eTAS

ETAS VECU-BUILDER V1.3

www.etas.com

Copyright

The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation
to this document. The software described in it can only be used if the customer is
in possession of a general license agreement or single license. Using and copying
is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2023 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

VECU-BUILDER V1.3 | User Guide RO4 EN 1 06.2023

Contents

1.1
12
1.3

2.1

22
23
2.4

3.1

3.2
3.3
3.4
3.5

3.6

3.7

4.2
4.3
4.4

Safety and Privacy Information ... 5
INteNded USE ... oo 5
Target GrOUD oo 5
Privacy NOTICe ... o 5
1.3.1 Data PrOCESSINGoiiiiiiiiiii e 5
1.3.2 Technical and Organizational Measures ..o 6
About VECU-BUILDER ... 7
BaSICS 7
Virtual ECU 8
VECU Creation Process Workflow ... 8
Warning and Error MeSSages ... 9
INStallation ... 10
Hardware ReqQUITEMENTS e 10
P DA At ON 10
Installation Content ... 10
L BN S NG 1
Installation ONWINAOWS 10 ... 1
3.5.1 Software Requirements for Windows 10 ... 1
352 Manual Installation ... 12
353 SilentInstallation ... 13
354 Uninstalling on WIindows 10 ... 14
Installation on Ubuntu 20.04 LTS ... 15
3.6.1 Software Requirements for Ubuntu 20.04 LTS ... 15
3.6.2 Installingon Ubuntu 20.04 LTS 15
3.6.3 Uninstallingon Ubuntu 20.04 LTS ... 16
Installed Files and FOIAers ... 16
Working with VECU-BUILDER 18
Creating a New WOrkSpace ... 19
4.1 Creating a Workspace on WINdOWS ... 19
412 Creating a Workspace on Ubuntu 20.04 LTS ...l 21
Importing Filesand FOIders ... 23
Buildingthe VECU ... 25

BUIIAING TE FMU ..o, 26

45
4.6

52

6.1
6.2

7.
7.2

9.1

9.2
9.3
9.4
95
9.6
9.7
9.8

10

Workspace CONTENt ... 27

CoNFIQUIATION ... 29
Exploring the EXamples ... 38
SIMPIE EXAMIPIE 38
511 FMU CheCKer 38
512 Difference Between Debugand Release VECUs 39
513 InitialData Functionality ... 40
514 eeprom Functionality ... 43
515 Features to Explore in the Simple Example Workspace 44
BCU EXaMDle L 45
521 Show Symbol Information ... 45
522 A2LFile PatCniNg ... 46
523 A2LNamMe MapPING ... 47
52.4 Example of Additional Scripts: A2L Characteristics as Parameters 48
525 Features to Explore in the BCUWorkspace ... 49
Controlling VECU-BUILDER ... 50
Manual INteraCtion 50
Command-Line INterface ... 50
Debugging VECU . 53
Debugging with Visual Studio 2019 ... 54
Debugging with Visual StudioCode ... 55
Workspace Migration ... 56
TroublesSnOOtiNg 57
CMBKE NOT FOUNT ... 57
Notepad++ Does Not Open During Workspace Creation ... 58
Some Breakpoints Not Being Hit 59
(Symbolinfo.dll) The *.die FileIs Too Large toLoad .. 59
Windows Cannot Access Localhost While Using Sync Attribute in EEPROM 59
Redirecting Function Calls Did Not Work as Expected ... 65
License Check Failed ... 65
Building Sources Failed ... 66

1.1

1.2

1.3

1.3.1

Safety and Privacy Information

In this chapter you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

Intended Use

The product is designed to produce a virtual ECU for microcontrollers from exist-
ing ECU source codes or from precompiled binaries. The virtual ECU is designed
for simulation, debugging, and pre-calibration of ECU software in a computer-
based virtual simulation environment.

In general, virtual ECUs may not be real-time capable. If you control physical
devices with a virtual ECU, the system may respond unexpectedly. Take suitable
precautions to ensure safe operation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information. Please adhere to the ETAS Safety
Advice (see documentation folder).

Target Group

This product is directed at trained qualified personnel in development of auto-
motive ECU software (e.g., function developer, application engineer, ECU soft-
ware integrator, system engineer or calibration engineer) at OEMs, tier-1or tier-2
suppliers in the auto-motive industry. Technical knowledge in control unit engin-
eering is a prerequisite. In addition, programming knowledge in C/C++ is required.
AUTOSAR Classic knowledge is helpful.

Privacy Notice

Your privacy is important to ETAS. We have created the following privacy notice
that informs you, which data are processed in VECU-BUILDER, which data cat-
egories VECU-BUILDER uses, and which technical measure you must take to
ensure the privacy of the users. Additionally, we provide further instructions
where this product stores and where you can delete personal data.

Data Processing

Note that personal data or data categories are processed when using this
product (e.g. in log files). The purchaser of this product is responsible for the
legal conformity of processing the data in accordance with Article 4 No. 7 of the
General Data Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is
not liable for any mishandling of this data.

1.3.2

Technical and Organizational Measures

This product itself does not encrypt the personal data or data categories that it
records. Ensure the data security of the recorded data by suitable technical or
organizational measures of your IT system, e.g., by classical anti-theft and
access protection on the hardware. Personal data in log files can be deleted by
tools in the operating system.

2.

2 About VECU-BUILDER | 7

About VECU-BUILDER

VECU-BUILDER is designed to build a virtual ECU (vECU). The VECU can be used
for simulation, debugging and pre-calibration of ECU software in a computer-
based virtual simulation environment.

VECU-BUILDER supports the generation of Level-1, Level-2, and Level-3 vECUs
according to the Prostep Definition of vECUs. Level-4 vECUSs, i.e., hex-files for a
specific target, are not supported.

VECU-BUILDER is based on Python and CMake. The inputs can either be C/C++
source codes or binaries like object files or shared libraries including symbol
information. In contrast to AUTOSAR Classic, the configuration of a vECU is done
in a single YAML file (vEcuConf . yam1). No ARXML files are processed. The prop-
erties are configured in this text-based file. This file is used to define the sup-
ported features of the vECU such as an XCP slave or initial data as part of
simulated NVRAM. VECU-BUILDER wraps the binaries of the vECU into an FMU
(FMI 2.0 for Co-Simulation). These FMUs can be integrated into any FMI-com-
pliant simulation master.

A Youtube Playlist about VECU-BUILDER and its features is available here.

Basics

The basic principle is to keep the data lean in a simple and smart way. The
concept is the simplification of the ECU software stack and the ARXML file. The
A2L file is patched by removing all hardware dependencies and updating memory
addresses of all inputs, outputs, measurements, and characteristics. The soft-
ware stack layers are represented by C and H files which are reflected in the
imported folder (vECU\imported) in the VECU build process. The resultis a
stand-alone FMU containing the model description (e.g. its variables) as XML file,
the access to calibration and measurement variables via patched A2L file and an
executable model as DLL/SO file.

Simplification

- I Result of VECU-BUILDER:

. vECU

FMU
ECU Interpreted
software as sources

stack or libraries - g|
AZL =
C & H files Ve
and DLL :

with Application
Layer, Runtime
Environrment and
Basissoftware

Fig. 2-1: Basic concept and result of VECU-BUILDER

VECU-BUILDER V1.3 | User Guide

https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://www.youtube.com/playlist?list=PLdK8AlEjocsX7X6n60nxfyj8CKf_sLnNV

2.2

2.3

Virtual ECU

A VECU is avirtualized ECU which can be used as a real ECU. With the VECU you
can test the ECU software and execute the software functionality without hard-
ware. This gives you the possibility to test the communication between the ECUs
before prototypes or hardware is available. The VECU contains the code, the para-
meters and the XCP slave as an alternative path to the hex code.

VECU Creation Process Workflow

The whole workflow is an iterative process to get to the final configuration of the
YAML file. The listed points give a rough overview of the workflow. Section A and F
are taking place out of the VECU-BUILDER.

A.

Prepare sources
» Directives that refer to header files in code must be fixed

» Generate a script collecting the files you need from the various loc-
ations you found

Compile sources, incompatible sources must be removed
» Generate new workspace

» Copy sources into workspace

* Build

» Check error messages

* Remove or patch code

Link sources and create stubs

» Solve link errors with empty stubs

Define Inputs and Outputs (I/0) to make the VECU runnable
» Use symbol information to generate 1/O

» Manually patch the sources of virtual devices

 Use the C notation of the variables (e.g., sensor. *)
Create task model to run the tasks

» Use text format to define task model

Operate for first time, apply SiL specific code changes

» Debug code

* Fill some stub functions with code or apply SiL specific code changes

After building the first iteration of an vECU it can be used to perform further
steps like (out of VECU-BUILDER):

Integrate vVECU with plant models and execute it in Co-Simulation-envir-
onment

Run and test the vECU in an experiment environment
Measurement and calibration of vECU

Debugging with source code editor

2.4

Warning and Error Messages

VECU-BUILDER may encounter situations in which an Error or a Warning message
is displayed.

Errors are printed in red and indicate a severe issue which prevents the build from
succeeding.

/BCU/SilEx BCU.zip"
ng contents of "C:/ProgramData/ETAS/VECU- EUILDERﬂErample~ / ditonal_sources"|

[** FAILURE ***

Fig. 2-2: Error message

Warnings are printed in yellow and are meant to draw the attention to a certain
issue during the build. The issue is not as severe as an error and thus the build
continues.

jr## Importing files and folders i

B i i i
[08:07:34] 1 of 4: Reading config: vEcuConf.yaml

[08 7:34] 2 of 4: Runnlng scrlpts trlggered thr "before_import"
o VECU " defined in additional_scripts section of vEcuConf.yam]]

Fig. 2-3: Warning message

3.1

3.2

3.3

Installation

This chapter provides information for preparing and performing the installation
and for licensing the software. The installation can be fulfilled for the following
operating systems:

— Windows 10

— Ubuntu 20.04 LTS

Hardware Requirements

The following Hardware Requirements need to be met:

Processor min. 2 GHz
3 GHz Dual-Core or higher recommended

Memory min. 8 GB RAM
32 GB RAM recommended

Free Disk Space 5 GB (not including the size for application data)
>100 GB recommended

Preparation

Prior to the installation, check that your computer meets the Hardware and Soft-
ware Requirements. Depending on the operating system used and network con-
nection, you must ensure that you have the required user rights.

@ Note

Ensure that you have the necessary access privileges for the installation of the
software. If in doubt, contact your system administrator.

Installation Content

The installation content can either be downloaded from ETAS license and down-
load portal by login via your E-mail address and then be installed or installed from
the DVD.

It contains information about the open-source software attributions, important
information like Safety Advice or the User Guide and the executable installation
files.

@ Note

If the download files or download link are not available, contact Technical Sup-
port.

https://license.etas.com/flexnet/operationsportal/logon.do
https://license.etas.com/flexnet/operationsportal/logon.do

3.4

3.5

3.5.1

Licensing

The use of VECU-BUILDER is protected by electronic licensing. Valid licenses are
necessary to operate ETAS VECU-BUILDER and its add-ons. The use of unli-
censed ETAS software is prohibited. The required licenses are not included in this
delivery.

When you purchase VECU-BUILDER licenses, you receive a separate entitlement

letter. Activate the license using a self-service portal on the ETAS website:
https://www.etas.com/support/licensing

For assistance, please consult the help file available on the start page of the self-
service portal. During the activation process, you receive the necessary license
keys per e-mail.

To activate the license

In the Windows Start menu, select inthe app listE > ETAS > ETAS License Man-
ager.

Follow the instructions given in the dialog. For further information about, for
example, the ETAS license models and borrowing a license, press <F1> in the
ETAS License Manager.

License Management FAQ

For more information about FlexNet Embedded Technology and ETAS License
Manager, see ETAS License Management FAQ in the Download Center on the
ETAS website.

VECU-BUILDER checks

— the product license when building FMUs.

— therun-time license during run-time of the veCU.
— the XCP license before establishing an XCP connection.

— the GO license during build-time. If it is valid, it will prevent all license
checks during run-time.

Installation on Windows 10

Software Requirements for Windows 10

The following Software Requirements need to be met:

Required Software CMake (version =3.15)
Recommended Software Notepad++
Optional Software Microsoft Visual Studio 2015, 2017, 2019, 2022

Microsoft Visual Studio Code
Python

https://www.etas.com/support/licensing
https://www.etas.com/en/downloadcenter/37717.php

3.5.2

Manual Installation

1.

S LI

a

Go to the directory where the installation file is located and execute the
VECU_BUILDER installer 1.3.0.exe file.

The Setup Wizard opens.
Klick Next.
The "End User License Agreement” window opens.

Read the License Agreement carefully, then select | accept the terms of
the License Agreement.

Klick Next.
The "Safety Advice" window opens.

Read the Safety Advice carefully, then select | read and selected the
Safety Advice.

Klick Next.

The "Installation Path" window opens.

7. Accept the default path (click Next) or click Browse to select a custom loc-

L © n «© n

11.

12.

ation.

The "Ready to Install” window opens.

Click Install.

The installation is performed, its progress is shown via a progress bar.
Click Next.

The "Third-party Software” window opens.

Install CMake (required) and Notepad++ (recommended).
See the links below in the installation dialog:

CMake (version 3.15 or higher)

Notepad++

Click Next.

The "Completing VECU-BUILDER Setup” window opens.

Optionally, activate the Open VECU-BUILDER documentation checkbox to
open the documentation folder.

Click Finish.
The installation is completed, and the VECU-BUILDER can now be used.

https://cmake.org/download/
https://notepad-plus-plus.org/downloads/

3.5.3 Silent Installation

Besides the Manual Installation, you also can use the Silent Installation. Install-
ation differs between using the Command Prompt and the PowerShell.

Silent Installation using Command Prompt
1. Open the command prompt.

2. Navigate to the directory where the installer (VECU-BUILDER
installer 1.3.0.exe) islocated

3. Execute the following command:

start cmd.exe /c VECU-BUILDER installer 1.3.0.exe /S

/INST="path to installation dir" /EULAAccepted="YES"
/SafetyHintsAccepted="YES"
where path to installation dir containsa pathto adirectory
where the software is to be installed.

=
Microsoft Windows [Version 10.0.19045.2965]
(c) Microsoft Corporation. All rights reserved.

start cmd.exe /c
ECU-BUILDER_installer_1.3.0.exe /S /INST="path_to_installation_dir" /EULAAccepted="YES" /
SafetyHintsAccepted="YES"

= Anew command prompt window opens and installation starts.

User has accepted EULA and Safety Advice.

Silent installation has started.Please wait for completion...

Silent Installation using PowerShell
1. Open the PowerShell.

2. Navigate to the directory where the installer (VECU-BUILDER
installer 1.3.0.exe) islocated
3. Execute the following command:

Start-Process -FilePath " .\VECU-BUILDER installer 1.3.0.exe/"
-ArgumentList "/c /S /INST= path to installation dir

/EULAAccepted=YES /SafetyHintsAccepted=YES" -Wait
wherepath to installation dir containsa path to adirectory
where the software is to be installed.

EX Windows Powershell - o x
PowersShell
opyright (C) Microsoft Corporation. All rights reserved.

ry the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\Windows\system32> Set-Location
IPS C:\Users\BCN1LR\Documents> Start-Process

>>

Or

4. Execute the following command:
Start-Process -FilePath " path to \VECU-BUILDER
installer 1.3.0.exe/" -ArgumentList "/c /S /INST= path
to installation dir /EULAAccepted=YES /SafetyHint-
sAccepted=YES" -Wait
where path_to contains the path where the installer (VECU-BUILDER
installer 1.3.0.exe)islocatedand path to installation dir
contains a path to a directory where the software is to be installed.

EX Wincows PowerShel o

Windows PowerShell
opyright (C) Microsoft Corporation. All rights reserved.

ry the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Windows\system32> Start-Process

= Installation starts.
User has accepted EULA and Safety Advice.

Silent installation has started.Please wait for completion...

3.5.4 Uninstalling on Windows 10
1. Open the location where you installed VECU-BUILDER.

If you used the default installation location, you can find it under
C:/Program Files/ETAS\VECU-BUILDER

2. Executetheuninstall.exe with double-click.

3.6 Installation on Ubuntu 20.04 LTS

3.6.1 Software Requirements for Ubuntu 20.04 LTS

The following Software Requirements need to be met:

Required Software cmake

build-essential
gcc-multilib
g++-multilib
libssl-dev:i386
linux-libc-dev:i386
nano

xterm

Optional Software Microsoft Visual Studio Code

Python

3.6.2 Installing on Ubuntu 20.04 LTS

1.

© L~ 9 4 o

Navigate to the directory where the Debian Software Package file VECU-
BUILDER installer 1.3.0.debislocated.

Open a new terminal.
Execute the command of
sudo apt install ./VECU-BUILDER installer 1.3.0.deb

Enter your password.

(i) Note

VECU-BUILDER has dependencies on other software. The dependent
software packages will be installed during the installation. An Internet
connection is required to install the dependent software packages.

Accept the installation of dependent packages.

The packages are selected and unpacked.

Accept the EULA.

Accept the Safety Advice.

The VECU-BUILDER package deployment is completed.

Logout and login to enable environment variables to be set.

3.6.3

3.7

3 Installation | 16

Uninstalling on Ubuntu 20.04 LTS

1.
2.

Open a new terminal.

Execute the command of

sudo apt remove vecu-builder

You are asked if you want to continue uninstalling.
To continue, enter Y and hit Enter.

The VECU-BUILDER package is removed.

Installed Files and Folders

VECU-BUILDER Tool

The default installation location is
C:/Program Files/ETAS/VECU-BUILDER/1.3.0on Windows

Or

/opt/etas/VECU-BUILDER/1.3.0onUbuntu 20.04 LTS.

[t is recommended not to alter the installation location.

An environment variable of VECUBUILDER HOME points to this folder.

~

|

Name i 3rd_party
3rd_party @ vin
bin

Bl buid

build
documentation @ cocumentation

=] CreateWorkspace.bat CreateWorkspace.sh

Fig. 3-1: Installation content (left: Windows, right: Ubuntu 20.04 LTS)

The content of this folder consists of several subfolders and one command
script:

3rd party: Contains the third party tools of FMU Checker and MinGW.
bin: Contains library and execution files for the build process. These files
are important for the build and must not be altered.

build: Contains templates, resources, and scripts for the build process.
These files are important for the build and must not be altered.
documentation: Contains the VECU-BUILDER User Guide, the OSS Attri-
pution and the ETAS Safety Advice documents.

CreateWorkspace.bat (Windows) / CreateWorkspace. sh (Ubuntu
20.04 LTS): Creates a new workspace. After executing, you will be guided
through the process step by step.

VECU-BUILDER V1.3 | User Guide

3 Installation |17

VECU-BUILDER Examples
You can find ready-to-use examples in the following location:
C:/ProgramData/ETAS\VECU-BUILDER/Examples 1.3.0onWindows
Or
/opt/etas/VECU-BUILDER/Examples 1.3.0onUbuntu 20.04 LTS.
An environment variable of VECUBUILDER EXAMPLES points to this folder.
The following two examples are delivered along with the tool:

— BCU (Body Control Unit)

— SimpleExample

« VECU-BUILDER > Examples_1.3.0 opt etast: VECU-BUILDER Examples_1.3.0

MName Type
. BCU
BCU File folder
SimpleExample File folder - SimpleExample

Fig. 3-2: Delivered examples (left: Windows, right: Ubuntu 20.04 LTS)

VECU-BUILDER Workspaces

As location for all your workspaces we recommend the default folder, where you
should create a dedicated subfolder for each workspace.

The default folder is created during the installation process on Windows under
C:/Users/Public/Documents/VECU-BUILDER Workspaces

Or
/opt/etas/VECU-BUILDER Workspaces onUbuntu 20.04 LTS.

Access to Artefacts in Windows

You can access all artefacts in Windows via their respective Start Menu entries.

B ETAS VECU-BUILDER

. Create new workspace

Manuals and Tutorials

VECU-BUILDER Examples

VECU-BUILDER Workspaces

Fig. 3-3: Start Menu entries

VECU-BUILDER V1.3 | User Guide

A

4 Working with VECU-BUILDER 118

Working with VECU-BUILDER

To commence your learning, we recommend following the bellow path:

* Create a workspace based on the provided Simple ExampD
» Get familiar with all artefacts of this workspace
» Explore VECU-BUILDER features such as

* build tool, inputs, outputs and tasks

Simple » initial data and eeprom
Example » redirect function calls
» debug hook j

» Create a workspace based on the provided BCU Example \
» Explore further VECU-BUILDER features such as
« additional include directories
+ additional compile and linker
» additional scripts
» xcp slave and a2l file patching file)

BCU
Example

» Create a new workspace with your own sources

» Explore the remainig VECU-BUILDER features

* Incrementally increase the complexity of your project
Build your * Use the CLI to control VECU-BUILDER

own VECU » Share the knowledge you gained so far with your colleaguesJ

Fig. 4-1: Thelearning path

This section guides you through the process of creating a vVECU in four distinct
stages. Each stage can be triggered individually, and you can choose to continue
with the next one.

Gl e Importing Building a Building a

VECU FMU

new files and
workspace folders

Fig. 4-2: VECU-BUILDER stages

By following the steps described in the next chapters, you will build your first
VvECU based on the Simple Example. This is the ideal starting point for your vir-
tualization leaning journey.

VECU-BUILDER V1.3 | User Guide

4.7

411

Creating a New Workspace

The very first step, required at the beginning of every project, is to create a work-
space.

@ Note

Workspaces are designed for parallel use.

A single workspace cannot be used for tasks running in parallel.

Creating a Workspace on Windows
1. Launch “Create new workspace” from the Start Menu.

= A console window opens providing details on the overall process, various
stages it goes through and their individual steps.

= Inthe first step of “Create new workspace” you will be asked to select a
folder where your workspace will be saved.

. Create new workspace

(C) 2020-2023 ETAS GmbH. All rights reserved.

VECU-BUILDER 1.3.0

#iH EHHHH R R R R R S A S R R R R R
#it# Creating new workspace #itH
HHHFH R R R R R R R R R
[07:36:14] 1 of 3: Selecting the project folder

Please select a workspace folder for your project!

<« Public > Public Documents s> VECU-BUILDER Workspaces [J] Search VECU-BUILDER_Wo

Organize v New folder

A Name

Folder:

Select Folder

Fig. 4-3: Select workspace location (Windows)

2. Navigate to the default location of your workspaces
C:/Users/Public/Documents\VECU-BUILDER Workspaces
and select an existing folder or create a new one.

= The configuration file vEcuConf . yaml opens in Notepad++.

= Per default, this is the configuration file of the Simple Example.

(C) 2020-2023 ETAS GmbH. All rights reserved. Q

B g g S s s s R e i
#i## Creating new workspace it
FHFF AR R R R R R R R A R A R R
[07:36:14] 1 of 3: Selecting the project folder

Please select a workspace folder for your project!

New project path is "C:/Users/Public/Documents/VECU-BUILDER Workspaces/SimpleExampl
e :
[07:37:42] 2 of 3: Creating project template

[@7:37:42] 3 of 3: Please update "vEcuConf.yaml"

Please save and close the editor after editing "vEcuConf.yaml"

o

File Edit Search View Encoding Language Settings Tools Macro Run TextFX Pl

o ala @ iz BES
[E vEcuconfyami 1

1 R R R R R R R R R A R R R R R RS -
2 4 The version of the .yaml file schema #

4 version:

7 # build_sou or import_compiled #

build_ sou You import sources, header files, static libraries and let

prvEcuBuild compil link and build a dill. S

il # The dll will be named <fmu name>.dll. #
11 # import_compiled: Just import a d11, wrap it with a fmu wrapper, setup the # v

2 imriibc cwmteate omd foclo 2

[YAML Ain't Markug length : 26.728 lines: 430 Ln:4 Col:13 Pos:259 Windows (CR LF) UTF-8

Fig. 4-4: Default configuration (Windows)

3. Keep the configuration file as is and close the Notepad ++ application.
= Your new workspace is now created.

The process will automatically continue with the next stage.

4.1.2

4 Working with VECU-BUILDER | 21

Creating a Workspace on Ubuntu 20.04 LTS

@ Note

In Ubuntu 20.04 LTS the folder, that should be used as workspace, needs to
exist before the workspace creation is proceeded.

1.

Navigate to the folder, where the CreateWorkspace. shislocated. The
default pathis opt/etas/VECU-BUILDER/1.3.0.

Open anew terminal.
Enter./CreateWorkspace. sh.

In the first step of “Create new workspace” you will be asked to select a
folder where your workspace will be saved.

Navigate to the default location of your workspaces /opt/etas/VECU-
BUILDER Workspaces and select an existing folder.

nadine@nadine-VirtualBox: fopt/etas/VECU-BUILDER/1.3.0-rc.1 Q = = o X

$./CreateWorkspace.sh
s 3k ok 3k sk ok ok ok ok ok ok ok ok o ok o ok sk ok sk sk ok oK oK ok ok sk o ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok ok ok ok ok ok sk ok sk ko K oK oK K sk ok ok K
VECUBUILDER HOME: /opt/etas/VECU-BUILDER/1.3.0 /

VECUBUILDER EXAMPLES: /opt/etas/VECU-BUILDER/Examples 1.3.0 g
e T e e i e S L

(C) 2020-2023 ETAS GmbH. All rights reserved.

VECU-BUILDER 1.3.0

B T
Creating new workspace i
B e]
[08:18:13] 1 of 3: Selecting the project folder

Please select a workspace folder for your project!

Please select a workspace Folder for your project! *

Directory: jopt/etas/VECU-BUILDER_Workspaces/ = | Eﬁ

I}
Selection: |fopt/etas/VECU-BUILDER_Workspaces/ 0K

Cancel

Fig. 4-5: Select workspace location (Ubuntu 20.04 LTS)

VECU-BUILDER V1.3 | User Guide

4 Working with VECU-BUILDER | 22

= The configuration file vEcuConf.yaml Opens.
= Per default, this is the configuration file of the Simple Example.

fopt/etas/VECU-BUILDER/1.3.0 Q = —

: $./CreateWorkspace.sh
e ok o o ok ok ok ok ok ok ok ok ok ok ok o ko o o ok ok ok ok R ok o 3 ok ok o o ko ok ok ok s ok o o ok ok ok o ok kR ok ok ok ok

VECUBUILDER HOME: fopt/etas/VECU-BUILDER/1.3.0 /
VECUBUILDER EXAMPLES: /opt/etas/VECU-BUILDER/Examples 1.3.0 /
* ok ok ok ok K sk ok ok ok ok ok ok Kok

(C) 2020-2023 ETAS GmbH. All rights reserved.
\VECU-BUILDER 1.3.0
B B s S e

Creating new workspace it

[08:18:13] 1 of 3: Selecting the project folder

Please select a workspace folder for your project!

New project path is "/opt/etas/VECU-BUILDER Workspaces/SimpleExample".
[08:19:24] 2 of 3: Creating project template

[08:19:24] 3 of 3: Please update "vEcuConf.yaml"

Please save and close the editor after editing "vEcuConf.yaml"

= Terminal

Fig. 4-6: Default configuration (Ubuntu 20.04 LTS)

5. Keep the configuration file asis and close it.
= Your new workspace is now created.

The process will automatically continue with the next stage.

VECU-BUILDER V1.3 | User Guide

4.2 Importing Files and Folders

During this stage, the sources defined in your vEcuConf . yaml are copied to the
"vEcu/imported" folder in your workspace.

@ Note

During the import stage, files and folders get copied into the workspace. For
reasons of portability, it is recommended to create workspaces that are self-
contained.

After successful completion of the previous stage Creating a New Workspace
you were forwarded to the next stage Importing Files and Folders and the pro-
cess continues.

If you work in an already existing workspace, you can trigger this stage by running
1 Import.bat onWindowsorl Import.shonUbuntu20.04LTS.

= After successful completion of this stage Importing Files and Folders a dia-
log opens asking you whether you want to continue with the next stage
Building the vVECU or inspect the results of this stage.

. Create new workspace

e e
#i## Importing files and folders #H
o e S S e e T e e e e e e
[07:42:30] 1 of 4: Reading config: vEcuConf.yaml
[07:42:30] 2 of 4: Running scripts triggered through "before_import"
- No script defined in the vEcuConf.yaml file
[07:42:30] 3 of 4: Importing files and folders to "vECU/imported"
- Copying contents of "C:/ProgramData/ETAS/VECU-BUILDER/E
xamples_1.3.0 /SimpleExample/src”
[07:42:30] 4 of 4: Running scripts triggered through "after_import"

- No script defined in the vEcuConf.yaml file
kA% SUCCESS **4

Please answer the question!

Do you want to proceed building the sources of vECU or
inspect the results of the import?

Yes: Build the sources of vECU.

No: Inspect the results of the import.
Cancel: Stop the process here.

Cancel

Fig. 4-7: Proceed with vECU Build dialog or inspect the results (Win-
dows)

Jfopt/etas/VECU-BUILDER/1.3.0

(C) 2020-2023 ETAS GmbH. All rights reserved.
VECU-BUILDER 1.3.0
B L
Importing files and folders ##H
T el
[08:20:52] 1 of 4: Reading config: vEcuConf.yaml
[08:20:52] 2 of 4: Running scripts triggered through "before import"

- No script defined in the vEcuConf.yaml file
[08:20:52] 3 of 4: Importing files and folders to "vECU/imported"

- Copying contents of "/opt/etas/VECU-BUILDER/Examples 1.3.0 /51
mpleExample/src"
[08:20:52] 4 of 4: Running scripts triggered through "after import"

- No script defined in the vEcuConf.yaml file
*¥k GUCCESS ***
Please answer the question!

Question

Do you want to proceed building the
sources of vECU or inspect the results of
the import?

Yes: Build the sources of vECU.
No: Inspect the results of the import.
Cancel: Stop the process here.

Yes] No | Cancel ‘

Fig. 4-8: Proceed with vECU Build dialog or inspect the results (Ubuntu
20.04LTS)

1. Click Yes.
= Your new workspace is now created.

The process will continue with the next stage.

4.3

Building the VECU

During this stage, the sources imported into your workspace are compiled and
linked into a DLL/SO file forming the core functionality of your future vECU.

After successful completion of the previous stage Importing Files and Folders and
selecting to proceed with the build of the vECU you were forwarded to the next
stage Building the FMU and the process continues.

If you work in an already existing workspace, you can trigger this stage by running
2 Build.batonWindowsor2 Build.shonUbuntu 20.04 LTS.

. Create new workspace

(C) 2020-2023 ETAS GmbH. All rights reserved.

VECU-BUILDER 1.3.0

s R R R R R I R
Building sources of VvECU Hi
o e e e e e e e e e e
[07:43:30] 1 of 4: Reading config: vEcuConf.yaml

[67:43:30] 2 of 4: Creating Visual Studio Code debug configuration

[07:43:38] 3 of 4: Running scripts triggered through "before_build_sources”
- No script defined in the vEcuConf.yaml file

[07:43:30] 4 of 4: Compiling and linking
- SimpleExample.dll (Windows 64bit)

Forwarding to building the FMUs upon completion...

B | GEES SR

Please wait 4 seconds.

Fig. 4-9: Building VECU completed (Windows)

[+1 foptfetas/VECU-BUILDER/1.3.0

(C) 2020-2023 ETAS GmbH. All rights reserved.
VECU-BUILDER 1.3.0
B b B S b B e
f## Building sources of vECU it
B
[08:21:57] 1 of 4: Reading config: vEcuConf.yaml
[08:21:57] 2 of 4: Creating Visual Studio Code debug configuration
[08:21:57] 3 of 4: Running scripts triggered through "before build sources"
- No script defined in the vEcuConf.yaml file
[08:21:57] 4 of 4: Compiling and linking
- libSimpleExample.so (Linux 64bit)
Forwarding to building the FMUs upon completion...
FEE SUCGESS *+4
Please wait 4 seconds.

Fig. 4-10: Building VECU completed (Ubuntu 20.04 LTS)

The process will automatically continue with the next stage.

If the process will not automatically continue with the next stage and error mes-
sages are displayed, see Building Sources Failed for more details.

4.4 Building the FMU

During this stage, the DLL/SO file created in the previous stage will be wrapped
into an FMU container representing your vECU.

After successful completion of the previous stage Building the VECU and select-
ing to proceed with the build of the VECU you were forwarded to the next stage
Building the FMU where the process completes.

o]
(C) 2020-2023 ETAS GmbH. All rights reserved.
VECU-BUILDER 1.3.0
HAHHAHH AR H AT H A H A A AR A A A R A H A H A R A
Building FMU HiHH
e e e e e R e A

:49:16] 1 of 6: Reading config: vEcuConf.yaml

:49:17] 2 of 6: Running scripts triggered through "before build fmus™

- No script defined in the vEcuConf.yaml file
:49:17] 3 of 6: Building inputs, outputs, parameters, tasks
:49:25] 4 of 6: Patching a2l file

- No a2l file defined in the vEcuConf.yaml file

:25] 5 of 6: Building fmu archives

:27] 6 of 6: Running scripts triggered through "after build fmus"
- No script defined in the vEcuConf.yaml file

SUCCESS ***
Please wait 4 seconds.

Fig. 4-11: Building FMU completed (Windows)

bash

(C) 2020-2023 ETAS GmbH. All rights reserved.
VECU-BUILDER 1.3.0
888808 808 800000 IR 0 T80TS0 R 00 T 0T 0 B0 A0 00T T 0 B AR TR 0 B AR AT 0 A AR R R R
Building FHU it
8888 A8 808 808000 TR R 00008 R 00 T8 0T 000 A0 00T 08 8 B0 R R TR A B AR AT T R AR R R
:36:431 1 of 6: Reading config: vEcuConf.yaml
:36:431 2 of 6: Running scripts triggered through "before_build_fmus"
- No script defined in the vEcuConf.yaml file

:43]1 3 of 6: Building inputs. outputs. parameters, tasks
:43]1 4 of 6: Patching a2l file
- No a2l file defined in the vEcuConf.yaml file
:431 5 of 6: Building fmu archives
6

1441

of 6: Running scripts triggered through "after_build_fmus"
- No script defined in the vEcuConf.yaml file

wait 4 seconds.

Fig. 4-12: Building FMU completed (Ubuntu 20.04 LTS)

4.5

4 Working with VECU-BUILDER | 27

Workspace Content

You have now successfully created the VECU-BUILDER workspace and built your
first vECU based on the provided Simple Example sources. In this chapter, you
find a description of the workspace contents for Windows and Ubuntu 20.04 LTS.

i build
vscode
build B vecv

vECU 1_Import.sh

1_Import.bat
2 Build.bat

3a_CheckFMU.bat

2_Build.sh

3a_CheckFMU.sh

3b_StartDebugger.bat 3b_startDebugger.sh

3c_ShowSymbolDetails.bat

3c_ShowSymbolDetails.sh

3d_RemoveGolicense.bat
=l eeprom_data.txt

|| SimpleExample.fmu
|| SimpleExample_debug.fmu

L vEcuConfyaml

3d_RemoveGoLicense.sh

L Eey

simpleExample.fmu

L Eey

simpleExample_debug.fFmu

vEcuConf.yaml

Fig. 4-13: Workspace contents (left: Windows, right: Ubuntu 20.04 LTS)

The content of the workspace consists of several artefacts:

— vscode folder:

launch. json file for vVECU debugging in VS Code

@ Note

The . vscode folder is only included in Windows.

— buildfolder:

additional scripts folder: location for your project specific addi-
tional scripts

log folder:
log files from executed stages

scripts folder: command and shell scripts to perform the individual
stages

last build footprint.txt:details of last performed build stage

RawSymbolDetails.txt: subset of SymbolDetails and forinternal
purposes only

SymbolDetails.txt: Symbols within your sources and their attributes

VECU-BUILDER V1.3 | User Guide

4 Working with VECU-BUILDER | 28

— vEcU folder:

* buildArtifacts folder: Library file and its associated debug inform-
ation

* CMake folder: CMake project artifacts
e imported folder: allimported artifacts

* CMakeLists.txt:setof directives and instructions for building your
sources

— 1 Import.bat/l Import.sh
file to trigger the Importing Files and Folders stage.

— 2 Build.bat/2 Build.sh
file to trigger the Building the VECU stage.

— 3a_CheckFMU.bat/3a CheckFMU.sh
file to invoke the FMU Checker and inspect the VECU outputs.

— 3b_StartDebugger.bat/3b_StartDebugger.sh
file to invoke MSVC or VS Code as debugger.

— 3c_ShowSymbolDetails.bat/3c ShowSymbolDetails.sh
file to invoke Notepad++ (Windows) / new Terminal (Ubuntu 20.04 LTS)
and display the Symbol Details.

— 3d_RemoveGoLicense.bat/3d RemoveGoLicense.sh
file to remove the GO license from the VECU (only relevant if vECU was built
with GO-license).

— SimpleExample.fmu
release version of your VECU, for more details see Simple Example.

— SimpleExample debug.fmu
debug version of your vECU, for more details see Simple Example.

— vEcuConf.yaml
the YAML configuration file, for more details see Configuration.

VECU-BUILDER V1.3 | User Guide

4.6

4 Working with VECU-BUILDER | 29

Configuration

The YAML file contains the configurations for the import and build process as well
as for the VECU itself. It is the only configuration you need to create and maintain.
The YAML file is divided into several sections, each section configuring a par-
ticular attribute. You are guided through the YAML file with comments on each
section and configuration attributes. Every section is structured in a stand-
ardized way:

o

g

10
11
12
13
14

A: comment with information on the corresponding section
B: configuration attributes and values

The following is a list of all attributes available in the YAML file:

— version

This is the version of the used YAML file schema and must not be changed.
build mode
You can select between 2 modes:

build sources: Youimport source code (either as AUTOSAR Classic com-
pliant or legacy C-code), header files, and static libraries. VECU-BUILDER
then builds your VECU in the form of an FMU container.

The vECU will be named <fmu_name>. fmu.

import compiled (deprecated: import dll)

You import an existing, already compiled and linked, software in the form of
a DLL/SO containing the functionality of your vECU.

VECU-BUILDER then wraps it in an FMU container, sets up the inputs, out-
puts and tasks, patches the A2L file, sets up the XCP slave port, etc.

fmu name
Enter the name of you vECU.
The code of your VECU is located inside the FMU in the folder”

resources/<fmu name>.dl1l"

This and other DLL/SO files are loaded and executed by the FMU runner.

VECU-BUILDER V1.3 | User Guide

(,44——&——%##

2 # The version of the .yaml file schema

3 #H####Hﬁ‘##ﬂTHTﬁ‘##ﬂTHHH?L#ﬂfHHf##ﬂWHHWL##ﬁ#####ﬁ####ﬁWHHJ(Hﬁ###ﬂ#ﬁ###ﬁﬂ###ﬁﬂﬂ####ﬂﬂ#
G—J|—0version:

5

6

/

3

S o Sk S Sk Sk SE e

import into project
Enter the paths to the files and folders to be imported.

You can specify paths to folders and/or individual files such as * . ¢, * . h,
* . cpp, * . hpp Or * . zip archives which will be extracted during import.

The import target is the "vEcu/imported” folder in your workspace.
Environment variables can be used like this:

'$ {VECUBUILDER EXAMPLES}\SimpleExample\src'
additional resources

Additional resources can be used to resolve dependencies by making
.d11/. so libraries your application depends on part of the build and exe-
cution process. It is possible to reference files and folders, that the vECU
assembly needs to run. A folder is copied recursively (not just the content
of the folder) to the root of the resources folder. A file is copied to the root
of the resources folder. any number of additional resources can be added.

@ Note

additional_resources does not support wildcards.

Specify all additional resources that are to be included in the FMU and they
will be copied to the resources folder of the FMU during the Building FMU
stagei.e.

${VECUBUILDER WORKSPACE}/vECU/imported/additional
DLLs/UsedByVECU.d11 for Windows

Or

${VECUBUILDER WORKSPACE}/VECU/imported/additional
DLLs/UsedByVECU. so for Ubuntu 20.04 LTS.

import external compiled vecu (deprecated: import
external vecu dll)

Only needed if you selected import dllasbuild mode.

That DLL/SO already contains the code of your vECU, you can skip the com-
piling and linking and just import your DLL/SO into the FMU wrapper. Here
you enter the DLL name and the path for updates:

dl1l so name (deprecated: d11 name): The name of the DLL/SO. There
must exist a corresponding pdb file with the same filename.

get updates from:|f VECU-BUILDER can find a DLL/SO and the pdb file
in this folder, it will update the imported DLL/SO.

Environment variables can be used like this:'$ { SystemDrive} /Sandbox'.

architecture
Specify the architecture.

When importing sources, the setting of this attribute has to match the
integration and simulation system where the vECU is to be used.

In case you are importing an DLL/SO precompiled for either 32bit or 64bit
architecture, this attribute must be set to the same.

xcp_slave
Enter the port and IP address of the XCP Slave to be setup in your vVECU.

These values are transferred to the patched A2L file. The used protocol is
TCP. For more details, see A2L File Patching.

@ Note

A socket (IP address + port + protocol) for the XCP connection between
INCA and XCP slave can only be used once. If a port is busy, you must
define another port in the YAML file.

@ Note

xcp_slave is supported for Windows only.

operating system

Enter the operating system. Currently only Windows and Ubuntu 20.04 LTS
supported.
build tool

Enter your preferred build tool. Build tool differs between Windows and
Ubuntu 20.04 LTS.

Windows:

Several MSVC versions and MinGW Makefiles are supported.

In case Visual Studio is selected, a Visual Studio Solution is generated.

If you choose MinGW Makefiles, a CMake project is generated.

These artefacts are stored in the “vECU\CMake" folder in your workspace.

path to mingw: If the user-specific MinGW is defined, CMake builds the
sources using this MinGW version.

Ubuntu 20.04 LTS:

You can chose Unix Makefiles and a make file for use with GNU compiler is
generated.

cmake generator toolset

Define which toolset should be used by CMake during the build process.
For more details, see CMAKE_GENERATOR_TOOLSET.

https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_TOOLSET.html

inputs, outputs, parameters, locals
Enter the variables you wish to expose as ports of your FMU.
Inputs, outputs, parameters, and locals refer to the causality of the FMI.

Wildcards of * and 2 are allowed. Arrays can be added using myArray*, the
same goes for structures. If your wildcard expression breaks the YAML com-
patibility, put it in single apostrophes.

Example: '*a’ finds all symbols ending with an ‘a’.

Aliases can be defined for variables, which results in renaming of FMI ports.
The aliases are used inthe modelDescription.xml and the original vari-
able names are used in the resources. txt.

@ Note

Variables of type enumeration will be interpreted as integers in the mod-
elDescription.xml file of the FMU.

The name-value mapping of enumerations will be ignored when enu-
merations are used as interfaces. Only the integer value will be
exchanged.

@ Note

The use of bitfields for inputs, outputs, parameters and locals is not sup-
ported.

initial data
Enter the path for source and target destination to define the initial values
of calibration variables.

The initial data is virtually flashed into memory during initialization. The
data file in the FMU (defined by destination) is read and its values are writ-
ten to RAM. This simulates a part of the NVRAM (non-volatile RAM).

source: Where to get the file. During build-time this file will be copied from
source.

destination: Where to store the file inside the FMU, relative to the re-
sources folder of the FMU (optional). This file is used during run-time.

Supported formats:

.Varval: list of pairs separated by one space, where the |Ihs refers to the
C variable and the rhs to the value.

.dcm (only experimental support)
For more details, see InitialData Functionality.

eeprom
Specify the eeprom simulation attributes.

The eeprom data is loaded from a file to RAM during vECU initialization. The
data is saved to the file before running terminate tasks and when unload-
ing the vECU. This can be used to simulate a soft reset behavior where
EEPROM stored data are preserved and not lost once the simulation of
VECU terminates. A typical application of this feature is the storage of total
mileage information in the ESP controller.

source: Path where to get the file. This is used during the build.

destination: Path where to store the file relative to the resources fold-
er of the FMU. This is the working copy (optional).

sync: This can be a UNC Path or a regular pathname. When the vECU is ini-
tializing, this file is copied to the 'destination’, if it exists. When the vECU
terminates, the updated file in ‘destination’ is copied to the 'sync’ location
(optional). To setup the UNC Path, see Windows Cannot Access Localhost

While Using Sync Attribute in EEPROM.

c_variables: The C variable names that store the eeprom data.

Supported format:

.txt: Aline starting with "#'is a comment. All other lines store the data
stream to be flashed to the C variables. The order of the data stream lines
is the same as the order of the c_variables listed.

A data stream is a sequence of bytes in hex format. Each byte is separated
by a space. E.g.: 0102 ee 4f. In the default YAML file the sync is commented
out.

To get more information about eeprom, see eeprom Functionality.

tasks
Define the tasks that are to be executed and their attributes.

To simulate the microcontroller behavior with its periodically executed
functions of your software, these functions are to be defined as tasks in
this section.

A function can be defined as a task only once, duplicated functions will be
ignored.

function name: <function name>’, without brackets, setin apostrophes,
no arguments allowed.

trigger: Choose between cyclic, initial or terminate, the default is cyclic.
period: <number> [in seconds], the default is 1.0.

first call: <number> [in seconds] for the cyclic tasks, the default is
period.

priority: The lower the number the higher the priority, the defaultis O.

max_calls: <number>, -1 means infinite, 0 means no call.

redirect function calls

Enter the names functions to be replaced and their substitutes.

The function signatures of the two functions must be identical. This allows
you to test the behavior of your software using alternative implementation
without changing the original source code or to replace unfinished or hard-
ware-dependent functions with mock functions.

replaced function: Enter the function name of the function to be
replaced.

substitute function: The function name of the function that sub-
stitutes the replaced function.

@ Note

Sometimes redirect function calls does notwork asexpected.
For more details, see additional_compile_flags in this chapter and Redir-
ecting Function Calls Did Not Work as Expected.

build include filters & build exclude filters

Only usable if you selectedbuild sources asbuild mode.

You can select files and/or folders that should be included or excluded in/-
from the vECU build process.

Files are only included into the build if they are matched by at least one
build include filter andarenotmatchedbyanybuild exclude
filter.

assembly list files
Specify your assembly list files for the build process.

Of the given sources defined by "build include filters"and'build
exclude filters", only those listedin afile are passed to the compiler.

If no assembly list files are configured, all sources are compiled.
additional include directories & additional defines
Only usable if you selectedbuild sources asbuild mode.

These values are passed to the preprocessor. This is useful if you need to
set/unset some defines to adapt them to the new computer target.

Brackets '(', ")’ must be escaped as ‘\(, "\)".

@ Note

The following limitations apply to filename paths, command line and
response-file lengths in the Windows environment.

— Filename paths cannot be longer than MAX_PATH (260) characters.
— Command-line lengths cannot be longer than 32,768 characters.

— Response-file lengths cannot be longer than 131,072 characters.

4 Working with VECU-BUILDER | 35

additional compile flags
Only usable if you selectedbuild sources asbuild mode.

Specify how the compiler should work. Each individual flag must be written
in a separate line and put in single apostrophes, i.e.'/ 721",

The flags are written into the CMakelists.

For more details, see MSVC compiler options or gcc compiler options.

Asuccessfuluse of redirect function calls dependsonaddi-
tional compile flags.Onlyifadditional compile flagsisset
correctly, redirect function calls willwork.
To prevent the GNU compiler from using incompatible optimizations when
redirect function calls feature isenabled, optimizations are dis-
abled by using the following flags:

- '-00"' forgcc
- '/od' for Visual Studio
For more details, see Options That Control Optimization and Redirecting
Function Calls Did Not Work as Expected.

additional static libraries
Only usable if you selected build sources forbuild mode.

The libraries need to be located in the folder . /pro-

jects/vEcu/imported”.

environment variables

You can define process-level environment variables that are set by the
build process and by the FMI wrapper during the vVECU execution.

Example: PATH=c: /Temp; $ { PATH}

These variables can be configured and modified in one location and can be
accessed from scripts and configuration files. Process-level environment
variable of VECUBUILDER WORKSPACE is created automatically during the
build process with its value pointing to the current workspace.

additional scripts
Define your additional scripts for execution.

Project-specific scripts can be configured to be executed at various
phases of the import and/or the build process.

You can utilize these to copy or modify files, add files to the FMU archive,
parse files, etc. You may use Python, Perl, .cmd scripts, .bat batch/shell
script files as long as these can be executed on your machine.

filename: Your script name (default location for such scripts is
‘build/additional scripts’inyour workspace) or full absolute path.

arguments: Optionally, you may define arguments to be passed to the
respective interpreter.

command_1line: Fullabsolute path to the interpreter.

VECU-BUILDER V1.3 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/Invoking-GCC.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4 Working with VECU-BUILDER | 36

trigger: Select when should your script be executed from these options:
e before import

e after import

e before build sources (deprecated:before build)

e before build fmus

e after build fmus (deprecated: after build)

priority: Define with which priority should your script be executed.

For more details, see Example of Additional Scripts: A2L Characteristics as
Parameters.

patch a2l file
filename: Enter the name of your A2L file to be patched.

An A2L file is required to connect an MCD tool such as INCA to the running
VECU. The A2L file needs to be located in the folder: “vEcu/imported”. By
using a2l name mappingsinthe .yaml file, symbol names can be
mapped to names in the A2L file.

If the right-hand side includes a backslash '\' (like in a reference to a group,
e.g. \1), then aregular expression search & substitute is applied, else a
simple string search and replace is applied.

One such regular expression allows to map multiple names at once. To see
an example, see the following table.

RegEx (array)\[(\d+)\] -> \VI_\2

Mapping array[1] -> array_1

VECU-BUILDER will update the memory addresses of all measurements and
characteristics in the provided A2L file. The original A2L file is renamed by
appending .bak to its name. For more details, see 221, File Patching
and A21, Name Mapping.

debug hook

Specify whether to enable or disable a debug hook. When enabled, the
FMU execution is interrupted when the FMU is instantiated until a debug-
ger is attached. For more details, see Debugging vECU.

additional link flags
Only usable if you selected build_sources as build_mode.

Specify how the linker should work. Each individual flag must be writtenin a
separate line and put in single apostrophes, i.e. '/DEBUG".

The flags are written into the CMakeLists. txt.

For more details, see MSVC linker options or gcc linker options.

VECU-BUILDER V1.3 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/linker-options?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

simple file modifications
Specify file modifications that shall be applied to files imported in
‘VECU/imported” folder.

In case you specify multiple modifications, they will be applied sequentially
following the order in which they were specified.

The next two attributes are mandatory for all types of modifications.

file regex: Specify the search RegEx for a file or a set of files that shall
be modified.

trigger: Specify when the modification shall be applied from the 2 below
options:

e after import (default)

e before build sources

You can specify a single or multiple actions (modification types) from the 4
below options:

* comment line:Commentoutasingle line of code by adding '/ /' at the
beginning of the line.

* search and replace:Replace aline of code that matches the
Search regex with the replacement.

* insert code above:Insert code above a matched line.
* insert code below:Insert code below a matched line.

Youmust specify line regex and to which match(es) the modification
are to be applied to (apply to) for each action from the below 3 options:

e all matches (default)
e last match

o first match

Forinsert code aboveandinsert code below, you must specify
the code section that is to be inserted.

Whenusing simple file modifications, consider the following pro-
cedure to make sure, modifications are not included in . bak file.

1. Get the set of files and apply the file filter.

2. Revert backups for all files to be modified: Move the .bak files to over-
write the normal filename.

- The backup file is deleted.

3. Create the backup on all files that need to be modified, excluding files
ending with .bak.

4. Apply the file modifications to all files that need to be modified.

@ Note

If you need more sophisticated file modifications, use a project-specific
scriptviathe additional scripts.

5.1

5.1.1

Exploring the Examples

This chapter contains details on the two examples that are delivered along with
the tool and provides pointers on how to experiment within their respective work-
spaces.

Simple Example

If you followed the instructions in the chapter Working with VECU-BUILDER, you
now have a workspace on your computer which is based on the Simple Example.

FMU Checker

To conduct a quick smoke test of the created vECU, the FMU check tool is
delivered along with VECU-BUILDER. This tool can be invoked viathe 3a Check-
FMU.bat on Windows or 3a_ CheckFMU. sh on Ubuntu 20.04 LTS. Simply
execute this file to run the release vECU or drag-and-drop the debug vECU into
this batch/shell script file to run the debug vECU.

This tool opens a terminal where details of the FMU are displayed and the time
and values of defined outputs are printed. The batch/shell script file is configured
so that the simulation runs for 10 seconds. You can change this by altering the
batch/shell script file.

[INFO][FMUCHK] No input data provided. In case of simulation initial values from FMU will be used.
[INFO][FMUCHK] Printing output file header
"time", "product"
[INFO][FMUCHK] Model identifier for CoSimulation: Fmu20
[INFO][FMILIB] Loading 'win64' binary with 'default' platform types
[INFO][FMUCHK] Version returned from CS FMU: 2.0
[INFO][FMUCHK] Initialized FMU for simulation starting at time @
0,0.0000000000000000E+000
1,2.0000000000000000E+000
2,2.0000000000000000E+000
3,2.0000000000000000E+000
4,2.0000000000000000E+000
5,2.0000000000000000E+000
[INFO][FMUCHK] Simulation finished successfully at time 5
FMU check summary:
FMU reported:
@ warning(s) and error(s)
IChecker reported:
@ Warning(s)
@ Error(s)

Fig. 5-1: FMU Checker output (Windows)

An FMU, that is built by VECU-BUILDER, will set the environment variable
VECUBUILDER FMURESOURCES for the process it runs in. This environment vari-
able stores the absolute path to the resources folder of the FMU. The envir-
onment variable is created and used only during the checkFMU process. The
environment variable can be found when inspecting the process properties in a
process monitor tool.

512

5 Exploring the Examples | 39

Difference Between Debug and Release VECUs

You find two FMUs in this workspace, one named SimpleExample . fmu (which
will be referred to as release VECU’) and the other one named simpleExample
debug. fmu (which will be referred to as ‘debug vECU').

Extract each of these two FMU archives into its own folder and let’'s explore what
they contain and how they differ.

The functional behavior of both VECUs is identical.

The debug VECU contains symbol information and additional artefacts, e.g., PDB
(when build tool is MSVC) or DIE (when build tool is MinGW). Use the debug vECU
to debug and step through your code.

When you compare the two extracted folders, you will notice that the main dif-
ference is in the resources folder.

Name Name
Bl binaries Bl binaries
Bl documentation Bl documentation
S resources S resources
Bl eeprom Bl eeprom
..... B init B init
B |nitialData.VarVal

------ m Dataset.dll ~m Dataset.dll

------ mdbghelp.dll ~mdbghelp.dll

------ mdcm_parser.dll ~®dcm_parser.dll

------ ® MergedInitialData.VarVal
®RawSymbolDetails.txt

Eresources.txt Eresources.txt
mSimpleExample.dll mSimpleExample.dl|
mSymbolinfo.dll mSymbolinfo.dll
Bl sources Bl sources
mmodelDescription.xml mmodelDescription.xml

Fig. 5-2: Comparison of debug and release vECU

The release vECU contains only address information, unlike the debug vECU
which contains the variables and function names. The release vECU protects the
IP contained in the VECU and does not contain symbol information. Use the
release VECU if you want to share it with others.

vEcuD1l vEcuDll
SimpleExample.dll SimpleExample.dll
fmiVariables fmivVariables
= factorl <& 0x0000000000003028 8 106 0 O
factor2 0x0000000P0PPP3020 8 10 @ ©
eeprom_block_a.lifetime_ms 2x0000000000008150 8 8 @ @
eeprom_block_a.poweron_count 2x0000000000008158 2 4 @ @
eeprom_block_b.last_product 0x0000000000008140 8 106 0 O
product 0x00000PEOPRR8E0 8 10 © 0
Tasks Tasks
= terminate 9 1.0 1.0 @ -1 & 0x0000000000001500 9 1.0 1.0 0@ -1
L task_10ms 2 ©.01 ©.01 2 -1 | 0x00000000000014c0 2 0.01 0.01 2 -1
InitialData InitialData
= init/InitialData.Varval & MergedInitialData.Varval
Eeprom Eeprom
eeprom/1.txt eeprom/1.txt
= eeprom_block_a @& 0x0000000ROREAB15E 22
§ eeprom_block_b § 0x0000P00P00008140 8

Fig. 5-3: Comparison of resources.txt

VECU-BUILDER V1.3 | User Guide

5.1.3

5 Exploring the Examples | 40

InitialData Functionality

Typically, software function and its data are separated. While the logic of the soft-
ware function is defined in the source files, the data is stored in separate files in
various formats. Common formats for such calibration data are DCM and CDF.

VECU-BUILDER provides experimental support of DCM format. For details on the
restrictions, see the Release Notes.

Besides, you can define your calibration data in a simple . varval format. For
more details, see initial_data section in Configuration chapter.

Simple Example contains sample files of both supported formats which can be
found in folder

C:/ProgramData/ETAS\VECU-BUILDER/Examples 1.3.0/Sim-
pleExample\init for Windows

Or
/opt/etas/VECU-BUILDER/Examples 1.3.0 for Ubuntu 20.04.
The . yaml file is preconfigured to make use of the InitialData.Varval.

To experiment with .VarVal functionality

1. OpenMultiply.c file located within your workspace in folder vECU/ im-
ported

INnMultiply.c the variables are defined. Variables factor1 and factor2
are the two inputs with the assigned values of 1and 2. Variable product is
the output and is calculated as the product of factor1 and factor2.

AsInitialData.VarVal fileisalready activatedinthe . yaml file, itis
already used in the default Simple Example vECU.

[E Multply.c &3 | [H InitialData VarVal |
1 double factorl = E | factorl 1
2 double factor2 = ; 2 factor? j
3 double product = ;

Fig. 5-4: Variables and values in Multiply.c (left) and default Ini-
tialData.VarVal file (right)

2. Close the source file and navigate back to the workspace.
3. You can check the output using

3a_CheckFMU.bat on Windows

Or

3a_CheckFMU. sh onUbuntu 20.04 LTS, described in FMU Checker.
= The output for SimpleExample is 2.
4. Change the value for factor 1to 4.

[=] nitialData Varval £

1 factorl 4
2 _factorZ e

VECU-BUILDER V1.3 | User Guide

Fig. 5-5: Changed value inside InitialData.VarVal

Save the change.
6. Torebuild the the vVECU use
2_Build.bat inthe workspace on Windows
Or
2_Build.shinthe workspace on Ubuntu 20.04 LTS.

7. Toshow the changed output in the FMU, execute 3a_CheckFMU.bat on
Windows

Or
3a_CheckFMU.shonUbuntu 20.04 LTS.

= The new outputis now 8.

[INFO][FMUCHK] Printing output file header
"time", "product”
[INFO][FMUCHK] Model identifier for CoSimulation: Fmu2e@
[INFO][FMILIB] Loading 'winé4' binary with 'default' platform types
[INFO][FMUCHK] Version returned from CS FMU: 2.0
[INFO][FMUCHK] Initialized FMU for simulation starting at time ©

. 000000000V VVE+000

. 00000000V VVE+000

. 00000000V VVE+000

.000000000VVVVVVE+000

. 00000000V VVE+000
5,8.0000000000000000E+000
[INFO][FMUCHK] Simulation finished successfully at time 5
FMU check summary:
FMU reported:
0 warning(s) and error(s)
Checker reported:
0 Warning(s)
0 Error(s)

Fig. 5-6: FMU Checker output with new values using InitialData.VarVal

The initial data set in the VarVal file are thus correctly used in the vECU.

The sourcesinMultiply.c Stay the same. The variables are overwritten
atrun-time by the values of the InitialData.Varval.

To experiment with intialData.dcm

1. Openthe .InitialData.dcminExamples/SimpleExample/init
2. Change the value for factor 1to 4.

3. Change the value for factor 2 to 4.
4

Save the changes.

FESTWERT factorl
LANGNAME ""
EINHEIT W mn
WERT 4.0

END

FESTWERT factor?2

LANGNAME "
EINHEIT W ""
WERT 4.0

Fig. 5-7: Changed value inside InitialData.dcm

5. Uncomment the source and destinationfor Initialbata.vVarval.

6. Comment the source and destination for InitialData.dcm.

initial data:

#- source: '${VECUBUILDERﬁEXAMPLES}\SimpleExample\init\InitialData.VarVal'

destination: 'init/InitialData.Varval'

|- source: 'S${VECUBUILDER EXAMPLES}\SimpleExample\init\InitialData.dcm'
destination: 'init/InitialData.dcm'

7. Torebuild the the vECU use
2_Build.bat inthe workspace on Windows
Or
2_Build.shinthe workspace on Ubuntu 20.04 LTS.
8. To show the changed output in the FMU, execute
3a_CheckFMU.bat on Windows
Or
3a_CheckFMU.shonUbuntu 20.04 LTS.

= The new output is now 16.

e
[INFO][FMUCHK] Printing output file header
"time", "product”
[INFO][FMUCHK] Model identifier for CoSimulation: Fmu20
[INFO][FMILIB] Loading 'win64' binary with 'default' platform types
[INFO][FMUCHK] Version returned from CS FMU: 2.0
[INFO][FMUCHK] Initialized FMU for simulation starting at time ©
.0000000VVOVVVVVVE+000
.600000000VVVVVVVE+001
.6000000000VVVVVVE+001
.600000000VVVVVVE+001
.6000000000VVVVVVE+001
.6000000000VVVVVE+001
[INFO][FMUCHK] Simulation finished successfully at time 5
MU check summary:
MU reported:
0 warning(s) and error(s)
hecker reported:
0 Warning(s)

Fig. 5-8: FMU Checker output with new values using InitialData.dcm

= The initial data set in the dcm file are thus correctly used in the vECU.

= ThesourcesinMultiply.c stay the same. The variables are overwritten
atrun-time by the values of the InitialData.dcm.

@ Note

Several files and formats can be defined. If one variable is set in multiple files,
the value of the last file is used.

For release vECU all initial data is merged into MergedInitialData.VarVval.
This VarVal file protects the IP. Release and debug VECU behave the same. To get
the different folder structures, see Difference Between Debug and Release
VECUs.

5.1.4

5 Exploring the Examples | 43

eeprom Functionality

When using eeprominthe . yaml file, eeprom data.txt will be copied from
VECUBUILDER EXAMPLES/SimpleExample/src intothe workspace to
vECU/imported during the build. The eeprom data. txt will be set as default
sync txt file in workspace.

vECU > imported

Name

eeprom_data.txt
C Multiply.c
) Multiply.h
Fig. 5-9: eeprom_data.txt in the workspace

The . txt contains the data stream that should be used forthe ¢_variables.
The order of the data stream to be flashed tothe ¢_variablesinthe . txt
needs to be the same asin the . yaml file. To see the correct order for ¢ vari-
ables and the data streams for ¢_variablesinthe .yaml file andinthe . txt
file, see Fig. 5-10 and Fig. 5-11

Supported c_variables for SimpleExample are:

— eeprom block a:Shows the lifetime of the vECU in ms and counts, how
often vECU was powered on.

— eeprom block b:Shows the last value of product calculated in the pre-
vious execution.

eeprom:
- source: '${VECUBUILDER WORKSPACE}\VECU\imported\eeprom data.txt'
destination: 'eeprom\l.txt'
sync: "\\localhost\c$\TEMP\eeprom data.txt'
sync: '"C:\TEMP\eeprom data.txt'
c_variables:
- eeprom block a
- eeprom block b

Fig. 5-10: Correct order for c_variables in yaml file

This is a comment

eeprom_block_a

20 4de 00 00 00 00 00 0O 02 OO
eeprom_block_b

00 00 00 00 00 00 00 40

Fig. 5-11: Data streams for c_variables in txt file

When using eepromin the .yaml file, the eeprom data. txt will be copied into
the FMU that is going to be created.

The path location inthe FMU is: /resources/eeprom/1.txt

It is also possible, to have another txt file anywhere else by using an UNC path or
aregular path name in the sync section as displayed in Fig. 5-11.

VECU-BUILDER V1.3 | User Guide

5 Exploring the Examples | 44

5.1.5 Features to Explore in the Simple Example Workspace
Now start experimenting with the following features in this current workspace:
— build tool, inputs, outputs and tasks
— Initial data and eeprom
— redirect function calls
— debug hook

VECU-BUILDER V1.3 | User Guide

5 Exploring the Examples | 45

52 BCU Example

To create a workspace based on the BCU example, follow the steps described in
Creating a New Workspace to the point where the YAML file opens in Notepad++.

1. Replace the entire content of the YAML file with the content of prepared
BCU configuration YAML file located in:

C:/ProgramData/ETAS\VECU-BUILDER/Examples 1.3.0/BCU for
Windows

Or

/opt/etas/VECU-BUILDER/Examples 1.3.0/BCU for Ubuntu 20.04
LTS.

2. Continue the process as described in Working with VECU-BUILDER.

5.2.1 Show Symbol Information
To see all the symbols available in your vECU, open the SymbolDetails file.
1. Run the command:
3c_ShowSymbolDetails.bat on Windows
Or
3c_ShowSymbolDetails.shonUbuntu 20.04 LTS.

= Atext editor window (Windows) / a new terminal (Ubuntu 20.04 LTS)
opens, and symbol details are shown.

\Public\Documents\VECU-BUILDER_Workspaces\Simple_Example_rc2\build\SymbolDetails.txt - Notepad++

File Edit Search View Encoding Language Settings Tools Macro Run TextFX Plugins Window ?
Y] CarL=]] ity 2 x| BES1EFEERu® | ® WEEDEE=+ =@M vL /00 @

[E SymbolDetails.tet E1 I

1 |217 symbol (5) found, 1 symbol(s) with non-unique name(s).
2 Address ;5ize ;Type ;BF-0fs;BF-Len;Value ;Symbol Name
3 0x0000000000001330;0 ;Function ;0 ;0 H ;add_factorl factor2 sum
4 0x0000000000001360;0 ;Function ;0 ;0 imultiply factorl factor2 product
5 0x0000000000001390;0 sFunction ;0 ;0 ;task_10ms
6 0x00000000000013d0;0 ;Function ;0 ;0 ;terminate
7 0x00000000000013e8;0 ;Function ;0 ;0 ;dllmain crt dispatch
0x000000000000144c;0 ;Function ;0 ;0 ;dllmain_crt_process_attach
& 0x00000000000015a8;0 ;Function ;0 ;0 ;dllmain_crt process_detach
10 0x0000000000001650;0 ;Function ;0 ;0 7dllmain dispatch
11 0x00000000000017d0;0 ;Function ;0 ;0 ;dllmain_raw
12 0x00000000000017£0;0 ;Function ;0 ;0 ;_CRT_INIT
13 0x0000000000001718;0 ;Function ;0 ;0 ;_DllMainCRTStartup
14 0x0000000000001844;0 ;Function ;0 ;0 ;__get_entropy
15 0x00000000000018cc; 0 ;Function ;0 ;0 ;__security_init_cookie
1¢ 0x00000000000019%a4;0 ;Function i0 i0 ;D11Main
17 0x00000000000015d0;0 ;Function ;0 ;0 ;__scrt_initialize type info
18 0x00000000000015e4;0 ;Function i0 ;0 __scrt_uninitialize_type_info
19 0x0000000000001914;0 ;Function ;0 ;0 ;__local stdio printf options
20 0x0000000000001200;0 ;Function ;0 ;0 i__local_stdio_scanf_options
21 0x0000000000001a0c; 0 ;Function ;0 ;0 __scrt_initialize default_local stdio_options
22 0x0000000000001a30;0 ;Function ;0 ;0 scrt narrow argv policy::configure argv

Fig. 5-12: Symbol Details of BCU example (Windows)

VECU-BUILDER V1.3 | User Guide

Terminal

GNU nano 4.8 build/symbolDetails.txt
il5 symbol(s) found, © symbol(s) with non-unique name(s).
Address ;Size ;Type ;BF-0fs;BF-Len;Value
0x0000000000001120; ;Function .0 :0 F
Ox0000000000001190; ;Function
0x00000000000011b0; ;Function
Ox00000A0AO0A04028; ;Array
Ox0000000000004028; ;s8
Ox0000000000004029; ;s8
Ox00000A0RO0A0402a; ;58
Ox000000000000402b; ;s8
Ox000000000000402C; JArray
Ox000000000000402C; ;58
Ox000000000000402d; ;s8
0x0000000000004030; ;floato4d
Ox0000000000004038; ;Tloated
Ox0000000000004048; ;floate4d
0x0000000000011600; ;Function

7]

WO W W Y W Y Y W W W Y Y Y WYY

e W WE WE W B W W W Wl B W B B
[Qe I T s B R O I o R - T - - e o
e W WE WE W B W W W Wl B W B B
[Qe I T s B R O I o R - T - - e o

The following symbol names were non-unique (same name, various addresses).

Fig. 5-13: Symbol Details of BCU example (Ubuntu 20.04 LTS)

522 A2L File Patching

Most ECU software authoring tools can generate an A2L file for you. It contains
the addresses of your labels for a specific target. In addition, it may contain tool-
specific statements or even non-standard clauses. The label addresses of a
vECU target differ from the addresses of a physical ECU target which means the
original A2L file cannot be used for an XCP connection with a vECU target.

Since the generation of A2L files is an intricate task, VECU-BUILDER excludes this
functionality completely. Instead, VECU-BUILDER reads, modifies, and writes a
given A2L file. This patching procedure preserves most of the original contents of
the A2L file but changes all addresses to those of the vECU target. A backup
copy of the original A2L file is preserved (named as * .a21.bak).

@ Note

The A2L patching leads to an A2L file that works in ETAS INCA. This file may not
work in Vector CANoe or CANape.

5 Exploring the Examples | 47

VECU-BUILDER includes its own XCP slave software component. Currently, it sup-
ports TCP connections only. The communication parameters for an XCP con-
nection are part of an A2L file. VECU-BUILDER patches in the values for TCP port
and IP address, which were specified in the YAML file. For instance:

Original A2L file Patched A2L file

/begin XCP ON TCP IP

0x0100 /* XCP on IP 1.0 */
<TCPPORT> /* Port */
/ADDRESS "<|PADDR>"
/end XCP_ON_TCP_IP

/begin XCP ON TCP IP

/0x0100 / XCP on IP 1.0 */
12345 /* Port */

ADDRESS "127.0.0.1"

/end XCP_ON_TCP_IP

If your A2L file contains an “xCP_ON_UDP_IP" clause, then VECU-BUILDER re-
writesittoan “XCp_ON TCP IP"clause. The integrated XCP slave supports a lim-
ited subset of the commands of the ASAM MCD-1 (XCP) standard version 1.0. It
supports a limited subset of the clauses from ASAM MCD-2 (ASAP2 / A2L) stand-
ard version 1.7.1.

If your ECU software includes an XCP slave already, you may want to remove this
software component from your VECU software stack.

523 A2l Name Mapping

By default, the A2L file contains the symbol names of characteristics and meas-
urements. Sometimes the symbol names in the A2L file are renamed. Because
the addresses in the A2L must refer to the original symbol names, one must map

them.

Original A2L file

/begin CHARACTERISTIC Hys-
teresis LightOffIntensity
"unsigned integer 16bit"
VALUE

0x00000000

RTAAZ2L Internal Scalar
UnsignedWord

0

CompuMethods STEP_ 100
OFFSET 0

0

100

DISPLAY IDENTIFIER Hys-
teresis LightOffIntensity

/end CHARACTERISTIC

Mapped and patched A2L file

/begin CHARACTERISTIC Hys-
tLiOfInt

"unsigned integer 1l6bit"
VALUE

00x00003016

RTAA2L Internal Scalar
UnsignedWord

0

CompuMethods_ STEP_ 100
OFFSET 0

0

100

DISPLAY IDENTIFIER Hys-
teresis LightOffIntensity

/end CHARACTERISTIC

VECU-BUILDER V1.3 | User Guide

524

5 Exploring the Examples | 48

Example of Additional Scripts: A2L Characteristics as Para-
meters

This is an example of how additional scripts can be used. With the following
script, it is possible to use a2l characteristics as parameters of a vECU. To add a2l
characteristics as parameters in . yaml file for BCU Example, youneed 6_get
characteristics.pySCript. 6 get characteristics.py scriptisusedto
get all 'Characteristics’ from A2L file and add them into vEcuConf . yaml file on
sectionparameters.

By default 6 get characteristics.py Scriptisstoredin ${VECUBUILDER
EXAMPLES}/BCU/additional scripts. The path to the scripts original loc-
ation has to be added to import into project propertyinvEcuconf.yaml,
to move the script in the workspace.

To run the script

1. Uncomment $ { VECUBUILDER EXAMPLES}/BCU/additional scripts/
inthe import into project section.

2. InvEcuConf.yaml file uncommentthe additional scripts section

3. InvEcuConf.yaml file uncomment the following lines in the the addi-
tional scripts section
o - filename:../../VECU/imported/6 get char-
acteristics.py
e command line: <path to python3.8 interpreter>
e trigger: after import
e priority: 5
4. Start building your workspace using 1 Import.bat for Windows
Or
1 Import.sh for Ubuntu 20.04..
= The characteristics were added in parameters section.
parameters:
- Hysteresis LightOffIntensity
- Hysteresis LightOffTime
- Hysteresis LightOnIntensity
— Hysteresis LightOnTime
— Hysteresis WiperOffIntensity
- Hysteresis WiperOffTime
- Hysteresis WiperOnIntensity
- Hysteresis WiperOnTime

Fig. 5-14: Parameters section after using 6_get_characteristics.py

VECU-BUILDER V1.3 | User Guide

5 Exploring the Examples 1 49

525 Features to Explore in the BCU Workspace
Now start experimenting with the following features in the current workspace:
— additional include directories
— additional compile and linker flags
— additional scripts
— Xcp slave and A2L file patching and mapping

— Characteristics as inputs

VECU-BUILDER V1.3 | User Guide

Controlling VECU-BUILDER

Manual Interaction

You can operate VECU-BUILDER via the provided command and batch/shell
scripts. For some user inputs, such as selecting a workspace directory, the tool
may display dialogs.

Command-Line Interface

Besides the manual Interaction method, you can also operate VECU-BUILDER via
a command-line interface (CLI). VECU-BUILDER is a CLI native application, and
the command and batch/shell scripts allow manual interaction. To get more
information about the Installation using CLI, see Silent Installation.

The following arguments exist:
--new-project-path: Path where the workspace is to be created.
--no-dialogs: Suppress all dialogs and always select the default option.

--stop-on-success: Prevent automatic forwarding to the next stage (create
workspace, import, build).

--version: Print the version information.
-h: Print list of all optional arguments.

To see all CLI optional arguments and their description

1. Open acommand prompt on Windows
or
aterminal on Ubuntu 20.04 LTS.
2. Execute the following command:
1 Import.bat -hfor Windows
or
1 Import.sh -hforUbuntu 20.04 LTS.

[&5] CAWindows\System32\cmd.exe

C:\Users\Public\Documents\VECU-BUILDER_Workspaces\SimpleExample>1_Import.bat -h
usage: VECU-BUILDER [-h] [--new-project-path NEW PROJECT PATH] [--no-dialogs]
[--stop-on-success] [--version]

(c) by ETAS Builds a VEcu based on sources or a dll. The Output is an FMU. Use
"VEcuConf.yaml" to setup the properties of your VEcu.

optional arguments:

--new-project-path NEW_PROJECT_PATH
If you start a new project, you need a path where its files and
folders should be saved.

--no-dialogs Instead of showing dialogs, the title and message are printed
choosing the first available option. In case of an error
message, the process will exit returning non-zero.

--stop-on-success If the current script succeeded, it will not proceed with the
next one.

--version show program's version number and exit

Fig. 6-1: CLl optional arguments (Windows)

The CLI control method is ideal for integrating VECU-BUILDER into an automation
pipeline. The CLI behaviour is the same as running the scripts manually: each
script would call the next script to proceed through the stages of create a work-
space, import, build. To change this behaviour, use --stop-on-success.

The following table gives an overview of which batch file uses which arguments:

argument CreateWorkspace 1_Import 2_Build
--new-project- Used (required) Ignored Ignored

path

--no-dialogs Used (optional) Used (optional) Used (optional)
--stop-on-success Used (optional) Used (optional) Ignored
--version Used (optional) Used (optional) Used (optional)
-n Used (optional) Used (optional) Used (optional)

Tab. 6-1: Mapping of CLI arguments to scripts

To build the SimpleExample via two command lines

After creating the workspace, stop the process so that you can copy a specific
YAML file into your workspace. Then trigger the import without
stop-on-success and let it finish the build automatically.

1. Open acommand prompt on Windows
or
aterminal on Ubuntu 20.04 LTS.

2. Navigate to the directory where the installer is located executing the fol-
lowing command:

cd $VECUBUILDER HOMES%.

3. Execute the following command:
CreateWorkspace.bat on Windows

or
CreateWorkspace.sh onUbuntu 20.04 LTS.
with the arguments
--new-project-path <destination>
--no-dialogs
—-—-stop-on-success

where <destination> points to your workspace folder.

[+ CAWindows\System32\cmd.exe - =

C:\Program Files\ETAS\VECU-BUILDER\1.3.0 >CreatelWorkspace.bat --new-project-path
C:\Users\Public\Documents\VECU-BUILDER_ Workspaces\CLI --no-dialogs --stop-on-success
(C) 2020-2023 ETAS GmbH. All rights reserved.

VECU-BUILDER 1.3.0

| o e e e e e R R e e e e e e R R e S e e e e e
ii# Creating new workspace 1
R

[09:05:36] 1 of 3: Selecting the project folder

Please select a workspace folder for your project!

New project path is "C:\Users\Public\Documents\VECU-BUILDER Workspaces\CLI".
[@9:05:36] 2 of 3: Creating project template

[09:05:36] 3 of 3: Please update "vEcuConf.yaml"

Please save and close the editor after editing "vEcuConf.yaml"

The usage of the option --no-dialogs forces the process to continue.

RS | CEES S

Fig. 6-2: Workspace creation via CLI (Windows)

@ Note

A default YAML file is used in all newly created workspaces.

Project specific YAML file can be either prepared manually or in the previous
step of your automation pipeline.

To use your project specific YAML file in this newly created workspace:

1. Execute the following command:

copy /y <source> <destination>

[E+] CAWindows\System32\cmd.exe

C:\Program Files\ETAS\VECU-BUILDER\1.3.0 >copy /y C:\Users\Public\Documents\VECU-

BUILDER Workspaces\SimpleExample\vEcuConf.yaml C:\Users\Public\Documents\VECU-BUILDER
| Workspaces\CLI
1 file(s) copied.

Fig. 6-3: Copy your project specific YAML file (Windows)

@ Note

The argument /y suppresses the prompt and thus overwrites the destination
file.

To continue building your workspace:

1. Navigate to this new workspace by executing the following command:
cd <destination>

2. Runthe command:
1 Import.bat --no-dialogs for Windows

or

1 Import.sh --no-dialogs for Ubuntu 20.04 LTS.

Debugging VECU

VECU-BUILDER provides useful functionalities to debug your vVECU. It is possible
to debug the VECU by using an Integrated Development Environment (IDE), such
as Visual Studio Code or Visual Studio.

As the folder <workspace>/vECU is a CMake project, any IDE that can import
CMake projects can be used for debugging.

During the Build stage, the debugging environment and batch/shell script files
are created enabling you to enter a debugging session in just a few clicks.
You canuse the debug hook attribute, which can be enabled in the YAML file.

VECUSs built with this attribute enabled enter their instantiation and wait for a
debugger to be attached by the user before continuing.

@ Note

The VECU-BUILDER debugging functionality is intended to be used for debug-
ging of a single VECU within its workspace. If your vECU is integrated into a sim-
ulation, the debug_hook might be the best option for debugging,

The below table summarizes the possible combinations of build tool and debug-
ger:

Debugger
VS Code VS 2017 VS 2019 VS 2022
MIinGW recommended unavailable experimental recommended
__8 VS 2017 experimental recommended possible possible
E VS 2019 experimental unavailable recommended possible
VS 2022 experimental unavailable unavailable recommended

Tab. 7-1: Debugging possibilities
Combinations marked as experimental, are neither tested nor supported and
their use is solely your responsibility.

Among the recommended combinations, two are particularly recommended for
use and are described in detail in the following chapters.

7.

Debugging with Visual Studio 2019

This chapter describes how to debug vECU built with Visual Studio 2019 using
Visual Studio 2019 as the debugger.

More information about Visual Studio 2019 can be found here.

To debug with Visual Studio 2019

1. Navigate to your workspace.

2. Executethe 3b StartDebugger.bat file on Windows or 3b_StartDe-
bugger.shonUbuntu 20.04 LTS.

= The VS2019 debugger is invoked and loads the CMake project.

3. Navigate to where you want to start debugging and place a breakpoint
there.

4. Inthe “Menu” tab click Debug > Start Debugging (F5).
= FMU Checker is invoked, and the debugger is attached.

Multiply.c & X
%! SimpleExample ~ [&8] C/Program Files/ETAS/VECU-BUILDER/ /3rd_party/fmuChecker-2... O

[INFO][FMUCHK] No input data provided. In case of simulation initial values
from FMU will be used.
[IF-JFO][FJ"lU(HK] Printing output file header
L “time","eeprom block a.lifetime ms","eeprom_block a.poweron_count”,"eeprom b
lifetime_j lock_b.last_product”,"produc
poweron_count; [INFO][FMUCHK] Model ident for CoSimulation: Fmu2@
[INFO][FMILIB] Loading ‘'win64' binary with "default' platform types
[INFO][FMUCHK] Version returned from CS FMU: 2.0
[IF-JFD][FJ""IUCHK] Initialized FMU for simulation starting at time @
0) 0 00) 00

. 0.5, :
izl ezl faeiar praiies) P ,2.0000000000000000F-+000, 2 . 00BP0AVAAA00BOROE+000
produc factorl * factor2;)

return 0;

.0000000BAVABARVE +000
task_1@ms() { L b) 2 00000PVVAVE -+

L

Fig. 7-1: VS 2019 Debugger attached

https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2019&preserve-view=true

7.2

7 Debugging VECU | 55

Debugging with Visual Studio Code

This chapter describes how to debug vECU built with MinGW using Visual Studio
Code as the debugger.

Prerequisites For Debugging with Visual Studio Code
It is obligatory to install the following package:

— Microsoft C/C++ Extension Pack
Without the installation of this package debugging is not possible.

Visual Studio Code requires some further extensions and will prompt you to
install them by default. If you accept Visual Studio Code's suggestions, you
should be good to go.

More information about Visual Studio Code can be found here.
To debug with Visual Studio Code

1. Navigate to your workspace.

2. Right-click in your workspace and select Open with Code.
= Visual Studio Code opens.
3.

Navigate to where you want to start the debugging and place a breakpoint
there.

4. Inthe menu panel on the left click Run and Debug.
Click Start Debugging (F5).
= FMU Checker is invoked, and the debugger is attached.

File Edit Selection View Go Run Terminal Help

RUMANDD... [> Debug~

“~ VARIABLES \
> Locals factorl

factor2
product

> Registers

multiply factorl factor2 product() {
product = factorl * factor2;

Fig. 7-2: VS Code Debugger attached

VECU-BUILDER V1.3 | User Guide

https://code.visualstudio.com/docs

Workspace Migration

If you have created a workspace with an older VECU-BUILDER version, this exist-
ing workspace needs to be migrated so that you can use the latest VECU-
BUILDER version.

To migrate workspaces

1. Create a new workspace with the default template configuration, see
Creating a New Workspace.

2. Stop the process after Importing files and folders’ stage.
Select Cancel when asked whether to proceed with building sources.
3. Replace the content of imported folder in the new workspace with the
content of your existing workspace.
4. Replace the content of additional scripts folderinthe new work-
space with the content of your existing workspace.
5. Transfer all configuration attributes from the existing workspace . yaml file
to the new workspace . yaml file.
« TIP: The use of a comparison tool (e.g., Beyond Compare) is the most
efficient way.
Your new workspace created with the latest VECU-BUILDER version is now ready
and you can continue your work on an existing project in this workspace.

9.1

Troubleshooting

This chapter lists possible warning or error messages, their possible reasons and
a possible solution to fix the issue.

CMake not found

(C) 2020-2023 ETAS GmbH. All rights reserved.

ECU-BUILDER 1.3.0

R TR A R R A R R A R
iHHF Building sources of VvECU e
e T e S e S s R e S e R R
[09:15:24] 1 of 4: Reading config: vEcuConf.yaml

[09:15:24] 2 of 4: Creating Visual Studio Code debug configuration

[09:15:24] 3 of 4: Running scripts triggered through "before_build_sources”
- No script defined in the vEcuConf.yaml file

[09:15:24] 4 of 4: Compiling and linking
- SimpleExample.dll (Windows 64bit)

k% FAILURE ***

Fig. 9-1: CMake not found error

Possible Reason

A CMake installation is required and must be registered properly. (Software
Requirements for Windows 10). This registry entry is used to locate the CMake

installation, if it does not exist, the build fails.

It appears as if CMake was not installed or is not properly registered on your com-
puter.

Possible Solution

Ensure the following:
— CMake is installed (version 3.15 or higher).
— Kitware and CMake keys exist in the Windows Registry.
— The CMake registry key
Computer\HKEY LOCAL MACHINE\SOFTWARE\Kitware\CMake

contains the string value InstallDir pointing to the CMake installation
path:

85 Registry Editor

File Edit View Favorites Help
Computer\HKEY_LOCAL MACHINE\SOFTWARE\Kitware\CMake

v Kitware ~ | Name Type Data
CMake ab (Default) REG SZ (value not set)
o || 2b]InstallDir REG SZ C:\Program Files\CMake\

Fig. 9-2: Windows Registry with Kitware\CMake registry key

9.2

9 Troubleshooting | 58

Notepad++ Does Not Open During Workspace Creation

Notepad++ is the recommended text editor to be used along with VECU-BUILDER.
For it to work as intended, it must be installed and registered properly.

If Notepad++ does not open during the Workspace Creation stage, but Windows
Notepad opens instead, it is either not installed at all or is not properly registered
on your computer.

Possible Solution

Ensure the following:

— Notepad++ is installed.

— Notepad++ key exists in the Windows Registry.

A.

For 64-bit version:
* The Notepad++ registry key
Computer/HKEY LOCAL MACHINE/SOFTWARE/Notepad++

contains the string value (Default) pointing to the Notepad++ install-
ation path:

[B Registry Editor - O ¢
File Edit View Favorites Help
Computer\HKEY_LOCAL_ MACHINE\SOFTWARE\Notepad++
|| Name Type Data
abi(Default) | REG_SZ CA\Program Files\Notepad+ +

Notepad++

Fig. 9-3: Windows Registry with Notepad++ registry key for 64-bit ver-
sion
For 32-bit version:
* The Notepad++ registry key
Computer/HKEY LOCAL MACHINE/SOFTWARE/WOW6432Node/Note-

padt++

contains the string value (Default) pointing to the Notepad++ install-
ation path:

B Registry Editor O X
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW®6432Node\Notepad++
. ~ || Name Type Data
abl|(Default) REG_SZ C\Program Files (x86)\Notepad++
Motepad++

Fig. 9-4: Windows Registry with Notepad++ registry key for 32-bit ver-
sion

VECU-BUILDER V1.3 | User Guide

9.3

9.4

9.5

9 Troubleshooting | 59

Some Breakpoints Not Being Hit

Possible Reason

Depending on your compiler configurations, the resulting vECU may be built so
that some debugging information is not available. This may result in the debugger
not being able to hit some breakpoints.

ebreakpoint will not currently be hit. Unexpected symbol reader error while processing

ocation:
Fig. 9-5: Breakpoint not being hit

Possible Solution

In order to prevent such compiler optimization, include the following pragma
statements:

— For MSVC compiler: #pragma optimize ("", off)

— For MinGW compiler: $pragma GCC optimize ("00")

(Symbolinfo.dil) The *.die File Is Too Large to Load

Possible Reason

The operating system does not provide sufficient amount of memory required to
load the * . die file.

Possible Solution

Use a computer with sufficient amount of memory.

Windows Cannot Access Localhost While Using Sync
Attribute in EEPROM

Possible Reason

EEPROM simulation feature requires entering the value of sync sub-attribute as
UNC path.

If the defined location (e.g., C:/drive of your localhost) cannot be accessed dur-
ing the vECU execution, the data defined by the sync sub-attribute cannot be
used.

Metwork Error >

Windows cannot access \\localhost\c%’

Check the spelling of the name, Otherwise, there might be a problem with
your network. To try to identify and resclve network problems, click
Diagnose.

See details Cancel

Fig. 9-6: Network Error - Localhost cannot be accessed

VECU-BUILDER V1.3 | User Guide

9 Troubleshooting | 60

Possible Solution
Setup the local share and obtain the UNC pathname.

To setup alocal share:
1. Navigate to the drive, you want to share. (e.g., (C: /drive)

Right-click in the drive and click Properties.

2
3. Click the Sharing tab.
4. Click Advanced Sharing. You will need Admin Rights to proceed.

E& (C:) Windows Properties

Security Previous Versions Quota

General Tools Hardware

Network File and Folder Sharing

= h O
"' ¥ NotShared

Network Path
Not Shared

Advanced Sharing

Set custom permissions, create multiple shares, and set other
advanced sharing options.

I QAdvanced Sharing...

Close Cance Apply

Fig. 9-7: Properties of C:/drive dialog

5. Activate Share this folder.
Click OK.

VECU-BUILDER V1.3 | User Guide

Advanced Sharing

9 Troubleshooting | 61

Iv’ Share this folderj

Settings
Share name:

C
Add Remove

Limit the number of simultaneous users to:

20 c

Comments:
Permissions Caching
Fig. 9-8: Advanced Sharing settings dialog

= The drive is now shared and the Network Path is displayed.

VECU-BUILDER V1.3 | User Guide

9 Troubleshooting | 62

Eﬁ (C:) Windows Properties

Security Previous Versions Quota
General Tools Hardware Sharing

Network File and Folder Sharing

- CA
.

-~ | Shared

Network Path:
!

Advanced Sharing

Set custom permissions, create multiple shares, and set other
advanced sharing options

I QAdvanced Sharing...

Close Cance Apply

Fig. 9-9: Properties of C:/ drive dialog
The user that will be logged in during the execution of the vECU, needs to be
given full control permissions to the shared location.

Per default, Windows will provide permissions to ‘everyone’. The permissions
should only be provided to the user, that will be logged in during the execution of
the VECU. Therefore, the permissions shall to be changed for security reasons.

To change the permissions

1. Click Advanced Sharing. You might need Admin Rights to proceed.
2. Click Permissions.
3. Click Add.

VECU-BUILDER V1.3 | User Guide

10.

~N O g &

9 Troubleshooting | 63

B Permissions for C

Share Permissions

Group or user names:

Pemissions for Everyone Allow Deny
Full Control O O
Change | O
Read O

Enter the object name (username) to be selected.
Click Check Names.

Chose the displayed name.
Click OK.

Select Users, Computers, Service Accounts, or Groups

Select this object type:
‘Users. Groups, or Builtin security principals ‘ Object Types...

From this location:

lde bosch.com ‘ Locations...

Enter the object names to select (examples):

| Check Names |

Advanced... Cancel

Fig. 9-10: Selecting the user

Click the username to mark the entry.
Activate the permissions Full Control and Change.

To mark the entry, click Everyone.

VECU-BUILDER V1.3 | User Guide

9 Troubleshooting | 64

11. Toremove the permission for ‘everyone’, click Remove.

= The group Everyone is removed and the selected user has now full per-
missions.

R Permissions for C

Share Pemissions

GI"OLIP or user names:

3

.

Pemissions for BCN1LR Allow Deny
Full Control]
Change N
Read O

Corcel | | hony

Fig. 9-11: Permissions for selected user

12. To confirm the User Selection, click OK.

13. To confirm the updated Advanced Sharing properties, click OK.
14. Close the Properties window.

VECU-BUILDER V1.3 | User Guide

9.6

9.7

Redirecting Function Calls Did Not Work as Expected

Possible Reason

The GNU compiler optimization level 2 (-02) includes inline-small-func-
tions whichisincompatible with redirect function calls.

By default VECU-BUILDER uses the compile settings Re1WithDebInf, which
includes some optimizations. For gcc this would use the setting -02, which

includes inline-small-functions.

Possible Solution

Change the settings inadditional compile flagstoenable redirect

function calls.
There are 3 ways to deactivate the optimization:

A. -00: Completely deactivates optimization. This has the advantage that
the compiler time of user workspace decreases.

B. -O1: Reduces the level of optimization from default 2 to 1.

-02 -f-no-inline-small-functions: Keeps optimization to level 2 but only
but disables the special optimization with -f-no-inline-small-func-

tions.

For more details, see Options That Control Optimization.

License Check Failed

BE CAWINDOWS\system32iemd.exe

2828-2623 ETAS GmbH. All rights reserved.

R
Building FMU Hi#
R

1 of 6: Re fipg: vEc f.yaml
] 2 of 6: Runr r
- No
6: Building inputs, outputs, parameters,

Possible Reason

— TheLiMa installation is corrupt.
— LiMa might not reach the license server.
Possible Solution

— Reinstall VECU-BUILDER described in Installation on Windows 10 and Install-
ation on Ubuntu 20.04 LTS or contact Technical Support.

— Check network settings to get a connection to the license server.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

9.8

Building Sources Failed

Possible Reason

In some cases, building sources fails with various error messages. To save time,
CMake uses caches, e.g. a link to the build-tool is stored.

Possible Solution

To fix a broken CMake cache, delete the cache and rebuild the sources.
1. Navigate to the vECU folder.
2. Delete everything except the imported folder.

3. Rebuild the sources using 2_Build.bat on Windows or 2_Build.shon
Ubuntu 20.04 LTS.

If the build fails due to CMake reason you can find more details inbuild/-
log/build cmake.log file.

Contact Information

Technical Support

For details of your local sales office as well as your local (=
technical support team and product hotlines, take a look at
the ETAS website:

www.etas.com/hotlines

ETAS Headquarters

ETAS GmbH
Borsigstral3e 24 Phone: +49711 3423-0
70469 Stuttgart Fax: +49711 3423-2106

Germany Internet: www.etas.com

https://www.etas.com/hotlines
https://www.etas.com/

	1 Safety and Privacy Information
	1.1 Intended Use
	1.2 Target Group
	1.3 Privacy Notice
	1.3.1 Data Processing
	1.3.2 Technical and Organizational Measures

	2 About VECU-BUILDER
	2.1 Basics
	2.2 Virtual ECU
	2.3 vECU Creation Process Workflow
	2.4 Warning and Error Messages

	3 Installation
	3.1 Hardware Requirements
	3.2 Preparation
	3.3 Installation Content
	3.4 Licensing
	3.5 Installation on Windows 10
	3.5.1 Software Requirements for Windows 10
	3.5.2 Manual Installation
	3.5.3 Silent Installation
	3.5.4 Uninstalling on Windows 10

	3.6 Installation on Ubuntu 20.04 LTS
	3.6.1 Software Requirements for Ubuntu 20.04 LTS
	3.6.2 Installing on Ubuntu 20.04 LTS
	3.6.3 Uninstalling on Ubuntu 20.04 LTS

	3.7 Installed Files and Folders

	4 Working with VECU-BUILDER
	4.1 Creating a New Workspace
	4.1.1 Creating a Workspace on Windows
	4.1.2 Creating a Workspace on Ubuntu 20.04 LTS

	4.2 Importing Files and Folders
	4.3 Building the vECU
	4.4 Building the FMU
	4.5 Workspace Content
	4.6 Configuration

	5 Exploring the Examples
	5.1 Simple Example
	5.1.1 FMU Checker
	5.1.2 Difference Between Debug and Release vECUs
	5.1.3 InitialData Functionality
	5.1.4 eeprom Functionality
	5.1.5 Features to Explore in the Simple Example Workspace

	5.2 BCU Example
	5.2.1 Show Symbol Information
	5.2.2 A2L File Patching
	5.2.3 A2L Name Mapping
	5.2.4 Example of Additional Scripts: A2L Characteristics as Parameters
	5.2.5 Features to Explore in the BCU Workspace

	6 Controlling VECU-BUILDER
	6.1 Manual Interaction
	6.2 Command-Line Interface

	7 Debugging vECU
	7.1 Debugging with Visual Studio 2019
	7.2 Debugging with Visual Studio Code

	8 Workspace Migration
	9 Troubleshooting
	9.1 CMake not found
	9.2 Notepad++ Does Not Open During Workspace Creation
	9.3 Some Breakpoints Not Being Hit
	9.4 (SymbolInfo.dll) The *.die File Is Too Large to Load
	9.5 Windows Cannot Access Localhost While Using Sync Attribute in EEPROM
	9.6 Redirecting Function Calls Did Not Work as Expected
	9.7 License Check Failed
	9.8 Building Sources Failed

	10 Contact Information

