
ETAS VECU-BUILDER V1.2

User Guide

Copyright
The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation
to this document. The software described in it can only be used if the customer is
in possession of a general license agreement or single license. Using and copying
is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2023 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

VECU-BUILDER V1.2 | User Guide R07 EN | 04.2023

Contents

1 Safety and Privacy Information 5

1.1 Intended Use 5

1.2 Target Group 5

1.3 Privacy Notice 5

1.3.1 Data Processing 5

1.3.2 Technical and Organizational Measures 6

2 About VECU-BUILDER 7

2.1 Basics 7

2.2 Virtual ECU 8

2.3 vECU Creation Process Workflow 8

2.4 Warning and Error Messages 9

3 Installation 10

3.1 Hardware Requirements 10

3.2 Preparation 10

3.3 Installation Content 10

3.4 Licensing 11

3.5 Installation on Windows 10 11

3.5.1 Software Requirements for Windows 10 11

3.5.2 Manual Installation 12

3.5.3 Silent Installation 13

3.5.4 Uninstalling on Windows 10 14

3.6 Installation on Ubuntu 20.04 LTS 15

3.6.1 Software Requirements for Ubuntu 20.04 LTS 15

3.6.2 Installing on Ubuntu 20.04 LTS 15

3.6.3 Uninstalling on Ubuntu 20.04 LTS 16

3.7 Installed Files and Folders 16

4 Working with VECU-BUILDER 18

4.1 Creating a New Workspace 19

4.1.1 Creating a Workspace on Windows 19

4.1.2 Creating a Workspace on Ubuntu 20.04 LTS 21

4.2 Importing Files and Folders 23

4.3 Building the vECU 25

4.4 Building the FMU 26

VECU-BUILDER V1.2 | User Guide

Contents | 3

4.5 Workspace Content 27

4.6 Configuration 29

5 Exploring the Examples 38

5.1 Simple Example 38

5.1.1 FMU Checker 38

5.1.2 Difference Between Debug and Release vECUs 39

5.1.3 InitialData Functionality 40

5.1.4 eeprom Functionality 42

5.1.5 Features to Explore in the Simple Example Workspace 43

5.2 BCU Example 44

5.2.1 Show Symbol Information 44

5.2.2 A2L File Patching 45

5.2.3 A2L Name Mapping 46

5.2.4 Features to Explore in the BCU Workspace 47

6 Controlling VECU-BUILDER 48

6.1 Manual Interaction 48

6.2 Command-Line Interface 48

7 Debugging vECU 51

7.1 Debugging with Visual Studio 2019 52

7.2 Debugging with Visual Studio Code 53

8 Workspace Migration 54

9 Troubleshooting 55

9.1 CMake not found 55

9.2 Notepad++ Does Not Open During Workspace Creation 56

9.3 Some Breakpoints Not Being Hit 57

9.4 Windows Cannot Access Localhost While Using Sync Attribute in EEPROM 57

10 Contact Information 63

VECU-BUILDER V1.2 | User Guide

Contents | 4

1 Safety and Privacy Information | 5

1 Safety and Privacy Information

In this chapter you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

1.1 Intended Use
The product is designed to produce a virtual ECU for microcontrollers from exist-
ing ECU source codes or from precompiled binaries. The virtual ECU is designed
for simulation, debugging, and pre-calibration of ECU software in a PC-based vir-
tual simulation environment.
In general, virtual ECUs may not be real-time capable. If you control physical
devices with a virtual ECU, the system may respond unexpectedly. Take suitable
precautions to ensure safe operation.
ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information. Please adhere to the ETAS Safety
Advice (see documentation folder).

1.2 Target Group
This product is directed at trained qualified personnel in development of auto-
motive ECU software (e.g., function developer, application engineer, ECU soft-
ware integrator, system engineer or calibration engineer) at OEMs, tier-1 or tier-2
suppliers in the auto-motive industry. Technical knowledge in control unit engin-
eering is a prerequisite. In addition, programming knowledge in C/C++ is required.
AUTOSAR Classic knowledge is helpful.

1.3 Privacy Notice
Your privacy is important to ETAS. We have created the following privacy notice
that informs you, which data are processed in VECU-BUILDER, which data cat-
egories VECU-BUILDER uses, and which technical measure you must take to
ensure the privacy of the users. Additionally, we provide further instructions
where this product stores and where you can delete personal data.

1.3.1 Data Processing
Note that personal data or data categories are processed when using this
product (e.g. in log files). The purchaser of this product is responsible for the
legal conformity of processing the data in accordance with Article 4 No. 7 of the
General Data Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is
not liable for any mishandling of this data.

VECU-BUILDER V1.2 | User Guide

1 Safety and Privacy Information | 6

1.3.2 Technical and Organizational Measures
This product itself does not encrypt the personal data or data categories that it
records. Ensure the data security of the recorded data by suitable technical or
organizational measures of your IT system, e.g., by classical anti-theft and
access protection on the hardware. Personal data in log files can be deleted by
tools in the operating system.

VECU-BUILDER V1.2 | User Guide

2 About VECU-BUILDER | 7

2 About VECU-BUILDER

VECU-BUILDER is designed to build a virtual ECU (vECU). The vECU can be used
for simulation, debugging and pre-calibration of ECU software in a PC-based vir-
tual simulation environment.

VECU-BUILDER supports the generation of Level-1, Level-2, and Level-3 vECUs
according to the Prostep Definition of vECUs. Level-4 vECUs, i.e., hex-files for a
specific target, are not supported.

VECU-BUILDER is based on Python and CMake. The inputs can either be C/C++
source codes or binaries like object files or shared libraries including symbol
information. In contrast to AUTOSAR Classic, the configuration of a vECU is done
in a single YAML file (vEcuConf.yaml). No ARXML files are processed. The prop-
erties are configured in this text-based file. This file is used to define the sup-
ported features of the vECU such as an XCP slave or initial data as part of
simulated NVRAM. VECU-BUILDER wraps the binaries of the vECU into an FMU
(FMI 2.0 for Co-Simulation). These FMUs can be integrated into any FMI-com-
pliant simulation master.

2.1 Basics
The basic principle is to keep the data lean in a simple and smart way. The
concept is the simplification of the ECU software stack and the ARXML file. The
A2L file is patched by removing all hardware dependencies and updating memory
addresses of all inputs, outputs, measurements, and characteristics. The soft-
ware stack layers are represented by C and H files which are reflected in the
imported folder (vECU\imported) in the vECU build process. The result is a
stand-alone FMU containing the model description (e.g. its variables) as XML file,
the access to calibration and measurement variables via patched A2L file and an
executable model as DLL/SO file.

Fig. 2-1: Basic concept and result of VECU-BUILDER

VECU-BUILDER V1.2 | User Guide

https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf

2 About VECU-BUILDER | 8

2.2 Virtual ECU
A vECU is a virtualized ECU which can be used as a real ECU. With the vECU you
can test the ECU software and execute the software functionality without hard-
ware. This gives you the possibility to test the communication between the ECUs
before prototypes or hardware is available. The vECU contains the code, the para-
meters and the XCP slave as an alternative path to the hex code.

2.3 vECU Creation Process Workflow
The whole workflow is an iterative process to get to the final configuration of the
YAML file. The listed points give a rough overview of the workflow. Section A and F
are taking place out of the VECU-BUILDER.

 A. Prepare sources
 l Directives that refer to header files in code must be fixed
 l Generate a script collecting the files you need from the various loc-

ations you found

 B. Compile sources, incompatible sources must be removed
 l Generate new workspace
 l Copy sources into workspace
 l Build
 l Check error messages
 l Remove or patch code

 C. Link sources and create stubs
 l Solve link errors with empty stubs

 D. Define Inputs and Outputs (I/O) to make the vECU runnable
 l Use symbol information to generate I/O
 l Manually patch the sources of virtual devices
 l Use the C notation of the variables (e.g., sensor.*)

 E. Create task model to run the tasks
 l Use text format to define task model

 F. Operate for first time, apply SiL specific code changes
 l Debug code
 l Fill some stub functions with code or apply SiL specific code changes

After building the first iteration of an vECU it can be used to perform further
steps like (out of VECU-BUILDER):

Integrate vECU with plant models and execute it in Co-Simulation-envir-
onment

Run and test the vECU in an experiment environment

Measurement and calibration of vECU

Debugging with source code editor

VECU-BUILDER V1.2 | User Guide

2 About VECU-BUILDER | 9

2.4 Warning and Error Messages
VECU-BUILDER may encounter situations in which an Error or a Warning message
is displayed.

Errors are printed in red and indicate a severe issue which prevents the build from
succeeding.

Fig. 2-2: Error message

Warnings are printed in yellow and are meant to draw the attention to a certain
issue during the build. The issue is not as severe as an error and thus the build
continues.

Fig. 2-3: Warning message

VECU-BUILDER V1.2 | User Guide

3 Installation | 10

3 Installation

This chapter provides information for preparing and performing the installation
and for licensing the software. The installation can be fulfilled for the following
operating systems:

Windows 10

Ubuntu 20.04 LTS

3.1 Hardware Requirements
The following Hardware Requirements need to be met:

Processor min. 2 GHz

3 GHz Dual-Core or higher recommended

Memory min. 8 GB RAM

32 GB RAM recommended

Free Disk Space 5 GB (not including the size for application data)

>100 GB recommended

3.2 Preparation
Prior to the installation, check that your computer meets the Hardware and Soft-
ware Requirements. Depending on the operating system used and network con-
nection, you must ensure that you have the required user rights.

Note

Ensure that you have the necessary access privileges for the installation of the
software. If in doubt, contact your system administrator.

3.3 Installation Content
The installation content can either be downloaded from ETAS license and down-
load portal (https://license.etas.com/flexnet/operationsportal/logon.do) and
then be installed or installed from the DVD.

It contains information about the open-source software attributions, important
information like Safety Advice or the User Guide and the executable installation
file (EXE).

VECU-BUILDER V1.2 | User Guide

https://license.etas.com/flexnet/operationsportal/logon.do

3 Installation | 11

3.4 Licensing
The use of VECU-BUILDER is protected by electronic licensing. Valid licenses are
neces-sary to operate ETAS VECU-BUILDER and its add-ons. The use of unli-
censed ETAS soft-ware is prohibited. The required licenses are not included in
this delivery.

When you purchase VECU-BUILDER licenses, you receive a separate entitlement
letter. Activate the license using a self-service portal on the ETAS website:
https://www.etas.com/support/licensing

For assistance, please consult the help file available on the start page of the self-
service portal. During the activation process, you receive the necessary license
keys per e-mail.

License keys are valid for a major version. If you have a valid service contract, you
will receive a new entitlement automatically for successive major version (e.g.,
from V4.x to V5.x). You do not need a new license file for updates and main-
tenance versions, e.g., for the refresh V5.0.1 or update V5.1.0 to major version
V5.0.0.

VECU-BUILDER checks

the product license when building FMUs.

the runtime license during tun-time of the vECU.

the XCP license before establishing an XCP connection.

the GO license during build-time. If it is valid, it will prevent all license
checks during run-time.

3.5 Installation on Windows 10

3.5.1 Software Requirements for Windows 10
The following Software Requirements need to be met:

Required Software CMake (version ≥3.15)

Recommended Software Notepad++

Optional Software Microsoft Visual Studio 2015, 2017, 2019, 2022

Microsoft Visual Studio Code

Python

VECU-BUILDER V1.2 | User Guide

https://www.etas.com/support/licensing

3 Installation | 12

3.5.2 Manual Installation
 1. Go to the directory where the installation file is located and execute the

VECU_BUILDER_installer_1.2.0.exe file.

The Setup Wizard opens.

 2. Klick Next.

The "End User License Agreement" window opens.

 3. Read the License Agreement carefully, then select I accept the terms of
the License Agreement.

 4. Klick Next.

The "Safety Advice" window opens.

 5. Read the Safety Advice carefully, then select I read and selected the
Safety Advice.

 6. Klick Next.

The "Installation Path" window opens.

 7. Accept the default path (click Next) or click Browse to select a custom loc-
ation.

The "Ready to Install" window opens.

 8. Click Install.

The installation is performed, its progress is shown via a progress bar.

 9. Click Next.

The "Third-party Software" window opens.

 10. Install CMake (required) and Notepad++ (recommended).

See the links below in the installation dialog:

CMake (version 3.15 or higher)

Notepad++

 11. Click Next.

The "Completing VECU-BUILDER Setup" window opens.

 12. Optionally, activate the Open VECU-BUILDER documentation checkbox to
open the documentation folder.

 13. Click Finish.

The installation is completed, and the VECU-BUILDER can now be used.

VECU-BUILDER V1.2 | User Guide

https://cmake.org/download/
https://notepad-plus-plus.org/downloads/

3 Installation | 13

3.5.3 Silent Installation
Besides the Manual Installation, you also can use the Silent Installation. Install-
ation differs between using the Command Prompt and the PowerShell.

Silent Installation using Command Prompt
 1. Open the command prompt.

 2. Navigate to the directory where the installer (VECU-BUILDER_
installer_1.2.0.exe) is located.

 3. Execute the following command:
 start cmd.exe /c VECU-BUILDER_installer_1.2.0.exe /S

/INST="path_to_installation_dir" /EULAAccepted="YES"

/SafetyHintsAccepted="YES"

where path_to_installation_dir contains a path to a directory
where the software is to be installed.

A new command prompt window opens and installation starts.

VECU-BUILDER V1.2 | User Guide

3 Installation | 14

Silent Installation using PowerShell
 1. Open the PowerShell.

 2. Navigate to the directory where the installer (VECU-BUILDER_
installer_1.2.0.exe) is located.

 3. Execute the following command:
Start-Process -FilePath ".\VECU-BUILDER_installer_1.2.0.exe/"
-ArgumentList "/c /S /INST= path_to_installation_dir

/EULAAccepted=YES /SafetyHintsAccepted=YES" -Wait

where path_to_installation_dir contains a path to a directory
where the software is to be installed.

Or

 4. Execute the following command:
Start-Process -FilePath " path_to \VECU-BUILDER_

installer_1.2.0.exe/" -ArgumentList "/c /S /INST= path_

to_installation_dir /EULAAccepted=YES /SafetyHint-

sAccepted=YES" -Wait

where path_to contains the path where the installer (VECU-BUILDER_
installer_1.2.0.exe) is located and path_to_installation_dir
contains a path to a directory where the software is to be installed.

Installation starts.

3.5.4 Uninstalling on Windows 10
 1. Open the location where you installed VECU-BUILDER.

If you used the default installation location, you can find it under

C:\Program Files\ETAS\VECU-BUILDER

 2. Execute the uninstall.exe with double-click.

VECU-BUILDER V1.2 | User Guide

3 Installation | 15

3.6 Installation on Ubuntu 20.04 LTS

3.6.1 Software Requirements for Ubuntu 20.04 LTS
The following Software Requirements need to be met:

Required Software cmake

build-essential

gcc-multilib

g++-multilib

libssl-dev:i386

linux-libc-dev:i386

nano

xterm

Optional Software Microsoft Visual Studio Code

Python

3.6.2 Installing on Ubuntu 20.04 LTS
 1. Navigate to the directory where the Debian Software Package file VECU-

BUILDER_installer_1.2.0.deb is located.

 2. Open a new terminal.

 3. Execute the command of

sudo apt install ./VECU-BUILDER_installer_1.2.0.deb

 4. Enter your password.

 5. Accept the EULA.

 6. Accept the Safety Advice.

The VECU-BUILDER package deployment is completed.

 7. Logout and login to enable environment variables to be set.

 8. For Ubuntu 20.04 LTS, VECU-BUILDER has dependencies to other soft-
ware. Make sure the software is installed prior to using VECU-BUILDER. You
may use the following commands to install the required software:
 l sudo apt install cmake

 l sudo apt install build-essential

 l sudo apt install gcc-multilib

 l sudo apt install g++-multilib

 l sudo apt install libssl-dev:i386

 l sudo apt install linux-libc-dev:i386

 l sudo apt install nano

 l sudo apt install xterm

VECU-BUILDER V1.2 | User Guide

3 Installation | 16

3.6.3 Uninstalling on Ubuntu 20.04 LTS
 1. Open a new terminal.

 2. Execute the command of

sudo apt remove vecu-builder

You are asked if you want to continue uninstalling.

 3. To continue, enter Y and hit Enter.

The VECU-BUILDER package is removed.

3.7 Installed Files and Folders

VECU-BUILDER Tool
The default installation location is
C:\Program Files\ETAS\VECU-BUILDER\1.2.0 on Windows

Or

/opt/ETAS/VECU-BUILDER/1.2.0 on Ubuntu 20.04 LTS.

It is recommended not to alter the installation location.

An environment variable of VECUBUILDER_HOME points to this folder.

Fig. 3-1: Installation content (left: Windows, right: Ubuntu 20.04 LTS)

The content of this folder consists of several subfolders and one command
script:

3rd_party: Contains the third party tools of FMU Checker and MinGW.

bin: Contains library and execution files for the build process. These files
are important for the build and must not be altered.

build: Contains templates, resources, and scripts for the build process.
These files are important for the build and must not be altered.

documentation: Contains the VECU-BUILDER User Guide, the OSS Attri-
bution and the ETAS Safety Advice documents.

CreateWorkspace.bat (Windows) / CreateWorkspace.sh (Ubuntu
20.04 LTS): Creates a new workspace. After executing, you will be guided
through the process step by step.

VECU-BUILDER V1.2 | User Guide

3 Installation | 17

VECU-BUILDER Examples
You can find ready-to-use examples in the following location:

C:\ProgramData\ETAS\VECU-BUILDER\Examples_1.2.0 on Windows

Or

/opt/ETAS/VECU-BUILDER/Examples_1.2.0 on Ubuntu 20.04 LTS.

An environment variable of VECUBUILDER_EXAMPLES points to this folder.

The following two examples are delivered along with the tool:

BCU (Body Control Unit)

SimpleExample

Fig. 3-2: Delivered examples (left: Windows, right: Ubuntu 20.04 LTS)

VECU-BUILDER Workspaces
As location for all your workspaces we recommend the default folder, where you
should create a dedicated subfolder for each workspace.

The default folder is created during the installation process on Windows under
C:\Users\Public\Documents\VECU-BUILDER_Workspaces

Or

/opt/ETAS/VECU-BUILDER_Workspaces on Ubuntu 20.04 LTS.

Access to Artefacts in Windows
You can access all artefacts in Windows via their respective Start Menu entries.

Fig. 3-3: Start Menu entries

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 18

4 Working with VECU-BUILDER

To commence your learning, we recommend following the bellow path:

Fig. 4-1: The learning path

This section guides you through the process of creating a vECU in four distinct
stages. Each stage can be triggered individually, and you can choose to continue
with the next one.

Fig. 4-2: VECU-BUILDER stages

By following the steps described in the next chapters, you will build your first
vECU based on the Simple Example. This is the ideal starting point for your vir-
tualization leaning journey.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 19

4.1 Creating a New Workspace
The very first step, required at the beginning of every project, is to create a work-
space.

Note

Workspaces are designed for parallel use.

A single workspace cannot be used for tasks running in parallel.

4.1.1 Creating a Workspace on Windows
 1. Launch “Create new workspace” from the Start Menu.

A console window opens providing details on the overall process, various
stages it goes through and their individual steps.

In the first step of “Create new workspace” you will be asked to select a
folder where your workspace will be saved.

Fig. 4-3: Select workspace location (Windows)

 2. Navigate to the default location of your workspaces
C:\Users\Public\Documents\VECU-BUILDER_Workspaces

and select an existing folder or create a new one.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 20

The configuration file vEcuConf.yaml opens in Notepad++.

Per default, this is the configuration file of the Simple Example.

Fig. 4-4: Default configuration (Windows)

 3. Keep the configuration file as is and close the Notepad ++ application.

Your new workspace is now created.

The process will automatically continue with the next stage.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 21

4.1.2 Creating a Workspace on Ubuntu 20.04 LTS

Note

In Ubuntu 20.04 LTS the folder, that should be used as workspace, needs to
exist before the workspace creation is proceeded.

 1. Navigate to the folder, where the CreateWorkspace.sh is located. The
default path is opt/ETAS/VECU-BUILDER/1.2.0.

 2. Open a new terminal.

 3. Enter ./CreateWorkspace.sh.

In the first step of “Create new workspace” you will be asked to select a
folder where your workspace will be saved.

 4. Navigate to the default location of your workspaces /opt/ETAS/VECU-
BUILDER_Workspaces and select an existing folder.

Fig. 4-5: Select workspace location (Ubuntu 20.04 LTS)

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 22

The configuration file vEcuConf.yaml opens.

Per default, this is the configuration file of the Simple Example.

Fig. 4-6: Default configuration (Ubuntu 20.04 LTS)

 5. Keep the configuration file as is and close it.

Your new workspace is now created.

The process will automatically continue with the next stage.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 23

4.2 Importing Files and Folders
During this stage, the sources defined in your vEcuConf.yaml are copied to the
"vEcu/imported" folder in your workspace.

Note

During the import stage, files and folders get copied into the workspace. For
reasons of portability, it is recommended to create workspaces that are self-
contained.

After successful completion of the previous stage Creating a New Workspace
you were forwarded to the next stage Importing Files and Folders and the pro-
cess continues.

If you work in an already existing workspace, you can trigger this stage by running
1_Import.bat on Windows or 1_Import.sh on Ubuntu 20.04 LTS.

After successful completion of this stage Importing Files and Folders a dia-
log opens asking you whether you want to continue with the next stage
Building the vECU or inspect the results of this stage.

Fig. 4-7: Proceed with vECU Build dialog or inspect the results (Win-
dows)

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 24

Fig. 4-8: Proceed with vECU Build dialog or inspect the results (Ubuntu
20.04 LTS)

 1. Click Yes.

Your new workspace is now created.

The process will continue with the next stage.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 25

4.3 Building the vECU
During this stage, the sources imported into your workspace are compiled and
linked into a DLL/SO file forming the core functionality of your future vECU.

After successful completion of the previous stage Importing Files and Folders and
selecting to proceed with the build of the vECU you were forwarded to the next
stage Building the FMU and the process continues.

If you work in an already existing workspace, you can trigger this stage by running
2_Build.bat on Windows or 2_Build.sh on Ubuntu 20.04 LTS.

Fig. 4-9: Building vECU completed (Windows)

Fig. 4-10: Building vECU completed (Ubuntu 20.04 LTS)

The process will automatically continue with the next stage.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 26

4.4 Building the FMU
During this stage, the DLL/SO file created in the previous stage will be wrapped
into an FMU container representing your vECU.

After successful completion of the previous stage Building the vECU and select-
ing to proceed with the build of the vECU you were forwarded to the next stage
Building the FMU where the process completes.

Fig. 4-11: Building FMU completed (Windows)

Fig. 4-12: Building FMU completed (Ubuntu 20.04 LTS)

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 27

4.5 Workspace Content
You have now successfully created the VECU-BUILDER workspace and built your
first vECU based on the provided Simple Example sources. In this chapter, you
find a description of the workspace contents for Windows and Ubuntu 20.04 LTS.

Fig. 4-13: Workspace contents (left: Windows, right: Ubuntu 20.04 LTS)

The content of the workspace consists of several artefacts:

vscode folder:
 l launch.json file for vECU debugging in VS Code

Note

The .vscode folder is only included in Windows.

build folder:
 l additional_scripts folder: location for your project specific addi-

tional scripts
 l log folder:

log files from executed stages
 l scripts folder: command and shell scripts to perform the individual

stages
 l last_build_footprint.txt: details of last performed build stage
 l RawSymbolDetails.txt: subset of SymbolDetails and for internal

purposes only
 l SymbolDetails.txt: symbols within your sources and their attributes

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 28

vECU folder:
 l buildArtifacts folder: Library file and its associated debug inform-

ation
 l CMake folder: CMake project artifacts
 l imported folder: all imported artifacts
 l CMakeLists.txt: set of directives and instructions for building your

sources

1_Import.bat/1_Import.sh
file to trigger the Importing Files and Folders stage.

2_Build.bat/2_Build.sh
file to trigger the Building the vECU stage.

 3a_CheckFMU.bat/3a_CheckFMU.sh
file to invoke the FMU Checker and inspect the vECU outputs.

3b_StartDebugger.bat/3b_StartDebugger.sh
file to invoke MSVC or VS Code as debugger.

3c_ShowSymbolDetails.bat/3c_ShowSymbolDetails.sh
file to invoke Notepad++ (Windows) / new Terminal (Ubuntu 20.04 LTS)
and display the Symbol Details.

3d_RemoveGoLicense.bat/3d_RemoveGoLicense.sh
file to remove the GO license from the vECU (only relevant if vECU was built
with GO-license).

SimpleExample.fmu

release version of your vECU, for more details see Simple Example.

SimpleExample_debug.fmu

debug version of your vECU, for more details see Simple Example.

vEcuConf.yaml

the YAML configuration file, for more details see Configuration.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 29

4.6 Configuration
The YAML file contains the configurations for the import and build process as well
as for the vECU itself. It is the only configuration you need to create and maintain.
The YAML file is divided into several sections, each section configuring a par-
ticular attribute. You are guided through the YAML file with comments on each
section and configuration attributes. Every section is structured in a stand-
ardized way:

A: comment with information on the corresponding section

B: configuration attributes and values

The following is a list of all attributes available in the YAML file:

version

This is the version of the used YAML file schema and must not be changed.

build_mode

You can select between 2 modes:

build_sources: You import source code (either as AUTOSAR Classic com-
pliant or legacy C-code), header files, and static libraries. VECU-BUILDER
then builds your vECU in the form of an FMU container.

The vECU will be named <fmu_name>.fmu.

import_dll: You import an existing, already compiled and linked, software
in the form of a DLL/SO containing the functionality of your vECU.

VECU-BUILDER then wraps it in an FMU container, sets up the inputs, out-
puts and tasks, patches the a2l file, sets up the xcp slave port, etc.

fmu_name

Enter the name of you vECU.

The code of your vECU is located inside the FMU in the folder"
resources/<fmu_name>.dll".

This and other DLL/SO files are loaded and executed by the FMU runner.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 30

import_into_project

Enter the paths to the files and folders to be imported.

You can specify paths to folders and/or individual files such as *.c, *.h,
*.cpp, *.hpp or *.zip archives which will be extracted during import.

The import target is the "vEcu/imported" folder in your workspace.

Environment variables can be used like this:

'${VECUBUILDER_EXAMPLES}\SimpleExample\src'

additional_resources

Additional resources can be used to resolve dependencies by making
 .dll/.so libraries your application depends on part of the build and exe-
cution process.

Specify all additional resources that are to be included in the FMU, i.e.
‘${VECUBUILD-ER_WORKSPACE}\vECU\imported\additional_

DLLs\myDependentLibrary.dll‘ and they will be copied to the
resources folder of the FMU during the Building FMU stage.

import_external_vecu_dll

Only needed if you selected import_dll as build_mode.

That DLL/SO already contains the code of your vECU, you can skip the com-
piling and linking and just import your DLL/SO into the FMU wrapper.

Here you enter the DLL/SO name and the path for updates:

dll_name: The name of the DLL/SO. The DLL/SO must contain private sym-
bol information.

get_updates_from: If VECU-BUILDER can find a DLL/SO including private
symbol information, the imported DLL/SO will be updated.

Environment variables can be used like this:'${SystemDrive}\Sandbox'.

architecture

Specify the architecture.

When importing sources, the setting of this attribute has to match the
integration and simulation system where the vECU is to be used.

In case you are importing an DLL/SO precompiled for either 32bit or 64bit
architecture, this attribute must be set to the same.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 31

xcp_slave

Enter the port and IP address of the XCP Slave to be setup in your vECU.

These values are transferred to the patched A2L file. The used protocol is
TCP. For more details, see A2L File Patching.

Note

A socket (IP address + port + protocol) for the XCP connection between
INCA and XCP slave can only be used once. If a port is busy, you must
define another port in the YAML file.

Note

xcp_slave is supported for Windows only.

operating_system

Enter the operating system. Currently only Windows and Ubuntu 20.04 LTS
supported.

build_tool

Enter your preferred build tool. Build_tool differs between Windows and
Ubuntu 20.04 LTS.

Windows:

Several MSVC versions and MinGW Makefiles are supported.

In case Visual Studio is selected, a Visual Studio Solution is generated.

If you choose MinGW Makefiles, a CMake project is generated.

These artefacts are stored in the “vECU\CMake” folder in your workspace.

path_to_mingw: If the user-specific MinGW is defined, CMake builds the
sources using this MinGW version.

Note

path_to_mingw is supported for Windows only.

Ubuntu 20.04 LTS:

You can chose Unix Makefiles and a make file for use with GNU compiler is
generated.

cmake_generator_toolset

Define which toolset should be used by CMake during the build process.

For more details, see CMAKE_GENERATOR_TOOLSET.

VECU-BUILDER V1.2 | User Guide

https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_TOOLSET.html

4 Working with VECU-BUILDER | 32

inputs, outputs, parameters, locals

Enter the variables you wish to expose as ports of your FMU.

Inputs, outputs, parameters, and locals refer to the causality of the FMI.

Wildcards of * and ? are allowed. Arrays can be added using myArray*, the
same goes for structures. If your wildcard expression breaks the YAML com-
patibility, put it in single apostrophes.

Example: '*a' finds all symbols ending with an 'a'.

Aliases can be defined for variables, which results in renaming of FMI ports.
The aliases are used in the modelDescription.xml and the original vari-
able names are used in the resources.txt.

Note

Variables of type enumeration will be interpreted as integers in the mod-
elDescription.xml file of the FMU.

The name-value mapping of enumerations will be ignored when enu-
merations are used as interfaces. Only the integer value will be
exchanged.

Note

The use of bitfields for inputs, outputs, parameters and locals is not sup-
ported.

initial_data

Enter the path for source and target destination to define the initial values
of calibration variables.

The initial data is virtually flashed into memory during initialization. The
data file in the FMU (defined by destination) is read and its values are writ-
ten to RAM. This simulates a part of the NVRAM (non-volatile RAM).

source: Where to get the file. During build-time this file will be copied from
source.

destination: Where to store the file inside the FMU, relative to the re-
sources folder of the FMU (optional). This file is used during run-time.

Supported formats:

.VarVal: list of pairs separated by one space, where the lhs refers to the
C variable and the rhs to the value.

.dcm (only experimental support)

For more information, see InitialData Functionality.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 33

eeprom

Specify the eeprom simulation attributes.

The eeprom data is loaded from a file to RAM during vECU initialization. The
data is saved to the file before running terminate tasks and when unload-
ing the vECU. This can be used to simulate a soft reset behavior where
EEPROM stored data are preserved and not lost once the simulation of
vECU terminates. A typical application of this feature is the storage of total
mileage information in the ESP controller.

source: Path where to get the file. This is used during the build.

destination: Path where to store the file relative to the resources fold-
er of the FMU. This is the working copy (optional).

sync: This can be a UNC Path or a regular pathname. When the vECU is ini-
tializing, this file is copied to the 'destination', if it exists. When the vECU
terminates, the updated file in 'destination' is copied to the 'sync' location
(optional). To setup the UNC Path, see Windows Cannot Access Local-
host While Using Sync Attribute in EEPROM.

c_variables: The C variable names that store the eeprom data.

Supported format:

.txt: A line starting with '#' is a comment. All other lines store the data
stream to be flashed to the C variables. The order of the data stream lines
is the same as the order of the c_variables listed.

A data stream is a sequence of bytes in hex format. Each byte is separated
by a space. E.g.: 01 02 ee 4f. In the default YAML file the sync is commented
out.

To get more information about eeprom, see eeprom Functionality.

tasks

Define the tasks that are to be executed and their attributes.

To simulate the microcontroller behavior with its periodically executed
functions of your software, these functions are to be defined as tasks in
this section.

A function can be defined as a task only once, duplicated functions will be
ignored.

function_name: '<function name>', without brackets, set in apostrophes,
no arguments allowed.

trigger: Choose between cyclic, initial or terminate, the default is cyclic.

period: <number> [in seconds], the default is 1.0.

first_call: <number> [in seconds] for the cyclic tasks, the default is
period.

priority: The lower the number the higher the priority, the default is 0.

max_calls: <number>, -1 means infinite, 0 means no call.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 34

redirect_function_calls

Enter the names functions to be replaced and their substitutes.

The function signatures of the two functions must be identical. This allows
you to test the behavior of your software using alternative implementation
without changing the original source code or to replace unfinished or hard-
ware-dependent functions with mock functions.

replaced_function: Enter the function name of the function to be
replaced.

substitute_function: The function name of the function that sub-
stitutes the replaced function.

build_include_filters & build_exclude_filters

Only usable if you selected build_sources as build_mode.

You can select files and/or folders that should be included or excluded in/-
from the vECU build process.

Files are only included into the build if they are matched by at least one
build_include_filter and are not matched by any build_exclude_
filter.

assembly_list_files

Specify your assembly list files for the build process.

Of the given sources defined by "build_include_filters" and "build_
exclude_filters", only those listed in a file are passed to the compiler.

If no assembly list files are configured, all sources are compiled.

additional_include_directories & additional_defines

Only usable if you selected build_sources as build_mode.

These values are passed to the preprocessor. This is useful if you need to
set/unset some defines to adapt them to the new PC target.

Brackets '(', ')' must be escaped as '\(', '\)'.

Note

The following limitations apply to filename paths, command line and
response-file lengths in the Windows environment.

Filename paths cannot be longer than MAX_PATH (260) characters.

Command-line lengths cannot be longer than 32,768 characters.

Response-file lengths cannot be longer than 131,072 characters.

VECU-BUILDER V1.2 | User Guide

4 Working with VECU-BUILDER | 35

additional_compile_flags

Only usable if you selected build_sources as build_mode.

Specify how the compiler should work. Each individual flag must be written
in a separate line and put in single apostrophes, i.e. '/ZI'.

The flags are written into the CMakeLists.

For more details, see MSVC compiler options or gcc compiler options.

additional_static_libraries

Only usable if you selected build_sources for build_mode.

The libraries need to be located in the folder "./pro-
jects/vEcu/imported".

environment_variables

You can define process-level environment variables that are set by the
build process and by the FMI wrapper during the vECU execution.

Example: PATH=c:\Temp;${PATH}

These variables can be configured and modified in one location and can be
accessed from scripts and configuration files. Process-level environment
variable of VECUBUILDER_WORKSPACE is created automatically during the
build process with its value pointing to the current workspace.

additional_scripts

Define your additional scripts for execution.

Project-specific scripts can be configured to be executed at various
phases of the import and/or the build process.

You can utilize these to copy or modify files, add files to the FMU archive,
parse files, etc. You may use Python, Perl, .cmd scripts, .bat batch/shell
script files as long as these can be executed on your machine.

filename: Your script name (default location for such scripts is
“build\additional_scripts” in your workspace) or full absolute path.

arguments: Optionally, you may define arguments to be passed to the
respective interpreter.

command_line: Full absolute path to the interpreter.

trigger: Select when should your script be executed from these options:
 l before_import

 l after_import

 l before_build_sources (deprecated: before_build)
 l before_build_fmus

 l after_build_fmus (deprecated: after_build)

priority: Define with which priority should your script be executed.

VECU-BUILDER V1.2 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/Invoking-GCC.html

4 Working with VECU-BUILDER | 36

patch_a2l_file

filename: Enter the name of your A2L file to be patched.

An A2L File is required to connect an MCD tool such as INCA to the running
vECU. The A2L file needs to be located in the folder: “vEcu/imported". By
using a2l_name_mappings in the .yaml file, symbol names can be
mapped to names in the A2L File.

Changes are done by using regular expressions for search and substitute.
One such regular expression allows to map multiple names at once. To see
an example, see the following table.

RegEx (array)\[(\d+)\] -> \1_\2

Mapping array[1] -> array_1

VECU-BUILDER will update the memory addresses of all measurements and
characteristics in the provided A2L file. The original A2L file is renamed by
appending .bak to its name. For more details, see A2L File Patching
and A2L Name Mapping.

debug_hook

Specify whether to enable or disable a debug hook. When enabled, the
FMU execution is interrupted when the FMU is instantiated until a debug-
ger is attached. For more details, see Debugging vECU.

additional_link_flags

Only usable if you selected build_sources as build_mode.

Specify how the linker should work. Each individual flag must be written in a
separate line and put in single apostrophes, i.e. '/DEBUG'.

The flags are written into the CMakeLists.txt.

For more details, see MSVC linker options or gcc linker options.

VECU-BUILDER V1.2 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/linker-options?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

4 Working with VECU-BUILDER | 37

simple_file_modifications

Specify file modifications that shall be applied to files imported in
“vECU/imported” folder.

In case you specify multiple modifications, they will be applied sequentially
following the order in which they were specified.

The next two attributes are mandatory for all types of modifications.

file_regex: Specify the search RegEx for a file or a set of files that shall
be modified.

trigger: Specify when the modification shall be applied from the 2 below
options:
 l after_import (default)
 l before_build_sources

You can specify a single or multiple actions (modification types) from the 4
below options:
 l comment_line: Comment out a single line of code by adding '//' at the

beginning of the line.
 l search_and_replace: Replace a line of code that matches the

search_regex with the replacement.
 l insert_code_above: Insert code above a matched line.
 l insert_code_belo: Insert code below a matched line.

You must specify line_regex and to which match(es) the modification
are to be applied to (apply_to) for each action from the below 3 options:
 l all_matches (default)
 l last_match

 l first_match

For insert_code_above and insert_code_below, you must specify
the code section that is to be inserted.

When using simple_file_modifications, consider the following pro-
cedure to make sure, modifications are not included in .bak file.

1. Get the set of files and apply the file filter.

2. Revert backups for all files to be modified: Move the .bak files to over-
write the normal filename.

→ The backup file is deleted.

3. Create the backup on all files that need to be modified, excluding files
ending with .bak.

4. Apply the file modifications to all files that need to be modified.

Note

If you need more sophisticated file modifications, use a project-specific
script via the additional_scripts.

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 38

5 Exploring the Examples

This chapter contains details on the two examples that are delivered along with
the tool and provides pointers on how to experiment within their respective work-
spaces.

5.1 Simple Example
If you followed the instructions in the chapter Working with VECU-BUILDER, you
now have a workspace on your PC which is based on the Simple Example.

5.1.1 FMU Checker
To conduct a quick smoke test of the created vECU, the FMU check tool is
delivered along with VECU-BUILDER. This tool can be invoked via the 3a_Check-
FMU.bat on Windows or 3a_CheckFMU.sh on Ubuntu 20.04 LTS. Simply
execute this file to run the release vECU or drag-and-drop the debug vECU into
this batch/shell script file to run the debug vECU.

This tool opens a terminal where details of the FMU are displayed and the time
and values of defined outputs are printed. The batch/shell script file is configured
so that the simulation runs for 10 seconds. You can change this by altering the
batch/shell script file.

Fig. 5-1: FMU Checker output (Windows)

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 39

5.1.2 Difference Between Debug and Release vECUs
You find two FMUs in this workspace, one named SimpleExample.fmu (which
will be referred to as ‘release vECU’) and the other one named SimpleExample_
debug.fmu (which will be referred to as ‘debug vECU’).

Extract each of these two FMU archives into its own folder and let’s explore what
they contain and how they differ.

The functional behavior of both vECUs is identical.

The debug vECU contains symbol information and additional artefacts, e.g., PDB
(when build tool is MSVC) or DIE (when build tool is MinGW). Use the debug vECU
to debug and step through your code.

When you compare the two extracted folders, you will notice that the main dif-
ference is in the resources folder.

Fig. 5-2: Comparison of debug and release vECU

The release vECU contains only address information, unlike the debug vECU
which contains the variables and function names. The release vECU protects the
IP contained in the vECU and does not contain symbol information. Use the
release vECU if you want to share it with others.

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 40

Fig. 5-3: Comparison of resources.txt

5.1.3 InitialData Functionality
When using intialData in the .yaml file, the InitialData.VarVal will be
copied from Examples/SimpleExample/init into the FMU that is going to be
created. You can also use intialData.dcm, it is the same procedure.

InitialData.VarVal and intialData.dcm includes initial values. To see the
output of the two initial values using InitialData.VarVal, see 5.1.1.

You can change the initial values inside the InitialData.VarVal or
intialData.dcm to the desired values. It is possible to use both files sim-
ultaneously.

Note

If InitialData.VarVal and intialData.dcm are used simultaneously, a
variable can only occur in one of the two files, E.g. factor1 in .VarVal and
factor2 in .dcm. Otherwise, the variables will overwrite each other.

To change InitialData and build new FMU using InitialData.VarVal

 1. Open the .InitialData.VarVal in Examples/SimpleExample/init.

 2. Change the values to the desired values.

 3. Save the changes.

Fig. 5-4: Initial values (left) and changed values (right) inside Ini-
tialData.VarVal. (Windows)

 4. Execute 2_Build.bat in the workspace on Windows

Or

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 41

Execute 2_Build.sh in the workspace on Ubuntu 20.04 LTS.

The FMU is generated (SimpleExample.fmu and SimpleExample_
debug.fmu).

 5. To see the changed output in the FMU, execute 3a_CheckFMU.bat on
Windows

Or

execute 3a_CheckFMU.sh on Ubuntu 20.04 LTS.

Fig. 5-5: FMU Checker output with new values using InitialData.VarVal.
(Windows)

To change InitialData and build new FMU using intialData.dcm

 1. Open the .InitialData.dcm in Examples/SimpleExample/init.

 2. Change the values to the desired values.

 3. Save the changes.

Fig. 5-6: Initial values (left) and changed values (right) inside Ini-
tialData.dcm (Windows)

 4. Execute 2_Build.bat in the workspace on Windows

Or

Execute 2_Build.sh in the workspace on Ubuntu 20.04 LTS.

The FMU is generated (SimpleExample.fmu and SimpleExample_
debug.fmu).

 5. To see the changed output in the FMU, execute 3a_CheckFMU.bat on
Windows

Or

execute 3a_CheckFMU.sh on Ubuntu 20.04 LTS.

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 42

Fig. 5-7: FMU Checker output with new values using InitialData.dcm.
(Windows)

The initial data (InitialData) is processed differently. While in release vECU Ini-
tial Data is merged in another .VarVal file (MergedInitialData.VarVal), this
is not the case in the debug vECU. Here the InitialData file is stored in the init
folder. To get the different folder structures, see 5.1.3.

Fig. 5-8: Comparison of MergedInitialData.VarVal (release vECU) and Initial-
Data.VarVal (debug vECU)

5.1.4 eeprom Functionality
When using eeprom in the .yaml file, eeprom_data.txt will be copied from
VECUBUILDER_EXAMPLES\SimpleExample\src into the workspace to
vECU/imported during the build. The eeprom_data.txt will be set as default
sync txt file in workspace.

Fig. 5-9: eeprom_data.txt in the workspace

The .txt contains the data stream that should be used for the c_variables.
The order of the data stream to be flashed to the c_variables in the .txt
needs to be the same as in the .yaml file. To see the correct order for c_vari-
ables and the data streams for c_variables in the .yaml file and in the .txt
file, see Fig. 5-10 and Fig. 5-11

Supported c_variables for SimpleExample are:

eeprom_block_a: Shows the lifetime of the vECU in ms and counts, how
often vECU was powered on.

eeprom_block_b: Shows the last value of product calculated in the pre-
vious execution.

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 43

Fig. 5-10: Correct order for c_variables in yaml file

Fig. 5-11: Data streams for c_variables in txt file

When using eeprom in the .yaml file, the eeprom_data.txt will be copied into
the FMU that is going to be created.

The path location in the FMU is: \resources\eeprom\1.txt

It is also possible, to have another txt file anywhere else by using an UNC path or
a regular path name in the sync section as displayed in Fig. 5-11.

5.1.5 Features to Explore in the Simple Example Workspace
Now start experimenting with the following features in this current workspace:

build tool, inputs, outputs and tasks

Initial data and eeprom

redirect function calls

debug hook

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 44

5.2 BCU Example
To create a workspace based on the BCU example, follow the steps described in
Creating a New Workspace to the point where the YAML file opens in Notepad++.

 1. Replace the entire content of the YAML file with the content of prepared
BCU configuration YAML file located in:

C:\ProgramData\ETAS\VECU-BUILDER\Examples_1.2.0\BCU for
Windows

Or

/opt/ETAS/VECU-BUILDER/Examples_1.2.0/BCU for Ubuntu 20.04
LTS.

 2. Continue the process as described in Working with VECU-BUILDER.

5.2.1 Show Symbol Information
To see all the symbols available in your vECU, open the SymbolDetails file.

 1. Run the command:

3c_ShowSymbolDetails.bat on Windows

Or

3c_ShowSymbolDetails.sh on Ubuntu 20.04 LTS.

A text editor window (Windows) / a new terminal (Ubuntu 20.04 LTS)
opens, and symbol details are shown.

Fig. 5-12: Symbol Details of BCU example (Windows)

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 45

Fig. 5-13: Symbol Details of BCU example (Ubuntu 20.04 LTS)

5.2.2 A2L File Patching
Most ECU software authoring tools can generate an A2L file for you. It contains
the addresses of your labels for a specific target. In addition, it may contain tool-
specific statements or even non-standard clauses. The label addresses of a
vECU target differ from the addresses of a physical ECU target which means the
original A2L file cannot be used for an XCP connection with a vECU target.

Since the generation of A2L files is an intricate task, VECU-BUILDER excludes this
functionality completely. Instead, VECU-BUILDER reads, modifies, and writes a
given A2L file. This patching procedure preserves most of the original contents of
the A2L file but changes all addresses to those of the vECU target. A backup
copy of the original A2L file is preserved (named as *.a2l.bak).

Note

The A2L patching leads to an A2L file that works in ETAS INCA. This file may not
work in Vector CANoe or CANape.

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 46

VECU-BUILDER includes its own XCP slave software component. Currently, it sup-
ports TCP connections only. The communication parameters for an XCP con-
nection are part of an A2L file. VECU-BUILDER patches in the values for TCP port
and IP address, which were specified in the YAML file. For instance:

Original A2L file Patched A2L file

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 <TCPPORT> /* Port */
 /ADDRESS "<IPADDR>"

/end XCP_ON_TCP_IP

/begin XCP_ON_TCP_IP

 /0x0100 / XCP on IP 1.0 */

 12345 /* Port */

 ADDRESS "127.0.0.1"

/end XCP_ON_TCP_IP

If your A2L file contains an “XCP_ON_UDP_IP” clause, then VECU-BUILDER re-
writes it to an “XCP_ON_TCP_IP” clause. The integrated XCP slave supports a lim-
ited subset of the commands of the ASAM MCD-1 (XCP) standard version 1.0. It
supports a limited subset of the clauses from ASAM MCD-2 (ASAP2 / A2L) stand-
ard version 1.7.1.

If your ECU software includes an XCP slave already, you may want to remove this
software component from your vECU software stack.

5.2.3 A2L Name Mapping
By default, the A2L file contains the symbol names of characteristics and meas-
urements. Sometimes the symbol names in the A2L file are renamed. Because
the addresses in the A2L must refer to the original symbol names, one must map
them.

Original A2L file Mapped and patched A2L file

/begin CHARACTERISTIC Hys-

teresis_LightOffIntensity

 "unsigned integer 16bit"

 VALUE

 0x00000000

 RTAA2L_Internal_Scalar_

UnsignedWord

 0

 CompuMethods_STEP_100_

OFFSET_0

 0

 100

 DISPLAY_IDENTIFIER Hys-

teresis_LightOffIntensity

/end CHARACTERISTIC

/begin CHARACTERISTIC Hys-

tLiOfInt

 "unsigned integer 16bit"

 VALUE

 00x00003016

 RTAA2L_Internal_Scalar_

UnsignedWord

 0

 CompuMethods_STEP_100_

OFFSET_0

 0

 100

 DISPLAY_IDENTIFIER Hys-

teresis_LightOffIntensity

/end CHARACTERISTIC

VECU-BUILDER V1.2 | User Guide

5 Exploring the Examples | 47

5.2.4 Features to Explore in the BCU Workspace
Now start experimenting with the following features in the current workspace:

additional include directories

additional compile and linker flags

additional scripts

xcp slave and a2l file patching and mapping

VECU-BUILDER V1.2 | User Guide

6 Controlling VECU-BUILDER | 48

6 Controlling VECU-BUILDER

6.1 Manual Interaction
You can operate VECU-BUILDER via the provided command and batch/shell
scripts. For some user inputs, such as selecting a workspace directory, the tool
may display dialogs.

6.2 Command-Line Interface
Besides the manual Interaction method, you can also operate VECU-BUILDER via
a command-line interface (CLI). VECU-BUILDER is a CLI native application, and
the command and batch/shell scripts allow manual interaction. To get more
information about the Installation using CLI, see Silent Installation.

The following arguments exist:

--new-project-path: Path where the workspace is to be created.

--no-dialogs: Suppress all dialogs and always select the default option.

--stop-on-success: Prevent automatic forwarding to the next stage (create
workspace, import, build).

--version: Print the version information.

-h: Print list of all optional arguments.

To see all CLI optional arguments and their description

 1. Open a command prompt on Windows

or

a terminal on Ubuntu 20.04 LTS.

 2. Execute the following command:

1_Import.bat -h for Windows

or

1_Import.sh -h for Ubuntu 20.04 LTS.

Fig. 6-1: CLI optional arguments (Windows)

VECU-BUILDER V1.2 | User Guide

6 Controlling VECU-BUILDER | 49

The CLI control method is ideal for integrating VECU-BUILDER into an automation
pipeline. The CLI behaviour is the same as running the scripts manually: each
script would call the next script to proceed through the stages of create a work-
space, import, build. To change this behaviour, use --stop-on-success.

The following table gives an overview of which batch file uses which arguments:

argument CreateWorkspace 1_Import 2_Build

--new-project-
path

Used (required) Ignored Ignored

--no-dialogs Used (optional) Used (optional) Used (optional)

--stop-on-success Used (optional Used (optional) Ignored

--version Used (optional) Used (optional) Used (optional)

-h Used (optional) Used (optional)

Used (optional)

Tab. 6-1: Mapping of CLI arguments to scripts

To build the SimpleExample via two command lines

After creating the workspace, stop the process so that you can copy a specific
YAML file into your workspace. Then trigger the import without
stop-on-success and let it finish the build automatically.

 1. Open a command prompt on Windows

or

a terminal on Ubuntu 20.04 LTS.

 2. Navigate to the directory where the installer is located executing the fol-
lowing command:

cd %VECUBUILDER_HOME%.

 3. Execute the following command:

CreateWorkspace.bat on Windows

or

CreateWorkspace.sh on Ubuntu 20.04 LTS.

with the arguments

--new-project-path <destination>

--no-dialogs

--stop-on-success

where <destination> points to your workspace folder.

VECU-BUILDER V1.2 | User Guide

6 Controlling VECU-BUILDER | 50

Fig. 6-2: Workspace creation via CLI (Windows)

Note

A default YAML file is used in all newly created workspaces.

Project specific YAML file can be either prepared manually or in the previous
step of your automation pipeline.

To use your project specific YAML file in this newly created workspace:

 1. Execute the following command:

copy /y <source> <destination>.

Fig. 6-3: Copy your project specific YAML file (Windows)

Note

The argument /y suppresses the prompt and thus overwrites the destination
file.

To continue building your workspace:

 1. Navigate to this new workspace by executing the following command:

cd <destination>.

 2. Run the command:

1_Import.bat --no-dialogs for Windows

or

1_Import.sh --no-dialogs for Ubuntu 20.04 LTS.

VECU-BUILDER V1.2 | User Guide

7 Debugging vECU | 51

7 Debugging vECU

VECU-BUILDER provides useful functionalities to debug your vECU. It is possible
to debug the vECU by using an Integrated Development Environment (IDE), such
as Visual Studio Code or Visual Studio.

As the folder <workspace>/vECU is a CMake project, any IDE that can import
CMake projects can be used for debugging.

During the Build stage, the debugging environment and batch/shell script files
are created enabling you to enter a debugging session in just a few clicks.

You can use the debug_hook attribute, which can be enabled in the YAML file.
vECUs built with this attribute enabled enter their instantiation and wait for a
debugger to be attached by the user before continuing.

Note

The VECU-BUILDER debugging functionality is intended to be used for debug-
ging of a single vECU within its workspace. If your vECU is integrated into a sim-
ulation, the debug_hook might be the best option for debugging,

The below table summarizes the possible combinations of build tool and debug-
ger:

Tab. 7-1: Debugging possibilities

Combinations marked as experimental, are neither tested nor supported and
their use is solely your responsibility.

Among the recommended combinations, two are particularly recommended for
use and are described in detail in the following chapters.

VECU-BUILDER V1.2 | User Guide

7 Debugging vECU | 52

7.1 Debugging with Visual Studio 2019
This chapter describes how to debug vECU built with Visual Studio 2019 using
Visual Studio 2019 as the debugger.

More information about Visual Studio 2019 can be found here.

To debug with Visual Studio 2019

 1. Navigate to your workspace.

 2. Execute the 3b_StartDebugger.bat file on Windows or 3b_StartDe-
bugger.sh on Ubuntu 20.04 LTS.

The VS2019 debugger is invoked and loads the CMake project.

 3. Navigate to where you want to start debugging and place a breakpoint
there.

 4. In the “Menu” tab click Debug > Start Debugging (F5).

FMU Checker is invoked, and the debugger is attached.

Fig. 7-1: VS 2019 Debugger attached

VECU-BUILDER V1.2 | User Guide

https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2019&preserve-view=true

7 Debugging vECU | 53

7.2 Debugging with Visual Studio Code
This chapter describes how to debug vECU built with MinGW using Visual Studio
Code as the debugger.

Prerequisites For Debugging with Visual Studio Code
Visual Studio Code needs some extensions to be installed and by default will ask
you to install them. If you accept the suggestions of Visual Studio Code, you
should be ready to go.

More information about Visual Studio Code can be found here.

To debug with Visual Studio Code

 1. Navigate to your workspace.

 2. Right-click in your workspace and select Open with Code.

Visual Studio Code opens.

 3. Navigate to where you want to start the debugging and place a breakpoint
there.

4. In the menu panel on the left click Run and Debug.

Click Start Debugging (F5).

FMU Checker is invoked, and the debugger is attached.

Fig. 7-2: VS Code Debugger attached

VECU-BUILDER V1.2 | User Guide

https://code.visualstudio.com/docs

8 Workspace Migration | 54

8 Workspace Migration

If you have created a workspace with an older VECU-BUILDER version, this exist-
ing workspace needs to be migrated so that you can use the latest VECU-
BUILDER version.

To migrate workspaces

 1. Create a new workspace with the default template configuration, see
Creating a New Workspace.

 2. Stop the process after ‘Importing files and folders’ stage.
Select Cancel when asked whether to proceed with building sources.

 3. Replace the content of imported folder in the new workspace with the
content of your existing workspace.

 4. Replace the content of additional_scripts folder in the new work-
space with the content of your existing workspace.

 5. Transfer all configuration attributes from the existing workspace .yaml file
to the new workspace.yaml file.
 l TIP: The use of a comparison tool (e.g., Beyond Compare) is the most

efficient way.

Your new workspace created with the latest VECU-BUILDER version is now ready
and you can continue your work on an existing project in this workspace.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 55

9 Troubleshooting

This chapter lists possible warning or error messages, their possible reasons and
a possible solution to fix the issue.

9.1 CMake not found

Fig. 9-1: CMake not found error

Possible Reason

A CMake installation is required and must be registered properly. (Software
Requirements for Windows 10). This registry entry is used to locate the CMake
installation, if it does not exist, the build fails.

It appears as if CMake was not installed or is not properly registered on your PC.

Possible Solution

Ensure the following:

CMake is installed (version 3.15 or higher).

Kitware and CMake keys exist in the Windows Registry.

The CMake registry key

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Kitware\CMake

contains the string value InstallDir pointing to the CMake installation
path:

Fig. 9-2: Windows Registry with Kitware\CMake registry key

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 56

9.2 Notepad++ Does Not Open During Workspace Creation
Notepad++ is the recommended text editor to be used along with VECU-BUILDER.
For it to work as intended, it must be installed and registered properly.

If Notepad++ does not open during the Workspace Creation stage, but Windows
Notepad opens instead, it is either not installed at all or is not properly registered
on your PC.

Possible Solution

Ensure the following:

Notepad++ is installed.

Notepad++ key exists in the Windows Registry.

 A. For 64-bit version:
 l The Notepad++ registry key

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Notepad++

contains the string value (Default) pointing to the Notepad++ install-
ation path:

Fig. 9-3: Windows Registry with Notepad++ registry key for 64-bit ver-
sion

 B. For 32-bit version:
 l The Notepad++ registry key

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Note-

pad++

contains the string value (Default) pointing to the Notepad++ install-
ation path:

Fig. 9-4: Windows Registry with Notepad++ registry key for 32-bit ver-
sion

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 57

9.3 Some Breakpoints Not Being Hit
Possible Reason

Depending on your compiler configurations, the resulting vECU may be built so
that some debugging information is not available. This may result in the debugger
not being able to hit some breakpoints.

Fig. 9-5: Breakpoint not being hit

Possible Solution

In order to prevent such compiler optimization, include the following pragma
statements:

For MSVC compiler: #pragma optimize("", off)

For MinGW compiler: #pragma GCC optimize ("O0")

9.4 Windows Cannot Access Localhost While Using Sync
Attribute in EEPROM
Possible Reason

EEPROM simulation feature requires entering the value of sync sub-attribute as
UNC path.

If the defined location (e.g., C:\ drive of your localhost) cannot be accessed dur-
ing the vECU execution, the data defined by the sync sub-attribute cannot be
used.

Fig. 9-6: Network Error - Localhost cannot be accessed

Possible Solution

Setup the local share and obtain the UNC pathname.

To setup a local share:

 1. Navigate to the drive, you want to share. (e.g., (C:\ drive)

 2. Right-click in the drive and click on Properties.

 3. Click on the Sharing tab.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 58

 4. Click on Advanced Sharing. You will need Admin Rights to proceed.

Fig. 9-7: Properties of C:\ drive dialog

 5. Activate Share this folder.

Click OK.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 59

Fig. 9-8: Advanced Sharing settings dialog

The drive is now shared and the Network Path is displayed.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 60

Fig. 9-9: Properties of C:\ drive dialog

The user that will be logged in during the execution of the vECU, needs to be
given full control permissions to the shared location.

Per default, Windows will provide permissions to 'everyone'. The permissions
should only be provided to the user, that will be logged in during the execution of
the vECU. Therefore, the permissions shall to be changed for security reasons.

To change the permissions

 1. Click on Advanced Sharing. You might need Admin Rights to proceed.

 2. Click on Permissions.

 3. Click on Add.

 4. Enter the object name (username) to be selected.

 5. Click on Check Names.

 6. Chose the displayed name.

 7. Click OK.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 61

Fig. 9-10: Selecting the user

 8. Click on the username to mark the entry.

 9. Activate the permissions Full Control and Change.

 10. To mark the entry, click on Everyone.

 11. To remove the permission for 'everyone', click on Remove.

VECU-BUILDER V1.2 | User Guide

9 Troubleshooting | 62

The group Everyone is removed and the selected user has now full per-
missions.

Fig. 9-11: Permissions for selected user

 12. To confirm the User Selection, click OK.

 13. To confirm the updated Advanced Sharing properties, click OK.

 14. Close the Properties window.

VECU-BUILDER V1.2 | User Guide

10 Contact Information | 63

10 Contact Information

Technical Support

For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website:

www.etas.com/hotlines

ETAS Headquarters
ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

VECU-BUILDER V1.2 | User Guide

https://www.etas.com/hotlines
https://www.etas.com/

	1 Safety and Privacy Information
	1.1 Intended Use
	1.2 Target Group
	1.3 Privacy Notice
	1.3.1 Data Processing
	1.3.2 Technical and Organizational Measures

	2 About VECU-BUILDER
	2.1 Basics
	2.2 Virtual ECU
	2.3 vECU Creation Process Workflow
	2.4 Warning and Error Messages

	3 Installation
	3.1 Hardware Requirements
	3.2 Preparation
	3.3 Installation Content
	3.4 Licensing
	3.5 Installation on Windows 10
	3.5.1 Software Requirements for Windows 10
	3.5.2 Manual Installation
	3.5.3 Silent Installation
	3.5.4 Uninstalling on Windows 10

	3.6 Installation on Ubuntu 20.04 LTS
	3.6.1 Software Requirements for Ubuntu 20.04 LTS
	3.6.2 Installing on Ubuntu 20.04 LTS
	3.6.3 Uninstalling on Ubuntu 20.04 LTS

	3.7 Installed Files and Folders

	4 Working with VECU-BUILDER
	4.1 Creating a New Workspace
	4.1.1 Creating a Workspace on Windows
	4.1.2 Creating a Workspace on Ubuntu 20.04 LTS

	4.2 Importing Files and Folders
	4.3 Building the vECU
	4.4 Building the FMU
	4.5 Workspace Content
	4.6 Configuration

	5 Exploring the Examples
	5.1 Simple Example
	5.1.1 FMU Checker
	5.1.2 Difference Between Debug and Release vECUs
	5.1.3 InitialData Functionality
	5.1.4 eeprom Functionality
	5.1.5 Features to Explore in the Simple Example Workspace

	5.2 BCU Example
	5.2.1 Show Symbol Information
	5.2.2 A2L File Patching
	5.2.3 A2L Name Mapping
	5.2.4 Features to Explore in the BCU Workspace

	6 Controlling VECU-BUILDER
	6.1 Manual Interaction
	6.2 Command-Line Interface

	7 Debugging vECU
	7.1 Debugging with Visual Studio 2019
	7.2 Debugging with Visual Studio Code

	8 Workspace Migration
	9 Troubleshooting
	9.1 CMake not found
	9.2 Notepad++ Does Not Open During Workspace Creation
	9.3 Some Breakpoints Not Being Hit
	9.4 Windows Cannot Access Localhost While Using Sync Attribute in EEPROM

	10 Contact Information

