
Software Delivery Performance KPIs
in Automotive
by
Rainer Dammers, ETAS
Sergej Weber, Kugler Maag Cie

www.etas.com

Introduction
Measuring performance in software delivery is difficult. This is
in parts because, unlike manufacturing, inventory is invisible and
software development produces unique artifacts [1]. Also, in
software engineering, the sequence of work does not follow the
same linearity as that of a production line: design and delivery
activities – especially in Agile software development – happen
simultaneously.

To steer the delivery process in the right direction, businesses
selling software products collect a growing number of metrics –
the more the merrier. Metrics are so called lagging indicators
which measure outcomes and results [2]. While metrics appear
informative, they may not matter intrinsically. Their purpose is
to support Key Performance Indicators (KPIs). KPIs in turn sup-
port the overall business strategic goals and objectives [3]. KPIs
are useful only if they are designed to answer business questi-
ons, such as »How efficient does my organization operate?«,
»Will we deliver to our commitment?« or »How quickly/flexible
can my organization adapt to changing market demand and/or
satisfy customer needs?« After all, Peter Drucker taught us that
»The most serious mistakes are not being made as a result of
wrong answers. The truly dangerous thing is asking the wrong
ques-tions.«

The problem is, organizations can measure almost anything, but
they cannot pay attention to everything. Thus, modern software
organizations will focus on KPIs that support their specific busi-
ness goals the best, allowing them to use those performance
indicators as an effective tool for continuous learning and im-
provement. The goal should be to gather feedback continuously
to adapt to an everchanging market as quickly as possible. For
this, an efficient delivery pipeline is a prerequisite [4].

As soon as organizations have defined their software delivery
performance in a measurable way, they can make evidence–
based decisions about how to improve the performance of the
delivery process of their software-based products and services.
Furthermore, they can compare and benchmark teams against
the larger organizations and against the industry as a whole.

So, the big question: Which KPIs are most suitable for measuring
software delivery performance?

While a review of the literature of the recent years reveals a
plethora of different KPIs quantify and qualify software delivery
performance, in this whitepaper we focus on the KPIs proven
effective in a multi-year research published in the seminal book
»Accelerate« by Forsgren et al. and apply them to embedded
development.

Essentially, these four adapted KPIs [5] suggest a link between
organizational performance and software delivery performance
in the embedded industry:

–	 Overall Lead Time

–	 Deployment Frequency / Delivery Frequency

–	 Mean Time To Recover / Mean Time To Repair (MTTR)

–	 Change Fail Rate (CFR)

After a quick note about KPIs, we will discuss the three highlevel
types of product classes and the four adapted Software Delivery
KPIs, provide guidance on how to work with these KPIs and end
this whitepaper reviewing a use case from ETAS, a German com-
pany and subsidiary of the Bosch Group which designs solutions
and tools for the development of embedded systems for auto-
motive and other sectors of the embedded industry.

A Quick Note About KPIs
Software development efficiency or productivity can be defined
as the ratio between the value of the software produced and
the effort required to develop it. The measurement of software
development productivity or efficiency to date is a story of failure
and unintended consequences. While a plethora of technical met-
rics are collected and presented on a regular basis, very often
they measure output rather than outcome [1]:

–	 Counting lines of code incentives bloat in the software deliv-
ered instead of measuring actual productivity or efficiency; this
metric is largely discarded as it punishes simplification, refactor-
ing, and reduction of technical debt.

–	 Capturing developer utilization incentivizes looking busy over
maximizing value, actively damages innovation potential and
prevents Flow as it causes bottlenecks in the overall value chain.

–	 Measuring and comparing Story Points misused a powerful
planning tool for a metric which then incentivizes inflation
of estimates, dilutes planning, and eliminates the value of its
intention.

A KPI is a metric, but not every metric is automatically a KPI.
While metrics provide raw information about outcomes and re-
sults without any context, KPIs are selected to indicate a trend
related to a particular concern and can be considered as leading
indicators, which originated in economics, where they are defined
as a measurable factor that changes before the economy follows
a trend. While leading indicators suggest that conditions are fa-
vorable for a particular outcome, there is no guarantee [2].

Page 2 of 8

Feature-need
known

Feature
captured
in e.g. an RE
System

Exploration Execution / Imple-
mentation

Delivery / Deployment

Feature
Refinement

Feature
Development

Feature
Completion

Feature
Delivery

Feature
Deployment

Overall Lead Time

Lead Time measurable within organizational bounds

Organizational boundaries
dependent on product class

Feature for
active use @

customer

OTS SaaSOTS + Custom SW
with integration support

End point depends on product class

Product Classes and Software Delivery KPIs
Software can be delivered in different ways depending on its
business model and the way the software solution is consumed
by users. Here, we differentiate between three high-level types
of product classes:

1.	Off-the-shelf (OTS) products are brought to customers
	 prepacked and operated by themselves. A common example
	 of an OTS product would be Microsoft Office, where the end

user receives the software preinstalled on a new Personal
Computer (PC) and/or installs software versions from a data car-
rier or download image and is solely responsible for configuration
and operation of the product. Since almost all devices are con-

	 nected to the internet nowadays, this product class includes
also embedded software which initially is delivered as one
package with any device or Electronic Control Unit (ECU) but
can now be updated over-the-air (OTA) or by local service as
required with new and enhanced version(s) of the software.

2.	Off-the-shelf with customization (OTS + custom software)
products are products which require customer-specific additions
or modifications to provide any value to a customer. A typical
example for this kind or product would be SAP which is highly
customized in every installation.

3.	Software as a Service (SaaS) is a delivery model of IT util-
ity where customers obtain the subscription for a software
service without any form of physical delivery. In this case, the
full control and responsibility of the operations stay with the
SaaS provider. Typical examples of this model are Salesforce,
Microsoft Azure, and Amazon Web Services (AWS).

The following KPIs are adapted to the embedded industry to
reflect the efficiency of the entire end-to-end value chain of a
product, solution or other artifact that generates revenue.

Overall Lead Time
In general terms, lead time is defined as the time it takes from
the end of a previous step of any process until the current process
step is completed: Lead Time = Delay Time from Last Step +
Process/Cycle Time of the current step. Therefore, Overall Lead
Time can be calculated by adding up the lead times for the pro-
cess steps of which it is comprised.

Overall Lead Time is defined by the time it takes for an element
that provides business value to a customer, e.g., a feature to
move through the value chain – from the earliest point of captur-
ing the business hypothesis or market requirement to the point
of being:

–	 delivered to a repository or download server from which it
can be released to a customer in the case of an OTS software
product,

–	 deployed directly to production environment in case of a SaaS
solution.

As depicted in Fig. 1, Overall Lead Time is the sum of the lead
times of the exploration phase, the execution/implementation
phase, and the delivery/deployment phase. Those phases again
are comprised of multiple process steps with their own lead
times. For instance, the implementation phase includes feature
development and feature completion.

Fig. 1: Overall Lead Time variations

As software development produces unique artifacts, the Overall
Lead Time will always vary. In fact, a lead time is not a discrete
number, it is a probability distribution. Providing a median regard-
ing delivery performance is not enough. At least two values
are important to communicate: the median lead time and a high
percentile value. As illustrated in the fictional example in Fig. 2, it
takes 20 days for a work item to be delivered on average. Here,
the probability to deliver within 18 days is 85%, the probability
to deliver within 27 days is 98%. The median value is a delivery
of 12 days.

Fig. 2: Lead Time as probability distribution (fictional example)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

Median

Average

Lead Time expectation of
27 days with 98% probability

Lead Time expectation of
18 days with 85% probability

Lead Time [in days]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

10

20

30

40

50

60

70

80

90

100

Deployment Frequency / Delivery Frequency
Since value is only tangible for the end users when they get to
use the item of value, releasing that value at the right point in
time is business critical. Deciding when and what to release is a
critical economic factor that must be carefully considered. More
typically for SaaS solutions, new functionality can be released as
soon as it reaches a certain product maturity. More often, releas-
ing is a decoupled, on-demand activity that occurs for specific
users at the time they need the functionality or when it makes
the most economic sense for the organization.

Page 3 of 8

Deployment Frequency and Delivery Frequency are very related
concepts and generally describe the frequency of how often an
item provides business value to the customer. For instance, a
feature completes the full value chain (as shown in Fig. 1) when:

–	 Delivery Frequency describes how often an item of value is
made available on a delivery system, such as a repository or
download server, from which it can be released anytime based
on a business decision.

–		 Deployment Frequency describes how often an item of value is
	 provisioned into the production environment.

High delivery frequency enables companies to respond to mar-
ket opportunities with the highest-value solutions within the
shortest sustainable lead times, thereby outperforming direct
competition. In addition, receiving feedback quickly on small,
incremental value deliveries enables continuous validation of
business hypotheses and the transparency to pivot quickly if a
change in direction is required, saving time and costs.

To support release-on-demand capabilities of a business, fea-
tures must be developed, verified, and stored in a production
ready state ready for the organization to release them to the
customers. Early, built-in quality measures avoid late, costly
delays caused by problem resolution or late refactoring.

Mean Time To Recover / Mean Time To Repair
(MTTR)
To gather meaningful metrics for the MTTR of Off-The-Shelf
products, the two dimensions of recover and repair not only need
to be considered individually but also combined as necessary:

–	 Time To Recover is the time it takes to recover a defective prod-
uct or service for the customer without modifying the product
or service.

–	 Example SaaS: Infrastructure failure fixed; workaround found

–	 Example OTS: Workaround found and verified by customer

–	 Example OTS: Customer supported successfully with an
	 integration question

–	 Time To Repair is the time it takes to fix a broken product or
service with a new delivery after a defect was found. Essen-
tially, Time to Repair is identical to Overall Lead Time with a
specific filter for critical issues only. Different cases apply:

–	 A recovery needs to be followed up with a proper fix (recover 	
	 acceptable temporarily)
–	 A recovery can only be provided with a (defect) fix

The difference between Time To Recover and Time To Repair is
that in the latter case, a delivered item of value must be pulled
back into the feature development stage of the pipeline and a
new delivery has to be made to fix the problem.

In embedded software, Time To Repair is far more common as
software fixes/updates are required to resolve issues. These
software updates are often delivered via an update during a
service interval or via over-the-air (OTA).

Change Fail Rate (CFR)
Some changes to production or releases to end users result in
degradation of the product or service and subsequently require
remediation i.e., a hotfix, rollback, fix forward, or patch. The
Change Fail Rate is a metric that relates the number of failed
changes to the total number of changes:
CFR = Number of failed changes / Number of changes

The focus of the metric is to cover critical defects that impact
the end user e.g., product not usable, bad end-user rating, or less
turnover. However, the metric does not apply to cosmetic issues
with little customer disturbance.

An issue classification model could be used to categorize the
severity of issues as only severe issues are considered valid.
There may also be severe issues that are raised by the customer
but are not valid, e.g., use of an incorrect configuration or simply
misuse of the software. The product responsible has to sort out
issues that are not valid based on the business model.

As described further above, SaaS software is typically deployed,
whereas OTS is typically delivered. Therefore, we propose a re-
finement for the aforementioned formula below:

Software as a Service (SaaS)

In a SaaS context, the number of failed changes equals the
number of incidents related to a change in a given period of time
that either result in degraded service or subsequently require
remediation e.g., lead to service impairment or outage, require a
hotfix, a rollback, a fix-forward, or a patch. Changes on the other
hand are modifications to production including e.g., software
eleases, and infrastructure configuration changes.

One possible approximation to a Change Fail Rate in SaaS con-
text is:

CFR = Number of failed changes / Number of deployments

Whereas the number of deployments refers to Deployment
Frequency.

Off-the-shelf (OTS)

In OTS software development, a failed delivery is a software
version that has a major impact on the end user e.g., the soft-
ware is not usable. Here, the Change Fail is determined as:

CFR = Number of failed deliveries / number of deliveries

Whereas the number of deliveries refers to Delivery Frequency.

If a change is a failure or fail is highly dependent on the project
context and needs to be defined by the product responsible.

Page 4 of 8

Examples for failures or fails (depends on the concrete project)
are:

–	 Recall campaign

–	 Infrastructure dependency missed

–	 Product not useable by customer

Guidelines For Working with Software Delivery
KPIs

Principles [6] to promote transparency and continuous improve-
ment of the end-to-end value chain are:

–	 Link KPIs to business goals: When developing business goals,
management must involve teams in setting those goals and
select KPIs that align with and measure progress toward those
goals. Focus on outcomes, not outputs.

–	 Track trends, not numbers: A single data point is not signifi-
cant, the trend is. Trends show how process changes affect
progress toward business goals. Make sure teams are not
pitted against each other by comparing team metrics.

–	 Establish shorter measurement periods: By breaking measure-
ment periods into smaller time periods, teams can review KPIs
and trend lines to determine how well they are progressing and
identify opportunities for improvement.

–	 Stop using KPIs that do not drive change: Management and
teams need to work on KPIs that drive progress toward business
goals and provide verifiable, consistent indicators of progress.
If a KPI does not provide a valid indicator, there is only waste
and no value in pursuing it further.

How to improve KPI trends

Usually, software organizations have delivery pipelines. Those
pipelines often contain manually performed, slow process steps
with significant delays (e.g., handoffs between teams), and re-
quire lengthy and error-prone human intervention. This in turn,
leads to delaying deliveries, therein increasing their size and
scope to avoid integration pain. This approach is the opposite
of Lean, which promotes limiting work in progress (WIP) and
reducing batch size to optimize Flow and increase the delivery
frequency.

While KPIs provide transparency of the overall flow of value and
delivery performance, they do not always have clear-cut answers
or actionable tips that will seal an organization‘s success. To
improve their performance, teams need more granular metrics.
These metrics should enable deriving concrete actions to im-
prove value flow and drive the overarching paradigm of frequent
deliveries or deployments at high quality.

In best case, those granular metrics continuously monitor the
state of the delivery pipeline. The first step in improving value
flow is to map the current pipeline [7] to understand delays and

Fig. 3: Effect on Overall Lead Time in case of not accurate-and-complete over

multiple steps on the process pipeline (fictional example)

Backlog Code TestDesign

Backlog
Overall

System testing Release

Fail Rate

Process Time/
Delay Time

1 day 2 days 2 days60 days

8 days 20 days

10 days

25%

1 day

10 days 1 day 3 days 1 day
Process Time: 10 days
Overall Lead Time: 119 days
Including rework: 138 days

20% 20%

40% 20% 0%

Taken together, these granular metrics provide a detailed break-
down for velocity and quality at each step in the delivery pipeline.

Detailed monitoring of the value flow shows which measures
are best used to reduce the Overall Lead Time and Mean Time
To Repair (MTTR), as well as to increase Deployment Frequency
/ Delivery Frequency. Often, the most important factor is Delay

identify opportunities for improvement, such as eliminating de-
lays or reducing rework. When systems are first mapped, it is
common to not have clear metrics for all steps immediately.
Filling in those gaps is already a valuable finding and improve-
ment. The second step is to continuously monitor this mapping
through appropriate metrics.

Four granular metrics are used for providing transparency on KPIs
along the mapped value flow:

1.	Lead time for each process is the sum of Delay Time from the
completion of the previous step and Process Time of the current
step. The lead time of each step in the pipeline adds up to the
Overall Lead Time of value flowing through the delivery pipe-
line.

2.	Process Time is the time required to complete the work in one
step of the delivery pipeline. Very long Process Time(s) can be
an indicator for work not broken out modularly enough, i.e., suf-
ficiently small work items. If this is the case, a correlation with
poor Percent Complete and Accurate (%C&A) and overall poor
Delivery Frequency is likely as work may be planned too mono-
lithically.

3.	Delay Time is the time when no work is taking place. An exam-
ple of this is when work to be accepted by the Product Manager
is significantly delayed because he/she is a bottleneck or not
available. Understanding and eliminating unnecessary delays is
critical to improving value flow.

4.	Percent Complete and Accurate (%C&A) represents the percent-
age of work that the next step can process without rework.
One can think of it as the reverse of Fail Rate for a particular
process step. Often, delays are caused by poor quality in up-
stream steps. The %C&A metric helps identify the steps where
poor quality occurs and causes longer lead times, resulting in
delays in value delivery and in the cases of defects a longer Time
to Repair. Improving the %C&A metric is also essential to improv-
ing value flow and therefore Overall Lead Time or Time to Repair.

Page 5 of 8

Time. Reducing Delay Time is usually the most effective way to
reduce Overall Lead Time and/or increase Delivery Frequency.
Another high-priority area for improvement is any step with low
%C&A metrics, as reducing rework allows teams to focus on
adding value to the product or service. Subsequent improvement
opportunities typically focus on reducing batch size to improve
frequency of delivery / deployment. Over time, teams continu-
ously work to improve the efficiency of each step and monitor
the impact of these improvements based on the trend shown in
the software delivery performance KPIs, i.e. Overall Lead Time,
Delivery Frequency, Mean Time to Repair, Change Fail Rate.

ETAS Use Case
The engineering organization of ETAS thrives to be among the
leaders in the industry with regards to development and automa-
tion practices. ETAS operates in an agile culture following the
Scaled Agile Framework (SAFe) and applies a continuous improve-
ment mentality [8].

Software engineering occurs organized in Agile Release Trains
and is planned in quarterly Program Increments. In preparation
of the Program Increment planning sessions, Product Managers
& Product Owners prioritize and refine the Solution Backlog.
Since adopting Scrum almost a decade ago, the ETAS develop-
ment teams have continuously improved their delivery pipeline
to be able to deliver incremental value weekly or daily depending
on the product. Based on market demand and the ability of our
customers to consume releases, ETAS releases new versions to
the market on a fixed cadence of 3 months for most products.

Following the publication of the book »Accelerate« by Nicole
Forsgren, Jez Humble, and Gene Kim in 2018, ETAS decided to
implement the KPIs Overall Lead Time, Delivery Frequency, and
Mean Time to Restore/Repair (MTTR). To drive this to comple-
tion, a dedicated DevOps champion was hired to the engineering
organization in late 2018 and a dedicated CI/CD Chapter was
established to develop patterns on how to measure and lever-
age these KPIs as well as expedite the implementation of CI/CD
methodology in the various product development organizations.
Despite initial skepticism, the CI/CD Chapter succeeded in con-
vincing the development teams of the benefits of transparency
on these three KPIs. The fourth KPI discussed in the book, Change
Fail Rate, was put on the backlog to be applied to future Soft-
ware as a Service (SaaS) solutions because it is often difficult to
identify the point in time of the injection of a problem for Off-
the-Shelf products. In many cases, defects are found years later
by changing usage patterns by customers.

Currently, Overall Lead Time in ETAS is measured starting from
the point in time when a Program Manager pulls an unqualified
item from a pool of ideas to the backlog. The measurement ends
at the point in time when all engineering tasks are completed
and verified leaving only release specific – mostly business and
legal related – activities to be done.

Fig. 4: Example of Overall Lead Time distribution per process step for an OTS

software product

Median of »In Verification«

Median of »Implemented«

Median of »Implementing«

Median of »Committed«

Median of »Refined«

Median of »Refining«

Median of »Analyzed«

Median of »Analyzing«

Q1Q4Q3Q2Q1

Timeline

0

D
ur

at
io

n

50

100

150

200

By measuring Mean Time to Repair, a distinction has been made
transparent between the time engineering needs to develop a
fix and the total time needed until the defect is resolved at the
customer site.

Fig. 5: Evolving Mean Time to Repair trend for an OTS software product

0

50

100

150

200

D
ur

at
io

n

Fix date

Juli 2019 Oct. 2019 Jan. 2020 April 2020 April 2021Oct. 2020Juli 2020

Due to the fact that ETAS does not have a channel to directly
deploy a software change into a customer installation, any fix is
bundled up with the next scheduled quarterly release. This results
in a time window where every fix waits for the next release. This
insight has stimulated a lively discussion to address the tension
that ETAS’ customers simultaneously want fixes delivered as
quickly as possible on the one hand and often cannot consume
a higher Delivery Frequency on the other.

Through investments in the automation of testing and artifact
& document creation, some ETAS teams were able to increase
delivery frequency from 2-3 deliveries per week in 2019 to

For ETAS’ Off-the-Shelf (OTS) software products, this is typically
the step when the binaries are placed in an artifact repository or
onto a download server. For complex systems including hardware,
some long running and expensive final validation steps are per-
formed on demand only whenever a release is planned. Techni-
cally, validation steps have to be performed before the product
can be delivered. As some long-running and expensive final vali-
dation steps are more closely linked to the release decision, they
are excluded from the measurement of Overall Lead Time.

As can be seen in the example in Fig. 4, measurement of Overall
Lead Time is comprised of the lead times of the process steps
involved has made transparent that in many cases the time
consumed in the exploration or preparation phases of any new
feature is significantly higher than the time required for imple-
mentation and verification. Such insight has helped to shift the
focus to the appropriate steps in the value chain to analyze
potential for efficiency gains leading to a steady reduction in
the Overall Lead Time.

Page 6 of 8

greater than 1 delivery per day by Q1 2021. This investment
significantly reduces the transaction cost of process steps
during the end phase of the delivery pipeline and enables the
teams to support a growing market with increasing demand for
variations. Based on the success observed the team plans to
further increase delivery frequency in 2021.

Summary
In an increasingly volatile environment, the time it takes to vali-
date a business hypothesis or fulfill a customer requirement,
combined with the ability to deliver at optimal frequency is be-
coming increasingly business critical. Building and maintaining a
delivery pipeline gives an organization the ability to continuously
deliver new high-quality features to customers faster and far
more frequently.

About ETAS
ETAS‘ portfolio includes vehicle basic software, middleware,
and development tools for the realization of software-
defined vehicles. Our product solutions and services enable
vehicle manufacturers and suppliers to develop and operate
them with increased efficiency. Holistic cybersecurity solu-
tions in the automotive sector are offered via the ESCRYPT
brand.

The automotive industry is undergoing fundamental
change. New, energy-efficient vehicle powertrains, (par-
tially) autonomous driving, digitalization, connectivity, and
cybersecurity – the list of innovations has never been so
long. At the same time, new systems must be brought to
market faster. Key technologies are electronics and soft-
ware, which is exactly where ETAS’ strengths lie. ETAS
solutions are used at all stages of embedded software
development.

In this sense, this whitepaper refers to the four KPIs identified
by Forsgren et al. (2018), which are causally related to improved
business performance [1] and proposes that for businesses
selling software products such as Off-the-shelf (OTS) and Soft-
ware-as-a-Service (SaaS), an adapted set of KPIs is used. In this
context, we conclude that Overall Lead Time, Delivery respec-
tive Deployment Frequency, Mean Time To Restore/Repair, and
Change Fail Rate have proven useful as KPIs.

These four KPIs provide software organizations with an effective
tool for continuous learning and improvement and allow teams
and organizations to compare and benchmark against other teams
within the organization or against the industry as a whole.

Although measurables do not always have clear-cut answers
or actionable tips that will seal business success, the benefit
of well-chosen KPIs is that they foster regular discussions and
nourish a culture of continuous improvement.

About Kugler Maag Cie
In everyday business, it all boils down to success. By en-
suring the corporate strategy is implemented methodically
and professionally, we help foster front-line innovation.
With our consultation, your R&D successfully puts your
ideas and innovations on the road. As the leading consult-
ing firm in automotive electronics development, Kugler
Maag Cie [10] provides both management consulting and
process excellence. We design your process-oriented R&D
organization adaptively to market- needs in a dynamic busi-
ness environment. Our experts pioneered the deployment
of Agile development methods in Automotive development.

Since 2010, we have helped launch many Agile Transfor-
mation at many corporations on all organizational levels
and promoted the genesis of an Agile mindset. Of course,
your projects and processes will be consistently fused and
supported with such industry standards as Automotive
SPICE and Functional Safety (ISO 26262). Our Automotive
Security experts foster awareness within your organization
of comprehensive, end-to-end safeguards. Looking for con-
sultancy on Automotive electronics development? With us,
you’ll find it a lot easier.

Page 7 of 8

References
[1] Forsgren, Nicole; Humble, Jez; Kim, Gene (2018): Accelerate: The Science of Lean Software and Devops: Building and Scaling
	 High Performing Technology Organizations.

[2] 	Marr, Bernard (2020): What’s The Difference Between Lagging And Leading Indicator?
	 Link: https://www.forbes.com/sites/bernard-marr/2020/10/23/whats-the-differencebetween- lagging-and-leading-indicator

[3] Hatheway, Richard (2016): The Real Difference Between Metrics and KPIs.
	 Link: https://www.linkedin.com/pulse/real-difference-between-metrics-kpis-richard-hatheway

[4] Weber, Sergej; Tengler, Steve (2020): Five Ways Agile in Automotive Will Pivot in 2020.
	 Link: https://www.wardsauto.com/industry-voices/five-ways-agile-automotive-will-pivot-2020

[5] Thoughtworks (2018): Four Key Metrics.
	 Link: https://www.thoughtworks.com/radar/techniques/four-key-metrics

[6] Altvater, Alexandra (2017): What Are Software Metrics and How Can You Track Them?
	 Link: https://stackify.com/tracksoftware-metrics

[7]	 Scaled Agile, Inc. (2021): Continuous Delivery Pipeline.
	 Link: https://www.scaledagileframework.com/continuousdelivery-pipeline

[8]	 Scaled Agile, Inc. (2021): Scaled Agile Framework 5.1.
	 Link: https://www.scaledagileframework.com

[9]	 ETAS (2021): About ETAS.
	 Link: https://www.etas.com/en/company/about-etas.php

[10] 	Kugler Maag Cie (2021): About Us.
	 Link: https://www.kuglermaag.com/about-us

Page 8 of 8

