - Analyze Diagram to
check the code you entered. Errors are listed in
the ASCET monitor window.

Ei MONITOR [Ascet_Monitor.log] =13
File Edit Wiew ?
Monitor Build |

%@ CODE GEMERATION
%@ AdditionESDL [Compaonent]

@ dodddition
IE @ ERROR[YLm1): Syntax enor ine: 2 pos: 23
@ ERRORMMAIZE): retumn must be the last operation of "dodddition”

I~ show hidden messages @ al ¢ Errors Warnings ¢ Information

|i|Enors: 2/2 Wamings: 040 Infos: 040

6.1.3 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e Opening a database

e (Creating and naming a folder

e (Creating and naming a component

¢ Defining the interface for a method

* Placing diagram elements on the drawing area
e Connecting diagram elements

e Editing the layout of a component

¢ Switching between Specification and Browser views.
e Saving a component.

¢ Copying a component interface.

e Using the ESDL editor.

e Using the external editor.

114 Tutorial

6.2 Experimenting with Components

Having created the Addi ti on or Addi ti onESDL components, you can
now experiment with them. Experimentation allows you to see how the com-
ponent works, just as it would in a real application. The experimentation envi-
ronment provides a variety of tools that can show the values of inputs,
outputs, parameters and variables within a component.

6.2.1 Starting the Experimentation Environment

The experimentation environment is called from the block diagram or the ESDL
editor. First open it with the component you want to experiment with.

To start the experimentation environment:

=)

| Open Experiment far selected Experiment Target|

or

From the ASCET Component Manager, open
the block diagram editor for your Addi ti on
inthe \ Tutorial \ Lessonl folder.

In the block diagram editor, select
Component -~ Open Experiment

click the Open Experiment for selected
Experiment Target button.

The code for the experiment is generated.
ASCET analyses the model in your specifica-
tion and generates C code that implements
the model. It is possible to generate specific
code for different platforms.

In your example, you simply use the default
settings to generate code for the PC.

After the code has been generated and com-
piled, the experimentation environment
opens.

Tutorial

115

116

6.2.2

Tutorial

& Physical Experiment for: Addition Target: >PC< Environment: >Default<

File Elementz Diagrams Experiment “fiew

& SHEHE [n» oy | s vVE N RKIAEGO

'|<New Calibration Editor = j '|<2. Mumetic display = j 'l 1 é’

e 3¢ addtion > |

Elements ﬂ

£p® Addtion o Nl N |
input/doAddition return/dosddition
input2doAddition

Diagrams

MMain

L m dasddition [input1::cont; _ILI

ey e ’

Setting up the Experimentation Environment

Before you can start

experimenting, you have to set up the environment,

which means determining the input values generated for the experiment and
how you want to view the results. You have to carry out three steps. First set
up the event generator, then the data generator and finally the measurement

system.

To set up the Event Generator:

e (lick on the Open Event Generator button.

The "Event Generator" window opens. For
each method to be simulated, you need to
create an event and also a gener at eDat a

event. The events simulate the scheduling per-
formed by the operating system of a real
application.

Event Generator = O]x]

Channels

Ewvents

[B dodddiion Disabled
B generateData Dizabled

e Select the event doAddt i on.

e Select Channels - Enable.

e Select the event doAddt i on again.
e Select Channels - Edit.

Both functions are also available via the con-
text menu in the "Elements" field.

The "Event" dialog window opens.

Event for: doAddition

Mode [Tt ()8

Prio |5 Cancel |
dT [5] ID.D‘I

e Setthe dT value to 0.001.
e Click on OK.

e In the event generator, select the gener at e-
Dat a event and set its dT value to 0.001.

e (Close the "Event Generator" window.

Tutorial 117

118

To set up the Data Generator:

@ e C(Click on the Open Data Generator button.
The "Data Generator" window opens.

/ Data Generator =] E3

LChannelz Signal

Data Elements

|] -

" o

Signal ltem: not defined

e Select Channels - Create.

The "Create Data Generator Channel" dialog
window opens.

& Create Data Generator Channel [B[=] B3

Select Element(z] ta create a new channel:

Cancel |

e If necessary, deactivate the Parameters only
option to have both parameters and variables
displayed in the list.

e Select the i nput 1/ doAddi ti on and the
i nput 2/ doAddi t i on variables from the
list.

Tutorial

e C(lick on OK.

Now both inputs are listed in the "Data Ele-
ments" pane of the "Data Generator" win-
dow.

e Selecti nput 1/ doAddi ti on in the "Data
Elements" pane.

e Select Channels - Edit.

The "Stimulus" dialog box appears.

Stimulug for: inputl/doAddition

e Set the values as follows.

Mode: sinus
Frequency: 1.0 Hz
Phase: 0.0s
Offset: 0.0
Amplitude: 1.0

e C(Click on OK to close the "Stimulus" dialog
pane.

e Set the values for i nput 2 as follows:

Mode: sinus
Frequency: 2,0 Hz
Phase: 0.0s
Offset: 0.0
Amplitude: 2.0

e C(Close the "Data Generator" window.

Tutorial 119

120

Tutorial

With these settings you get two sine waves with different frequencies and dif-
ferent amplitudes. The Addi ti on component adds the two waves and dis-

plays the resulting curve.

In order to see the three curves displayed on an oscilloscope, you will now set

up a measurement system.

To set up the measurement system:

In the "Physical Experiment" window, select
<2. Oscill oscope> as data display type
from the "Measure View" combo box.

eniment Wiew

Mo | Steps]l EZa:

reric display =

E <= Csrilloscope = j II_‘I

OSCONE =

. wertical bar display =
<4, Horizontal bar display =
<5, Bit display =
<6, Recorder-:s

In the "Elements" list, click on the box marked
by a "+" next to Addi ti on to expand the
elements list.

The elements of the Addi t i on component
are displayed.

Select i nput 1/ doAddi ti on.
Select Elements - Measure.

An oscilloscope window opens with i nput 1
as measurement channel. The "Measure
view" list in the experimentation environment
is updated to display the title of the measure-
ment window.

6.2.3

il—'_-,' Dscilloscope: 1

File Edit ‘“iew Estras

In the "Elements" list of the "Physical Experi-
ment" window, select i nput 2/ doAddi -
tion.

Select Elements - Measure.

i nput 2 is added to the oscilloscope as mea-
sure channel.

Add r et urn/ doAddi ti on to the measure-
ment window.

In the experimentation environment, select
File — Save Environment.

Now the experimentation environment is set up, and you are ready to start the
experiment. Since you have saved the experiment, it is automatically reloaded
next time you start the experimentation environment for this component.

Using the Experimentation Environment

The experimentation environment provides a set of tools that allow you to
view the values of all the variables in your component and also change the
setup while the experiment is running. You can also adjust the way the values
are displayed and choose from several ways of displaying them.

To start the experiment:

>

In the "Physical Experiment" window, click on
the Start Offline Experiment button.

The experiment starts running and the results
are displayed in the oscilloscope.

Tutorial

121

122

-

Click the Stop Offline Experiment button to
stop the experiment.

You will only see a small portion of the curves on the oscilloscope. To display
the curves on the oscilloscope, you need to alter the scale on the value axis.

To change the scale on the oscilloscope:

Select all three channels from the "Measure
Channels" list in the oscilloscope window.

Hold the <CTrL> key while clicking on individ-
ual channels to select multiple items.

Now all the data elements are highlighted, so
the changes you make will affect all three of
them.

Select Extras — Setup.

The "Display Setup" dialog box appears.

& Display setup x|
Walue axis Line color
from I]
Cancel
ta 100 |
Display bype
Isteps j I
Time axis Background color
Extent | L0 [B
|
] |
opiens E—
% arid — |

Tutorial

Set the "Value Axis" to a range of -3 to 3.
Set the "Time Axis Extent" to 3.

Select a background color in the "Background
color" list.

il—'_-,' Dscilloscope: 1

Press <ENTER>.

File Edit ‘iew Estras

Measure channels
Measure variable
x doAddition/input 1

2 ||<|doaddition/inputz

3 |x doAddition return

The oscilloscope now shows the output with the appropriate scaling on the
value axis. You will see the two input sine waves, together with the wave
resulting from their addition. You can now adjust the input values to see how

the output is affected.

To change the input values for experimentation:

In the "Physical Experiment" window, select
Experiment — Data Generator to open the
"Data Generator" window.

In the data generator, select the variable you
want to change.

Select Channels - Edit.
The "Stimulus" dialog box appears.
Adjust the values you want to change.

Click Apply.

The curves in the oscilloscope change according to the new settings. You can
change all the settings in the experimentation environment while the experi-

ment is running.

Tutorial

123

124

6.2.4

6.3

Tutorial

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

¢ To call the experimentation environment
e Setting up the event generator

e Setting up the data generator

e Setting up the measuring system

e Starting and stopping the experiment

e Saving the experiment

e Changing stimuli while the experiment is running

To Specify a Reusable Component

In this lesson you will create a class that implements an integrator, a standard
piece of functionality that is often used in microcontroller software. While this
is a slightly more complex diagram, the techniques for creating and experi-
menting with it are the same ones you have learned already.

In this example, you specify an integrator that calculates the distance covered
where time and speed are known. The input value will be given in meters per
second, and at each interval multiplied with a dT in seconds. The value for
each time slice is added up in an accumulator. The accumulator stores the dis-
tance in meters that has been covered after a certain length of time.

In ASCET, a standard block, such as an accumulator, can be realized with a
simple diagram.

E

A/integrate f2finteqrate

argdintegrate buiffer returndintegrate

y | o

6.3.1

Creating the Diagram

Before you start working on the diagram, you need to perform the same steps
as for the addi ti on component. First create a new folder in the Tut ori al
folder, then add a new class. Finally, you can specify the interface of the meth-
ods, then the block diagram and the layout.

You will start by creating the folder and the new class.
To create the integrator class:

e In the Component Manager, open the Tut o-
rial folder.

e C(Create a new folder and call it Lesson3.

e Inthe Lesson3 folder, create a new class and
callitI nt egrat or.

To define the integrator interface:

e Inthe "1 Database" pane, select the element
I ntegrator.

e Double-click on the element or select
Component - Edit.

The block diagram editor opens.

e Rename the method cal c toi ntegratein
the "Diagrams" pane.

e Edit the method i nt egr at e by adding one
argument (type cont) and a return value
(type cont).

e (Click on OK.

The interface editor closes and you are back in
the block diagram editor.

e Place the argument and return value from
i nt egr at e on the drawing area.

The integrator uses two new types of elements that we have not used before:
a variable and a parameter.

Variables are used in the same way as they are used in programming lan-
guages; you can store values in them and read the values for further calcula-
tions. In contrast, parameters are read-only. They can only be changed from
outside, e.g. they can be calibrated in the experimentation environment, but
they cannot be overwritten by any of the calculations within the component
itself.

Tutorial

125

In addition, we want to specify a dependent parameter in this example. How-
ever, it is irrelevant for the functionality of the integrator. A dependent param-
eter is dependent on one or several parameters, i.e. its value is calculated
based on a change in another one. The calculation or dependency is only car-
ried out on specification, calibration or application. A dependent parameter
behaves in exactly the same way in the target code as a normal parameter.

To create a variable:

E e (lick on the Continuous button.

The element editor opens.

Element Editor for: cont::cont

Mame con] Ok |
Uit
Comment ﬂl
Dimension |5calar
Model Type | ¢~ Logic
= Signed Discrete
= Unsigned Discrete
& Continuous
" Enumeration I 'l
Kind = Constant
= System Constant
" Parameter ™| Wariarnts
& Variable
€ [t I set)
€ [tk [~ Get])
Scope * Local
" Imported
" Exported
Existence = Wirtual
& Manirtual
Dependency | ¢ [ependernt Farmula |
(* [ndeperident
temony i+ Volatile
' MaonYolatile
Calibration | &+ es
" Ma
¥ &lways show editor for new elements

e Inthe "Name" field, enter the name buf f er.
e Click OK.

126 Tutorial

The variable is now named buf f er. The cur-
sor shape changes to a crosshair. It is loaded
with the continuous variable.

Click inside the drawing area to place the vari-
able.

The variable is placed in the drawing area. Its
name is highlighted in the "Elements" list.

When the element editor does not open automatically, place the variable in the
drawing area. Afterwards, double-click on the variable in the "Elements" list to
open the element editor manually. Make the required settings and activate the
Always show dialog for new elements option. The next time you create an
element, the element editor opens automatically.

To create a parameter:

=

&3 Numeric Editor

Click on the Continuous Parameter button.
The element editor opens.

In the "Name" field, enter the name Ki .
Click OK.

Click inside the drawing area to place the
parameter.

In the "Elements" list, right-click on the
parameter and select Edit Data from the con-
text menu.

A data configuration window (numeric editor)
opens.

_I
=
x|

I m LCancel

Set the value in the window to 4. 0 by typing
it into the scalar calibration window and press-
ing <ENTER>.

This value becomes the default value for the
parameter. You can assign default values to all
parameters or variables in a diagram.

Tutorial

127

To create a dependent parameter:

e (Click on the Continuous Parameter button.

The element editor opens.

Element Editor for: cont_1::cont

frarmla:

e Name the parameter Wir zel Ki .

e Inthe "Dependency" field, activate the option
Dependent.

128 Tutorial

e Open the formula editor using the Formula
button.

&' Formula Editor for: WurzelKi

e Right-click in the "Identifier" field and select
Add from the context menu.

A formal parameter is created.

e Inthe "Identifier" field, enter the name x for
the new parameter.

e Inthe "Formula” field, specify the calculation
rule.

You can select different operators from the
"Operator" combo box for more complex for-
mulas. They are added to the "Formula" field
one by one with the >> button next to the
"Operator" field.

Likewise, various functions can be selected in
the "Function" combo box, and inserted into
the "Formula" field with the >> button next
to the "Function" combo box.

e For the example here, select the root calcula-
tion of the formal parameter.

Formal Parameter: x
Formula: sqrt (x)

e Exit with OK, and close the element editor,
too.

The cursor shape changes to a crosshair.

Tutorial 129

130

& Edit Dependency for: WurzelKi

Click into the drawing area to place the
parameter.

In the block diagram editor, right-click on the
Wir zel Ki parameter in the "Elements" list,
and select Edit Data from the context menu.

In the "Dependency Editor" window, assign a
model parameter from the combo box to the
formal parameter (in this example Ki).

Model Parameter

ki

[undefine

Complete data entry with OK.

You have now specified a parameter depen-
dent on the parameter Ki which on calibra-
tion will automatically be calculated based on
Ki . Later on in the experiment, you can check
the dependency or the calculation.

Now that you have added all the elements, you need to specify an integrator.
You can proceed by creating the remainder of the diagram.

Tutorial

To create the diagram:

In the "Argument Size" combo box, set the
current value to 3 to specify the number of
input values for the multiplication operator.

E [

f

1
0 |,

e B
4 =
5
Create a multiplication operator and place it
on the drawing area.

Click on the dT button to create a dT element.

The element editor opens. All setting options
are deactivated.

Close the element editor with OK.
Place the dT element inside the drawing area.

Create an addition operator with two inputs
and place it on the drawing area.

Be sure to set the argument size back to two
before you create the operator.

Connect the elements as shown below.

The input lines for both the buffer and the
return value are displayed in green.

argfintegrate

£ Jos
o +]) N
LT—‘ buffer return/integrate

[=
dT

Now all the elements of the diagram are in place. Next, you need to determine
the sequence of calculation by specifying the sequence calls.

Tutorial

131

To assign a value to a sequence call:

e Right-click on the sequence call above the
variable buffer.

Sequence calls

\4 \4
f/integrate f2dintegrate
W W *
buffer returndintearate

argfintegrate

e

[ol
dT

e Select Edit from the context menu.

The sequence editor appears.

Sequence for: set

—Sequence Mumber

I i’ Mext free |

Optio:

Step size I 1 i’

™ Including Gaps

—Method Mame

inteqgrate j
el |

e C(lick on OK to accept the default settings.

The assignment comes first in the algorithm
for your integrator.

To adjust the sequence number in a sequence call:

e Right-click on the sequence call above the
return value fori nt egrat e.

e Select Edit from the context menu.

e In the sequence editor, set the value for
"Sequence Number" to 2.

e (Click on OK.

The return value is assigned only after the vari-
able buf f er has been updated.

132 Tutorial

6.3.2

To adjust the layout:

The diagram for the integrator

Select Component - Edit Layout.
The layout editor opens.

Alternatively you can also get to the layout
editor from the "Information/Browse" view by
doubleclicking the layout within the "Layout"
tab.

Drag the argument from i nt egr at e to the
middle of the left-hand side of the block.

Drag the return value to the middle of the
right-hand side of the block.

Click on OK.

class is now complete. Now save the changes

to the diagram by selecting Diagram — Store To Cache Changes that do not
affect the diagram itself are stored automatically. Next save the changes to the
database by selecting File - Save Database in the Component Manager

window.

Experimenting with the Integrator

Again, first set up the event generator, then the data generator and finally the

measurement system.

To set up the experimentation environment for the integrator:

4 Physical Experiment for: Integrator Target:

Start the experimentation environment by
selecting Component -, Offline Experi-
ment.

File Elements Diagrams Experment iew

»PC«< Environment: > Default<

G| SEHE|n» 0 b | s

v &R AE S D

'|<New Calibration Editor= j ' |<2. Mumeric display = j I 1 é’

L e S Integrator -» |

Elements

GRdr i
<p @ Integrator
[+ [+]

-

dT

[~ L
argfintegrate j—l Lﬁ buffer returnfintegrate

Diagrams

Main : =
. integrate [arg::cont x ‘I I _’I_I
4 | 3

Tutorial

133

134

Tutorial

Click the Event Generator button.

Activate the event i nt egr at e using the
default dT val ue of 0.01.

Close the "Event generator" window.
Click on the Data Generator button.

Create a data channel for the i nt egrat e
method by selecting Channels — Create and
selecting the argument from i nt egr at e.

Set the values as follows:

Mode: pulse
Frequency: 0,2 Hz
Phase: 0.0s
Offset: -1.0
Amplitude: 2.0

Close the Data Generator.

Open an oscilloscope window with the ar g
and r et ur n values from the i nt egr at e
method.

Set the value axis to a range from -10 to 10
and the time axis extent to 10 seconds.

Select Start Offline Experiment to start the
experiment.

The output value of the i nt egr at e method increases when the argument is
positive, and decreases when it is negative. Because the positive and negative
parts of the input curve are equal, the output will remain within stable bound-
aries.

[Dscilloscope: 1 M=]E3

File Edit ‘iew Estras

Signats
0.0

B freomsrn

5.0

0.0 e 104

To reset an experiment:

If you stop an experiment and then restart it again, all the variable values will
be stored. Sometimes it may desirable to reset all the variables to their initial-
ization values.

e Select Elements - Reinitialize All - Vari-
ables or Parameters or Both.

Depending on your selection, either all vari-
ables or all parameters, or both, are reset to
their initialization values.

Next, you should experiment with various settings to illustrate the function of
the integrator. You can adjust the Ki parameter and change the input.

To experiment with the integrator:

e Inthe "Elements" pane, click on the plus sign
next to | nt egr at or to expand the I nt e-
grat or element.

e Select the parameter Ki .
e Select Elements - Calibrate.

A numerical editor opens for the parameter.

Tutorial 135

136

Tutorial

Set the value to 5 by entering the value and
then pressing <ENTER>.

The output curve on the oscilloscope becomes
steeper.

Set the value to 3.
The output curve now becomes flatter again.

Set the parameter back to 4 and close the
numeric editor.

Open the "Data Generator" window.
Set the offset of the input pulse to -0.5.
Click on OK.

Now the positive part is greater, so the output will start to increase. At some
point it will exceed the oscilloscope limits. You can adjust the scale of the oscil-
loscope for each value individually by selecting only that value when you make
changes. You can also open a numerical display window to see the output

value.

To display a value numerically:

Select <1. Nuneri ¢ Di spl ay> in the
"Measure View" combo box in the experi-
mentation environment.

In the "Elements" pane, select the return
value (return) fromtheintegrate
method.

Select Elements - Measure.

A "Numeric display" window shows the cur-
rent return value.

B Numeric display; 1 I [=] 3

Wiew Extras

| integratefreturn I 1.090 [‘

.

Also display the dependent parameter Wir -
zel Ki .

Experiment with changing Ki and initiating
update using the Update Dependent
Parameters button.

6.3.3

6.4

6.4.1

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e (Creating a parameter

e Creating and specifying a dependent parameter
e Creating a variable:

e (Creating an operator with multiple inputs

e Setting the sequence number of a sequence call
e Assigning a default value

e (alibrating a value during experimentation

e Displaying values in a "Numeric display" window

A Practical Example

In this lesson you will create a controller based on a slightly enhanced standard
Pl filter. The controller will be used to keep the rotational speed of an idling car
engine constant.

When controlling the idling speed of an engine, you have to make sure that
the actual number of revolutions n stays close to the nominal value for idling
n_nomi nal . The value n is subtracted from n_noni nal to determine the
deviation that is to be controlled.

The deviation in the actual number of revolution forms the basis for calculating
the value of ai r_nonmi nal , which determines the throttle position, i.e. the
amount of air the engine gets.

Specifying the controller

The steps in creating the diagram for your controller are the same as earlier:

* adding a new folder and creating the component in the Component
Manager,

¢ defining the interface and drawing the block diagram.

The major difference is that you will implement the controller as a module.
Modules are used as the top-level components in projects. They define the
processes that make up a project.

Tutorial

137

138

Tutorial

To create the controller component:

e In the Component Manager, add a new sub-
folder to the Tut ori al folder and rename it
Lesson4.

e Select the Lesson4 folder and select Insert
- Module - Block diagram to add a new
module.

e Rename the new module | dl eCon and open
the block diagram editor.

e Inthe "Diagrams" pane, rename the diagram
process top_idle.

The functionality of modules is specified in processes, which correspond to the
methods in classes. Unlike methods, processes do not have arguments or
return values. Data exchange (communication) between processes is based on
directed messages, which are referred to as Receive messages (inputs) and
Send messages (outputs) in ASCET.

In your controller, you will use a receive message to process the actual number
of revolutions n and a send message to adjust the throttle position to
ai r_nomni nal .

To specify the interface of the controller:

e Create a receive message by clicking on the
ﬁ Receive Message button and name it n.
e Inthe element editor for the message n, tick
the Set() option.

Kind £ Constart

€1 Spster Constart
) Parameter ™| Wariarnts
& Variable
€ [t e Set)

€ [tk ™| Getl

Scope " Local
> Irmported

e Click on the Send Message button and then
inside the drawing area to create a send mes-
sage.

e Rename itair_nom nal .

Kind

Scope

In the element editor for the message ai r
noni nal , tick the Get() option.

[Earistar

Systern Constant

Earameter, ™| ariants

I} Setl]

W ariable
[t

[t

Local
Irmported
Exported

N Nie 1 (e Sie Bic Nie Bie Nis

The controller element uses the integrator you created in Lesson 3.

To add the Integrator to the controller:

Select Element - Add Item to open the
"Select item" dialog box.

Select Item....

1 Database

8 TUTCRIAL

Bl
CIETAS_TeonLib
CIETAS SystemLib_CT
=l [EXETAS_Tutorial

CLessont_z
CLessonto

Cancel

o |

B [ErLesson3
| =l
2 Commenkt
=
¥
Kl _'l_I

In the "1 Database" pane, select the item

I nt egr at or from the Tut o-

ri al\Lesson3 folder and click OK to add
the integrator.

The integrator is included in the component

I dl eCon. A component is included by refer-
ence, i.e., if you change the original specifica-
tion of the integrator, that change will be
reflected in the included component.

In addition to the elements you have added so far, you need to add the follow-

ing elements to your controller:

e two continuous variables, named ndi ff and pi _val ue

Tutorial

139

140

Tutorial

e three continuous parameters named n_nomi nal , Kp, and ai r _| ow

To specify the remainder of the controller:

e (reate the operators and the other elements
needed, then connect them as shown in the
block diagram below.

Ap_idie Inteqratar
.] o arg @

n_norminal ndiff integrate

J2ip_idle

Satp_ide

air_norminal

>|g

Inkeqratar

W | air_lo

Kp

e Inthe "Elements" list, select the n_nom nal
parameter, then select Element - Edit
Data.

e Set the value for n_nomi nal to 900.
e Set the value for Kp to 0.5.

e Save your specification in the diagram and
apply the changes to the database.

6.4.2

Experimenting with the Controller

Experimentation with modules works like experimentation with other compo-
nents. First the data and event generators and then the measurement system

are set up.

4 Phpsical Experiment for: IdleCon Target: 3PC< Environment: >Defaults

File Elements Diagrams Experiment ‘iew

G SEHE [n 0 » | sepsfo

»2 & R K([AEE ¢

I|<New Calibration Editor > j ' |<2. Murneric display > j II 1 j’
'E E i‘ = =% IdleCon -» |
Elements =
anod
@ ® Idecon Integrator |
P air_ow

2 air_naminal
€ O Integrator

T P n_nominal
*f O ndiff
*r O pi_value

$on

Diagrams

Main
— & p_die(]

K LILI

ar
g|ntegratz3

Inkeqgrator

To set up the experimentation environment:

Select Component - Open Experiment to
start the experimentation environment.

Open the "Event Generator" window and
enable the event for the process p_i dl e
using the default value of 0.01 for dT.

An event for a process works the same as an
event for a method.

Open the "Data generator" window and set
up the channel for the receive message n with
the following values:

Mode: pulse

Frequency: 1.0 Hz

Tutorial

141

Phase: 0.0
Offset: 800.0
Amplitude: 200.0

e Set up an oscilloscope with the variables
n_di ff and ai r _nom nal .

e In the oscilloscope, set the value axis to -500
to 500 and the time axis extent to 2.

= E | LA Click on the Save Environment button.
Save Environment

The experiment is now set up to display the relationship between the deviation
in the number of revolutions and the throttle position.

To experiment with the controller:

e Start the experiment by clicking the Start
| r Offline Experiment button.

e Open a calibration window for the variables
Ki and Kp. From here, you can adjust the val-
ues Ki and Kp and observe their effect on the
output.

From time to time, you may need to reinitialize
the model in order to get back to meaningful
values.

6.4.3 A Project

A project is the main unit of ASCET software representing a complete software
system. This software system can be executed on experimental or microcon-
troller targets in real-time with an online experiment. Individual components
can only be tested in the offline experimentation environment.

142 Tutorial

Every experiment runs in the context of a project. Whenever code is generated
for a project, the operating system code is also generated. The operating sys-
tem specification is required to run on an ASCET software system in real-time.
Running a software system in real-time is called Online experimentation. So far,
we have experimented offline only, i.e. not in real-time.

Note

All ASCET experiments—both online and offline—run within the context of
a project. This is clearly seen with offline experiments, which use an (other-
wise invisible) default project. Creating and setting up a project for the
express purpose of specifying an operating system is only required for online
experiments. However, you also have the option of configuring the default
project for your own application.

6.4.4 To set up the Project

The project is created in the Component Manager. You can add it to the same
folder as the | dl eCon module.

To create a project:

* In the Component Manager, select Insert -
T Project or click on Insert Project to add a
new project.

e Name the project Control | er Test .

e Select Component - Edit or double-click
the project.

The project editor opens for the project.

}\\ Project Editor for: ContiollerT est [PC/Physicall
Component Diagiam Element Extas Search ASAM-2MC Global Elements Simulink RTIO Wiew
Hles w [TETERIHA = |wENm80 00 02888 &8 e @
Elements Sorked by IName 'I x| 2% Graphics | 05 | & Formulas | 6 mpl, Type | 88 corm. | 2] Binding | B3 Fies | Sy
E%D self::ControllerTest < g
B dTedT g
i
g
s
=
z
H
| _>IJ

Tutorial 143

The next step is to add the I dl eCon controller to the "Elements” list of the
project.

To include components in a project:

* In the project editor, select Element - Add
Item to open the "Select item" dialog box.

e From the "1 Database" list, select the compo-
nent | dl eCon in the Tutori al \ Lesson4
folder.

e (lick on OK to add the component.

The name of the component is shown in the
"Elements" list of the project editor.

Components are included by reference, i.e. if you change the diagram of an
included component, that change will also be effective in the project.

The operating system schedules the tasks and processes of a project. Before
you can generate code for the project, you have to create the necessary tasks
and assign the processes to them.

The operating system schedule is specified in the "OS" tab of the project edi-
tor. You will now specify the operating system schedule to have the p_i dl e
process activated every 10 ms.

144 Tutorial

To set up the operating system schedule for the project:

0s e Click on the "OS" tab.

=29 Graphics a5 | 1% Formulas I & mmpl, Type I @ Camm. I |]2|] Binding I Files I &
L
Preemp. Levels IU i’ Coop. Levels IZU i’ [V Enable Moritoring f‘g_
Application Modes Tasks E.—_
o
0 - inactive 2
1 - active [START/CT] o | Type 'l EI
Priarity 0 — @
£z | Scheduling ¥ %
o
ISR Source vl —
Processes
% ¢ 1dleCon::IdieCon . | Feriod [s]
{atp_idie Dielay [s]
@z | Max. number of 0 é’
Activations

" | Autostartt

™| Deadline l—[s]
™| Win, Petiod l—[s]
I™ Unused processes only pre-fpost hooks lﬁ

e Select Task — Add to create a new task.
e Name it Task10ns.

Newly created tasks are by default alarm tasks,
i.e. they are periodically activated by the oper-
ating system.

e Assign the task a period of 0.01 seconds in the
"Period" field.
The period determines how often the task is
activated, which is every 10 ms in this case.

e Inthe "Processes" list, expand the I dl eCon-
FE trol item by clicking on the plus sign next
o it.

e Select the process p_i dl e and select
Process — Assign.

The process is assigned to the Task10ns
task. It is displayed beneath the task name in
the "Tasks" list.

Tutorial

145

146

6.4.5

Tutorial

In projects, imported and exported elements are used for inter-process com-
munication. They are global elements that correspond to the send and receive
messages in the modules. Global elements must be declared in the project and
linked to their respective counterparts in the modules included in the project.

To define global elements:

* In the project editor, select Global
Elements - Resolve Globals.

The necessary global elements are created and
automatically linked to their counterparts. Ele-
ments with the same name are automatically
linked to each other.

Note here that send messages are defined in
the module (exported) by default.

Experimenting with the Project

You will now run an offline experiment with this project. Offline experimenta-
tion can be performed on the PC without the connection of any additional
hardware. Projects run on the PC by default. Therefore you do not have to
adjust any settings. Offline experimentation with projects works like offline
experimentation with components.

To set up the experimentation environment:

e In the Component Manager, select File —
Save Database.

It is always a good idea to apply your changes
to the database before you start the experi-
mentation environment.

@l e (Click on the Open Experiment for selected
Experiment Target button.

| Open Experiment for selected Experiment Target|

Code for the project is generated and the
offline experimentation environment opens.

& Physical Experiment for: ControllerTest Target: >PC< Environment: >Default<

File Elementz Diagrams Experiment “fiew

G SEHE =m0 | s vE N RIKAE GO

'|<New Calibration Editor = j '|<2. Mumeric display = j 'l 10 é’

R e 2% Graphics | s I i clobals I 1% Formulas I @ Carnm, I |]2|] Binding I

Elements ﬂ
I:! Controller Test |

anadr
& @ 1dieCon
£On

Diagrams

MMain

Kl — _>ILI

a e C(lick on the Open Event Generator button.

In the event generator you see an event for
each task you want to use in the experiment,
rather than for each method or process, as in
experimentation with components.

e Enable the task gener at eDat a from the
event generator and use the default dT value
of 0.01 seconds.

The task Task10mns is already enabled by
default, and both events now have 0.01 sec-
onds as their dT value; therefore you do not
need to make any further adjustments.

e Close the event generator.

e Set up the data generator and measurement
system with the same values as in the previous
experiment (cf. "Experimenting with the Con-
troller" on page 141).

Tutorial 147

e Save the environment by selecting File -
Save Environment.

To run the experiment:

T e C(Click on the Start Offline Experiment but-
ton.

e Adjust the Ki and Kp parameters as in the
previous section to see the effect of your
changes in the output.

6.4.6 Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e (Creating modules

e Creating messages in modules

e Using components from the Component Manager in a block diagram.
e (reating a project

e Including components in projects.

e Creating tasks and assigning processes to them

e Experimenting with projects

6.5 Extending the Project

In this lesson you will add some refinements to make your controller more
realistic. You will create a signal converter that converts sensor readings into
actual values. Many sensors, used for instance in automotive applications,
return a voltage that corresponds to a particular measurement value, such as
temperature, position or number of revolutions per minute. The relationship
between the voltage and the measured value is not always linear. ASCET pro-
vides characteristic tables to model this kind of behavior efficiently.

6.5.1 Specifying the Signal Converter

The first step in modeling the signal converter is to create a folder and a mod-
ule that specifies the functionality. The signal converter uses two characteristic
lines to map its input values to the corresponding outputs.

To create the module:

e In the Component Manager, create a new
folder Tut ori al \Lessonb5.

148 Tutorial

Create a new module and name it
Si gnal Conv.

Select Component - Edit or double-click
the element to open the block diagram editor.

In the block diagram editor, select Diagram
- Add Process to create a second process.

Name the processes n_sanpl i ng and
t _sanpling.
In the "Elements"” list, create two receive mes-

sages U _nand U_t and two send messages
t and n.

Create a characteristic field by clicking on the
One-D Table Parameter button.

The element editor opens.

Call the tablet _sensor and close the ele-
ment editor.

The "Max Size" dialog window opens. Since
you created a one-dimensional characteristic
line, the "y-Max Size" field is deactivated.

Max Size for: t_sensor

y-Max Size LCancel |

In the "x-Max Size" field, enter the value 13.

The characteristic field can now span a maxi-
mum of 13 columns.

As you have created a one-dimensional char-
acteristic line, the "y-Max Size" field is inac-

tive.

Click OK to close the dialog box.

Then click in the drawing area to place the
table.

The table is added to the "Elements" list.

Create a second table with a maximum of 2
columns and call it n_sensor.

Tutorial

149

150

e Connect the elements as shown and edit the
sequencing to assign the corresponding pro-

cesses.
S14n_sampling
(= | I e
U_n n
n_sensor
S14_sampling
e S |
o_t t

t_zensor

The next step is to edit the data for the two characteristic fields. ASCET pro-
vides a table editor for editing arrays, matrices and characteristic fields.

To edit the tables:

e Right-click on the tablet _sensor and select
Edit Data from the context menu.

The table editor opens.

e Adjust the size of the table as follows:

=-hlas SEe: wSEe: Interpal.: Etrapal.:

[= i’ [i’ Il_inear =] IConstan‘t =]

The table is extended to 13 columns with all z-
values set to 0 by default.

e Enter the values listed in the following table.
The top row corresponds to the X row, the
bottom row to the Z row.
0.00 0.08 0.30 0.67 1.17 2.5 5.00 7.50 8383 933 970 9.92 10.00
-40.0 -26.0 -13.0 0.0 13.0 40.0 80.0 120.0 146.0 160.0 173.0 186.0 200.0

You should edit the table by entering the sam-
ple points (X values) first, starting from left to
right.

e (Click on an X value and then enter the new
one in the dialog box.

The new X value must be between the limits
set left and right by the sample points.

Tutorial

6.5.2

e Then enter the output values by clicking on a
value and typing over the highlighted value.

e Edit the second table in the same way using
the following data:
0.0 10.0
0.0 6000.0

e In the block diagram editor, select
Diagram - Store to Cache.

e Inthe Component Manager, click on the Save
button to store your changes.

In this example, the second table represents a linear relationship between
input and output, therefore it needs only two sample points. This works
because you have specified the interpolation mode between values as linear.

In linear interpolation, for an input value between two sample points the out-
put value is determined from a straight line. In this case, an input of 0 returns
0 and an input of 10 returns 6000. If the input value is 5, the return value is
interpolated accordingly as 3000.

Experimenting with the Signal Converter

You can now experiment with the new component to observe the behavior of
the tables. Since the two tables have different value ranges, you will set up a
separate oscilloscope window for each of them.

Tutorial

151

152

To set up the experimentation environment:

e Select Component —. Open Experiment to
open the experimentation environment.

Physical Experiment for: SignalCony Target: *PC< Environment: >Default<

Gndr

#. SignalCany
un
Sout

_sampling []
® t_sampling []

e Create an event for each process in the com-
ponent (n_sanpl i ng, t_sanpling,
gener at eDat a) and assign a dT value of
4 ms to each event.

e In the data generator create a channel for the
message U_n and one for U_t and set up
both channels with the following values:

Mode: sinus
Frequency: 2,0 Hz
Phase: 0.0
Offset: 5.0
Amplitude: 5.0

Tutorial

il—'_-,' Dscilloscope: 1

Create an oscilloscope window with the mes-
sages n and U_n and a second oscilloscope
with the messagest and U _t .

Before you create the second oscilloscope, be
sure to activate the <2. Osci | | oscope>
entry in the "Select Measure View" combo
box.

File Edit ‘iew Estras

Signats

Measure channek

Measure variable

><n

2 [=|U_n

The resolution of the sampling points and their corresponding interpolation
values differs so much that you should configure each channel in the two oscil-
loscopes individually in order to optimize the way the behavior of the two

tables is displayed.

To set up the oscilloscopes for measuring:

Activate the oscilloscope for the process
n_sanpl i ng (channels U_n and n).

In the "Measure Channels" list, select the
message n and select Extras — Setup.

The "Display Setup" dialog box for the mes-
sage n is displayed.

Set the range of the value axis to 0 to 6000
and the time axis to 0.5

Open the "Display Setup" dialog box for the
message U_n.

Tutorial

153

&= .

Save Environment

Set its value axis to a range from -1 to 11.

The time axis must be the same for all vari-
ables in an oscilloscope window, so you do
not have to change that.

Activate the oscilloscope for the process
t _sanpl i ng (channels U_t and t) and set
up its channels as follows:

Ut t
Min -1 -40
Max 11 200
Extent 0.5 0.5

Save the experimentation environment by
clicking the Save Environment button.

You are now ready to run the experiment and see how your signal converter
works. Observe the differences between the two conversion modes.

To run the experiment:

3

Click on the Start Offline Experiment but-
ton.

Inthe n_sensor table, only the amplitude of
the input sine wave changes. The input here is
a voltage signal ranging from 0 to 10 volts,
this is mapped to the rotational speed, rang-
ing from 0 to 6000 revolutions per minute.
The tablet _sensor does not represent a lin-
ear relationship between the input voltage
and the output temperature. It matches the
characteristic behavior of temperature sensors
commonly used in the automotive industry.

Change the data generator channels to differ-
ent wave-forms and observe the effect on
both output curves.

6.5.3 Integrating the Signal Converter into the Project
After you have specified the signal converter, you can integrate it in the project
you created in Lesson 4. The output signal for the signal converter is used as
the input signal for the motor controller.
154 Tutorial

To integrate the signal converter in the project, you will set up another task in
the operating system schedule for the new processes and declare and link the
global elements necessary for the processes to communicate.

To add the signal converter to the project:

e From the Component Manager, open the
project editor for the project
Control |l erTest.

e Drag the module Si gnal Conv from the
"1 Database" list of the Component Manager
to the "Elements" list of the project.

& ASCET-MD = O]x]

File Edit “iew Inzert Component Build

? Project Editor for: ControllerTest >PC<

Toolz: Manualz Help
DRt e@eX EE .t

1 Database *

Component Diagram Element Extraz Searc

B ®&|[n |[TFFTEL

£ SignalCony
CoLessones

E [EETAS Tutarial a || |Elements Sorked by IName VI k
Colesson1_2 % O self::ContrallerTest
CLesson3 B dT:dT
Lessond @ IdleCon::IdleCan
El [=Lessons nimesg[cont] ¢SignalConv
@ControllerTest Ii

e (lick on the "OS" tab to activate the operat-
s | ing system editor.
e (reate a new task n_sanpl i ng.

e Set the period for the new task to 0.004 sec-
onds.

e Assign the process n_sanpl i ng to the task
n_sanpl i ng.

Tutorial

155

= Graphics 05 | 1% Formulas | & 1mpl. Type I & Comm. I [21 Bindingl Files I

Preemp. Levels |0 i’ Coop. Levels IZD j’ ¥ Enable Maritaring
Application Modes Tasks
0 - inackive L‘f 1 - Taskl10ms {active)
1 - active [STARTICT] { 2 - n_sampling (active) Type 'l
@ n_sampling: : SignalCor ey 0 :
Scheduling -
== | ISR Source vl
e | Period [=]
Dela I
Processes v [£]
% @ 1dleCon::Idlecon o | M, number of ID é’
{at p_idle Activations
@SlgnalConv: 1SignalCony
E {24 n_sampling cu | = Autmstart
{wh t_sampling ™| Deadline I—[S]
™ | f¥lini., Periad I [s]
I~ Unused processes only < | »] et s I j'

The project now has two tasks. The first task is activated every 10 milliseconds,
the second one every 4 milliseconds. All the processes assigned to a given task
are executed at the interval specified. In the example, each task has only one
process, but it is possible to have any number of processes per task.

The next step in integrating the signal converter is to resolve communication
between the modules. Communication between the processes works through
global elements. All global elements used within a project have to be defined
as messages in the corresponding modules.

By default, send messages are defined in a module while receive messages are
normally only imported into a module so they have to be defined now within
the context of the project.

To set up the global elements:

e Select Global Elements - Resolve Globals
to set up automatic links.

e Select Global Elements —. Delete Unused
Globals to remove the links from the previous
lesson.

All the necessary global elements are created and linked automatically to the
corresponding elements with a matching name. The global message U_n, for
instance, is automatically linked to the message U_n in Si gnal Conv.

156 Tutorial

Note that it is necessary to delete unused globals because the message n was
defined in lesson 4 in the project context while it is now defined in the module
Si gnal Conv. The message n is now used for communication between the

processes of the modules.

To experiment with the project:

=] .

| Open Experiment for zelected Experiment Target|

28 [.

Save Environment|

Click on the Open Experiment for selected
Experiment Target button to activate the
experimentation environment.

Open the event generator and enable the task
n_sanpl i ng.
Set the dT value for the task to 4 milliseconds.

During offline experimentation with projects,
the event generator simulates the scheduling
that is performed by the operating system
during online experimentation.

Open the data generator and delete the exist-
ing data channel.

Then set up a new channel for the message
U n.

Set up the channel U_n as follows:

Mode: pulse
Frequency: 1.0 Hz
Phase: 0.0
Offset: 4/3
Amplitude: 1/3

Now activate U_n, the output voltage of the
rotational speed sensor.

The signal converter converts the voltage
value into the actual value for n using the
characteristic table n_sensor.

The values given above produce an output
range for n that matches the range from the
previous experiment (without signal process-
ing).

Click on the Save Environment button.

Start the experiment.

Tutorial

157

158

6.5.4

6.6

Tutorial

The output curves should be the same as in the example without signal pro-
cessing. The stimulus created by the data generator is different, but is then
processed in the table so that it looks the same as before.

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e Creating and using characteristic fields
e Adding components to a project
¢ Define the communication between different components in a project

Modeling a Continuous Time System

The realistic modeling of physical, mechanical, electrical, and mechatronical
processes, often described by differential equations, requires continuous time
methods. Before integrating a method like this in the project created in the
previous chapters, this chapter covers modeling a time continuous system
using a detailed example.

ASCET supports the modeling and simulation of continuous time systems by
means of so-called CT blocks. CT stands for "Continuous Time" and refers to
items that are modeled or calculated in quasi-continuous time intervals. The
continuous time modeling in ASCET is based on state space representation,
the standard description form used in the design of continuous time systems.
This representation allows the description of CT basic blocks by nonlinear ordi-
nary first-order differential equations and nonlinear output equations. ASCET
provides several real-time integration methods to find optimal solutions to
these differential equations (refer to chapter 8.2 "Solving Differential Equa-
tions — Integration Algorithms" of the ASCET reference guide).

The procedure for modeling a continuous time system will now be explained
using the example of a mass-spring pendulum with attenuation by the earth's
gravity.

6.6.1 Motion Equation

The mass mshown in the following illustration is subject to the following
forces:

X
(@
d
* gravity: Fy = -ng
(g = gravitational acceleration)
e Springforce: Fg = - ¢ (x + |g)
(c =spring rate, | g = length of spring at rest, and x = position of mass
m)
e AttenuationFp = - d x’

(d = attenuation constant and x’ = velocity of mass)
This gives the motion equation as follows:

L]

'’ =-ng + Forx ' =-g+ Fm(wthF=F + Fp)

Breaking the second-order differential equation into two first-order differential
equations (x = x,v = x’) results in:

X' =v
vi =-g + Fm

These differential equations will be used in the following model design.

Tutorial 159

160

6.6.2

Tutorial

Model Design

For simplicity, the model of the mass-spring pendulum will be designed using
a single CT block. However, to illustrate the "direct pass-through" or "non-
direct pass-through" properties and to demonstrate how to avoid an algebraic
loop by skillful setting of these properties, we will design this model using two

blocks.

Force Mass

The For ce block calculates spring force F from the position of the
pendulum’s mass m and the friction force from the velocity x’ .

From the spring force F the Mass block calculates the acceleration x* *
from the integration of which the velocity x’ and the position x result.

At first sight, this system looks like an algebraic loop: each block expects an
input value from the other block in order to calculate an output value required
by the other block.

This algebraic loop can be avoided by clever setting of the direct pass-through
or non-direct pass-through properties:

In the For ce block, the output variable F via the equation
F=-c(x +1g - dx’

is directly dependent on the input variables x and x”’ . This block is thus
defined as having a direct pass-through.

In the Mass block however, the output variables x and x’ do not
depend directly on the input variable F, but on the internal state vari-
ables of the block. These, at least at the start, have initial values from
which the output variables x and x” can be calculated, when the input
variable F is unknown. Otherwise the output variables are calculated
using the following differential equations:

X =v

v’ -g + F/m

This block is thus defined as having a non-direct pass-through.

Model Creation

¢ In the Component Manager, create a folder
with Insert — Folder and call it Lesson6.

2] =) &

e Inthis folder, use Insert - Continuous Time
Block - ESDL to create a block For ce and a
block Mass.

e Double-click the For ce block to open the
ESDL editor.

e Click on the Input button to create two inputs
x and v (type cont i nuous).

e (Click on the Output button to create an out-
put F (type cont i nuous).

e (Click on the Parameter button to create the
constants ¢ (spring rate), d (attenuation con-
stant) and | (length of the spring at rest).

@ ESDL for: Force Project: Force_ DEFAULT [PC/Physical] = O]x]

Component Element Edit Wiew

NP T 7 ©HF e [scam & | @ E 6 & | G0 00 -

ElemSorted by I VI *

init () |

1 5% O self::Force
— & P ciicont
— & P dicont
— g B Fiicont
— & P I0:icont

—— 1.} derivatives ()

—— {.}update ()

—— {..} directQutputs ()

—— {..} nondirectOutputs ()
—— {..} kerminate ()

—— {..} stateEvents ()

—— {.}bevents ()

—— {..} dependentParameters ()

L

Iasmmg &J uoREayads g_

The methods in the "Diagram" pane are fixed
by default.

e Click on each constant in the "Element" pane
in turn to highlight it.

e Right-click the highlighted constant to open
the context menu.

e Select the Edit Data menu item.

The "Numeric Editor" dialog box opens.

Tutorial 161

e Assign realistic values to the constants (e.qg.,
5.0 to the spring rate c, 1.0 to the attenuation
constantd, and 2.0 to the length of the spring
atrestl g).

e (Click in the "Diagrams" pane on the method
di rect Qut put s[] and in the "Edit" field,
specify the formula used to calculate the
force:

F=-c* (x+1lg - dvv;

Elements * directOutputs [] |

51 <& O self:Force F=—-c# (=+l0) —d * w;
— g H wicont
T M wcont
* B Fucont
P cicont
P dicont
P (0:cont

L

| a=waig &J uogesysads £

—— init[]
—— derivatives]
—— update []

—— nondirectOutputs []

—— teminate [] -
..... P
KN _'l_I

% e C(Click on the Generate Code button.

The CT block For ce is compiled.
|Generate Code P

e Double-click the Mass block to open the ESDL
editor.

e As above, create an input F, two outputs x
and v, one parameter m(mass), and one con-
stant g (gravitational acceleration).

e Assign values to g and m as described above
(9.81 to g and, e.g., 2.0 to the mass m.

162 Tutorial

e Click on the Continuous State button to cre-
ate state variables x_| ocal andv_I ocal
for the internal calculation of the outputs.

Elements ®

L O selfMass
T H Fuoont
T B vicont
T B wicont
*T r v_local:cont
*& 7 w_local:cont
F g:cont
P rzcont

T

T
e Forthederivatives[] method, specify

the differential equations required for the cal-

culation:

X_local .ddt(v_local)
v_local.ddt(-g + F/'m

derivatives [] |

®_local ddti{v_local):
v_local ddti{—g+F-m):

e Innondirect Qut puts[] pass the state
variables x_local and v_1| ocal to the outputs
x andv.

hondirectOutputs [] |

Tutorial

163

e Intheinit[] method, you can provide the
system with realistic initial values for x and v
using the r eset Cont i nuous St at e() func-
tion.

init[] |
resetContinuousState(=x_local.0.0); -
resetContinuousState(v_local.0.0);

-
A L

% e C(lick on the Generate Code button.
The CT block Mass is compiled.
Generate Code l P!

The combination of the two basic CT blocks into one CT structure block is
done using the Block Diagram Editor (BDE).

To combine the two basic CT blocks.

e For this purpose, go to your directory in the
Component Manager.

e Select Insert — Continuous Time Block -
Block Diagram to create a new block
Mass_Spri ng.

e Double-click the new block to open it in the
Block Diagram Editor.

164 Tutorial

e In the Component Manager, drag and drop
the Mass and For ce blocks (one at a time) to
the BDE window and file them.

% ASCET-MD M=k
File Edit ‘iew Ingett Component Build Tools Manuals Help
DR iaBx B8F a8 c%d-¢-0ooé e E 0l
1 Diatabase x| 3 Contents x =13l x|
L5 B tutoial ;I § Elements |. Datal <y Implementation | f;} Layoutl
] Lesson [are Type MaxSize |Scope
COLessard J P *F conk lacal
[Lessond
Fd ot - local
COLessors € con * (i
El = Lessonk HF °E conk - local o
> Fi0 *c cont - local C_C";
C{ Mass H v * cank lacal @r
. 5
C{ Mazs_Spring N[x & cont: local =l
K i B
m
2 Comment x g
= 3
|1 _>l_I : 2
[T none | @ <ot ATuTORIAL: € kemoltha [04.11.2004 10:& (RWCEG) |CT Block Y

PMain
inic [
derivatives [] (XFDrce
update []
directQutputs [|
nondireckOutputs [] ;I B I I »

Ferrninate [T

Tutorial 165

166

=)

Connect the corresponding inputs and out-
puts with each other.

& BDE for: Mass_Spring [Main] Project: Mass_Spring DEFAULT [PC/Physical]

Component Diagram Element Edit Yiew

+ = x = [[2 =||[<Show an> ||[100% =l

AP = |[cn Tl | & 8@ % 6 & | Gomero]

Elements Sorted by I

C{D Force::Force
C{D IMass::Mass

T C{D self::Mass_Spring

Diagrams

@ [Main
{bimit ()
1.} derivatives ()
1.} update ()
{..} directOutputs ()
{..} nondirectOutputs)
{..} terminate ()
{..} stateEvents ()
1.} events ()
{..} dependentParameters ()

=]
b=
2
Farce F ¥ F Mass E"
& ¢4 g
; ; =
Farce Mass =
o
=
&

-

<I I 3

Note

Double-clicking one of the CT basic blocks makes it available for editing.
Note, however, that any modification to the blocks affects the entire library,
i.e., all structure blocks that use these basic blocks.

| Open Experiment far selected Experiment Target|

Tutorial

Click on the Open Experiment for selected
Experiment Target button.

The CT block is now compiled, and the exper-
iment is started.

e (reate the experimentation environment
required with numeric editors for the parame-
ters and graphical displays.

4 Physical Experiment for: Mass_Spring Target: >PC< Environment: >Default<

File Elementz Diagrams Experiment “fiew

K|SEHE |) 0 » | st RN RAEIB SO

B Numeric display: 1 i= Numeric Editor; 1

Wiew Extraz Edit Wiew Eutraz

wiForcelMass_Spr I -0.023 [] | diForceiMass_ |1.DDD ﬁ[]

%\ForcelMass_spr I 5,943 [] ciFarcelMass_ | 5.000 ﬁ[]

giMassiMass_Spri I 9,810 [] ke dazz) IZ'DDD EI[]
miMasshMass_ |2.DDD j’[]

FiMassiMass_Spri | 19.740 []

il—'_-,' Dscilloscope: 1

File Edit ‘iew Estras

Signals

Measure channels
Measure variable
x \ForcetMass_Spring

2 ||<|+\Force\Mass_Spring

e Scale the channels in the oscilloscope sepa-
rately, from -10 to O for x, from -8 to +8 for v.

6.6.3 Summary

After finishing this lesson, you should be able to carry out the following tasks
in ASCET:

e Creating a model to simulate a process

* Using the ESDL editor to create CT blocks with direct and non-direct
pass-through

e Using the Block Diagram Editor to combine CT blocks
e Performing the physical experiment

Tutorial

167

168

6.7

6.7.1

Tutorial

A Process Model

Following the introduction of CT blocks in the last chapter, you will now use
them for testing your controller. In ASCET you can develop a model of the
technical process to be controlled, and then experiment with a closed control
loop. This means that way the controller can be thoroughly tested before it is
used in a real vehicle.

In our example here, the motor is the technical process. It returns a value U_n
which is a sensor reading of the rotational speed of the engine. This value is
processed by the controller, which returns a value ai r _nomi nal . The control-
ler output value determines the throttle- position of the engine, and thus in
turn influences the rotational speed.

> Controller
=)
|_‘
< >
| o
> 3.
o}
L
Technical Process [«
Fig. 6-1 A closed-loop experiment

You will use a CT block for this process model. This type of component is par-
ticularly suitable for process models. The model is based on the following dif-
ferential equation, which models a PT2 - system:

T2 s’ + 2DTs’ +s = Ku
Equ. 6-1 A PT2 - system
The parameters T, D and K have to be set up with appropriate values.

Specifying the Process Model

Creating continuous time components is different from creating other compo-
nents. They have inputs and outputs which are the equivalent of arguments
and return values. The main difference is that a continuous time block can
have multiple inputs and outputs which are not tied to a particular method.
There is a fixed set of methods defined in each continuous time block, that
cannot be modified by the user.

You will use ESDL Code for the example here. The syntax of the ESDL code is
similar to C++ or Java. An object method is called with the name of the object,
a dot, the name of the method and the arguments in brackets followed by a
semicolon. The method used for deriving is called ddt () . For example, the
equation sp = $ is equivalent to the ESDL statement s. ddt (sp) ; .

To create a continuous time component:

& ESDL for: ProcModel Project: ProcModel DEFAULT [PC/Physical]

Component Element Edit Wiew

In the Component Manager create the folder
Tut ori al \Lesson?7.

To add a continuous time block, select
Insert — Continuous Time Block — ESDL.

Name the new component Pr ocModel .

Select Component - Edit to open the ESDL
editor.

You can, of course, also use the external text
editor. There are instructions for this in the first
part of the tutorial.

- (O] x|

NP I 7 ©HF e [cam & | @ E 6 & | G@0ine 0o -

Elements Sorted by I 'l

x

init () |

= C{D self::ProcModel
— & P Diicont
€ P Kucont
/7 sucont
/7 spucont
€ P Tucont
& H ucont

—— 1.} derivatives ()

—— {.}update ()

—— {..} directQutputs ()

—— {..} nondirectOutputs ()
—— {..} kerminate ()

—— {..} stateEvents ()

—— {.}bevents ()

—— {..} dependentParameters ()

L

Iasmmg &J uopREayads g_

il

To edit the process model, first add the elements required and then edit the
methods deri vati ves and non direct Qut put .

Tutorial

169

170

Tutorial

To edit the process model:

N

T &

IHLI

In the ESDL editor, use the Continuous State
button to create two continuous states.

Name the states s and sp.
Create an input by clicking the Input button.
Name the input u.

Create an output by clicking the Output but-
ton.

Name the output y.
Both elements are of type cont .

Create a parameter by clicking on the Param-
eter button.

Name the parameter D.
Create the parameters Kand T.

The "Elements" list for the process model
should look like this:

Elements Sorted by IKind VI b4

C{ [self::Proctodel
T sucont
T spucont
*E M uncont

ncant

ncont
noank
conk

LR R B+
— o=

efjnfiniinf

Adjust the parameters as follows:

D = 0.4,
K = 0.002,
T = 0.05.

e |nthe "Diagrams" list, select the deri va-
ti ves method and edit the code as follows:

derivatives [| |

=.ddt({=p);
sp.ddt {(K*u — 2x[*T=sp — =)~ (T*T)):

The illustration shows the internal text editor.

Note

See Tab. 9-1 in chapter 9.1 of the ASCET refer-
ence quide for information on how to resolve a
differential equation.

e Inthe "Elements" list, select the
nondi r ect Qut put s method and type in

the following text.

nondirectOutputs [] |

¥ o= =]

e Adjust the layout in the layout editor.

Note that in a process model it is preferable to
put the outputs on the left and the inputs on
the right.

FrochModel

—¥ |] up-

Prochodel
e Select Edit - Save.
E ¢ Inthe Component Manager, click on the Save
button to save the process model.
You can now start experimenting with the new model.

To experiment with the model:

e In the ESDL editor, select Component -
Open Experiment to open the experimenta-
tion environment.

Tutorial 171

172

Tutorial

Click on the Open CT Solver button to open
the "Solver Configuration" dialog pane.

The configuration is displayed as follows:

Solver configuration x|
Solver configuration |
Block IMass_Spring j
Incegrator -
Fixed-step solver
dr | 0.005
h | 0.0005

OF Cancel |

Click on OK to accept the default configura-
tion.

Open the data generator and create a channel
for the input u.

Set up the channel u with the following val-
ues:

Mode: pulse
Frequency: 0,5 Hz
Phase: 0.0s
Offset: -0.5
Amplitude: 1.0

Open an oscilloscope window with the chan-
nels u andy.

Set the Measure Channels for the oscilloscope
as follows:

u y
Min -1 -0.002
Max 2 0.004
Extent 3.0 3.0

E E HT r . Click on the Save Environment button.

Save Environment

e Start the experiment.
The output should look like this:

il—'_-,' Dscilloscope: 1

File Edit ‘iew Estras

Signals Measure channels

0.004 Measure variable
x U\ Prociodel
0.003 B[y \Prochadel

-0.001

6.7.2 Integrating the Process Model

To create a closed control loop, we will now integrate the process model into
the controller project we created earlier. The steps required are the same as
before: including the module, setting up the operating system and linking the
global elements.

Note

The process model is added to the same project for simplicity. This is often
useful in the early stages of testing closed loop simulation. In reqular
projects, the process model would be distributed over a network in another
project since they are not part of the same embedded system.

To include the process model:

e From the Component Manager, open the
project editor for Cont r ol | er Test .

e |n the project editor, add the component
ProcModel to the "Elements" list.

e Activate the "OS" tab of the project editor to
05 | specify the scheduling for the CT tasks.

Tutorial 173

174

e Select the task si mul at e_CT1 and set the
value in the "Period" field to 0.01 s.

The controller and the process model both run
in the same time interval.

Linking the continuous time blocks and the modules cannot be done automat-
ically. They have to be connected explicitly in a block diagram.

To adjust the linking between modules and CT block:

e C(Click the "Graphics" tab.

From the "Elements" list, drag the three com-
ponents and drop them into the drawing area.

=% Graphics |

e Connect the messages of the modules with
the corresponding input and output of the CT
block.

To construct the example, connect the output
y of ProcMbodel with the global message

U n and connect the input u of Pr ocModel
with the global message ai r _nomi nal .

e Right-click on each component and select
Unconnected Ports to remove these ports
from the diagram.

};‘“ Project Editor for: ControllerTest [ES1130/Physical]
Component Diagram Element Eutraz Search ASAM-ZMC Global Elements Simulink. RTIO Wiew

Bl e n | PEFFEFFLUEHLOS O kgm0 &0 880080

Elements Sorted by IK\ﬂd 'I x| 2¥ Graphics | OS| % Formulas | & mpl. Typel 2 comm. | 120 Bindingl Filesl Gy
S [self:ControllerTest <l g
@ U_n::mesalcont] g
@ U_tiimesglcont] SignalCony IdlzCon I
0 dTadT Un & & g
g7 @ IdleCon::IdieCon)) =
@ Prochodel: :ProcModel n n air_nominal A
SignalCorr:: SignalC

® signalCony::signalCony SignalCarr. TdleCon g
&
@

ProcModel

EAET ST
Proctodel
&
| v

Linking the messages for communicating between modules is done automati-
cally. Messages that have the same name are linked with each other.

Tutorial

The project is now complete and ready for experimentation. We will now
experiment online, which requires an ASCET-RP installation and a real-time tar-
get (e.g. ES1000). If you do not have both, you will have to continue by exper-

imenting offline as before.

Note

If you continue by experimenting offline, be sure to remove the global mes-
sage U_n from the data generator.

To set up the project for online experimentation:

N BN

& Project Properties

Click on the Specify Code Generation
Options button.

In the "Settings" dialog window, "Build" tab,
select the target ES1130 and the GNU- C
(Power - PC) compiler.

These options specify the hardware and the
corresponding compiler for code generation.

File “iew

=] Project Properties
ASAM-ZMC

Build
Tf 05 Configuration
= ©ade Generatinn

|:|5|

ll Build

@‘ Target
@ Code Generatar IPhysicaI Expetiment j
B Campiler |GNU-C v3.4.4 (PowerPC) =l

Click OK to close the dialog box.

The buttons Open Experiment for selected
Experiment Target and Reconnect to
Experiment of selected Experiment Target
are now available.

Click on the "OS" tab to activate the operat-
ing system editor.

Tutorial

175

176

Tutorial

e To copy the schedule you created earlier, select
Operating System — Copy From Target.

&' Selection Required [Hl[=][E3

Select Target

»ES1130¢
»GEenenic:Cl6xe
> Generic:MPCESE:

»Generic: TriCore<

Cancel |

e From the "Selection Required" dialog, select
PCand click OK.

The project for the new target now has the
same scheduling as that specified before for
the offline PC simulation.

There are several differences from the offline experiment. In the online experi-
ment, there is no event or data generator. The event generator serves to simu-
late the scheduling of the operating system tasks generated for online
experiments.

In the online experiment the experimentation code and the measurements are
started separately, and have separate buttons in the toolbar. This is because the
measurements may influence the real-time behavior of the experiment, so it
may sometimes be necessary to switch them off.

To experiment with the project online:

5 & 5 |online RP) 7| ° Select Onl i ne (RP) from the "Experiment
Dffline (RP Target" combo box.

iOnhne [AP]___;

O fline (RP) isintended for offline exper-
iments on the Target.

e Select Component — Open Experiment

or

= e click the Open Experiment for selected
|Dpen Experiment for selected Experiment Target| Experiment Target button.

The code for the experiment is generated and
the experiment opens with the same environ--
ment as defined previously.

4 Phpsical Experiment for: ControllerTest Target: >ES1130< Environment: >Default<

File Elementz Diagrams Experiment ‘iew

G cHB|a)e)» R A AE &S
' |<New Calibration Editor > j I|<2. Mumeric display > j IIevent_CTl #4 j
=X i€ 2 Graphics | OSI 2 GIDbaIsI & Furmulasl @ Comm. I Hzﬂ Bindingl
-
Elements
@' 0 ControllerTest SignalZony IdleCan
u_n 1
4 &
n ¥ n air_nominal
SignalCary IdleCan
Prochodel
Diagrams Y Cz u
Main
initialize_CT [] Frochodal
terminate_CT[] =
simulate_CTL[] < I I _'l—l
event_CT1[]

If your project contains several tasks, you
could well be prompted to select one acquisi-
tion task for each measure value.

& Selection Required [HI[=][E3

Select Acquisition Task for:

#4 event_CT1

Cancel |

* In the "Selection Required" window, select
the #3 si mul at e_CT1 task and click OK.

e Include n and n_nomi nal in the existing
oscilloscope and set their value range from 0
to 2000.

Tutorial

177

178

6.7.3

6.8

Tutorial

e Open numeric editors for the variables
n_nom nal , Ki and Kp.

r P e (lick on the Start ERCOS button and then
n n click on the Start Measurement button.
T The experiment starts and the results are dis-
Start ERCOS played on the oscilloscope. The value for n
Start Measurement should quickly approach n_nomi nal and stay
there.

e Modify n_noni nal in the numeric Editor.

The value n should change in line with all the
changes to n_nomi nal .

e You can optimize the behavior of the control
loop by adjusting the Ki and Kp parameters.

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e Creating and specifying continuous time blocks
e Experimenting with continuous time blocks

* Integrating continuous time blocks in a project
e Creating variable links

e Switching between different targets

e Experimenting online with a project

State Machines

State machines are useful for modeling systems that move between a limited
number of distinct states. ASCET provides a powerful mechanism for specify-
ing components as state machines. In this lesson we will specify and test a
simple state machine that implements a temperature dependent change in the
nominal number of revolutions of an idling engine. That state machine will
then be integrated into our project. In the next chapter we will then construct
hierarchical state machines.

If the engine is cold, it has to idle at a higher speed to keep it turning over.
Once the engine has warmed up, the rotational speed for idling can be
decreased to reduce fuel consumption. Our state machine thus has two states:
one when the engine is cold, and one when it is warm. It represents a two-
phase control.

6.8.1 Specifying the State Machine

A state machine consists of the state graph itself and a number of specifica-
tions of actions and conditions. The actions and conditions can be specified
using either block diagrams or ESDL code. They determine what happens in
the various states and during the transitions between states.

The diagrams are specified in the block diagram editor. Another possibility is to
write ESDL code directly in a text editor which can be opened for every state
and every transition (i.e., without opening the ESDL editor). State machines
have inputs and outputs for data transfer with other components.

To create a state machine:

e Inthe Component Manager, create the folder
Tutori al \ Lesson8.

@x e Select Insert - State Machine or click on
the Statemachine button to create a new
state machine.

e Name it War mJp.

e Inthe "1 Database" list, double-click on the
name of the state machine to open the state
machine editor.

&= SH for: WarmUp [Main] Project: Warmlp_DEFAULT [PC/Physical]

Component Diagram Element Edit View Sequence Calls

e e N e e A 2 e = s iE [zl [[<show =i [=[J100z]
H S AN [FPEFEEFAEOS S [Ehmd| @0 O |b t f UUe|[EB[(BEE
Elements Sorted by IKlnd j ® j

i M scl nlp|
T 3 smcsuise

[2smoia By | oneaynads L

Diagrams

? Main
1.} trigger ()

e

When you create a state machine, you specify the state graph diagram first
and then define the various actions and conditions associated with states and

state transitions.

|

Tutorial 179

180

The state machine controlling your motor has two states: one for when the
motor is cold and one for when the motor is warm.

To specify the state diagram:

=B

Click on the State button to load the cursor
with a state item.

Click inside the drawing area, where you want
to place the state.

A state symbol is drawn where you clicked.

SM for: WarmUp [Main] Project: WarmUp_DEFAULT>PC<

State Editor for: state

E dit

State Caolar

Component Diagram Element Edit View Sequence Calls

oo | =0 2 lgeg s 22 s =
W T AP [TEFTTEFIEEA =k
Elements Sorted by IKind j ®

I?;@’ [self::WarmUp

*5 0 smiudisc

e (Create a second state symbol and place it
below the first one in the drawing area.

e Right-click on the state symbol you created
first (the one on top) and choose Edit State
from the context menu to open the State Edi-

tor.

[~ Start State oK

=

Enty | Static | Exit |

LI I~ Hierarchy State
LCancel

|<EsDLs

Tutorial

In the "State" field, enter the name
col dEngi ne.

Tick the Start State option to determine the
state the machine is in when it is first started.

There must be start state for each state
machine.

Click on OK to close the State Editor.
The name is displayed in the state symbol.
Name the second state symbol war nEngi ne.

Right-click in the drawing area, outside any
symbol, to activate the connection mode.

Click in the right half of the col dEngi ne
state symbol to begin a connection, then click
in the right half of the war nEngi ne state
symbol to connect the two states.

A line is drawn between the two state sym-
bols. It has an arrow at one end, pointing from
the top to the bottom symbol. The lines repre-
sent possible transitions between states.

Create another transition from left half of the
bottom to the left half of the top symbol.

Select Diagram - Store to Cache to store
the diagram.

In the Component Manager, select File —
Save Database to save the database.

Tutorial

181

182

Tutorial

The next step in building the state machine is to specify its interface. You need
an input for the temperature value and an output for the number of revolu-
tions. In addition, parameters are required that specify high and low tempera-
ture and number of revolutions per minute.

To specify the interface of the state machine:

e Create an input by clicking the Input button.
e Name the inputt.

e (Create an output by clicking on the Output
button.

T X

e Name the output n_nomi nal .

e Click on the Continuous button to create a
variable.

|t

* In the element editor, enter the name t _up
and activate the Parameter option.

Element Editor for: cont::cont

Mame It_up ‘ oK. |

Kind " Constant
= System Constant

% [Wariarts

i Wariable

With that, the originally created variable has
become a parameter.

e (reate three other parameters by the same

method.
e Name the parameters and set their values as
follows:
t _up=70
t _down =60
n_col d =900

n_war m= 600

You can now proceed by specifying the actions and conditions for both the
states and the transitions between states. You can specify three actions for
each state:

e The entry action is executed each time the state is entered.

¢ The exit action is executed each time the state is left.
e The static action is executed while the state machine remains station-
ary.

Similarly, a trigger event, a condition, a priority and an action can be specified
for each transition. The name of the trigger and of the condition appear next
to the transition. One trigger is automatically created when the state machine
is created.
The actions and conditions are specified in ordinary diagrams or in ESDL code.
In this example you will use ESDL code.

To specify the trigger actions and conditions:

e Right-click on the transition from the col d-
Engi ne state to war nEngi ne.

e From the context menu, select Edit Transi-
tion to open the Transition Editor.

The condition for a transition from cold to
warm is that the actual temperature value t is
greater than t _up.

e On the "Condition" tab, select <ESDL> from
the combo box.

Note that you can influence the predefined
choice of options in this combo box.

Tutorial 183

e Enter the code shown below in the code pane
of the condition:

Transition Editor for: trigger

Edit

Caolar Width oK
Trigger Pricrity Cancel |
I trigger j |1

Action Condition |

|<EsDLs (= Edit |

|/ freached warmup temperature ;I
bet_up
¥
4 4
Note

In the Transition Editor, the condition is not ter-
minated with a semicolon. This is also true for
regular ESDL code where conditions appear in
parentheses.

If the condition evaluates to t r ue, the idle
speed of the engine is set to n_war m

Note that this code is displayed in the state
machine diagram. In this example, an alias
name is created for the transition condition
and shown in the diagram.

184 Tutorial

e Select <ESDL> for the action, too, and enter
the following code:

Transition Editor for: trigger

Edit

Caolar Width oK
Trigger Pricrity Cancel |
I trigger j |1

Actian | Condition I

|<EsDLs (= Edit |

n_riominal = r_warm] ;I

-
A ¥

e (lick OK to close the Transition Editor.

e ook at the diagram. Note that the condition
and the action from the state machine can be
seen.

e Open another editor for the transition from
war nEngi ne to col dEngi ne.

e Select <ESDL> for the condition and enter the
following code:

t <t _down

Note that this time the complete code is
shown in the diagram as no alias was assigned
(in a comment).

e Select <ESDL> for the action, too, and enter
the following code:

n_nom nal = n_col d;

e Close the editor and select Diagram -
Store to Cache.

You can also specify the actions and conditions as block diagrams instead of
ESDL code. For that purpose, you first create a separate diagram for actions
and conditions.

Tutorial

185

186

To create a diagram for actions/conditions:

* Inthe state machine editor, select Diagram -
Add Diagram -, Actions/Conditions BDE.

A diagram named ActionCondition_BDE is
created in the "Diagrams" pane.

e Accept the default name.
Diagrams 4

MMain
trigger []

fictionCondition BDE <priv

Now you can add, and specify, actions and conditions.
To specify the action/condition as block diagram:

e Inthe "Diagrams" field, click on the Act i on-
Condi ti on diagram.

e Use Diagram - Add Action or Diagram -
Add Condition to create new actions and
conditions.

You can then select these actions and condi-

tions from the combo boxes in the tabs in the
"Transition Editor" dialog. Use the Edit but-

ton to go directly to the graphical specification
in the BDE.

Trigger Fricrity
Itrigger j |1
Actian | Condition

action j Edit

<undef>

<ESDL>
1]

The initial value for the output n_nomi nal is still missing. Unlike the parame-
ter values, this cannot be set. Instead you need to specify an action for the
col dEngi ne start state. Since the entry action of the start state is not exe-
cuted at the fist activation of a state machine, you have to specify the initial
value in the static action.

Tutorial

To specify an entry action:

Right-click on the col dEngi ne start state.

From the context menu, select Edit State to
open the State Editor.

State Editor for: coldEngine

E dit

State Calar

[¥ Start State oK |

IcoIdE ngine j I

Entry | Static |Exm |

:I I~ Hierarchy State
Lancel

|<EsoL>

=l Edit |

n_nominal = n_cold:

- |

il

Select <ESDL> feom the combo box on the
"Static" tab to specify the entry action.

Note that you can influence the predefined
choice in this combo box via the "Defaults"
tab in the "Options" window of the Compo-
nent Manager.

Enter n_nomi nal = n_col d; in the code
pane to set the initial value of n_nomi nal to
900.

Click on OK to close the state editor.

That completes the specification of your state machine. Before you start exper-
imenting with it, you should understand the way it works.

6.8.2 How a State Machine Works

While it is usually easy to understand what a standard component does from
its graphical specification, the function of a state machine may, at first, be less
obvious. This section explains the principles of state machines using the exam-
ple from the previous section. A detailed description of state machines and
their functionality is given in chapter chapter 2.5 "State Machines" of the

ASCET reference guide.

Tutorial

187

188

Tutorial

Each state of a state machine has a name, an entry action, a static action and
an exit action. It has transitions to and from other states. Each transition has a
priority, a trigger, an action and a condition. All actions are optional.

Each state machine needs a start state. When the state machine is first called
up, it is in the start state. It then checks the conditions in all the transitions
pointing away from it. In our example there is just one such transition with the
condition t > t _up. This condition checks whether the input value exceeds
the value of the t _up parameter. If that is the case, the condition is true, and
a transition takes place.

The parameterst _up and t _down determine the temperature that the engine
has to reach, before the nominal rotational speed can be changed. In our
example, if the engine temperature rises above 70 degrees, the speed can be
reduced to 600 revolutions per minute. If it then falls below 60 degrees, the
nominal speed must be reset to 900 revolutions per minute.

Whenever a transition takes place, the transition action specified for the tran-
sition is executed. In our example the transition action n_nomi nal = n_warm
which is executed when a transition from the state col dEngi ne to war -
mEngi ne takes place, sets the variable n_noni nal to 600. The transition
action n_nomi nal = n_col d sets it to 900 in the reverse case. When a tran-
sition occurs, the state machine also executes the exit action of the state it
leaves, and the entry action of the state it enters. In our example, these are
empty and nothing happens.

Once the state machine has entered the second state, it stays in that state until
the condition in the transition from the second to the first state is fulfilled.
While the state machine stays in one state, the static action is executed every
time the state machine is triggered. Triggering is always an outside event which
starts one pass through the state machine.

A pass through a state machine consists of first testing all the conditions on
transitions leading away from the current state. Transitions and their condi-
tions are tested in order of their priorities. If a condition is true, the correspond-
ing transition is performed and the exit, transition and entry actions are
executed. Once the first condition checks out true, any other transitions lead-
ing from the same state but having lower priorities are not tested. If no condi-
tion is true, the machine remains in the current state and performs the static
action once for each pass.

Once the condition in the second transition of our state machine is true, i.e. if
the input value falls below the threshold, the state machine returns to the first
state. The machine then remains in that state (doing nothing, because there is
no static action) until the input value grows larger than the threshold again.

6.8.3

Experimenting with the State Machine

The experimentation environment works the same for state machines as for
other types of components. One extra feature for experimenting with state
machines is their animation, i.e. the current state is highlighted in the state
machine diagram while the experiment is running.

To experiment with the state machine:

e In the state machine editor, select
Component - Offline Experiment to
open the experimentation environment.

& Physical Experiment for: Warmllp Target: >PC< Environment: >Default<

File Elementz Diagrams Experiment “fiew

¢ SHEHE [n oy 0| s VRN R KIAEGO

'|<New Calibration Editor = j '|<2. Mumeric display = j 'l 1 é’

& X if o 22 warmlp -= |

Elements & ;I
God coldEngine/ J

@,. — Static: n_nominal = n_cold; |

[t =t_up]

[t = t_down] 1
In_nominal = n_warm;

In_nominal = n_cold;

Diagrams

MMain
L m trigger []
ActionCondition_BDE <priv

TR o

e Right-click on one of the states and select
Animate States from the context menu.

e Enable thetri gger event.

e Inthe data generator, create a channel for the
variable t .

* Assign a sine-wave with frequency 1 Hz, off-
set 70, and amplitude 20 to the channel.

e Open an oscilloscope window for t and
n_nom nal .

Tutorial

189

190

6.8.4

Tutorial

e Click on the Start Offline Experiment but-
| r ton to experiment with the state machine.

e Change the colors of the individual states to
improve clarity.

e To do this, use the Exit to Component but-
@ ton to leave the experimentation environ-
ment, and call the state editor.

e Select the color in the "Color" combo box.
Edit
State Color
IcoIdEngine j I ..

Enty | Static | Exit |

||
[
|

e Start the experiment anew.

The value of n_nom nal changes according to whether the sine-wave
exceeds or falls below the corresponding temperature threshold value. You can
change the threshold using the calibration system to observe the effect of dif-
ferent values on the output. Also, in the state diagram the current state is
highlighted.

Integrating the State Machine in the Controller

Like all other components in ASCET, a state machine can be used as a building
block within another component of any type. You can now integrate the state
machine into your controller module to adjust the rotational speed to the
engine temperature.

To integrate the state machine:

e From the Component Manager, open the
module Lesson4\ | dl eCon in a block dia-
gram editor.

e Remove the parameter n_noni nal from the
diagram and then from the "Elements" list.

You will replace the parameter with the state
machine in the block diagram.

e Select Element - Add Item and add the
state machine to the "Elements" list of the
controller.

trigger

T /2,'fp_ia]
r trigger

mﬁ]g \Warmnlp

a—t &
t n_niarminal =
WarmUp
[O]

Jato_idle Inkegrator
¥ arg feip_idle »
i integrate /5ip_idie

Create a receive message and name it t .

Connect the output of the component War -
nmUp with the subtraction operator in place of
the deleted variable, and connect the input of
War nmJp with the receive message t .

Adjust the diagram as shown below. Be sure
to adjust the sequencing in the diagram to
include all items in the correct order.

air_nominal
Inkegrator

Kp

Save the diagram and click on the Save but-
ton in the Component Manager.

In order to make the modified controller work with our project, we have to
make some adjustments to the project. At this point we will also integrate the
temperature sensor, which has been left unused so far.

To modify the project:

5 os |

=)

| Open Experiment for selected Experiment Target|

Open the project editor for the project Con-
trol |l erTest.

Switch to the "OS" tab.

Assign the process t _sanpl i ng to the task
Task10ns.

Use the command Task — Move Up to make
the process t _sanpl i ng the first in that
task.

click the Open Experiment for selected
Experiment Target button.

Open an additional scalar calibration window
for the value U_t .

Add the variable t to the oscilloscope.

Tutorial

191

192

6.8.5

6.9

6.9.1

Tutorial

e Click on the Start ERCOS button.
nkin .
e (lick on the Start Measurement button.
T e Adjust the value U_t and observe its effect.
Start ERCOS

If the value of t exceeds the 70 degree limit,
the state machine switches to nominal value
forn to the lower value of 600. If the temper-
ature falls to below 60 degrees (simulated by
adjusting U_t), the nominal value for n
regains the original value of 900.

Start Measurement

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

e (Creating a state diagram

e Creating and assigning conditions, actions and triggers
e Experimenting with state machines

* Integrating state machines into other components

Hierarchical State Machines

Now that you have familiarized yourself with the way state machines work in
the preceding lesson, we shall look at creating a more complex system. This
unit concentrates on hierarchical state machines. You will also learn how to
use the system libraries and components supplied with ASCET, such as timers.

ASCET permits structuring of state machines in closed and open hierarchies.
With closed hierarchies, the internal functionality is concealed, with open hier-
archies the substates are also shown graphically.

You will build a traffic light control system to run through the individual phases
of a traffic light using parameterizable timing. The traffic light will also have an
error status where it will flash.

Specifying the State Machine

First you will import the libraries you need and prepare for the task.
To import the system library Syst enlLi bETAS. exp:

Q Q e In the Component Manager, click on Import.
it The "Select Import File" window opens.

e Inthe "Import File" field, use the button to
select the file Syst enli bETAS. exp from
the Export directory of your ASCET installation
(e.g. C:\ et as\ ASCET5. 2\ export).

The OK button is now available.
e C(lick OK to start the import.

The "Import" window opens. All objects con-
tained in the file are selected.

e Confirm the import of all files with OK.

The files are imported. This can take up to sev-
eral minutes. When the import procedure is
finished, all imported items are listed in the
"Imported Items" window.

The second step is to specify the two main states possible for the traffic light
(Nor mal Mode and Er r or Mode).

To create the state machine:

e Inthe Component Manager, create the folder
Tutorial \ Lesson9.

e Select Insert — State Machine to create a
new state machine, and call it Li ght .

e Select Component - Edit to open the state
machine editor.

8 SM for: Light [Main] Project: Light_DEFAULT>PC<

Component Diagram Element Edit “iew Seguence Calls

o [= = e e e 2w = A e nn | 22 [=R e = = [[2 = [<show ans 5
WS AHB [TETEETARED = [BNoma o] & & & &5t 1 0w |=8|¢
Elements Sorted by INama j * j &
& 01 self:Light =
Ii*'ﬁ"::sm::udisc g_;n
&

E

P

&

3

1=

Diagrams

? @ Main
1.} trigger ()

« | o

Tutorial 193

194

Tutorial

5

You can start specifying the state machine
that will control your traffic light.

Create the two states Er r or Mode and
Nor mal Mode.

Then add a timer to your project from the system library.

To add the timer object:

To specify the state diagram:

Select Element - Add Item.

In the "Select Item" dialog, select the timer
object Ti mer from the Count er _Ti ner
folder of the Syst enlLi b_ETAS library.

Confirm your selection with Ok.

You have now added an object Ti mer to the
“Elements"” list for your state machine.

Specify the necessary data elements as fol-
lows:

— Aninputerror type Logi c,

— three outputs (yel | ow, gr een, r ed)
type Logi ¢ to symbolize traffic light col-
ors,

— four continuous parameters (Bl i nk-
Ti e, Yel | owTi ne, G- eenTi ne,
RedTi ne) for the different traffic light
phases.

To get more practice with dependent parame-
ters, you will configure the parameters so that
only the green phase is specified and the other
parameters are given values dependent on
that.

RedTine = 2 * GeenTine
Yel | owTi ne = GreenTi ne/ 3
Bl i nkTi me = Yel | owTi ne/ 10

Now specify calculations and dependencies of
the individual parameters.

To do this, select the check box Dependent
under "Dependency" in the element editor
for the parameters RedTi e, Yel | owTi ne
and Bl i nkTi ne.

The element editor is started with a double-
click on the element name or via the Edit con-
text menu.

Click on the Formula button to start the for-
mula editor.

Using the formula editor, specify the calcula-
tion for each of the dependent parameters by
first creating a formal parameter x and then

entering the calculation in the formula pane.

Redtine : 2*x
Yel l owTinme : x/3
BlinkTinme : x/10

Close the formula editor and the element edi-
tor.

Open the dependency editor via the context
menu Edit Data.

Assign the corresponding model parameter to
the formal parameter x for each of the depen-
dent parameters.

RedTinme : x = GreenTinme

Yel lowTime : x = GreenTinme

Bl inkTinme : x = Yell owTine

Give the data elements meaningful values
(e.g. GeenTine = 5).

Open the state editor for the Er r or Mode
state.

You can open the state editor either by dou-
bleclicking on a state or via the Edit State
context menu.

Define this state as the initial state and color it
red.

Enlarge both states so that the hierarchies can
be inserted.

Create the transitions between the two states.

Tutorial 195

196

e QOpen the transition editor via the Edit Transi-
tion context menu or with a double-click on
the graphic.

e Specify the transitions between the two states
by entering conditions in the transition dialog.
Enter the conditions in ESDL so that the nor-
mal state Nor mal Mbde is activated when the
inputerror isfal se (i.e. there has not been
an error), and Er r or Mbde is activated when
there is an error.

trigger
[narmalmode]

Maormalhl odef

trigoer
[errarmode]

e Select Diagram - Store to Cache.

e Save your work in the Component Manager
by selecting File —» Save Database.

e You might like to experiment with the main
states.

The next step towards creating the traffic light control system is to specify the
substates. First specify the performance in the error mode (state Er r or Mode).
In this state, a yellow flashing light will be output. To do this, introduce two

Tutorial

substates Yel | owOf f and Yel | owOn; with the timer as switch between
them. In the Yel | owOn state, the output yel | ow will be set to t r ue, while
the Yel | owOF f state sets it back to f al se.

To specify the substates for the error mode

e (reate the states Yel | owOf f and Yel -
| owOn and place them inside the state
Er r or Mode.

e Define Yel | owOf f as start state and color
Yel | owOn yellow.

e Define the response of the state Yel | owCf f
in the state editor.

To do this, call the state editor either via the
Edit State context menu or with a double-
click on the state.

e For the entry action, select ESDL in the combo
box for the "Entry" tab and enter the follow-
ing code:

Caolar [¥ Start State
j I LI I~ Hierarchy State

Enty | Static | Exit |

|<EsDLs (= Edit |

green = falze; ;I
1ed = false;

wellow = falze;

Timer. start[Blink Time):

e For the static action, enter the following code
on the "Static" tab:

Ti mer. conpute();

e Now define and describe the Yel | owOn state
in the same way.

Entry action:
yell ow = true;
Tinmer.start (BlinkTine);

Static action:
Ti mer. conpute();

Tutorial

197

198

Tutorial

e Now define the transitions between the two
substates.

The condition for a state transition is that the
timer has run out (Ti ner. out () ==
f al se).

YellowOfts

Entry: green = falze;

red = false; 1:
yellow = falze:

Timer_start{Blink Time];

Static: Timer. computel):

YellowOnd

Entry: yellow = true;
Timer. start{Blink Time);
Static: Timer.compute(];

This means that the Er r or Mode state is started in the Yel | owCf f state. As
well as switching off the color signals, the entry action starts the timer with the
parameterizable flashing time. The static action of the Yel | owCOr f state calls
the timer function conput e() each time, which decrements the timer
counter. When this counter is 0, the timer function out () returns the code
f al se, thus fulfilling the transition condition. The state Yel | owOn works in
a similar way, however, in the entry action, the Yel | owcolor signal is switched
on.

The next step is to specify the performance in normal operation. To do this,
create a start state, Al | OF f, and place it within the Nor mal Mbde state. Use
the exit action to set all the color signals to a defined state. Now think about a
suitable response for the traffic light control system.

In this example, you should describe the activation or deactivation of the indi-
vidual color signals in the transition actions, not in the entry actions of the
states.

To specify the substates in normal operation

Create and place the states Al | OF f (start
state), Yel | ow, Red, RedYel | owand
G een.

Specify the response for the states by starting
the appropriate timer for each color (entry
action) and initiating timer processing in the
static action. (Ti mer . conput e()).

Define the state transitions and describe the
response of the states within the transition
actions.

The transition from Al | Of f to Yel | ow
should generally occur, all other transitions
should happen after the relevant timer has run
out.

Ty

@Modeﬂ’

trigger
dyellovy = true;

trigger

[Timer, o]
Fyellon = fak e
red = true;

Static: Timer. computer);

trigger trigger

[Tirmar, o] 1 [! Timer, outi])]

dgreen = faks; Syallown = faks e

yelow = true; red = fake;
areen = true;

rtry: Timer.starvallonTime);

) trigger
" [Timer, o))

igellon = troe;

Radvallan
Eritry: Timer.ztarvallonTime);
Static: Timer.computel);

Tutorial

199

200

6.9.2

Tutorial

e Enter the actions for each color signal in the
"Action" tab of the transition editor, e.g.

Trigger Pricrity
Itrigger j |1
Aclion | Candition |

|<EsDL> =l Edit |

yellow = false; ;I
red = true;

e (Close the transition editor and select
Diagram - Store to Cache.

That completes the specification of your traffic light control system. Before you
can experiment with it, you should enter meaningful values for the parameters
in the various color timers.

Experimenting with the Hierarchical State Machine

You can experiment with the hierarchical state machine in the same way as
with the basic state machine. Please do not forget to activate the animation in
the experiment.

Experimenting with the State Machine:

e In the state machine editor, select
Component - Open Experiment to open
the experimentation environment.

e Right-click on one of the states and select
Animate States from the context menu.

e Enablethetri gger event.

e (lick on the Start Offline Experiment but-
r ton to experiment with the state machine.

e Experiment with the state machine by chang-
ing the Gr eenTi ne parameter and then
updating the dependent parameters via

Update Dependent Parameter.

e QOccasionally, set the error inputtotrue.

6.9.3

How Hierarchical State Machines Work

Hierarchical state machines work in the same way as normal state machines. In
principle, hierarchical state machines only represent a graphic structure of the
total set of responses. As an extra task, consider or demonstrate how the
response described could be achieved without a hierarchy.

The traffic light example is constructed with two hierarchical states. The system
switches between the two states Er r or Mode and Nor mal Mode using the
logical input variable error. The sub-responses are defined within these
states.

To understand this, look at the processing in the Er r or Mode hierarchy state.
Each time the trigger is called, the condition for the transition from the hierar-
chy state Er r or Mode to the hierarchy state Nor mal Mode is checked (condi-
tion: 'error). If no transition is necessary, the transitions from substate
Yel | owOf f to Yel | owOn or vice versa are checked, and the necessary
actions are performed.

If you now look at Nor mal Mode, this means that, again, for each trigger call
it is first checked whether the input er r or ist r ue, and therefore a transition
to Er r or Mode is necessary. Only if this is not the case, the transitions from the
substates (Al | Of f, Yel | ow, Red, RedYel | ow, Gr een) are checked. In the
traffic light example, it is checked whether the timer has run out.

You can have a look at the code generated from the state diagram to clarify
this process.

Displaying generated code:

e |n the state machine editor, select
Component - View Generated Code to
display the code generated.

The code from the components is written to a
temporary file and then opened with an appli-
cation defined in the operating system register
database.

Note

In order to display the code generated, a search
is made in the operating system register data-
base for an application with associated files of
type *. ¢ and *. h. Depending on the file end-
ings registered, the relevant editor is started.

Tutorial

201

202

6.9.4

Tutorial

Summary

After completing this lesson you should be able to perform the following tasks
in ASCET:

Create hierarchical state diagrams

Describe the way the states behave in actions and also in the transition
actions.

Import modules, classes or components

Import system components from ASCET libraries
Use the Timer system component

Use of dependent parameters

Displaying generated code

7.1

Glossary

In this glossary the technical terms and abbreviations used in the ASCET docu-
mentation are explained. Many terms are also used in a more general sense,
but only the meaning specific to ASCET is explained here.

The terms are listed in alphabetic order.

Abbreviations

ASAM-MCD

Association for Standardisation of Automation- and Measuring Systems,
with the working groups Measuring, Calibration, Diagnosis

(German: Arbeitskreis zur Standardisierung von Automations- und Mess-
systemen, mit den Arbeitsgruppen Messen, Calibrieren und Diagnose)

ASCET

Development tool for control unit software

ASCET-MD

ASCET Modeling and Design
ASCET-RP

ASCET Rapid Prototyping
ASCET-SE

ASCET Software Engineering
BDE

Block Diagram Editor
CPU

Central Processing Unit
ECU

Embedded Control Unit
ERCOSEK
ETAS real-time operating system, OSEK-compliant

ESDL

Embedded Software Description Language
ETK

emulator test probe (German: Emulatortastkopf)
FPU

Floating Point Unit

Glossary

203

204

7.2

Glossary

HTML

Hypertext Markup Language
INCA

Integrated Calibration and Acquisition Systems
INTECRIO

A new ETAS product family. INTECRIO integrates code from various behav-
ioral modeling tools, facilitates all necessary configurations, allows the gen-
eration of executable code, and provides an experiment environment for
the execution of the Rapid Prototyping experiment.

(0}
Operating System
OSEK

Working group "open systems for electronics in automobiles"
(German: Arbeitskreis Offene Systeme fur die Elektronik im Kraftfahrzeug)

RAM

Random Access Memory
ROM

Read-Only Memory
UML

Unified Modeling Language
XML

Extensible Markup Language

Terms

Action

An action is part of a state machine and associated with states or transi-
tions of the state machine. An action is a piece of functionality, whose exe-
cution is triggered by the state machine.

Application Modes

An application mode is part of the operating system of ASCET. An operat-
ing mode describes different conditions a system can be in, e.g. EEPROM-
programming mode, warm-up, or normal mode.

Argument

An argument is the input to a method of a class. Arguments can only be
used in the specification of the method they belong to, and not in other
methods of the class.

Arithmetic Services

User-defined C functions to optimize elementary operations, such as addi-
tion operations, and to extend such operations with special properties,
such as value limits.

Array

An array is a one dimensional static list of elements of the basic scalar type
conti nuous or di scr et e, indexed by the basic scalar type di scret e.

ASAM-MCD-2MC file

Default exchange format used for projects in ASCII format for the descrip-
tion of measurement and calibration values. The files have the extension
* az2l.

Basic Model Types

Basic model types are used to model physical behavior. There are three
types: cont i nuous, di scret e and | ogi cal . A number of operations,
such as addition or comparison, are defined for the basic model types. The
implementation is used to transform the model types to implementation

types.
Block Diagram

A block diagram is a graphical description for a component in which the
various elements, operators and inputs/arguments and outputs/return val-
ues are connected by directed lines. A block diagram consists of several
diagrams. The description in terms of block diagrams is a physical descrip-
tion in contrast to the description with C-Code.

Bypass Experiment

In a bypass experiment, ASCET is directly connected to a microcontroller,
and parts of the microcontroller software are simulated by ASCET.

Calibration

Calibration is the manipulation of the values (physical / implementation) of
elements during the execution of an ASCET model (experiment).

Calibration Window

ASCET working window which can be used to modify parameters.
C Code

C code is an implementation dependent description of a component.
Characteristic

General term used for characteristic map, curve and value (see also
"Parameter”.

Glossary 205

206

Glossary

Characteristic Line

Two-dimensional parameter.
Characteristic Map

Three-dimensional parameter.
Characteristic value

One-dimensional parameter (constant).
Class

A class is one of the component types in ASCET. Classes in ASCET are like

object-oriented classes. The functionality of a class is described by methods.
Code

The executable code is the "actual" program with the exception of the

data (contains the actual algorithms). The code is the program part which
can be executed by the CPU.

Code Generation

Code generation is the first step in the transformation of a physical model
to executable code. The physical model is transformed into ANSI C-Code.
Since the C-Code is compiler (and therefore target) dependent, different
code for each target is produced.

Component

A component is the basic unit of reusable functionality in ASCET. Compo-
nents can be specified as classes, modules, or state machines. Each compo-
nent is built up of elements which are combined with operators to build up
the functionality.

Component Manager

Working environment in which the user can set up ASCET and manage the
data he created and which are stored in the database.

Condition

A condition is used to describe the control flow in a state machine. It
returns a logical value which determines, whether a transition from one
state to another takes place.

Configuration dialog box

Dialog box used to configure the individual measuring and calibration win-
dows as well as the variables contained therein.

Constant

A constant is an element that cannot be changed during execution of an
ASCET model.

Container

Containers serve as containers for projects, classes and modules. Their pur-
pose is to structure models and databases and place different database
items under a common version control.

Data
The data is the variables of a program used for calibration.
Data Generator

The data generator is part of the experimentation environment. It is used to
stimulate the inputs or variables in the model under experimentation.

Data Logger

With the data logger measurement data can be read from an experiment
and stored to disk for further analysis.

Data Set

A data set contains/references the initial data for all elements of a compo-
nent or project.

Database

All information specified or produced with ASCET is stored in a database. A
database is structured into folders.

Description file

Contains the physical description of the characteristics and measured val-
ues in the control unit (names, addresses, conversion formulae, functional
assignments, etc.).

Diagram

A diagram is used for the graphical specification of components as block
diagrams or state machines.

Dimension

The dimension is used to describe the ‘size’ of basic elements. The dimen-
sion can either be scalar (zero dimensional), array (one dimensional) or
characteristic line/table.

Distribution

A distribution contains the sample points for one or more group character-
istic lines/maps.

Editor

See Calibration Window.

Glossary

207

208

Glossary

Element

An element is a part of a component which reads or writes data, for
instance a variable, parameter or other component used within a compo-
nent.

Event

An event is an (external) trigger that starts an action of the operating sys-
tem, e.g., a task.

Event Generator

The event generator is part of the experimentation environment. It is used
to describe the order and the timing in which events are generated for the
activation of tasks (methods/processes/time frames) in the case of an offline
experiment.

Experiment

An experiment defines the settings in the experiment environment that are
used to test the proper functioning of components or projects. It contains
information about the size, position and content of the measurement and
calibration windows, as well as the settings of the event generator, data
generator and the data logger. An experiment can be executed either
offline (non real-time) or online (real-time) and can be used to control a
technical process in a bypass or fullpass application. In all cases, instru-
mented code generated from an ASCET specification is used for experi-
ment execution.

Experiment environment
Main working environment in which the user performs his experiments.
Fixed Point Code

From the physical specification, fixed point code can be generated which
can be executed on processors without a floating point unit.

Folder

A folder is a management unit for structuring an ASCET database. A folder
contains items of any kind.

Formula

A formula is part of an implementation describing the transformation from
the model types to the implementation (data) types.

Fullpass Experiment

In a fullpass experiment, ASCET is directly connected with an experimental
microcontroller, and the entire application is simulated by ASCET.

Group Characteristic Line/Map

Group characteristic lines/maps are characteristic lines/maps that share the
same distribution of axis points but have different return values. The distri-
bution of axis points and the individual group tables are specified as sepa-
rate elements.

HEX file

Exchange format of a program version as Intel Hex or Motorola S Record
file.

Hierarchy

A hierarchy block is used to structure the graphical specification of a block
diagram.

Icon
Icons can be used to illustrate the function of ASCET components.
Implementation

An implementation describes the transformation of the physical specifica-
tion (model) to executable fixed point code. An implementation consists of
a (linear) transformation formula and a bounding interval for the model
values.

Implementation Cast

Element that provides the users the possibility to control the implementa-
tions of intermediate results in arithmetic chains without changing the
physical representation of the elements in question.

Implementation Data Types

Implementation data types are the data types of the underlying C program-
ming language, e.g., unsi gned byt e (ui nt 8), si gned wor d
(sint16),float.

Implementation Types

Implementation templates. Implementation types contain the main specifi-
cations of an implementation; they are defined in the project editor and
can be assigned to individual elements in the implementation editors.

Intel Hex
Exchange format used for program versions.
Interface

An interface of a component describes how the component exchanges
data with other components. It can be compared to the . h file in C.

Glossary

209

210

Glossary

Kind

There are three kinds of elements: variables, parameters, and constants.
Variables can be read and written. Parameters can only be read but can
calibrated during experimentation. Constants can only be read and not
written to during experiments.

L1

The message format for exchanging data between the host and the target,
where the experiment is run. Data is transferred, e.g. for displaying values
in measure windows.

Layout

A component has a graphical representation that shows pins for the inputs/
arguments, outputs/return values and time frames/methods/processes.
Additionally, the layout contains an icon that graphically represents the
component when used within other components.

Literal

A literal is used in the description of components. A literal contains a string
that is interpreted as a value, e.g. as a continuous or logical value.

Measuring

Recording of data which is either displayed or stored, or both displayed and
stored.

Measure window

ASCET working window which displays measured signals during a mea-
surement.

Measured signal
A variable to be measured.
Measurement

A measurement is the representation of values (physical / implementation)
of variables/parameter during an experiment. The values can be displayed
with various different measurement windows like oscilloscopes, numeric
displays, etc.

Measuring channel parameters

Parameters which can be set for the individual channels of a measuring
module.

Message

A message is a real time language construct of ASCET for protected data
exchange between concurrent processes.

Method

A method is part of the description of the functionality of a class in terms
of object oriented programming. A method has arguments and one return
value.

Model Type

Each element of an ASCET component specification is either a component
of its own or is of a model type In contrast to implementation types, model
types represent physical values.

Module

A module is one of the component types in ASCET. It describes a number
of processes that can be activated by the operating system. A module can-
not be used as a subcomponent within other components.

Monitor

With a monitor the data value of an element can be displayed in a diagram
during an experiment.

Motorola-S-Record
Exchange format used for program versions.
Offline experiment

During offline experimentation the code generated by ASCET can be run
on the PC or an experimental target, but it does not run in real-time. Offline
experimentation focuses on testing the functional specification of a system.

Online experiment

In the online experiment the projects are executed in real-time with the
behavior defined in the real-time operating system. The code always runs
on an experimental target in real-time. The online experiment focuses on
the operating system schedule and the corresponding real-time behavior of
the control system.

Operating System

The operating system is used to schedule the execution/activation of an
ASCET software system. The operating system also provides services for
communication (messages) and access to reserved parts of the hardware
(resources). The ASCET operating system is based on the real-time operat-
ing system ERCOSEK.

Oscilloscope

An oscilloscope is a type of measurement window that graphically displays
data values during experiments.

Glossary

211

212

Glossary

Parameter

A parameter (characteristic value, curve and map) is an element whose
value cannot be changed by the calculations executed in an ASCET model.
It can, however, be calibrated during an experiment.

Priority
Every task has a priority in the form of a number. The higher the number,

the higher the priority. The priority determines the order in which tasks are
scheduled.

Process

A process is a concurrently executable piece of functionality that is acti-
vated by the operating system. Processes are specified in modules and do
not have any arguments/inputs or return values/outputs.

Program

A program consists of code and data and is executed as a unit by the CPU
of the control unit.

Project

A project describes an entire embedded software system. It conains compo-
nents which define the functionality, an operating system specification, and
a binding mechanism which defines the communication.

Resource

A resource is used to model parts of an embedded system that can be used
only mutually exclusively, e.g. timers. When such a part is accessed, it has
to be reserved and then released again, which is done using resources.

Scheduling

Scheduling is the assigning of processes to tasks and the definition of task
activation by the operating system.

Scope

An element has one of two scopes: local (only visible inside a component)
or global (defined inside a project).

State

A state is a part of a state machine. A state machine is always in a one of
its states. One of the states is marked as the start state which is the initial
state of the state machine. Each state is connected to other states by arcs.
A state has an entry action (that is executed upon entry of a state), an static
action (that is executed the state remains unchanged) and an exit action
(that is executed upon exit of the state).

State Machine

A state machine is one of the component types in ASCET. The behavior is
described with a state graph consisting of states connected by transitions.

Target

A target is the hardware an experiment runs on. A target can either be an
experimental target (PC, Transputer, PowerPC) or a microcontroller target.

Task
A task is an ordered collection of processes that can be activated by the
operating system. Attributes of a task are its operating modes, its activation
trigger, its priority, the mode of scheduling. On activation the processes of
the task are executed in the given order.

Trigger
A trigger activates the execution of a task (in the scope of the operating
system) or of a state machine.

Transition
A transition is a connection between states. Transitions describe possible
state changes. Each transition is assigned to a trigger of the state machine,
has a priority, a condition, and an action.

Type
Variables and parameters are of type cont (continuous), udi sc (unsigned
discrete), sdi sc (signed discrete) or | og (logic). Cont is used for physical
quantities that can assume any value; udi sc for positive integer values,
sdi sc for negative integer values, and | og is used for Boolean values
(true or false).

User profile
A set of user-specific option settings.

Variable

A variable is an element that can be read and written during the execution
of an ASCET model. The value of a variable can also be changed with the
calibration system.

Also: General term used for parameters (characteristics) and measured sig-
nals.

Window elements

General term used for calibration and display elements.

Glossary

213

214 Glossary

8.1

Reference Lists

The chapter "Reference Lists" contains information on troubleshooting, the
directory structure, and the reference files required. This chapter also includes
a list of all keyboard commands sorted by working windows.

Troubleshooting and User Feedback

While developing ASCET, the functional safety of the program was utmost
importance. Should an error occur nevertheless, please forward the following
information to ETAS:

* Which step were you about to perform with ASCET when the error
occurred?

e What kind of error occurred (wrong function, system error or system
crash)?

¢ Which model element or model was edited at the time of the error?

Note

To allow ASCET to be updated and developed further, it is important that you
report any errors which have occurred with an application to ETAS. You can
use the "Problem Report" method for this purpose.

When you use the support function, ASCET compresses the entire contents of
the "log" directory (all *. 1 og files) including a textual description into an
archive file named Et asLogFi | es00. zi p in the ...\ ETAS\ LogFi | es\
subdirectory. For additional archive files, the file name is incremented automat-
ically (up to 19) to avoid that older archive files are immediately overwritten.

If a critical system error occurs, the following window is displayed:

4 Spstem Eror hag occurmed.
Do you want ko exit?

Pleaze select the menu item 'Help # Problem Repart' from the Compaonent Manager to
send a bug report immediately.

LContinue Exit Problem Hepmim%

Reference Lists

215

What to do in case of an error:

1. Problem Report button

2. Exit button

3. Continue button

Note

Click on the Problem Report button.
The support function is started.

Describe the error and forward the informa-
tion—together with the model—to ETAS.

Click on the Exit button.

ASCET is closed; all modifications that have
not been saved will be lost.

Close any message boxes prompting you to
save data without saving any data.

Restart ASCET.

Use the Continue button only if you have to save important configura-
tion data. Subsequent errors or incorrect configurations cannot be

excluded!

Click on the Continue button.

The application continues to run; the program
jumps back to the location where it was
before the error occurred.

Save your data.
Exit ASCET.
Restart ASCET.

It is generally advisable to close the program (without saving) and to restart it.
Thus, the risk of possible subsequent errors is omitted.

216 Reference Lists

8.2

ASCET Directories

When installing ASCET, the following directory structure is created on the
installation disk (unless you modify the path settings):

20 eras =00 ETASData

=L AsteTs2 = ASCETS2
{:I cebra {:I cehrs
L1 CGEN =1 Database
[:]"{:I DiocGen {:I DB_5Y5
L0 emtex ®-C1 TUTORIAL
{7 EtasRes 21 Docu
[:]-'{:I emecuter . USEF
B export
.[:I Help :
{1 ICSAUN =L ETAS
(1 His -] ASCETE2
-] patchbox {:I ETASManuals
{1 RemoteControl E{:I ETASShared3
-] Schemas {:I ce.bla
&1 SCO0P-R :
{:I target
{21 toolbox
B Tools
BT wercesc

-1 ETASManuals
w0 ASCET VG2 - LogFies

-1 ETASShared?

E{:I LogFiles
{:I Azapd
-1 ASCET
{:I Cebra

o walkback

8.2.1 Default Storage Directories

e Database
ETASDat a\ Ascet 5. 2\ Dat abase

e Export
ETAS\ Ascet 5. 2\ Export

e automatically generated documentation
ETASDat a\ Ascet 5. 2\ Docu

Reference Lists

217

218

8.2.2 Changing Default Directories

You can use the "Options" dialog window to change the default storage direc-
tories. To do so, proceed as follows:

To change the default storage directories:

In the Component Manager, select the menu
option Tools — Options.

The ASCET options window opens. You can
change the database path in the "Options"
node, the export path in the "Export" node,
and the documentation path in the "Docu-
mentation" node.

Click on the button next to the path you want
to change.

The "Path selection" window opens.

Path Selection

c:ietasiascets, 2itarget

Ok

Cancel |

— [Frascets.z

— cebra...
— Cemtex...
— Cetasres
— Cexecuter...
— Cexport...
— Chelp

— Jicstun

— Canils

— Cpatchbosx
— COremotecontral
— [COschemas
— SCOOP-iX...

— B

Wolume

IC:'l, 'l

Reference Lists

Specify the directory you want to use as
default for the selected option.

Click OK.

The selected directory is displayed in the
"Options" window.

Repeat these steps for each option you want
to change.

8.3

8.3.1

Keyboard Control

e \When you are ready, click OK in the
"Options" dialog to accept the changes, or
click Cancel to discard the changes.

General Control Functions

Key Function

ALT + TAB Switches between open calibration programs.

ALT + SPACE Opens the system menu of the calibration program win-
dow.

ALT + F4 Closes the current window.

CURSOR KEYS Moves to a table item or list item,

(1t 5 1) | also opens the active list field.

TAB Moves the highlight (focus) to the next element (option) of
a window (use SHIFT + TAB for the opposite direction).

DEL Deletes a selected entry.

SPACE Activates the input mode in tables, selects or deselects a
table or list item.

Esc Closes the input mode without accepting the entry.

SHIFT Activates multiple selection; you can select a table area with
the cursor keys while keeping the Shift key depressed.

ENTER Confirms the entry and closes the input mode, and opens or
closes branches.

CTRL + A Selects all objects (e.g. in a list).

CTRL + C copies data to the clipboard (except measure windows)

CTRL + V inserts data from the clipboard

CTRL + X cuts data to the clipboard

CTRL + Y Repeats the last action.
(for calibration windows, use CTRL + D instead).

CTRL + Z Undoes the last action.
(for calibration windows, use CTRL + U).

CTRL + F1 Shows the most important keyboard commands

F10 activate main menu

Tab. 8-1 General keyboard commands (in individual cases, a command

can have a different meaning in a particular window)

Reference Lists

219

8.3.2 Keyboard Commands in the Component Manager

The following special keyboard commands are available in the Component

Manager:

Key Function

CTRL+ N create a new database

CTRL + O open database

CTRL+ S save database

CTRL+E Activates the export function.

CTRL + M Activates the import function.

ALT + F4 close Component Manager and exit ASCET

F2 rename selected object

CTRL + F search a string in C code or ESDL components
CTRL + H replace a string in C code or ESDL components
CTRL + Q search the database from various points of view
F5 update Component Manager display

INSERT insert folder / insert object in container

RETURN open editor for selected database object

ALT + 1 switch to the "1 Database" field

ALT +2 switch to the "2 Comment" field

ALT +3 switch to the "3 Contents" field

ALT + F6 switch to the next window

Esc cancel cut (<CTRL> + <X>)

8.3.3 Keyboard Commands in the Monitor Window

The following special keyboard commands are available in the ASCET monitor

window:

Key Function

Ctrl+ o0 open log file for the "Monitor" tab

Ctrl +s save the content of the "Monitor" tab to a file
CTRL + F find/replace text in the "Monitor" tab

220 Reference Lists

834

Key Function

CTRL + R delete text in the "Monitor" tab
CTRL + + enlarge monitor window
CTRL + - scale down monitor window

Keyboard Commands in the Editors

The following special keyboard commands are available in the block diagram
editor:

Key Function

F2 rename selected element

CTRL + CURSOR RIGHT show next sequence call

CTRL + CURSOR LEFT show previous sequence call

The following special keyboard commands are available in the C Code and
ESDL editors:

Key Function
CTRL+F find/replace
CTRL + S save method/process

The following special keyboard commands are available in the AS editor:

Key Function
CTRL+ N create new file
CTRL+ O open file

CTRL + S save file

The following special keyboard commands are available in the data and imple-
mentation editors for components/projects:

Key Function
AT+ C, ALT+ 0O close editor window
F2 rename selected data set/implementation

Reference Lists

221

222

8.3.5 Keyboard Commands in the Offline Experiment Environment

The following special keyboard commands are available in the offline experi-

ment environment:

Key Function
ALT + F4 close offline experiment environment
F10 Activates the main menu
CTRL+ C calibrate element
CTRL + M measure element
CTRL+ S stimulate element
CTRL + L activates recording of selected elements in the Data Logger
CTRL + A activates recording of all elements in the Data Logger
CTRL + | view the implementation of an element
CTRL+ U update dependent parameters
8.3.6 Measure and Calibration Windows in General

The keyboard commands listed below equally apply to all measure and calibra-
tion windows. For specific keyboard commands for individual measure and cal-
ibration windows, please see further below.

Key

Function

CTRL+ H

Displays hexadecimal values in the active window.

CTRL + |

Displays information on the selected variable.

CTRL+ P

Displays physical values in the active window.

CTRL+ S

Opens the display setup for the active window (except 3D
graphical editor).

DEL

Deletes a variable from the active window (except graphical
and numerical table editors).

Tab. 8-2

Reference Lists

Keyboard commands in all measure and calibration windows

Calibration Windows

The following keyboard commands are—in addition to those in Tab. 8-2—
available in all calibration windows:

Key Function

CTRL+ M increments selected values (except 3D graphical editor)
CTRL + N decrements selected values (except 3D graphical editor)
CTRL + D Repeats the last action.

CTRL + U Undoes the last action.

The following keyboard commands are only available in the numerical editor:

Key Function
CTRL + R displays binary values
CTRL+Z displays decimal values

CTRL + PAGE UP

moves the highlighted variable in a window one position
down

CTRL + PAGE DOWN

moves the highlighted variable in a window one position up

The following keyboard commands are only available in the table editor:

Key Function

+ adds offset to selected values

* multiplies selected values by a factor

= fills selected cells with a value

CTRL +J decrements the x-axis value (only characteristic line/map)

CTRL + K increments the x-axis value (only characteristic line/map)

CTRL + R decrements the y-axis value (only characteristic map)

CTRL+ T increments the y-axis value (only characteristic map)

CTRL + X assigns a specific value to the x-axis point (only characteristic
line/map)

CTRL + Y assigns a specific value to the y-axis point (only characteristic

map)

Reference Lists

223

224

The following keyboard commands are only available in the 7D or 2D graphical
editor:

Key Function

X Switches to the xz representation (2D Map Editor only).
\% Switches to the yz representation (2D Map Editor only).
z Reverses x (y)-axis and z-axis.

CTRL + B Allows several values on the curve to be selected.

The following keyboard commands are only available in the 3D graphical edi-
tor:

Key Function

CURSOR LEFT, rotation around z-axis
CURSOR RIGHT

CURSOR UP, rotation around horizontal axis
CURSOR DOWN

<NUM 4>, <NUM 6> rotation around z-axis

<NUM 8>, <NUM 2> rotation around horizontal axis

Measure Windows

The following keyboard commands are—in addition to those in Tab. 8-2—
available in all measure windows:

Key Function

CTRL+ C copies the settings of the current measure window to the
clipboard

CTRL+ W copies the settings from the clipboard to the current mea-

sure window

The following keyboard commands are available in the numerical display, bit
display, and horizontal and vertical bar display:

CTRL + PAGE UP moves the highlighted variable in a window one position
down (vertical bar display: to the left)

CTRL + PAGE DOWN moves the highlighted variable in a window one position up
(vertical bar display: to the right)

Reference Lists

The following keyboard commands are only available in the numerical display:

Key Function
CTRL + Z Displays decimal values in the active window.
CTRL + R Displays binary values in the active window.

The following keyboard commands are only available in the oscilloscope and
recorder window:

Key Function

CTRL + A Adapts the Y-axis scaling for the selected measuring chan-
nel.

CTRL+ U Undoes the last scaling.

CTRL + L Shows/hides the measuring channel list.

CTRL + X Shows/hides the selected variable.

CTRL + V Activates/deactivates the analysis mode.

CTRL + G Shows/hides display grid (oscilloscope only).

T Releases the trigger event manually.

PAGE DOWN Selects the last channel in the "Measure channels" or "Bit

channels" list.

PAGE UP Selects the first channel in the "Measure channels" or "Bit
channels" list.

CURSOR LEFT, Move selected measure cursor in single steps (analysis mode

CURSOR RIGHT only).

CTRL + CURSOR LEFT, Move selected measure cursor several steps at once (analysis
CTRL + CURSOR RIGHT mode only).

Reference Lists

225

226 Reference Lists

Windows XP Firewall and ASCET

Windows XP comes with a built-in personal firewall. On many other systems it
is very common to have personal firewall software from third party vendors,
such as Symantec, McAffee or Blackice installed.

Personal firewalls may interfere with access to Ethernet hardware using
ASCET-RP or ASCET-SE. The automatic search for hardware typically cannot
find any Ethernet hardware at all, although the configuration parameters are
correct. In that case, you may have firewall software installed on your system.

This chapter helps you to configure the Windows XP firewall if the hardware
access is prohibited under Windows XP with Service Pack 2.

The following actions in ETAS products may lead to some trouble if the Win-
dows XP firewall is not properly parameterized:

e ASCET
— opening an experiment
— reconnecting to an experiment
e Hardware Service Pack
— searching for hardware
— starting a firmware update
e INCA
— searching for hardware
— opening the hardware configuration editor
— opening an experiment

Windows XP Firewall and ASCET

227

228

9.1 Users with Administrator Privileges

If you have administrator privileges on your PC, the following dialog window
opens if the firewall blocks an ETAS product.

%= Windows Security Alert x|

To help protect your computer, Windows Firewall has blocked
some features of thiz program.

Do you want to keep blocking thiz program?
% Mame: ASCET
Publisher. ETAS GmbH

Keep Blocking Unblock Ask Me Later

‘Windows Firewall has blocked this program from accepting connections from the
Internet or a network. |f you recognize the program or trust the publizher, you can
unblock it. When should | unblock a program?

To unblock a product:

* Inthe "Windows Security Alert" dialog win-
dow, click on Unblock.

The firewall no longer blocks the ETAS product
in question (in the example: ASCET). This deci-
sion survives a restart of the program, or even
the PC.

Instead of waiting for the "Windows Security Alert" dialog window, you can
unblock ETAS products in advance.

Unblocking ETAS products in the firewall control:

e From the Windows Start Menu, select
Settings - Control Panel.

Windows XP Firewall and ASCET

In the control panel, double-click the Win-

dows Firewall icon to open the "Windows
Firewall" dialog window.

= Windows Firewall

General | Exceptions | Advanced

“windows Firewall helps protect your computer by preventing unauthorized users
from gaining access o your computer through the Intemst ar a network,

®0n [recommen: e;:ij

Thiz getting blocks all outside zources from connecting to this
corputer, with the exception of those selected on the Exceptions tab.

[Don't allow exceptions
Select thiz when you connect to public networks in less secure

locations, such as airparts. You will not be natified when 'wWindows
Fireweall blocks programe. Selections on the Exceptions tab will be
jgnored.

@ () Off [not recommended)

Awoid using this setting. Tuming off \Windows Firewall may make this
computer more vulherable to viruses and intruders.

‘Windows Firewall is uzing pour non-domain settings.

‘What else should | know about Windows Firevsll?

Windows XP Firewall and ASCET 229

e In the "Windows Firewall" dialog window,
open the "Exceptions" tab.

2 Windows Firewall

General | Exceptions | Advanced)|

‘Windows Firewall is blacking incoming nebwark connections, except for the
programs and zervices selected below. Adding exceptions allows zome programs
tar work, better but might increase your security risk.

Frograms and Services:

Name
ASCET
[File and Frinter Sharing

le
IPMServer Module
Remate Assistance
[Remate Desktop
[UPHP Framewark

[Add Program...] [Add Part...] [Edi..] [Delete

Dizplay a notification when windows Firewall blocks a program

‘what are the risks of sllowing exceptions?

This tab lists the exceptions not blocked by the
firewall. Use Add Program or Edit to add
new programs, or edit existing ones.

e Make sure that the ETAS products and ser-
vices you want to use are properly configured
exceptions.

— Open the "Change Setup" window.

Change Scope E‘

To specify the set of computers for which this port or program i unblocked, click an
option below.

To specify a custom list, type a list of [P addresses, subnets, or both, separated by
COMMEE,

() Any computer [including those on the Intermet]
) My network [subnet] anly

() Custom list

|1 52 168.40.0/255 255 2650 |

Exampls: 192168114 201,192 168.114.201/255 255 ZEL\@

230 Windows XP Firewall and ASCET

9.2

— To ensure proper ETAS hardware access,
make sure that at least the IP addresses
192. 168. 40. xxx are unblocked.

— Close the "Change Setup" window with
OK.

e Close the "Windows Firewall" dialog window
with OK.

The firewall no longer blocks the ETAS prod-
uct in question (in the example: ASCET). This
decision survives a restart of the PC.

Users without Administrator Privileges

This section addresses users with restricted privileges, e.g., no system changes,
write restrictions, local login.

Working with an ETAS product requires "Write" and "Modify" privileges
within the ETAS, ETASDat a, and ETAS temporary directories. Otherwise, an
error message opens if the product (e.g., ASCET) is started, and a database is
opened. In that case, no correct operation of the ETAS product is possible
because the database file and some *. i ni files are modified during opera-
tion.

ASCET has to be installed by an administrator anyway. It is recommended that
the administrator assures that the ETAS program/processes are added tothe list
of the Windows XP firewall exceptions, and selected in that list, after the
installation. If this is omitted, the following will happen:

e The "Window Security Alert" window opens when one of the actions
listed above (cf. page 227) is executed.

f" B To help protect your computer. Windows Firewall has blocked
some features of this program.

“Your computer administralor can unblock this program for you.
% MName: ASCET
Fublisher: ETAS GmbH

[] For this program, dor't show this message again

‘windows Firewall has blocked this program from accepting connections from the
Internet or a network. [f you recognize the program or tust the publisher, you can

unblock it. ¥hen should | unblock & program?

Windows XP Firewall and ASCET

231

232

To unblock a program (no Admin privileges):

e In the "Windows Security Alert" dialog win-
dow, activate the option For this program,
don’t show this message again.

e Click OK to close the window.

An administrator has to select the respective
product (e.g., ASCET) in the "Exceptions" tab
of the "Windows Firewall" dialog window to
avoid further problems regarding hardware
access with that ETAS product.

9.3 Support and Problem Reporting

If you have any questions, contact the ETAS hotline.

Phone

Europe +49-711-89661-311 (ASCET)
(w/o France, Belgium, +49-711-89661-315 (INCA)
Luxembourg, Great

Britain)

France, Belgium, +33-1-5670-0235 (ASCET)

Luxembourg +33-1-5670-0234 (INCA)

Great Britain +44-1283-546-512

Japan +81-45-222-0951 (ASCET)
+81-45-222-0950 (INCA)

Korea +82(2)5747-101 (ASCET)
+82(2)5747-061 (INCA)

USA +1-888-ETASINC (382-7462)

Windows XP Firewall and ASCET

E-Mail

ec.hotline@etas.de
inca.hotline@etas.de

support.ascet@etas.fr
support.inca@etas.fr

support@etas-uk.net

ec.hotline@etas.co.jp
inca.hotline@etas.co.jp

ec.hotline@etas.co.kr
inca.hotline@etas.co.kr

support@etasinc.com

10

ETAS Contact Addresses

ETAS HQ

ETAS GmbH

BorsigstraBe 14 Phone: +49 711 89661-0

70469 Stuttgart Fax: +49 711 89661-105

Germany E-mail: sales@etas.de
WWW: WWwWw.etasgroup.com

North America

ETAS Inc.

3021 Miller Road Phone: +1 888 ETAS INC

Ann Arbor, MI 48103 Fax: +1 734 997-9449

USA E-mail: sales@etas.us
WWW: Www.etasgroup.com

Japan

ETAS K.K.

Queen's Tower C-17F Phone: +81 45 222-0900

2-3-5, Minatomirai, Nishi-ku Fax: +81 45 222-0956

Yokohama 220-6217 E-mail: sales@etas.co.jp

Japan WWW: Www.etasgroup.com

Great Britain

ETAS Ltd.

Studio 3, Waterside Court Phone: +44 1283 54 65 12

Third Avenue, Centrum 100 Fax: +44 1283 54 87 67

Burton-upon-Trent E-mail: sales@etas-uk.net

Staffordshire DE14 2WQ WWW: Www.etasgroup.com

Great Britain

ETAS Contact Addresses

233

http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com
http://www.etasgroup.com

France

ETAS S.A.S.

1, place des Etats-Unis Phone: +33 1567000 50
SILIC 307 Fax: +33 156 70 00 51
94588 Rungis Cedex E-mail: sales@etas.fr

France WWW: Www.etasgroup.com
Korea

ETAS Korea Co. Ltd.

4F, 705 Bldg. 70-5 Phone: +82 257 47-016
Yangjae-dong, Seocho-gu Fax: +82 2 57 47-120
Seoul 137-889 E-mail: sales@etas.co.kr
Korea

China

ETAS (Shanghai) Co., Ltd.

2404 Bank of China Tower Phone: +86 21 5037 2220
200 Yincheng Road Central Fax: +86 21 5037 2221
Shanghai 200120, P.R. China E-mail: sales.cn@etasgroup.com

WWW: Www.etasgroup.com

234 ETAS Contact Addresses

http://www.etasgroup.com
http://www.etasgroup.com

Index

A
application mode 204
ASAM-MCD-2MC file 205
ASCET
firewall (Windows XP + SP2) 227
install basic system 18
path specifications 19
specify functional scope 21
specify license directory 23
store license file 41
structure 78
uninstall 34, 36

B

Block Diagram Editor
buttons 84

borrow license 44

buttons
Block Diagram Editor 84
C Code Editor 87
Component Manager 83
CT Block Editor 87

ESDL Editor 87
Offline Experiment 91
Project Editor 89

C
C code 205
C Code Editor

buttons 87
calibration windows 205
characteristic line 206
characteristic map 206
characteristic value 206
class 206
component 206
Component Manager 206

buttons 83
condition 206
Configuration dialog box 206
CT Block Editor

buttons 87

D
data 207

235

data generator 207
data logger 207

data set 207

database 207

default directories 218
description file 207
diagram 207
dimension 207
Distribution 207

E
editor 207
element 235
element 208
element editor
open 235
environment 208
error
continue 216
exit 216
support function "Problem
Report" 215
System Error window 215
what to do in case of ~ 216
ESDL Editor
buttons 87
event 208
event generator 208
experiment 208
experiment environment 208

F
fixed point code 208
folder 208

formula 208

fullpass experiment 208

G

General Operation
according to Windows conventions
93
drag & drop 95
function keys 219
hierarchy trees 95
monitor window 97
supporting functions 97
using the mouse 94

Index

Glossary 203—213

H
HEX file 209
hierarchy 209

|
icon 209
implementation 209
Installation
assign user privilege (Win 2000) 16
assign user privilege (Win XP) 16
cancel 25
customize configuration file 30
customize data for network ~ 32
install ASCET-MD 24
integrate modified database 33
integrate modified user profile 33
network installation 29
obtain license file 39
overwrite existing version 26
path specifications 19
specify ASCET functional scope 21
specify license directory 23
start ASCET installation 18
store license file 41
system requirements 15
uninstall ASCET 34, 36
without administrator privilege 29
Intel Hex 209
interface 209

K

kind 210

L

layout 210

license
borrow 44
not found 41
return 45
return (normal case) 44

license file
obtain 39
store 41

Licensing 39
borrow license 43
change borrowing time 43
no license detected 41
return borrowed license 44, 45
show ~ status 42
trial mode 41
literal 210

M

measure 210

measure window 210
measured signal 210
measurement 210
measuring channel parameters 210
message 210

methods 211

model type 211
module 211

monitor 211
Motorola-S-Record 211

(0]

obtain license file 39

Offline experiment
buttons 91

Oscilloscope 211

P
parameter 212
priority 212
Problem Report 215
process 212
program 212
program description 212
project 212
project editor

buttons 89

R

Reference Lists 215—225
resource 212

return borrowed license 44, 45

S
scheduling 212

scope 212
state 212
State machine 213
store license file 41

support function "Problem Report" 215

T
target 213
task 213
Transition 213
trial mode 41
type 213

U

user profile 213

Vv

variables 213

w

window elements 213

Index

237

238 Index

	1 Introduction
	1.1 System Information
	1.2 User Information
	1.2.1 User Profile
	1.2.2 Manual Structure
	Volume "ASCET V5.2 - Getting Started"
	Volume "ASCET V5.2 - User’s Guide"
	Volume "ASCET V5.2 - Reference Guide"

	1.2.3 How to Use this Manual
	Documentation Conventions
	Typographic Conventions

	2 Program Installation
	2.1 Preparation
	2.1.1 Contents
	2.1.2 System Requirements
	2.1.3 Required User Privileges for Installation and Operation

	2.2 Installation
	2.2.1 Initial Installation
	ASCET Base System
	ASCET-MD

	2.2.2 Special Installation Steps and Dialogs

	2.3 Network Installation
	2.3.1 Providing Data in the Network
	Installation Log

	2.3.2 Customizing the Network Installation
	Customizing Installation Dialogs
	Automatic Installation
	Customizing ASCET Files

	2.3.3 Installing ASCET from the Network Drive

	2.4 Uninstalling ASCET
	2.4.1 Automatic Uninstall
	2.4.2 Custom Uninstall

	3 Licensing
	3.1 Obtaining Licenses
	3.2 Licensing Status
	3.3 Borrowing Licenses

	4 Understanding ASCET
	4.1 Increasing Efficiency in Control Unit Development
	4.1.1 Modern Embedded Control Systems: Technical Mission
	Embedded Control Systems
	Focus on the Car Industry

	4.1.2 Development Processes: Economic Challenge
	4.1.3 Innovative Technologies - Technological Visions
	Code Generation
	Prototyping

	4.2 Continuous Support for Embedded Control Systems
	4.2.1 Entry-level Technology Bypass
	4.2.2 Prototyping
	4.2.3 Automatic Code Generation
	4.2.4 Other Application Options for ETAS Development Tools
	ASCET as Additional Programmer
	ASCET as Integration Tool
	Operating System and Components

	4.2.5 Interfaces and Standards in the Tool Chain

	4.3 ASCET Development Environment in Practise
	4.3.1 Physical Specification of Control Systems
	Block Diagrams
	State Machines
	Text Specification in ESDL
	Integrating C
	Operating System Configuration
	Modeling the Control Process

	4.3.2 Implementation and Code Generation
	Algorithms
	Memory Handling
	Operating System Configuration
	Platform Dependence and Project-specific Adaptation

	4.3.3 Prototyping with ASCET
	Experimental Environment for Extreme Requirements
	Simulation Systems: Hardware and Software
	Integrating Existing Sensors and Actuators in a Closed Control Loop

	4.3.4 Bypass
	ETK Interface- Memory Emulation
	CAN Interface

	4.3.5 Reuse and Open Interfaces
	Reuse through Database Support
	Program and Database Management Using Configuration Management Tools

	4.4 ASCET Software Structure
	ASCET Basic System
	ASCET Modeling & Developing
	ASCET-RP
	ASCET-SE

	5 General Operation of ASCET
	5.1 Window Structure
	5.2 Button Bars
	5.2.1 Buttons in the Component Manager
	5.2.2 Button Bars in the Block Diagram Editor
	5.2.3 Button Bars in the C Code and ESDL Editor
	5.2.4 Button Bars in the CT Block Editors
	5.2.5 Button Bar Elements in the Project Editor
	5.2.6 Button Bar Elements in the Offline Experiment

	5.3 Operation Using The Keyboard
	5.3.1 General Keyboard Control
	5.3.2 Keyboard Control According to the Windows Conventions

	5.4 Operation Using The Mouse
	5.4.1 Drag & Drop

	5.5 Hierarchy Trees
	5.6 Supporting Functions
	5.6.1 Monitor Window
	5.6.2 Keyboard Assignment
	5.6.3 Manual and Online Help

	6 Tutorial
	6.1 A Simple Block Diagram
	6.1.1 Preparatory steps
	6.1.2 Specifying a Class
	6.1.3 Summary

	6.2 Experimenting with Components
	6.2.1 Starting the Experimentation Environment
	6.2.2 Setting up the Experimentation Environment
	6.2.3 Using the Experimentation Environment
	6.2.4 Summary

	6.3 To Specify a Reusable Component
	6.3.1 Creating the Diagram
	6.3.2 Experimenting with the Integrator
	6.3.3 Summary

	6.4 A Practical Example
	6.4.1 Specifying the controller
	6.4.2 Experimenting with the Controller
	6.4.3 A Project
	6.4.4 To set up the Project
	6.4.5 Experimenting with the Project
	6.4.6 Summary

	6.5 Extending the Project
	6.5.1 Specifying the Signal Converter
	6.5.2 Experimenting with the Signal Converter
	6.5.3 Integrating the Signal Converter into the Project
	6.5.4 Summary

	6.6 Modeling a Continuous Time System
	6.6.1 Motion Equation
	6.6.2 Model Design
	6.6.3 Summary

	6.7 A Process Model
	6.7.1 Specifying the Process Model
	6.7.2 Integrating the Process Model
	6.7.3 Summary

	6.8 State Machines
	6.8.1 Specifying the State Machine
	6.8.2 How a State Machine Works
	6.8.3 Experimenting with the State Machine
	6.8.4 Integrating the State Machine in the Controller
	6.8.5 Summary

	6.9 Hierarchical State Machines
	6.9.1 Specifying the State Machine
	6.9.2 Experimenting with the Hierarchical State Machine
	6.9.3 How Hierarchical State Machines Work
	6.9.4 Summary

	7 Glossary
	7.1 Abbreviations
	7.2 Terms

	8 Reference Lists
	8.1 Troubleshooting and User Feedback
	8.2 ASCET Directories
	8.2.1 Default Storage Directories
	8.2.2 Changing Default Directories

	8.3 Keyboard Control
	8.3.1 General Control Functions
	8.3.2 Keyboard Commands in the Component Manager
	8.3.3 Keyboard Commands in the Monitor Window
	8.3.4 Keyboard Commands in the Editors
	8.3.5 Keyboard Commands in the Offline Experiment Environment
	8.3.6 Measure and Calibration Windows in General
	Calibration Windows
	Measure Windows

	9 Windows XP Firewall and ASCET
	9.1 Users with Administrator Privileges
	9.2 Users without Administrator Privileges
	9.3 Support and Problem Reporting

	10 ETAS Contact Addresses
	ETAS HQ
	North America
	Japan
	Great Britain
	France
	Korea
	China

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

