
ASCET Rapid Prototyping V5.4
User’s Guide

2

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license.
Using and copying is only allowed in concurrence with the specifications stip-
ulated in the contract.

Under no circumstances may any part of this document be copied, repro-
duced, transmitted, stored in a retrieval system or translated into another lan-
guage without the express written permission of ETAS GmbH.

© Copyright 2006 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

Document EC012401 R5.4.2 EN

Contents

1 Introduction . 11

1.1 Components . 11
1.2 Installation . 11
1.3 Manual Structure . 12
1.4 Conventions . 12

1.4.1 Documentation Conventions . 12
1.4.2 Typographic Conventions . 12

2 Configuring Experimental Targets . 15
2.1 The Hardware Options . 16
2.2 Hardware Connection with the ETAS Network Manager 17

2.2.1 The Hardware Selection Window . 19
2.3 Interface Setup Without ETAS Network Manager 21
2.4 Selecting a Compiler . 23

2.4.1 Using Your Own Compiler . 23
2.4.2 Changing to the GNU Cross Compiler 24
2.4.3 Changing to the Diab Data Compiler . 27

2.5 Configuring the Compiler . 27
2.5.1 General Arguments . 27
2.5.2 Initialization Entries. 28
Contents 3

4

2.5.3 Compiler Entries . 28
2.5.4 Linker Entries . 29
2.5.5 Loader Entries. 29

2.6 Settings in the ascetsd.ini File . 29

3 Tips on Using ASCET-RP . 31
3.1 Preprocessing available Data Bases . 31
3.2 Converting Projects for ES1000.1 to ES1000.2/ ES1000.3 31
3.3 Using dT . 33

4 Rapid-Prototyping Experiments . 35
4.1 Experimenting with ASCET . 35

4.1.1 The User Interface . 35
4.1.2 Running Online Experiments. 37
4.1.3 Standalone Mode. 43

4.2 Experimenting with INCA . 44
4.3 Experimenting with INTECRIO . 54

5 RealTime Input/Output Package . 67
5.1 Introduction . 67
5.2 Architecture of the RTIO Package . 67

5.2.1 The Hardware Configuration Module . 68
5.2.2 Hardware Configuration Editor. 69

6 Preparatory Measures . 71
6.1 Hardware – ES1000.x Experimental System . 71
6.2 Special Features of the ES1135 . 73

6.2.1 Non-Volatile RAM (NVRAM) . 73
6.2.2 Watchdog . 81
6.2.3 LEDs. 84

6.3 System Software . 84
6.3.1 System Root Path . 85
6.3.2 C-Code Module . 86
6.3.3 Project . 86

7 HWC Editor . 89
7.1 Opening the HWC Editor . 89
7.2 Controls . 90

7.2.1 Toolbar . 90
7.2.2 "Items" List . 92
7.2.3 Configuration Tabs . 93
7.2.4 Main Menu . 94
Contents

7.2.5 Context Menu ("Items" List). 109
7.3 Configuration Tabs . 109

7.3.1 General Tips . 110
7.3.2 Default Options in the "Globals" Tab 112
7.3.3 Default Options in the "Groups" Tab 114
7.3.4 Default Options in the "Signals" Tab 115
7.3.5 Default Options in the "Mappings" Tab 117

8 Code Generation . 121
8.1 HWC Module . 121

8.1.1 Elements . 121
8.2 Process Order . 123

9 The ETK Bypass (ES1200/ES1201/ES1231/ES1232) . 125
9.1 ETK Bypass: Definition . 125
9.2 Hardware Configuration of an ETK Bypass . 126
9.3 ASCET Project for the ETK Bypass . 127
9.4 How the ETK Bypass Works . 128
9.5 Data Exchange Between Control Unit and ETAS Experimental System . . 129
9.6 Initially Required Information and Data . 137

10 HWC Items. 141
10.1 Implemented Items . 141
10.2 ES1135-LED . 141

10.2.1 Globals (ES1135-LED Device) . 142
10.2.2 Groups (ES1135-LED Device) . 143
10.2.3 Signals (ES1135-LED Device) . 143
10.2.4 Mappings (ES1325-LED Device) . 144

10.3 ES1201-ETK . 144
10.3.1 Globals (ES1201-ETK Subsystem) . 144
10.3.2 Globals (ETK-CTRL Subsystem) . 145
10.3.3 Globals (ETK-BYPASS Device) . 147
10.3.4 Groups (ETK-BYPASS Device) . 155
10.3.5 Signals (ETK-BYPASS Device). 158
10.3.6 Mappings (ETK-BYPASS Device) . 161

10.4 ES1222-CAN (CAN-IO) . 162
10.4.1 Globals (ES1222-CAN Subsystem). 162
10.4.2 Globals (CAN-CTRL Subsystem) . 164
10.4.3 Globals (CAN-IO Device) . 167
10.4.4 Groups (CAN-IO Device) . 173
10.4.5 Signals (CAN-IO Device) . 175
Contents 5

6

10.4.6 Mappings (CAN-IO Device) . 178
10.5 ES1222-CAN Bypass (CAN Bypass Protocol CBP) 178

10.5.1 License legal note for the CAN Bypass protocol (CBP) 178
10.5.2 Hardware Configuration of a CAN Bypass 179
10.5.3 Globals (CAN-Bypass Device) . 180
10.5.4 Groups (CAN-Bypass Device) . 183
10.5.5 Signals (CAN-Bypass Device) . 185
10.5.6 Mappings (CAN-Bypass Device) . 186

10.6 ES1223-LIN . 186
10.6.1 Globals (ES1223-LIN Subsystem) . 187
10.6.2 Globals (LIN-CTRL Subsystem). 187
10.6.3 Globals (LIN-IO Device) . 189
10.6.4 Groups (LIN-IO Device) . 191
10.6.5 Signals (LIN-IO Device) . 192
10.6.6 Mappings (LIN-IO Device) . 193
10.6.7 Runtime Behavior . 193

10.7 ES1231.1-ETK . 193
10.7.1 Globals (ES1231-ETK Subsystem) . 193
10.7.2 Globals (ETK-CTRL Subsystem) . 194
10.7.3 Globals (ETK-BYPASS Device) . 194
10.7.4 Groups (ETK-BYPASS Device) . 194
10.7.5 Signals (ETK-BYPASS Device). 195
10.7.6 Mappings (ETK-BYPASS Device) . 196

10.8 ES1232 -ETK . 196
10.8.1 Globals (ES1232-ETK Subsystem) . 196
10.8.2 ETK-CTRL-BAS Subsystem. 197
10.8.3 ETK-BYPASS Device . 198
10.8.4 100 Mbit/s for Existing Projects (ETK-CTRL-BAS Subsystem) . . 198
10.8.5 Globals (ETK-CTRL-ADV Subsystem) . 202
10.8.6 Globals (ETK-BYPASS-ADV Subsystem) 206
10.8.7 Groups (ETK-BYPASS-ADV Subsystem) 208
10.8.8 Signals (ETK-BYPASS-ADV Device). 211
10.8.9 Mappings (ETK-BYPASS-ADV Device) 211

10.9 ES1300-AD . 213
10.9.1 Globals (ES1300-AD Device) . 213
10.9.2 Groups (ES1300-AD Device) . 215
10.9.3 Signals (ES1300-AD Device) . 216
10.9.4 Mappings (ES1300-AD Device) . 216

10.10 ES1301-AD . 216
10.10.1 Globals (ES1301-AD Device) . 217
Contents

10.10.2 Groups (ES1301-AD Device) . 218
10.10.3 Signals (ES1301-AD Device) . 219
10.10.4 Mappings (ES1301-DA Device) . 219

10.11 ES1303-AD . 219
10.11.1 Globals (ES1303-AD Device) . 220
10.11.2 Groups (ES1303-AD Device) . 223
10.11.3 Signals (ES1303-AD Device) . 225
10.11.4 Mappings (ES1303-AD Device) . 225

10.12 ES1310-DA . 225
10.12.1 Globals (ES1310-DA Device) . 226
10.12.2 Groups (ES1310-DA Device) . 227
10.12.3 Signals (ES1310-DA Device) . 228
10.12.4 Mappings (ES1310-DA Device) . 228

10.13 ES1320-CB (DIO) . 228
10.13.1 Globals (ES1320-CB Subsystem) . 229
10.13.2 Globals (DIO Device) . 230
10.13.3 Groups (DIO Device) . 231
10.13.4 Signals (DIO Device) . 232
10.13.5 Mappings (DIO Device) . 232

10.14 ES1325-DIO . 232
10.14.1 Globals (ES1325-DIO Subsystem) . 233
10.14.2 Globals (ES1325-Input Device) . 237
10.14.3 Groups (ES1325-Input Device) . 240
10.14.4 Signals (ES1325-Input Device). 246
10.14.5 Mappings (ES1325-Input Device) . 246
10.14.6 Globals (ES1325-Output Device) . 247
10.14.7 Groups (ES1325-Output Device) . 248
10.14.8 Signals (ES1325-Output Device) . 251
10.14.9 Mappings (ES1325-Output Device) . 251
10.14.10 Globals (ES1325-LED Device) . 252
10.14.11 Groups (ES1325-LED Device) . 253
10.14.12 Signals (ES1325-LED Device) . 254
10.14.13 Mappings (ES1325-LED Device) . 254

10.15 ES1330-PWM . 254
10.15.1 Globals (ES1330-PWM Subsystem) . 255
10.15.2 Globals (PWM-COUNTER Device) . 256
10.15.3 Groups (PWM-COUNTER Device) . 259
10.15.4 Signals (PWM-COUNTER Device). 259
10.15.5 Mappings (PWM-COUNTER Device) . 260
Contents 7

8

11 Tutorial . 261
11.1 Tutorial – Experimenting with INTECRIO . 264

11.1.1 Preparations . 265
11.1.2 Transferring the Project. 266
11.1.3 Experimenting in INTECRIO. 267
11.1.4 Using Back-Animation . 269

11.2 Tutorial – ES1222 (CAN-IO) . 274
11.2.1 The ES1222 Board . 276
11.2.2 Sample Project . 278
11.2.3 Creating the Hardware Configuration. 279
11.2.4 HWC Settings for the ES1222 (CAN-IO) 284
11.2.5 Saving the Hardware Configuration . 295
11.2.6 Generating Code for the HWC Module 296
11.2.7 Experimenting with the Sample Project. 297

11.3 Tutorial – ES1303 . 301
11.3.1 The ES1303 Hardware . 302
11.3.2 Sample Project . 303
11.3.3 Creating the Hardware Configuration. 304
11.3.4 HWC Settings for the ES1303. 307
11.3.5 Saving the Hardware Configuration . 313
11.3.6 Generating Code for the HWC Module 313
11.3.7 Final Actions. 314

11.4 Tutorial – ES1325 (without Trigger) . 315
11.4.1 The ES1325 Board . 318
11.4.2 Sample Project . 320
11.4.3 Creating the Hardware Configuration. 321
11.4.4 Making HWC Settings for the ES1325 326
11.4.5 Saving the Hardware Configuration . 343
11.4.6 Creating Code for the HWC Module 343
11.4.7 Experimenting with the Sample Project. 343

11.5 Tutorial – ES1325 (with Trigger) . 350
11.5.1 The ES1325 Board . 352
11.5.2 Sample Project . 352
11.5.3 Creating the Hardware Configuration. 353
11.5.4 Making HWC Settings for the ES1325 358
11.5.5 Saving the Hardware Configuration . 370
11.5.6 Creating Code for the HWC Module 370
11.5.7 Experimenting with the Sample Project. 370
Contents

12 ETAS Network Manager . 377
12.1 Overview . 377
12.2 ETAS Hardware Addressing . 378
12.3 Network Adapter Addressing . 378

12.3.1 Type of Network Adapter Addressing 378
12.3.2 Addressing the Network Adapter Manually. 379
12.3.3 Addressing the Network Adapter via DHCP 379

12.4 User Interface . 381
12.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window .

381
12.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window .

382
12.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window .

383
12.4.4 "Network settings for ETAS hardware (Page 5)" Dialog Window .

384
12.5 Configuring Network Addresses for ETAS Hardware 384
12.6 Troubleshooting Ethernet Hardware Access . 389

12.6.1 APIPA disabled on Windows 98 SE, 2000 or XP 390
12.6.2 Personal Firewalls . 390

13 Annex: API Functions . 393
13.1 API Functions (ERCOSEK) . 393

13.1.1 Application Modes . 394
13.1.2 Tasks . 396
13.1.3 System Time. 397
13.1.4 Interrupt Handling . 398
13.1.5 dT Query . 399

13.2 API Functions (NVRAM) . 400
13.3 API Functions (Watchdog) . 408

13.3.1 Watchdog Configuration . 409
13.3.2 Watchdog Service. 412
13.3.3 Interrupt Control . 413
13.3.4 Watchdog Status . 415

13.4 API Functions (ES1135 LEDs) . 416
13.5 API Functions (Miscellaneous) . 417

Index . 419
Contents 9

10
 Contents

1 Introduction

The execution of real-time software requires experimenting hardware that is
capable of real-time processing. The ASCET Rapid Prototyping V5.4 (ASCET-RP
V5.4) software package is used to integrate the ES1000 experimental targets
(E-Targets) in ASCET V5.1. Together with I/O periphery, powerful development
systems can be built on the basis of these experimental targets.

In addition to the license for the compiler toolset used, the ASCET-RP Package
also includes extensions to the ASCET development environment, such as for
the homogenous integration of compiler and linker calls and the ERCOSEK

operating system kernel for experimental targets.

ASCET-RP contains, in addition, the basic functions of the ASCET base soft-
ware. ASCET-MD is needed in addition for the modeling functions.

1.1 Components

The ASCET-RP V5.4 installation includes the following components:

• Integration of the ES1130 and ES11351;

• Integration of the I/O boards, including ETK Bypass and CAN Bypass ,
for the targets ES1130 and ES1135 (RTIO package);

• GNU compiler;

• Documentation and examples.

1.2 Installation

The ASCET base software and the ASCET-RP software are supplied on a com-
mon CD-ROM. Before installing the ASCET-RP V5.4 software on your PC you
have to install the ASCET base software.
Start first the installation program ASCET.exe. Continue with the installa-
tion program ASCET-RP.exe from the CD-ROM.

Details on the ASCET-RP V5.4 installation can be found in the release note.

Sample Files

After the installation of ASCET-RP V5.4, the sample databases exported from
ASCET are located in the EXPORT directory of your ASCET installation in the
RTIOTutorial.exp and INTECRIO_Tutorial.exp files.

1. The term ES113x is used tthroughout this manual for an arbitrary system control-
ler.
Introduction 11

12
1.3 Manual Structure

The ASCET-RP V5.4 user’s guide consists of three main sections:

• General Section

• Real-Time Input-Output Package (including Bypass Interface)

• Tutorial

The general section is intended for all users of ASCET-RP V5.4. Here, the users
find information about the structure, installation and usage of the ASCET-RP
V5.4.

The subsequent chapters introduce and explain the functionality and operation
of the RTIO package of the ASCET-RP V5.4.

The tutorial contains lessons about experimenting with INTECRIO, as well as
the configutration of several boards.

1.4 Conventions

1.4.1 Documentation Conventions

Instructions are phrased in a task-oriented format as shown in the following
example:

To reach a goal:

• Execute operation 1.

Explanations are given below an operation.

• Execute operation 2.

• Execute operation 3.

In this manual, an action is a sequence of operations that need to be executed
in order to reach a certain goal. The title of an action usually expresses the
result of the operations, such as "To create a new component" or "To rename
an item". The action descriptions often include screenshots of the correspond-
ing ASCET window or dialog box related to the action.

1.4.2 Typographic Conventions

The following typographic conventions are used throughout this manual:

Select File → Open. Menu options are printed in bold characters.

Click OK. Button labels are printed in bold characters.

Press <ENTER>. Key commands are printed in small capitals
enclosed in angle brackets.
Introduction

Important notes for the users are presented as follows:

The "Open File" dialog window
opens.

The names of program windows, dialog boxes,
fields, etc. are enclosed in double quotes.

Select the setup.exe file. Text strings in list boxes on the screen, in pro-
gram code and in path and file names are
printed using the Courier font.

A distribution is always a one-
dimensional table of sample points.

Emphasized text portions and newly intro-
duced terms are printed in italic font face.

The OSEK group (see
http://www.osekvdx.org/) has
developed certain standards.

Links to internet documents are set in blue,
underlined font.

Note

Important note for the user.
Introduction 13

14
 Introduction

2 Configuring Experimental Targets

ASCET Rapid Prototyping V5.4 (ASCET-RP V5.4) contains the compiler and
linker tools required for producing executable files for a transputer or PowerPC
target, and an extension of the ASCET development environment for the hard-
ware integration. The target itself can be selected in the target options of the
project. That way the targets are fully integrated into ASCET.

The configuration of the compiler and the linker, as well as the description of
the interface to the actual target hardware is not described in ASCET directly,
but either with the help of the ETAS Network Manager or with the help of
*.ini files. Chapter 2.1 describes the hardware options of ASCET-RP, hard-
ware connection using the ETAS Network Manager is described in chapter 2.2.
Chapter 2.3 describes the configuration of the host interface via changes in
target.ini, as well as the configuration of the ethernet interface.

Chapter 2.4 and chapter 2.5 describe the selection and configuration of the
compiler.

Chapter 2.6 describes some options of the ascetsd.ini file that cannot be
changed from within ASCET. To change these settings, the file has to be
edited.

Structure of the PowerPC E-Target Directories

Installing ASCET-RP V5.4 results in a target directory with two different Pow-
erPC subdirectories being created in the ASCET directory. These subdirectories
contain E-target-specific information, configuration and library files.
The following table shows the both subdirectories:

The ...\Target\ES113x directory contains files used by both computer
nodes.

It is not necessary to change the system root path in the ASCET options win-
dow to correspond to the E-target.

ASCET Subdirectory E-Target Computer Node

..\Target\ES1130 ES1000.2/ES1000.3a ES1130

..\Target\ES1135 ES1000.2/ ES1000.3 ES1135

a: The terms ES1000 or ES1000.x are used in this manual, unless a particular
target is meant.
Configuring Experimental Targets 15

16
2.1 The Hardware Options

ASCET-RP adds the "Hardware" tab to the ASCET option window for easy
setting of the interface. In that tab, you can specify the following options. It is
suggested that you select the item you use most frequently.

• Use ETAS Network Manager (enables ’Select Hardware’)

Use this option to determine whether the ETAS Network Manager
(chapter 12) is used (activated, default) or not.
When the option is activated, the Select Hardware button and the
Extras → Select Hardware menu option in the project editor become
available.

• Skip HW selection if exactly one matching target instance found

When this option is activated (default), "Experimental Target Hardware
Selection" window does not open when only one hardware, which
matches the project, is found upon experiment start.
When this option is deactivated, the next option determines whether
the "Experimental Target Hardware Selection" window opens each
time you start an experiment. This window offers all experimental tar-
gets connected to xour PC for selection.

Note

The following two options are relevant only when you are using the ETAS
Network Manager.
Configuring Experimental Targets

• Skip HW selection if last used target instance found

When this option is activated (default), "Experimental Target Hardware
Selection" window does not open when only that hardware which was
last used with the project is found upon experiment start.
When this option is deactivated, the previous option determines
whether the "Experimental Target Hardware Selection" window opens
each time you start an experiment.

• HW connection

In this combo box, you select whether the ES1000 and your PC are, by
default, connected via the ES1120 control unit (indirect
(ES1120), default) or via the ES113x simulation computer (direct
(ES113x)).

• Try alternative HW connection

Use this option to determine whether a connection to both the device
selected in the "HW connection" combo box and the other device
(activated, default) or only to the selected device (deactivated) is to be
searched.

• Check HW connection before Build

Use this option to determine whether, upon starting an experiment
(Open Experiment), the hardware search is performed before and
after (activated, default) or only after the build process. If no suitable
hardware is detected, an error message occurs.

When the option is activated, you can correct the error by adding a
suitable hardware without losing the time for the build process.

When the option is deactivated, you can perform the build process
without an error message, despite missing hardware.

2.2 Hardware Connection with the ETAS Network Manager

The ETAS Network Manager offers several advantages for the hardware con-
nection.

Note

The following two options are relevant only when you are not using the
ETAS Network Manager.

Note

The following option is always relevant.
Configuring Experimental Targets 17

18
• You can use a single network adapter for the ETAS hardware and our
company network.

• You can assign individual network addresses.

• You can select simulation controllers (ES113x) from an ETAS hardware
network.

Working with the ETAS Network Manager is described in chapter 12. Here,
you find information regarding hardware connection using the EAS Network
Manager.

To activate ETAS Network Manager usage:

• In the component manager, select Tools →
Options.

The "Options" dialog window opens.

• Open the "Hardware" tab.

• Activate the Use ETAS Network Manager
(enable ’Select Hardware’) option.

If only this option is activated, the hardware
selection window "Experimental Target Hard-
ware Selecvtion" wondow opens at each
experiment start.

• Activate the Skip HW selection if * options
to skip the hardware selection window under
the respective conditions.

• Activate the Check HW connection before
Build if the hardware search is to be per-
formed before the build process.

In addition to this automatic, you can open the "Experimental Target Hardware
Selection" window from the project editor at any time.

To open the hardware selection window manually:

• Select Extras → Select Hardware

or

Note

The Select Hardware button and the Extras → Select Hardware menu
option are only available when the Use ETAS Network Manager (enable
’Select Hardware’) option is activated.
Configuring Experimental Targets

• click on the Select Hardware button.

The hardware selection window opens.

2.2.1 The Hardware Selection Window

The hardware selection window, named "Experimental Target Hardware Selec-
tion", contains the following elements:

• Field "Select simulation board of type <type>"1

This field displays, below the main entry HWC (symbol), all simula-
tion controllers (ES113x, symbol) connected with the PC. The sim-
ulation controller label contains, in additon to stating whether the
ES113x is connected directly or indirectly to the PC, further informa-
tion; see page 20. Available boards (symbol) are displayed below
the simulation controller.

For the experiment, select the simulation controller you have entered in
the code generation options of your project.

1. The name element <type> is determined by the target selected in the respective
project.
Configuring Experimental Targets 19

20
• Options Skip HW selection if exactly one matching target
instance found and Skip HW selection if last used target instance
found

These options offer the same functionality as the identical options in
the "Hardware" tab of the ASCET option window (see chapter 2.1).
The settings performed here are transferred to the "Hardware" tab and
vice versa.

• Button Set Alias Name

You can use this button to assign an arbitrary name to the ES113x or
ES1120.

• Button Refresh

This button updates the "Select simulation board of type <type>" field.
Hardware newly connected or switched on is displayed afterwards,
hardware that was removed or switched off, disappears from the dis-
play.

• Buttons OK and Cancel

Click OK to accept the selection, or Cancel to close the hardware
selection window without accepting the selection.

If the simulation controller is directly connected to the PC, its entry in the
"Select simulation board of type <type>" field looks as follows:

ES113x - Name:<alias> - SN:<serial number> -
IP:<IP address> - <direct> - ES1120 present
[<SW>, <syslib version>, <boot mode>,
ProgID=<ID>]

• ES113x is the simulation controller label.

• Name:<alias> is the optional name you can assign to the simulation
controller.
If you do not specify a name, this part is absent.

• SN:<serial number> is the serial number of the ES113x.

• IP:<IP address> is the IP address of the ES113x.

• <direct> indicates that the ES113x is connected directly to the PC.

• ES1120 present indicates that the ES1000 contains an uncon-
nected ES1120.
If the ES1000 contains no ES1120, this part is absent.

• <SW> is the software you used to load a program to the ES1000 (e.g.,
ASCET or INTECRIO).
Configuring Experimental Targets

• <syslib version> is the version of the hardware system library in
use.

• <boot mode> indicates whether the project was started from the
Flash memory when the ES1000 was switched on (ROM), or whether a
download followed power-on (RAM).

• ProgID=<ID> is the identifier <ID> assigned to the project by the
software <SW>.

If the simulation controller is indirectly connected to the PC, i.e. via ES1120, its
entry looks as follows:

ES113x - <indirect via ES1120 - Name:<alias> -
SN:<serial number> - IP:<IP address>>
[<SW>, <syslib version>, <boot mode>, ProgID=<ID>]

• ES113x is the simulation controller label.

• <indirect via ES1120 ...> indicates that the ES113x is con-
nected indirectly to the PC.

• Name:<alias> is the optional name you can assign to the ES1120.

• SN:<serial number> is the serial number of the ES1120.

• IP:<IP address> is the IP address of the ES1120.

• <SW>, <syslib version>, <boot mode> and ProgID=<ID>
have the same meaning as the identical parts in a direct connection.

2.3 Interface Setup Without ETAS Network Manager

For special use cases, ASCET-RP offers the possibility to work without the ETAS
Network Manager, in accordance with previous ASCET-RP versions. In this
case, the ethernet interface is set up for ASCET in the target.ini file of the
target you are using. The files are located in the ..\Target\ES1130 or
..\Target\ES1135 directory.

To determine the ES1000 connection:

• In the Component Manager, select Tools →
Options.

The "Options" dialog window opens. The
options are described in chapter 2.1.

• Open the "Hardware" tab.

• Deactivate the Use ETAS Network Manager
(enable ’Select Hardware’) option.

• In the "HW connection" combo box, select
the appropriate entry for your ES1000.
Configuring Experimental Targets 21

22
• Activate the Try alternative HW connection
option when a connection to both the device
selected in the "HW connection" combo box
and the other device is to be searched.

When the option is deactivated, only a con-
nection to the selected device is searched.

• Activate the Check HW connection before
Build if the hardware search is to be per-
formed before and after the build process.

When the option is deactivated, the hardware
search is performed before and after the build
process.

• Finally, click OK to accept your settings.

Depending on your selection, a particular IP address variable from the respec-
tive target.ini file in the target subirectory is used for the ASCET experi-
ment environment

• If the ASCET host PC is connected to the control unit (ES1120) of the
ES1000.x, the following variable is used:

– ES1130

IndirectIpAddress=192.168.40.10
;Default IP-Address for ES1120.x

– ES1135

IndirectIpAddress=192.168.40.10
;Default IP-Address for ES1120.x

• If the ASCET host PC is connected to the computer node (ES1130) of
the ES1000.x, the following variable is used:

– ES1130

DirectIpAddress=192.168.40.11
;Default IP-Address for ES1130.x

– ES1135

DirectIpAddress=192.168.40.15
;Default IP-Address for ES1135.1

ETAS provides Ethernet documentation with tips on how to install and config-
ure the network interface of your PC for connecting the ES1000.x system.
Once you have installed ASCET manuals, the following Ethernet document is
available in the ..\ETAS\ETASManuals\ASCET V5.1\ES1000 directory:

• ES1000 Ethernet InstallationGuide.pdf (installation)
Configuring Experimental Targets

2.4 Selecting a Compiler

The GNU Cross Compiler is integrated in ASCET-RP for the ES1130 and
ES1135 target. The Diab Data Compiler can be used for the ES1130 target (not
included in delivery).

Tab. 2-1 Target/Compiler Overview

2.4.1 Using Your Own Compiler

The MS-DOS version of the GNU Cross Compiler (GNU-C (PowerPC) in the
user interface) is supplied as a standard part of the ASCET-RP V5.4 package. If
you want to use your own compiler, please take the following points into con-
sideration.

1. The path of the GNU-C (PowerPC) code generation option has to be
reset to the new compiler in the ASCET dialog "Options".

Target Compiler

ES1130 GNU Cross Compiler, Diab Data V4.1a

ES1135 GNU Cross Compiler
Configuring Experimental Targets 23

24
2. In the comptool.ini file of the relevant target (ES1130 or ES1135),
the RelativeToolPath variable has to be changed from
RelativeToolPath=\powerpc-eabi\bin to (for example)
RelativeToolPath=\win32\bin.

2.4.2 Changing to the GNU Cross Compiler

The ASCET option window, "Code Generation" tab, contains a default path
for the Diab Data compiler even if the compiler is not installed. Likewise, you
can select the Diab Data compiler in the target options of a project even if the
compiler is not installed.

If you are working with an older project that uses the ES1130 target with the
Diab Data compiler, no error message is shown when you open the project.
Only the generation of executable code produces an error message in the
ASCET monitor window.

If you are working with an older project that uses the ES1112 target, an error
message is displayed when you open the project, and the missing target is
replaced by the target PC.

In both cases, you have to select a suitable combination of target and compiler
for the project. Proceed as follows.

Note

Paths and system variables should only be set to the version of the compiler
to be used in ASCET.
Configuring Experimental Targets

To change to the GNU Compiler:

• In the project editor, select the Specify Code
Generation Options button.

The "Settings for:" window opens.

• In the "Build" tab, select the target ES1130
or ES1135 and the GNU-C (PowerPC)
compiler.

• Click OK.

Depending on which target the project used,
you now have to copy the C-Code. The proce-
dure is described in section "To copy operating
system settings and C-Code:" on page 25.

• Finally, select Component → Touch →
Recursive so that all components of the
project are recompiled in the next run.

To copy operating system settings and C-Code:

• Select the "OS" tab in the project editor.

• Select Operating System → Copy From Tar-
get from the project editor.

The "Selection Required" window opens.

• From the "Selection Required" dialog box,
select the original target of the old project.

• Click OK.

The operating system code is copied from the
old target to the ES1130 or ES1135 target.
Configuring Experimental Targets 25

26
• In the project editor, select Extras → Copy
C-Code From.

The "Selection Required" window opens.

• In the "Selection Required" window, select
the original target and experiment of the old
project.

• Click OK.

The code is copied from the old target and
experiment to the current settings.
Configuring Experimental Targets

2.4.3 Changing to the Diab Data Compiler

The MS-DOS version of the Diab Data 4.1a Compiler was supplied up to ver-
sion 4.2 of TIPExp. The Diab Data Compiler can also be used with ASCET-RP
V5.4 for the ES1130 target. However, it must be ordered and installed sepa-
rately.

2.5 Configuring the Compiler

For each target installed with ASCET (including the PC target), a target direc-
tory is created. This target directory contains all target specific files. Among
them is the compiler configuration file comptool.ini. Changes to this file
must be done with care, because it has influence the overall behavior of the
compiler and linker run.

2.5.1 General Arguments

The compiler uses several arguments which are defined as follows:

• %bp% is the compiler base path, e.g. c:\ETAS\ASCET5.1\bc

Note

The ES1135 target cannot be used with the Diab Data compiler.
Configuring Experimental Targets 27

28
• %lp% is the compiler library path, e.g.
c:\ETAS\ASCET5.1\bc\libs

• %ip% is the compiler include path, e.g.
c:\ETAS\ASCET5.1\bc\include

• %tp% is the compiler tool path, e.g. c:\ETAS\ASCET5.1\bc\bin

• %tarbp% is the target base path, e.g. c:\ETAS\ASCET5.1\target

• %tarsp% is the target specific path, e.g. c:\ETAS\ASCET5.1\tar-
get\pc

• %fn% is the name of the file to be processed

• %LD% is the line delimiter character(s)

• %SP% is the space character

Entries with multiple arguments must be given in a comma separated list.
Leading and trailing spaces are ignored (if needed %SP% must be inserted).

2.5.2 Initialization Entries

• DOSVariableSettings: If the compiler/linker tools need a DOS
variable, it can be set here, e.g. DOSVariableSettings=%lp%\ for
the INMOS tool set.

• FilesInWorkingDirectory: Some compilers need specific files in
the working directory. This working directory (usually the cgen direc-
tory), however, may be deleted each time ASCET is left, depending on
the settings in the Station Options (see chapter 2.2.1 of the ASCET
user’s guide). The files specified here are copied automatically to this
directory before compilation, e.g.
FilesInWorkingDirectory = %tarbp%\dos4gw.exe

2.5.3 Compiler Entries

• CompilerCall1: This specifies the compiler call that is executed
upon compilation run. You can specify more than one compiler call
with CompilerCall2, CompilerCall3 etc.

• CompilerErrorKeywords: If the error output of the compiler con-
tains one of the specified strings, these are selected and displayed in
ASCET.

• GlobalIncludeFiles: The include files are specified here which are
used for each compilation. The header file is read before each compila-
tion. Here the user can insert their own header files.

• CompilerResultExtension: The extension of the result of compi-
lation, normally .obj.
Configuring Experimental Targets

2.5.4 Linker Entries

• LinkCall1: This specifies the linker call the is executed upon linker
run. You can specify more than one linker call with CompilerCall2,
CompilerCall3 etc.

• LinkerErrorKeywords: If the error output of the linker contains
one of the specified strings, these are selected and displayed in ASCET.

• LinkerResultExtension: The extension of the result of linking,
e.g. .dll.

• ObjectLibraries: the libraries are linked to the output at each
linker run.

• ObjectFiles: these files are linked to the output at each linker run.

2.5.5 Loader Entries

Loader entries are not yet supported.

2.6 Settings in the ascetsd.ini File

The ascetsd.ini file can be found in the ETASData\ASCET5.1 directory
of your ASCET installation. The following settings in the file cannot be
changed from within ASCET-RP:

• Bubbledelaytime: specifies the delay time in milliseconds before a
tool tip appears.

• MeasureCycleTime: specifies the time in milliseconds for transfer-
ring measurement data for numeric and bar displays to the host. If
there are problems with L1-Communication between host and target,
increase this number.

• ExitWithPrompter: if yes is specified, each time you leave the
experimentation environment you are prompted to save the environ-
ment, if no is specified, no prompter appears (and the environment is
not saved).

All other settings are either internal (should not be changed) or can be
changed from inside ASCET. In general, modifications to the *.ini files
should be done with care because they may influence the overall behavior of
the tool.
Configuring Experimental Targets 29

30
 Configuring Experimental Targets

3 Tips on Using ASCET-RP

3.1 Preprocessing available Data Bases

ASCET data bases which were made with ASCET versions prior to V4.1.1 must
at first be stored at least with an ASCET version V4.1.1, before they can be
opened and converted with ASCET V5.1.

3.2 Converting Projects for ES1000.1 to ES1000.2/ ES1000.3

ASCET projects which were created for the ES1000.1 E-target have to be con-
verted for the ES1000.2/ ES1000.3 E-target. The following steps have to be
executed for the conversion.

To convert an ASCET project for ES1000.1 to ES1000.2/ ES1000.3

• Load the ASCET project.

A message is displayed that the ES1112 target
is no longer available.

• Click OK to confirm the message.

The project opens; the target >PC< is selected
instead of the unavailable target.

Note

Detailed informations to convert very old ASCET projects (with TIPExp V3.x
and older, Target PPC) are given e.g. in the TIPExp V4.4 manual.
Tips on Using ASCET-RP 31

32
• Click the Specify Code Generation
Options button.

• In the "Settings for" window, "Build" tab,
select the following options:
Target: >ES1130< or >ES1135< and
Compiler: GNU-C (PowerPC).

• Click OK to close the "Settings for" window.

• Select the "OS" tab in the project editor.

• In the project editor, select Operating
System → Copy From Target.

• In the "Selection Required" window, select
the original target and click OK.

The operating system code is copied from the
ES1112 target to the ES113x target.
Tips on Using ASCET-RP

• Select Extras → Copy C-Code From from the
project editor.

• In the "Selection Required" window, select
the original combination of target >ES1112<
and experiment of the old project.

• Click OK.

The code is copied from the old target and
experiment to the current settings.

The project can now be edited for the ES1000.2/ ES1000.3 system.

3.3 Using dT

The ERCOSEK operating system is implemented for the ES113x target.
ERCOSEK enables access to the time dT which has elapsed since the last and
second last call of the running task. dT always refers to the task in which the
variable is used (see Fig. 3-1).

Fig. 3-1 dT Scheme

A

B

dTB1

dTA1 dTA2

Priorität

Zeit

Task B

Task A

Hintergrund

dTA3
Tips on Using ASCET-RP 33

34
In ERCOSEK, dT is a global uint32 variable. It is declared in one of the
ERCOSEK header files and contains the value for the current task in units of
system ticks.

dT can be accessed from ASCET using the dT button in the editors. This
enables you to create an element (real64) which contains the time in units of
seconds.

If a user does not generate this element in the C-Code editor but still accesses
dT, no error message appears because dT is declared in the ERCOSEK files. But
as dT in ERCOSEK and dT in ASCET have different units (system ticks or sec-
onds respectively), the calculations are incorrect. The user should therefore
ensure that he/she generates the corresponding element with the dT button.
Tips on Using ASCET-RP

4 Rapid-Prototyping Experiments

This chapter describes the different possibilities of running a Rapid-Prototyping
experiment.

4.1 Experimenting with ASCET

If you want to run the Rapid-Prototyping experiment in ASCET, you can choose
between an online and an offline experiment in the project editor. For more
details, please refer to the "Experimenting with Projects" section in the ASCET
User’s Guide; the ASCET experiment environment is described in detail in the
ASCET User’s Guide in the section "The Experiment Environment".

Only the special features of the online experiment are described here.

4.1.1 The User Interface

The user interface of the online experiment is very similar to that of the offline
experiment. However, the buttons for controlling the experiment and the
NVRAM cockpit (ES1135 only), the "Task" combo box and the functions in the
Experiment menu are different from the offline experiment.

"Task" combo boxControl buttons (experiment, NVRAM cockpit)
Rapid-Prototyping Experiments 35

36
Buttons

1. Exit to Component (ends the experiment and invokes the project edi-
tor)

2. Load Environment (loads an experiment environment, i.e. predefined
measure and calibration windows with assigned variables)

3. Save Environment (saves the current experiment environment)

4. Save Environment As (saves the current experiment environment under
a freely definable name)

5. Stop ERCOS (stops the operating system and thus the experiment)

6. Start ERCOS (starts the operating system and thus the experiment)

7. Stop Measurement (stops measurement, i.e. the data display)

8. Start Measurement (starts measurement, i.e. the data display)

9. Open Data Logger

10. Open NVRAM Cockpit (cf. page 78)

This button only exists if you selected the ES1135 as target.

11. Open CT Solver (opens a window in which you can configure the inte-
gration method)

This button only exists if you are experimenting with a CT block or a
hybrid project.

12. Update Dependent Parameters (updates the values of dependent
parameters)

13. Expand / Collapse Window (shows/hides the component display)

14. Always on top (keeps the experiment window on top)

15. Navigate down to child component (shows the selected included com-
ponent)

16. Navigate up to parent component (shows the parent component)

Experiment Menu

– Data Logger

Opens the Data Logger.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rapid-Prototyping Experiments

– NVRAM Cockpit
(Only available when the target ES1135 was selected in the code
generation options.)

Opens the NVRAM Cockpit.

– Stop ERCOS

Stops the operating system.

– Start ERCOS

Starts the operating system.

– Stop Measurement

Stops the measurement.

– Start Measurement

Starts the measurement.

– Open Target Debugger

Opens the debugger window for C code components.

– Update Calibration Windows

Updates the content of calibration windows.

– Close Calibration Windows

Closes all open calibration windows.

– Close Measure Windows

Closes all open measure windows.

The other elements of the user interface correspond to those of the offline
experiment; they are described in the "The Experiment Environment" section
of the ASCET User’s Guide.

4.1.2 Running Online Experiments

Start the online experiment environment for a project from the project editor.

To start the online experiment:

• Open the project you require or the compo-
nent.

• If you want to experiment with a component,
open the relevant default project.
Rapid-Prototyping Experiments 37

38
• Select the target ES1130 or ES1135 in the
code generation options of the project or
default project.

In the "Experiment Target" combo box you
can select either Offline (RP) or Online
(RP).

The buttons Open Experiment for selected
Experiment Target and Reconnect to
Experiment of selected Experiment Target
are now available.

• Select Online (RP) from the "Experiment
Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment

or

• click the Open Experiment for selected
Experiment Target button.

To select hardware (with ETAS Network Manager):

When you activated the Use ETAS Network Manager (enables ’Select
Hardware’) option in the hardware options (chapter 2.1), the hardware selec-
tion window (chapter 2.2.1) opens under certain conditions.

• In the "Select simulation board of type
<type>" field, select the hardware you want
to use.

The OK button becomes available.

• If required, perform other settings.

• Close the window with OK.

The system checks whether the selected hard-
ware is available and agrees with the target
you selected in the code generation options of
the project. If this the case, the experiment
environment opens.

Note

If you are working without EATS Network manager, skip this section and
continue reading with section "What to do in case of an error:" on page 39.
Rapid-Prototyping Experiments

What to do in case of an error:

If no agreement is found between selected and available hardware, the follow-
ing error message opens.

• Click Yes to repeat the search for a hardware
connection.

Or

• Click No to start the build process without
hardware connection.

When you are using the ETAS network Man-
ager, the hardware selection window opens
again after the Build process.

When you are not using the ETAS network
Manager, you are asked, after the Build pro-
cess, whether you want to repeat the search
for a suitable hardware or not.

Or

• Click Cancel to abort the experiment.

To open the experiment environment for the online experiment:

The default experiment environment for the component is opened immedi-
ately after staring the experiment (cf. page 37) when you are working without
ETAS Network Manager, or after successful hardware selection (cf. page 38)
when you are working with the ETAS Network Manager.

• If several environments have been saved,
select the one to be opened.
For more details, refer to the section "Loading
and Saving Environments" in the ASCET User’s
Guide.
Rapid-Prototyping Experiments 39

40
If your project contains several tasks, you
could well be prompted to select one acquisi-
tion task for each measure value.

• In the "Selection Required" window, select
one task and click OK.

Later on, you can select the acquisition task in
the "Task" combo box.

Setting up an online experiment only entails the setting up of the measure and
calibration windows. The measure and calibration windows in the online
experiment are the same as those in the offline experiment. "The Experiment
Environment" section in the ASCET User’s Guide explains how to use them.

Once the experiment has been set up, you can start it. While the online exper-
iment is running, you can modify the display options in all measure and calibra-
tion windows, open and close measure/calibration windows and modify data
values with the calibration system.

To start an experiment and measurement:

• Open the experiment environment for the
project you want to experiment with.

• Select Experiment → Start ERCOS

or

• click the Start ERCOS button.

The operating system and the experiment are
started. Measure data is not displayed yet.

• Select Experiment → Start Measurement

or
Rapid-Prototyping Experiments

• click the Start Measurement button.

Measurement is started and all values set up in
the measure system are displayed in the rele-
vant windows.

To stop measurement:

• Select Experiment → Stop Measurement

or

• click the Stop Measurement button.

Measurement is stopped, but the experiment
continues. When measurement is restarted,
the time axis is set to the current value.

Note

The measurement may affect the real-time
behavior of the model.
Rapid-Prototyping Experiments 41

42
All settings remain active. The measure data is
retained in the oscilloscope window; you can
analyze the data.

To stop the experiment:

• Select Experiment → Stop ERCOS

or

• click the Stop ERCOS button.

Any measurement which is currently running
is stopped. The operating system, and thus
the experiment, is stopped and enters the
inactive mode. The inactive mode of the oper-
ating system may contain one task with trig-
ger mode init that is executed when the
operating system is stopped. This can be used
to reset external hardware, for instance. When
the operating system is restarted, it goes
through the start mode and the correspond-
ing init task again. There is no pause func-
tion for the operating system.

• Click the Exit to Component button to exit
the experiment environment and to activate
the project editor.

• Select File → Exit to exit the experiment envi-
ronment and close the project.

Also as with the offline experiment, you can take a look at the implementation
of the project with which you are experimenting from the experiment environ-
ment at any time. It does not matter whether the experiment is running or
whether it has been stopped.

As with the offline experiment, components specified in C Code offer addi-
tional opportunities for displaying debugger information or error messages
during experimenting. You can embed debugger or error messages in your
C code. Debugger information is displayed in the Debugger window which
can be opened during experimenting. Error messages are displayed in the
ASCET monitor window. The debugger in the online experiment works like the
debugger in the offline experiment (see the section "Running Experiments" in
the ASCET User’s Guide).
Rapid-Prototyping Experiments

4.1.3 Standalone Mode

If you have a suitable experimental target, you can run ASCET experiments in
standalone mode, without the experimentation environment. For this purpose
the experimental target has to be equipped with flash memory and it must be
possible to boot from it.

To load the experiment in the Flash memory:

• From the "Experiment Target" combo box,
select Online (RP).

• Select Component → Flash Target.

When you activated the Use ETAS Network
Manager (enables ’Select Hardware’)
option in the hardware options (chapter 2.1),
the hardware selection window
(chapter 2.2.1) opens under certain condi-
tions.
Section "To select hardware (with ETAS Net-
work Manager):" describes the required
actions in this window.

The code generated by ASCET is written to the
flash memory of the experimental target
instead of to the RAM. A startup routine for
booting from the flash memory is integrated
into the code. The target hardware will now
execute the ASCET model after each reset.

To experiment in standalone mode:

• Select Component → Reconnect To Experi-
ment

or

• click on Reconnect to Experiment of
selected Experiment Target to switch to a
running online experiment.

When you activated the Use ETAS Network
Manager (enables ’Select Hardware’)
option in the hardware options (chapter 2.1),
the hardware selection window
(chapter 2.2.1) opens under certain condi-
tions.
Rapid-Prototyping Experiments 43

44
Section "To select hardware (with ETAS Net-
work Manager):" describes the required
actions in this window.

The online experimentation environment will
start up as if the experiment had been started
from scratch.

You can also reconnect to online experiments running in non-standalone
mode that you disconnected from earlier. To disconnect from a running exper-
iment simply exit the experimentation environment, without first stopping the
online experiment running on the experimental target.

4.2 Experimenting with INCA

You can not only experiment with your project in ASCET but also in INCA (from
Version 4.0.4), together with the add-on INCA-EIP. There is a menu function
for this in the project editor which enables a convenient transfer of the exper-
imental project.

To initiate a transfer:

• Open the project with which you want to
experiment.

• From the code generation options in the
project editor, select the ES1130 or ES1135
target and the compiler GNU-C (PowerPC).

• From the „Experiment Target“ combo box,
select INCA.

The Transfer Project to selected Experi-
ment Target and Reconnect to Experiment
of selected Experiment Target buttons are
now available.

• Click on Transfer Project to selected Exper-
iment Target

or
Rapid-Prototyping Experiments

• select Component → Transfer Project.

The "INCA Project Transfer" dialog opens.

In this window, you define the INCA database, the workspace, and the project
within the INCA database you want to use.

If you click one of the Browse buttons or the OK button, INCA will be
lauched, if it is not already used. If you have several INCA versions installed, the
version that was installed last will be launched – even if this is not the version
with the highest version number.

To set the INCA database path:

• In the "INCA Project Transfer" window, enter
an existing database path in the "INCA Data-
base" field

or

Note

If you have a version of INCA which is too old (i.e. V3.x or older) or INCA is
not installed on your PC, an error message is displayed which cancels the
transfer.
Rapid-Prototyping Experiments 45

46
• click on the Browse button to search for a
database.

The "Select INCA database path" window
opens. The databases are shown by red fold-
ers.

• Select an INCA database path and click OK.

Or

• click the New button to create a new direc-
tory, in which a new INCA database for the
project transfer will be created. The new,
empty directory is shown by a yellow folder.

Note

In this window, ASCET databases are marked in exactly the same way as
INCA databases. Make sure you really do select an INCA database.
Rapid-Prototyping Experiments

To select an INCA workspace:

• In the "INCA Project Transfer" window, enter
the path and name of an existing workspace
in the "INCA Workspace" field

or

• click on the Browse button to search for a
workspace.

The "INCA Workspace Selection Dialog" win-
dow opens. It displays the workspaces in the
selected INCA database.

• Select an existing workspace

or

• create a new workspace in a new or existing
folder. The procedure is described on page 47.

• Once you have selected a workspace, click
OK.

To create a folder/workspace in the "Workspace Selection Dialog" win-
dow:

1. Creating a folder

• In the "INCA Workspace Selection Dialog"
window, activate the database name or a
folder.

The New Folder button is activated.

• Click on New Folder.
Rapid-Prototyping Experiments 47

48
• In the "Create New INCA Folder" window,
enter a name and click on OK.

The new folder is created.

2. Creating a workspace

• Activate a folder.

The New Workspace button is activated.

• Click on New Workspace.

The „INCA Workspace Template Selection Dia-
log“ window opens.

• Select a template for the workspace and click
OK.

The dialog window „Create New INCA Work-
space“ opens.

The name [ASCET-WS] <ascet project
name> is assigned.

• Enter a name for the workspace and click on
OK.

The new workspace is created in the selected
folder and selected.
Rapid-Prototyping Experiments

To select an INCA device:

• Enter a device in the "INCA Project Transfer"
window in the "INCA Device" field

or

• click on the Browse button to search for a
device.

The "INCA Device Selection Dialog" window
opens. It contains all suitable devices.

• Select a device and click on OK.

To select an INCA project:

• In the "INCA Project Transfer" window, enter
the path and name of an existing project in
the "INCA Project" field

or
Rapid-Prototyping Experiments 49

50
• click on the Browse button to search for a
project.

The "INCA Project Selection Dialog" window
opens. It displays the projects in the selected
INCA database.

• Select an existing project

or

• create a new project in a new or existing
folder. The procedure is described on page 50.

• Once you have selected a project, click on OK.

To create a folder/project in the "INCA Project Selection Dialog" win-
dow:

1. Creating a folder

• To create a new folder, proceed as described
under "Creating a folder" on page 47.

2. Creating a project

• Activate a folder.

The New INCA Project button is activated.

Note

The selected project is replaced by the trans-
ferred project without any warning when the
transfer starts.
Rapid-Prototyping Experiments

• Click on New INCA Project.

The "Create New INCA Project" input window
opens. The name [ASCET-Prj] <ascet
project name> is assigned.

• Enter a name for the project and click on OK.

The new project is created in the selected
folder and selected.

To start a transfer:

• Once you have made all settings in the "INCA
Project Transfer" window, click on OK.

The transfer of the ASCET project to INCA is
executed. First of all the ASAM-MCD-2MC
code is generated and the project is refreshed
if necessary (i.e. code generated, compiled
and linked).

If you selected an existing project in the "INCA
Project" field, it is overwritten.

Once transfer is complete, you can execute the experiment in INCA. For more
details on how to do this, refer to the INCA ans INCA-EIP documentation.

In addition, the Back-Animation in ASCET provides you with a special experi-
ment environment in which you can calibrate values in the standard manner.
The measure system of this experiment environment works in the standard
way but is reduced in function in comparison to offline and online experiments
in ASCET: oscilloscope, Recorder and Data Logger are not available. These
need synchronous measuring which is not given for Back-Animation when
experimenting with INCA. Instead, use the relevant instruments of INCA.

To use Back-Animation:

• Start the INCA experiment with your project.
Rapid-Prototyping Experiments 51

52
• In the ASCET project editor, make sure that
INCA is selected in the „Experiment Target“
combo box.

• Klick the Reconnect to Experiment of
Selected Experiment Target button

or

• select Component → Reconnect to Experi-
ment.

When you activated the Use ETAS Network
Manager (enables ’Select Hardware’)
option in the hardware options (chapter 2.1),
the hardware selection window
(chapter 2.2.1) opens under certain condi-
tions.
Section "To select hardware (with ETAS Net-
work Manager):" describes the required
actions in this window.

The connection to the running INCA experi-
ment is established. The "Physical Experiment
..." window opens. "INCA Backanimation"
indicates the special experiment environment.

Unlike with the online and offline experiment,
this window only contains the "Graphics" tab.

• Create the necessary measure windows (see
ASCET User’s Guide, "The Measure System"
section) and set these up.
Rapid-Prototyping Experiments

• Create the necessary calibration windows (see
ASCET User’s Guide, "The Calibration Sys-
tem" section) and set these up.

• Select Experiment → Start Measurement

or

• click the Start Measurement button to start
measurement.

The displays of the measure and calibration
windows are updated cyclically.

You can load, save and export environments as described in the section "Load-
ing and Saving Environments" in the ASCET User’s Guide. When you load an
environment which contains unavailable elements (e.g. an oscilloscope), these
are ignored.

The monitor function (see the "Monitor" section in the ASCET User’s Guide)
for monitoring numeric and logical variables is available. You can activate the
function for individual or all variables of a component. The setting of the mon-
itor function is saved in the environment.

You can navigate between the components of your project (see the section
"Navigating in Block Diagrams" in the ASCET User’s Guide).

If your project contains state machines, you can use the animation function for
state machines (see the section "Experimenting with State Machines" in the
ASCET User’s Guide).

You can write data from the experiment into the ASCET model or onto the
hard disk; you can also read in data from the hard disk. This is described in the
ASCET User’s Guide in the section "Manipulating Data".

To end Back-Animation:

• Select File → Exit

or

• click the Exit to Component button.

The Back-Animation is ended and the experi-
ment environment closed. The INCA experi-
ment, however, continues running.
Rapid-Prototyping Experiments 53

54
4.3 Experimenting with INTECRIO

If you have installed both ASCET-RP and INTECRIO, you can also experiment
with your Rapid-Prototyping project in INTECRIO. There is a function for this
purpose in the project editor which allows convenient transfer of the experi-
ment.

This chapter contains general instructions for experimenting with INTECRIO. A
specific sample task can be found in section 11.1 "Tutorial – Experimenting
with INTECRIO".

First of all, as usual, you create the ASCET project. You have all possibilities
available to you which are possible in ASCET. But note the following points:

• By default, messages that are only read in ASCET (i.e. receive messages
without relevant send messages) are the signal sinks in INTECRIO. Mes-
sages that are only written to (i.e. send messages without the relevant
receive message) are the signal sources in INTECRIO. Messages that are
both read and written in ASCET are excluded from integration.

If required, you can make the latter appear as signal sources in INTEC-
RIO, see page 57.

• When your project contains unresolved messages (imported messages
without corresponding export), the code generation for INTECRIO dis-
plays an error message.

You can either resolve the messages automatically or cancel the code
generation and manually resolve the messages.

• It is possible to use global variables and parameters, but this is explicitly
not recommended.

• You have to select the target ES1130 or ES1135 in the code generation
options of the project. INTECRIO is only available in the "Experiment
Target" combo box with one of these two targets.

Once you have completely specified the project, you invoke the transfer of the
project to INTECRIO as the first step in code generation.

To call transfer:

• Open the project you want to experiment
with.

• From the code generation options in the
project editor, select the ES1130 or ES1135
target and the compiler GNU-C (PowerPC).
Rapid-Prototyping Experiments

• From the „Experiment Target“ combo box,
select INTECRIO.

The buttons Transfer Project to selected
Experiment Target and Reconnect to
Experiment of selected Experiment Target
are now available.

• Click the Transfer Project to selected
Experiment Target button

or

• select Component → Transfer Project

The "INTECRIO Project Transfer" window
opens. The code generation directory from the
ASCET options window ("Code Generation"
tab) is entered in the "Path" field.

The second step is to enter the path under which the generated files are stored
in the "INTECRIO Project Transfer" window. You then have four choices:

• If you only want to generate the code required for INTECRIO, the other
fields remain empty.

This might be the case when the generated code is intended for trans-
fer.

Note

Mere code generation for INTECRIO is possible even if no INTECRIO
version is installed on your computer.
Rapid-Prototyping Experiments 55

56
• If you want to generate code and import it into INTECRIO, you must
also select the INTECRIO version and the INTECRIO workspace. The
"Systems" field remains empty.

By default, the version of INTECRIO last installed is entered in the "Ver-
sion" box. If only one INTECRIO version is installed, this is entered; the
Change button is then disabled.

If the workspace specified does not exist, it is created automatically.

• If you want to generate code, import it and integrate it into INTECRIO
(i.e. add it to an INTECRIO system project), enter the INTECRIO system
project you want to work with.

In this case, both the workspace and the system project already have to
exist.

• If you want to generate code, import and integrate it into INTECRIO
and start the Build process in INTECRIO, complete all fields and activate
Trigger INTECRIO Build.

To ensure the Build process can run, and generates a useable proto-
type, a hardware system and the operating system configuration have
to be completely specified in INTECRIO.
Rapid-Prototyping Experiments

If you want to convert messages that are read and written in the ASCET model
to appear as signal sources, deactivate the Ignore internally connected
messages option. This option works with all of the four choices. Tab. 4-1 sum-
marizes the message-to-interface-conversion for the activated and deactivated
option.

Tab. 4-1 Message conversion summary. S denotes messages sent by the
respective component, R denotes messages received by the
respective component.

Message Access in INTECRIO Interface

Project Module A Module B option activated option deactivated

S/R — —

S/R S signal source signal source

S/R R signal sink signal sink

S/R S/R signal source signal source

S signal source signal source

S S signal source signal source

S R — signal source

S S/R — signal source

R signal sink signal sink

R R signal sink signal sink

R S/R — signal source
Rapid-Prototyping Experiments 57

58
To set the path for the generated files:

• Click the Browse button next to the "Path"
field.

The "Path Selection" window opens.

• If necessary, select a volume in the "Volume"
combo box.

• Select an existing directory from the "Directo-
ries" list

or

• create a new directory using the New button.

• Click OK.

The directory is displayed in the "Path" field.
Your selection is saved with the project; it is
preselected at the next transfer.

To select the INTECRIO version:

If only one INTECRIO version is installed on your computer, that version is
selected automatically. You do not have to take any action.

• Click the Change button next to the "Ver-
sion" box.

A selection window opens. It contains all
INTECRIO versions installed on your PC.

• Select an INTECRIO version.

• Click OK.

The version is displayed in the "Versions" box.
Your selection is saved with the project.
Rapid-Prototyping Experiments

To select the INTECRIO workspace:

• In the "Workspace" field, enter name and
path of the INTECRIO workspace you want to
use.

Or

• Click the Browse button next to the "Work-
space" field.

The Windows file selection window opens.

• Select the directory which contains the work-
space.

• Select the workspace (*.iow).

• Click Open.

The workspace is displayed in the "Work-
space" field.

To select the INTECRIO system project:

A workspace has to be selected and INTECRIO has to be running for the suc-
cessful integration of the ASCET project into an INTECRIO system project.

• In the "Systems" field, enter the name of the
INTECRIO system project you want to use.

Or
Rapid-Prototyping Experiments 59

60
• Click the Browse button next to the "Sys-
tem" field.

When INTECRIO is not running, it is started
now.

The "INTECRIO systems" window opens. It
displays all system projects contained in the
workspace.

• Select the system project into which you want
to add the ASCET project.

• Click OK.

The system project is displayed in the "Sys-
tem" field.

To select the INTECRIO Build process:

If the INTECRIO system contains only one ASCET project, and if a hardware
system and the OS configuration have been created in INTECRIO, the INTECRIO
build process can be automatically started with the transfer.

• Activate the Trigger INTECRIO Build option.

This is reasonable only when both an INTEC-
RIO workspace and a system project have
been selected.

The last step is the transfer to INTECRIO.
Rapid-Prototyping Experiments

To execute transfer:

• Once you have made all the entries you need
in the "INTECRIO Project Transfer" window,
click OK.

The transfer of the ASCET project to INTECRIO
is started.

1. Problem: unresolved messages

When your project contains unresolved mes-
sages, the following window opens.

• Click OK to automatically resolve the mes-
sages.

If the automatic procedure works, the transfer
to INTECRIO continues.

Or

• Click Cancel if you want to abort the code
generation and resolve the messages manu-
ally.

In that case, you have to start the transfer
anew.

2. Problem: another INTECRIO workspace is open

When INTECRIO is running, and another
workspace is open, at the start of the transfer,
the following window opens.
Rapid-Prototyping Experiments 61

62
• Click OK to close the open workspace and
continue the transfer of the ASCET project to
INTECRIO.

Or

• Click Cancel to abort the transfer.

During the transfer, all files necessary for working with INTECRIO are gener-
ated and stored in the specified directory.
If you have made the relevant entries, INTECRIO is started, the project is
imported into INTECRIO and integrated into the system project, and the INTEC-
RIO build process is started.

The following generated files are significant for working with INTECRIO:

• <project name>.six

This file contains the description of the project interfaces in the XML-
based language, SCOOP-IX.
The interfaces of the HWC module are not included in the SCOOP-IX
file because hardware configuration is done in INTECRIO.

A SCOOP-IX interface description basically consists of the following
information:

– Name, type and size of C variables

– Name, return value and signature of C functions

– File origin of the C elements

For more details, refer to the "SCOOP and SCOOP-IX" section of the
INTECRIO User’s Guide.

• <project name>.a2l

The ASAM-MCD-2MC file generated for working with INTECRIO.

• <project name>.oil

This file contains the description of the operating system which can be
used in INTECRIO.
Here, too, the HWC module is ignored because hardware configuration
and OS configuration are done in INTECRIO.

Note

This file is never imported automatically into INTECRIO. You either
have to configure the operating system in INTECRIO manually or
import the *.oil file manually.
The format of this *.oil file does not correspond to the OSEK stan-
dard; it is an XML-based description of the operating system config-
uration.
Rapid-Prototyping Experiments

• *.c and *.h

The C code and header files for the project and its different compo-
nents. Exactly which *.c and *.h files are used by INTECRIO is con-
tained in the following block of the *.six file:

<fileContainer complete="false">

<pathBase path="{{codeDir}}" />

<!-- model specific C files -->

... *.c- and *.h files ...

</fileContainer>

In addition, further files are created during code generation and, regardless of
the directory selected, are stored in ETAS\ASCET5.1\CGen. These files are,
however, irrelevant for working with INTECRIO.

Once transfer has been completed, you can experiment with the project in
INTECRIO. Depending on what specifications you have made for the transfer,
you have to carry out different steps.

To start an experiment:

The INTECRIO documentation describes how to execute the individual steps.

• Import the code manually into INTECRIO.

This step is not necessary if you imported the
code automatically.

• Add the model into the INTECRIO system
project.

This step is not necessary if you integrated the
code automatically.

• Complete the system project.

This includes the creation of a hardware sys-
tem, the configuration of the operating sys-
tem, the connections between the hardware
and the software.

• Configure the operating system either manu-
ally or by importing the *.oil file.

• Generate the executable.

• Start the experiment.

Working with the INTECRIO experiment environment is described in the INTEC-
RIO User’s Guide.
Rapid-Prototyping Experiments 63

64
In addition, the Back-Animation of INTECRIO in ASCET provides you with a
special experiment environment in which you can calibrate values in the stan-
dard manner. The measure system of this experiment environment works in
the standard way but is reduced in function in comparison to offline and online
experiments in ASCET: oscilloscope, Recorder and Data Logger are not avail-
able. These need synchronous measuring which is not given for Back-Anima-
tion when experimenting with INTECRIO. Instead, use the relevant instruments
of INTECRIO.

To use Back-Animation:

• Start the INTECRIO experiment with your
project.

• In the ASCET project editor, make sure that
INTECRIO is selected in the "Experiment Tar-
get" combo box.

• Click the Reconnect to Experiment of
Selected Experiment Target button

or

• select Component → Reconnect to Experi-
ment.

When you activated the Use ETAS Network
Manager (enables ’Select Hardware’)
option in the hardware options (chapter 2.1),
the hardware selection window
(chapter 2.2.1) opens under certain condi-
tions.
Section "To select hardware (with ETAS Net-
work Manager):" describes the required
actions in this window.
Rapid-Prototyping Experiments

The connection is established to the running
INTECRIO experiment. The "Physical Experi-
ment ..." window opens. "INTECRIO Backani-
mation" indicates the special experiment
environment.

Unlike with the online and offline experiment,
this window only contains the "Graphics" tab.

• Create the necessary measure windows (see
ASCET User’s Guide, "The Measure System"
section) and set these up.

• Create the necessary calibration windows (see
ASCET User’s Guide, "The Calibration Sys-
tem" section) and set these up.

• Select Experiment → Start Measurement

or

• click the Start Measurement button to start
measurement.

The displays of the measure and calibration
windows are updated cyclically.

You can load, save and export environments as described in the section "Load-
ing and Saving Environments" in the ASCET User’s Guide. When you load an
environment which contains unavailable elements (e.g. an oscilloscope), these
are ignored.
Rapid-Prototyping Experiments 65

66
The monitor function (see the "Monitor" section in the ASCET User’s Guide)
for monitoring numeric and logical variables is available. You can activate the
function for individual or all variables of a component. The setting of the mon-
itor function is saved in the environment.

You can navigate between the components of your project (see the section
"Navigating in Block Diagrams" in the ASCET User’s Guide).

If your project contains state machines, you can use the animation function for
state machines (see the section "Experimenting with State Machines" in the
ASCET User’s Guide).

You can write data from the experiment into the ASCET model or onto the
hard disk; you can also read in data from the hard disk. This is described in the
ASCET User’s Guide in the section "Manipulating Data".

To end Back-Animation:

• Select File → Exit

or

• click the Exit to Component button.

The Back-Animation is ended and the experi-
ment environment closed. The INTECRIO
experiment, however, continues running.
Rapid-Prototyping Experiments

5 RealTime Input/Output Package

5.1 Introduction

The RealTime Input/Output Package (RTIO Package) simplifies the interaction
between ASCET and an ETAS experimental system hardware. The ETAS exper-
imental system hardware is a development and experimental platform on a
VMEbus basis which can be used universally. The input and output of analog
and digital signals is realized with VMEbus interface boards in the ES system.

The RTIO Package means much simpler integration of additional I/O hardware
in an ASCET project. A user-friendly user interface enables the configuration of
several hardware components, even interrupt-controlled ones.

The imbedding is made by automatic generation of C code for the target sys-
tem.

5.2 Architecture of the RTIO Package

ASCET-RP allows easy prototype development for your ASCET model in a real-
time environment on the ES1000 hardware.

For that purpose, the model has to be embedded in your ES1000 environment
consisting of your simulation node plus several I/O boards. On the logical level,
the ASCET model has to be connected to the I/O channels.

This connection is performed in two steps. The HWC editor (chapter 7) is used
to describe and configure the I/O boards, i.e. to configure the physical input
and output channels. Each of these channels is then mapped onto one ASCET
message, which serves as an input or output to the ASCET model.

Configuration
of Input

Channels
ASCET Model

Configuration
of Output
Channels

Device Driver

Physical
Output
Channels

Physical
Input
Channels
RealTime Input/Output Package 67

68
The configuration is saved to an XML description file (extension *.hwx) and
stored with the ASCET project.

To generate the prototype, the HWC editor also allows the generation of
C code (chapter 8) for the target system, according to the selected experiment
type (physical experiment, quantized experiment or imple-
mentation experiment). This C code is stored in a C module called HWC
(cf. chapter 5.2.1), which belongs to the project and is stored in the ASCET
database.

When the code for the entire ASCET model is generated and compiled, the
hardware configuration is compiled, too, and linked to the required I/O drivers,
to achive an executable prototype.

5.2.1 The Hardware Configuration Module

The special characteristic of any ASCET project that uses the RTIO Package, is
the Hardware Configuration Module (HWC module). This is a normal C-Code
module used as a container for storing the C-Code necessary for the HW link.
The RTIO framework identifies the C-Code module by the instance name
"HWC".

The HWC module communicates exclusively with the rest of the model using
messages. This guarantees a clear separation between HW control and the rest
of the model.

Note

By default, the hardware configuration is stored in the XML format *.hwx.
The *.hwc format is still valid and can be selected as alternative format.
However, it is recommended to use the XML format because the *.hwc
format will be discontinued in future ASCET-RPversions.

HWC Editor
*.hwx

Description File

HWC
C Module
for Specific
Experiment
RealTime Input/Output Package

The following diagram shows the main connections between the modules in
an RTIO project.

The code generation for the HWC module is coordinated exactly to specific,
defined API1 interfaces to the system-specific and board-specific driver rou-
tines. The driver routines are made available to the system as libraries. Apart
from these API function calls, the definition of the driver data also takes place
in accordance with a standard description structure which is driver-indepen-
dent.

This results in a modular system that makes it relatively simple to integrate new
boards in the RTIO Package.

5.2.2 Hardware Configuration Editor

The Hardware Configuration Editor (HWC Editor) is the heart of the RTIO
framework.

In Edit mode, the HWC Editor is started from a project and is used to specify
the required hardware configuration. A subsequent generation sequence gen-
erates all the necessary elements as well as suitable C-Code so that the hard-
ware can be addressed.

1. API = Application Programming Interface

Module 1 HWC
Module Module 2

SmesgE

RmesgB

SmesgA

RmesgC

SmesgB

RmesgH

SmesgF

RmesgF

SmesgC

RmesgA

SmesgG

RmesgK

RmesgE

RmesgG

RmesgI

SmesgH

SmesgI

SmesJ

A
P

I

Driver
Routines
RealTime Input/Output Package 69

70
 RealTime Input/Output Package

6 Preparatory Measures

This section describes the general prerequisites necessary for the installation
and operation of the RTIO Package.

6.1 Hardware – ES1000.x Experimental System

Prerequisite for the operation of the RTIO Package is an ETAS experimental
system available in various series. The following variants are usually used,
although mixing is permissible:

• ES1000.2

• ES1000.3

The RTIO framework supports all ETAS system controller boards currently used.
The following diagram shows the standard configurations - special configura-
tions are of course possible.

Fig. 6-1 Permissible and Supported System Controller Configurations

Slot 1
(System

Controller)

Slot 1
(System

Controller)

Host
PC

Host
PC

Slot 1
(System

Controller)

Slot 1
(System

Controller)

Host
PC

Host
PC

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I S F

P1

P2

P3

SER

ES1120.3

PC

SERIAL

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I S F

P1

P2

P3

SER

ES1130.3

PC

SERIAL

SCD

M SF

M CI

M CD

ES1120.3

PC

SERIAL

ES1130.3

PC

SERIAL

SCD

M SF

M CI

M CD
Preparatory Measures 71

72
Control Unit ES1120 and Simulation Computer ES1130/ES1135

If the ES1000.x is used for application and rapid prototyping simultaneously,
the host PC is connected to the control unit ES1120 via ethernet cable. The
functions developed with ASCET are loaded via the control unit ES1120 onto
the PPC module ES1130 or ES1135, and then executed. Data can be measured
and calibrated with ASCET while the experiment runs.

TCP/IP Protocol Options

To avoid conflicts with a second network card that might be used for the LAN,
the following TCP/IP settings should be selected.

To configure the TCP/IP protocol options:

• Disable the DHCP service.

• Enter the IP address 192.168.40.240.

• Enter the subnet mask 255.255.255.0.

• For the DNS service, use the local settings of
your internal network.

• Disable the WINS service.

• Make sure that the "IP Forwarding" option is
not activated.

(← Windows® 2000)
Preparatory Measures

6.2 Special Features of the ES1135

The ES1135 is a further development of the ES1130, and offers the user sev-
eral new functions. These functions are described in the sections of this chap-
ter.

6.2.1 Non-Volatile RAM (NVRAM)

Basics

A non-volatile (NV) variable is a variable which can be used like any other
ASCET variable. Particularly, it can be written and read by the model, calibrated
via a calibration window and measured/logged with the data acquisition. The
special feature of an NV variable is that, in case of a simulation interruption,
the current value of the NV variable is available when the simulation with the
same model is restarted. This is especially useful for adaptive characteristics,
commonly used inside the ECU code for self-learning algorithms, and storage
of diagnostic results.

The optional attribute non-volatile (NV) is supported for all primitive data types
of ASCET (scalars, arrays, matrices, characteristic lines/maps). Only ASCET vari-
ables can be configured for NVRAM, C-Code variables are not supported.

An NV variable can be created inside a class or module editor. This is done by
activating the Non-volatile option in the element editor of a variable.

Hardware Support

64 kByte of non-volatile RAM (NVRAM) are available in the address space of
the ES1135 main processor (IBM750GX). In this memory range, data can be
stored which are to be available after a power failure or longer than one
power-on cycle.

Attention

Projects using the NVRAM expect a user-defined INIT process that
checks whether all NV variables are valid for the current project,
both individually and in combination with other NV variables. If this
is not the case, all NV variables have to be initialized with their
(reasonable) default values.
Due to the NVRAM saving concept, this is absolutely necessary
when projects are used in environments where any harm to people
and equipment can happen when unsuitable initialization values
are used (e.g. in-vehicle-use or at test benches).
Preparatory Measures 73

74
Due to performance reasons (accesses to the NVRAM are significantly slower
than accesses to the normal, volatile RAM and, in addition, cannot be cached),
NV variables are not directly allocated to the NVRAM. Instead, they are allo-
cated like normal, volatile variables to normal RAM, and periodically saved to
the NVRAM (auto-update mode). The period is by default set to 10 seconds; it
can be configured with the API method

uint32 nvramSetUpdateInterval(uint32 interval_sec)

(see chapter 13.2) in the range from 1 second to 30 seconds. Saving to the
NVRAM is done within the idle task, it does not affect the real-time behavior
of the model.

For reasons of data consistency, the NVRAM is organized as alternation buffer
which halves the available capacity. Furthermore, there is some overhead
involved which reduces the NVRAM capacity available to the ASCET model to
a little less than 32 kByte.

The ES1135 firmware ensures that the capacity limit is respected. If the cumu-
lative size of NV variables exceeds the NVRAM capacity, an "NVRAM overflow"
error message appears in the ASCET monitor window at the start of the exper-
iment. In this case, the NVRAM is not used, i.e. no values are written to it. In
order to be able to use the NVRAM, the user needs to reduce number and/or
size of NV-variables in the model.

The NVRAM data contain neither address information nor the names of the
variables. Therefore, they correspond to the model only if the structure of the
NV variables in the model did not change after the last update. To check this,
a special NV identifier is created during code generation.

This NV identifier changes upon the following actions:

• Changing the instance name of any NV element on the project, mod-
ule, class, or sub-class level.

• Changing the implementation of any NV element on the project, mod-
ule, class, or sub-class level, namely:

– Code generation option Physical Experiment – switching the
implementation data type between cont and sdisc/udisc

– Code generation option Implementation Experiment –
changes of the implementation interval

• Changing the formula parameters of any NV element.

The NV identifier does not change if the name or the comment of a
formula is changed.

• For an NV enumeration:

– Changing the sequence of the enumerators
Preparatory Measures

– Changing the names (values) of the enumerators

– Removing/adding enumerators

– Selecting a different enumeration, even if it contains the same enu-
merators

• Changing the maximal size of multidimensional NV elements (array,
matrix, characteristic line/map).

• Changing the settings for the implementation limitation in the imple-
mentation experiment (code generation option Implementation
Experiment).

• Deleting/adding NV elements on the project, module, class, or sub-
class level.

• Deleting/adding states in a state machine.

The NV identifier does not change upon the following actions:

• Renaming the project.

• Renaming the modules or classes within the project.

• Renaming the instances of any normal (volatile) element on the project,
module, class, or sub-class level.

• Changing the formula name or comment of any NV element.

When the formula parameters are changed, the NV identifier changes,
too.

• Renaming an enumeration.

• Changing the data of NV elements and normal elements.

• Changing the actual size of multidimensional elements (array, matrix,
characteristic line/map).

• Changing the memory area of NV elements and normal elements.

NV Variable Initialization and Update

Starting the simulation: After the model code was downloaded to the tar-
get, NV variables are initialized with their default values if no matching data
are available in the NVRAM. No matching data means that the NV memory is
empty, inconsistent (verified via a checksum) or the NV data does not match
with the downloaded model (verification via NV identifier).

In case matching data is available in the NV memory, the variables are initial-
ized accordingly before the experiment can be started (Start ERCOS).
Preparatory Measures 75

76
Stopping the simulation : When the simulation is stopped (Stop ERCOS),
the most recently saved values of the NV variables are persistently stored inside
the NVRAM. Even if the target is powered off or if the code is downloaded
again, the simulation can proceed with the most recently saved values of the
NV variables.

As mentioned before, the NV variables are periodically saved to the NVRAM in
auto-update mode. To make sure that the current values—not the values from
the last cyclic update—are available in the NVRAM, the API function

void nvramUpdateMemoryExit(void)

should be called at the end of the Exit task (task with application mode inac-
tive).

If there are no NV variables inside the current model, the NVRAM content
remains unchanged.

Model with NV variables inside the FLASH memory: A s imu la t ion
model with NV variables inside the FLASH memory of the simulation controller
is booted when power on occurs. The potential matching NV data is used for
initializing the NV variables before starting the simulation.

Display whether model is running on default NV variable values:
Whether the model is running on default NV variable values (as specified in the
ASCET data editor), or whether the variables are initialized out of the NVRAM,
can be determined in two ways. In the experiment environment, an info mes-
sage is written in the Target Debugger window. From within the model, the API
function

uint8 nvramCheckForInitializedVars(void)

provides the same information.

Clearing the NVRAM content: To prevent the initialization of a model with
the NV content (if the program identifier is matching), it is possible to clear the
NV memory content. This enforces the initialization of the NV variables with
their default values. This feature is currently not supported by the GUI. How-
ever, the API function

uint32 nvramClear(void)

allows to reset the NVRAM from within the model (see chapter 13.2 "API
Functions (NVRAM)").

Data Consistency

When the simulation is interrupted by power off or a system crash, the NVRAM
contains values of the NV variables. The relevance of these values depends on
the time of the last automatically or manually (from within the model) trig-
gered saving.
Preparatory Measures

To guarantee the consistency of the NVRAM content in case of an unexpected
termination of the simulation, different strategies can be used as introduced
below.

The consistency level can be set with the following API function:

uint32 nvramSetConsistencyLevel(T_consistencyLevel
level)

No consistency: The NVRAM update is done without respect to consistency
within NV variables and between individual NV variables.

Low level consistency (single variables): Low-level consistency means
that the data consistency within NV variables (scalars, arrays and matrices, but
not characteristic lines/maps) is guaranteed.

It must be noted here that the update of characteristic lines/maps cannot be
done atomically (in the sense of low-level consistency)

High level consistency (among variables, after task completion):
High-level consistency means that all NV variables are updated in the idle task,
without interruption by the model.

The update for a set of NV variables should be atomic. A self-learning algo-
rithm, for example, works on several variables, and it must be guaranteed that
data for different variables in the NVRAM come from the same calculation
cycle.

Model-controlled consistency (among variables and over multiple tasks
cycles): The high level consistency mechanism guarantees consistency only if
manipulations of NV variables are done within one task cycle. There may be
cases where this manipulation lasts several task cycles (e.g. the update of an
adaptive characteristic, done in several tasks). The ES1135 firmware cannot be
aware of this, and therefore the model must control the NVRAM update.

For this purpose, the automatic update can be disabled by the following func-
tion:

uint32 nvramDisableAutoUpdate(void)

The manual update of the complete set of NV variables can be started with this
command:

uint32 nvramManualUpdateBackground(void)

Even the manual update it is not allowed to block the whole system, and thus
change the real-time behavior, until the update is finished. Therefore, the func-
tion for manual update returns immediately and the update is done in the
background. The model can poll the status of the manual update with the
following function:

uint8 nvramCheckRunningUpdate(void)
Preparatory Measures 77

78
The function returns true if the update is running. The user, or the model, is
responsible that the NV variables are not modified during the update.

The manual update mode can be disabled with

uint32 nvramEnableAutoUpdate(void)

A selective update of NV variables is not supported.

If there are no NV variables inside the current model, the NVRAM content
remains unchanged.

Defective NVRAM content: In case of defective NVRAM content, e.g. if
the checksum test failed, the user is warned. This is done textually in the exper-
iment environment (or the ASCET monitor window).

NVRAM Cockpit

The NVRAM API (see chapter 13.2) offers several functionalities to control the
NVRAM update. During experiment, these functionalities are available in a spe-
cial window, the NVRAM cockpit. Changes applied via the API functions are
transferred to the NVRAM cockpit, too.

To work with the NVRAM cockpit:

• In the experiment, select Experiment →
NVRAM Cockpit

or

• click on the Open NVRAM Cockpit button.

The NVRAM cockpit opens.
Preparatory Measures

• Use the control elements according to your
needs.

• Close the NVRAM cockpit with Close.

The NVRAM cockpit contains the following control elements:

• Update Interval [sec]

Use this slider to adjust the interval (in seconds) for the automatic
update of the NVRAM content. You can set up to 30 seconds; an inter-
val of 10 seconds is predefined.

The slider is activated only when automatic update is switched on.

• Auto Update

This button switches the automatic update on and off. Automatic
update is switched on if the button appears impressed (a), and
switched off if the button appears upraised (b).

• Consistency level

Use this combo box to select the consistency level of the update; see
also "Data Consistency" on page 76.

• Clear NVRAM

Use this button to delete the NVRAM content.

When you click Clear NVRAM while the automatic update is running,
the NVRAM content is deleted, but it will be written again after the
next update interval at the latest.

Note

The automatic NVRAM content update works only while the experiment
is running. Once you have stopped the experiment with Experiment →
Stop ERCOS or with the Stop ERCOS button, the NVRAM content can
no longer be updated automatically.

(a) (b)
Preparatory Measures 79

80
• Update Now

Use this button to start the NVRAM content update manually.

This button is only available when automatic update is switched off.

The NVRAM cockpit contains the following displays:

• Time since last Update [sec]

This bar display shows the time elapsed since the last update. The
entire bar corresponds to 30 seconds; if this time is exceeded because
automatic update is switched off, only the number is increased.

The counting of seconds continues even if the experiment is stopped,
because time continues. Only a manual update after stopping the
experiment resets the counter, which starts anew.

The bar is green as long as the time since the last update is less than
30 s, and red if this time is exceeded. Exception: The experiment was
stopped (Stop ERCOS) prior to the overflow; in that case, the bar turns
yellow upon overflow.

• Non Volatile Variables initialized from NVRAM

This display appears light-green if the NV variables are initialized with
the NVRAM content (a), and dark-green if the NV variables are initial-
ized with their default values (b).

• NVRAM Update running

This display appears light-green if an NVRAM content update is cur-
rently running.

Tips

The following tips are useful for working with NVRAM.

Note

The manual NVRAM content update works even if you stopped the
experiment with Experiment → Stop ERCOS or with the Stop ERCOS
button.

(a)

(b)
Preparatory Measures

• State variable as non-volatile

The enhanced NVRAM support includes the possibility to assign the
non-volatile attribute to the sm state variable of a state machine. To do
so, right-click on the sm variable in the "Elements" list of the state
machine editor and select Settings → Non-Volatile from the context
menu.

• Actual size of multi-dimensional elements

The actual size ("current size" attribute) of multi-dimensional elements
(array, matrix, characteristic line/map) is saved in the NVRAM.

Changes of the actual size in the model (offline) become valid in the
downloaded program only after the NVRAM content is deleted (e.g. via
the NVRAM cockpit, or if the NVRAM content is inconsistent with the
program.

• Flash project with NVRAM on the ES1000

Bear in mind that the program in the Flash memory is launched each
time the ES1000 is started. If this project uses NV variables, it uses the
NVRAM. A subsequent download of any other program containing NV
variables leads to an (unexpected) reset of the NVRAM content.

6.2.2 Watchdog

To integrate a safety concept for the rapid prototyping system, the ES1135
offers a hardware watchdog function. The watchdog is an independent con-
trol unit that monitors the main ES1135 processor. For that purpose, a pre-
defined data sequence is written periodically to a memory cell (watchdog
service register). After a maximum time (watchdog period) without successful
write access (watchdog service) to the watchdog service register, an exception
handling (event) is triggered in the processor.
Preparatory Measures 81

82
The ES1135 HW watchdog can be operated in two modes:

1. Safety-oriented mode (safety mode)

2. Flexible mode with more functions (Reduced Safety Mode Enhanced
Function, RSEF Mode)

In the RSEF mode, the following watchdog settings can be re-configured at
runtime:

• Event configuration

Defines the exception handling in case of watchdog expiration. The
watchdog can also be disabled via event configuration.

• Watchdog period

Defines the time until the watchdog expires if no new watchdog ser-
vice occurs.

• Switching modes

The safety mode is switched on with an arbitrary watchdog period and
vent configuration. After that, this mode cannot be reconfigured or
left. Therefore, the watchdog service should be set up in advance in a
way that no undesired watchdog event occurs.

After the supply voltage is switched on, the watchdog is set to RSEF mode and
switched off.

Watchdog Service

The Watchdog must be serviced before it expires. Otherwise, the selected
watchdog event occurs. It is the task of the model designer to put the call of
the service function at a place, where a malfunction of the model can be
detected.

The Simulation Controller firmware provides an automatic watchdog servicing
mechanism, which services the watchdog every 30 ms if interrupts are not
disabled by the model. Thus, assumed that operating system is running cor-
rectly, the watchdog will be serviced regularly (if feature is enabled). This will
be sufficient in many use cases.

Interrupt Control

For debug and supervision purposes in particular, it is possible to configure the
watchdog to trigger a simulation processor interrupt on watchdog timer expi-
ration.

The interrupt may either be polled or routed to the internal interrupt controller.
A watchdog interrupt is latched and needs explicit acknowledging. Functions
for fast disabling and enabling of the interrupt source are available. These
function only have effects on the interrupt propagation.
Preparatory Measures

The watchdog interrupt is mapped to a HW Task inside ASCET. Inside the
ASCET OS editor, the task type Interrupt and the ISR Source Int2 must be
selected.

The watchdog handler is running below the ERCOSEK level but above other
HW interrupts (e.g. from VME Bus), thus the watchdog interrupt is handled
even if another HW interrupt is currently handled. Interrupt acknowledgement
is done inside the ES1135 firmware, it should therefore not be done inside the
handler task. The available set of ERCOSEK calls in the handler task is not
restricted.

When a watchdog interrupt occurs, the watchdog is automatically restored
from the overrun situation after 250 µs, restarting a new cycle with the previ-
ously selected period. This restoration time may be shortened, by performing a
normal watchdog service with wdService().

A detailed description of the watchdog API is given in chapter 13.3 "API Func-
tions (Watchdog)" on page 408.
Preparatory Measures 83

84
6.2.3 LEDs

The LEDs on the ES1135 front panel are divided into system LEDs (M, I, S, F, A,
L, S) and freely programmable LEDs (1, 2, 3).

Fig. 6-2 ES1135 – Front Panel

The system LEDs are described in the hardware manual.

The programmable LEDs can be accessed either via RTIO (device ES1135-LED,
see chapter 10.2) or via the program interface (see chapter 13.4 "API Func-
tions (ES1135 LEDs)")

6.3 System Software

The RTIO Package described in this manual is either available for or a constitu-
ent part of the following software products:

• ASCET Version 5.1.1 and higher with an installed add-on ASCET-RP
Version V5.4.0 and higher.

ES1135.1

1

P0

2

3

A

L

S

L

S

L

S

L

S

M I S F

P1

P2

P3

SER
Preparatory Measures

6.3.1 System Root Path

With ASCET-RP, a new target directory ASCET5.1\target is installed in the
subdirectory of your ASCET installation. The system root path must be set to
the target subdirectory.

To determine the system root path:

• The system root path is set in the "Options"
dialog window of ASCET.
Preparatory Measures 85

86
• In the ASCET Component Manager, select
Tools → Options.

The "Options" dialog window is displayed.

• \TARGET must be selected as "System Root
Path" in the "Options" dialog window.

6.3.2 C-Code Module

Every ASCET project, for which an RTIO hardware link is to take place, requires
a separate C-Code module that has to be generated in the database.

6.3.3 Project

There are a few points that have to be taken into consideration, however, for
an RTIO hardware link to be executed:

• A generated C-Code module has to be added to the project which can
be used exclusively for RTIO code generation (see previous section). The
module must contain the instance name "HWC".

• The required target type has to be selected in accordance with the type
of system controller used (ES1130 or ES1135).

Note

Unlike previous RTIO versions, there are no limitations in terms of the mod-
ule name ("HWC") in the database, i.e. all names are permissible.
Preparatory Measures

• The task list in the "OS" tab of the project editor should contain the
following tasks so that the RTIO link can be executed as easily as possi-
ble:

Some hardware components also need additional tasks—this is looked
at in more detail in the description of the relevant components.

• All messages the RTIO HWC module uses to communicate with the
other components in the project (other modules, global messages),
have to be generated by the counterpart as "EXPORTED". This is gen-
erally the case for send or send-receive messages but you must ensure
that this is executed explicitly for receive messages.

Unlike previous RTIO versions, messages generated within hierarchic
modules can now also be accessed.

Task Name Task Type Application
Mode

Task

Init Init active Required by the RTIO frame-
work to initialize the hardware
drivers

Config Software active Required by some hardware
drivers for reconfiguration

Exit Init inactive Required for releasing driver
resources
Preparatory Measures 87

88
 Preparatory Measures

7 HWC Editor

The HWC editor is the heart of the RTIO framework and is used to define and
describe hardware configurations.

7.1 Opening the HWC Editor

First of all, the Project Editor must be opened on the required ASCET project.
Providing the RTIO Package has been installed correctly, the main menu bar
contains the RTIO menu. The HWC editor can now be opened using the menu
functions Open Editor or Open Editor with.

The first time the HWC editor is opened within an ASCET session it takes a little
longer as a few system components have to be loaded. (To speed up system
start and save resources, some system extensions are only loaded when they
are actually needed.)

If the HWC editor was opened with ackage has been installed correctly, the
main menu bar contains the RTIO → Open Editor, a search is executed in the
"Files" tab (File Container) of the ASCET project for an HWC.HWX (or
HWC.HWC) file.

If there is such a file, it is automatically loaded in the editor. The HWC.HWX (or
HWC.HWC) file is always the one with which the last code generation of the
HWC module was executed.

The menu function Open Editor with allows the user to select a specific hard-
ware configuration file to be loaded instead of loading HWC.HWX (or
HWC.HWC).

In the "HWC Editor Options" window, "Files" tab, you can select the format
(*.hwx or *.hwc) you want to use as default. Use Extras → Options to open
that window.
HWC Editor 89

90
7.2 Controls

This section describes the HWC editor controls.

The user interface consists of a toolbar, an "Items" list and a set of tabs which
are used for most modifications and entries.

A text field below the tabs contains short information about the selected row.
The Accept or Reset buttons are used to adopt or reject changes, respectively.

7.2.1 Toolbar

This section contains a description of the functions that can be activated using
the buttons in the toolbar.

To create a new hardware configuration:

• Click on the New button to create a new
hardware configuration

or

• select File → New.

Note

For a more precise description of the individual functions, please refer to the
section "Main Menu" on page 94.
HWC Editor

To open a hardware configuration:

• Click on the Open button to open a hardware
configuration

or

• Select File → Open.

To save a hardware configuration:

• Click on the Save button to save a hardware
configuration,

or

• select File → Save.

• Select File → Save As to save the hardware
configuration with an arbitrary name.

To expand all items:

• Click on the Expand all button to completely
expand the "Items" list,

or

• select View → Expand all.

To collapse all items:

• Click on the Collapse all button to collapse
the "Items" list as far as possible,

or

• select View → Collapse all.

To add a new item:

• Click on the Add Item button to add a new
item to the list of items

or

• select Edit → Add Item.

To delete an item:

• To delete an item, select it in the list and click
on the Delete Item button

or

• select Edit → Delete Item.
HWC Editor 91

92
To check the hardware configuration:

• Click on the Check Hardware Configura-
tion button to check a hardware configura-
tion

or

• select Extras → Check Hardware
Configuration.

To start code generation:

• Click on the Generate Code For Current
Experiment button to start code generation

or

• select Extras → Generate Code →
For Current Experiment.

To import a hardware configuration:

• Click on the Import button to import a hard-
ware configuration

or

• select File → Import.

To export a hardware configuration:

• Click on the Export button to export a hard-
ware configuration

or

• select File → Export.

7.2.2 "Items" List

The tree-like "Items" list is used to define and display the hardware structure.

The term item generally refers to a hardware configuration element. This can
either be an entire board or a unit for a specific function.

The table to the right of the "Items" list always shows the settings for the
selected item.

Note

Hardware is specified completely if every end node of the hardware tree is of
the type "Device".
HWC Editor

7.2.3 Configuration Tabs

Depending on which item is selected in the items list, different tabs are dis-
played which can be used to make individual settings for the items.

If the selected item is a "Device", 4 tabs are displayed; all other item types only
have one tab, "Globals".

The task division of the tabs can be explained as follows:

• Globals

This tab contains all the global settings that refer to the item (e.g. VME-
bus address of the I/O board).

• Groups

This tab contains all the settings that refer to a signal group (e.g. gain
factor for a multi-channel A/D converter or the identifier of a CAN mes-
sage).

• Signals

This tab is used for all signal-specific settings (e.g. conversion formula
for a signal).

• Mappings

This tab is used to define the allocation between a signal and an ASCET
message. The RTIO data flow between the HWC module and the rest
of the model can also be controlled and manipulated here.

For more detailed information on tab settings, please refer to "Configuration
Tabs" on page 109.

In addition to this, each tab also has the two buttons, Accept and Reset,
which should be used as follows.

Accept:

As soon as a tab is opened for the first time, or reopened, a copy is made of
the data set in it: this is then displayed in the data table. Any modification of
the data made by editing the relevant cell(s) only changes the copy of the orig-
inal data.

Note

All signals in a signal group have the same transfer direction (send or
receive) and are acquired at the same time or interval. This is how it is
easy to recognize a signal group.
HWC Editor 93

94
Once editing has been completed, the user has to explicitly write the changed
data back to the original data by activating the "Accept" button or he/she is
prompted to do so before being allowed to close the tab:

This mechanism is necessary to guarantee a consistent data set at all times as
there are sometimes multiple dependencies to be taken into consideration
within the "Items" structure.

Reset:

This button resets all modifications made after the last clicking of Accept.

7.2.4 Main Menu

This section describes the menu items in the individual menus.

"File" Menu

• File → New

Generates a new hardware configuration. If changes have already been
made to an existing hardware configuration but not saved, you are
asked the following question:

If you confirm by pressing Yes, the configuration in the Project File
Container may be saved. Pressing No deletes the configuration just cre-
ated and generates a new hardware configuration. Cancel terminates
the process.
HWC Editor

• File → Open

This menu function opens the "Open Hardware Configuration File"
window. Use the "File Type" combo box to select the format (*.hwx
or *.hwc); the "Select from Project Files" list displays all the files of the
selected type contained in the Project File Container. Here, you select
the file that is loaded in the HWC editor with OK.

• File → Save

Saves the hardware configuration under the same name in the File
Container in the ASCET project.

Note

The HWC.HWX (or HWC.HWC) file has a special significance: this file is
always generated implicitly or overwritten when code generation is
started in the HWC editor.
HWC Editor 95

96
• File → Save As

Saves the hardware configuration under a new name in the File Con-
tainer in the ASCET project. For that purpose, select the format (*.hwx
or *.hwc) in the "Save Configuration File as" window, and enter the
new file name in the "Filename" field.

The "Project Files" list contains the existing files of the selected type. To
overwrite one of them, click on the name. The file name is written into
the "Filename" field. When you klick OK, the new hardware configu-
ration is saved under the existing name.

• File → Save Item as Template

This function saves the settings of the item just selected as a template
for all items of this type (see Use Item Templates in the menu
Extras Æ Options on page 106).

Note

By default, the hardware configuration is stored in the XML format
*.itx by default.
The *.itp format is still valid and can be selected as alternative for-
mat. However, it is recommended to use the XML format because
the *.itp format will be discontinued in future ASCET-RPversions.
HWC Editor

It opens the "Save Item As Template" dialog window which can be
used to copy the item to the required directory as a template. To do so,
you select the format (*.itx or *.itp) from the "File Type" combo
box and enter the required path.

• File → Import

A hardware configuration can be read by the file system using the
Import interface. To do so, select the file type (*.hwx or *.hwc) in the
"Import Hardware Configuration" window, select a path and, finally,,
the file you want to import.

Note

When the dialog window is opened, the file path already set under
"Template Path" in the "Options" settings is always set as file path.
However, you can enter any path.
The suggested file name, however, must not be changed.
HWC Editor 97

98
Existing hardware configurations can be read provided they were cre-
ated with ASCET TIP Exp V4.0.0 or later.

• File → Export

A hardware configuration can be exported to the file system by speci-
fying a new file name and a file format. Three file formats are available.
HWC Editor

The *.hwx and *.hwc formats are used for exchanging and archiving
of hardware configurations while the *.csv (comma separated val-
ues) format serves documentation purposes and can be displayed in
spreadsheet applications.

• File → Exit

This menu item closes the HWC editor. If the system detects that a
modified hardware configuration has not been saved, it is now possible
to save it before the Editor is closed.

"Edit" Menu

• Edit → Copy → Item(s) (<CTRL> + <C>)

This menu item creates a copy of the selected item with its subtree (if it
has one) and transfers it to an internal buffer of the HWC editor.

The buffer is valid as long as the HWC editor is open.

• Edit → Copy → Item(s) For Export

This menu item works like Copy → Item(s), but the copy is written to
an external file (*.hsx or *.hws). This function is useful for swapping
subconfigurations.

• Edit → Copy → Item Data

This menu item copies the data of an item to an internal buffer (this
function does not apply to entire subtrees). This function can be used
to swap settings between two items.

Note

By default, the hardware configuration is stored in the XML format
*.hwx by default.
The *.hwc format is still valid and can be selected as alternative for-
mat. However, it is recommended to use the XML format because
the *.hwc format will be discontinued in future ASCET-RP versions.

Note

By default, the subtree is stored in the XML format *.hsx by default.
The *.hws format is still valid and can be selected as alternative for-
mat. However, it is recommended to use the XML format because
the *.hws format will be discontinued in future ASCET-RP versions.
HWC Editor 99

100
• Edit → Paste → To Selected Item (<CTRL> + <V>)

This menu item adds an item copied using Copy → Item(s) (perhaps
with a subtree) below the item currently selected. The following must
be true for the function to work correctly:

1. The item types must correspond to each other; the only exception
to this is the possibility to swap item subtrees between system con-
troller items.

2. It has to be possible to add the item or the subtree below the
selected item (the same is true here as with Add Hardware Item).

• Edit → Paste → To Selected Item From Import

Works exactly the same as Paste → To Selected Item, but the copied
part is read from the required file. The same restrictions apply as with
the previous menu item.

• Edit → Paste → Item Data

Overwrites the data of the previous item with the data written to the
buffer with Copy → Item Data.

Unlike the previous Paste menu items, it is also possible to swap data
between similar or compatible items (a list of compatible items can be
found later). This function is possible if the type of item selected is the
same or compatible to the type from which the data was copied. In
addition, the structure has to be virtually identical; i.e. the number of
rows in the tables in the "Groups", "Signals" and "Mappings" tabs
has to correspond.

• Edit → Add Item (<INS>)

This menu item allows you to add a new hardware item to the hard-
ware configuration.

A selection list is displayed which displays all available items on the hier-
archy level immediately below.
HWC Editor

The selected item is then added to the hardware configuration accord-
ingly.

• Edit → Delete Item ()

This menu item allows you to remove the marked item from the hard-
ware configuration.

It is not possible to remove the top item in the hierarchy of the "Hard-
ware Interface Manager" type.

• Edit → Move Item Up (<CTRL> + <U>)

This menu item is used to change the item sequence within a hierarchy
level in the hardware configuration. The menu item moves the selected
item one element up.

• Edit → Move Item Down (<CTRL> + <D>)

This menu item is used to change the item sequence within a hierarchy
level in the hardware configuration. The menu item moves the selected
item one element down.

• Edit → Add Row Before

This menu function is only available for items of type "Device" if their
number of signal groups or signals can be changed dynamically.

The following must be true for the menu function to be available and
selectable (not locked):

1. Item of type "Device" is selected which has "dynamic" features
(e.g. CAN-IO device)

2. The "Groups" or "Signals" tab is selected

3. An entry from the "No" column is selected (1st column in the table)

Note

Depending on the configuration, the process of adding an item may
be aborted and an error message issued even if the item has been
selected successfully. This happens, for example, if the available
resources (ports, slots) are already being used or if a specific adding
sequence is obligatory.

Note

The system frequently limits the table size. In these cases, the menu
functions for adding and deleting table rows are disabled.
HWC Editor 101

102
The menu function adds a line before the selected cell or the selected
area.

Example:
A line is to be added in the "Signals" tab in front of the selected cell
area (no. 3-4); i.e. line 3 (signal "Signal 6") is newly created.

Fig. 7-1 HWC editor with a marked area in front of which a line is to be
inserted

Note

 As this is about structurally changing the table, changes via Edit →
Add * and Edit → Delete * cannot be undone using the Reset
button.
HWC Editor

Fig. 7-2 HWC editor after a new line is inserted ("Signal 6" signal high-
lighted)

• Edit → Add Row After

Works like Add Row Before, but a line is added after the selected cell
or the selected area.

• Edit → Add Multiple Rows Before

Works like Add Row Before, but several rows can be added at a time.
The number of new lines to be inserted can be entered in a dialog box:

• Edit → Add Multiple Rows After

Works as described under Add Multiple Rows Before, but rows are
added here after the selected cell or the selected area.
HWC Editor 103

104
• Edit → Delete Row(s)

Deletes the row or the area which is marked in the "No" column.

"View" Menu

• View → Expand all

This menu function opens the tree structure in the "Items" field as far
as possible.

• View → Collapse all

This menu function closes the tree structure in the "Items" field as far
as possible.

• View → Show All

This menu function shows all options or columns that can be displayed.

The table of a tab can be structured so that some of the possible
options or columns are not shown by default. This has the advantage
that options not often used or rarely needed can be masked out and
the table is much clearer.

• View → Hide All hidable

Is the opposite of the previous menu function, i.e. all options/columns
that can be hidden are hidden.

• View → Hide Selected

Hides the currently selected option or column if it can be hidden.

Note

One signal group or one signal must remain in the table for system
reasons. If you try to delete the last row, an error message is dis-
played.

Note

If the table is confirmed with the Accept button and the hardware
configuration is saved, the reloaded table is displayed exactly as it
was saved, i.e. newly shown options/columns remain displayed.
HWC Editor

"Extras" Menu

• Extras → Check Item

This function makes explicit checking of all settings within the selected
item on the one hand and checking against the current ASCET project
on the other. This checking also takes place implicitly before every RTIO
code generation.

RTIO code generation is only possible when this check is completed
successfully. Warnings are permissible, but should be taken into consid-
eration in each individual case.

• Extras → Check Hardware Configuration

This menu item makes explicit checking of all settings possible in terms
of consistency within the hardware configuration on the one hand and
checking against the current ASCET project on the other. This checking
also takes place implicitly before every RTIO code generation.

RTIO code generation is only possible when this check is completed
successfully. Warnings are permissible, but should be taken into consid-
eration in each individual case.

• Extras → Generate Code → For Current Experiment

This menu item starts the RTIO code generation for the experiment cur-
rently selected in the ASCET project editor. The following steps are exe-
cuted:

1. The content of the entire HWC module is deleted (all processes
generated by the HWC module are removed from the task list).

2. All necessary elements are created in the HWC module (messages,
parameters, variables...).

3. The C-Code for the header and for the required processes of the
HWC module is generated.

4. All processes of the HWC module are sorted into the relevant tasks.

• Extras → Generate Code → For Phys. and Quant. Experiment

This function is exactly the same as the previous function with the dif-
ference that the code for the physical and quantization experiment is
generated in the HWC module.

• Extras → Generate Code → For Phys., Quant. and Impl.
Experiment

This function is exactly the same as the previous one but code is gener-
ated here for the physical, quantization and implementation experi-
ment.
HWC Editor 105

106
• Extras → Item Code Generation On/Off

This function allows to switch on/off the code generation for a selected
item (and the structure below). By default, code generation is switched
on. When you select this function for the first time, code generation is
switched off, and the selected item (and the structure below) is crossed
out.

When you generate code now, the crossed-out item(s) are ignored.

When you select Extras → Item Code Generation On/Off once
more, code generation is switched on again, and the symbol is no
longer crossed out.

• Extras → Clear HWC Module

Deletes the entire content (elements and processes) of the HWC mod-
ule.

• Extras → Options

Opens the dialog window in which the settings of the HWC editor can
be modified.

The tabs and their options are described below.
HWC Editor

"Check" Tab

After "Accept": enabled / disabled

Activates or deactivates automatic checking that is initiated when the
Accept button is pressed. For performance reasons, only the data con-
sistency within the tab currently selected is checked.

After loading: enabled / disabled

Activates or deactivates implicit checking which is executed when a
new hardware configuration is loaded.

Before saving: enabled / disabled

Activates or deactivates the checking of the hardware configuration
executed automatically before a configuration is saved.

"Code Generation" Tab

Automatic repair: no / yes

Activates or deactivates the possibility of automatically recovering a
few errors discovered in the hardware configuration. This possibility is,
however, not supported very frequently at the moment.

Log Level: silent / brief / verbode

Specifies the scope of the protocol which, if necessary, can be gener-
ated in the HWC code generation.

"Files" Tab

Default storage format: XML (*.hwx and *.itx) / Legacy (*.hwc and
*.itp)

This option determines the default format for hardware configuration
files and item templates.

Validate XML files: yes / no

This option determines whether the XML code in *.hwx and *.itx
files ist checked for syntactical correctness. If the option is switched on
(yes), the reading process is aborted when a syntax error is detected.

Verify XML Checksum: yes / no

This option determines whether the checksum is verified upon reading
*.hwx and *.itx files. This checksum verification checks whether the
file in question was generated by ASCET-RP and not changed after-
wards. Irf the option is activated (yes), a warning is issued when the
checksum verification fails.
HWC Editor 107

108
"Mapping" Tab

Message Creation Target: Project / Module

This option determines whether ASCET messages generated during
automatic mapping are created in the project itself (Project, default)
or in one of the included modules.

Module Instance Name

This option is only effective when "Message Creation Target" is set to
Module.

Enter the name of the module for the generated messages in the input
field. If the selected module is not directly included in the project, the
following error message appears:

Can't add sendReceiveMessage '<msg name>',
because module '<module name>' doesn't exist in
project, see option 'Module Instance Name' in
tab 'Automatic Mapping'!

"Miscellaneous" Tab

Data digits after decimal point: 1...6

Data digits before decimal point: 1...9

These two options define the format in which the values in the "Data"
column in the "Mappings" tabs of the devices are displayed.

Representation: <Data digits before...>.<Data digits after...>

"Templates" Tab

Template Path

This allows you to select the directory that is used to store the item
templates.

Use Item Templates: yes / no

Activates or deactivates the use of item templates.
Item templates are used to overwrite the default values specified by the
system with individual settings. When the Template option is activated,
the default values specified by the system are overwritten by the values
that were saved in the template directory (using the Edit → Save Item
As Template menu) each time items are added (using the Edit → Add
Item menu).
HWC Editor

• Extras → Installed Items ...

This menu function lists all items currently supported by the system and
their hierarchic dependencies.

7.2.5 Context Menu ("Items" List)

In the "Items" list, you can use the following context menu.

The context menu functions are also accessible via the main menu in the menu
bar. They are described in previous chapters.

7.3 Configuration Tabs

All item settings can be made in the Configuration tabs. The "Globals" tab is
available for all item types; the "Groups", "Signals" and "Mappings" tabs are
only available for the "Device" items.

Note

With the items marked with a *, there is an actual link to the relevant
low-level hardware drivers using API functions.
HWC Editor 109

110
7.3.1 General Tips

Editing the Option / Cell

A cell can be selected and edited by clicking the mouse in the tab table. You
can also navigate in the table using the arrow keys.

Some columns are also capable of being selected several times, i.e. several cells
can be selected within the column at one time (e.g. the "Formula" column).

Multiple selection possibilities of contiguous fields of a column:

• Click the left-hand mouse button and drag the mouse at the same time
over the desired fields of the column

or

• click the left-hand mouse button in the first and the last desired field of
the column by pressing the <SHIFT> key.

By pressing <F2>, or with a further mouse click while pressing the
<Shift> key (works only with combo boxes and input fields), the edit
mode is reached.

• A multiple selection with the keyboard is also possible by keeping the
<SHIFT> key held down.

With pressing <F2>, the edit mode is reached.

Multiple selection possibilities of discontiguous fields of a column:

• A multiple selection can take place by clicking the left-hand mouse but-
ton and keeping the <CTRL> key held down. The last field to be
selected must be marked with one double-click .

The edit mode is reached.

• A multiple selection is also possible by clicking the left-hand mouse
button and by keeping the <CTRL> key held down. All desired fields
must be marked.

With pressing <F2>, the edit mode is reached.

<ENTER> confirms the input, while <ESC> cancels the edit mode.

Editing

Not all options can be modified by the user; some options are permanently
locked and are only used to display certain status values. Other options can be
locked or ready to accept entries for some of the time which might depend on
other option settings in this or another item in the items hierarchy.
HWC Editor

Modified Status

The HWC editor registers whether a table value has already been modified or
whether it is currently being modified. The following message is displayed if
another item or tab is selected without the change first being made valid using
the Accept button:

Save the changes with OK, or cancel the switch to another item or tab with
Cancel.

Scrolling the Table

The table may be too big to be displayed in a tab. If this is the case, "scrollbars"
are displayed.

Fig. 7-3 Scrollable Area of a Configuration Tab
HWC Editor 111

112
The scroll bars do not move the entire table, but just the variable part (the
marked area in Fig. 7-3); the rest remains unchanged.

Changing the Width of the Columns

The width of the columns can be changed as required by clicking the left-hand
mouse button on the edge of the column, and keeping it held while you adjust
the width. The newly specified column widths are then saved with the hard-
ware configuration providing they are confirmed using the Accept button.

After a reload, they are shown as required.

Help Text

The text field at the bottom of the tab allows you to display a short help text
on the option currently selected.

7.3.2 Default Options in the "Globals" Tab

This section describes the default options in the "Globals" tab. Further item-
specific options can be found in the respective sections in chapter 10 "HWC
Items".

Name

This is where an individual name can be specified for the item. The name must
be a valid, ANSI-C compatible name and be unique in the entire hardware tree.

This option is available in every "Globals" tab.

Init Task

This is where you select the task in which the hardware driver is to be initial-
ized. This is usually a "real" init task. In exceptional cases, it can also be a
"software" task, but this would be quite unusual and results in a warning
being displayed (see the section "Preparatory Measures" on page 71).

Note

There might be so many columns displayed in the left-hand (static) part of
the table that the right-hand, scrollable part no longer fits into the tab which
makes the user think that "scrolling" does not work. This problem can either
be solved by enlarging the HWC editor or by hiding static columns that are
not required.
HWC Editor

This option is available if the item is connected with a low-level driver.

A consistent task sequence must be adhered to:

1. Init Task

2. Start Task

3. Stop Task

4. Exit Task

Exit Task

This is where the task is selected in which the hardware driver is to be deinitial-
ized. This is usually a "real" exit task (= inactive init task), could, however, also
be a "software" task but this would be quite unusual and certainly result in a
warning being displayed (see the section "Preparatory Measures"
on page 71).

An "exit task" is available if the item is connected with a low-level driver.

Config Task

The choice of a config task to change definite configuration parameters at
runtime is contained only for reasons of the compatibility with other ETAS
products (LabCar). For the use of ASCET-RP is this position not relevant.

IRQ Handler Task

The task selected here must always be a "software" task, it must be generated
as a "software" task in the task list in the ASCET project editor. At least 2 (max.
50) must be entered in the "Max. No. of Activations" field.

Note

When tasks are being processed, you must always ensure that this task is
executed before another task, connected to this driver, (Start, Config...), can
be executed. You must also ensure that the "Init" call only occurs after there
has been an "Exit" call. If not, there is a runtime error in the experiment
which results in the driver being "locked" (Driver Lock)!

Note

Please stick to the task order (see "Init Task" on page 112)!
HWC Editor 113

114
An "IRQ Handler Task" can be required by drivers which work in Interrupt
mode.

Device Manager Task

This task is required by some drivers to ensure a certain basic supply of the
driver independent of the actual data exchanged (e.g. error handling, bus
monitoring).

Usually a timer task has to be specified here. The cycle time can vary consider-
ably and is specified in more detail in the tab’s help text or in the relevant item
documentation.

Version

Displays the version number of the item which can be used to check the ver-
sion with the low-level hardware driver.

"Version" is hidden by default.

Format

Display of the format of the item which can be used for the compatibility check
with the low-level hardware driver.

"Format" is hidden by default.

7.3.3 Default Options in the "Groups" Tab

This section describes the default options in the "Groups" tab. Further item-
specific options can be found in the respective sections in chapter 10 "HWC
Items".

No

Is responsible for the numbering of the lines so that, for example, error mes-
sages can be assigned.

Device

This is where the corresponding item name is displayed.

"Device" is hidden by default.

Note

This task must be available exclusively for the item or the relevant hardware
driver and must not be used by any other item or user process. Two items of
the same type (e.g. two ES1222s) are not allowed to share the same task!
HWC Editor

Group

This is where the designation of the signal group is specified. This name can
usually be edited, but has to be a valid ANSI-C name.

Direction

Specifies the transfer direction of the relevant signal group. If the setting is
locked, the transfer direction is specified by the hardware and cannot be mod-
ified (e.g. an A/D board is always "receive", a D/A board is always "send").
With some devices (e.g. CAN-IO), you can choose the transfer direction.

Task

This specifies the task in which the data transfer is to take place. It is also
possible to specify several tasks - data transfer then takes place in each of the
tasks. "Timer" tasks or "software" tasks are generally permissible. With some
devices, no specification can be made here; data transfer then takes place in a
different way, usually interrupt-controlled.

7.3.4 Default Options in the "Signals" Tab

This section describes the default options in the "Signals" tab. Further item-
specific options are given in the respective sections in chapter 10 "HWC
Items".

No

Is responsible for the numbering of the lines so that, for example, error mes-
sages can be assigned.

Note

All signal groups within one device have to have different names!

Note

If more than one task is selected for the same signal group, consistency
problems may occure during execution time because the accompanying
RTIO process is then assigned to more than one task.
The RTIO processes generated by the HWC editor however are non-reen-
trant. Therefore, you must avoid to construct OS configurations that may
cause coincidences at the execution of the RTIO process.
Most simply, this can be achieved by using exclusively cooperative tasks
when assigning more than one task to the same signal group. If preemptive
tasks shall be used nevertheless, it lies in the responsibility of the user to
ensure a correct OS configuration.
HWC Editor 115

116
Device

This is where the corresponding item name is displayed.

"Device" is hidden by default.

Group

This is where the corresponding signal group name is displayed. With some
devices, such as "CAN-IO", the allocation of the signal to a signal group can
be defined freely.

"Group" is hidden by default.

Direction

This is where the transfer direction of the corresponding signal group (and
hence the signal) is displayed.

"Direction" is hidden by default.

Task

This is where the assigned task is displayed in which the relevant signal group
is transferred.

"Task" is hidden by default.

Signal

This is where a signal name can be specified. With some devices, the specifica-
tion of the signals is also fixed and cannot be modified by the user. If an input
is possible, the name must correspond to ANSI-C guidelines.

Formula

If necessary, a signal value can be assigned a linear conversion in this column.
A 1:1 conversion is selected by default (formula f(phys):= phys). With
some devices, this formula is fixed and the column locked. This is the case, for
example, with the ETK-BYPASS device with which the signal is generated from
ASAM-MCD-2MC information and the formula is therefore fixed.

This formula is used during signal processing. Signal processing includes three
layers: transformation, quantization, and mapping. A signal group received
from the RTIO driver is directly sent to signal processing.

Note

All names of signals which are allocated to a signal group must differ!
HWC Editor

In the transformation layer, the signal group is split into the individual I/O sig-
nals. With the help of the formula specified in the "Signals" tab, the I/O signals
are converted into the physical representation of the corresponding ASCET
messages.

For quantisation or implementation experiments, the quantization layer adjusts
these physical signals to the quantization of the ASCET messages. Here, the
formula specified in the implementation of the respective ASCET message is
used.

In the mapping layer, the quantized signals are copied onto the corresponding
ASCET messages.

7.3.5 Default Options in the "Mappings" Tab

This section describes the standard options in the "Mappings" tab. Further
item-specific options can be found in the respective sections in chapter 10
"HWC Items".

No

Is responsible for the numbering of the lines so that, for example, error mes-
sages can be assigned.

Device

This is where the corresponding item name is displayed.

"Device" is hidden by default.

Group

This is where the corresponding signal group name is displayed.

"Group" is hidden by default.

Direction

This is where the transfer direction of the corresponding signal group (and
hence the signal) is displayed.

"Direction" is hidden by default.

Task

This is where the assigned task is displayed in which the relevant signal group
is transferred.

"Task" is hidden by default.
HWC Editor 117

118
Signal

This is where the signal name is displayed.

ASCET Message

If necessary, an allocation to an ASCET message can be made here ("map-
ping"). All EXPORTED messages in the project which correspond to the current
signal are displayed to the user in a selection dialog window. These are all
exported receive messages for a "receive" signal and all exported send mes-
sages for a "send" signal.

In the "Message selection" dialog window, the required message can be
searched for using a character string whereby the character string is shown at
the bottom of the dialog window.

Fig. 7-4 "Message selection" Dialog Window

The following takes place when the selection window is opened (see Fig. 7-4):

• if there is a message in the "ASCET Message" column, the message is
used as a search key

• if there is no message in the "ASCET Message" column, the relevant
signal name is used as a search key

A message entered in the "ASCET Message" column can be deleted in the
"Message selection" dialog window using <clear message>.
HWC Editor

A new message can be generated by selecting <new message>. The follow-
ing dialog window opens:

The new message name, by which the message is to be entered in the project
as a global "send-receive message", can be entered in the dialog window.

Data

Here, the default values for send messages are entered. The RTIO code gener-
ation sets the ASCET parameters to the specified values.

Explanation

This column contains information about the signals. Not all items have this
column.
HWC Editor 119

120
 HWC Editor

8 Code Generation

RTIO code generation cannot be started until the implicit check of the hard-
ware configuration has been completed without any errors being returned
(warnings are permissible but should certainly be taken seriously).

Code generation first deletes the entire content of the HWC module (ele-
ments, code and processes) before the contents are newly regenerated.

8.1 HWC Module

This section gives a brief overview of the generated code. This will give an
experienced user a feel for the working of the RTIO link and alleviate error
search.

This section is not of interest to an inexperienced user.

8.1.1 Elements

The following diagram is intended to give an overview of the data flow
between the project and the HWC module:

Note

The user should never modify the generated code manually as correct func-
tioning cannot be guaranteed after manual changes are made. It could even
result in the hardware being damaged in extreme cases!

mapped
Input Signal

ASCET- Model HWC Module

I/O
Buffer

 to
HW

Driver

Message Message Variable Formula

Variable Formula

Message Message Variable Formula

Parameter Formula

unmapped
Input Signal

mapped
Output Signal

unmapped
Output Signal

x_c0, x_c1x_outyy

x = <ItemName>,[<GroupName>],[<SignalName>]
y = any usual ASCET Message name

(exported)

(exported)

(imported)

(imported)
Code Generation 121

122
Messages

For every entry in the "ASCET Message" column ("Mappings" tab) in the
HWC Editor, a message element with the same name is created which is always
"imported" (shown by "y").

I/O Interface

Every signal that communicates with the hardware driver is routed within the
HWC module via an I/O interface (shown by x_out). Depending on whether
it is a "send" or "receive" signal or whether the signal is "mapped" to a mes-
sage, either a variable or a parameter with the name x_out is generated.

Formula

If a linear conversion formula has been selected for the signal, there are rele-
vant parameters for the coefficients c0 and c1 .

Configuration Parameters

An additional calibration parameter is generated for every configuration value.
The name of the parameter is composed of the "Item" and/or "Group" prefix
and a parameter designation which, however, is individual for each item.

External Code

The code for an interrupt vector table and for the necessary interrupt vectors is
generated in the external code of the HWC module.

Header Code

The data buffers for data exchange with the low-level drivers and the data
structures for initializing the drivers are defined in the header code.

Processes

The processes generated by the RTIO framework are divided into processes for
driver control and processes for data exchange.

The following processes exist for driver control:

• <item_name>_InitCode_<task_name>_HWCF

• <item_name>_StartCode_<task_name>_HWCF

• <item_name>_ConfigCode_<task_name>_HWCF

• <item_name>_DeviceManagerCode_<task_name>_HWCF

• <item_name>_AcknowledgeCode_<task_name>_HWCF

• <item_name>_AnalyzeCode_<task_name>_HWCF

• <item_name>_StopCode_<task_name>_HWCL

• <item_name>_ExitCode_<task_name>_HWCL
Code Generation

A proprietary process is generated for data exchange with the hardware driver
for every signal group defined.

The following processes exist for data exchange:

• <item_name>,<signal_group_name>_<task_name>_HWCF
("receive" process)

• <item_name>,<signal_group_name>_<task_name>_HWCL
("send" process)

HWCF means that the process is to be inserted into the task specified with
<task_name> before the existing processes; HWCL means that the process is
to be inserted after the existing processes.

8.2 Process Order

The RTIO framework ensures consistent hardware communication thanks to
the automatic sorting of the processes into the task list.

If all processes generated by the RTIO framework were to be allocated to a
task, the following process sequence would result:

• Init

• Analyze

• Acknowledge

• DeviceManager

• Start

• Config

• first "receive" signal group

• ...

• last "receive" signal group

• USER PROCESSES

• first "send" signal group

• ...

• last "send" signal group

Note

This allocation is executed each time RTIO code is generated in accordance
with the scheme defined. The user should never change the allocation of the
"HWC" processes. This can lead to unforeseeable results which in turn may
lead to the hardware being damaged!
Code Generation 123

124
• *Stop

• *Exit

The processes are processed for the "items" from top to bottom in accordance
with the order which is defined by the hierarchical structure, i.e. the system
controller ES113x first has to be initialized before a subordinate hardware
driver can be initialized.

The opposite order applies for the processes marked with a "*" ("Stop" and
"Exit"); i.e. a hardware driver first has to be ended before the system controller
is ended.
Code Generation

9 The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

This chapter describes the RTIO Package for ETK bypass. It assumes that the
user is familiar with the necessary ASCET techniques; the use and operation of
ASCET is not explained.

9.1 ETK Bypass: Definition

In an ETK bypass, certain functions of the control unit (ECU) are outsourced to
a simulation computer, i.e. the PowerPC processing node of the ETAS experi-
mental system. In doing so, data is transferred from the control unit to the
experimental hardware. Based on these data, individual ECU functions are
computed on the experimental hardware. Thus, outsourced data can be easily
modified and tested. The results are transferred back to the ECU.

Modifications in the control unit software, referred to as "bypass hooks",
determine the functions to be outsourced.

The connection to the ECU is implemented via an ETK (emulator test probe). A
dual ported RAM is used for the communication between ECU and ETK.
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 125

126
9.2 Hardware Configuration of an ETK Bypass

The figure below shows a sample configuration for an ETK bypass application
with the ES1000.2 system:

In an ETK bypass application, the outsourced functions are specified in ASCET;
code is then generated from the specification that can be executed on the PPC
module of the ETAS experimental system. The generated code is downloaded
by the host PC to the ETAS experimental system. The ETAS experimental sys-
tem is connected to the ETK of the control unit via the ETK interface ES1200,
ES1201, ES1231, or ES1232.

Additionally, interface parameters can be set in the control unit program that
are required for the configuration of the software interface between the simu-
lation computer and the control unit. Furthermore, new software versions can
be downloaded to the control unit. Measurement and calibration tasks in the
control unit can be performed while running the bypass.

ETK

Engine

Control Unit
ES1120

ETK Interface
ES1231

ASCET
INCA

ES1000.2

6...34V

ON

AUTO

UA Temp

ES1120

PC

ES1130

PC

ES1231.1
A

A

Engine ECU
with ETK

Ethernet

Computing Node
ES1130
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

9.3 ASCET Project for the ETK Bypass

Each ASCET RTIO project for ETK bypass needs to consider the following spe-
cial features:

• The HWC module (cf. chapter 5.2.1) must be added to the ASCET RTIO
project. The name of the instance must be HWC.

• The task list in the OS Editor must include the tasks Init (Type: Init /
Application Mode: active) and Exit (Type: Init / Application Mode:
inactive). The task names “Init” and “Exit” are standard names used by
the RTIO package. If other task names are used, the task assignment
for each new component has to be specified manually in the HWC Edi-
tor

• The task list in the OS Editor requires two special, individual tasks.
These tasks are used by the RTIO package to assign the signal groups
which provide the bypass data received from the driver or the bypass
data to be sent to the driver. In any case, these tasks must have the type
software. The task assignment must be specified manually in the HWC
Editor.

• All messages, including Receive messages to be available for the RTIO
communication, must be declared as “Exported”.

• Global messages are available for the RTIO communication.

The following illustration shows the finished configuration in the "OS" tab:
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 127

128
The following table shows the tasks settings:

9.4 How the ETK Bypass Works

To conduct a bypass project, a control unit with bypass hooks, i.e. software
modified for the bypass, is required. The bypass hooks enables you to switch
between the functions running in the control unit and those running on the
simulation computer. The bypass hooks includes all information required to
transmit the bypass input data to the simulation computer and to process the
bypass output data in the control unit.

The bypassed functions in the control unit are usually also calculated if the
bypass is enabled. But instead of the results of the bypassed functions, the
results obtained by the simulation computer, i.e., the bypass output data, are
used.

The bypass input data is the data that the ES1000 reads from the control unit.
This data is used to calculate the outsourced functions. The calculation results
are returned to the control unit program as bypass output data.

The ETK memory is divided into an emulation memory area and an output
area. The control unit program resides in the emulation area; this area replaces
the control unit ROM. The bypass output data is also stored in this area
because the control unit cannot read directly from the output area.

The output area is used only for transferring the bypass input data from the
control unit to the simulation computer. This area contains a copy of the con-
trol unit RAM. Depending on the ETK model and control unit, the CPU-internal
RAM of the control unit can also be located in this area.

Task Name Applica-
tion Mode

Trigger
Mode

Prio. Group Max.
No of
Act.

Perio
d

Init active Init - - - -

Exit inactive Init - - - -

t_sync active Soft-
ware

16 preemptive 1 -

n_sync active Soft-
ware

17 preemptive 1 -
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

The following figure illustrates the data flow within an ETK bypass project:

The data flows cyclically within the bypass project, i.e. the bypass input data is
first read and then processed by the ES1000 system. Then the bypass output
data calculated in the ES1000 is written back to the control unit where it is
processed further. Reading the bypass input data is synchronized by a time- or
angle-synchronous grid in the control unit. Writing the data back to the control
unit is not synchronized.

9.5 Data Exchange Between Control Unit and ETAS Experimental
System

The DISTAB data exchange method is used for data transfer between the ETAS
experimental system and the control unit.

For several years, the DISTAB 12 method has been used for the interaction
between the control unit and the ETK. DISTAB 12 supports measured data of
up to two bytes in length.

Four-byte integer variables or four-byte or eight-byte real or float variables
require the use of DISTAB 13. DISTAB 13 supports capturing 1, 2, 4 and 8 byte
long measured data from the control unit regardless of its format (signed /
unsigned integer or float).

E
P
R
O
M

ECU ETK

ETAS
Experimental System

O
ut

pu
t

A
re

a
E

m
ul

at
io

n
M

em
or

y

E
xt

er
na

l
R

AM

In
te

rn
al

R
AM

C
P
U

Bypass Output Data

Bypass Input Data
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 129

130
For handling DISTAB, the ETK bypass project requires various parameters that
can be passed to ASCET in a complete ASAM-MCD-2MC project description
file matching the current software version of the control unit. DISTAB is
defined in the DISTAB_CFG section of the TP_BLOB:

/begin DISTAB_CFG

0xC /* type of display table: */
 /* 0xC =DISTAB12, 0xD =DISTAB13 */

0x1 /* Data type of display table: */
 /* 1=byte 2=word (ECU Data Mode) */
 /* additional code table for */
 /* distab13 depending on bus */
 /* width/bus access (see distab13 */
 /* spec. for more information) */

MSB_LAST /* Byte Order: MSB_FIRST/MSB_LAST */

0x383000 /* Trigger Segment Address */

0x0 /* Trigger Configuration */

TRG_MOD 0xB7 /* Dyn. length for TRG_MOD */
 /* (special code) */

/end DISTAB_CFG

ASAM-MCD-2MC is an established standard in the automotive industry for
describing a control unit project (calibration parameters, measured variables,
conversion rules, addresses, etc.). The ASAM-MCD-2MC file needs to be cre-
ated for each new program version and should therefore be the result of the
software development process. Detailed knowledge of the DISTAB method is
not required for the ETK process because all necessary settings are part of the
bypass hooks. Nevertheless, we will briefly look at the working principle to
facilitate examining the ETK memory for diagnostic purposes.

The communication mechanisms for the data transfer between the control
unit and the simulation computer are referred to as "bypass channels".

With ES1201 and ES1231, the control unit has two bypass channels of which
one (channel A, higher priority) runs in the angle-synchronous grid and the
other (channel B, lower priority) in the time-synchronous grid. Each of the two
bypass channels is defined by various pieces of address information and the

Note

The comments are usually not included in the ASAM-MCD-2MC file. They
are added here only for clarity.
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

size of data buffers. With ES1232, up to 32 channels exist (16 bypass channels
and 16 measurement channels) whose names and priorities are determined
automatically (see chapter 10.8.7 on page 208).

Bypass Communication (AML V1.1)

The bypass communication is explained here using bypass channel A of the
ES1231. The process is the same for both channels. Tab. 9-1 contains the
names and description of the parameters used in the ASAM-MCD-2MC file
(*.a2l, AML V1.1) to define both channels.

Tab. 9-1 Bypass communication parameters (AML V1.1)

The parameters for channel A are provided in a QP_BLOB in the IF_DATA
ETK section of the ASAM-MCD-2MC file.

/begin IF_DATA ETK

/begin SOURCE "BYPASS A"

Note

The parameter names are not part of the ASAM-MCD-2MC standard; they
are not necessarily included in the *.a2l file. They are added manually to
the examples of this manual to provide clarity.

Parameter Description

BYPASS_S Start address of pointer list for bypass input data (bypass channel A)

BYPASS_X Start address of pointer list for bypass input data (bypass channel B)

CHNL_S Start address of data buffer for bypass input data (bypass channel A)

CHNL_X Start address of data buffer for bypass input data (bypass channel B)

CHNL_T Start address of data buffer for bypass output data (bypass channel
A)

CHNL_Y Start address of data buffer for bypass output data (bypass channel
B)

TRGID_S Trigger ID address for bypass input data (bypass channel A)

TRGID_X Trigger ID address for bypass input data (bypass channel B)

BPMAX_S Size of data buffer for bypass input data (bypass channel A)

BPMAX_X Size of data buffer for bypass input data (bypass channel B)

BPMAX_T Size of data buffer for bypass output data (bypass channel A)

BPMAX_Y Size of data buffer for bypass output data (bypass channel B)

TRGSEG_A Trigger address for bypass channel A

TRGSEG_B Trigger address for bypass channel B
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 131

132
 0

 0

 /begin

 QP_BLOB

4 /* Acquisition raster; */
/* 1=A (typ. angle synchronous) */
/* 2=B (typ. time synch. 10ms) */
/* 3=C (typ. time synch. 100ms) */
/* 4=S/T angle synch. (bypass only) */
/* 5=X/Y time synch. (bypass only) */

 100 /* BPMAX_S */

 0x81025E /* BYPASS_S */

 0x3801E0 /* CHNL_S */

 0x38302E /* TRGID_S */

 2 /* trigger repetition rate */
/*(worst case) */

 100 /* BPMAX_T */

 0x8103F2 /* CHNL_T */

 /end QP_BLOB

/end SOURCE

...

/end IF_DATA
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

Fig. 9-1 schematically shows the process of the bypass cycle with the DISTAB
data exchange method using the example of bypass channel A. The numbers
represent the individual steps of the bypass cycle:

Fig. 9-1 Schematic process of a bypass cycle (DISTAB method)

Emulation Memory

Output Area

BYPASS_S

CHNL_S

CHNL_T

TRGID_S

1

7

Bypass Input
Data

4

5

6

2

Interrupt

Bypass
Input Data

8

Bypass
Output Data

1011

3

TRGSEG_A

Counter

Data Buffer 2
for

Bypass Output Data

Data Buffer 1
for

Bypass Output Data

Pointer List
for

Bypass Input Data

Active Flag
Length of Pointer List

Bypass Channel ID

Trigger for Input Data

Data Buffer
for

Bypass Input Data

Bypass
Output Data

12 9
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 133

134
1. When starting the bypass experiment on the simulation computer, the
pointer list for the bypass input data is filled.

The bypass offsets (cf. step 11, page 135) are transferred in this step,
too.

2. After the pointer list has been filled, the active-flag is set to 1. This
initiates communication between the control unit and the simulation
computer. Steps 1 and 2 are executed only once, at the beginning of a
bypass experiment.

3. The control unit continuously checks the active-flag byte of the pointer
list. Once the last bit is set to 1, the bypass is activated and the data
transmission begins.

4. The bypass input data is written by the control unit into the appropriate
data buffer, CHNL_S.

DISTAB12 DISTAB13

For each byte to be sent to the sim-
ulation computer, there is a pointer
pointing to the address of the byte
in the control unit memory. With
the DISTAB 12 method, data is
always transmitted in bytes; there-
fore, two pointers are required to
send a word. After filling the
pointer list, its length is written into
the first byte of the list.

Bytes 4 to 7 of the pointer list con-
tain the number of 8-byte, 4-byte,
2-byte, and 1-byte signals. The fol-
lowing bytes contain the signal
addresses, beginning with the first
8-byte signal, and ending with the
last 1-bytre signal. Each address
covers 4 bytes; the byte order of
the addresses is determined by the
Byte Order parameter (cf.
page 130).

DISTAB12 DISTAB13

active-flag: the last bit of the sec-
ond byte of the pointer list

active-flag: bit 0 of the first byte
(byte 0) of the pointer list

DISTAB12 DISTAB13

This is done byte by byte; for each
entry in the pointer list, the byte is
written to the corresponding
address of the data buffer. The
transmission finishes when the
number of bytes has been sent that
is specified by the contents of the
first byte in the list.

The data is written signal-wise, in
the order provided by the pointer
list. First, the bytes of the first 8-
byte signal are written; the Byte
Order parameter again defines
which bit is written first. The other
sognals follow.
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

5. The control unit writes the ID of the current bypass channel (i.e., 4 for
bypass channel A) to the address TRGID_S. This is necessary because
only two addresses are available for the channel IDs, while there are a
total of five channels. Two channels are used as bypass channels; the
other three are available for calibration purposes. The ES1232 has up to
32 channels, 16 bypass channels and 16 measurement channels.

6. The trigger address TRGSEG_A is loaded by the control unit with a ran-
dom value.

7. Writing to the trigger address triggers an interrupt in the simulation
computer.

8. By reading the channel ID from the address TRGID_S, the simulation
computer determines which channel was initialized and then reads the
corresponding data buffer. From the information in the ASAM-MCD-
2MC file, such as the conversion formula, the simulation computer is
able to convert the raw data from the control unit into physical model
variables that can then be processed by the ASCET model.

9. The simulation computer computes the functions outsourced to the
bypass model on the basis of the bypass input data. The results are
then written back to the appropriate data buffer as bypass output data.
For each bypass channel there are two data buffers that are alternately
written to. The simulation computer first internally (i.e. in the simula-
tion computer) increments the counter that is later written to the
CHNL_T address. The counter is incremented when the interrupt in
step 7 occurs. Depending on the contents of the counter, one of the
data buffers is used for writing. If the count is odd, the first data buffer
is used; if it is even, the second buffer is used.

10. After writing to the data buffer, the internal count is written to the
CHNL_T address.

11. The value of the counter is read by the control unit. The control unit
decides on the basis of this value which data buffer is used for reading.
If the value is odd, the first data buffer is read from; if it is even, the
second buffer is read from. This ensures that the data consistency of
the bypass output data is maintained.

The layout of these two buffers depends on the selected bypass output
signal. Thus, the ECU must know where in the buffer the signal value
actually is located. For that purpose, the signal position relative to the
buffer start address—the bypass offset—is determined. For safety rea-
sons, no pointer list exists for the bypass signals; instead, the ECU soft-
ware contains a special bypass offset parameter for each signal. The
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 135

136
bypass offsets are filled into the bypass offset parameters in step 1 (cf.
page 134). These parameters can be directly accessed because they are
located in an ECU application data area allocated in the ETK RAM.

12. The bypass output data is read by the control unit. In general, a safety
mechanism is implemented in the control unit that determines the
behavior of the control unit in case of a failure in the bypass communi-
cation. For details, please consult your control unit programmer.

Two data buffers are required for writing the bypass output data back, because
this process is not synchronized. The results of the calculations in the simula-
tion computer are written back as soon as the calculations are finished. The
control unit may, therefore, request the results before or while the data is
being written back. For this reason, a copy of the data is always held in a data
buffer until the new data has been fully written back to ensure consistency of
the bypass output data.

Other AML versions

A QP_BLOB of version AML V1.1.1 does not differ from the above AML V1.1
example (see page 131).

In AML V1.2, several changes have been made. Some parameters have been
removed, and new parameters have been added. The (optional) names have
changed, too. The QP_BLOB reads as follows:

/begin IF_DATA ETK

/begin SOURCE "BYPASS A4"

 0

 0

 /begin

QP_BLOB

 0x0100 /* version 1.0 */

 15 /* hardware trigger */

 INDIRECT /* indirect/direct triggering */

 5 /* raster number/priority */
/* (32..1) */

 BYPASS /* raster type */
/*(BYPASS/MEASUREMENT) */

 0x38302E /* trigger id/flag address for */
/* indirect triggering */

 100 /* Max. length of display table */
/* in bytes */
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

 0x81025E /* address of the display table */
/* in the memory */

 0x3801E0 /* address, where the ECU */
/* writes the display values */

 100 /* Max. size of bypass receive */
/* table */

 0x0 /* StartAddress of the Adress */
/* table for bypass output */

 0x8103F2 /* Output address of the */
/* bypass table */

 2 /* worst case raster timing */

/end QP_BLOB

/end SOURCE

...

/end IF_DATA

AML V1.3, AML V1.4 and AML V1.6 can be used, too. The differences
between those versions and AML V1.2 are of no consequence for working
with ASCET-RP.

9.6 Initially Required Information and Data

Before you can begin creating an ETK bypass project, you need some informa-
tion and data about your control unit. Normally you obtain this from the con-
trol unit programmer who implemented the bypass hooks. The items listed in
this section may be used as a checklist to ensure a smooth information transfer.

Control Unit Program

The bypass hooks control unit program must be loaded in the control unit.

ASAM-MCD-2MC File

In addition to other tasks, the ASAM-MCD-2MC file describes the data struc-
tures of the control unit. The ETK bypass package uses the ASAM-MCD-2MC
file to access the input and output variables of the bypass project. Therefore, it
is crucial to have the proper ASAM-MCD-2MC file matching the current soft-

Note

AML V1.1.x describes ETK data for 3+2 measurement rasters, it is valid for
ES1232 [ETK-CTRL-BAS], ES1231, and ES1200/1. AML V1.2 and higher
describes ETK data for multirasters, it is valid for ES1232 [ETK-CTRL-ADV].
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 137

138
ware version of the control unit. The supported AML version depends on the
hardware. The descriptions of the various boards include the necessary infor-
mation.

Data Format of the Control Unit Processor

Different processor families use different word data storage formats that are
known in general as Big Endian or Little Endian. When setting up the ETK
bypass, it must be known whether the processor of the control unit uses the
Little Endian or Big Endian storage format, or whether the word data storage
format is specified in the ASAM-MCD-2MC file and can be read by the HWC
Editor.
In the Big Endian format (e.g., used by Motorola processors), the first byte
represents the most significant byte. In the Little Endian format (e.g., used by
Intel processors), the first byte represents the least significant byte.

Base Addresses

The start addresses of the transfer channels and the trigger addresses must be
specified in the ETK bypass package, or the start addresses are specified in the
ASAM-MCD-2MC file and can be read by the HWC Editor. The significance of
the base addresses is explained in chapter 9.5 "Data Exchange Between Con-
trol Unit and ETAS Experimental System" on page 129.

Parameters for Activating the Bypass

The bypass must be enabled in the control unit program. If the bypass is
enabled, the appropriate results in the simulation computer are used instead of
the function results in the control unit program. Each bypass function is acti-
vated by setting a parameter with INCA.

Bypass Output Variables

The ETK bypass project can only modify certain variables in the control unit.
These so-called bypass output variables are specified by the control unit pro-
grammer in the bypass hooks. The bypass output variables have to be known
when creating the project, or the relevant information is stored in the ASAM-
MCD-2MC file from where it can be read by the HWC Editor.

Bit Masks for the Transformation in the NEAR Region

The DISTAB 12 method supports only 16-bit memory addresses for transfer
between the control unit and the bypass computer. For control units using
memory addresses larger than 16 bits, these have to be transformed to 16 bits
by means of a data page pointer. The longAdrANDMask and longAdrOR-
Mask bit masks are used for this purpose. The bit masks need to be specified
in the HWC Editor.
The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

What to do in case of an Error / Safety Mechanism

In general, a safety mechanism is implemented in the control unit that defines
the behavior of the control unit in case of a failure in the bypass communica-
tion. Sometimes the results of the control unit functions are used; at other
times the control unit is switched into Reset or Emergency mode (depending
on the control unit). It is crucial to know the behavior of the control unit if an
error occurs, particularly for bypass experiments in the vehicle.
The ETK Bypass (ES1200/ES1201/ES1231/ES1232) 139

140
 The ETK Bypass (ES1200/ES1201/ES1231/ES1232)

10 HWC Items

All HWC items available with ASCET are described in this chapter.

10.1 Implemented Items

Select Options → Show Installed Items in the HWC editor to display the
implemented items of the RTIO Package.

Fig. 10-1 "Item Information" Dialog Box (* = Position of the HW driver)

The following sections show the HWC editor tabs for each item. Only the item-
specific options are described. Options that apply to all items are described in
the chapter "Configuration Tabs" on page 109. The "Mappings" tab is not
shown as there are no item-specific options in this tab.

10.2 ES1135-LED

This chapter describes the settings for the LEDs on the ES1135 front panel.
HWC Items 141

142
10.2.1 Globals (ES1135-LED Device)

This section describes the global options of the LED Device.

Fig. 10-2 The "Globals" Tab of the ES1135-LED Device

Automatic Mapping

This option makes automatic assignment between signals and (ASCET) mes-
sages possible. The assignment takes place as described in section "Automatic
Mapping" on page 152.
HWC Items

10.2.2 Groups (ES1135-LED Device)

This section describes the signal-group-specific options of the ES1135-LED
Device.

Fig. 10-3 The "Groups" Tab of the ES1135-LED Device

There are no item-specific columns defined for the ES1135-LED Device in the
"Groups" tab. The possible item settings are described in section 7.3.3
on page 114.

10.2.3 Signals (ES1135-LED Device)

This section describes the signal-specific options of the ES1135-LED Device.

Fig. 10-4 The "Signals" Tab of the ES1135-LED Device
HWC Items 143

144
There are no item-specific columns defined for the ES1135-LED Device in the
"Signals" tab. The possible item settings are described in section 7.3.4
on page 115.

10.2.4 Mappings (ES1325-LED Device)

There are no item-specific columns defined for the ES1135-LED Device in the
"Mappings" tab. The possible item settings are described in section 7.3.5
on page 117.

10.3 ES1201-ETK

The ETK interface boards ES1200 and ES1201 enable the experimental system
to be connected to ECUs with an ETK. Using an interference-immune serial
interface (8 MBit/s), the contents of the ECU memory can be transferred to the
ETAS experimental system or alternatively be modified by this system.

The ES1200 provides one ETK interface while the ES1201 has two ETK inter-
faces. Otherwise, the two boards are identical in every respect.

10.3.1 Globals (ES1201-ETK Subsystem)

Fig. 10-5 The "Globals" Tab of the ES1201-ETK Subsystem

Note

The ES1201 board requires special system services to be able to communi-
cate with an ETK. These services can only be provided by an ES1111 (VCU)
or an ES1120 (VCU2) system controller board. (For more details, please see
the section "Hardware – ES1000.x Experimental System" on page 71).
HWC Items

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the switch settings of the ES1201. Two different VME base
addresses can be selected for the ES1201; this means that up to two ES1201s
can be operated in an ETAS experimental system.

Up to two ETK-CTRL subsystems can be assigned to the ES1201-ETK sub-
system. These ETK-CTRL subsystems correspond to the two ETK interface con-
trollers on the board.

The ES1201-ETK subsystem is used to integrate the ES1200. As this board has
only one ETK interface, only one ETK-CTRL subsystem can be assigned (with
ETK Port A).

10.3.2 Globals (ETK-CTRL Subsystem)

In the "Globals" tab of an ETK-CTRL subsystem, a physical ETK controller or an
ETK port is assigned to the ETK-CTRL subsystem.

Fig. 10-6 The "Globals" Tab of the ETK-CTRL Subsystem

ETK Port

One of the two independent ETK channels (port A, port B) and hence one of
the two ETK controllers of the ES1201 is assigned as an ETK interface. Only
port A can be selected for the ES1200.
HWC Items 145

146
Trigger Segment Address (hex)

Here, the trigger segment address of the DISTAB procedure has to be specified.

If an ETK bypass item with a relevant ASAM-MCD-2MC project is assigned to
the ETK-CTRL subsystem, this setting cannot be edited and is made automati-
cally providing the relevant variable in the ASAM-MCD-2MC project was cor-
rectly defined.

The trigger segment address determines the location of the hardware trigger
addresses which are used to control data transmission via the bypass channels.
The location of the hardware trigger addresses in relation to the trigger seg-
ment address is constant with the DISTAB data exchange procedure.

The start address of a 64-byte trigger segment (with 8-bit or 16-bit wide bus
access) must be at an even address which can be divided by 64: the start
address of a 128-byte trigger segment (with 32-bit wide bus access) corre-
spondingly has to be at an address that can be divided by 128.

The format of the trigger segment is defined in the DISTAB 12 and DISTAB 13
interface description.

Trigger Segment

This is where the trigger segment size has to be defined.

If an ETK bypass item with a relevant ASAM-MCD-2MC project is assigned to
the ETK-CTRL subsystem, this setting cannot be edited and is made automati-
cally providing the relevant variable in the ASAM-MCD-2MC project was cor-
rectly defined.

The address space of the trigger segment must not be used by the ECU. With
16-bit-wide trigger addresses, the trigger segment is 64 bytes wide and with
32-bit-wide trigger addresses, the trigger segment is 128 bytes wide.

Trigger

This is where the number of hardware trigger addresses used for the bypass (2
or 16) is set.

If an ETK bypass item with a relevant ASAM-MCD-2MC project is assigned to
the ETK-CTRL subsystem, this setting cannot be edited and is made automati-
cally providing the relevant variable in the ASAM-MCD-2MC project was cor-
rectly defined.
HWC Items

10.3.3 Globals (ETK-BYPASS Device)

This ETK-BYPASS device is used to define all variables necessary for bypass
operation with a bypass-capable ECU equipped with an ETK and the relevant
software.

Fig. 10-7 The "Globals" Tab of the ETK-BYPASS Device
HWC Items 147

148
ASAM-2MC Project

The ETK bypass requires an ASAM-MCD-2MC project (AML V1.1) which can
be generated in the database by reading an ASAM-MCD-2MC description file.

The ASAM-MCD-2MC file contains, under the IF_DATA ETK label (in older
versions also IF_DATA ASAP1B_ETK), the bypass description. For each
bypass channel, a QP_BLOB exists which contains the channel settings; an
example is given in section "Bypass Communication (AML V1.1)"
on page 131. The TP_BLOB contains general settings.

/begin TP_BLOB

0x1000100 /* TP_BLOB version */

2 /* Project Base Address */

0x0 /* RESET_CFG (only PPC family CPU)*/

/begin DISTAB_CFG 0xC 0x1 MSB_LAST 0x383000 0x0

 TRG_MOD 0xB7

/end DISTAB_CFG

CODE_CHK /* check whether program and data */
/* are matching */

0x0 /* program ID address in data range */
0x0 /* program ID length in data range */
0x0 /* program ID address in external RAM */
0x0 /* program ID length in external RAM */

ETK_CFG 0xF 0xF0 0xFF 0x3 0xFD 0xEE 0xFF 0x1
 /* ETK configuration */

Note

ASAM-MCD-2MC projects using AML V1.2 or higher cannot be read. The
following error message appears when such a project is assigned to the
device:
Error: Incompatible version 0x<version> of QP_BLOB
found in SOURCE ’<sName>’. Expected version = 0x1.
Selected ASAM-2MC Project is not suitable for the basic
ETK-Controller (ES1232/ETK-CTRL-BAS, ES1231/ETK-CTRL,
ES1201/ETK-CTRL) ! Please use an advanced ETK-Control-
ler (ES1232/ETK-CTRL-ADV)!
HWC Items

RESERVED 0x810000 /* start address */
 0x8103F9 /* length */
 EXTERN /* memory attribute */
 0x-1 0x-1 0x-1 0x-1 0x-1

/* mirror offsets 1 - 5 */

/end TP_BLOB

Necessary information not given in the ASAM-MCD-2MC file can be inserted
manually in the configuration tabs of the HWC editor.

Click in the "Value" column next to the "ASAM-2MC Project" option. A dialog
window opens from which the required ASAM-MCD-2MC project can be
selected.

Fig. 10-8 "Select ASAM-2MC Project" dialog window

BLD Source

This option is used to determine which source is responsible for the definition
of the dependency between the required ASAM-MCD-2MC variables for the
bypass output values (BLD = Bypass Label Dependence).

The following two possibilities are usually at your disposal:

ASAM-2MC File This means the definition of the dependencies between the
bypass output values within the ASAM-MCD-2MC file. This,
however, is not supported by many ASAM-MCD-2MC files.

Local Local means the local definition is used from the ETK-BYPASS
device (see following section "Local BLD Definitions")
HWC Items 149

150
Local BLD Definitions

The data transmission of the bypass output values from ASCET to the ECU
takes place using an individual data buffer for each grid (angle-synchronous /
time-synchronous).

Some ECU programs support flexible allocation of bypass variables to this data
buffer. This flexible allocation is certainly necessary when more bypass variables
are made available by the ECU software than can be transferred in the avail-
able data buffer.

Depending on the ECU program, up to 3 additional characteristics are neces-
sary for every bypass output value (defined as a measurement) to define the
bypass variable:

The following figure shows an example:

In this case, Variable6 is at bit 0 of byte 6 in the data buffer for the bypass
output values; the offset values are thus byte offset: 6 / bit offset: 0.

Variable7, also a bit value, is at bit 1 in byte 6: the values are accordingly
byte offset: 6 / bit offset: 1.

Byte offset
or vector
parameter:

Defines the byte offset of the bypass output value in relation to
the start of the data buffer

Bit offset: Is only available for bit values and specifies the bit position within
a byte

Source: A few ECU programs support a free allocation of a bypass vari-
able to a bypass grid or source (angle-synchronous / time-syn-
chronous). The parameter contains the relevant value for this (0 =
angle-synchronous / 1 = time-synchronous)

Basisadresse
Byte 0

Byte 1
Byte 2

Byte 3

Byte 4

Variable6 (6) (0)

Variable7 (6) (1)

Variable3 (4)

Variable4 (5)

Variable1 (0)

Byte 5

Byte 6

Variable2 (2)
HWC Items

Variable3 is a byte and has byte offset 4 as it is at byte 4 of the memory
area; Variable4 has byte offset 5.

Variable1 is at the start of the data buffer and has byte offset 0.
Variable2 has byte offset 2 as Variable1 is a word occupying two bytes.

Click on the entry [Edit] in the "Value" column to open a small text editor.
There, the local definition of the dependencies between the bypass labels is
defined (BLD Bypass Label Dependencies).

The text is built in lines whereby each line describes exactly one bypass output
signal. The definition of the label dependencies of a bypass output signal has
the following syntax:

<Grid>, <Signal>, [<Byte Offset>], [<Bit Offset>], [<Source>]

The offsets for the parameters defined here can be configured automatically
with ASCET.

Example of a local BLD definition:

1 // current version of the BLD

sgetas2 // (optional) name of the dependent
// ASAP2 file
// (is ignored by BLD reader)

A, t1b_8, EBOTT1_8 // definition of a bypass signal
// available for angle sync sample
// grid

B, B_t1b, EBOTBT1, BOBBT1
// definition of a bypass bit
// signal available for time
// sync grid

Grid: "A" (angle-synchronous), "B" (time-synchronous) or "AB"
(angle- and time-synchronous)

Signal: Name of the ASAM-MCD-2MC measurement of the bypass
output value

Byte Offset: Name of the optional ASAM-MCD-2MC characteristic which is
normally always available and is used to define the byte offset.

Bit Offset: Name of the optional ASAM-MCD-2MC characteristic which is
used to define the bit position with bit values

Source: Name of the optional ASAM-MCD-2MC characteristic. If more
than one raster is available (AB), the currently selected grid is
entered here.

// Is used to introduce a comment until the end of the line
HWC Items 151

152
AB, B_Test, B_Test_Vector,, B_Test_Channel

// definition of a bypass signal
// available for both sample grids
// with definition for the actual
// sample grid (source) parameter

A, log_uint8_0_A, log_uint8_0_offset_A.Model_Byp_A,
log_uint8_0_bitOffset_A.Model_Byp_A

// definition of a bypass signal
// available for angle sync sample
// grid

This last example corresponds to the following section MEASUREMENT of the
ASAM-MCD-2MC file (AML V1.1):

/begin MEASUREMENT log_uint8_0_A

""

UBYTE

ident

1

100

0.0

1.0

READ_ONLY

BIT_MASK 0x8

ECU_ADDRESS 0xFD00

/end MEASUREMENT

Automatic Mapping

For more information please refer to the description "Automatic Mapping" in
section 10.4.3 on page 167.

Byte Order

This line displays the word data storage format (MSB first / MSB last) of the
ECU processor. This information is read from the relevant ASAM-MCD-2MC
project (see page 130).

Overview of the common "byte order" terms:

MSB first big endian Motorola

MSB last little endian Intel
HWC Items

Distab Type

This line shows which DISTAB procedure is used for exchanging data with the
ECU. This information is read from the relevant ASAM-MCD-2MC project (see
page 130).

DISTAB 12 supports signals which are up to two bytes long

DISTAB 13 supports signals which are 1, 2, 4 and 8 bytes long

Grid A / B

These lines display the designations read for the two grids A and B from the
ASAM-MCD-2MC project (angle-synchronous and time-synchronous).

Bypass Variable Selection Mode

In this line, you can specify whether all ECU variables which were defined as
"measurements" in the ASAM-MCD description are displayed ("all") in the
selection list for bypass output values ("send" signal groups in the "Groups"
tab) or just those variables which were identified as bypass output values in the
BLD definition ("bypass").

For the bypass input values ("receive" signal groups in the "Groups" tab),
which are not affected by this setting, all measurement variables defined in the
ASAM-MCD-2MC project are available regardless of the selection in this line.

Update on

This line allows you to select whether data transfer between the simulation
processor and the ECU should take place during bypass communication on the
working page, reference page or working and reference page of the ETK.

ECU Data Mode

This line shows which access mode (byte access / word access) the ECU proces-
sor uses to access the data memory.

This setting is taken from the ASAM-MCD-2MC project (see page 130).

Base Offset Value

This line allows you to move the byte offset of every bypass output value 0, 2
or 8 bytes up.

The default value for the byte offset with DISTAB 12 is 0. With DISTAB 13, the
default value for the byte offset is 8. Settings other than those listed here are
special solutions and must be coordinated with the ECU programmer.
HWC Items 153

154
Begin Far Address Range (hex)

This line is used to specify the start address of the FAR address range. This
specification is usually only necessary for the DISTAB 12 procedure.

Variables from the FAR address range of the ECU cannot be read or written by
ECUs with C16x microcontrollers that use the DISTAB 12 procedure. All values
in the Far address range are read by individual ETK accesses which slows down
data transfer.

Length Far Address Range (hex)

This line is used to specify the length of the FAR address range. This specifica-
tion is usually only necessary for the DISTAB 12 procedure.

Max Far Signals

This line is used to specify the maximum number of variables that can be read
from the FAR address range. This specification is usually only necessary for the
DISTAB 12 procedure.

Reading large numbers of variables from the FAR address range has a negative
effect on the runtime of the ETK bypass. As few values as possible should be
read from this range.

Long Address AND / OR Mask (hex)

These two lines show the masks selected in the "Address Mapping" line.

Address Mapping

This line can only be edited when the DISTAB 12 procedure was selected.

It is used to define bit masks which is then in turn used to execute an address
transformation. ECUs with a C16x microcontroller, that use memory addresses
larger than 16 bits, can be moved with these bit masks to addresses within the
16-bit address range of the DISTAB 12.

Formula:

<ECU_address> :=
<Memory_address> & <AND Mask> | <OR Mask>
HWC Items

The masks are shown in the "Long Address AND / OR Mask (hex)" lines. The
following table contains the possible selections for "Address Mapping" and
the correspondins masks.

10.3.4 Groups (ETK-BYPASS Device)

The number of signal groups (4) is fixed for the ETK-BYPASS device. The first
two signal groups concern the first grid, usually the angle-synchronous one.
The last two signal groups concern the second bypass grid which is usually the
time-synchronous grid.

Each grid consists of two signal groups; a send and a receive signal group.

Address Mapping Long Address

AND Mask (hex) OR Mask (hex

Mask 16 Bit 0xFFFF 0x0000

C167x DPP0 0x3FFF 0x0000

C167x DPP1 0x3FFF 0x4000

C167x DPP2 0x3FFF 0x8000

C167x DPP3 0x3FFF 0xC000
HWC Items 155

156
The data of the receive signal group is transferred using the standard DISTAB
procedure and the data of the send signal group is exchanged between the
ECU and RTIO using the bypass table procedure.

Fig. 10-9 The "Groups" Tab of the ETK-BYPASS Device

Task

The following task allocation should be used for a correct bypass function:

Fig. 10-10 The ETK Bypass Standard Task Allocation

Note

After changing the group name, the signal name, or the signal direction, an
ASCET message mapped previously may not be mapped automatically any
longer and then has to be mapped again manually.

Task "n_Sync"
(Software Task)

"receive"
Process

(RTIO generated)

Bypass-Function
Process

(User generated)

"send" Process
(RTIO generated)

Task "t_Sync"
(Software Task)

"receive"
Process

(RTIO generated)

Bypass-Function
Process

(User generated)

"send" Process
(RTIO generated)

Task

n_Sync

n_Sync

t_Sync

t_Sync
HWC Items

Activated Task

If software tasks are entered in this column, they are activated when sending
or receiving data by an implicit "activate Task" call.

Bypass Variables

See section "Bypass Variables" on page 184 in chapter 10.5.4.

Diagnostic Variable

See section "Diagnostic Variable" on page 185 in chapter 10.5.4.

Start Buffer (hex)

The base addresses of the relevant data buffers for the bypass input data and
output data must be entered in this column.

Normally, these address specifications are contained in the ASAM-MCD-2MC
project, providing it is an ASAM-MCD-2MC project which also correctly sup-
ports bypass operation. In this case, the relevant values from the ASAM-MCD-
2MC project are entered and entry is then locked.

The relevant ASAM-MCD-2MC parameters for this are (Tab. 9-1, "Parameter"
column):

CHNL_S, CHNL_T, CHNL_X, CHNL_Y

Buffer size (hex)

The values of the relevant data buffers for the bypass input data and output
data must be entered in this column.

Normally, these specifications are contained in the ASAM-MCD-2MC project,
providing it is an ASAM-MCD-2MC project which also correctly supports
bypass operation. In this case, the relevant values from the ASAM-MCD-2MC
project are entered and entry is then locked.

The relevant ASAM-MCD-2MC parameters for this are (Tab. 9-1, "Parameter"
column):

BPMAX_S, BPMAX_T, BPMAX_X, BPMAX_Y

Trigger Id (hex)

The addresses for the trigger identifiers for the DISTAB procedure used must be
entered in this column for the "receive" signal groups.

Normally, these specifications are contained in the ASAM-MCD-2MC project,
providing it is an ASAM-MCD-2MC project which also correctly supports
bypass operation. In this case, the relevant values from the ASAM-MCD-2MC
project are entered and entry is then locked.
HWC Items 157

158
The relevant ASAM-MCD-2MC parameters for this are (Tab. 9-1, "Parameter"
column):

TRGID_S, ---, TRGID_X, ---

Start Pointer (hex)

The start addresses of the pointer lists for the DISTAB procedure used must be
entered in this column for the "receive" signal groups.

Normally, these specifications are contained in the ASAM-MCD-2MC project,
providing it is an ASAM-MCD-2MC project which also correctly supports
bypass operation. In this case, the relevant values from the ASAM-MCD-2MC
project are entered and entry is then locked.

The relevant ASAM-MCD-2MC parameters for this are (Tab. 9-1, "Parameter"
column):

BYPASS_S, ---, BYPASS_X, ---

10.3.5 Signals (ETK-BYPASS Device)

Fig. 10-11 The "Signals" Tab of the ETK-BYPASS Device

The bypass variables are sorted into the relevant signal group according to their
byte size. The valid order for "send" signals is 8-4-2-1 bytes.

Note

None of the columns of the "Signals" tab can be edited by the user. They are
solely intended for the display of status values for the bypass variables.
HWC Items

With "receive" signals, a distinction has to be made as to whether they are
internal variables of the ECU controller which can only be read indirectly using
the DISTAB procedure or whether the variables are in the external memory
range of the ECU controller which can also be read directly by the ETK. This
means the valid order here is 8-4-2-1 bytes directly and then 8-4-2-1 indirectly.

Signal Address (hex)

This column displays the ASAM-MCD-2MC measurement memory addresses
of the bypass variables.

Signal Data Type

This column displays the data types of the bypass variables.

Signal Size

This column displays the data size of the bypass variables in bytes.

Signal Location

This column is only relevant for "receive" signals and displays the memory
location (internal / external) of the bypass variables.

• Internal:
"Internal" means that the bypass variable is in the internal RAM of the
ECU controller and can thus only be read via the DISTAB mechanism.

• External
"External" means that the value is in the external RAM of the ECU
controller and can possibly be read directly by the ETK.

Signal Offset (hex)

This column displays the (0-based) index of the value within the data buffer.

Access

This column is only relevant for "receive" signals and displays the access
method used to access the measured values:

Access Address (hex)

This column shows the target addresses of the bypass variables which may
have been recalculated.

"Distab" The value is read using the DISTAB procedure

"Direct" The value is read using the direct ETK access
HWC Items 159

160
The ASAM-MCD-2MC project may contain "memory segments" for the ETK
access which contain a conversion for certain addresses to access the target
address.

In addition, the address masks "AND Mask" and "OR Mask" from the "Glo-
bals" tab may be taken into consideration for the DISTAB 12 procedure.

Formula:

<target_address> :=
(<signal_address> & <AND Mask> | <OR Mask>)

(possibly with "memory segment" conversion)

Offset Label

This column is only relevant for "send" signals and displays the name of the
vector parameter providing a BLD reference has been defined for the bypass
variable (for more information, please refer to the section "Local BLD Defini-
tions" on page 150).

Offset Address (hex)

This column is only relevant for "send" signals and displays the address of the
vector parameter providing a BLD reference has been defined for the bypass
variable (for more information, please refer to the section "Local BLD Defini-
tions" on page 150).

Offset Value (hex)

This column is only relevant for "send" signals and displays the value to which
the parameter is adjusted when bypass is started to activate the relevant
bypass variable. This value is only available if a BLD reference has been defined
for the bypass variable (for more information, please refer to the section "Local
BLD Definitions" on page 150).

Formula for the calculation of the value:

Offset Value =
Signal Offset + Base Offset Value

(The Base Offset Value is taken from the "Globals" tab.)

Bit Label

This column is only relevant for "send" signals and displays the name of the bit
offset parameter providing a BLD reference has been defined for the bypass
variable and it is a bit value (for more information, please refer to the section
"Local BLD Definitions" on page 150).
HWC Items

Bit Address (hex)

This column is only relevant for "send" signals and displays the address of the
bit offset parameter providing a BLD reference has been defined for the bypass
variable and it is a bit value (for more information, please refer to the section
"Local BLD Definitions" on page 150).

Bit Value

This column is only relevant for "send" signals and displays the value to which
the bit offset parameter is adjusted when bypass is started to specify the rele-
vant bit position within a data byte (0-based). This value is only available pro-
viding it is a bit value and a BLD reference has been defined for the bypass
variable (for more information, please refer to the section "Local BLD Defini-
tions" on page 150).

Src Label

This column is only relevant for "send" signals. It displays the name of the
"Source" parameter providing a BLD reference has been defined for the
bypass variable (for more information, please refer to the section "Local BLD
Definitions" on page 150).

Src Address (hex)

This column is only relevant for "send" signals. It displays the address of the
"Source" parameter (Src Label) providing a BLD reference has been defined for
the bypass variable (for more information, please refer to the section "Local
BLD Definitions" on page 150).

Src Value

This column is only relevant for "send" signals. It displays the value to which
the parameter (Src Label) is adjusted at the start of bypass to tell the ECU
which grid the relevant bypass variable shall be updated in. If the variable is to
be displayed in the angle-synchronous grid (A), Src Value is 0, if the variable
is to be displayed in the time-synchronous grid (B), Src Value is 1.

This value is only available if a BLD reference has been defined for the bypass
variable (for more information, please refer to the section "Local BLD Defini-
tions" on page 150).

10.3.6 Mappings (ETK-BYPASS Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.
HWC Items 161

162
10.4 ES1222-CAN (CAN-IO)

The ES1222 board is used as a CAN interface in VMEbus systems. The board
makes four CAN channels available which have separate CAN controllers of
type Intel 82527.

The board also makes it possible to trigger interrupts on the simulation proces-
sor with received CAN messages so that a permanent polling for messages can
be done without. Each CAN controller can process up to 255 send and 255
receive messages. The system controller is considerably relieved as a propri-
etary processor is used.

This section describes the RTIO integration of the ES1222 board (previously
referred to as the VSIC board). In the HWC editor, the ES1222 board is inte-
grated by selecting the "ES1222-CAN" item.

In principle, all distant terminals can connected over this board which commu-
nicate about CAN with tightly defined messages.

10.4.1 Globals (ES1222-CAN Subsystem)

Fig. 10-12 The "Globals" Tab of the ES1222-CAN Subsystem

Note

Because the FIFO memory contains only 82 messages per channel it isn't
possible, to send the complete 255 messages at the same time. The mes-
sages have to submit from several tasks at various times to the FIFO memory
so that the FIFO memory isn't overfilled.
HWC Items

Up to four CAN-CTRL subsystems can be assigned to the ES1222-CAN sub-
system. These "CAN-CTRL" items correspond to the four Intel 82527 CAN
controllers on the board.

IRQ Handler Task

An additional "IRQ Handler Task" is required to support interrupts of the
ES1222 board. This task must be generated as a "software" task in the task list
in the ASCET project editor, and at least 2 (max. 50) must be entered in the
"Max. No. of Activations" field.

ID

The board number of the board to be addressed has to be entered in the "ID"
field.

Note

The ES1222 board is an "Auto-ID" board which is automatically assigned an
ID number and a free address space by the Hardware Manager when the
system is switched on. Boards of the same type (e.g.two ES1222s) are num-
bered from left to right, i.e. the left-hand board is assigned the number one,
the next one number two etc. There are 4 IDs available; this means that up
to 4 boards can be operated in an experimental system.
HWC Items 163

164
10.4.2 Globals (CAN-CTRL Subsystem)

A physical CAN controller or CAN connector is assigned to the CAN-CTRL sub-
system in the "Globals" tab of a CAN-CTRL subsystem.

Fig. 10-13 The "Globals" Tab of the CAN-CTRL Subsystem

CAN Connector

This is where the required CAN controller or CAN connector (port A, port B,
port C or port D) is selected.

Baud Rate [kBaud]

This is where you can select the required baud rate. The 8 standard baud rates
are available (1000, 500, 250, 125, 100, 50, 20,10 kBaud). It is also possible to
select the <Special Timing> setting which activates the low-level control
of the CAN controller in terms of bit timing and baud rate. The five options
described below are necessary for specifying the "Special Timing" settings.
HWC Items

Identifier

With CAN messages, you can choose between standard frames with 11 bit
identifiers or extended frames with 29 bit identifiers. The length of the identi-
fier field (standard / extended) can be specified in this line.

When the standard identifier has been selected, only 11 bit values are allowed
in the "Groups" tab of the CAN-IO device (cf. "Identifier dec/hex"
on page 174). When you enter larger values, the most significant bits (MSB)
are truncated. A warning is not given.

When the extended identifier has been selected, only 29 bit values are
allowed. When you enter larger values, the most significant bits (MSB) are
truncated. A warning is not given.

Special Timing: BRP (dec)

This option is hidden by default. It can only be edited if the "Baud Rate" option
is set to <Special Timing>.

This parameter is used to set the "Baud Rate Prescaler" which determines the
baud rate from the input clock of the CAN controller. The value range of this
setting is 0 - 63.

For more information on this setting, refer to the Intel 82527 CAN Controller
data sheet.

Special Timing: SJW (dec)

This option is hidden by default. It can only be edited if the "Baud Rate" option
is set to <Special Timing>.

This parameter is used to set the "Synchronization Jump Width". The value
range of this setting is 0 - 3.

For more information on this setting, refer to the Intel 82527 CAN Controller
data sheet.

Special Timing: TSEG1 (dec)

This option is hidden by default. It can only be edited if the "Baud Rate" option
is set to <Special Timing>.

This parameter is used to set "Time Segment 1" and determines the time seg-
ment before the sampling time. The value range of this setting is 2 - 15.

Note

A mixture of standard frames and extended frames is not supported for
CAN-CTRL devices.
HWC Items 165

166
For more information on this setting, refer to the Intel 82527 CAN Controller
data sheet.

Special Timing: TSEG2 (dec)

This option is hidden by default. It can only be edited if the "Baud Rate" option
is set to <Special Timing>.

This parameter is used to set "Time Segment 2" and determines the time seg-
ment after the sampling time. The value range of this setting is 1 - 7.

For more information on this setting, refer to the Intel 82527 CAN Controller
data sheet.

Special Timing: SPL (dec)

This option is hidden by default. It can only be edited if the "Baud Rate" option
is set to "<Special Timing>".

This parameter is used to set the "Sampling Mode" and determines how often
the signal is sampled to determine the logical state.

For more information on this setting, refer to the Intel 82527 CAN Controller
data sheet.

The formula for calculating the CAN bus frequency (from Intel 82527 CAN
Controller data sheet) is:

CAN bus frequency =
10 MHz / [(BRP + 1) x (3 + TSEG1 + TSEG2)]
HWC Items

10.4.3 Globals (CAN-IO Device)

This CAN-IO device can be used for the simple simulation of a CAN bus partic-
ipant which can send and receive CAN messages.

Fig. 10-14 The "Globals" Tab of the CAN-IO Device

Import CAN DB File

This option is used to read a CAN database file which was created with the
CANdb data management program made by the company Vector Informatik.
CAN messages and signals can be generated automatically if necessary using
this file.

A dialog box opens after you press [Do it...]:
HWC Items 167

168
The CAN DB file to be imported can be selected in this dialog box.

After clicking the Open button, the following dialog box is displayed and can
be used to specify what happens next:

Fig. 10-15 CAN DB Import Dialog

A CAN DB file normally describes several nodes of a CAN network. All existing
nodes are listed in the "Select Desired Network Nodes" list. The two lists to the
right of it ("Send Messages" / "Receive Messages") list all CAN messages
defined for the node currently selected. The messages selected are used for
import. "Import Use Case" can also be selected. The Replace Nodes option
means that the CAN-IO device assumes the role of the network node; i.e. a
send message of the node is also used as a send message of the CAN-IO device
etc..

The Counterpart to Nodes option means that the CAN-IO device is the coun-
terpart to the network node; i.e. a send message of the node results in a
receive message etc.

After you confirm with OK, the data to be imported (CAN messages and sig-
nals) with the signal groups and signals is checked. The result of this check is
then shown in the dialog box displayed below:
HWC Items

Fig. 10-16 "CAN DB Check" Dialog Box

So far, the existing CAN-IO device has not been changed. The actual import
procedure does not start until the OK button is pressed.

The import procedure inserts the imported messages in the signal groups and
ensures that relevant signals are defined.

Once import is completed, the detailed protocol of the import procedure is
shown in the "Monitor" dialog box:

Fig. 10-17 "Monitor" Window with Import Protocol

Attention during import:

When a CAN DB file is imported, only 29 Bit (identifier extended), or 11 Bit
(identifier standard; cf. "Identifier" on page 165), are inserted into the identi-
fier field automatically.
HWC Items 169

170
When you selected the standard identifier in the CAN Controller item, but the
CAN DB file contains signals with 29 Bit identifiers (ID > 231), two things hap-
pen:

• 11 bits (bits [28...18]) are inserted into the identifier field. The remain-
ing bits (MSB) are rejected.

• Warnings are displayed in the monitor window.

Since only one identifier can be selected, CAN DB files containing both stan-
dard and extended identifiers cause problems.

Automatic Mapping

This option makes automatic assignment between signals and (ASCET) mes-
sages possible.

A dialog window opens after you press [Do it...]. It shows the current
mapping:

Fig. 10-18 "Automatic Mapping" dialog window with mapping status

The next part of the procedure can now be selected from the window. The
following commands are possible:

• All:
The current mapping is replaced completely. For each signal, a suitable
ASCET message with the same name is searched for. If one is available,
it is entered; if not, the signal is not mapped.
HWC Items

• X-All:
Works in exactly the same way as "All", but this extended functionality
means that for every missing ASCET message, a global send-receive
message is generated, i.e. all signals are mapped after this selection.

• Mapped:
Only those signals are mapped that were already mapped, i.e. an
ASCET message with an identical name is searched for for every
mapped signal. If none is found, the relevant signal is no longer
mapped (= empty ASCET message).

• X-Mapped:
Works in exactly the same way as "Mapped", but new global send-
receive messages may be generated in this extended action if no ASCET
messages with the same name were found.

• Unmapped:
Only those signals are mapped that have not been mapped so far (=
empty ASCET message), i.e. an ASCET message with the same name is
searched for for each of these signals. If none is found, the relevant
signal is not mapped.

• X-Unmapped:
Works in exactly the same way as "Unmapped", but new global send-
receive messages may be generated in this extended action if no ASCET
messages with the same name were found.

• Cancel:
Aborts the automatic mapping.

Use the "Mapping" tab in the HWC options window (see page 108) to deter-
mine whether the messages generated with the X-* commands are generated
in the project or in one of its included modules.

Generate Receive Debug Signals

If this option is activated (= yes), two additional signals are generated for
every "receive" signal group.

• <GroupName>_Diag_dT

• <GroupName>_Diag_Rec
HWC Items 171

172
The ...dT signal specifies the difference in seconds to the previous message
received.

In contrast, no real receipt monitoring can be executed when a message is
received with an interrupt (IRQ = yes) as the calculation of the value does
not take place until the interrupt task. As the calculation does not take place if
no message is received, the old value is frozen. This means that it is impossible
to tell when an interrupt is received, whether the receipt takes place in a regu-
lar grid or whether it is interrupted.

The ...Rec signal is described as true every time a message is received. If this
signal is mapped to a send-receive message and then reset to false by the
application every time it is read, the application can easily determine whether
a message has been received between the cycles.

Note

This signal can be used for a normal message receipt (IRQ = no) to monitor
the receipt. If, for example, the CANbus is interrupted, the value increases
permanently in the grid of the receive task. This value is not protected
against overflow (which occurs at approx. 300s) for performance reasons!
HWC Items

10.4.4 Groups (CAN-IO Device)

The CAN messages are specified in the form of signal groups in this CAN-IO
tab.

Direction

This is where you can determine the direction of the CAN message ("send" =
send message, "receive" = receive message).

Task

This is where the task is specified in which the message is to be sent or
received. If a receive message is to be received in interrupt mode, this setting is
reset and locked.

Note

New signal groups or CAN messages can be generated via the context menu
in the "Groups" tab (for more details please refer to the section "View"
Menu on page 104).

Note

After changing the group name, the signal name, or the signal direction, an
ASCET message mapped previously may not be mapped automatically any
longer and then has to be mapped again manually.
HWC Items 173

174
IRQ

This option specifies whether the relevant receive message should be received
in interrupt mode or not. For "normal" receipt, the CAN message has to be
polled within a task as many times as it can be sent by the counterpart. CAN
messages which are not sent in any fixed grid or even only occur sporadically
can be problematic in this operating mode. Interrupt reception is ideal for this
as it triggers message processing exactly when the message was received.

Identifier dec/hex

This is where the message identifier is entered. The value can vary in size here
depending on the setting chosen for the identifier type in the superior CAN
controller item (standard or extended):

Each signal group or CAN message has to have a unique identifier.

Length [Byte]

Specifies how many useful data bytes the relevant message can transfer (1..8).

Activated Task*

For "receive" CAN messages1 (signal groups), a software task may be entered
here that is always activated when the relevant signal group has been received,
after the receiving task has been executed. The task entered here can, e.g., be
used for post-processing like cleaning up.

This column is hidden by default.

Prescaler*

This allows you to set when a VMEbus interrupt is triggered to transfer data
with a message received in interrupt mode. The default setting "1" means that
for every message received, data transfer also takes place. If this value, for
example, is increased to "2", a VMEbus interrupt is only triggered every sec-
ond message received which then transfers the data of the message last
received.

Standard identifier: 11-bit 2 047 dec 7 FF hex

Extended identifier: 29-bit 536 870 911 dec F FF FF FF hex

1. It is possible to specify such a task for "send" groups, too, but there is no recom-
mended usage for such a utilization. (As the sending process is handled asynchro-
nously, the CAN message may or may not have been sent when that task is
activated.)
HWC Items

This column is not displayed by default.

10.4.5 Signals (CAN-IO Device)

The CAN I/O signals are specified in this CAN-IO tab.

Group

This is where a signal is allocated to the required signal group.

Signal Type

This is where the signal type is determined in which the signal is transferred via
the CAN bus.

Note

The value should be increased when the relevant message is received very
quickly and the VMEbus interrupt load therefore increases too much.

Note

New signals can be generated via the context menu in the "Signals" tab (for
more details please refer to the section ""View" Menu" on page 104).
HWC Items 175

176
The following settings are possible:

The following table provides an overview of the IEEE floating-point formats:

7654321.. (Bit matrix)

A CAN message can transfer up to 8 data bytes. A bit matrix can specify which
bits each signal requires or occupies (a signal = a row).

The columns are structured as follows:

Significance of the bit fields:

Operating the bit fields:

Signal Type Data Type

int Characterizes a signed signal in the default complement to two
data format (max. 32-bit)

(s)int Characterizes a signed signal in which the sign is transferred as
the most significant bit and then the absolute value of the signal
is transferred. If the sign bit is set, this is a negative number (max.
32-bit)

uint Characterizes an unsigned signal (max. 32-bit)

bool Characterizes a Boolean signal. Only one bit can be marked in
the bit matrix.

real Characterizes a floating-point value in "standard IEEE float (4
byte)" format. Accordingly, only 32 bits can be marked in the bit
matrix.

Format Sign Exponent Fraction

Float 1 bit 8 bits 24 bits

Double (not
supported)

1 bit 11 bits 52 bits

7 7 ... 0 0 Byte number

7 6 ... 1 0 Bit number

Empty field The relevant signal does not use the bit

Occupied field The signal requires this bit at the position

"X" field The relevant bit is not available for data transfer because the
signal has fewer useful data bytes (see "Length" in the
"Groups" tab).
HWC Items

The required bit cell can be selected using the arrow keys on the keyboard.

Use the number keys to assign the bit with the correct value (different values
are important for "block building", see below).

Clicking with the mouse also "toggles" the relevant cell between "empty" and
"1". If you press the <Alt> key and click the mouse simultaneously, the value
is incremented from "1" to "9" (important for "block building").

You can select several bits simultaneously as follows:

Data blocks can be created using different numbers ("1111 2222...") with
which virtually every signal transferred can be described. The numbers used to
form the data blocks have the significance that the block with the highest
number ("2222") specifies the block which contains the most significant bits
during transfer. The block with the smallest number ("1111") contains the
least significant bits during transfer. With the numbers available (1...9), you
can write a signal with up to 9 bit blocks. As the representation of the bits
corresponds exactly to the form in which an Intel signal is transferred, block
building is necessary for the representation of signals in Motorola format as
soon as the signal is longer than 8 bits.

...7
7

4
0

3
5

3
4

3
3

3
2

3
1

3
6

3
7

3
0

2
5

2
4

2
3

2
2

2
1

2
6

2
7

2
0

1
5

1
4

1
3

1
2

1
1

1
6

1
7

1

1
0

0
5

0
4

0
3

0
2

0
1

0
6

0
7

0
0

Klicken um erstes Bit auszuwählen
1 1

Klicken um zweites Bit auszuwählen
1 1

<Shift> Taste drücken und nochmals
klicken um zweites Bit auszuwählen

1 1 1 1 111 1
Der Block wurde gefüllt
HWC Items 177

178
Examples of the definition of different signals:

10.4.6 Mappings (CAN-IO Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.5 ES1222-CAN Bypass (CAN Bypass Protocol CBP)

CAN bypass applications are less complex but also less efficient than ETK
bypass applications. Only the ECU software has to be adapted in a CAN bypass
(customization); modifications to the hardware are not necessary.

A CAN bypass is of course only possible with ECUs which have a CAN inter-
face. Two fundamental methods exist to create a Bypass with CAN:

• CAN Bypass over messages and assigned signals, which are firmly pre-
defined in the ECU software. This isn't made possible about the CAN
Bypass Device but about the CAN-IO Device (see chapter 10.4
on page 162).

• CAN Bypass over an agreed protocol, in which a selection of the sizes
to be transferred can be made. Please pay attention to the licensing
agreement in the following chapter.

10.5.1 License legal note for the CAN Bypass protocol (CBP)

The CAN Bypass protocol (CBP) is a development of the Robert Bosch GmbH
Stuttgart and is common applied by the Robert Bosch GmbH and the ETAS
GmbH. All rights reserved by the Robert Bosch GmbH.

The use of the CAN Bypass protocol in the interaction of ASCET-RP and ECUs
of the Robert Bosch GmbH, which integrates this protocol, is possible without
further licensing agreement.

...7
7

4
0

3
5

3
4

3
3

3
2

3
1

3
6

3
7

3
0

2
5

2
4

2
3

2
2

2
1

2
6

2
7

2
0

1

1
5

1

1
4

1

1
3

1

1
2

1

1
1

1

1
6

1

1
7

1

1
0

1

0
5

1

0
4

1

0
3

1

0
2

1

0
1

1

0
6

1

0
7

1

0
0

16 Bit Signal im Intel Format

2 2 2 2 222 2 1 1 1 1 111 1

2 2 2 2 1 1 1 1 111 1
12 Bit Signal (Intel Format) mit Lücke

Andere Beschreibung des selben Signals

1 1 1 1 111 1 2 2 2 2 222 2
16 Bit Signal im Motorola Format
HWC Items

You receive information about suitable ECUs with CBP support from the ECU
manufacturer.

An interface description of the CBP in coherence with ASCET-RP is available at
the ETAS GmbH on enquiry.

10.5.2 Hardware Configuration of a CAN Bypass

The following figure shows a sample configuration of a CAN bypass applica-
tion with the ES1000.2/ ES1000.3:

Note

The surrender of the interface description is only carried out, if the corre-
sponding license agreement is accepted. There is not an entitlement to this
license due to an ASCET-RP licensing agreement!

Engine

Computing Node
ES1130

CAN Interface
ES1222 A

Engine ECU

Ethernet

ES1000.2

6...34V

ON

AUTO

UA Temp

ES1130

PC

ES1222.1
A

CA
N

 1
CA

N
 2

CA
N

 3
CA

N
 4

K-Line

CAN

ES1120

PC

Control Unit
ES1120

ASCET
INCA
HWC Items 179

180
As with all rapid-prototyping applications, the host PC is connected to the
ETAS experimental system via the host link interface. The functions developed
with ASCET run on the PPC module, ES113x. The ECU is connected to the ETAS
experimental system via the ES1222 CAN interface board.

Communication with the ECU takes place using the CAN bypass protocol
(CBP). (© Copyright Robert Bosch GmbH).

10.5.3 Globals (CAN-Bypass Device)

Fig. 10-19 The "Globals" Tab of the CAN Bypass Device

Device Manager Task

A timer task has to be assigned here which is available exclusively to this
bypass. The period duration of the timer task has to be set between
0.05 seconds and 0.8 seconds.

ASAM-2MC Project

An ASAM-MCD-2MC project suitable for the ECU and which has already been
read into the database has to be selected here.
HWC Items

CAN Identifier (dec)

This is where the CAN identifier of the CAN message command is specified in
decimal notation. The CAN message command is the message with the high-
est identifier of the CAN message block (the default value for CBP is 263). The
length of the identifier (11 bit / 29 bit) depends on the "Identifier" setting in
the "Globals" tab of the CAN-CTRL subsystem.

The format of the CAN message block and the command message is defined
in the CBP interface description.

CAN Identifier (hex)

This is where the CAN identifier of the CAN message command can be speci-
fied in hexadecimal notation (the default value for CBP is 107H).

CAN Messages

This is where the number of available CAN messages for the CAN message
block has to be set (4 .. 16). The CAN message block normally has 8 CAN
messages with the CAN bypass protocol.

Byte Order

This line displays the word data storage format (MSB first / MSB last) of the
ECU processor. This information is read from the allocated ASAM-MCD-2MC
project.

Overview of the common "byte order" terms:

Automatic Mapping

For more information please refer to the description "Automatic Mapping" in
section chapter 10.4.3, section "Automatic Mapping" on page 170.

Note

The higher the number of CAN messages, the more bypass variables can be
transferred. As the ECU software also has to provide the resources, however,
this entry cannot be set freely but must be coordinated with the ECU soft-
ware version.

MSB first big endian Motorola

MSB last little endian Intel
HWC Items 181

182
Prefix / Postfix to Label

This is where the name extensions can be specified to be able to identify the
relevant bypass parameters from the bypass output value (ASAM-MCD-2MC
measurement). This name reference is used to detect the available bypass out-
put values ("send" signals to the ECU) and to determine all the necessary
information for a bypass signal.

The following figure clarifies the situation:

Fig. 10-20 Relation between the Bypass Labels

Bypass Label Task:

Vector Base Address (hex)

This is where a base address can be specified which is used to calculate the
target address of the bypass output values ("send" signals to the ECU) in the
ECU. This is necessary if the target address is outside the address space which
can be addressed via the 16 bits available in the CAN bypass protocol.

The target address is calculated as follows:

<bypass address> :=

<vector address> + <ecu calibration offset> - <base
address>

Bypass Vector Label Specifies the vector address of the bypass variable. A 0
means that the value is not transferred.

Bypass Raster Label Specifies whether the bypass variable is transferred in the
angle-synchronous grid (value = 0) or in the time-synchro-
nous grid (value = 1).

Bypass Signal
(Measurement)

"TestSignal"

"PreTestSignalPost"

"???"

Bypass Vector Label
(Characteristic)

Bypass Raster Label
(Characteristic)

Prefix to Label Postfix to Label

Next Address
HWC Items

<ecu calibration offset> is determined via the ASAM-MCD-2MC
project.

10.5.4 Groups (CAN-Bypass Device)

Fig. 10-21 The "Groups" Tab of the CAN-Bypass Device

Group

The CAN-Bypass device supports up to two grids - one in send and one in
receive direction. The signal groups have the following significance:

Note

After changing the group name, the signal name, or the signal direction, an
ASCET message mapped previously may not be mapped automatically any
longer and then has to be mapped again manually.

Nrx Speed-synchronous data from the ECU to the CAN-Bypass device

Ntx Speed-synchronous data from the CAN-Bypass device to the ECU

Trx Time-synchronous data from the ECU to the CAN-Bypass device

Ttx Time-synchronous data from the CAN-Bypass device to the ECU
HWC Items 183

184
Activated Task

This is the column in which software tasks have to be specified which are to be
activated when speed-synchronous or time-synchronous data is received. The
calculation of the bypass functions and the returning of the results to the ECU
also take place in these tasks (cf. the corresponding entries in the "Task" col-
umn).

Bypass Variables

By selecting a cell from this column, the Select Variables dialog box is opened
from which the bypass variables (measurements) for the relevant signal group
can be selected.

Fig. 10-22 The "Select Variables" Dialog Box

Note

Non-linear formulas are not supported. If a variable with non-linear ormula
is selected nonetheless, a warning of the following kind is displayed:

<RTIO Toolbox WARNING>
Error on processing signal ’<signal_name>’ formula: Can’t handle
’<formula_name>’ for bypass; formula is converted to ’FormulaId’!
HWC Items

All measured values defined in the ASAM-MCD-2MC project are basically
available to the "receive" signal groups. Only those measured values are avail-
able for the "send" signal groups which are supported by the ECU software as
bypass intervention variables and are clearly bypass intervention variables from
their name reference (see also "Prefix / Postfix to Label" in the "Globals" tab).

Diagnostic Variable

If necessary, an additional value of the ECU can be selected here for diagnostic
purposes for every "receive" signal group (e.g. to monitor bypass operation).

Selection takes place as described under "Bypass Variables".

10.5.5 Signals (CAN-Bypass Device)

Fig. 10-23 The "Signals" Tab of the CAN-Bypass Device

The bypass variables are sorted according to their byte size within the relevant
signal group (8-4-2-1 bytes).

Note

The number of measured values is limited and depends on the data type of
the measured values (byte, word...) as well as the number of available bypass
CAN messages (entry "# Bypass Messages" in the "Globals" tab).

Note

None of the columns of the "Signals" tab can be edited by the user. They are
intended purely for display purposes of status values for the bypass variables.
HWC Items 185

186
Bytes

The number of bytes per bypass variable is displayed in this column.

Address (hex)

The addresses of the bypass variables are displayed in this column.

Receive values have a 32-bit address space; send values have a 16-bit address
space.

Bit Pos

This column is unused as the standard ECU software at the moment does not
support bypass of bit values.

Data Type

The data type of the bypass variables is displayed in this column.

Byte Offset

Display of the offset of the bypass variable within the relevant signal group.

10.5.6 Mappings (CAN-Bypass Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.6 ES1223-LIN

The ES1223 board is used as an LIN interface in VMEbus systems. The board
provides four LIN channels. It also makes it possible to trigger VMEbus inter-
rupts with received messages so that permanent polling after messages is not
necessary. Each LIN controller can process up to 64 messages. The use of an
independent processor means the system controller is considerably relieved.

This section describes the RTIO link of the ES1223 board. The ES1223 board is
integrated in the HWC editor by selecting the "ES1223-LIN" item.
HWC Items

10.6.1 Globals (ES1223-LIN Subsystem)

Fig. 10-24 The "Globals" Tab of the ES1223-LIN Subsystem

ID

The board number of the board to be addressed has to be entered in the "ID"
selection field.

10.6.2 Globals (LIN-CTRL Subsystem)

An "Init Task", an "Exit Task" and an "IRQ Handler Task" are assigned to the
LIN-CTRL subsystem in the "Globals" tab.

Note

The ES1223.1 board is what is referred to as an "Auto-ID" board which is
automatically assigned an ID number and a free address space by the hard-
ware manager when the system is switched on. Boards of the same type
(e.g. two ES1223.1s) are numbered from left to right, i.e. the left-hand
board is assigned number one, the next board number two. There are 2 IDs
available; this means that up to 2 ES1223.1 boards can be operated in an
experimental system.
HWC Items 187

188
Up to four LIN-IO devices can be assigned to the LIN-CTRL subsystem corre-
sponding to the four LIN interfaces on the board.

Fig. 10-25 The "Globals" Tab of the LIN-CTRL Subsystem

IRQ Handler Task

An additional "IRQ Handler Task" is required to support interrupts of the
ES1223 board. This task must be created as a "software" task in the task list in
the ASCET project editor whereby "Max. No. of Activations" has to be at least
2 (maximum of 50).
HWC Items

10.6.3 Globals (LIN-IO Device)

Fig. 10-26 The "Globals" Tab of the LIN-IO Device

LIN Connector

This is where the desired LIN connector is selected (LIN1 to LIN4). Each LIN-IO
device has to be assigned to its own connector.

Baud Rate [bit/s]

This is where the required baud rate can be selected. The standard baud rates
(19200, 9600, 2400 bit/s) are available. It is also possible to select the
<Special Timing> setting which activates low-level addressing of the LIN
controller in terms of the bit-timing and baud rate.

These settings can be specified in the "Special Timing" options described on
page 190.

LIN Network Node

This option determines whether the selected LIN-IO device works as a master
or slave control unit. Please note that only one master unit is possible in the LIN
network.
HWC Items 189

190
Schedule Task

This option is only available if the "LIN Network Node" option is set to Master
for the selected LIN-IO device. It is used to define a task for a master control
unit which is always executed when the send queue is empty. This is useful for
the continuous sending of messages.

Special Timing: BaudRate [bit/s]*

This option is masked out by default. It can only be edited if the "Baud Rate"
option is set to <Special Timing>.

Unlike with the standard transfer rates (see "Baud Rate [bit/s]" on page 189),
any baud rate between 10 and 20,000 bit/s can be entered here.

Special Timing: SynchBreak [bit]*

This option is masked out by default. It can only be edited if the "Baud Rate"
option is set to <Special Timing>.

The synchbreak length includes the actual synchbreak (low phase) as well as
the synch delimiter (1 bit). Unlike the standard (at least 14 bits), any synch
length between 8 bits and 15 bits (low time) can be entered here.

Import CAN DB File

This option is used to import a CAN/LIN database file which was created using
the CANdb data administration program, developed by the company Vector
Informatik. This file can be used to generate LIN messages and signals auto-
matically when required.

Please consult the section "Import CAN DB File" on page 167 for details on
how to execute the import.

Automatic Mapping

This option makes the automatic mapping of signals and (ASCET) messages
possible.

For more details, please consult the section "Automatic Mapping"
on page 170.

Generate Receive Debug Signals

If this option is activated (= yes), two additional signals are generated for
every "receive" signal group.

• <GroupName>_Diag_dT

• <GroupName>_Diag_Rec
HWC Items

For more details, please consult the section "Generate Receive Debug Signals"
on page 171.

10.6.4 Groups (LIN-IO Device)

This LIN-IO tab specifies LIN messages in the form of signal groups.

Fig. 10-27 The "Groups" Tab of the LIN-IO Device

New signal groups or LIN messages can be generated using the shortcut menu
in the "Groups" tab (see the section ""View" Menu" on page 104).

Please consult section 10.4.4 "Groups (CAN-IO Device)" on page 173 for a
description of the options. The LIN-IO device has the following special features:

• the "Length [Byte]" option is masked out and write-protected by
default for the LIN-IO device as the length of the LIN message is coded
in the identifier

• the "Prescaler" option is not available

• the "Send No Data" option is LIN-specific and is described here

Send No Data

This option is only available if the "LIN Network Node" optionin the "Globals"
tab is set to Master, and send is selected in the "Direction" column in the
"Groups" tab.

Note

When the signal group name, signal name or signal direction is changed,
any ASCET message which may have been assigned may not be assigned
automatically any more and may then have to be reassigned manually.
HWC Items 191

192
If "Send No Data" is set to Yes, only the header of the message is transferred,
not the data. The length of the message is thus Length [Byte] = 0.

10.6.5 Signals (LIN-IO Device)

The LIN signals are specified in this LIN-IO tab.

Fig. 10-28 The "Signals" Tab of the LIN-IO Device

New signals can be generated via the shortcut menu in the "Signals" tab (see
section ""View" Menu" on page 104).

Please refer to section 10.4.5 "Signals (CAN-IO Device)" on page 175 for a
description of the columns of the table.

Note

To receive data from a slave node with a master node, two signal groups
with the same identifier have to be created:

- one signal group with the direction "send" and the option "send no data",
- one signal group with the direction "receive".

The master node sends the header of the message with the first signal
group; with the second, it receives the data from the slave node.

Note

The length of a message is automatically coded in the identifier ("Groups"
tab). The top 3 bits of the identifier specify the length - 2, 4, and 8 bytes are
all possible. This means that all higher fields of the bit matrix are deactivated.
HWC Items

10.6.6 Mappings (LIN-IO Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.6.7 Runtime Behavior

The LIN bus is managed in interrupt mode by the ES1223 processor. Due to the
interrupt management, send and receive commands can be delayed by up to
250 µs.

10.7 ES1231.1-ETK

The ETK interface board ES1231 is the successor to the ES1200 board and is
also used to link an ECU with an ETK to an experimental system.

The board has extended functionality in comparison to its predecessor, such as
block transfer mode and a higher transfer rate which enables a much higher
data rate with corresponding support. This board is also equipped with the
memory-saving "Auto-ID" technology.

10.7.1 Globals (ES1231-ETK Subsystem)

Fig. 10-29 The "Globals" Tab of the ES1231-ETK Item

Note

The ES1231 board requires special system services to communicate with an
ETK which can only be provided by an ES1120 (VCU2) system controller
board. (See the section "Hardware – ES1000.x Experimental System"
on page 71.)
HWC Items 193

194
ID

The board number of the board to be addressed has to be entered in the "ID"
field.

As the ES1231 only has one ETK controller, only one "ETK-CTRL" item can be
inserted (only port A is supported).

10.7.2 Globals (ETK-CTRL Subsystem)

See chapter 10.3.2 "Globals (ETK-CTRL Subsystem)" on page 145.

10.7.3 Globals (ETK-BYPASS Device)

See chapter 10.3.3 "Globals (ETK-BYPASS Device)" on page 147.

10.7.4 Groups (ETK-BYPASS Device)

See chapter 10.3.4 "Groups (ETK-BYPASS Device)" on page 155.

Note

The ES1231 board is an "Auto-ID" board which is automatically assigned an
ID number and a free address space by the Hardware Manager when the
system is switched on. Boards of the same type (e.g.two ES1231s) are num-
bered from left to right, i.e. the left-hand board is assigned the number one,
the next one number two etc. There are 4 IDs available; this means that up
to 4 boards can be operated in an experimental system.
HWC Items

10.7.5 Signals (ETK-BYPASS Device)

Fig. 10-30 The "Signals" Tab of the ETK-BYPASS Device

The "Signals" tab corresponds largely to the description given in chapter
10.3.5 "Signals (ETK-BYPASS Device)" on page 158. Only two additional col-
umns cab be found, which are described here.

Bit Mask (hex)

ES1231 always reads a byte (8 bit) or a word (16 bit) from the ETK controller.
ASAM-MCD-2MC and the HWC editor, on the other hand, allow the usage of
bit signals. The "Bit Mask (hex)" column contains the mask which is used to
determine the signal from the value read by the controller (bit-wise AND with
the mask).

In principle, appropriate masks (0x1, 0x2, 0x4, 0x8, 0x10, 0x20,
0x40,0x80) can be used to create eight signals from one byte value. With FAR
addressing, two byte values are created from one word value (masks 0x00FF
and 0xFF00).

The column is hidden by default.

Note

None of the columns of the "Signals" tab can be edited by the user. They are
solely intended for the display of status values for the bypass variables.
HWC Items 195

196
Transfer

When two or more signals are created from one byte value, the system notices
that the value was previously read. Transfer time can be saved by using a local
copy for further accesses to the value. To use this feature, insert Yes in the
"Transfer" column at the first access to a given address, and No at all further
accesses to the same address.

The column is hidden by default.

10.7.6 Mappings (ETK-BYPASS Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.8 ES1232 -ETK

The ES1232 ETK interface board is the successor to the ES1231 board and is
also used to link an ECU with an ETK to an experimental system.

The board features extended functions in comparison to its predecessor, such
as indirect addressing, transfer rates of 8 Mbit/s and 100 Mbit/s, up to 32 mea-
surement rasters, importing of new ASAM-MCD-2MC files (AML V1.2.0; ETK-
CTRL-ADV subsystem, cf. chapter 10.8.5), and support of serial ETKs.

10.8.1 Globals (ES1232-ETK Subsystem)

Fig. 10-31 The "Globals" Tab of the ES1232-ETK Item
HWC Items

ID

Enter the board number of the addressed board in the "ID" field. The board
number also indicates the board positon in the VME system; ID1 means the
first ES1232 from the left, ID2 means the second, etc.

Since the ES1232 only has one ETK controller, only one "ETK-CTRL" item can
be inserted (only port A is supported).

10.8.2 ETK-CTRL-BAS Subsystem

Fig. 10-32 The "Globals" Tab of the ETK-CTRL-BAS subsystem

The settings for ETK-CTRL-BAS are identical to those for the ETK-CTRL item of
the ES1231-ETK device (chapter 10.7 "ES1231.1-ETK" on page 193), with the
exception of the "ETK Connection" option.

Note

The ES1232 board is an "Auto-ID" board which is automatically assigned an
ID number and a free address space by the Hardware Manager when the
system is switched on. Boards of the same type (e.g.two ES1232s) are num-
bered from left to right, i.e. the left-hand board is assigned the number one,
the next one number two etc. There are 4 IDs available; this means that up
to 4 boards can be operated in an experimental system.
HWC Items 197

198
ETK Connection

This line shows the transfer rate (8 Mbit/s or 100 Mbit/s). The field cannot be
edited; the value is read from the ASAM-MCD-2MC file (cf. page 203).

10.8.3 ETK-BYPASS Device

The settings for the ETK-BYPASS device associated with the ETK-CTRL-BAS
subsystem correspond in structure and functionality to the ETK-BYPASS item of
the ES1231-ETK board (chapter 10.7 "ES1231.1-ETK" on page 193).

10.8.4 100 Mbit/s for Existing Projects (ETK-CTRL-BAS Subsystem)

It is possible to use existing projects (AML V1.1.0) with ES1232 and the ETK-
CTRL-BAS subsystem.

The transmission rate is specified in the TP_BLOB of the ASAM-MCD-2MC file
(*.a2l). For that purpose, AML V1.1.1 and higher versions contain the
INTERFACE_SPEED parameter.

If you want to continue using the old project, without the high transfer rate of
100 Mbit/s, yo need not change the ASAM-MCD-2MC file. Proceed as follows.

Using an existing project with 8 MBit/s:

• In the HWC editor, create the required item
tree (see chapter 7.2 and chapter 11.2.3).

• Use Edit → Copy → Item(s) and Edit →
Paste → to selected Item to copy the exist-
ing ETK-BYPASS device of the ES1231 with all
settings to the ES1232, where appropriate.
HWC Items

• Use Edit → Copy → Item Data and Edit →
Paste → Data to selected Item to copy the
ETK-BYPASS data of the ES1231 to the
ES1232.

• Click the "ASAM-2MC Project" field on the
"Globals" tab of the ETK-BYPASS device
(ES1232 / ETK-CTRL-BAS) to select the ASAM-
MCD-2MC file (cf. "ASAM-2MC Project"
on page 148).

The following warning is shown in the ASCET
monitor window:
Parameter 'Interface Speed' is

Note

Only the ETK-BYPASS device, or its data, can be copied, and only
between the ES1231 and ES1232 with ETK-CTRL-BAS subsystem.
If you try to copy other items or data (see figure below), the procedure is
cancelled, and an error message is displayed.
HWC Items 199

200
missing in A2L/TP_BLOB: old
TP_BLOB version 0x1000001. Using
default: 8 MBit

The "ETK Connection" line on the "Globals"
tab of the ETK-CTRL-BAS item shows the
transfer rate of 8 Mbit/s.

If you want to use the old project with the high transfer rate of 100 Mbit/s, you
have to change the ASAM-MCD-2MC file and adjust the settings in the HWC
editor. Proceed as follows.

Using an existing project with 100 Mbit/s:

• In the HWC editor, create the required item
tree as described on page 198.

• Open the ASAM-MCD-2MC file in a text edi-
tor.

In AML V1.1.0, the TP_BLOB is defined as fol-
lows:

/begin TP_BLOB 0x1000001 0x0 0x0

/begin DISTAB_CFG 0xC 0x1 MSB_LAST 0x383000 0x0

TRG_MOD 0xB7

/end DISTAB_CFG

CODE_CHK

0x0

0x0

0x0

0x0

ETK_CFG 0xF 0xF0 0xFF 0x3 0xFD 0xEE 0xFF 0x1

RESERVED 0x810000 0x8103F9 EXTERN 0x-1 0x-1 0x-1
 0x-1 0x-1

/end TP_BLOB

For illustration purposes, the first line is
repeated with additional comments.

/begin TP_BLOB
0x1000001 /* TP_BLOP version */
0x0 /* Project Base Address */
0x0 /* RstCfg parameter (MPC) */
HWC Items

• To use the 100 Mbit/s, update the TP_BLOB
version and replace the Project Base
Address parameter with the
INTERFACE_SPEED parameter.

The modified line must read as follows (corre-
sponds to AML V1.1.1/1.2):

/begin TP_BLOB
0x1000100 /* TP_BLOP version */
2 /* InterfaceSpeed 1=8MBit, 2=100MBit */
0x0 /* RstCfg parameter (MPC) */

• Save the file.

• In the Component Manager, select Project →
Read ASAM-2MC to import the changed file
into the database.

• In the HWC editor, select the "Globals" tab
for the ETK-BYPASS device (ES1232 / ETK-
CTRL-BAS).

• Click the "ASAP2 Project" field to select the
newly imported ASAM-MCD-2MC project (cf.
"ASAM-2MC Project" on page 148).

The "ETK Connection" line on the "Globals"
tab of the ETK-CTRL-BAS item shows the
transfer rate of 100 Mbit/s.

Note

Make sure that the TP_BLOB you change is
placed in an IF_DATA ETK section. Only in this
form, the switch to 100 MBit/s is valid.
HWC Items 201

202
10.8.5 Globals (ETK-CTRL-ADV Subsystem)

On the "Globals" tab of an ETK-CTRL-ADV subsystem, a physical ETK control-
ler or an ETK port is assigned to the ETK-CTRL subsystem.

Fig. 10-33 The "Globals" Tab of the ETK-CTRL-ADV Subsystem

ETK Port

With the ES1201 (cf. chapter 10.3.2), this line is used to select one of two
independent ETK channels (Port A, Port B), and thus one of two ETK controllers
of the board. With the ES1232, you can only select Port A.
HWC Items

ASAM-2MC Project

The ETK bypass requires an ASAM-MCD-2MC project (AML V1.2) which can
be generated in the database by reading an ASAM-MCD-2MC description file.
The selection window for these projects is shown in Fig. 10-8 on page 149.

The IF_DATA ETK section of the ASAM-MCD-2MC file contains the bypass
description. Older versions sometimes used the section name IF_DATA
ASAP1B_ETK; this is not supported for ES1232 with ETK-CTRL-ADV.

A QP_BLOB with the channel settings exists for each bypass channel; an exam-
ple is given in section "Other AML versions" on page 136. The TP_BLOB con-
tains general settings.

/begin TP_BLOB

0x1000100 /* TP_BLOP version */

2 /* InterfaceSpeed 1=8MBit, */
/* 2=100MBit */

0x0 /* RstCfg parameter (MPC) */

/begin DISTAB_CFG 0xC 0x1 MSB_LAST 0x383000 0x0

 TRG_MOD 0xB7

/end DISTAB_CFG

CODE_CHK 0x0 0x0 0x0 0x0

ETK_CFG 0xF 0xF0 0xFF 0x3 0xFD 0xEE 0xFF 0x1

RESERVED 0x810000 0x8103F9 EXTERN 0x-1 0x-1 0x-1
0x-1 0x-1

/end TP_BLOB

Note

ASAM-MCD-2MC projects using AML V1.1.x cannot be read. The following
error message appears when such a project is assigned to the device:
Error: Incompatible version 0x<version> of QP_BLOB
found in SOURCE ’<sName>’. Expected version = 0x1.
Selected ASAM-2MC Project is not suitable for the
advanced ETK Controller ETK-CTRL-ADV ! Please select
another one!

Note

The parameter in the DISTAB_CFG section are described on page 130, the
parameters in the CODE_CHK and RESERVED sections are described on
page 148.
HWC Items 203

204
Here - unlike ES1201, ES1231 and ES1232/ETK-CTRL-BAS -, all necessary set-
tings must be provided in the ASAM-MCD-2MC file. No facilities are provided
to enter them manually.

This also applies to local BLD definitions, which could be entered via the
ASAM-MCD-2MC file or via a text editor ("Local BLD Definitions"
on page 150) in older versions. With ES1232/ETK-CTRL-ADV, providing the
required information in a MEASUREMENT section with KP_BLOB in the ASAM-
MCD-2MC file is mandatory.

/begin MEASUREMENT log_uint8_0_A

""

UBYTE

ident

1

100

0.0

1.0

READ_ONLY

BIT_MASK 0x8

ECU_ADDRESS 0xFD00

/begin IF_DATA ASAP1B_Bypass

 /begin KP_BLOB

BUFFER_OFFSET
"log_uint8_0_offset_A.Model_Byp_A"

/* no SOURCE_ID */

BIT_OFFSET
"log_uint8_0_bitOffset_A.Model_Byp_A"

POSSIBLE_SOURCES 5

 /end KP_BLOB

/end IF_DATA

/end MEASUREMENT

This MEASUREMENT section defines the same variable as the section on
page 152.
HWC Items

Distab Type

This line shows which DISTAB procedure is used for exchanging data with the
ECU. This information is read from the relevant ASAM-MCD-2MC project (see
page 130).

• DISTAB 12 supports signals that are up to two bytes long

• DISTAB 13 supports signals that are 1, 2, 4 and 8 bytes long

ECU Data Mode

This line shows which access mode (byte access / word access) the ECU proces-
sor uses to access the data memory. It is relevant only if DISTAB12 is selected.

The line cannot be edited; the setting is taken from the ASAM-MCD-2MC
project (cf. page 130).

Byte Order

This line displays the word data storage format (MSB first / MSB last) of the
ECU processor. This information is read from the relevant ASAM-MCD-2MC
project (cf. page 130).

Trigger Segment Address

This line specifies the trigger segment address of the DISTAB procedure. The
field cannot be edited; the value is read from the ASAM-MCD-2MC project (cf.
page 130), provided the corresponding parameter was properly defined.

The trigger segment address determines the location of the hardware trigger
addresses which are used to control data transfer via the bypass channels. The
location of the hardware trigger addresses in relation to the trigger segment
address is constant with the DISTAB data exchange procedure.

The start address of a 64-byte trigger segment (with 8-bit or 16-bit wide bus
access) must be an even-numbered address that is divisible by 64; correspond-
ingly, the start address of a 128-byte trigger segment (with 32-bit wide bus
access) has to be an address that is divisible by 128.

The format of the trigger segment is defined in the DISTAB 12 and DISTAB 13
interface description.

Update On

This line allows you to select (for parallel ETKs) whether, during bypass commu-
nication, the display table transfer (see "Bypass Communication (AML V1.1)"
on page 131) between the simulation processor and the ECU shall take place
on the Working Page, Reference Page or Working & Reference
Pages of the ETK.
HWC Items 205

206
For serial ETKs with all display tables located in the RAM area of the memory,
RAM page is selected automatically. In this case, the line cannot be edited.

ETK Connection

This line shows the transter rate (8 Mbit/s or 100 Mbit/s). The field cannot be
edited; the value is read from the ASAM--MCD-2MC project (cf. page 203).

Update Offsets On

This line allows you to select (for parallel and serial ETKs) whether, during
bypass communication, the bypass offset transfer (see page 135) between the
simulation processor and the ECU shall take place on the Working Page,
Reference Page, Working & Reference Pages or RAM page (serial
ETKs only) of the ETK.

For serial ETKs, RAM page is selected by default.

10.8.6 Globals (ETK-BYPASS-ADV Subsystem)

This ETK-BYPASS device is used to define all variables necessary for bypass
operation with the ES1232/ETK-CTRL-ADV.

Fig. 10-34 The "Globals" Tab of the ETK-BYPASS-ADV Device
HWC Items

Automatic Mapping

For more information, refer to the description "Automatic Mapping"
on page 170 in chapter 10.4.3.

Bypass Raster Selection Mode

This line determines whether bypass and measurement rasters (Bypass&
Measurement) or only bypass rasters (Bypass; default) are shown on the
"Groups" tab.

if you select Bypass&Measurement, you can measure the signals of the
measurement rasters in an ASCET experiment even if only INCA hooks have
been defined.

if you change this setting, any signals you selected for bypass rasters will be
kept. Signals selected for measurement rasters, however, will be removed
when you change the setting from Bypass&Measurement to Bypass.

Bypass and measurement rasters are treated alike, with one exception: the
RTIO driver initializes bypass rasters with master access, whereas measurement
rasters have to be initialized with slave access. Since INCA always uses master
access for measurement rasters, errors may occur in two cases.

1. An INCA measurement is already running when the ASCET bypass is
started. The RTIO driver cannot initialize the measurement rasters due
to missing access rights.

2. An INCA measurement is started during an ASCET bypass experiment.
Due to higher access rights, INCA "steals" the measurement rasters
from ASCET.

In both cases, error messages are displayed.

Bypass Variable Selection Mode

Refer to the description "Bypass Variable Selection Mode" on page 153 in
chapter 10.3.3.

Base Offset Value

This line allows you to move the byte offset of every bypass output value up by
0, 2, 4 or 8 bytes.

The default value for the byte offset with DISTAB12 is 0. With DISTAB13, the
default value for the byte offset is 8.

Begin Far Address Range (hex)

Refer to the description "Begin Far Address Range (hex)" on page 154 in
chapter 10.3.3.
HWC Items 207

208
Length Far Address Range (hex)

This line is used to specify the length of the FAR address range. This specifica-
tion is usually only necessary for the DISTAB 12 procedure.

Max Far Signals

Refer to the description "Max Far Signals" on page 154 in chapter 10.3.3.

Long Address AND / OR Mask (hex)

Refer to the description "Long Address AND / OR Mask (hex)" on page 154 in
chapter 10.3.3.

Address Mapping

Refer to the description "Address Mapping" on page 154 in chapter 10.3.3.

10.8.7 Groups (ETK-BYPASS-ADV Subsystem)

The number of signal groups in the ETK-BYPASS-ADV device is defined in the
ASAM-MCD-2MC file. Depending on the setting for the "Bypass Raster Selec-
tion Mode" option on the "Globals" tab (chapter 10.8.6), the signal groups
for bypass and measurement rasters are created or deleted automatically.

Each bypass raster consists of two signal groups, one send-group and one
receive-group. Each measurement raster consists of one receive signal group.

Note

When the "Bypass Raster Selection Mode" is switched from Bypass&Mea-
surement to Bypass, any signals you selected for bypass rasters will be
kept. Signals selected for measurement rasters, however, will be removed
HWC Items

The data of the receive signal group is transferred using the standard DISTAB
procedure, and the data of the send signal group is exchanged between the
ECU and RTIO using the bypass table procedure.

Fig. 10-35 The "Groups" Tab of the ETK-BYPASS-ADV Device

Raster Short Name

This column displays type (MT for measurement rasters or BT for bypass rasters)
and number (priority) of the raster, e.g., MT_12 or BT_31. By default, the sig-
nal groups are sorted by descending number (and thus, priority).

The column cannot be edited; the values are read from the ASAM-MCD-2MC
project.

Task

Refer to the description "Task" on page 156 in chapter 10.3.4.

Activated Task

Refer to the description "Activated Task" on page 157 in chapter 10.3.4.

Bypass Variables

Refer to the description "Bypass Variables" on page 184 in chapter 10.5.4.

Diagnostic Variable

Refer to the description "Diagnostic Variable" on page 185 in chapter 10.5.4.
HWC Items 209

210
No. Signals

The number of signals selected for the chosen signal group is displayed. The
value is updated automatically when you change the signal selection.

No. Bytes

The number of bytes required by the signals selected for the chosen signal
group is displayed. The value is updated automatically if you change the signal
selection.

Start Buffer (hex)

The base addresses of the relevant data buffers for the bypass input data and
output data are displayed in this column.

The address specifications are read from the ASAM-MCD-2MC project; you
cannot edit this column.

Buffer Size (hex)

The sizes of the relevant data buffers for the bypass input data and output data
are displayed in this column.

The specifications are read from the ASAM-MCD-2MC project; you cannot edit
this column.

Hardware Trigger

The numbers of the hardware triggers assignd to the receive signal groups are
displayed in this column.

The specifications are read from the ASAM-MCD-2MC project; you cannot edit
this column.

Trigger Path

This column shows the way signal transfer via trigger is performed for receive
signal groups:

• direct - The raster is directly assigned to a hardware trigger. Once the
ECU has written the trigger address, data acquisition can take place
directly (without reading a trigger flag).

• indirect - Several rasters are assigned to the same hardware trigger.
To determine the raster that activated the trigger, a raster-specific "Trig-
ger Flag Address" has to be read.

Direct transfer is possible whenever a sufficient number of hardware triggers
are available. This is usually not the case for serial ETKs which must use indirect
transfer.
HWC Items

For send signal groups, this column is of no importance; "---" is displayed in
the respective fields.

Trigger Flag Address

This column is used only when the indirect "Trigger Path" has been
selected. In that case, the raster-specific flag required for correct data acquisi-
tion is displayed. The values are read from the ASAM-MCD-2MC project.

In connection with the 8 Mbit/s mode, the trigger flag corresponds to the trig-
ger identifier in other ETK bypass devices (see section "Trigger Id (hex)"
on page 157).

If the direct "Trigger Path" is selected, "---" is displayed.

You cannot edit this column.

Start Pointer (hex)

The start addresses of the pointer lists for the DISTAB procedure used is dis-
played in this column for the "receive" signal groups.

The specifications are read from the ASAM-MCD-2MC project; you cannot edit
this column.

10.8.8 Signals (ETK-BYPASS-ADV Device)

Fig. 10-36 The "Signals" Tab of the ETK-BYPASS-ADV Device

Please refer to chapter 10.3.5 on page 158 and chapter 10.7.5 on page 195.

10.8.9 Mappings (ETK-BYPASS-ADV Device)

The possible settings are described in section 7.3.5 on page 117.
HWC Items 211

212
 HWC Items

10.9 ES1300-AD

The analog input board ES1300 enables the acquisition of analog signals both
differentially (max. 8 channels) and single-ended (max. 16 channels).

10.9.1 Globals (ES1300-AD Device)

This section describes the global options of the ES1300-AD device.

Fig. 10-37 The "Globals" Tab of the ES1300-AD Device

Init Task

The task for initializing the ES1300 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

The task to be executed with the ES1300 when the experiment stops is
assigned in this line (Type: Init / Application Mode: inactive).

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the jumper settings of the ES1300. Four different VME base
addresses can be selected for the ES1300 (ID1/E00000h, ID2/E00100h,
ID3/E00200h, ID4/E00300h); this means that up to four ES1300s can be
operated in one ES1000 system. The ES1300 occupies an address space of 256
words from the base address.
213

214
Voltage Range [V]

This is where the input voltage range is specified for each channel of the
ES1300. This setting must correspond to the jumper settings of the ES1300.
The following voltage ranges can be selected: -25V to 25V, -50V to 50V and
0V to 50V.

Measure Type

This is where the measure type is set differentially (max. 8 channels) or single-
ended (max. 16 channels). This setting must correspond to the jumper settings
of the ES1300.

Read Mode

The read mode is specified in this line. With the ES1300, you can select
whether the measured A/D values are transferred to ASCET by the hardware
driver before or after a new A/D sampling. The following settings are possible:

• auto:
The driver decides whether to transfer the values from the last grid or
values from the current grid based on the time elapsed between two
ASCET accesses.

• wait for new values:
The driver waits for values from the current grid before transfer.

• get old values:
The driver immediately transfers the values from the last grid.

10.9.2 Groups (ES1300-AD Device)

This section describes the signal-group-specific options of the ES1300-AD
device.

Fig. 10-38 The "Groups" Tab of the ES1300-AD Device

Gain factor -> [V]

This column is used for setting the programmable gain factor of the ES1300
for the analog input signals. The following gain factors can be selected: 1, 5,
10, 50, 100 or 500. These gain factors cause a higher resolution of the mea-
surement range; thus, only a limited part of the input voltage range is available
as effective measurement range.

The resulting effective measurement range is shown in the "Gain factor" col-
umn, too. It depends on the input voltage range ("Globals" tab, see page 214)
and the gain factor.
215

216
10.9.3 Signals (ES1300-AD Device)

This section describes the signal-specific options of the ES1300-AD device.

Fig. 10-39 The "Signals" Tab of the ES1300-AD Device

No.

The maximum number of analog input signals that can be used (8 / 16) is
determined for the ES1300 with the Measure Type setting (differen-
tial / single-ended) in the "Globals" tab.

10.9.4 Mappings (ES1300-AD Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.10 ES1301-AD

The analog input board ES1301 enables the acquisition of up to seven analog
signals.

10.10.1 Globals (ES1301-AD Device)

This section describes the global options of the ES1301-AD device.

Fig. 10-40 The "Globals" Tab of the ES1301-AD Device

Init Task

The task for initializing the ES1301 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

The task to be executed with the ES1301 when the experiment stops is
assigned in this line (Type: Init / Application Mode: inactive).

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the settings of the ES1301 coded by solder straps. Five differ-
ent VME base addresses can be selected for the ES1301(ID16/F800h, ID15/
F000h, ID14/E800h, ID12/D800h, ID8/B800h); this means that up to
five ES1301s can be operated in one ES1000 system. The ES1301 occupies an
address space of 2048 words from the base address.
217

218
10.10.2 Groups (ES1301-AD Device)

This section describes the signal-group-specific options of the ES1301 device.

Fig. 10-41 The "Groups" Tab of the ES1301-AD Device

Range

This is where the input voltage range is specified for each channel of the
ES1301. The following input voltage ranges can be selected: -10V to 10V, -5V
to 5V, 0V to 10V and 0V to 5V. The configuration for selecting the input volt-
age range takes place by software; no jumper settings are necessary.

Filter

This is where a low-pass filter of 2nd order can be set for each channel. The
following low-pass filters can be selected: 100 Hz, 200 Hz, 500 Hz, 1 KHz, 2
KHz, 5 KHz and 10 KHz.

10.10.3 Signals (ES1301-AD Device)

This section describes the signal-specific options of the ES1301-AD device.

Fig. 10-42 The "Signals" Tab of the ES1301-AD Device

There are no item-specific columns defined for the ES1301-AD device in the
"Signals" tab.

10.10.4 Mappings (ES1301-DA Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.11 ES1303-AD

The analog input board ES1303 is designed to acquire analog signals (max.
16 channels). It was developed for high sampling rates (max. 100 kHz, allows
the acquisition of signals of up to 50 kHz) and high resolution. Up to four
ES1303 boards can be used simultaneously.

Signal acquisition can be controlled in terms of time (start/stop) due to the two
additional trigger inputs. This allows both continuous measuring and the trig-
gered acquisition of individual measured values (single-shot; see ES1303 user’s
guide) possible.
219

220
Each of the 16 analog channels can be used by ASCET-RP or INCA; mixed
operation is possible. However, if an ES1303 configuration is running with
INCA, ASCET-RP cannot overwrite this configuration. An error message is dis-
played. The two digital channels can only be used by one of the two programs.

10.11.1 Globals (ES1303-AD Device)

This section describes the global options of the ES1303-AD device.

Fig. 10-43 The "Globals" Tab of the ES1303-AD Device

Init Task

The task for initializing the ES1303 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

This line assigns the task which is executed by the ES1303 if the experiment
stops (Type: Init / Application Mode: inactive).

IRQ Handler Task

The IRQ handler task (Type: Software / Application Mode: active) is required if
you want to analyze signal channels in interrupt mode.

This task must be generated as a "software" task in the task list in the ASCET
project editor, and at least 2 (max. 50) must be entered in the "Max. No. of
Activations" field.

This line is disabled when the trigger mode Off is selected (see "HW Trigger
Mode").

ID

The board number of the board to be addressed has to be entered in the "ID"
field.

Anti-Aliasing Filter

This line activates (On) or deactivates (Off) the anti-aliasing filter. The filter is
required to limit the bandwidth of the input signal, thus ensuring that the sam-
pling theorem (sampling rate at least twice the bandwidth of the input signal)
is not violated.

The filter can only be switched on or off for all channels together. The hard-
ware, on the other hand, allows different settings for four groups of four chan-
nels (channels 1–4, channels 5–8, channels 9–12, channels 13–16). Problems
can arise when both a and INCA access some channels with different filter
settings. If, for example, ASCET accesses channels 1 and 2 without filter, and
INCA accesses channels 4 and 5 with filter, a conflict occurs because the chan-
nels of the first group (1-4) have to be accessed with the same filter setting. An
error message is displayed. The conflict is resolved if INCA accesses channels 5
and 6 instead.

The anti-aliasing filter is optimized for a 100 kHz sampling rate. When the filter
is not used, a lowpass filter and a cutoff frequency of 225 kHz are active.

Note

This task must be available exclusively for the element or the respective
hardware driver. It must not be used by any other element or user process.
Not even two elements of the same type (e.g., two ES1303), may share the
same task!

Note

The ES1303 board is an "Auto-ID" board which is automatically assigned an
ID number and a free address space by the Hardware Manager when the
system is switched on. Boards of the same type (e.g.two ES1303s) are num-
bered from left to right, i.e. the left-hand board is assigned the number one,
the next one number two etc. There are 4 IDs available; this means that up
to 4 boards can be operated in an experimental system.
221

222
HW Trigger Mode

This line is used to set the trigger mode, which determines the start of trig-
gered measurements. The following modes are available:

• Off – the trigger signals are not used.

• RISING EDGE – the measurement is started with the rising edge of
the first trigger signal (Mode III in the ES1303 user’s guide).

• FALLING EDGE – the measurement is started with the falling edge of
the first trigger signal (Mode III in the ES1303 user’s guide).

When the "IRQ" column ("Groups" tab) is set to No for a signal group (cf.
"IRQ" on page 224), the trigger mode selection is irrelevant.

HW Trigger Gate

This line is used to determine whether the second trigger signal is used (ON) or
not used (OFF) to generate the trigger.

When the trigger gate is set to ON, the edge of the first trigger signal selected
as "HW Trigger Mode" starts the measurement only if, at the same time, the
second trigger signal is in high state. If the trigger gate is set to OFF, each edge
of the first trigger signal selected as "HW Trigger Mode" starts the measure-
ment. The following table summarizes the conditions for the start of a mea-
surement.

If the "IRQ" column ("Groups" tab) is set to No for a signal group (cf. "IRQ"
on page 224), the HW Trigger Gate selection is irrelevant.

HW Trigger Mode HW Trigger Gate Trigger Signal 1 Trigger Signal 2

RISING EDGE ON rising edge high

RISING EDGE OFF rising edge any

FALLING EDGE ON falling edge high

FALLING EDGE OFF falling edge any

10.11.2 Groups (ES1303-AD Device)

This section describes the signal-group-specific options of the ES1303-AD
device.

Fig. 10-44 The "Groups" Tab of the ES1303-AD Device

The 16 signal groups are predefined. One signal with predefined name belongs
to each signal group.

Task

This is where the task is specified in which the signal is to be received. You can
select several tasks to receive the signal in more than one raster.

If a receive message is to be received in interrupt mode, this setting is reset and
locked.

Note

A future variant of the ES1303 will have only 8 channels. When more than 8
channels were configurated in the HWC editor, but a board with only 8 is
used, an error message is displayed when the model is started. In that case,
the ES1303 is ignored.
223

224
IRQ

This option specifies whether the relevant receive signal is to be received in
interrupt mode (Yes) or not (No). It is disabled when the trigger mode Off is
selected (see "HW Trigger Mode").

For "normal" receipt ("IRQ" set to No), the sampling or polling frequency in a
task must be at least twice the signal frequency, due to the Shannon Theorem
(see section 3.1.2 in the ES1303 user’s guide). Signals which are not sent in any
fixed grid or even only occur sporadically can be problematic in this operating
mode. Interrupt reception is ideal for this as it triggers signal processing exactly
when the signal was received.

Each signal group can be set up individually. The "HW Trigger Mode" and
"HW Trigger Gate" settings apply to all signal groups which are received in
interrupt mode.

An empty group with "IRQ" set to No and and no task selected, generates no
process. A warning is displayed in the ASCET monitor window.

Voltage Range [V]

The input voltage range for each channel of the ES1303 is specified in this
column. The following voltage ranges can be selected: -10 V to 10 V or -60 V
to 60 V.

10.11.3 Signals (ES1303-AD Device)

This section describes the signal-specific options of the ES1303-AD device.

Fig. 10-45 The "Signals" Tab of the ES1303-AD Device

Unlike the ES1300 (cf. chapter 10.9.3), you can only select the formula in the
"Signals" tab; the signal name is predefined. A description of the various col-
umns is given in chapter 7.3.4.

10.11.4 Mappings (ES1303-AD Device)

The possible settings are the same for all items. They are described in
chapter 7.3.5 on page 117.

10.12 ES1310-DA

The analog output board ES1310 enables the output of eight analog signals.
225

226
10.12.1 Globals (ES1310-DA Device)

This section describes the global options of the ES1310-DA device.

Fig. 10-46 The "Globals" Tab of the ES1310-DA Device

Init Task

The task for initializing the ES1310 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

The task to be executed with the ES1310 when the experiment stops is
assigned in this line (Type: Init / Application Mode: inactive).

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the jumper settings of the ES1310. Two different VME base
addresses can be selected for the ES1310 (ID1/E10000h, ID2/E20000h);
this means that up to two ES1310s can be operated in one ES1000 system.
The ES1310 occupies an address space of 1024 words from the base address.

10.12.2 Groups (ES1310-DA Device)

This section describes the signal-group-specific options of the ES1310-DA
device.

Fig. 10-47 The "Groups" Tab of the ES1310-DA Device

There are no item-specific columns defined for the ES1310-DA device in the
"Groups" tab.
227

228
10.12.3 Signals (ES1310-DA Device)

This section describes the signal-specific options of the ES1310-DA device.

Fig. 10-48 The "Signals" Tab of the ES1310-DA Device

There are no item-specific columns defined for the ES1310-DA device in the
"Signals" tab.

10.12.4 Mappings (ES1310-DA Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.13 ES1320-CB (DIO)

The digital input/output board ES1320 (DIO) makes it possible to measure and
output twenty digital signals. The ES1320 hardware consists of a carrier board
(CB) with two DIO piggyback modules.
In the HWC Editor items list, the carrier board is added as a subsystem and the
DIO piggyback as a device.

10.13.1 Globals (ES1320-CB Subsystem)

This section describes the global options of the ES1320-CB subsystem.

Fig. 10-49 The "Globals" Tab of the ES1320-CB Subsystem

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the jumper settings of the ES1320. Eight different VME base
addresses can be selected for the ES1320 (ID1/FE0400h, ID2/FE0C00h,
ID3/FE1400h, ID4/FE1C00h, ID5/FE2400h, ID6/FE2C00h, ID7/
FE3400h, ID8/FE3C00h, ID9/FE4400h, ID10/FE4C00h, ID11/
FE5400h, ID12/FE5C00h, ID13/FE6400h, ID14/FE6C00h, ID15/
FE7400h, ID16/FE7C00h); this means that up to eight ES1320s can be
operated in one ES1000 system. The ES1320 occupies an address space of 256
words from the base address.
229

230
10.13.2 Globals (DIO Device)

This section describes the global options of the DIO device.

Fig. 10-50 The "Globals" Tab of the DIO Device

Init Task

The task for initializing the ES1320 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

The task to be executed with the ES1320 when the experiment stops is
assigned in this line (Type: Init / Application Mode: inactive).

Piggyback Position

This line assigns either the upper (A) or lower (B) DIO piggyback module as a
digital interface.

10.13.3 Groups (DIO Device)

This section describes the signal-group-specific options of the DIO device.

Fig. 10-51 The "Groups" Tab of the DIO Device

There are no item-specific columns defined for the DIO device in the "Groups"
tab.
231

232
10.13.4 Signals (DIO Device)

This section describes the signal-specific options of the DIO device.

Fig. 10-52 The "Signals" Tab of the DIO Device

Active State

You can use this column to define whether the relevant digital input or output
signal is inverted (Active Low) or not (Active High) by the driver routine.

10.13.5 Mappings (DIO Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

10.14 ES1325-DIO

The digital input/output board ES1325 (DIO) can acquire and output digital
signals on sixteen channels each. Two trigger inputs make it possible to control
signal acquisition and signal output. Up to four ES1325 Boards can be oper-
ated simultaneously with an ES1130 or an ES1135. For each ES1325 Board,
you can use a maximum of one Input Device, one Output Device and one LED
Device.

10.14.1 Globals (ES1325-DIO Subsystem)

This section describes the global options of the ES1325-DIO Subsystem.

Fig. 10-53 The "Globals" Tab of the ES1325-DIO Subsystem

ID

This is where the board is assigned an ID for the board number.

HW Trigger Mode

This is where the trigger mode is set which determines the start of triggered
operations. This option is only available if the "HW Trigger Gate" parameter is
set to "On" (see "HW Trigger Gate" on page 235).

The following modes are available:

Note

The ES1325 board is what is referred to as an "Auto-ID" board which auto-
matically receives an ID number and a free address space from the Hardware
Manager when the system is powered on. Boards of the same type (e.g. two
ES1325s) are numbered from left to right, i.e. the board on the left is
assigned the number one, the next one the number two etc.. 4 IDs are avail-
able; this means that up to 4 boards can be operated in one experimental
system.
233

234
• Off

Signals at the trigger inputs are not evaluated.

• Rising edge

Once it has been evaluated, a rising edge at trigger input 1 starts the
acquisition or generation of signals at the digital input and/or digital
output channels.

• Signal state

A rising (falling) edge at trigger input 1 determines the start (end) of a
period. An operation is run on the digital input channels during this
period at trigger input 1.

In "Signal state" trigger mode, an optional request delay can be used
(see "Signals" on page 242). This time has to be shorter than the hold
time of the resulting trigger signal as data acquisition is otherwise not
started.

• Angle based

Trigger input 1 and trigger input 2 both evaluate continuous PWM sig-
nals.

The following applies to crankshaft signals:

– Trigger input 1 = zero transition,

Edge

Resulting Trigger
Signal

Trigger Unit

Trigger Channel 1

Trigger Channel 2

&

State
Trigger Channel 2

Resulting Trigger
Signal

Trigger Unit

Trigger Channel 1

– Trigger input 2 = tooth width.

A single PWM period at trigger input 2 corresponds to an angle seg-
ment. The angle position is determined by counting the PWM periods.

In this operating mode, a counter is checked on the trigger unit with
the two trigger inputs.

A rising edge at trigger channel 1 resets the counter to zero and a fall-
ing edge at trigger channel 2 increases the counter by 1. This is how,
for example, a crankshaft angle can be acquired if trigger channel 2
receives a falling edge with constant angle segments (e.g. 6° tooth
width) and trigger channel 1 receives a rising edge with every full revo-
lution (in zero angle transition). To guarantee correct operation, the sig-
nal at trigger channel 2 has to show continuous and equidistant angle
segments. The signal at trigger channel 1 has to show the zero transi-
tion at the rising edge. The falling edge of this signal has to follow after
a certain hold time. This is between the falling and the next rising edge
of the signal at trigger channel 2 (angle segment signal).

With the trigger modes Rising edge and Signal state, trigger channel
2 can also be defined as a trigger gate (see "HW Trigger Gate" on page 235).

HW Trigger Gate

This is where the mode which determines the evaluation of suitable edges at
the trigger inputs is set. The parameter is set if trigger channel 2 is used to
release trigger generation (TTL high level corresponds to "trigger enabled").

The following modes are available:

• Off

Every edge at trigger input 1 selected under "HW Trigger Mode" trig-
gers an operation at the digital input and/or output channels.

• On

Edges at trigger input 1 only trigger an operation at the digital input
and/or output channels during a high level at trigger input 2.

Angle Based
Trigger Channel 2

Resulting Trigger
Signal

Trigger Channel 1

Trigger Unit
235

236
When the "Angle based" trigger mode is selected (see "HW Trigger Mode"
on page 233), the "HW Trigger Gate" parameter is automatically set to "On".
When the "Off" trigger mode is selected (see "HW Trigger Mode"
on page 233), the "HW Trigger Gate" parameter cannot be edited.

Zero Transition [*]

This is where the zero transition at trigger input 1 is defined.

This option is only available in "Angle based" trigger mode (see "HW Trig-
ger Mode" on page 233). It can be edited within the value range.

Tooth Width [*]

This is where the tooth width at trigger input 2 during a PWM period is
defined.

This option is only available in "Angle based" trigger mode (see "HW Trig-
ger Mode" on page 233). It can be edited within the value range.

Resolution Tooth width

Value range Min. 2 x tooth width

Max. 32767 x tooth width

Typical value for a crankshaft signal 360° or 720°

Resolution 0.5°

Value range Min. 0.5°

Max. 720°

Typical value for a crankshaft signal 6°

10.14.2 Globals (ES1325-Input Device)

This section describes the global options of the Input Device.

Fig. 10-54 The "Globals" Tab of the ES1325-DIO Input Device

IRQ Handler Task

The IRQ Handler task (type: Software / Application mode: active) is required if
signal channels are to be evaluated in Interrupt mode.

This task must be generated as a "software" task in the task list in the ASCET
project editor, and at least 2 (max. 50) must be entered in the "Max. No. of
Activations" field.

This option is locked if the Off trigger mode is selected (see "HW Trigger
Mode" on page 233).

Note

This task has to be of the type "Software" and be exclusively available to
the item or the relevant hardware driver and cannot be used by any other
item or user processes. Two items of the same type (e.g. two ES1325s) can-
not share the same task!
237

238
IRQ Spacing [ms]

This is where the minimum time between two interrupt requests generated by
the ES1325 is defined.

This option is not available in "Off" trigger mode (see "HW Trigger Mode"
on page 233). It can be edited within the value range.

Automatic Mapping

This option makes automatic assignment between signals and (ASCET) mes-
sages possible.

After pressing [Do it...] the following dialog box opens showing the cur-
rent mapping:

Fig. 10-55 "Automatic Mapping" Dialog Box with Mapping Status

You can now decide on what happens next from this window according to
your requirements. The following possibilities are available:

• All:
The existing mapping is replaced completely. This involves a suitable
ASCET message of the same name being found for each signal. If there
is one, it is entered automatically; if not, the signal is not mapped.

• X-All:
Works in the same way as "All", but this extended functionality also
creates a global Send-Receive message for each missing ASCET mes-
sage, i.e. all signals are mapped with this option.

Resolution 0.1 ms

Value range Min. 0 ms

Max. 25.5 ms

• Mapped:
Only those signals which were already mapped are newly mapped, i.e.
an ASCET message of the same name is found for each mapped signal.
If none is found, the relevant signal is no longer mapped (= empty
ASCET message).

• X-Mapped:
Works in the same way as "Mapped", but this extended action involves
the creation of new global Send-Receive messages if no ASCET mes-
sages of the same name can be found.

• Unmapped:
Only those signals which were not already mapped are newly mapped
(= empty ASCET message), i.e. an ASCET message of the same name is
found for each of these signals. If none is found, the relevant signal
remains unmapped.

• X-Unmapped:
Works in the same way as "Unmapped", but this extended action
involves the creation of new global Send-Receive messages if no ASCET
messages of the same name can be found.

• Cancel:
Stops automatic assignment.

Use the "Mapping" tab in the HWC options window (see page 108) to deter-
mine whether the messages generated with the X-* commands are generated
in the project or in one of its included modules.

Adjustment Mode

Adjustment Mode makes it possible to influence signal acquisition online if
necessary, i.e. during the runtime of the ASCET model.

The following modes are available:

• Off

Adjustment Mode is deactivated. A "ChXXMsr" measure group is dis-
played for every "ChXX" input channel.

• On

Adjustment Mode is activated. In addition to the "ChXXMsr" measure
group, an online adjustment group "ChXXAdj" is displayed for every
"ChXX" input channel. This "ChXXAdj" group also contains configu-
ration parameters that can be adjusted online in the "Signals" column
in the "Groups" tab.

Adjustment Mode can only be selected if the HW Trigger Mode is set to "On"
(see "HW Trigger Mode" on page 233).
239

240
10.14.3 Groups (ES1325-Input Device)

This section describes the signal-group-specific options of the Input Device.

Fig. 10-56 The "Groups" Tab of the ES1325-DIO Input Device

Sync Group

Signal groups which are transferred synchronously in the same task (or group
of tasks) are combined to form one process. This process is given the same
name as the group name shown in this column.

If several tasks are selected, only those processes of the signal groups which
have an identical entry in the "Task" field can be combined to form one com-
mon process.

The signal groups within this process are transferred synchronously.

Hardware Channel

Input channels of the ES1325 (Ch01 to Ch16)

Channel Mode

This column determines the type of digital input signal to be evaluated for each
input channel of the ES1325.1:

• Off

No evaluation of the digital input signal.

• Digital Input

Evaluation of the state of the digital input signal at the time of the
request.

• PWM Input

Evaluation of all relevant information of the last complete PWM signal
before the request.

• Additive Time

Addition of the duration of the active phases of a signal during a
defined time interval.

• Event Counter

Addition of relevant signal edges during a defined time interval.

The definition of whether rising, falling or both edges are to be evaluated takes
place in the "Significant Edge" parameter.

Data transfer in the channels is only activated either when a task is selected or
the "IRQ" parameter is set to "Yes" (see "IRQ" on page 241), if in fact it is
available.

Use HW Trigger

This is where it is determined whether the digital input signal is to be acquired
synchronously with an external trigger signal. The following modes are avail-
able:

• Yes

Digital signal acquisition is synchronized with an external trigger.

• No

The digital signals are acquired in Polling mode. The digital input signal
is not synchronized with an external trigger signal.

The "Trigger Mode" parameter is determined for all hardware channels
together in "Globals" for the ES1325-DIO Subsystem.

IRQ

This is where it is determined whether an interrupt is generated after signal
detection.

• Yes

An IRQ Handler Task (see "IRQ Handler Task" on page 237) is activated.
After data acquisition, an interrupt request is generated to transfer
data to the ASCET model.
241

242
• No

The acquired signals are available for processing in a buffer memory.
The data transfer takes place triggered by the ASCET model in Polling
mode in the task determined in the "Task".

The "IRQ" option is only active if the "Use HW Trigger" parameter is set to
"Yes" (see "Use HW Trigger" on page 241).

Activated Task

Clicking the "Activated Task" field opens the "Task Selection" dropdown list.
The task activated when a signal group is received is selected and assigned
there according to the channel.

This option is only available if the "IRQ" parameter is set to "Yes" (see "IRQ"
on page 241).

Signals

Clicking the [Select] button in the "Signals" field opens the "Signal Selection"
dropdown list.

Signal components are assigned to every signal.

The following signals are available for the "ChXXMsr" measure groups:

• State

• Active Time [µs]

• Inactive Time [µs]

• Period Duration [µs]

• Frequency [Hz]

• Duty Cycle [%]

• Ratio Active Time/ Inactive Time [%]

• Ratio Inactive Time/ Active Time [%]

• Additive Active Time

• Counter Value

The following signals are available for the online "ChXXAdj" adjustment
groups (see "Adjustment Mode" in the "Globals" tab, page 239):

• Time Delay [µs]

• Angle Delay [µs]

• Angle Interval [µs]

Depending on the parameters "Channel Mode", "Use HW Trigger" and "HW
Trigger Mode" some signals are obligatory or default values are selected for
the signal group.
243

244
Active State

The function of the active state is assigned to a level of the input signal. The
following modes are available:

• High

The high level of the input signal is assigned the "active" state for fur-
ther processing.

• Low

The low level of the input signal is assigned the "active" state for fur-
ther processing.

Significant Edge

This is where an event (Channel mode "Event Counter") or the start of a
PWM period (Channel mode "PWM Input") is assigned to an edge. The fol-
lowing modes are available:

• Inactive-Active

The transition of the input signal from inactive to active (see "Active
State" on page 244) triggers the event.

• Active-Inactive

The transition of the input signal from active to inactive (see "Active
State" on page 244) triggers the event.

• Both

Transitions of the input signal from inactive to active and from active to
inactive (see "Active State" on page 244) trigger the event.

This setting is not available for the Channel modes "Digital Input" and
"Additive Time" (see "Channel Mode" on page 240).

Hysteresis

A type of hysteresis must be assigned to every digital input channel. Available
options:

• TTL

• User defined

TTL User defined

Lower threshold value 1.728 V User-specific

Upper threshold value 2.304 V User-specific

When the "User defined" option is selected, the lower and upper thresh-
old value of the hysteresis have to be defined in accordance with the definition
(see "Low Thresh. [V]" on page 245 and "High Thresh. [V]" on page 245).

Low Thresh. [V]

In this cell, the lower threshold value for the input signal is assigned to every
digital input channel. The lower threshold value has to be defined at least one
step under the upper threshold value.

This option is locked if the Hysteresis mode "TTL" is selected (see "Hysteresis"
on page 244).

High Thresh. [V]

In this cell, the upper threshold value for the input signal is assigned to every
digital input channel. The upper threshold value has to be defined at least one
step above the lower threshold value.

This option is locked if the Hysteresis mode "TTL" is selected (see "Hysteresis"
on page 244).

Timeout [ms]

In this cell, a period of time is assigned to every digital input channel in which
the input signal has to change state at least once. If the signal does not change
state within this defined period of time, the relevant error state is generated.

Resolution 0.144 V

Value range Min. 0 V

Max. Upper threshold value - 0.144 V

Resolution 0.144 V

Value range Min. Lower threshold value + 0.144 V

Max. 36 V

Resolution 2.5 ms

Value range Min. 0 ms (no timeout assigned)

Max. 163837.5 ms
245

246
10.14.4 Signals (ES1325-Input Device)

This section describes the signal-specific options of the Input Device.

Fig. 10-57 The "Signals" Tab of the ES1325-DIO Input Device

HW Channel

Display of the input channels of the ES1325.1 (Ch01 to Ch16).

Signal Type

This is where the signal type is displayed which is assigned to this signal. This
assignment can be modified in the "Signals" parameter of the "Groups" tab.

10.14.5 Mappings (ES1325-Input Device)

The possible settings are described in section 7.3.5 on page 117.

10.14.6 Globals (ES1325-Output Device)

This section describes the global options of the Output Device.

Fig. 10-58 The "Globals" Tab of the ES1325-DIO Output Device

Automatic Mapping

This option makes automatic assignment between signals and (ASCET) mes-
sages possible. The assignment takes place in the same way as with the Input
Device (see the section "Automatic Mapping" on page 238).
247

248
10.14.7 Groups (ES1325-Output Device)

This section describes the signal-group-specific options of the Output Device.

Fig. 10-59 The "Groups" Tab of the ES1325-DIO Output Device

Sync Group

Signal groups which are transferred synchronously in the same task (or group
of tasks) are combined to form one process. This process is given the same
name as the group name shown in this column.

If several tasks are selected, only those processes of the signal groups which
have an identical entry in the "Task" field can be combined to form one com-
mon process.

The signal groups within this process are transferred synchronously.

HW Channel

Output channels of the ES1325.1 (Ch01 to Ch16)

Channel Mode

This column determines the type of digital output signal to be evaluated for
each output channel of the ES1325.1:

• Off

No evaluation of the digital output signal.

• Digital Output

The state of an output channel can be set to active or inactive with
Request. The request can be triggered by the simulation processor.

• PWM Periodic Output

PWM signals are generated with no limitation of the output duration.

Exactly two signal components are required to describe the generated
PWM signals (see "Signals" on page 249).

• PWM Interval Output

PWM functionality is used to generate single pulses or intervals of
PWM signals. A further request which is received while the first request
is being processed is rejected.

Data transfer in the channels is only activated either when a task is selected or
the "IRQ" parameter is set to "Yes" (see "IRQ" on page 241), if in fact it is
available.

Use HW Trigger

This is where it is determined whether the digital output signal is to be output
synchronously with an external trigger signal. The following modes are avail-
able:

• Yes

Digital signal output is synchronized with an external trigger.

• No

The digital signals are output in Polling mode. The digital output signal
is not synchronized with an external trigger signal.

The "Trigger Mode" parameter is determined for all hardware channels
together in "Globals" for the ES1325-DIO Subsystem.

Signals

Clicking the [Select] button in the "Signals" field opens the "Signal Selection"
dropdown list. The signals to be generated can be selected.
249

250
Signal components are assigned to every signal.

• State [-]

• Active Time [µs]

• Inactive Time [µs]

• Frequency [Hz]

• Duty Cycle [%]

• Time Delay [µs]

• No. of Periods

• Angle Delay [°]

Depending on the parameters "Channel Mode", "Use HW Trigger" and "HW
Trigger Mode" some signals are obligatory or default values are selected for
the signal group.

Active State

The function of the active state is assigned to a level of the output signal. The
following modes are available:

• High

The high level of the output signal is assigned the "active" state for
further processing.

• Low

The low level of the output signal is assigned the "active" state for
further processing.

10.14.8 Signals (ES1325-Output Device)

This section describes the signal-specific options of the Output Device.

Fig. 10-60 The "Signals" Tab of the ES1325-DIO Output Device

HW Channel

Output channels of the ES1325.1 (Ch01 to Ch16)

Signal Type

This is where the signal type assigned to this signal is displayed. This assign-
ment can be modified in the "Signals" parameter of the "Groups" tab.

10.14.9 Mappings (ES1325-Output Device)

The possible settings are described in section 7.3.5 on page 117.
251

252
10.14.10 Globals (ES1325-LED Device)

This section describes the global options of the LED Device.

Fig. 10-61 The "Globals" Tab of the ES1325-DIO LED Device

Automatic Mapping

This option makes automatic assignment between signals and (ASCET) mes-
sages possible. The assignment takes place in the same way as with the Input
Device (see the section "Automatic Mapping" on page 238).

10.14.11 Groups (ES1325-LED Device)

This section describes the signal-group-specific options of the LED Device.

Fig. 10-62 The "Groups" Tab of the ES1325-DIO LED Device

There are no item-specific columns defined for the ES1325-LED Device in the
"Groups" tab. The possible item settings are described in section 7.3.3
on page 114.

Task

The relevant task has to be selected in this field.
253

254
10.14.12 Signals (ES1325-LED Device)

This section describes the signal-specific options of the LED Device.

Fig. 10-63 The "Signals" Tab of the ES1325-DIO LED Device

There are no item-specific columns defined for the ES1325-LED Device in the
"Signals" tab. The possible item settings are described in section 7.3.4
on page 115.

10.14.13 Mappings (ES1325-LED Device)

There are no item-specific columns defined for the ES1325-LED Device in the
"Mappings" tab. The possible item settings are described in section 7.3.5
on page 117.

10.15 ES1330-PWM

The counter board, ES1330, enables the acquisition and output of PWM sig-
nals. The ES1330 has six counter components (Am9513A). Each counter com-
ponent has five 16-bit-wide counters with a count frequency of 4 MHz. Thirty
counter inputs and sixteen counter outputs are divided into six internal ports
"Port 1 .. Port 6" on the ES1330. Every counter component occupies one of

these ports. Access to the ports takes place via the SUB-D connector of the
ES1330. In the HWC Editor items list, the ES1330 counter board is added as a
subsystem; the counter component as a device.

10.15.1 Globals (ES1330-PWM Subsystem)

This section describes the global options of the ES1330-PWM subsystem.

Fig. 10-64 The "Globals" Tab of the ES1330-PWM Subsystem

ID / VME base address

This line is responsible for the setting of the VME base address. This setting has
to correspond to the jumper settings of the ES1330. Four different VME base
addresses can be selected for the ES1330 (ID1/C00000h, ID2/C00100h,
ID3/C00200h, ID4/C00300h); this means that up to four ES1330s can be
operated in one ES1000 system. The ES1330 occupies an address space of 256
words from the base address.

Note

The table in chapter "Connector X1: Digital Inputs and Outputs" of the man-
ual for the ES1330 board (in the ETASManuals\ASCET5.1\ES1000
folder of your ASCET installation) lists the possible combinations of ports and
counter inputs or outputs.
255

256
10.15.2 Globals (PWM-COUNTER Device)

This section describes the global options of the PWM-COUNTER device.

Fig. 10-65 The "Globals" Tab of the PWM-COUNTER Device

Init Task

The task for initializing the ES1330 is assigned in this line (Type: Init / Applica-
tion Mode: active).

Exit Task

The task to be executed with the ES1330 when the experiment stops is
assigned in this line (Type: Init / Application Mode: inactive).

ZK2 Port

This is where the port (and hence the counter component) is assigned. Every
counter component has its own port.

Counter 1 Mode .. Counter 5 Mode

This is where the counter mode is selected for each of the five counters of the
counter component. The following list shows the available counter modes.

• Inactive

The counter is not used.

• PWM-Generator (PWM_Gen)

The counter is used to generate PWM signals.

• Period-Measurement (P_Meas)

The counter is used to measure the period of a PWM signal.

• High Time Measurement

In this mode, the duration of a pulse with an active level (here: high-
active) is measured.

• Low Time Measurement

In this mode, the duration of a pulse with an active level (here: low-
active) is measured.

• Additive High Time Measurement

The simulation processor usually acquires measurements from the
ES1330 board periodically. With additive measurements, the length of
time the signal was active (here: high-active) between two consecutive
read-accesses of the measure tab is measured.

Input
Signal

Time
257

258
• Additive Low Time Measurement

The simulation processor usually acquires measurements from the
ES1330 board periodically. With additive measurements, the length of
time the signal was active (here: low-active) between two consecutive
read-accesses of the measure tab is measured.

Counter 1 Prescaler .. Counter 5 Prescaler

These lines can be used to specify a prescaler for the input frequency of 4 MHz.
The scaled input frequency is used as a clock signal for the first four counters.
The prescaler makes it possible to generate and evaluate PWM signals with a
longer period duration; the resolution of the PWM signals is, however, reduced
because of this. The following prescalers can be selected: 1, 10, 100, 1000 and
10000.

Read Access
to ES1330

Input
Signal

Time

Read Access
to ES1330

Read Access
to ES1330

Σ Σ

10.15.3 Groups (PWM-COUNTER Device)

This section describes the signal-group-specific options of the PWM-COUNTER
device.

Fig. 10-66 The "Groups" Tab of the PWM-COUNTER Device

There are no item-specific columns defined for the ES1330-PWM subsystem in
the "Groups" tab.

10.15.4 Signals (PWM-COUNTER Device)

This section describes the signal-specific options of the PWM-COUNTER
device.

Fig. 10-67 The "Signals" Tab of the PWM-COUNTER Device
259

260
No.

The number and significance of the signals is determined by the "ZK2 Port and
Counter X Mode" settings from the "Globals" tab.

Signal

This is where names (ANSI-C) for the signals are specifically defined. The fol-
lowing naming conventions apply (X = number of the counter):

• GenX_Frequency

Frequency of the PWM output channel in Hz.

• GenX_DutyCycle

Duty cycle of the PWM output channel in %.

• MeasX_Period

Period duration of the PWM evaluation channel in seconds.

• MeasX_DutyCycle

Result of the pulse width measurement (single pulse or additive).

10.15.5 Mappings (PWM-COUNTER Device)

The possible settings are the same for all devices. They are described in
section 7.3.5 on page 117.

11 Tutorial

The tutorial describes an INTECRIO experiment (chapter 11.1), as well was the
setup of an ES1222 (chapter 11.2), ES1303 (chapter 11.3), and ES1325 board
(chapter 11.4 and chapter 11.5), using supplied examples.

ASCET-RP V5.4 includes the sample files INTECRIO_Tutorial.exp and
RTIOTutorial.exp. During the installation, the sample file is stored in the
subdirectory ASCET5.1\export of your ASCET installation.

The sample file can be imported into a new or an existing database.

To create a new database:

• In the Component Manager, select the File →
New Database menu option.

The "New Database" window opens.

• Enter the name for the new database.

• Click OK.

The database is created and opened.

To import the exercise example:

• In the Component Manager, select File →
Import.

• In the file selection window, select the
ASCET5.1\export subdirectory of your
ASCET installation.

• Click on the export file RTIOTutorial.exp.

Note

This tutorial is written under the assumption that the ETAS Network Man-
ager is not used. If you are using the ETAS Network Manager, slightly differ-
ent behavior may result; see chapter 2.2 and chapter 4.
Tutorial 261

262
• Click Open.

The "Specify options for import" window
opens.

• Accept the default settings and click OK.

• Make sure all components have been selected
for the import in the "Import" window..
Tutorial

• Click OK.

The files are imported. A list of the imported
database items is shown in the "Imported
Items" window.

• Close the "Imported Items" window.

• Import the INTECRIO_Tutorial.exp file
the same way.

Make sure all components are selected for the
import.

To configure the TCP/IP protocol options:

To avoid conflicts with a second network card that might be used for the LAN,
the following TCP/IP settings should be selected:

• Disable the DHCP service.

• Enter the IP address 192.168.40.240.
Tutorial 263

264
• Enter the subnet mask 255.255.255.0.

• For the DNS service, use the local settings of
your internal network.

• Disable the WINS service.

• Make sure that the "IP Forwarding" option is
not activated.

11.1 Tutorial – Experimenting with INTECRIO

This chapter explains how to transfer ASCET projects to INTECRIO as well as
how to use Back-Animation (see page 64) when experimenting with INTEC-
RIO. Creating a project in ASCET or a workspace in INTECRIO is not part of this
chapter; all files you need are supplied.

• The export file INTECRIO_Tutorial.exp contains the ASCET
project with all relevant components.

The ASCET project P01_Project consists of a data generator
(M01_DataGenerator module) which is specified as a state machine
(SM01_DataGenerator). Use the PMode parameter to determine

(← Windows® 2000)
Tutorial

whether the data generator is running as a a sawtooth (1) or a triangu-
lar signal (2). The generated data represents the input signal for a low-
pass filter (M01_LowPass module) which is also part of the project.

• The WS_ES1130 folder contains an INTECRIO workspace which was
prepared for working with the simulation processor ES1130.

• The WS_ES1135 folder contains an INTECRIO workspace which was
prepared for working with the simulation processor ES1135.

11.1.1 Preparations

First of all, make the necessary preparations.

To copy the INTECRIO workspace:

The prepared INTECRIO workspaces are in the ETAS\ASCET5.1\export
directory on your ASCET installation CD.

• If you are working with the ES1130, copy the
INTECRIO_Tutorial_WorkspaceES1130
directory from the CD to your hard disk, for
example to

ETASData\INTECRIO1.0\
INTECRIO_Tutorial_WorkspaceES1130.

• If you are working with the ES1135, copy the
INTECRIO_Tutorial_WorkspaceES1135
directory from the CD to your hard disk, for
example to

ETASData\INTECRIO1.0\
INTECRIO_Tutorial_WorkspaceES1135.

The project P01_Project is set up for working with an ES1130. If you are
working with this simulation processor, your preparations are now complete. If
you are working with an ES1135, you still have to select the relevant target.

To select a target:

• Open the project P01_Project in the
project editor.

• Select the target ES1135 and the compiler
GNU-C (PowerPC) from the code genera-
tion options.

The defined operating system settings for this
target are loaded.
Tutorial 265

266
11.1.2 Transferring the Project

The next step is to transfer the project to INTECRIO.

To transfer the project to INTECRIO:

• Open the project P01_Project.

• Select INTECRIO from the "Experiment Tar-
get" combo box.

The buttons Transfer Project to selected
Experiment Target and Reconnect to
Experiment of selected Experiment Target
are now available.

• Click the Transfer Project to selected
Experiment Target button.

The "INTECRIO Project Transfer" window
opens.

• In the "Path" field, enter a path for the gener-
ated files.

• Use the Browse button next to the "Work-
space" field to enter the supplied workspace
with which you are working.

• Use the Browse button next to the "System"
field to specify the system project
SystemProject which is in the workspace.

If INTECRIO is not yet running, it is started
now.
Tutorial

• Click OK to start transfer.

The code necessary for working with INTEC-
RIO is generated and stored in the specified
directory.
The ASCET project is imported into INTECRIO
and stored as a module under the name
P01_Project. It is automatically added to
SystemProject.

11.1.3 Experimenting in INTECRIO

Now configure the operating system in INTECRIO, start the Build process and
finally the INTECRIO experiment.

To configure the INTECRIO operating system:

• Change to the INTECRIO window.

• Select System → OS Configuration.

The OSC operating system editor opens. As
the example is very easy, you can use the auto-
matic configuration.

• Select Edit → OS Auto mapping.

The auto_10msTask task is created in
UserAppMode operating mode. The two pro-
cesses of the ASCET project are assigned to
this task.

You do not need to make any further settings.

To start the INTECRIO Build process:

• Select Integration → Build from the INTEC-
RIO window

or
Tutorial 267

268
• if you are not starting the Build process for the
first time, select Integration → Rebuild.

The Build process is started. The "Log Win-
dow" box at the bottom of the INTECRIO win-
dow indicates progress.

The following message is displayed in the last
lines after a successful Build process:

Action succeeded

The active system project has
been set into the „Build" mode.

To start an INTECRIO experiment:

1. Opening an experiment environment

• In the INTECRIO window, select
Experiment → Open Experiment.

The INTECRIO experiment environment opens
in its own window. The experiment is loaded
into the experiment environment.

2. Starting an experiment

• In the INTECRIO experiment environment,
select Experiment → Open Experiment.

The executable file (the prototype) is loaded to
the ES1000.

• Select Experiment → Start Experiment.

The simulation is started.

To use Back-Animation, you do not have to open any measure and calibration
windows in INTECRIO. But as Back-Animation with ASCET does not provide an
oscilloscope, the INTECRIO workspace contains a predefined oscilloscope
(Oscilloscope1.osc). The workspace also contains an Active GUI window
(ActiveGUI1.gui) with two calibration instruments. The two files are in the
subdirectory EE_Dummy\System\GUI of your INTECRIO workspace.

To load measure and calibration instruments:

• fIn the INTECRIO experiment environment,
select File → Open.

A file selection window opens.

• Set the display of all files.
Tutorial

• Select the subdirectory EE_Dummy\Sys-
tem\GUI of your INTECRIO workspace.

• Load the files Oscilloscope.osc and
ActiveGUI1.gui consecutively.

• Set the active GUI window to Run mode using
Edit → Run.

As you have already started the simulation,
values are displayed immediately. Your INTEC-
RIO experiment environment then looks some-
thing like this:

11.1.4 Using Back-Animation

Start Back-Animation from ASCET. The experiment has to continue running in
INTECRIO.
Tutorial 269

270
To start Back-Animation:

• Click the Reconnect to Experiment of
Selected Experiment Target button in the
ASCET project editor.

The connection is established to the running
INTECRIO experiment. The "Physical
Experiment ..." window opens.

• In the "Environment Browser" window, select
INTECRIO as environment.

The predefined arrangement of measure and
calibration windows opens.
Tutorial

• Click the Start Measurement button.

Measuring is started in the ASCET experiment;
values are displayed in the measure windows.

You can now calibrate values either in the ASCET experiment or in the INTEC-
RIO experiment. The modified values are transferred to the INTECRIO experi-
ment and displayed and used there.

To calibrate values:

• In the ASCET experiment, enter a value for the
variable LP_IV in the "Numeric Editor; 3"
window.

The value in the left-hand calibration instru-
ment of the "ActiveGUI1.gui" window in the
INTECRIO experiment is updated.

• In the INTECRIO experiment, enter another
value for the variable LP_IV in the
"ActiveGUI1.gui" window.

The value in the "Numeric Editor; 3" window
of the ASCET experiment is updated.
Tutorial 271

272
• In the "Logical Editor; 2" window, set the
venable parameter to false.

The value of the signal generator stays at the
last value; the low-pass filter is set to the ini-
tialization value LP_IV.

• Set venable back to true and then PMode
to 2 to select the other signal generator.

The display in the INTECRIO oscilloscope
changes accordingly.
Tutorial

To view the ASCET components:

• In the ASCET window "Physical Experiment
...", „Graphics“ tab, double-click a compo-
nent to view it in detail.

The component is displayed in the "Physical
Experiment ..." window.

You can navigate through the entire hierarchy
in this way; the Navigate up to parent com-
ponent button or double-clicking the empty
space gets you back to the next highest level.

• Select View → Monitor All.

The current values of the elements are shown
above the elements.

• Navigate through the model specification to
the state machine SM01_DataGenerator.
Tutorial 273

274
• Right-click one of the states and select Ani-
mate States from the context menu.

The current state is shown in color in the state
diagram.

11.2 Tutorial – ES1222 (CAN-IO)

The example for ES1222 contains three variables which are sent by CAN
channel 1 and received by CAN channel 2. If both channels are connected
together with a terminator (see Fig. 11-3 on page 298), the experiment can
be performed.

The model is present and the preparations required for RTIO integration of the
ES1222 (tasks, messages and HWC module) have been made; you have to set
up the hardware configuration and create the code.
Tutorial

Fig. 11-1 ES1222 - ES1222_InOut module

Fig. 11-2 ES1222 – Presets in the OS editor
Tutorial 275

276
11.2.1 The ES1222 Board

The figure below shows the front panel of the ES1222 CAN board.

The inputs CAN1 to CAN4 are independent and galvanically isolated CAN
interfaces; the K wire input is a serial K and L line interfaces used for connect-
ing VMEbus systems with external devices.

ES1113ES1222.3
A

C
A

N
 1

C
A

N
 2

C
A

N
 3

C
A

N
 4

K-Line
Tutorial

Jumpers of the ES1222

For the experiment to work, you must verify the correct configuration of the
jumpers.

Operating Several ES1222 Boards

Up to four ES1222 boards can be used in one ES1000 system.

Jumper PIN Meaning

JP1 open CAN1 and CAN2 are independent

JP2 open

JP3 open

JP1000 1-2 closed

JP200 (ES1222.3 only) any K Line is not sed in the example

JP1000
1
2
3

2 2 4

3

4

3 31 1 1

4 2

JP1

JP2
JP3

JP200

3
2
1

Tutorial 277

278
11.2.2 Sample Project

How to open the exercise example:

• In the Component Manager, select the
ASCET_RP\RTIOTutorial\ES1222
folder.

• Select the ES1222_project project.

• Open the project.

• Click the Specify Code Generation
Options button.

The "Settings for: ES1222_project" window
opens.
Tutorial

• On the "Build" tab, select the options

Target: >ES1130< or >ES1135<,
Compiler: GNU-C (PowerPC).

11.2.3 Creating the Hardware Configuration

How to open the HWC editor:

• In the project editor, select RTIO → Open
Editor.

The HWC editor is opened.

Note

Only messages declared as "Exported" are available for the RTIO communi-
cation.

Note

Normally, you must create the C code module HWC, and insert it into the
project, before you edit the hardware configuration. In the tutorial, however,
this step has been performed for you.
Tutorial 279

280
How to create the hardware configuration (HWC):

The hardware must be described as a tree structure in the items list. The HWC
item always exists and forms the root of the tree.

• In the HWC editor, select Edit → Add Hard-
ware Item

or

• click the Add Item button.

The "Add Item" window is displayed.

Add Item always opens the list of available
items of the next hierarchy level.

• Select the ES113x entry.

This entry is used to describe the ES1000.x sys-
tem with integrated ES1130 or ES1135 Pow-
erPC processing node.
Tutorial

• Click OK.

The ES113x item is added to the "Items" list.

• In the "Items" list, select the ES113x item.

On the "Globals" tab, the Init Task option
is given the default task name Init. An Init
task with the same name exists in the OS edi-
tor of the sample project; therefore, no other
Init task need be selected here.

How to integrate and configure ES1222:

• Choose Edit → Add Item to open the list of
available items of the next hierarchy level.
Tutorial 281

282
• Select the ES1122-CAN entry.

This entry is used to describe the ES1222 CAN
and K Line interfaces.

• Click OK.

The ES1222-CAN item is added to the
"Items" list.

• In the "Items" list, select the ES1222-CAN
item.

On the "Globals" tab, the task names Init and Exit are predefined for the
Init Task and Exit Task options. Init tasks with these names exist in the
OS editor of the sample project; therefore, no other tasks need be selected
here. For the IRQ Handler Task option, no default name is given.

• Double-click in the empty field next to the
IRQ Handler Task option.

The "Task selection" window opens.
Tutorial

• Select the Analyze software task and click
OK.

The board number in the ID option is set
automatically. Since the ES1222-CAN item is
the first of its type, the value is set to "ID1."

• Save the changes with Accept.

How to integrate the CAN channels:

• In the HWC editor, select the ES1222-CAN
item.

• Select Edit → Add Item to open the list of
available items of the next hierarchy level.

• Select the CAN-CTRL entry and click OK.

This entry is used to describe the CAN control-
ler.

• In the "Globals" tab, click on the value 1000
next to the "Baud Rate [kBaud]" option.

The table field changes to a combo box con-
taining the available baud rates.

• From the combo box, select a rate of
500 kBaud.

• Accept the settings with Accept.

• In the "Items" list, select the CAN-CTRL item.
Tutorial 283

284
• Select Edit → Add Item to open the list of
available items of the next hierarchy level.

• Select the CAN-IO entry and click OK.

• Add a second CAN controller with CAN-IO
device for the second CAN channel.

The item tree for the description of the sample system is now fully specified.

11.2.4 HWC Settings for the ES1222 (CAN-IO)

Next, the two CAN channels must be configured. The first channel (CAN-
IO::Canio item in the HWC editor) should send the signals which are
received by the second channel (CAN-IO::Canio1).

No settings need to be made in the example for the CAN-IO item on the "Glo-
bals" tab.

Channel 1

"Groups" tab: The CAN messages are specified in form of signal groups on
this tab.

How to perform the settings for group 1:

• In the "Items" list, select the
CAN-IO::Canio item.
Tutorial

• Select the "Groups" tab.

The Group1 group is always present.

• Double-click in row 1 of the "Group" column.

The table field changes to an input field.

• Name the group MSG_100.

• Double-click in row 1 of the "Task" column.

The "Task selection" window opens.

• Select the T10ms alarm task and click OK.

• Click in row 1of the "Identifier dec" column.

• Enter the value 100 for the identifier.

The value 64 is automatically entered in the
"Identifier hex" column.

• Save the settings with Accept.

How to add a group:

Next, add a second group which is transferred in another task.

• Click in row 1of the "No." column, to select
the existing group.

Functions for adding signal groups are acti-
vated in the Edit menu.
Tutorial 285

286
• Choose Edit → Add Row After

or

• select Add Row After from the context
menu.

– If you did not save the changes to the first
group, you will be asked to do so now.

– Confirm the reminder with OK.

– Open Add Row After again.

A new row is inserted after the first one.

How to perform the settings for group 2:

• Name the group MSG_101.

• In the "Task" column, select the T200ms
alarm task.

• In the "Identifier dec" column, enter the value
101.

The value 65 is automatically entered in the
"Identifier hex" column.

• Save the settings with Accept.

"Signals" tab: The CAN signals are specified on this tab, whereby one signal
is always present. The example uses two numeric and one logical signal; first,
you will add two signals.
Tutorial

How to add signals:

• Select the "Signals" tab.

• Click in row 1 of the "No." column, to select
the existing signal.

Functions for adding signals are activated in
the Edit menu.

• Select Edit → Add Multiple Rows After

or

• select Add Row After from the context
menu.

The "New Value" window opens.

• Enter the number 2 in the entry field.

The number can also be set using the arrow
buttons.

• Click OK.

Two rows are inserted after the specified row.
The group from the selected row (MSG_100) is
preset; the Signal<n> standard name is
counted up.
Tutorial 287

288
(To provide a better overview, the columns of the bit matrix (see section
"7654321.. (Bit matrix)" on page 176) that are not required in the example
were minimized.)

The logical and one numeric signal are transferred in the first group, the other
numeric signal is transferred in the second group.

How to set up a logical signal:

• Double-click in row 1 of the "Signal" column.

• Name the signal vcansend1log.

• Double-click in row 1 of the "Signal-Type" col-
umn.

The table field changes to a combo box which
lists the available types.

• From the combo box, select bool.

• Double-click in row 1 of the column "0 0"
(last column of the bit matrix).

The field is marked with 1. This specifies that
the signal is transferred in byte 0, bit 0, of the
first CAN message.

How to set up the first numeric signal:

• Name the signal vcansend2cont.

• In row 2 of the "Signal-Type" column, select
the uint type.

• Double-click in row 2 of the column "1 0."

The field is marked with 1.

• Double-click in row 2 of the column "1 7."

The field is marked with 1.

• Press the <SHIFT> key and click again in row 2
of the column "1 7."

All fields lying between the columns are
marked with 1.
This specifies that the signal is transferred in
byte 1, bits 0 – 7, of the first CAN message.

How to set up the second numeric signal:

• Name the signal vcansend3IRQ.
Tutorial

• In row 3 of the "Group" column, select the
MSG_101 group.

• In row 3 of the "Signal-Type" column, select
the uint type.

• Mark the columns "0 0" to "0 7" in row 3 as
described above.

This specifies that the signal is transferred in
byte 0, bits 0 - 7, of the second CAN message.

• Save the entries by clicking Accept.

After setting up the three signals, the table should look as follows:

"Mappings" tab: The CAN signals and the ASCET messages from the
project are assigned to each other on this tab. A selection dialog can be
opened by clicking the desired cell in the "ASCET Message" column. This dia-
log contains only messages featuring the Exported attribute and correspond-
ing to the transfer direction of the signal group (send or receive); that is:

• Direction = receive → receive-messages,

• Direction = send → send-messages

How to assign an ASCET message manually:

• Select the "Mappings" tab.
Tutorial 289

290
• Double-click in row 3 of the "ASCET Mes-
sage" column.

The "Message selection" window opens.

It contains all send-messages from the ASCET
project.

• Select the vcansend3cont message and
click OK.

• Save your entries by clicking Accept.

The signals in rows 1 and 2 have the same names as two send-messages in the
project. You can assign the messages manually as described above or assign
them automatically.

How to assign an ASCET message automatically:

• Select the "Globals" tab.
Tutorial

• Double-click in the "Automatic Mapping" row
of the "Value" column.

The "Automatic Mapping" window opens.

It contains a brief description of the buttons
and a listing of the current assignments.
A detailed description can be found in the sec-
tion "Automatic Mapping" on page 170.

• Click the Unmapped button.

The vcansend1log and vcansend2cont
signals are assigned to the ASCET messages of
the same name.
The vcansend3IRQ signal was already
assigned to a message manually so that it is
not affected.

The "Mappings" tab now shows that a message is assigned to every signal.

This completes the configuration of the first CAN channel.
Tutorial 291

292
Channel 2

"Groups" tab: The CAN messages are specified in form of signal groups on
this tab.

How to perform the settings for group 1:

• In the "Items" list, select the
CAN-IO::Canio1 item.

• Select the "Groups" tab.

The regularly generated contents of the tab is
identical with that of the first channel.

• Name the first group MSG_100 (see
page 284).

Since the second channel receives the signals, you must change the transfer
direction of the group.

• Double-click in row 1 of the "Direction" col-
umn.

The table field changes to a combo box which
lists the available directions.

• Select the receive direction.

• In row 1 of the "Task" column, select the
T10ms alarm task (see page 284).

• In row 1 of the "Identifier dec" column, enter
the value 100.

The value 64 is automatically entered in the
"Identifier hex" column.

• Save the settings by clicking Accept.

Next, add a second group which is transferred in interrupt mode as described
on page 285.

How to perform the settings for group 2:

• Name the second group MSG_101.

• In the "Direction" column, select the
receive direction.

• Double-click in row 2 of the "IRQ" column.

The table field changes to a combo box which
lists the available options.
Tutorial

• Select the yes option.

The "Task" column is automatically reset and
blocked. The value 1 is automatically entered
in the "Prescaler" column.

• In the "Identifier dec" column, enter the value
101.

The value 65 is automatically entered in the
"Identifier hex" column.

• Save the settings by clicking Accept.

"Signals" tab: The CAN signals are specified on this tab, whereby one signal
is always present. First, add two signals as described on page 287.

The logical and one numeric signal are transferred in the first group, the other
numeric signal is transferred in the second group.

How to set up a logical signal:

• Name the first signal vcanrec1log.

• In row 1 of the "Signal-Type" column, select
the bool type.

• Mark the "0 0" column in row 1 (see
page 288).

This specifies that the signal is transferred in
byte 0, bit 0, of the first CAN message.

How to set up the first numeric signal:

• Name the signal vcanrec2cont.

• In row 2 of the "Signal-Type" column, select
the uint type.

• Mark the columns "1 0" to "1 7" in row 2
(see page 288).

This specifies that the signal is transferred in
byte 1, bits 0 - 7, of the first CAN message.

How to set up the second numeric signal:

• Name the signal vcanrec3cont.
Tutorial 293

294
• In row 3 of the "Group" column, select the
MSG_101 group.

• In row 3 of the "Signal-Type" column, select
the uint type.

• Mark the columns "0 0" to "0 7" in row 3.

This specifies that the signal is transferred in
byte 0, bits 0 - 7, of the second CAN message.

• Save your changes by clicking Accept.

After setting up the three signals, the table should look as follows:

The three signals have receive-messages under the same name in the project
so that all messages can be assigned automatically.

How to assign ASCET messages automatically:

• Select the "Globals" tab.

• Click in the "Automatic Mapping" row of the
"Value" column.

The "Automatic Mapping" window opens.

A detailed description can be found in the sec-
tion "Automatic Mapping" on page 170.

• Click the All button.

The signals are assigned the ASCET messages
of the same name.

Of course, the messages can also be assigned manually on the "Mappings"
tab as described on page 289.
Tutorial

The "Mappings" tab now shows that every signal is assigned the message of
the same name.

This completes the configuration of the second CAN channel.

11.2.5 Saving the Hardware Configuration

The created hardware configuration can be saved in the File container of the
project, or as a DOS file (*.HWX extension).

To save the hardware configuration in the File container:

• In the HWC editor, click on the Save button

or

• select File → Save to save the hardware con-
figuration.

If this is the first time you save the configura-
tion, the "Save Configuration File" opens.

• In the "File Type" combo box, select the XML
Hardware Configuration (*.hwx)
entry.
Tutorial 295

296
• Enter a name for the configuration.

• Click OK.

The hardware configuration is saved to the File
container of the project. It is visible in the
"Files" tab.

To save the hardware configuration as a DOS file:

• In the HWC editor, choose the File → Export.

• In the "Export Hardware Configuration" win-
dow, enter the file type, path and file name
for the hardware configuration.

The hardware configuration is saved to the
specified file. It can be imported to the HWC
editor at a later time via File → Import.

11.2.6 Generating Code for the HWC Module

Subsequently, the generating sequence for the HWC module has to be started.

To generate code for the HWC module:

• In the HWC editor, select Extras → Generate
Code → For Current Experiment

or

• click on the Generate Code for Current
Experiment button.

• Confirm overwriting the HWC module.

Note

The solution of the example is stored under the
name of ES1222.hwx. Make sure that you do
not overwrite this file.
Tutorial

• The C code for the HWC module is generated
for the experiment currently selected in the
project’s code generation options.

You can also generate code for other experiments:

• In the HWC editor, select Extras → Generate
Code → For Phys. and Quant. Experiment
to generate code for both the Physical and the
Quantization experiment.

• In the HWC editor, select Extras → Generate
Code → For Phys., Quant. and Impl. Exper-
iment to generate code for the Physical,
Quantization, and Implementation experi-
ment.

11.2.7 Experimenting with the Sample Project

Because all RTIO-specific actions are now finished, you can close the HWC edi-
tor. The next step is to start the regular code generation for the experimental
target from within the project editor.

How to generate code for the experimental target:

• In the project editor, choose Component →
Build to generate code for the entire project.

• Select Component → View Generated
Code to view the generated code.

Note

It is not recommended to include the HWC module in the graphical display
of the Project Editor. Since this module changes with each RTIO generation
process, it would result in an unfavorable representation of the HWC mod-
ule.
Tutorial 297

298
How to experiment online:

• Connect the CAN 1 and CAN 2 inputs of the
ES1222 with the appropriate cables and a ter-
minator.

Fig. 11-3 ES1222 with cable and terminator

• Select Online (RP) from the "Experiment
Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment

or

Note

If you omit the terminator, no communication will take place.

ES1113ES1222.3
A

CA
N

 1
CA

N
 2

CA
N

 3
CA

N
 4

K-Line

Term inator
Tutorial

• click the Open Experiment for selected
Experiment Target button.

The "Physical Experiment" window and the
predefined experiment environment consist-
ing of two oscilloscopes open.

• In the "Physical Experiment" window, select
Experiment → Start ERCOS

or

• click the Start ERCOS button.

The operating system starts and the model is
executed.
Tutorial 299

300
• In the "Physical Experiment" window, select
Experiment → Start Measurement

or

• click the Start Measurement button.

The values of the ASCET messages are dis-
played on both oscilloscopes.

The top oscillograph shows the vcansend2cont send-message (green, left
curve) and the vcanrec2cont receive-message (white, right curve) in the
"Signals" area. The bit display shows the vcanrec1log receive-message (top
curve) and the vcansend1log send-message (bottom curve).

Characteristic and offset of the curves are generated as follows:

• The values for the send-messages are processed (calcCANLoop pro-
cess in the T10ms task) and sent (CanioMSG100_T10ms_HWCL pro-
cess in the T10ms task) in the 10-ms raster.

• The processed value is read in again via receive-message
(Canio1MSG100_T10ms_HWCF process in the T10ms task), but
delayed by one time unit.

The bottom oscillograph shows the vcansend3cont send-message (green
curve with small steps) and the vcanrec3cont receive-message (white curve
with large steps).
Tutorial

The vcansend3cont send-message is processed in the 10-ms raster (calc-
CANLoop process in the T10ms task), which causes the green curve to
respond as smoothly as the curve of vcansend2cont. The value is sent in the
200-ms raster (CanioMSG101_T200ms_HWCL process in the T200ms task)
and received again in the interrupt mode via receive-message after being trig-
gered by the Analyze task. The graduated curve for vcanrec3cont
responds accordingly.

11.3 Tutorial – ES1303

This section describes the integration of an ES1303 in an ASCET project using
the RTIO package. Prerequisites for the integration are the steps that are
described in chapter 6 "Preparatory Measures". Remember that the mapping
between the RTIO channel and the model can only be specified by messages
that are declared as Exported in the remaining model.

Since the ES1303 board can only receive, but not dend, signals, this example
does not include a final experimental demonstration.
Tutorial 301

302
11.3.1 The ES1303 Hardware

The figure below shows the front panel of the ES1303 analog/digital converter
card:

The inputs A to D each bundle four input channels of the ES1303. The input
TRIG is used for the trigger signals.

Input voltage ranges of the ES1303

The input voltage range of the ES1303 board can be set in the HWC editor
either to ±10 V or ±60 V.

Use of Several ES1303 Boards

Up to 4 ES1303 boards can be used in one ES1000 system.

ES1303.1

1

2

3

4

E

R

TR
IG

A

D

B

C

Tutorial

11.3.2 Sample Project

How to open the exercise example:

• In the Component Manager, select the
ASCET_RP\RTIOTutorial\ES1303
folder.

• Open the ES1303_project project.
Tutorial 303

304
• Click on the Specify Code Generation
Options button.

The "Settings for: ES1303_project" window
opens.

• On the "Build" tab, select the options

Target: >ES1130< or >ES1135<,
Compiler: GNU-C (PowerPC).

In the sample project, the preparations required for the RTIO integration of the
ES1303 (tasks, messages and HWC module) are already completed.

11.3.3 Creating the Hardware Configuration

How to open the HWC editor:

• In the project editor, choose RTIO Æ Open
Editor.

The HWC editor is opened.

Note

Only messages declared as "Exported" are available for the RTIO communi-
cation.

Note

Normally, you must create the C code module HWC, and insert it into the
project, before you edit the hardware configuration. In the tutorial, however,
this step has been performed for you.
Tutorial

How to create the hardware configuration (HWC):

The hardware must be described as a tree structure in the items list. The HWC
item always exists and forms the root of the tree.

• In the HWC editor, select Edit → Add Item

or

• click the Add Item button.

The "Add Item" window is displayed.

Add Item... always opens the list of available
items of the next hierarchy level.
Tutorial 305

306
• Select the ES113x entry.

This entry is used to describe the ES1000.x sys-
tem with integrated ES1130 or ES1135
PowerPC processing node.

• Click OK.

The ES113x item is added to the "Items" list.

• In the "Items" list, select the ES113x item .

On the "Globals" tab, the Init Task
option is given the default task name Init.
An Init task with the same name exists in the
OS editor of the sample project, therefore, no
other Init task needs to be selected here.

• Next, select Hardware → Add Hardware
Item to open the list of available items of the
next hierarchy level.
Tutorial

• Select the ES1303-AD entry, which is used to
describe the ES1303 analog-digital interface.

• Click OK.

The item tree for the description of the sample system is now fully specified.

11.3.4 HWC Settings for the ES1303

The task settings on the "Globals" tab have to be specified now.

How to specify the "Globals" settings:

• In the items list, select the ES1303-AD item.

• Select the "Globals" tab.

On the "Globals" tab, the task names Init and Exit are predefined for the
Init Task and Exit Task options. Tasks with these names exist in the
OS Editor of the sample project; therefore, no other tasks need to be selected
here.

For the IRQ Handler Task option, no default name is given. When you use
the hardware trigger (HW Trigger Mode), you can select a task.

The board number in the ID option is set automatically. Since the ES1303-AD
item is the first of its type, the value is set to "ID1".

• If you want to limit the bandwidth of the input
signal, set the Anti-Aliasing Filter
option to On.
Tutorial 307

308
• In the HW Trigger Mode option, select the
edge of the first trigger signal to start the
measurement (e.g., Falling Edge).

• Use the HW Trigger Gate option to deter-
mine whether the second trigger signal is used
(On) or not (Off).

• Double-click in the empty field next to the
IRQ Handler Task option.

The "Task selection" window opens.

• Select the T_Trigger software task.

The table below shows a sample configura-
tion.

Note

For polling mode ("Groups" tab, IRQ=No), the
options HW Trigger Mode and HW Trigger
Gate are irrelevant.

Option Value

Name ES1303ad

Init Task Init

Exit Task Exit

Trigger Task T_Trigger

ID ID1

Anti-Aliasing Filter On

Trigger Mode Falling Edge

Trigger Gate On
Tutorial

• When you have made all necessary settings,
click on the Accept button in the HWC editor
to save the changes.

The "Groups" tab is used to specify the signal group-specific settings.

The ES1303 provides a fixed signal group (input) for each signal. You select the
task assignment, input voltage range and receive mode (interrupt-driven or
polling).

How to specify the "Groups" Settings:

• Select the "Groups" tab.

Perform the following steps for each signal to be used.

1. Select the receive type:

• When you want to receive a signal in inter-
rrupt mode, double-click into the "IRQ" field
of the respective line.

A combo box appears.
Tutorial 309

310
• From the combo box, select Yes.

The modified setting is shown in the "IRQ"
field. At the same time, the "Task" field is
reset and blocked.

• Ifyou want to receive a signal in polling mode,
use the default setting No ofthe "IRQ" col-
umn.

2. Assign a task (only for polling mode):

• In the desired line, double-click into the
"Task" field to open the "Task selection" win-
dow.

• In the task selection list, select the T1ms task.
This task should be used for data transfer.

You can also select more than one task in the
task selection list. For the ES1303, these are
generally the alarm tasks.

• Click OK.

The selected task(s) are shown in the "Task"
column.

3. Select the voltage range:

• To determine the input voltage range of a sig-
nal, double-click into the "IRQ" field of the
respective line.

A combo box appears.
Tutorial

• Select a value for the voltage range from the
combo box.

• The selection is shown in the "Voltage Range"
column.

• When you have made all necessary settings,
click on the Accept button in the HWC editor
to save the changes.

The "Signals" tab contains signal-specific settings. Since the ES1303 card has
no special options here, no actions have to be taken on this tab. You can select
the tab to view the current settings.

The "Mappings" tab is used to specify the mapping between the signals and
ASCET messages. Click the desired cell in the "ASCET Message" column to
open a selection dialog for the located messages of the residual model. The
selection dialog lists only messages featuring the Exported attribute set and
whose transmission direction matches that of the signal group (send or
receive), i.e.:

Direction = receive → Receive-Messages

Direction = send → Send-Messages (irrelevant for ES1303)
Tutorial 311

312
How to specify "Mappings" settings:

• Select the "Mappings" tab.

• In the desired line, double-click on the "ASCET
Message" field to open the "Message selec-
tion" window.
Tutorial

• Use the "Message selection" window to map
the sixteen receive messages one by one to
the corresponding signals.

• In the HWC editor, click the Accept button.

11.3.5 Saving the Hardware Configuration

The created hardware configuration can be saved in the File container of the
project, or as a DOS file (*.HWX extension). The procedure is described in
chapter 11.2.5 on page 295.

11.3.6 Generating Code for the HWC Module

Subsequently, the generating sequence for the HWC module has to be
started.The procedure is described in chapter 11.2.6 on page 296.

Note

The solution of the example is stored under the name of ES1303.hwx.
Make sure that you do not overwrite this file.
Tutorial 313

314
11.3.7 Final Actions

Because all RTIO-specific actions are now finished, you can close the HWC edi-
tor. The next step is to start the regular code generation for the experimental
target from within the project editor.

How to generate code for the experimental target:

• In the project editor, choose Component →
Build to generate code for the entire project.

• Choose Component → View Generated
Code to look at the generated code.

How to experiment online:

• In the project editor, select Online (RP)
from the "Experiment Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment.

• In the Environment Browser, select the Tuto-
rial environment.

• In the "Physical Experiment" window, select
Experiment → Start ERCOS.

• In the "Physical Experiment" window, select
Experiment → Start Measurement.

The analog measured values of the ES1303
are displayed on an ASCET oscilloscope.

Note

It is not recommended to include the HWC module in the graphical display
of the Project Editor, because this module changes with each RTIO genera-
tion process. This would result in an unfavorable representation of the HWC
module.
Tutorial

11.4 Tutorial – ES1325 (without Trigger)

The ES1325 sample project without using the trigger contains models of all
important applications of the board. The models are shown in graphic hierar-
chies to keep the block diagram clear.

Fig. 11-4 ES1325 – Model Overview

Digital I/O: Input channel 3 is read in and transferred to output channel 3.
The signal is inverted by assigning the "active" state to the low level on read-
ing, whereas on sending, the high level is assigned the "active" state (see
"Active State" on page 244).

Fig. 11-5 ES1325 – Digital I/O
Tutorial 315

316
PWM: Channel 4 has a static PWM signal with fixed active and inactive
times. Channel 5 has a dynamic PWM signal whose duty cycle is determined
by a sawtooth signal.

Fig. 11-6 ES1325 – PWM

Additive Time: The PWM output signal of channel 5 is also transmitted by
output channel 6. In this case it is useful for additive time measuring, i.e. the
totaling of the active phases of the signal during task runtime.

Fig. 11-7 ES1325 – Additive Time
Tutorial

Event Counter: Channel 7 counts every rising edge of an event; channel 8
counts every edge of an event. Both channels are controlled by the
P_Ch0708DigOut parameter.

Fig. 11-8 ES1325 – Event Counter

LED: This is where the input signals for LEDs 1 to 3 are set. LED1 is controlled
by a parameter of type log, LED2 via a parameter of type sdisc, and LED3
via a parameter of type cont.

Note

cont and sdisc values can be used to control the LEDs, but we do not
recommend this at all.
In the interests of good modeling/programming style, mapping to a logical
variable, e.g. with case differentiation, is to be preferred.
Tutorial 317

318
LED4 is controlled via the Ch03DigOut message.

Fig. 11-9 ES1325 – PWM

11.4.1 The ES1325 Board

The following figure shows the front panel of the ES1325 Board:

Ports Out-A and OUT-B each contain 8 output channels; ports IN-A and IN-B
each contain 8 input channels. TRG contains 2 trigger inputs. LEDs 1 – 4 are
available for display purposes.

ES1325.1

1

2

3

4

E

R

OUT

B

A

B

A

TRG

IN
Tutorial

Connections

To ensure that the experiment works, make sure you have the right wiring. In
the tutorial you will be using ports Out-A, IN-A and (in chapter 11.5) TRG; the
wiring specified here applies to both tasks on the ES1325.

Fig. 11-10 Wiring of the ES1325

The following table specifies which outputs are connected with which inputs.
Inputs I1 and I2 remain empty.

Output O1 O2 O3 O4 O5 O6 O7 O8

Input I3 I4 I5 I6 I7 I8

Trigger T1 T2

Note

The user has to provide the connecting pieces for the inputs and outputs.

ES1325.1

1

2

3

4

E

R

OUT

B

A

B

A

TRG

IN

O1
O2
O3
O4
O5
O6
O7
O8

I1
I2
I3
I4
I5
I6
I7
I8

T1

T2
Tutorial 319

320
Working with Several ES1325 Boards

Up to 4 ES1325 Boards can be operated in an ES1000.

11.4.2 Sample Project

To open the exercise example:

• Select the ASCET_RP\RTIOTuto-
rial\ES1325 folder from the Component
Manager.

• Select the ES1325_project project.

• Open the project.
Tutorial

• Click the Specify Code Generation
Options button.

The "Settings for: ES1325_project" window
opens.

• In the "Build" tab select the options

Target: >ES1130< or >ES1135<,
Compiler: GNU-C (PowerPC).

11.4.3 Creating the Hardware Configuration

To open the HWC Editor:

• Select RTIO → Open Editor in the Project
Editor.

The HWC Editor opens.

Note

Only messages declared as "Exported" are available for RTIO communica-
tion.

Note

Normally you have to create the C-Code module HWC and link it to the
project before you edit the hardware configuration. This step has already
been taken care of in the tutorial.
Tutorial 321

322
To create the hardware configuration (HWC):

The hardware has to be described as a tree-like structure in the items list. The
HWC item is always available and forms the roots of the tree.

• In the HWC Editor select Edit → Add Item

or

• click the Add Item button.

The "Add Item" window is displayed.

Add Item always opens the list of available
items of the next hierarchy level.
Tutorial

• Select ES113x.

This is used to describe the ES1000.x system
with an integrated ES1130 or ES1135 Pow-
erPC computer node.

• Click OK.

ES113x is added to the "Items" list.

• Select ES113x from the "Items" list.

In the "Globals" tab, the task name Init is
specified for the Init Task option. In the
OS-Editor of the sample project, there is an init
task with the same name which means that
no other init task has to be selected here.
Tutorial 323

324
To link and set up the ES1325:

• Open the list of available items of the next
hierarchy level using Edit → Add Item.

• Select ES1325-DIO.

This is used to describe the ES1325 interfaces.

• Click OK.

ES1325-DIO is added to the "Items" list.
Tutorial

• Select ES1325-DIO from the "Items" list.

In the "Globals" tab, the task names Init
and Exit are specified for the options Init
Task and Exit Task. In the OS-Editor of
the sample project, there are init tasks with
the same name which means that no other
tasks have to be selected here.

The board number is automatically set in the
ID option. As the ES1325-DIO item is the
first of this type, "ID1" is set.

• Accept the settings using Accept.

To create devices:

• Select ES1325-DIO from the "Items" list.

• Open the list of available items of the next
hierarchy level using Edit → Add Item.

• Select ES1325-Input and click OK.

This is used to describe the input channels of
the ES1325.

• Also add the devices ES1325-Output and
ES1325-LED.

ES1325-Output is used to describe the out-
put channels of the ES1325 and ES1325-
LED to describe the LEDs.

For this example, use the default settings in
the "Globals" tab for all three devices.
Tutorial 325

326
The item tree for the description of the sample system is now completely spec-
ified.

11.4.4 Making HWC Settings for the ES1325

The inputs and outputs as well as the LEDs now have to be configured. The
outputs provide the signals which the inputs receive. The LEDs are used for
display purposes.

"Globals" Tab: You do not have to make any settings for any of the three
devices in the "Globals" tab.

Outputs – ES1325-Output Device

"Groups" Tab: The signal-group-specific settings are made in the "Groups"
tab.

The ES1325-Output device has a specified signal group for every output
signal (Ch<n>Gen, <n> = 01 – 16). Here, you set the mode, task assignment,
the generated signals as well as the levels and edges for each group used.
Tutorial

To make settings in the "Groups" tab:

• Select the "Groups" tab.

Execute the following steps for signal groups 3 to 8.

1. Selecting the channel mode

• Select the following modes for the different
groups in the "Channel Mode" column:

The default value for the relevant mode is
entered in the "Active State" column.
In the "Task" column, you can now assign a
task to the groups used in which signal trans-
fer is to take place.

Group Channel Mode

Ch03Gen, Ch07Gen,
Ch08Gen

Digital Output

Ch04Gen, Ch05Gen,
Ch06Gen

PWM Periodic Output
Tutorial 327

328
2. Assigning a task

• Double-click the "Task" column in the relevant
row to open the "Task selection" dropdown
list.

• Select the following tasks for data transfer in
the task selection list.

• Click OK.

The selected tasks are displayed in the "Task"
column.

Group Task

Ch03Gen, Ch04Gen T_100ms

Ch05Gen, Ch06Gen,
Ch07Gen, Ch08Gen

T_10ms
Tutorial

3. Selecting signals

• Double-click the "Signals" column in the rele-
vant row to open the "Signal Selection" win-
dow.

For a description of the signals, please refer to
the section "Signals" on page 249.

• Select the following signals.

• Confirm your selection with OK.

4. Selecting levels

As all groups use the default setting High,
you do not have to make any changes to the
"Active State" column.

• Once you have made all the necessary set-
tings, click Accept in the HWC Editor to save
the settings.

Group Signals

Ch03Gen, Ch07Gen,
Ch08Gen

Accept default setting

Ch04Gen Active Time [µs],
Inactive Time [µs]

Ch05Gen, Ch06Gen Frequency [Hz],
Duty Cycle [%]
Tutorial 329

330
Once you have set up the signal groups, the tab should look as follows:

"Signals" tab: The signals you generated in the "Groups" tab are contained
in this tab.

You can edit the names and formulae of the signals in this tab. No changes are
necessary, however, for the sample project.

"Mappings" Tab: The signals and the ASCET messages from the project are
assigned to each other in this tab. A selection dialog opens when you click the
required cell in the "ASCET Message" column. This only contains messages
which have the attribute Exported and correspond to the transfer direction of
the signal group (here: send); i.e.:
Tutorial

• Direction = send → send messages

To assign an ASCET message manually:

• Select the "Mappings" tab.

• Double-click the "ASCET Message" column in
the relevant row.

The "Message selection" window opens.

It contains all send messages from the ASCET
project.
Tutorial 331

332
• Select the following ASCET messages for the
signals.

No message is assigned to the signals
Ch04GenActiveTime and
Ch04GenInactiveTime; instead a fixed
value is assigned manually.

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

To enter a value manually:

If no ASCET message has been assigned to a signal, you can enter a fixed value
in the "Data" column.

• Double-click the "Data" column in the rele-
vant row.

The field becomes the input box.

• Enter the following values.

Signal ASCET Message

Ch03GenState Ch03DigOut

Ch05GenFrequency, Ch06GenFrequency Ch05PWMfrequencyOut

Ch05GenDutyCycle, Ch06GenDutyCycle Ch05PWMdutycycleOut

Ch07GenState Ch07DigOut

Ch08GenState Ch08DigOut

Signal Data

Ch04GenActiveTime 100.0

Ch04GenInactiveTime 50.0
Tutorial

Once you have assigned messages or values to all signals, the tab should look
as follows:

Inputs – ES1325-Input Device

"Groups" Tab: The signal-group-specific settings are made in the "Groups"
tab.

The ES1325-Input device has a specified signal group for every input signal
(Ch<n>Msr, <n> = 01 – 16). Here, you set the mode, task assignment, the
generated signals as well as the levels and edges for each group used.

To make settings in the "Groups" tab:

• Select the "Groups" tab.

Execute the following steps for signal groups 3 to 8.
Tutorial 333

334
1. Selecting the channel mode

• Double-click the "Channel Mode" column in
the relevant row.

A dropdown list opens.

• Select the following modes for the different
groups:

The default values for the relevant modes are
entered in the columns "Active State", "Sig-
nificant Edge", "Hysteresis", "Low Thresh.
[V]" and "High Thresh. [V]".
In the "Task" column, you can now assign a
task to the groups used in which signal trans-
fer is to take place.

2. Assigning a task

• Double-click the "Task" column in the relevant
row to open the "Task selection" dropdown
list.

Group Channel Mode

Ch03Msr Digital Input

Ch04Msr, Ch05Msr PWM Input

Ch06Msr Additive Time

Ch07Msr, Ch08Msr Event Counter
Tutorial

• Select the following tasks in which data trans-
fer is to take place from the task selection list.

• Click OK.

The selected tasks are displayed in the "Task"
column.

3. Selecting signals

• Double-click the "Signals" column in the rele-
vant row to open the "Signal Selection" win-
dow.

In this window, you specify which signals are
generated for the group. For a description of
the signals, please refer to the section "Sig-
nals" on page 242.

Group Task

Ch03Msr, Ch04Msr T_100ms

Ch05Msr, Ch06Msr,
Ch07Msr, Ch08Msr

T_10ms
Tutorial 335

336
• Select the following signals.

• Confirm your selection with OK.

4. Selecting levels

• Double-click the "Active State" column in the
relevant row (see page 244) to assign the
active state to a level of the input signal.

A dropdown list opens.

• Select the following states.

The selection is displayed in the "Active State"
field.

5. Selecting an edge (only PWM Input and Event Counter modes)

• Double-click the "Significant Edge" column in
the relevant row (see page 244) to assign an
event to an edge.

A dropdown list opens.

• Select the following options.

The selection is displayed in the "Significant
Edge" field.

Group Signals

Ch04Msr Duty Cycle [%]

Ch05Msr Active Time [µs],
Inactive Time [µs]

Ch03Msr, Ch06Msr,
Ch07Msr, Ch08Msr

Accept default setting

Group Active State

Ch03Msr Low

Ch04Msr – Ch08Msr High

Group Significant Edge

Ch04Msr, Ch05Msr,
Ch07Msr

Inactive-
Active

Ch08Msr Both
Tutorial

• Once you have made all the necessary set-
tings, click Accept in the HWC Editor to save
the settings.

Once you have set up the signal groups, the tab should look as follows:

"Signals" Tab: The signals you generated in the "Groups" tab are contained
in this tab.

You can edit the names and formulae of the signals in this tab. No changes are
necessary, however, for the sample project.

"Mappings" Tab: The signals and the ASCET messages from the project are
assigned to each other in this tab. A selection dialog opens when you click the
required cell in the "ASCET Message" column. This only contains messages
which have the attribute Exported and correspond to the transfer direction of
the signal group (here: receive); i.e.:
Tutorial 337

338
• Direction = receive → receive messages

To assign an ASCET message manually:

• Select the "Mappings" tab.

• Double-click the "ASCET Message" column in
the relevant row.

The "Message selection" window opens.

It contains all receive messages from the
ASCET project.
Tutorial

• Select the following ASCET messages for the
signals.

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

Once you have assigned messages to all signals, the tab should look as follows:

LEDs – ES1325-LED Device

"Groups" Tab: The signal-group-specific settings are made in the "Groups"
tab.

The ES1325-LED device has a specified signal group (GroupLED). This is
where you set the task assignment for this group.

Signal ASCET Message

Ch03MsrState Ch03DigIn

Ch04MsrDutyCycle Ch04PWMdutycycleIn

Ch05MsrActiveTime Ch05PWMActiveTimeIn

Ch05MsrInactiveTime Ch05PWMInactiveTimeIn

Ch06MsrAdditiveActiveTime Ch06AddActiveTimeIn

Ch07MsrCounterValue Ch07Counter

Ch08MsrCounterValue Ch08Counter
Tutorial 339

340
To make settings in the "Groups" tab:

• Select the "Groups" tab.

• Double-click the "Task" column in the relevant
row to open the "Task selection" dropdown
list.

• Select the T_1ms (Alarm).task from the
task selection list.

• Click OK.

The task is displayed in the "Task" column.

• Click Accept in the HWC Editor to save the
settings.

The tab should now look as follows:
Tutorial

"Signals" Tab: This tab contains the signals which belong to the signal
group GroupLED. There is one signal for each LED on the board.

You can edit the names and formulae of the signals in this tab. No changes are
necessary, however, for the sample project.

"Mappings" Tab: The signals and the ASCET messages from the project are
assigned to each other in this tab. A selection dialog opens when you click the
required cell in the "ASCET Message" column. This only contains messages
which have the attribute Exported and correspond to the transfer direction of
the signal group (here: send); i.e.:

• Direction = send → send messages

To assign an ASCET message manually:

• Select the "Mappings" tab.
Tutorial 341

342
• Double-click the "ASCET Message" column in
the relevant row.

The "Message selection" window opens.

It contains all send messages from the ASCET
project.

• Select the following ASCET messages for the
signals.

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

The tab should now look as follows:

Signal ASCET Message

LED1 LED1_bool

LED2 LED2_disc

LED3 LED3_cont

LED4 Ch03DigOut
Tutorial

11.4.5 Saving the Hardware Configuration

The created hardware configuration can be saved in the file container of the
project or as a DOS file (extension *.HWX). How this is done is explained in
section 11.2.5 on page 295.

11.4.6 Creating Code for the HWC Module

The generation sequence for the HWC module then has to be started. How
this is done is explained in section 11.2.6 on page 296.

11.4.7 Experimenting with the Sample Project

All RTIO-specific actions have now been completed; this means that the HWC
Editor can be closed. A further subsequent step is the normal code generation
for the experimental target which is started from the Project Editor.

Code generation for the experimental target:

• In the Project Editor, select Component →
Build to generate code for the entire project.

• Select Component → View Generated
Code to view the generated code.

To experiment online:

• Connect the inputs and outputs of the
ES1325 in accordance with the section "Con-
nections" on page 319, if this has not already
taken place, and switch on the power supply
of the ES1000.x.

Note

The solution of the example is saved as ES1325.hwx. Make sure you do not
overwrite this file.

Note

We would recommend that you do not include the HWC module in the
graphic representation of the project editor as this module is modified in
every RTIO generation process. This leads to an unfavorable graphic repre-
sentation of the HWC module.
Tutorial 343

344
• In the project editor, select Online (RP)
from the "Experiment Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment.

The "Physical Experiment" window and the
predefined experiment environment consist-
ing of five oscilloscopes, a numeric display and
four calibration windows open.

• Select Experiment → Start ERCOS in the
"Physical Experiment" window

or
Tutorial

• click the Start ERCOS button.

The operating system is launched; the model
is run.

• Select Experiment → Start Measurement
in the "Physical Experiment" window

or

• click the Start Measurement button.

The values of the ASCET messages are dis-
played in the oscilloscopes and in the numeri-
cal display.

The displays and calibration possibilities of the individual model blocks are
described below.

Digital I/O: The "Channel 3: Digital I/O" oscilloscope shows the messages
Ch03DigIn and Ch03DigOut.

PWM: The "Channel 4: PWM mode static" oscilloscope shows the
DutycycleStaticCh04 variable which records the duty cycle of the PWM
signal. As active and inactive time are both specified as fixed values, the value
of the variables is constant.
Tutorial 345

346
The "Channel 5: PWM mode" oscilloscope shows the input messages
Ch05PWMActiveTimeIn (red curve) and Ch05PWMInactiveTimeIn (vio-
let curve) which contain the active and inactive time of the PWM signal. The
output messages Ch05PWMdutycycleOut (green curve) and
Ch05PWMfrequencyOut (yellow curve) are displayed which contain the fre-
quency (in Hz) and duty cycle (in %) of the PWM signal. When the experiment
is started, the Y-axis of Ch05PWMActiveTimeIn is displayed.

If you modify the P_Ch05Frequency parameter at the bottom of the "Chan-
nel 5: PWM mode Control" calibration window, the frequency changes and
thus the active and inactive time. The duty cycle remains the same.

If you modify the parameter P_Ch05DutyCount at the top of the "Channel
5: PWM mode Control" calibration window, the course of the duty cycle
changes and thus the active and inactive time. The frequency remains the
same.
Tutorial

At point 1 in the following diagram, a frequency of 1000 Hz was set to
2000 Hz so tha t the cu rves fo r Ch05PWMActiveTimeIn ,
Ch05PWMInactiveTimeIn and Ch05PWMfrequencyOut show disconti-
nu i t y. P_Ch05DutyCount was not changed ; the cu rve fo r
Ch05PWMdutycycleOut retains its slope.

At point 2, the P_Ch05DutyCount parameter was set from 0.1 to 0.5 so
that the curves for Ch05PWMdutycycleOut, Ch05PWMActiveTimeIn and
Ch05PWMInactiveTimeIn break off. The frequency remains unchanged at
this point.

1 2
Tutorial 347

348
Additive Time: The "Channel 6: Additive Time mode" oscilloscope shows
the AdditiveActiveTimeChn06 variable which accepts the additive active
time of the signal.

You can inf luence the slope of the sawtooth by modifying the
P_Ch05DutyCount parameter at the top of the "Channel 5: PWM mode
Control" calibration window. A value of 0.1 was set for the first part of the
curve shown and for the second a value of 0.01.

The AdditiveActiveTimeChn06 signal is independent of the frequency
set as the additive active time remains unaffected by it during task runtime.
Tutorial

Event Counter: The "Channel 7/8: Additive Time mode" oscilloscope
shows the variables CounterCh07 (lower curve) and CounterCh08 (upper
curve) which accept the additive active time of the signal.

You can add an increment to both variables by setting the P_Ch0708DigOut
parameter in the "Channel 7/8: Event Counter mode Control" calibration win-
dow alternately to true and false.

CounterCh07 grows half as quickly as CounterCh08 because channel 8
counts every change whereas channel 7 only counts changes from false to
true.

LED: In the "LED1" and "LED2/3" windows, you control the LEDs on the
front panel of the ES1325 via the parameters P_LED1, P_LED2 and P_LED3.
Tutorial 349

350
LED1 lights up when P_LED1 is true, LED2 lights up when P_LED2 is not
equal to 0, and LED3 lights up when the value of P_LED3 is not equal to 0
after the decimal places are cut off.

11.5 Tutorial – ES1325 (with Trigger)

The ES1325 sample project using the trigger contains a model with a dynamic
PWM signal (PWM block, see Fig. 11-12), whose duty cycle is determined by a
sawtooth signal.

Fig. 11-11 ES1325 (with Trigger) – Model
Tutorial

Fig. 11-12 ES1325 (with Trigger) – PWM

The output s igna l s (Chn04PWMfrequencyOut and
Chn04PWMdutycycleOut messages) are sent continuously but the reading
of the input s igna l s (Chn04PWMActiveTimeIn and
Chn04PWMInactiveTimeIn messages) is controlled by a hardware trigger.
This can either be triggered manually or automatically (P_TriggerManual
parameter).

With automatic triggering, the first trigger signal ES1325_Trigger in the
Trigger block (Fig. 11-13) is calculated; with manual triggering the trigger
signal is determined via the P_Trigger parameter.

The second trigger signal ES1325_TriggerGate is always determined via
the P_TriggerGate parameter.

Fig. 11-13 ES1325 – Trigger
Tutorial 351

352
11.5.1 The ES1325 Board

For details on the board and the necessary wiring please refer to section 11.4.1
”The ES1325 Board” on page 318.

11.5.2 Sample Project

To open the exercise example:

• Select the ASCET_RP\RTIOTuto-
rial\ES1325_triggered folder from the
Component Manager.

• Select the ES1325_triggered_project
project.

• Open the project.
Tutorial

• Click the Specify Code Generation
Options button.

The "Settings for: ES1325_triggered_project"
opens.

• In the "Build" tab select the options

Target: >ES1130< or >ES1135<,
Compiler: GNU-C (PowerPC).

11.5.3 Creating the Hardware Configuration

To open the HWC Editor:

• Select RTIO → Open Editor in the Project
Editor.

The HWC Editor opens.

Note

Only messages declared as "Exported" are available for RTIO communica-
tion.

Note

Normally you have to create the C-Code module HWC and link it to the
project before you edit the hardware configuration. This step has already
been taken care of in the tutorial.
Tutorial 353

354
To create the hardware configuration (HWC):

The hardware has to be described as a tree-like structure in the items list. The
HWC item is always available and forms the roots of the tree.

• In the HWC Editor select Edit → Add Item

or

• click the Add Item button.

The "Add Item" window is displayed.

Add Item always opens the list of available
items of the next hierarchy level.
Tutorial

• Select ES113x.

This is used to describe the ES1000.x system
with an integrated ES1130 or ES1135 Pow-
erPC computer node.

• Click OK.

ES113x is added to the "Items" list.

• Select ES113x from the "Items" list.

In the "Globals" tab, the task name Init is
specified for the Init Task option. In the
OS-Editor of the sample project, there is an init
task with the same name which means that
no other init task has to be selected here.
Tutorial 355

356
To link and set up the ES1325:

• Open the list of available items of the next
hierarchy level using Edit → Add Item.

• Select ES1325-DIO.

This is used to describe the ES1325 interfaces.

• Click OK.

ES1325-DIO is added to the "Items" list.

• Select ES1325-DIO from the "Items" list.
Tutorial

For the options Init Task and Exit Task the specified task names Init
and Exit can be used as in section "To link and set up the ES1325:"
on page 324. The board number is automatically set in the ID option. As the
ES1325-DIO item is the first of this type, "ID1" is set. You still have to make
the settings for the hardware trigger.

• Double-click the "Value" column in the "HW
Trigger Mode" row (see page 233).

A dropdown list opens.

• Select Rising edge.

• Double-click the "Value" column in the "HW
Trigger Gate" row (see page 235).

A dropdown list opens.

• Select On.

The type of hardware trigger used is now
determined.

• Accept the settings using Accept.

The tab should now look as follows:

To create devices:

• Select ES1325-DIO from the "Items" list.

• Open the list of items of the next hierarchy
level using Edit → Add Item.
Tutorial 357

358
• Select ES1325-Output and click OK.

This is used to describe the ES1325 output
channels.

• Add the ES1325-Input device.

ES1325-Input is used to describe the input
channels of the ES1325.

The item tree for the description of the sample system is now completely spec-
ified.

11.5.4 Making HWC Settings for the ES1325

The inputs and outputs now have to be configured. The outputs provide the
signals which the inputs receive.

Outputs – ES1325-Output Device

"Globals" Tab: You do not have to make any settings in the "Globals" tab.

"Groups" Tab: The signal-group-specific settings are made in the "Groups"
tab.

The ES1325-Output device has a specified signal group for every output
signal (Ch<n>Gen, <n> = 01 – 16). Here, you set the mode, task assignment,
the generated signals as well as the levels and edges for each group used.
Tutorial

To make settings in the "Groups" tab:

• Select the "Groups" tab.

Execute the following steps for signal groups 1, 2 and 4.

1. Selecting the channel mode

• Select the following modes for the different
groups in the "Channel Mode" column:

The default value for the relevant mode is
entered in the "Active State" column.
In the "Task" column, you can now assign a
task to the groups used in which signal trans-
fer is to take place.

Group Channel Mode

Ch01Gen, Ch02Gen Digital Output

Ch04Gen PWM Periodic Output
Tutorial 359

360
2. Assigning a task

• Double-click the "Task" column in the relevant
row to open the "Task selection" dropdown
list.

• Select the following tasks in which data trans-
fer is to take place from the task selection list.

• Click OK.

The selected tasks are displayed in the "Task"
column.

Group Task

Ch01Gen, Ch01Gen T_1ms

Ch04Gen T_10ms
Tutorial

3. Selecting signals

• Double-click the "Signals" column in the rele-
vant row to open the "Signal Selection" win-
dow.

For a description of the signals, please refer to
the section "Signals" on page 249.

• Select the following signals.

• Confirm your selection with OK.

4. Selecting levels

As all groups use the default setting High,
you do not have to make any changes to the
"Active State" column.

• Once you have made all the necessary set-
tings, click Accept in the HWC Editor to save
the settings.

Group Signals

Ch01Gen, Ch02Gen Accept default setting

Ch04Gen Frequency [Hz],
Duty Cycle [%]
Tutorial 361

362
Once you have set up the signal groups, the tab should look as follows:

"Signals" Tab: The signals you generated in the "Groups" tab are contained
in this tab.

You can edit the names and formulae of the signals in this tab. No changes are
necessary, however, for the sample project.

"Mappings" Tab: The signals and the ASCET messages from the project are
assigned to each other in this tab. A selection dialog opens when you click the
required cell in the "ASCET Message" column. This only contains messages
which have the attribute Exported and correspond to the transfer direction of
the signal group (here: send); i.e.:
Tutorial

• Direction = send → send messages

To assign an ASCET message manually:

• Select the "Mappings" tab.

• Double-click the "ASCET Message" column in
the relevant row.

The "Message selection" window opens.

It contains all send messages from the ASCET
project.

• Select the following ASCET messages for the
signals.

Signal ASCET Message

Ch01GenState ES1325_Trigger
Tutorial 363

364

t

t

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

Once you have assigned messages or values to all signals, the tab should look
as follows:

Inputs – ES1325-Input Device

"Globals" Tab: The settings for the device are made in the "Globals" tab.

To make settings in the "Globals" tab:

• Select the "Globals" tab.

Ch02GenState ES1325_TriggerGate

Ch04GenFrequency Chn04PWMfrequencyOu

Ch04GenDutyCycle Chn04PWMdutycycleOu

Signal ASCET Message
Tutorial

• Double-click the empty box next to the option
IRQ Handler Task.

The "Task selection" window opens.

• Select the software task SW1.

You can use the default settings for the other
options.

• Accept the change using Accept.

The tab should now look as follows:

"Groups" Tab: The signal-group-specific settings are made in the "Groups"
tab.

The ES1325-Input device has a specified signal group for every input signal
(Ch<n>Msr, <n> = 01 – 16). Here, you set the mode, task assignment, the
generated signals as well as the levels and edges for each group used.
Tutorial 365

366
To make settings in the "Groups" tab:

• Select the "Groups" tab.

Execute the following steps for signal group 4.

1. Selecting the channel mode

• Double-click the "Channel Mode" column in
row 4.

A dropdown list opens.

• Select the PWM Input mode for the
Ch04Msr group.

The default values for this mode are entered in
the other columns.

2. Setting the use of the hardware trigger

• Double-click the "Use HW Trigger" column in
row 4.

A dropdown list opens.

• Select Yes.

• Double-click the "IRQ" column in row 4.

A dropdown list opens.

• Select Yes.

The modified selection is displayed in the
"IRQ" field. At the same time, the "Task" field
is reset and locked.
Tutorial

3. Selecting signals

• Double-click the "Signals" column in row 4 to
open the "Signal Selection" window.

In this window, you specify which signals are
generated for the group. For a description of
the signals, please refer to the section "Sig-
nals" on page 242.

• Select the signals Active Time [µs] and
Inactive Time [µs].

No further settings are necessary as you use
default values in the columns "Active State"
and "Significant Edge".

• Once you have made all the necessary set-
tings, click Accept in the HWC Editor to save
the settings.

The tab should now look as follows:
Tutorial 367

368
"Signals" Tab: The signals you generated in the "Groups" tab are contained
in this tab.

You can edit the names and formulae of the signals in this tab. No changes are
necessary, however, for the sample project.

"Mappings" Tab: The signals and the ASCET messages from the project are
assigned to each other in this tab. A selection dialog opens when you click the
required cell in the "ASCET Message" column. This only contains messages
which have the attribute Exported and correspond to the transfer direction of
the signal group (here: receive); i.e.:

• Direction = receive → receive messages

To assign an ASCET message manually:

• Select the "Mappings" tab.
Tutorial

• Double-click the "ASCET Message" column in
the relevant row.

The "Message selection" window opens.

It contains all receive messages from the
ASCET project.

• Select the following ASCET messages for the
signals.

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

Once you have assigned messages to all signals, the tab should look as follows:

• Click OK.

• Then click Accept in the HWC Editor to save
the settings.

Signal ASCET Message

Ch04MsrActiveTime Chn04PWMActiveTimeIn

Ch04MsrInactiveTime Chn04PWMInactiveTimeIn
Tutorial 369

370
11.5.5 Saving the Hardware Configuration

The created hardware configuration can be saved in the file container of the
project or as a DOS file (extension *.HWX). How this is done is explained in
section 11.2.5 on page 295.

11.5.6 Creating Code for the HWC Module

The generation sequence for the HWC module then has to be started. How
this is done is explained in section 11.2.6 on page 296.

11.5.7 Experimenting with the Sample Project

All RTIO-specific actions have now been completed; this means that the HWC
Editor can be closed. A further subsequent step is the normal code generation
for the experimental target which is started from the Project Editor.

Code generation for the experimental target:

• In the project editor, select Component →
Build to generate code for the entire project.

• Select Component → View Generated
Code to view the generated code.

To experiment online:

• Connect the inputs and outputs of the
ES1325 in accordance with the section "Con-
nections" on page 319, if this has not already
taken place, and switch on the power supply
of the ES1000.x.

Note

The solution of the example is saved as ES1325.hwx. Make sure you do not
overwrite this file.

Note

We would recommend that you do not include the HWC module in the
graphic representation of the ProjectEditor as this module is modified in
every RTIO generation process. This leads to an unfavorable graphic repre-
sentation of the HWC module.
Tutorial

• Select Online (RP) from the "Experiment
Target" combo box.

Offline (RP) is intended for offline exper-
iments on the Target.

• Select Component → Open Experiment.

The "Physical Experiment" window and the
predefined experiment environment consist-
ing of one oscilloscope, a numeric display and
three calibration windows open.

The default setting assumes automatic calculation of the first trigger signal and
a constant second trigger signal (parameter P_TriggerManual is false,
parameter P_TriggerGate is true).
Tutorial 371

372
The "PWM mode (triggered)" oscilloscope shows the output message
Chn04PWMdutycycleOut (yellow curve) and the input message
Chn04PWMActiveTimeIn (green curve) as well as the ES1325_Trigger
message, containing the first trigger signal, in the lower section.

When you start measuring with the defined values, you have two curves offset
by one step.

If you increase the value of the P_TriggerPeriod parameter in the "Trigger
Control 2" calibration window, the time between two rising edges increases.
Chn04PWMActiveTimeIn is thus read in correspondingly less frequently.
Tutorial

At the point marked in the following diagram, the P_TriggerPeriod
parameter was set from 0 ms to 250 ms. The trigger signal at the bottom of
the display area of the oscilloscope only delivers a rising edge every 250 ms;
the Chn04PWMdutycycleOutIn message is read in accordingly rarely and
the relevant curve has large steps.

If you modify the parameter P_Frequency in the "PWM Control" calibra-
tion window, the frequency changes and hence the active and inactive time.
The duty cycle remains the same.
Tutorial 373

374
At the point marked in the following diagram, the frequency was set from
1000 Hz to 1500 Hz. The curve for Chn04PWMdutycycleOut remains
unchanged but the curve for Chn04PWMActiveTimeIn now has a lower
maximum.

For this figure, the range of the x-axis in the "Extent" field of the "Display
setup" window (to be reached from the oscilloscope using Extras → Setup)
was set to 5 seconds.

You can change the trigger control in the "Trigger Control 1" calibration win-
dow.
Tutorial

If, for example, you set the P_TriggerGate parameter to false,
Chn04PWMActiveTimeIn is no longer read in as the second trigger signal is
false . The cu rve rema ins a t the l a s t va lue . The cu rve fo r
Chn04PWMdutycycleOut again remains unchanged.

For this figure, the range of the x-axis was set to 10 seconds, and the variable
P_TriggerGate was added to the oscilloscope.

Set P_TriggerGate back to true to cont inue measur ing
Chn04PWMActiveTimeIn.

If you set the P_TriggerManual parameter in the "Trigger Control 1" win-
dow to true, activate the manual control of the first trigger signal. Each time
you change the P_Trigger parameter from false to true, a trigger signal
is generated and the Chn04PWMActiveTimeIn message read in.
Tutorial 375

376
Manual triggering was activated in the following diagram at point 1. The
course of the ES1325_Trigger signal shows how P_Trigger has been
changed. Chn04PWMActiveTimeIn was read in with every rising edge of
the trigger signal.

For this figure, the range of the x-axis in the "Extent" field of the "Display
setup" window (to be reached from the oscilloscope using Extras → Setup)
was set to 10 seconds.

1

Tutorial

12 ETAS Network Manager

This chapter describes the configuration of the ETAS network via the ETAS Net-
work Manager, as well as the respective network topology.

12.1 Overview

ASCET-RP supports different configurations for hardware access via Ethernet:

• Using multiple network adapters:

– one network adapter for the company network,

– one network adapter for the ETAS hardware.

• Using one network adapter:

– automatic toggling between the company network and the ETAS
hardware.

The ETAS Network Manager supports you in selecting the network adapter for
the ETAS hardware.

The ETAS Network Manager gives you an overview of the network adapters
available for your PC and the type of IP address assignment. If more than one
network adapter is available in the system, you can select the network adapter
to use for connecting the ETAS hardware to your PC. You can also specify the
address range for the IP assignment for the ETAS hardware.

You do not need administrator rights to select the network adapter and the
network environment configuration for the ETAS hardware. You can toggle
between the ETAS network and the company network without rebooting your
PC.

Note

With ASCET-RP V5.4, you no longer need a separate network adapter to
connect the ETAS hardware to your PC. You can use the same network
adapter both for the company network and the ETAS network.

Note

With Network Manager, you cannot create or modify the configuration for
the network adapter. This requires administrator rights (see the documenta-
tion for your operating system).
ETAS Network Manager 377

378
12.2 ETAS Hardware Addressing

The ETAS network allows you to connect several devices (including those that
are the same type) to your PC. The connected devices are identified in the local
ETAS network by their unique IP address.

An IP manager integrated in ASCET-RP draws from an address pool to assign
the IP address to the connected devices.

The address range for the address pool is specified using the ETAS Network
Manager.

12.3 Network Adapter Addressing

12.3.1 Type of Network Adapter Addressing

The type of network adapter addressing done within the company network
depends on the operating system being used and the network adapter config-
uration:

The ETAS network supports the following types of network adapter address-
ing:

If you wish to use the network adapters both for the company network and
the ETAS network, you cannot use the network adapters that exclusively sup-
port DHCP addressing for this dual operation (exception: Windows NT). DHCP
can be used only in combination with APIPA or an alternative IP address.

Operating System Type of Network Adapter Addressing

Manual DHCP DHCP+APIPA DHCP+
alternative IP address

Windows NT yes yes no no

Windows 98 SE yes yes yes no

Windows 2000 yes yes yes no

Windows XP yes yes yes yes

Operating System Type of Network Adapter Addressing

Manual DHCP DHCP+APIPA DHCP+
alternative IP address

Windows NT yes yes no no

Windows 98 SE yes no yes no

Windows 2000 yes no yes no

Windows XP yes no yes yes
ETAS Network Manager

12.3.2 Addressing the Network Adapter Manually

Addressing a network adapter depends on the operating system.

For instructions on addressing your PC’s network adapter, see the documenta-
tion for your operating system.

To address the network adapter manually, you need administrator rights.
Please contact your system administrator, if necessary.

If the network adapter is addressed manually, i.e., it has a static IP address, it
may happen that you accidentally end up searching for or initialize ETAS hard-
ware, although the PC is connected to the company network. The Network
Manager allows you to stipulate that if this happens, you are to receive a warn-
ing before an IP address is assigned to an ETAS hardware.

12.3.3 Addressing the Network Adapter via DHCP

Addressing via DHCP requires that the DHCP server be available. Should the
DHCP server not be available, or if is there no DHCP server (as in the ETAS
network), the network adapter has not been configured.

In this instance, each operating system (except Windows NT) has an automatic
feature that automatically assigns the network adapter an IP address:

Windows 98 SE

Windows 98 SE automatically uses the DHCP address in the company network
and the APIPA address in the ETAS network. If the DHCP network was used to
boot the PC, the APIPA reconfiguration is kicked off when the ETAS software
(e.g., ASCET-RP) is started. This takes at least 60 seconds. If the PC is recon-
nected to the DHCP network after using the ETAS software, the network
adapter is reconfigured to a DHCP address. This reconfiguration may only take
5 minutes. To shorten this time, the user has the option of executing the recon-
figuration manually using the ipconfig /renew command in an MS-DOS
command window.

Addressing a network adapter via DHCP without an APIPA address is not sup-
ported.

Windows 2000

Windows 2000 automatically checks whether there is a connection to the
DHCP server. If there is none, it automatically assigns the IP address via APIPA.
In the ETAS network, the APIPA address is always used. When toggling
between the DHCP network and ETAS hardware, make sure that the operating
system is able to detect a connection failure because only then will reconfigu-
ration be initiated. This may take up to 10 seconds. It takes the operating sys-
tem 60 seconds to entirely reconfigure from a DHCP address to an APIPA
ETAS Network Manager 379

380
address. If the network adapter is once again connected to the DHCP network,
configuring to a DHCP address takes place right after the connection has been
detected.

Addressing a network adapter via DHCP without an APIPA address is not sup-
ported.

Windows XP

Windows XP automatically checks whether there is a connection to the DHCP
server. If there is none, it either assigns the IP address automatically via APIPA,
or it uses the user-specified alternative IP address. The ETAS network always
uses either the APIPA address or the alternative IP address. When toggling
between the DHCP network and ETAS hardware, make sure that the operating
system is able to detect a connection failure because only then will reconfigu-
ration be initiated. This may take up to 10 seconds. It takes the operating
system 60 seconds to entirely reconfigure from a DHCP address to an APIPA
address or to the alternative address. If the network adapter is once again con-
nected to the DHCP network, configuring to a DHCP address takes place right
after the connection has been detected.

Addressing a network adapter via DHCP without alternative addressing is not
supported.

Windows NT

In Windows NT, the DHCP address is assigned for a certain time, the so-called
lease time. The network adapter is no longer configured after this period of
time has elapsed. The Network Manager allows you to extend this lease time
so you can use the network adapter’s IP address even if you have been "idle"
in the company network for an extended period of time. The lease time is kick
started only after the ETAS software (e.g., ASCET-RP) has accessed the hard-
ware for the first time. Increasing the lease time takes approximately 20 sec-
onds. When exiting the ETAS software, the lease time is reset to the original
value.

Note

Changing the lease time makes sense only when you are not working in the
DHCP network for a longer period of time (longer than the existing lease
time). To exclude IP address conflicts, the PC should not be connected to the
DHCP network for 20 seconds after leaving the ETAS software.
ETAS Network Manager

12.4 User Interface

12.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window

The following information on the available network adapters is displayed:

• Name

Name of the network adapter. This entry cannot be edited in this win-
dow.

• IP-Address

IP address of the network adapter. This entry cannot be edited in this
window.

• Subnet Mask

Setting for the subnet mask. This entry cannot be edited in this win-
dow.

• DHCP

Shows whether the network adapter is configured for DHCP:

– Enabled

The network adapter is configured for DHCP.

– Disabled

The network adapter is configured with a fixed IP address.

• Alternate IP Configuration

Shows the alternative IP address of the network adapter if it is config-
ured for DHCP. This indication depends on the operating system being
used.
ETAS Network Manager 381

382
– APIPA

Automatic Private IP Addressing: method for automating the IP
configuration for network connections

– ---

An alternative IP address does not exist or its use is not supported
by the operating system (Windows NT).

– User Defined

The user can define a user-specific alternative IP address
(Windows XP).

12.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window

In general, all values can be modified by directly typing them in the corre-
sponding field, or by selecting the default setting from a list box.

The following network parameters can be set:

• Start Address:

The first IP address in the IP address range for the ETAS hardware.

• End Address:

The last IP address in the IP address range for the ETAS hardware.

• Subnet Mask:

Associated Subnet Mask.
ETAS Network Manager

Reserved IP Addresses

The following IP addresses are reserved for certain ETAS hardware in the
IP address range that the ETAS hardware (192.168.40.1 – 192.168.40.254
with Subnet Mask 255.255.255.0) is currently using:

These addresses are assigned exclusively to these devices and thus may not be
used for other ETAS hardware. This has to be taken into consideration when
defining the address pool.

12.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window

This dialog window appears only if the selected network adapter is addressed
manually.

The following parameters can be set:

• Display warning before IP address assignment is
executed

Use this check box to specify that a warning be displayed before an IP
address is assigned to an ETAS hardware device.

IP_Address ETAS Hardware

192.168.40.10 ES1120

192.168.40.11 ES1130

192.168.40.12 ES780

192.168.40.13 Reserved

192.168.40.14 LABCAR-RTPC

192.168.40.15 ES1135

Note

Enabling this warning is useful only if you want to run the PC both in the
company network or on an ETAS measurement module in the ETAS net-
work using this network adapter.
ETAS Network Manager 383

384
12.4.4 "Network settings for ETAS hardware (Page 5)" Dialog Window

This dialog window is displayed only if Windows NT is the operating system
and the selected network adapter is configured for DHCP.

The following information on the available network adapters is displayed:

• Original DHCP Lease Expires

Indicates when the DHCP lease time will expire. This field cannot be
edited.

• Increase Lease

Here you can specify the number of days by which to extend the lease
time. You can assign a positive integer up to 365.

12.5 Configuring Network Addresses for ETAS Hardware

The first steps apply to the configuration of network adapters with fixed IP
address and network adapters in a DHCP environment.
ETAS Network Manager

To start the Network Manager:

• In the Windows Start menu, select Start →
Programs → ETAS → ASCET5.1 → ETAS
Network Settings.

The "Network settings for ETAS hardware
(Page 1)" dialog window opens.

To select the network adapter:

• In the "Available Network Adapters" field,
select the network adapters you want to use
for the company network and the ETAS net-
work.

You can select only those network adapters
whose addressing type the ETAS network sup-
ports.

Use Cancel to abort the procedure.
ETAS Network Manager 385

386
• Click Continue to configure the selected net-
work adapter.

The "Network settings for ETAS hardware
(Page 2)" dialog window opens.

Configuring Network Addresses: Adapter with Fixed IP Address

To define the address pool:

• In the "Network settings for ETAS hardware
(Page 2)" window, click the entry you want to
modify ("Start Address," "End Address" or
"Subnet Mask").

• Edit the value directly (text input)

or

Note

The Finish button is only available when you are configuring a network
adapter in a DHCP environment.
ETAS Network Manager

• click the Default button.

The address range and the setting for the sub-
net mask are entered automatically by the
Network Manager. You may accept these set-
tings or overwrite them.

Use Cancel to close the dialog window with-
out saving the changes. Use Back to return to
the previous dialog window.

The "Network settings for ETAS hardware
(Page 4)" dialog window opens.

To set a user-defined IP address:

• Activate the Display warning before IP
address assignment is executed option to
specify that a warning be displayed before an
IP address is assigned to the ETAS hardware.

• Click the Finish button.

The configuration is finished and the dialog
box is closed. The settings are saved.

Use Cancel to close the dialog window with-
out saving the changes. Use Back to return to
the previous dialog window.

Note

Enabling this warning is useful only if you want
to run the PC both in the company network or
on an ETAS measurement module in the ETAS
network using this network adapter.
ETAS Network Manager 387

388
• Restart ASCET-RP and all other ETAS software
applications to make the changes effective.

Restarting is necessary only if ASCET-RP did
not automatically invoke the configurator dur-
ing a hardware search or initialization.

Configuring Network Addresses: Adapter in DHCP Environment

To define the address pool:

• In the "Network settings for ETAS hardware
(Page 2)" window, click the entry you want to
modify ("Start Address," "End Address" or
"Subnet Mask").

• Edit the value using the keyboard (text entry).

Or

• Click the Default button.

The Network Manager automatically enters
the address range and the setting for the sub-
net mask. You may accept these settings or
overwrite them.

1. If you address the network adapter via DHCP using an APIPA or alter-
native IP address, proceed as follows to finish the configuration:

• Click the Finish button.

The configuration is finished and the dialog
box is closed. The settings are saved.

• Restart ASCET-RP and all other ETAS software
applications to make the changes effective.

Restarting is necessary only if ASCET-RP did
not automatically invoke the configurator dur-
ing a hardware search or initialization.

2. If you address the network adapter via DHCP and use the Windows NT
operating system, proceed as follows to continue the configuration:
ETAS Network Manager

• Click the Continue button.

The "Network settings for ETAS hardware
(Page 5)" dialog window opens.

To set up DHCP in Windows NT:

• In the "Increase Lease" field, enter the num-
ber of days by which you want to extend the
lease time.

Use Cancel to close the dialog window with-
out saving the changes. Use Back to return to
the previous dialog window.

• Click the Finish button.

Configuring the network adapter is finished
and the dialog window closes. The changes
are saved.

• Restart ASCET-RP to make the changes effec-
tive.

Restarting is necessary only if ASCET-RP did
not automatically invoke the configurator dur-
ing a hardware search or initialization.

12.6 Troubleshooting Ethernet Hardware Access

This section gives an overview of known problems accessing ETAS hardware via
the Ethernet interface.
ETAS Network Manager 389

390
12.6.1 APIPA disabled on Windows 98 SE, 2000 or XP

The alternative mechanism for IP addressing (APIPA) is usually enabled on all
Windows 98 SE, 2000 and XP systems. Network security policies, however,
may request the APIPA mechanism to be disabled. In this case, you cannot use
a network adapter which is configured for DHCP to access ETAS hardware. The
ETAS Network Manager displays a warning message.

The APIPA mechanism can be enabled by editing the Windows registry. This is
permitted only to users who have administrator privileges. It should be done
only in coordination with your network administrator.

To enable the APIPA mechanism:

• In the Windows Start menu, select Start →
Run.

• In the "Run" window, enter regedit and
click OK

The registry editor opens.

• In the directory tree of the registry editor, open
the folder HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\
Services\.

• Select Edit → Find to search for the key
IPAutoconfigurationEnabled.

• Set the value for all instances of this key to 1
to enable the APIPA mechanism.

You may find several instances of this key in
the Windows registry because the APIPA
mechanism can be disabled both for the TCP/
IP service in general and for specific network
adapters individually.

• Close the registry editor.

If you cannot find any instances of the registry key mentioned, the APIPA
mechanism has not been disabled on your system.

12.6.2 Personal Firewalls

Windows XP comes with a built-in personal firewall. On many other systems it
is very common to have personal firewall software from third party vendors,
such as Symantec, McAffee or BlackIce installed.
ETAS Network Manager

Personal firewalls may interfere with access to Ethernet hardware using
ASCET-RP. The automatic search for hardware typically cannot find any Ether-
net hardware at all, although the configuration parameters are correct. In that
case, you may have firewall software installed on your system.

You should either disable the firewall software while working with ASCET-RP,
or open it for IP address 192.168.40.240 (ports 18000—18005). For details,
please refer to the user documentation of your personal firewall software.
ETAS Network Manager 391

392
 ETAS Network Manager

13 Annex: API Functions

This annex contains the API funcions ASCET-RP provides for the ES113x exp-
perimental target. These functions define the interfaces between ASCET-RP
and the following applications:

• ERCOSEK (chapter 13.1)

• NVRAM (chapter 13.2)

• Watchdog (chapter 13.3)

• LEDs (chapter 13.4)

• Miscellaneous (chapter 13.5)

13.1 API Functions (ERCOSEK)

This chapter gives a detailed description of all existing API-functions (Applica-
tion Programming Interface). These service routines define the interface
between the application and ERCOSEK.

Each section deals with a group of service routines that are functionally related
to one another. The description structure of each service routine is as follows:

_exampleRoutine

Function A short description of the service’s functionality.

Syntax The syntax is specified here in the form of a C function prototype.
The C - types used are described in the following chapter.

Description This section contains a detailed description of the service routine,
a description of the parameters as well as further details and notes
that the user should be aware of or take into consideration when
using the service routine.

Return code Type and value range of the return code (if available) and its signif-
icance are specified here.

Example The Example demonstrates a typical usage of the described func-
tion.

See also List of related functions.

Hint Some of the function descriptions include a hint providing addi-
tional useful information.
Annex: API Functions 393

394
The following list provides a short overview of all existing ERCOSEK commands
supported by ASCET-RP for the experimental target ES113x. More detailed
information (syntax, examples, etc.) can be found in the subsequent chapters.

13.1.1 Application Modes

The concept of application modes allows the efficient management of differ-
ent processing states in the application software. An application mode is
defined by a set of tasks which are active in this mode and one or more

Command Function Page

Application Modes

DeclareAppMode Serves as an external declaration of an
application mode.

395

SetNextAppMode Switches to the specified application
mode after processing all active tasks.

395

Tasks

DeclareTask Serves as an external declaration of a
task.

396

ActivateTask Activates a SW task. 396

System Time

GetSystemTime Gets the current system time. 397

GetSystemTimeLow Gets the low-order part of the current
system time.

398

GetSystemTimeHigh Gets the high-order part of the current
system time.

398

Interrupt Handling

EnableAllInterrupts Globally enables all interrupts. 398

DisableAllInterrupts Globally disables all interrupts. 399

dT Query

GetDeltaT Returns the value of dT. 400
Annex: API Functions

optional timetables. Application modes for an engine control unit can be, for
example: normal operation (control of the technical process), auto-diagnostics,
flash EPROM programming. Only one application mode can be active at a time.

An application mode consists of two phases: the first phase is the initialization
phase. This is where the initialization routines of the application are processed.
Interrupts are disabled. After initialization, the interrupts are enabled and the
execution phase begins. Here the activated tasks of the application are pro-
cessed according to their priorities (scheduled).

DeclareAppMode

Function Serves as an external declaration of an application mode.

Syntax #define DeclareAppMode(AppID)
extern AppModeType AppID

Description If an application mode switch is performed within a module, but
the application mode descriptor is defined in another module, the
usage of the application mode descriptor must be disclosed by
DeclareAppMode().
The function and use of this service are similar to that of the exter-
nal declaration of variables.

Example extern uint excCtr;
extern uint randx;
DeclareAppMode(idleMode);

See also DeclareTask

SetNextAppMode

Function Switches to the specified application mode after processing all
active tasks.

Syntax StatusType SetNextAppMode(AppModeType appMode)

Description SetNextAppMode() requests a change to the application mode
referenced by pointer appMode. The operating system executes
the change as soon as no further task is running, i.e. when the
operating system is in the idle state. However, subsequent task
activations via ChainTask() or RestartTask() (not sup-
ported for Rapid Prototyping use case) will be ignored. In case
hardware tasks are initialized during startup (initialization phase),
they will be reinitialized for the next application mode.
Annex: API Functions 395

396
13.1.2 Tasks

There are two types of tasks in ERCOSEK: firstly software tasks (SW tasks) which
are activated by ActivateTask(); the processing is coordinated by the
ERCOSEK scheduler and secondly hardware tasks (HW tasks) which are acti-
vated by an interrupt. In this case scheduling is carried out by the interrupt
control logic of the processor, i.e. by the hardware.

Return code E_OK Request successfully processed.

Example SetNextAppMode(driveMode);

See also -

DeclareTask

Function Serves as an external declaration of a task.

Syntax #define DeclareTask(TaskID)
extern TaskType TaskID

Description If a task is used by a module, but is defined in another module, its
usage must be disclosed by DeclareTask().
The function and use of this service are similar to that of the exter-
nal declaration of variables.

Example extern uint excCtr;
extern uint randx;
DeclareTask(synchroSeq);

See also DeclareAppMode

ActivateTask

Function Activates a SW task.

Syntax StatusType ActivateTask(TaskType task)

SetNextAppMode (driveMode);

The application
mode switch
is performed
here.Task A

Task B

Task C

Priority

Time
Annex: API Functions

13.1.3 System Time

A discrete system time is the time base of ERCOSEK. For those targets which do
not offer a hardware-based system time, the system time is set to 0 with the
start of the operating system. The system time, which is normally counted with
a width of two machine words, is used as the reference time for alarm services
and the ERCOSEK timetable. The time until an overflow of the system time
occurs depends on CPU and the frequency of the hardware timer used. The
system time is not interrupted or reset by an application mode change.

The system time is counted in ticks of the underlying timer register. The macro
SYSTEM_TICK_DURATION returns the duration of such a tick in nanosec-
onds.

Description ActivateTask() requires the operating system to process the
SW task specified by task. If this task activation is successful (cf.
return code), the processing of the task is planned according to its
priority by the ERCOSEK scheduler.
If several activations of a task are allowed (according to the BCC2
definition) and the current number of activations of a task is > 1,
this task is temporarily stored in the FIFO buffer.
If ActivateTask() cannot be executed successfully, the system
switches to the user-specific error function.

Return code E_OK Activation successful.

E_OS_LIMIT No activation, as maximum number of task acti-
vations for the task specified has been reached
already or because the maximum number of
tasks in the task FIFO- buffer at the specified pri-
ority level has already been reached.

Example ActivateTask(synchroSeq);

See also –

GetSystemTime

Function Gets the current system time.

Syntax TimeType GetSystemTime(void)

Description GetSystemTime() returns the system time in ticks. The width is
system dependent (32 bit on 16-bit wide and 64 bit on 32-bit
wide systems).

Return code Current system time.

Example TimeType now;
now = GetSystemTime();

See also GetSystemTimeLow, GetSystemTimeHigh
Annex: API Functions 397

398

13.1.4 Interrupt Handling

ERCOSEK provides a routine to save and restore context relevant data in the
frame of an interrupt service routine. Furthermore, the certain valid interrupt
descriptor can be accessed by an ERCOSEK API-function.

GetSystemTimeLow

Function Gets the low-order part of the current system time.

Syntax TickType GetSystemTimeLow(void)

Description GetSystemTimeLow() returns the low-order part of the cur-
rent system time in ticks. These are the lower 16 bit for an
ERCOSEK implementation with a 32 bit wide system time; for an
implementation with a 64 bit wide system time, the lower 32 bit.

Return code Low-order part of the current system time.

Example TickType lowPartOfNow;
lowPartOfNow = GetSystemTimeLow();

See also GetSystemTime, GetSystemTimeHigh

GetSystemTimeHigh

Function Gets the high-order part of the current system time.

Syntax TickType GetSystemTimeHigh(void)

Description GetSystemTimeHigh() returns the high-order part of the cur-
rent system time in ticks. These are the upper 16 bit for an
ERCOSEK implementation on a 32-bit wide system time; for an
implementation on a 64-bit wide system time, the upper 32 bit.

Return code High-order part of the current system time.

Example TickType highPartOfNow;
highPartOfNow = GetSystemTimeHigh();

See also GetSystemTime, GetSystemTimeLow

EnableAllInterrupts

Function Enables all interrupts globally.

Syntax void EnableAllInterrupts(void)
Annex: API Functions

13.1.5 dT Query

ERCOSEK provides a service routine for querying the time elapsed between the
last start of the currently running task and the start of the currently running
task (see figure below). The time returned always concerns the task from
which the service was called.

Description EnableAllInterrupts() enables the interrupts for the con-
troller-core globally without manipulating interrupt masks. If mul-
tiple calls of DisableAllInterrupts() preceded the interrupts are
only enabled if the corresponding number of EnableAllInter-
rupts() calls have been reached. Hence, a safe realization of
nested interrupt disabling is supported.

Return code None

See also DisableAllInterrupts

DisableAllInterrupts

Function Disables all interrupts globally.

Syntax void DisableAllInterrupts(void)

Description DisableAllInterrupts() disables all interrupts globally and
stores the state of nested calls.

Return code None

See also EnableAllInterrupts

Prio
dTB1

dTA1 dTA2 dTA3

GetDeltaT()==dTB1

*: GetDeltaT()==dTA1

GetDeltaT()==dTA2

GetDeltaT()==dTA3*Task B

Time

Task A
Background

Task
Annex: API Functions 399

400
The dT returned by GetDeltaT() is very useful for mathematical calculations e.g.
an integration:

13.2 API Functions (NVRAM)

The default behavior of the NVRAM manager described in chapter 6.2.1 can
be altered from within an ASCET model (C code component) via the following
interfaces:

GetDeltaT

Function Returns the value of dT.

Syntax TickType GetDeltaT(void)

Description GetDeltaT() returns the time expired between two subsequent
task executions.
Note: If this time exeeds half the width of the hardware timer, the
return value can not be relied on.
This function is only supported in ERCOSEK debug mode. See
chapter "Debug information within the task monitor" in the
ERCOSEK manual for detailed information about debugging an
application based on ERCOSEK.

Return code Value of dT in ticks.

Example TickType deltaT;
deltaT = GetDeltaT();

See also –

nvramInitModelVars

Function Initializes the NV variables.

Syntax uint32 nvramInitModelVars(void)

Description This function initializes the NV variables with the content of the
NVRAM if this content is valid and matching. The initialization
may be triggered only once (via C-code, L1 or automatic flag)
and only before any update of the NVRAM occurred.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLES No NV variables inside the
model

F x() f T() Td

0

x

∫=
Annex: API Functions

EC_NVRAM_INADMISSIBLE_US
E

Function has been already
called

EC_NVRAM_INTERNAL_ERROR An internal error occurred

EC_NVRAM_NO_MATCH The NVRAM content does
not match the current
model

Example –

See also nvramCheckForInitializedVars

nvramSetUpdateInterval

Function Sets the automatic NVRAM update interval.

Syntax uint32 nvramSetUpdateInterval(uint32 interval_sec)

Description Sets the automatic NVRAM update interval. This is the desired
time between two updates. If system load is high, the actual
time interval might be larger (depends significantly from the
requested consistency level). If the actual update interval exceeds
the requested interval for 10 times, a warning is issued inside the
experiment environment.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_INVALID_ARG Interval_sec > 30

Parameter interval_sec Update interval in seconds. Must
be a value between 0 and 30 (0:
no periodical update).

Example –

See also nvramGetUpdateInterval

nvramInitModelVars
Annex: API Functions 401

402
nvramGetUpdateInterval

Function Gets the automatic NVRAM update interval.

Syntax uint32 nvramGetUpdateInterval(void)

Description Gets the automatic NVRAM update interval. This is the desired
time between two updates. If system load is high, the actual
time interval might be larger (depends significantly from the
requested consistency level). If the actual update interval exceeds
the requested interval for 10 times, a warning is issued inside the
experiment environment.

Return Value interval_sec Update interval in seconds.

Example –

See also nvramSetUpdateInterval

nvramSetConsistencyLevel

Function Sets the level of NV variable data consistency.

Syntax uint32 nvramSetConsistencyLevel
(T_consistencyLevel level)

Description Sets the level of NV variable data consistency.
No consistency: NVRAM update is done without respect to con-
sistency inside NV variables and between individual NV variables.
Low level consistency: data consistency within NV variables (sca-
lars, vectors and matrices but not characteristics) is guaranteed.
High level consistency: all NV variables are updated without
interruption by the model, out of the idle task.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_INVALID_ARG Invalid level argument

Parameter level NVRAM_NO_CONSISTENCY
NVRAM_LOW_CONSISTENCY
NVRAM_HIGH_CONSISTENCY

Example –

See also nvramGetConsistencyLevel
Annex: API Functions

nvramGetConsistencyLevel

Function Gets the level of NV variable data consistency.

Syntax T_consistencyLevel
nvramGetConsistencyLevel(void)

Description Gets the level of NV variable data consistency.
No consistency: NVRAM update is done without respect to con-
sistency inside NV variables and between individual NV variables.
Low level consistency: data consistency within NV variables (sca-
lars, vectors and matrices but not characteristics) is guaranteed.
High level consistency: all NV variables are updated without
interruption by the model, out of the idle task.

Return Value NVRAM_NO_CONSISTENCY No consistency

NVRAM_LOW_CONSISTENCY Low level consistency

NVRAM_HIGH_CONSISTENC
Y

High level consistency

Example –

See also nvramSetConsistencyLevel

nvramEnableAutoUpdate

Function Enables automatic update of the NVRAM content.

Syntax uint32 nvramEnableAutoUpdate(void)

Description Enables automatic update of the NVRAM content. This com-
prises periodical update as well as updates initiated by the Exit
Task.

Return Value EC_NVRAM_SUCCESS Success

Example –

See also nvramDisableAutoUpdate
nvramCheckForAutoUpdate
Annex: API Functions 403

404
nvramDisableAutoUpdate

Function Disables automatic update of the NVRAM content.

Syntax uint32 nvramDisableAutoUpdate(void)

Description Disables automatic update of the NVRAM content. This com-
prises periodical update as well as updates initiated by the Exit
Task.

Return Value EC_NVRAM_SUCCESS Success

Example –

See also nvramEnableAutoUpdate,
nvramCheckForAutoUpdate

nvramCheckForAutoUpdate

Function This function checks if auto update mode is enabled.

Syntax uint8 nvramCheckForAutoUpdate(void)

Return Value true Auto update mode is enabled

false Auto update mode is disabled

Example –

See also nvramEnableAutoUpdate
nvramDisableAutoUpdate

nvramManualUpdateExit

Function Ensures a final update of the NVRAM content.

Syntax void nvramManualUpdateExit (void)

Description This function should be placed inside the Exit Task after the last
user process, to ensure a final update of the NVRAM content
when the user application mode is left (Stop ERCOS Button).
Error messages are posted inside the experiment environment if
an error occurs.

Example –

See also nvramManualUpdateBackground
nvramManualUpdateBlocked
Annex: API Functions

nvramManualUpdateBackground

Function Starts a manual update of the NVRAM content.

Syntax uint32 nvramManualUpdateBackground(void)

Description This function starts a manual update of the NVRAM content.
Manual update has precedence over the automatic periodical
update. Thus, a potentially running periodical update is aborted.
But if cyclic update is on the way (the Idle task is interrupted by
a preemptive task with the call of this function), start of manual
update is impossible This function returns immediately, because
the update is running in the background (Idle Task). The comple-
tion of this process can be tested via the function nvram-
CheckRunningUpdate().
Note: It is not recommended to use this function when auto-
matic update is enabled.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLE
S

No NV variables in model

EC_NVRAM_FATAL_ERROR Fatal error occurred before

EC_NVRAM_OVERFLOW Overflow of NVRAM.
Reduce Number / Size of NV
variables.

EC_NVRAM_UPDATE_RUNNING Other Update process (man-
ual or cyclic) is currently run-
ning. Start of manual
update failed.

Example –

See also nvramManualUpdateBlocked,
nvramManualUpdateExit
Annex: API Functions 405

406
nvramManualUpdateBlocked

Function Starts a manual update of the NVRAM content (blocking on the
current priority).

Syntax uint32 nvramManualUpdateBlocked
(uint32 timeoutUs)

Description This function starts a manual update of the NVRAM content.
Manual update has precedence over the automatic periodical
update. Thus, a potentially running periodical update is aborted.
But if cyclic update is on the way (the Idle task is interrupted by
a preemptive task with the call of this function), start of manual
update is impossible This function blocks on the current priority
until all NV variable contents have been written to the local
buffer or until a timeout occurred. After the function has
returned, the update process (writing from local buffer into the
NVRAM) is continued in the Idle task (even if a timeout
occurred). The completion of the update process can be tested
via the function nvramCheckRunningUpdate().
Because interrupts are not suspended during this process, a pre-
emptive task with higher priority might interrupt the update pro-
cess. This could lead to data inconsistencies if this task modifies
any NV variable contents.

Note: It is not recommended to use this function when auto-
matic update is enabled.

Return Value EC_NVRAM_SUCCESS Success

EC_NVRAM_NO_NV_VARIABLE
S

No NV variables in model

EC_NVRAM_FATAL_ERROR Fatal error occurred before

EC_NVRAM_OVERFLOW Overflow of NVRAM.
Reduce Number / Size of NV
variables.

EC_NVRAM_UPDATE_RUNNING Other Update process (man-
ual or cyclic) is currently run-
ning. Start of manual
update failed.

Parameter timeoutUs Timeout period in µs

Example –

See also nvramManualUpdateBlocked,
nvramManualUpdateExit, nvramCheckRunningUpdate
Annex: API Functions

nvramCheckRunningUpdate

Function Checks if an manual NVRAM update started.

Syntax uint8 nvramCheckRunningUpdate(void)

Description This function checks if an manual NVRAM update started by
nvramStartManualUpdateBackground or nvramStart-
ManualUpdateBlocked is still running in the background.

Return Value false Update is finished or has not been started suc-
cessfully

true Update is still running

Example –

See also nvramManualUpdateBackground
nvramManualUpdateBlocked

nvramCheckForInitializedVars

Function Checks if the NV variables have been initialized.

Syntax uint8 nvramCheckForInitializedVars(void)

Description This function checks if the NV variables inside the model have
been initialized with the NVRAM content. This might be trig-
gered by automatic update via the experiment environment or
initialization via C code API.

Return Value true NV variables have been initialized with the NVRAM
content

false NV variables have not been initialized with the
NVRAM content but with their default values.

Example –

See also nvramInitModelVars

nvramGetUpdateAgeMs

Function Returns the elapsed time since the last finish of an update.

Syntax uint32 nvramGetUpdateAgeMs(void)

Return Value updateAge Time in milliseconds
Annex: API Functions 407

408
13.3 API Functions (Watchdog)

The ES1135 Simulation Controller has a hardware watchdog. the watchdog
functionality is summarised in chapter 6.2.2. The following interfaces are pro-
vided by the firmware.

Description This function returns the elapsed time since the last finish of an
update (manual or automatic update).

Example –

See also –

nvramClear

Function Erases the NVRAM contents.

Syntax uint32 nvramClear(void)

Return Value EC_NVRAM_SUCCESS Success

Description This function erases the NVRAM contents. The memory is initial-
ized with zeros.

Example –

See also –

nvramGetUpdateAgeMs
Annex: API Functions

13.3.1 Watchdog Configuration

wdSetSafetyMode

Function Sets the Safety Mode.

Syntax uint32 wdSetSafetyMode
(uint32 event, uint32 period)

Description This function switches from the pre-operational mode or the
RSEF mode to the safety critical mode. This cannot be undone
afterwards except by switching power off.
The parameter event selects the action which is to be done
when the watchdog expires.
WD_EVENT_DISABLE disables the watchdog.
WD_EVENT_PPC750_RESET resets the IBM 750GX simulation
processor.
WD_EVENT_PPC750_INT triggers an interrupt to the simula-
tion processor.
The parameter period (time period after that the watchdog
expires) can be configured in the range from 0.25 ms up to
4096 ms.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MODE Watchdog is already in safety
mode

EC_CFW_INVALID_ARG Invalid event or period value

Parameter event WD_EVENT_DISABLE
WD_EVENT_PPC750_RESET
WD_EVENT_PPC750_INT

period WD_PERIOD_4096MS
WD_PERIOD_1024MS
WD_PERIOD_256MS
WD_PERIOD_64MS
WD_PERIOD_16MS
WD_PERIOD_4MS
WD_PERIOD_1MS
WD_PERIOD_0_25MS

Example uint32 period;
uint32 event;
uint32 retVal;
event = WD_EVENT_DISABLE;
period = WD_PERIOD_4096MS;
retVal = wdSetSafetyMode(event, period);

See also wdSetPeriod, wdSetEvent
Annex: API Functions 409

410
wdSetReducedSafetyMode

Function Sets the Reduced Safety Enhanced Function Mode.

Syntax uint32 wdSetReducedSafetyMode(void)

Description This function switches from the pre-operational mode to the
reduced safety enhanced function mode (RSEF).

Note: This function is already called inside the boot loader. Thus,
this API function has no impact for ASCET-RP use, because the
model starts with the watchdog in RSEF mode.
The loader disables also the watchdog events. Afterwards,
watchdog period and event can be modified via wdSetPeriod
and wdSetEvent.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MOD
E

Watchdog is in safety mode. This
cannot be undone.

EC_CFW_WD_RSEF_MODE Watchdog is already in RSEF
mode.

Example -

See also wdSetPeriod, wdSetEvent

wdSetPeriod

Function Sets the Watchdog Period.

Syntax uint32 wdSetPeriod(uint32 period)

Description This function switches the watchdog period (time period after
that the watchdog expires) which can be configured in the range
from 0.25 ms up to 4096 ms.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MOD
E

Watchdog is in safety mode. No
period modification possible.

EC_CFW_INVALID_ARG Invalid period value

EC_CFW_WD_PRE_OP_MOD
E

Watchdog is in pre-operational
mode. Switch first to RSEF mode.
Annex: API Functions

Parameter period WD_PERIOD_4096MS
WD_PERIOD_1024MS
WD_PERIOD_256MS
WD_PERIOD_64MS
WD_PERIOD_16MS
WD_PERIOD_4MS
WD_PERIOD_1MS
WD_PERIOD_0_25MS

Example uint32 period;
uint32 retVal;
period = WD_PERIOD_4096MS;
retVal = wdSetPeriod(period);

See also wdSetSafetyMode, wdSetEvent

wdSetEvent

Function Sets the event to be handled, if the watchdog expires.

Syntax uint32 wdSetEvent(uint32 event)

Description The function selects the action which should be done when the
watchdog expires.
WD_EVENT_DISABLE disables the watchdog.
WD_EVENT_PPC750_RESET resets the IBM 750GX simulation
processor.
WD_EVENT_PPC750_INT triggers an interrupt to the simula-
tion processor.

Return Value EC_CFW_SUCCESS Success

EC_CFW_WD_SAFETY_MOD
E

Watchdog is in safety mode. No
event modification possible.

EC_CFW_INVALID_ARG Invalid event value

EC_CFW_WD_PRE_OP_MOD
E

Watchdog is in pre-operational
mode. Switch first to RSEF mode.

wdSetPeriod
Annex: API Functions 411

412
13.3.2 Watchdog Service

Parameter event WD_EVENT_DISABLE
WD_EVENT_PPC750_RESET
WD_EVENT_PPC750_INT

Example uint32 event;
uint32 retVal;
event = WD_EVENT_DISABLE;
retVal = wdSetEvent(event);

See also wdSetSafetyMode, wdSetPeriod

wdService

Function Services the Watchdog.

Syntax Void wdSetEvent(void)

Description This function services the watchdog. That means, it initializes the
watchdog timer to the value set by wdSetPeriod().

Example wdService();

See also wdEnableAutoService, wdDisableAutoService

wdEnableAutoService

Function Enables automatic servicing.

Syntax void wdEnableAutoService (void)

Description This function enables the watchdog automatic servicing feature.
It services the watchdog in 30 ms intervals, if interrupts are
enabled. Additional servicing may be done by RTIO device driv-
ers. The servicing is enabled by default.

Example wdEnableAutoService();

See also wdService, wdDisableAutoService

wdSetEvent
Annex: API Functions

13.3.3 Interrupt Control

wdDisableAutoService

Function Disables automatic servicing.

Syntax void wdDisableAutoService(void)

Description This function disables the watchdog automatic servicing feature.

Note: It is up to the model to service the watchdog accordingly.
Please keep in mind, that disabling automatic servicing disables
also RTIO internal servicing calls. Because RTIO driver calls (espe-
cially driver Init and Exit) potentially block for longer times, auto-
matic servicing should be enabled inside the Init and Exit task.

Example wdDisableAutoService();

See also wdService, wdEnableAutoService

wdIntEnable

Function Enables Watchdog interrupt handling.

Syntax void wdIntEnable(void)

Description This function enables the watchdog interrupt handling. Use
wdSetEvent() in advance to map the watchdog event accord-
ingly. The wdIntEnable() call has only influence on the inter-
rupt propagation. wdIntPend() can be used even if the
watchdog interrupt is disabled.

Example wdIntEnable();

See also wdSetEvent, wdIntPend, wdIntDisable, wdIntAck

wdIntDisable

Function Disables Watchdog interrupt handling.

Syntax void wdIntDisable(void)

Description This function disables the watchdog interrupt handling.

Example wdIntDisable();

See also wdIntEnable
Annex: API Functions 413

414
wdIntPend

Function Checks if interrupt pending.

Syntax uint8 wdIntPend(void)

Return Value false No watchdog interrupt is pending

true Watchdog interrupt is pending

Description This function checks, if a watchdog interrupt is pending. Use
wdSetEvent() in advance to map the watchdog event accord-
ingly.

Example if(wdIntPend() == true)

{

intPollCount++;

/* Reset Interrupt */

wdIntAck();

}

See also wdSetEvent, wdIntDisable, wdIntAck

wdIntAck

Function Acknowledges Watchdog interrupt.

Syntax void wdIntAck(void)

Description This function acknowledges a Watchdog interrupt. The Watch-
dog counter (automatic restart after triggering an event) is not
influenced by this call. If the Watchdog counter should be initial-
ized, use wdService() before.

Example if(wdIntPend() == true)

{

intPollCount++;

/* Reset Interrupt */

wdIntAck();

}

See also wdSetEvent
wdIntDisable
wdIntPend
Annex: API Functions

13.3.4 Watchdog Status

wdCheckReducedSafetyMode

Function Checks if Watchdog is in RSEF mode.

Syntax uint8 wdCheckReducedSafetyMode(void)

Description This function checks, if the watchdog is running in reduced-
safety-enhanced-function (RSEF) mode. If so, the watchdog set-
tings can be modified at runtime.

Return Value false Watchdog is running in safety mode

true Watchdog is running in RSEF mode

Example asdWriteUserDebug("Active = %u
ReducedSafety = %u \n",
wdCheckActive(),
wdCheckReducedSafetyMode());
For asdWriteUserDebug, refer to chapter 13.5.

See also wdSetSafetyMode, wdCheckActive

wdCheckActive

Function Checks if Watchdog is active.

Syntax uint8 wdCheckActive(void)

Description This function checks if the watchdog is currently active. This
depends on the event setting and if a debugger is connected to
the ES1135 board.

Return Value false Watchdog is currently disabled

true Watchdog is currently enabled

Example asdWriteUserDebug("Active = %u
ReducedSafety = %u \n",
wdCheckActive(),
wdCheckReducedSafetyMode());

For asdWriteUserDebug, refer to chapter 13.5.

See also wdSetSafetyMode, wdSetEvent,
wdCheckReducedSafetyMode
Annex: API Functions 415

416
13.4 API Functions (ES1135 LEDs)

The ES1135 Simulation Controller has three configurable LEDs. They are briefly
described in chapter 6.2.3. The following interfaces to the LEDs are provided.

userLed[n]On

Function Switches LED [n] on.

Syntax void userLed1On(void)
void userLed2On(void)
void userLed3On(void)

Description These functions switch the respective LEDs on.

Example userLed1On();

See also userLed[n]Off, userLed[n]Toggle

userLed[n]Off

Function Switches LED [n] off.

Syntax void userLed1Off(void)
void userLed2Off(void)
void userLed3Off(void)

Description These functions switch the respective LEDs off.

Example userLed1Off();

See also userLed[n]On
userLed[n]Toggle

userLed[n]Toggle

Function Toggles LED [n].

Syntax void userLed1Toggle(void)
void userLed2Toggle(void)
void userLed3Toggle(void)

Description These functions toggle the respective LEDs.

Example userLed1Toggle();

See also userLed[n]Off
userLed[n]On
Annex: API Functions

13.5 API Functions (Miscellaneous)

A few more API functions are available.

asdWriteUserError

Function Writes comment to ASCET monitor window.

Syntax Equivalent to the ANSI-C function printf

Description This function displays user messages in the ASCET monitor win-
dow.

Example uint8 number = 1;
asdWriteUserError("Example %u \n", number);

See also asdWriteUserDebug

asdWriteUserDebug

Function Writes comment to ASCET Target Debugger window.

Syntax Equivalent to the ANSI-C function printf

Description This function displays user messages in the ASCET Target debug-
ger window.

Example uint8 number = 1;
asdWriteUserDebug("Example %u \n", number);

See also asdWriteUserError
Annex: API Functions 417

418
 Annex: API Functions

Index

A
ActivateTask 396
API Functions (ERCOSEK)

see also Service Routines (ERCOSEK)
API Functions (LEDs)

see also Service Routines (LEDs)
API Functions (misc)

see also Service Routines (misc)
API Functions (NVRAM)

see also Service Routines (NVRAM)
API Functions (Watchdog)

see also Service Routines (Watchdog)
Application Mode 394
ASCET 15, 84
ASCET options

"Hardware" tab 16
ASCET Rapid Prototyping 15
ascetsd.ini 29
asdWriteUserDebug 417
asdWriteUserError 417
Automatic Mapping 170

B
Bypass Labels 182
bypass offset 135

C
CAN Bypass 178

Hardware Configuration 179
CAN Bypass Protocol CBP 178
CAN-Bypass Device

Globals 180
Groups 183
Signals 185

CAN-CTRL Subsystem
Globals 164

CAN-IO Device
Globals 167
Groups 173
Signals 175

CBP 178
Compiler

Diab Data 27
GNU Cross ~ 24
use own ~ 23
419

420
compiler 27
control unit ES1120 72
Converting old projects 31

D
Declarations 395, 396
DeclareAppMode 395
DeclareTask 396
Diab Data Compiler 27
DIO Device

Globals 230
Groups 231
Signals 232

DisableAllInterrupts 399
DISTAB method 129
dT 33
dT (delta t) 400

E
EnableAllInterrupts 398
ERCOSEK 11
ES1000 11

TCP/IP protocol 72
ES1120 72
ES1130 72

dT 33
ES1130 target 23
ES1135 72

LED API Functions 416
LEDs 84
NVRAM 73
special features 73
Watchdog 81

ES1135 target 23
ES1135-LED Device

Globals 142
Groups 143
Signals 143

ES1200 144
integration 145

ES1201-ETK 144
ES1201-ETK Subsystem 144
ES1207-CAN 162
ES1222-CAN 178
ES1222-CAN Subsystem

Globals 162
ES1223-LIN 186

ES1223-LIN/CAN subsystem
Globals 187

ES1231.1-ETK 193
ES1231-ETK Subsystem

Globals 193
ES1232 -ETK 196
ES1300-AD 213
ES1300-AD Device

Globals 213
Groups 215
Signals 216

ES1301-AD 216
ES1301-AD Device

Globals 217
Groups 218
Signals 219

ES1302 A/D Board 219
ES1303-AD 219
ES1303-AD Device

Globals 220
Groups 223
Signals 225

ES1310-DA 225
ES1310-DA Device

Globals 226
Groups 227
Signals 228

ES1320-CB (DIO) 228
ES1320-CB Subsystem

Globals 229
ES1325-DIO 232
ES1325-DIO Subsystem

Globals 233
ES1325-Input Device

Globals 237
Groups 240
Signals 246

ES1325-LED Device
Globals 252
Groups 253
Signals 254

ES1325-Output Device
Globals 247
Groups 248
Signals 251

ES1330-PWM 254
ES1330-PWM Subsystem

Globals 255
Index

ETAS Network
activate usage 18

ETAS network
Addressing 378
configuring network adapters 384
DHCP 379
Hardware Connection 17
manual addressing 379
troubleshooting 389

Ethernet interface 21
ETK Bypass 125

ASCET project 127
data exchange 129
DISTAB method 129
Hardware Configuration 126
how it works 128

ETK-BYPASS Device
Globals 147
Groups 155
Signals 158

ETK-BYPASS Device (ES1231)
Signals 195

ETK-BYPASS-ADV Subsystem
Globals 206
Groups 208
Signals 211

ETK-CTRL Subsystem
Globals 145

ETK-CTRL-ADV Subsystem
Globals 202

ETK-CTRL-BAS Subsystem
Globals 197
old project with 100 MBit/s 200
old project with 8 MBit/s 198
use old projects 198

Experiment
run online~ 37–42

Experimental target 11
Experimenting with ASCET 35–44

C code Debugger 42
setting up an experiment 40
standalone mode 43
start experiment 40
start measurement 40
stop experiment 42
stop measurement 41

Experimenting with INCA 44–53
Back-Animation 51
INCA database path 45
initiating a transfer 44
selecting a device 49
selecting a project 49
selecting a workspace 47
starting a transfer 51

Experimenting with INTECRIO 54–66
Back-Animation 64
calling transfer 54
creating an ASCET project 54
executing transfer 61
option "Ignore internally connected

messages" 57
select INTECRIO Build process 60
select system project 59
selecting the INTECRIO version 58
selecting the workspace 59
setting the path for files 58
starting an experiment 63
window "INTEC RIO Project Transfer"

55
EXPORT Subdirectory 11

G
GetDeltaT 400
GetSystemTime 397
GetSystemTimeHigh 398
GetSystemTimeLow 398
GNU Cross Compiler 24

H
Hardware Configuration Editor

see HWC Editor
Hardware Configuration Module 68
Hardware Connection

with ETAS Network Manager 17
without ETAS Network Manager 21

hardware selection window 19
open manually 18
Index 421

422
HWC Editor 69, 89–119
Controls 90
Edit mode 69
"Edit" menu 99
"Extras" menu 105
"File" menu 94
"View" menu 104
"Globals" tab 112
"Groups" tab 114
"Mappings" tab 117
"Signals" tab 115
Toolbar 90

HWC item 141
HWC Module 68
HWC module

code generation 69

I
INCA

see Experimenting with INCA
installation program 11
INTECRIO

see Experimenting with INTECRIO
Interrupts

Disable 399
Enable 398

Item
implemented 141

L
LIN-CTRL subsystem

Globals 187
LIN-IO device

Globals 189
Groups 191
Signals 192

N
Service Routines (LEDs)

userLed 416
userLed 416
network adapter configuration 384

in DHCP environment 388
with fixed IP address 386

network configuration
s. ETAS network

non-volatile RAM
see NVRAM

NVRAM 73
API Functions 400
Basics 73
clear content 76
Data Consistency 76
defective content 78
Hardware Support 73
high level consistency 77
initialization of NV variables 75
low level consistency 77
model-controlled consistency 77
no consistency 77
NVRAM identifier 74
Tips 80
update of NV variables 75

NVRAM Cockpit 78
work with ~ 78

nvramCheckForAutoUpdate 404
nvramCheckForInitializedVars 407
nvramCheckRunningUpdate 407
nvramClear 408
nvramDisableAutoUpdate 404
nvramEnableAutoUpdate 403
nvramGetConsistencyLevel 403
nvramGetUpdateAgeUs 407
nvramGetUpdateInterval 402
nvramInitModelVars 400
nvramManualUpdateBackground 405
nvramManualUpdateBlocked 406
nvramManualUpdateExit 404
nvramSetConsistencyLevel 402
nvramSetUpdateInterval 401

O
Off 416
On 416
Online experiment

open experiment environment 39
running 37–42
select hardware 38
standalone 43
start 37

P
PowerPC subdirectory 15
Index

PPC module ES1130 72
PPC module ES1135 72
PWM-COUNTER Device

Globals 256
Groups 259
Signals 259

R
RTIO code generation 121–124

HWC Module 121
Process Order 123

RTIO Package 67
Architecture 67

S
serial ETKs 206

indirect transfer 210
Service Routines

GetSystemTime 397
GetSystemTimeHigh 398

Service Routines (ERCOSEK)
ActivateTask 396
DeclareAppMode 395
DeclareTask 396
DisableAllInterrupts 399
EnableAllInterrupts 398
GetDeltaT 400
GetSystemTime 397
GetSystemTimeHigh 398
GetSystemTimeLow 398
SetNextAppMode 395

Service Routines (misc)
asdWriteUserDebug 417
asdWriteUserError 417

Service Routines (NVRAM)
nvramCheckForAutoUpdate 404
nvramCheckForInitializedVars 407
nvramCheckRunningUpdate 407
nvramClear 408
nvramDisableAutoUpdate 404
nvramEnableAutoUpdate 403
nvramGetConsistencyLevel 403
nvramGetUpdateAgeUs 407
nvramGetUpdateInterval 402
nvramInitModelVars 400
nvramManualUpdateBackground

405
nvramManualUpdateBlocked 406
nvramManualUpdateExit 404
nvramSetConsistencyLevel 402
nvramSetUpdateInterval 401

Service Routines (Watchdog)
wdCheckActive 415
wdCheckReducedSafetyMode 415
wdDisableAutoService 413
wdEnableAutoService 412
wdIntAck 414
wdIntDisable 413
wdIntEnable 413
wdIntPend 414
wdService 412
wdSetEvent 411
wdSetPeriod 410
wdSetReducedSafetyMode 410
wdSetSafetyMode 409

SetNextAppMode 395
Switch

Application Mode 395
system root path 85
System Time 397

T
target

PowerPC 15
set up interfaces (with ETAS Network

Manager) 17
set up interfaces (without ETAS Net-

work Manager) 21
transputer 15

Target directory 15
target.ini 21
Task

Activation 396
general description 396

TCP/IP protocol 72
Toggle 416
Index 423

424
W
Watchdog 81

API Functions 408
interrupt control 82
modes 82
period 81
service 81, 82
service register 81

wdCheckActive 415
wdCheckReducedSafetyMode 415
wdDisableAutoService 413
wdEnableAutoService 412
wdIntAck 414
wdIntDisable 413
wdIntEnable 413
wdIntPend 414
wdService 412
wdSetEvent 411
wdSetPeriod 410
wdSetReducedSafetyMode 410
wdSetSafetyMode 409
Index

	1 Introduction
	1.1 Components
	1.2 Installation
	Sample Files

	1.3 Manual Structure
	1.4 Conventions
	1.4.1 Documentation Conventions
	1.4.2 Typographic Conventions

	2 Configuring Experimental Targets
	Structure of the PowerPC E-Target Directories
	2.1 The Hardware Options
	2.2 Hardware Connection with the ETAS Network Manager
	2.2.1 The Hardware Selection Window

	2.3 Interface Setup Without ETAS Network Manager
	2.4 Selecting a Compiler
	2.4.1 Using Your Own Compiler
	2.4.2 Changing to the GNU Cross Compiler
	2.4.3 Changing to the Diab Data Compiler

	2.5 Configuring the Compiler
	2.5.1 General Arguments
	2.5.2 Initialization Entries
	2.5.3 Compiler Entries
	2.5.4 Linker Entries
	2.5.5 Loader Entries

	2.6 Settings in the ascetsd.ini File

	3 Tips on Using ASCETRP
	3.1 Preprocessing available Data Bases
	3.2 Converting Projects for ES1000.1 to ES1000.2/ ES1000.3
	3.3 Using dT

	4 Rapid-Prototyping Experiments
	4.1 Experimenting with ASCET
	4.1.1 The User Interface
	Buttons
	Experiment Menu

	4.1.2 Running Online Experiments
	4.1.3 Standalone Mode

	4.2 Experimenting with INCA
	4.3 Experimenting with INTECRIO

	5 RealTime Input/Output Package
	5.1 Introduction
	5.2 Architecture of the RTIO Package
	5.2.1 The Hardware Configuration Module
	5.2.2 Hardware Configuration Editor

	6 Preparatory Measures
	6.1 Hardware - ES1000.x Experimental System
	Control Unit ES1120 and Simulation Computer ES1130/ES1135
	TCP/IP Protocol Options

	6.2 Special Features of the ES1135
	6.2.1 Non-Volatile RAM (NVRAM)
	Basics
	Hardware Support
	NV Variable Initialization and Update
	Data Consistency
	NVRAM Cockpit
	Tips

	6.2.2 Watchdog
	Watchdog Service
	Interrupt Control

	6.2.3 LEDs

	6.3 System Software
	6.3.1 System Root Path
	6.3.2 C-Code Module
	6.3.3 Project

	7 HWC Editor
	7.1 Opening the HWC Editor
	7.2 Controls
	7.2.1 Toolbar
	7.2.2 "Items" List
	7.2.3 Configuration Tabs
	7.2.4 Main Menu
	"File" Menu
	"Edit" Menu
	"View" Menu
	"Extras" Menu

	7.2.5 Context Menu ("Items" List)

	7.3 Configuration Tabs
	7.3.1 General Tips
	Editing the Option / Cell
	Editing
	Modified Status
	Scrolling the Table
	Changing the Width of the Columns
	Help Text

	7.3.2 Default Options in the "Globals" Tab
	Name
	Init Task
	Exit Task
	Config Task
	IRQ Handler Task
	Device Manager Task
	Version
	Format

	7.3.3 Default Options in the "Groups" Tab
	No
	Device
	Group
	Direction
	Task

	7.3.4 Default Options in the "Signals" Tab
	No
	Device
	Group
	Direction
	Task
	Signal
	Formula

	7.3.5 Default Options in the "Mappings" Tab
	No
	Device
	Group
	Direction
	Task
	Signal
	ASCET Message
	Data
	Explanation

	8 Code Generation
	8.1 HWC Module
	8.1.1 Elements
	Messages
	I/O Interface
	Formula
	Configuration Parameters
	External Code
	Header Code
	Processes

	8.2 Process Order

	9 The ETK Bypass (ES1200/ES1201/ES1231/ES1232)
	9.1 ETK Bypass: Definition
	9.2 Hardware Configuration of an ETK Bypass
	9.3 ASCET Project for the ETK Bypass
	9.4 How the ETK Bypass Works
	9.5 Data Exchange Between Control Unit and ETAS Experimental System
	Bypass Communication (AML V1.1)
	Other AML versions

	9.6 Initially Required Information and Data
	Control Unit Program
	ASAM-MCD-2MC File
	Data Format of the Control Unit Processor
	Base Addresses
	Parameters for Activating the Bypass
	Bypass Output Variables
	Bit Masks for the Transformation in the NEAR Region
	What to do in case of an Error / Safety Mechanism

	10 HWC Items
	10.1 Implemented Items
	10.2 ES1135-LED
	10.2.1 Globals (ES1135-LED Device)
	Automatic Mapping

	10.2.2 Groups (ES1135-LED Device)
	10.2.3 Signals (ES1135-LED Device)
	10.2.4 Mappings (ES1325-LED Device)

	10.3 ES1201-ETK
	10.3.1 Globals (ES1201-ETK Subsystem)
	ID / VME base address

	10.3.2 Globals (ETK-CTRL Subsystem)
	ETK Port
	Trigger Segment Address (hex)
	Trigger Segment
	Trigger

	10.3.3 Globals (ETK-BYPASS Device)
	ASAM-2MC Project
	BLD Source
	Local BLD Definitions
	Automatic Mapping
	Byte Order
	Distab Type
	Grid A / B
	Bypass Variable Selection Mode
	Update on
	ECU Data Mode
	Base Offset Value
	Begin Far Address Range (hex)
	Length Far Address Range (hex)
	Max Far Signals
	Long Address AND / OR Mask (hex)
	Address Mapping

	10.3.4 Groups (ETK-BYPASS Device)
	Task
	Activated Task
	Bypass Variables
	Diagnostic Variable
	Start Buffer (hex)
	Buffer size (hex)
	Trigger Id (hex)
	Start Pointer (hex)

	10.3.5 Signals (ETK-BYPASS Device)
	Signal Address (hex)
	Signal Data Type
	Signal Size
	Signal Location
	Signal Offset (hex)
	Access
	Access Address (hex)
	Offset Label
	Offset Address (hex)
	Offset Value (hex)
	Bit Label
	Bit Address (hex)
	Bit Value
	Src Label
	Src Address (hex)
	Src Value

	10.3.6 Mappings (ETK-BYPASS Device)

	10.4 ES1222-CAN (CAN-IO)
	10.4.1 Globals (ES1222-CAN Subsystem)
	IRQ Handler Task
	ID

	10.4.2 Globals (CAN-CTRL Subsystem)
	CAN Connector
	Baud Rate [kBaud]
	Identifier
	Special Timing: BRP (dec)
	Special Timing: SJW (dec)
	Special Timing: TSEG1 (dec)
	Special Timing: TSEG2 (dec)
	Special Timing: SPL (dec)

	10.4.3 Globals (CAN-IO Device)
	Import CAN DB File
	Automatic Mapping
	Generate Receive Debug Signals

	10.4.4 Groups (CAN-IO Device)
	Direction
	Task
	IRQ
	Identifier dec/hex
	Length [Byte]
	Activated Task*
	Prescaler*

	10.4.5 Signals (CAN-IO Device)
	Group
	Signal Type
	7654321.. (Bit matrix)

	10.4.6 Mappings (CAN-IO Device)

	10.5 ES1222-CAN Bypass (CAN Bypass Protocol CBP)
	10.5.1 License legal note for the CAN Bypass protocol (CBP)
	10.5.2 Hardware Configuration of a CAN Bypass
	10.5.3 Globals (CAN-Bypass Device)
	Device Manager Task
	ASAM-2MC Project
	CAN Identifier (dec)
	CAN Identifier (hex)
	# CAN Messages
	Byte Order
	Automatic Mapping
	Prefix / Postfix to Label
	Vector Base Address (hex)

	10.5.4 Groups (CAN-Bypass Device)
	Group
	Activated Task
	Bypass Variables
	Diagnostic Variable

	10.5.5 Signals (CAN-Bypass Device)
	# Bytes
	Address (hex)
	Bit Pos
	Data Type
	Byte Offset

	10.5.6 Mappings (CAN-Bypass Device)

	10.6 ES1223-LIN
	10.6.1 Globals (ES1223-LIN Subsystem)
	ID

	10.6.2 Globals (LIN-CTRL Subsystem)
	IRQ Handler Task

	10.6.3 Globals (LIN-IO Device)
	LIN Connector
	Baud Rate [bit/s]
	LIN Network Node
	Schedule Task
	Special Timing: BaudRate [bit/s]*
	Special Timing: SynchBreak [bit]*
	Import CAN DB File
	Automatic Mapping
	Generate Receive Debug Signals

	10.6.4 Groups (LIN-IO Device)
	Send No Data

	10.6.5 Signals (LIN-IO Device)
	10.6.6 Mappings (LIN-IO Device)
	10.6.7 Runtime Behavior

	10.7 ES1231.1-ETK
	10.7.1 Globals (ES1231-ETK Subsystem)
	ID

	10.7.2 Globals (ETK-CTRL Subsystem)
	10.7.3 Globals (ETK-BYPASS Device)
	10.7.4 Groups (ETK-BYPASS Device)
	10.7.5 Signals (ETK-BYPASS Device)
	Bit Mask (hex)
	Transfer

	10.7.6 Mappings (ETK-BYPASS Device)

	10.8 ES1232 -ETK
	10.8.1 Globals (ES1232-ETK Subsystem)
	ID

	10.8.2 ETK-CTRL-BAS Subsystem
	ETK Connection

	10.8.3 ETK-BYPASS Device
	10.8.4 100 Mbit/s for Existing Projects (ETK-CTRL-BAS Subsystem)
	10.8.5 Globals (ETK-CTRL-ADV Subsystem)
	ETK Port
	ASAM-2MC Project
	Distab Type
	ECU Data Mode
	Byte Order
	Trigger Segment Address
	Update On
	ETK Connection
	Update Offsets On

	10.8.6 Globals (ETK-BYPASS-ADV Subsystem)
	Automatic Mapping
	Bypass Raster Selection Mode
	Bypass Variable Selection Mode
	Base Offset Value
	Begin Far Address Range (hex)
	Length Far Address Range (hex)
	Max Far Signals
	Long Address AND / OR Mask (hex)
	Address Mapping

	10.8.7 Groups (ETK-BYPASS-ADV Subsystem)
	Raster Short Name
	Task
	Activated Task
	Bypass Variables
	Diagnostic Variable
	No. Signals
	No. Bytes
	Start Buffer (hex)
	Buffer Size (hex)
	Hardware Trigger
	Trigger Path
	Trigger Flag Address
	Start Pointer (hex)

	10.8.8 Signals (ETK-BYPASS-ADV Device)
	10.8.9 Mappings (ETK-BYPASS-ADV Device)

	10.9 ES1300-AD
	10.9.1 Globals (ES1300-AD Device)
	Init Task
	Exit Task
	ID / VME base address
	Voltage Range [V]
	Measure Type
	Read Mode

	10.9.2 Groups (ES1300-AD Device)
	Gain factor -> [V]

	10.9.3 Signals (ES1300-AD Device)
	No.

	10.9.4 Mappings (ES1300-AD Device)

	10.10 ES1301-AD
	10.10.1 Globals (ES1301-AD Device)
	Init Task
	Exit Task
	ID / VME base address

	10.10.2 Groups (ES1301-AD Device)
	Range
	Filter

	10.10.3 Signals (ES1301-AD Device)
	10.10.4 Mappings (ES1301-DA Device)

	10.11 ES1303-AD
	10.11.1 Globals (ES1303-AD Device)
	Init Task
	Exit Task
	IRQ Handler Task
	ID
	Anti-Aliasing Filter
	HW Trigger Mode
	HW Trigger Gate

	10.11.2 Groups (ES1303-AD Device)
	Task
	IRQ
	Voltage Range [V]

	10.11.3 Signals (ES1303-AD Device)
	10.11.4 Mappings (ES1303-AD Device)

	10.12 ES1310-DA
	10.12.1 Globals (ES1310-DA Device)
	Init Task
	Exit Task
	ID / VME base address

	10.12.2 Groups (ES1310-DA Device)
	10.12.3 Signals (ES1310-DA Device)
	10.12.4 Mappings (ES1310-DA Device)

	10.13 ES1320-CB (DIO)
	10.13.1 Globals (ES1320-CB Subsystem)
	ID / VME base address

	10.13.2 Globals (DIO Device)
	Init Task
	Exit Task
	Piggyback Position

	10.13.3 Groups (DIO Device)
	10.13.4 Signals (DIO Device)
	Active State

	10.13.5 Mappings (DIO Device)

	10.14 ES1325-DIO
	10.14.1 Globals (ES1325-DIO Subsystem)
	ID
	HW Trigger Mode
	HW Trigger Gate
	Zero Transition [*]
	Tooth Width [*]

	10.14.2 Globals (ES1325-Input Device)
	IRQ Handler Task
	IRQ Spacing [ms]
	Automatic Mapping
	Adjustment Mode

	10.14.3 Groups (ES1325-Input Device)
	Sync Group
	Hardware Channel
	Channel Mode
	Use HW Trigger
	IRQ
	Activated Task
	Signals
	Active State
	Significant Edge
	Hysteresis
	Low Thresh. [V]
	High Thresh. [V]
	Timeout [ms]

	10.14.4 Signals (ES1325-Input Device)
	HW Channel
	Signal Type

	10.14.5 Mappings (ES1325-Input Device)
	10.14.6 Globals (ES1325-Output Device)
	Automatic Mapping

	10.14.7 Groups (ES1325-Output Device)
	Sync Group
	HW Channel
	Channel Mode
	Use HW Trigger
	Signals
	Active State

	10.14.8 Signals (ES1325-Output Device)
	HW Channel
	Signal Type

	10.14.9 Mappings (ES1325-Output Device)
	10.14.10 Globals (ES1325-LED Device)
	Automatic Mapping

	10.14.11 Groups (ES1325-LED Device)
	Task

	10.14.12 Signals (ES1325-LED Device)
	10.14.13 Mappings (ES1325-LED Device)

	10.15 ES1330-PWM
	10.15.1 Globals (ES1330-PWM Subsystem)
	ID / VME base address

	10.15.2 Globals (PWM-COUNTER Device)
	Init Task
	Exit Task
	ZK2 Port
	Counter 1 Mode .. Counter 5 Mode
	Counter 1 Prescaler .. Counter 5 Prescaler

	10.15.3 Groups (PWM-COUNTER Device)
	10.15.4 Signals (PWM-COUNTER Device)
	No.
	Signal

	10.15.5 Mappings (PWM-COUNTER Device)

	11 Tutorial
	11.1 Tutorial - Experimenting with INTECRIO
	11.1.1 Preparations
	11.1.2 Transferring the Project
	11.1.3 Experimenting in INTECRIO
	11.1.4 Using Back-Animation

	11.2 Tutorial - ES1222 (CAN-IO)
	11.2.1 The ES1222 Board
	Jumpers of the ES1222
	Operating Several ES1222 Boards

	11.2.2 Sample Project
	11.2.3 Creating the Hardware Configuration
	11.2.4 HWC Settings for the ES1222 (CAN-IO)
	Channel 1
	Channel 2

	11.2.5 Saving the Hardware Configuration
	11.2.6 Generating Code for the HWC Module
	11.2.7 Experimenting with the Sample Project

	11.3 Tutorial - ES1303
	11.3.1 The ES1303 Hardware
	Input voltage ranges of the ES1303
	Use of Several ES1303 Boards

	11.3.2 Sample Project
	11.3.3 Creating the Hardware Configuration
	11.3.4 HWC Settings for the ES1303
	11.3.5 Saving the Hardware Configuration
	11.3.6 Generating Code for the HWC Module
	11.3.7 Final Actions

	11.4 Tutorial - ES1325 (without Trigger)
	11.4.1 The ES1325 Board
	Connections
	Working with Several ES1325 Boards

	11.4.2 Sample Project
	11.4.3 Creating the Hardware Configuration
	11.4.4 Making HWC Settings for the ES1325
	Outputs - ES1325-Output Device
	Inputs - ES1325-Input Device
	LEDs - ES1325-LED Device

	11.4.5 Saving the Hardware Configuration
	11.4.6 Creating Code for the HWC Module
	11.4.7 Experimenting with the Sample Project

	11.5 Tutorial - ES1325 (with Trigger)
	11.5.1 The ES1325 Board
	11.5.2 Sample Project
	11.5.3 Creating the Hardware Configuration
	11.5.4 Making HWC Settings for the ES1325
	Outputs - ES1325-Output Device
	Inputs - ES1325-Input Device

	11.5.5 Saving the Hardware Configuration
	11.5.6 Creating Code for the HWC Module
	11.5.7 Experimenting with the Sample Project

	12 ETAS Network Manager
	12.1 Overview
	12.2 ETAS Hardware Addressing
	12.3 Network Adapter Addressing
	12.3.1 Type of Network Adapter Addressing
	12.3.2 Addressing the Network Adapter Manually
	12.3.3 Addressing the Network Adapter via DHCP
	Windows 98 SE
	Windows 2000
	Windows XP
	Windows NT

	12.4 User Interface
	12.4.1 "Network settings for ETAS hardware (Page 1)" Dialog Window
	12.4.2 "Network settings for ETAS hardware (Page 2)" Dialog Window
	Reserved IP Addresses

	12.4.3 "Network settings for ETAS hardware (Page 4)" Dialog Window
	12.4.4 "Network settings for ETAS hardware (Page 5)" Dialog Window

	12.5 Configuring Network Addresses for ETAS Hardware
	Configuring Network Addresses: Adapter with Fixed IP Address
	Configuring Network Addresses: Adapter in DHCP Environment

	12.6 Troubleshooting Ethernet Hardware Access
	12.6.1 APIPA disabled on Windows 98 SE, 2000 or XP
	12.6.2 Personal Firewalls

	13 Annex: API Functions
	13.1 API Functions (ERCOSEK)
	13.1.1 Application Modes
	13.1.2 Tasks
	13.1.3 System Time
	13.1.4 Interrupt Handling
	13.1.5 dT Query

	13.2 API Functions (NVRAM)
	13.3 API Functions (Watchdog)
	13.3.1 Watchdog Configuration
	13.3.2 Watchdog Service
	13.3.3 Interrupt Control
	13.3.4 Watchdog Status

	13.4 API Functions (ES1135 LEDs)
	13.5 API Functions (Miscellaneous)

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	L
	N
	O
	P
	R
	S
	T
	W

