
ETAS VECU-BUILDER V1.0

User Guide

Copyright

The data in this document may not be altered or amended without special
notification from ETAS GmbH. ETAS GmbH undertakes no further obligation in
relation to this document. The software described in it can only be used if the
customer is in possession of a general license agreement or single license. Using
and copying is only allowed in concurrence with the specifications stipulated in the
contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language without
the express written permission of ETAS GmbH.

© Copyright 2022 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

ETAS VECU-BUILDER V1.0 – User Guide R02 EN – 06.2022

ETAS Contents

ETAS VECU-BUILDER V1.0 – User Guide 3

Contents
1 Safety and Privacy Information ... 4

1.1 Intended Use ..4

1.2 Target Group ..4

1.3 Classification of Safety Messages ..4

1.4 Privacy Information ...5
1.4.1 Data Processing ...5
1.4.2 Technical and Organizational Measures ..5

2 About VECU-BUILDER ... 6

2.1 Basics ...6

2.2 Virtual ECU ..6

2.3 Workflow vECU Creation Process ..7

2.4 Limitations ...7

3 Installation ... 8

3.1 Preparation ..8

3.2 Installation Content ...8

3.3 Installing ..8

3.4 Installed Files and Folders ... 10

3.5 Licensing ... 11

3.6 Uninstalling .. 12

4 Getting Started .. 13

4.1 Create your First virtual ECU ... 13

4.2 A2L File Patching.. 15

4.3 Get familiar with VECU-BUILDER .. 16
4.3.1 Simple Example .. 16
4.3.2 BCU (Body Control Unit) .. 17

5 Working with VECU-BUILDER .. 21

5.1 YAML File Reference .. 21

5.2 Command Line Interface ... 25

5.3 Create a vECU ... 26
5.3.1 Configuring the YAML file .. 27

5.4 Check created vECU (release version) ... 28

5.5 Check created vECU (debug version) ... 28

5.6 Show Symbol information .. 28

6 Contact Information ... 30

ETAS Safety and Privacy Information

ETAS VECU-BUILDER V1.0 – User Guide 4

1 Safety and Privacy Information
In this chapter, you can find information about the intended use, the addressed
target group, and information about safety and privacy related topics.

1.1 Intended Use
The product is designed to produce a virtual ECU for microcontrollers from existing
ECU source codes or from precompiled binaries. The virtual ECU is designed for
simulation, debugging and pre-calibration of ECU software in a PC-based virtual
simulation environment.

In general, virtual ECUs may not be real-time capable. If you control physical
devices with a virtual ECU, the system may respond unexpectedly. Take suitable
precautions to ensure safe operation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information. Please adhere to the ETAS Safety
Advice (see documentation folder).

1.2 Target Group
This product is directed at trained qualified personnel in development of automotive
ECU software (e.g., function developer, application engineer, ECU software
integrator, system engineer or calibration engineer) at OEMs, tier-1 or tier-2
suppliers in the automotive industry. Technical knowledge in control unit
engineering is a prerequisite. In addition, programming knowledge in C/C++ is
required. AUTOSAR Classic knowledge is helpful.

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

 DANGER

DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.

 WARNING

WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

 CAUTION

CAUTION indicates a hazardous situation that, if not avoided, could result in
minor or moderate injury.

ETAS Safety and Privacy Information

ETAS VECU-BUILDER V1.0 – User Guide 5

NOTICE

NOTICE indicates a situation that, if not avoided, could result in damage to
property.

1.4 Privacy Information
Your privacy is important to ETAS. We have created the following privacy notice
that informs you, which data are processed in VECU-BUILDER, which data
categories VECU-BUILDER uses, and which technical measure you have to take
to ensure the privacy of the users. Additionally, we provide further instructions
where this product stores and where you can delete personal data.

1.4.1 Data Processing
Note that personal data or data categories are processed when using this product
(e.g. in log files). The purchaser of this product is responsible for the legal
conformity of processing the data in accordance with Article 4 No. 7 of the General
Data Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is not
liable for any mishandling of this data.

1.4.2 Technical and Organizational Measures
This product itself does not encrypt the personal data or data categories that it
records. Ensure the data security of the recorded data by suitable technical or
organizational measures of your IT system, e.g., by classical anti-theft and access
protection on the hardware.

Personal data in log files can be deleted by tools in the operating system.

ETAS About VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 6

2 About VECU-BUILDER
VECU-BUILDER is designed to build a virtual ECU (vECU). The vECU can be
used for simulation, debugging and pre-calibration of ECU software in a PC-based
virtual simulation environment.

VECU-BUILDER is based on Python and CMake. The inputs can either be C/C++
source codes or binaries like object files or shared libraries including symbol
information. In contrast to AUTOSAR Classic, the configuration of a vECU is done
in a single YAML file (vEcuConf.yaml). No ARXML files are processed. The
properties are configured in this text-based file. This file is used to define the
supported features of the vECU such as an XCP slave or initial data as part of
simulated NVRAM. VECU-BUILDER wraps the binaries of the vECU into an FMU
(FMI 2.0 for Co-Simulation). These FMUs can be integrated into any FMI-compliant
simulation master.

2.1 Basics
The basic principle is to keep the data lean in a simple and smart way. The concept
is the simplification of the ECU software stack and the ARXML file. The A2L file is
patched by removing all hardware dependencies and updating memory addresses
of all inputs, outputs, measurements and characteristics. The software stack layers
are represented by C and H files which are reflected in the imported folder
(vECU\imported) in the vECU build process. The result is a stand-alone FMU
containing the model description (e.g. its variables) as XML, the access to
calibration and measurement variables as A2L and an executable model as DLL.

Figure 1: Basic concept and result of VECU-BUILDER

2.2 Virtual ECU
A vECU is a virtualized ECU which can be used as a real ECU. With the vECU you
can test the ECU software and execute the software functionality without hardware.
This gives you the possibility to test the communication between the ECUs before

ETAS About VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 7

prototypes or hardware is available. The vECU contains the code, the parameters
and the XCP slave as an alternative path to the hex code.

2.3 Workflow vECU Creation Process
The whole workflow is an iterative process to get to the final configuration of the
YAML file. The listed points give a rough overview of the workflow. Section A and F
are taking place out of the VECU-BUILDER.

A. Prepare sources
− Directives that refer to header files in code must be fixed
− Generate a script collecting the files you need from the various locations

you found
B. Compile sources for x86, incompatible sources must be removed

− Generate new workspace
− Copy sources into workspace
− Build
− Check error messages
− Remove or patch code

C. Link sources and create stubs
− Solve link errors with empty stubs

D. Define Inputs and Outputs (I/O) to make the vECU runnable
− Use symbol information to generate I/O
− Manually patch the sources of virtual devices
− Use the notation of the variables how they are written in C (like

sensor.*)

E. Create task model to run the tasks
− Use text format to define task model

F. Operate for first time, apply SiL specific code changes
− Debug code
− Fill some stub functions with code or apply SiL specific code changes

After building the first iteration of an vECU it can be used to perform further steps
like (out of VECU-BUILDER):

• Integrate vECU with plant models and execute vECU in Co-Simulation
environment

• Run and test the vECU in an experiment environment
• Measurement and calibration of vECU
• Debugging with source code editor

2.4 Limitations
VECU-BUILDER supports the generation of Level-1, Level-2, and Level-3 vECUs
according to the Prostep Definition of vECUs:
https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-
EN.pdf Level-4 vECUs, i.e., hex-files for a specific target, are not supported.

https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf
https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf

ETAS Installation

ETAS VECU-BUILDER V1.0 – User Guide 8

3 Installation
This chapter provides information for preparing and performing the installation and
for licensing the software.

3.1 Preparation
Prior to the installation, check that your computer meets the system requirements
(see Release Notes "System Prerequisites"). Depending on the operating system
used and network connection, you must ensure that you have the required user
rights.

 NOTE

Ensure that you have the necessary access privileges for the installation of the
software. If in doubt, contact your system administrator.

3.2 Installation Content
The installation content can either be downloaded from ETAS license and
download portal (http://www.etas.com/support/licensing) or executed from the
DVD.

It contains information about the open source software attributions, important
information like Safety Advice or the User Guide and the executable installation file
(EXE).

3.3 Installing
1. Go to the directory where the installation file is located and double-

click on the VECU_BUILDER_installer_1.0.0.exe file.

i

http://www.etas.com/support/licensing

ETAS Installation

ETAS VECU-BUILDER V1.0 – User Guide 9

 The Setup Wizard opens.

2. Click Next.
 The "End User License Agreement" window opens.
3. Read the license agreement carefully, then select I accept the

terms of the License Agreement.
4. Click Next.
 The "Safety Advice" window opens.
5. Read the Safety Advice carefully, then select I read and accept

the Safety Advice.
 The "Installation Path" window opens.
6. Accept the default folder by clicking Next or click Browse to select

another location.
 The "Ready to Install" window opens.
7. If you want to change settings, click Back.

If you want to start the installation, click Install.
 The installation is performed. A progress indicator shows how the

installation is progressing. When the installation is completed, it is
shown in the progress bar.

8. Click Next.
 The "Installation Complete" window opens.

ETAS Installation

ETAS VECU-BUILDER V1.0 – User Guide 10

9. If necessary: Download Notepad++ and CMake (see links in
window).

 NOTE

The installation of CMake and Notepad++ is a prerequisite for
using VECU-BUILDER.

10. Click Next.
 The "Completing VECU-BUILDER Setup" window opens. If you

wish, you can directly open the User Guide.
11. Optionally: Activate Open VECU-BUILDER documentation

checkbox to open the User Guide for example.
12. Click Finish.
 The installation is completed. VECU-BUILDER can be used.

3.4 Installed Files and Folders
After installation the following files and folders are available.

Figure 2: Installation content of VECU-BUILDER

The core content can be found in the vEcuBuild_vx.x.x folder.

• 3rd_party: contains the third party tools FMI Compliance Checker (FMU
Checker) and MinGW.

i

ETAS Installation

ETAS VECU-BUILDER V1.0 – User Guide 11

• bin: contains DLL and EXE files for the build process. These files are
important for the build.

• build: contains some templates, resources, and scripts for the build process.
These files are important for the build.

• documentation: contains VECU-BUILDER User Guide, OSS Attribution and
the ETAS Safety Advice.

• StartNewProject.cmd to create a new project. After executing the CMD you
will be guided through the process step by step.

Figure 3: Core content of VECU-BUILDER

You can find 2 examples in the vEcuBuild_SourcesToImport folder.

• BCU (Body Control Unit)
• Simple Example

Figure 4: Examples delivered with VECU-BUILDER installation

See also Get familiar with VECU-BUILDER.

3.5 Licensing
The use of VECU-BUILDER is protected by electronic licensing. Valid licenses are
necessary to install ETAS VECU-BUILDER and its add-ons. The use of unlicensed
ETAS software is prohibited. The required licenses are not included in this delivery.

When you purchase VECU-BUILDER licenses, you receive a separate entitlement
letter. Activate the license using a self-service portal on the ETAS website:
https://www.etas.com/support/licensing

For assistance, please consult the help file available on the start page of the self-
service portal. During the activation process, you receive the necessary license
keys per e-mail.

License keys are valid for a major version. If you have a valid service contract, you
will receive a new entitlement automatically for successive major version (e.g., from

https://www.etas.com/support/licensing

ETAS Installation

ETAS VECU-BUILDER V1.0 – User Guide 12

V4.x to V5.x). You do not need a new license file for updates and maintenance
versions, e.g., for the refresh V5.0.1 or update V5.1.0 to major version V5.0.0.

3.6 Uninstalling
1. Open the location where you installed VECU-BUILDER.

When you used the default location, it can be found in
C:\ETAS\VECU-BUILDER.

2. Execute the uninstall.exe with double-click.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 13

4 Getting Started
This section helps beginners to learn how to create a first vECU.

As workspace location we recommend using the following path:
C:\ETASData\VECU-BUILDER v1.0.0-rc.1\vEcuBuild_Workspaces

This folder is created during the installation process.

4.1 Create your First virtual ECU
To create your first vECU with VECU-BUILDER we guide you through the process
step by step.

1. Go to the location where you installed VECU-BUILDER.
When you used the default location, it can be found in
C:\ETAS\VECU-BUILDER

2. Open folder vEcuBuild_v1.0.0.
3. Execute StartNewProject.cmd with double-click.

 A console window is opened. You will be asked where your
workspace should be saved.

4. Create a new folder or select a folder for your project workspace

(C:\ETASData\VECU-BUILDER v1.0.0-
rc.1\vEcuBuild_Workspaces).

 The vECUconf.yaml is opened with a Notepad++ instance.
5. Optionally: Configure your vECU by entering your parameters.
6. Close Notepad++.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 14

 Files and folders specified in the YAML file are imported.

The YAML file is saved in your selected workspace. In addition, a
build folder, a vECU folder, 2 CMD files and a BAT file are
created.

7. Answer the inquiry „Do you want to proceed building the vECU or

inspect the result of the import“ with Yes.

 The vECU is built as an FMU file and can be found in your project

folder you selected or created in Step 4.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 15

If you did not change the YAML file, the vECU name is
SimpleExample. VECU-BUILDER created two vECU versions: a
release and a debug version.
When you extract the FMUs, the folders of the 2 versions can be
compared. The difference is that the debug FMU contains a PDB
file in the resources folder and the DLL is debuggable.
The release FMU contains a VARVAL in addition to the debug
FMU. The behavior of both is the same.

4.2 A2L File Patching
Most ECU software authoring tools can generate an A2L file for you. It contains the
addresses of your labels for a specific target. In addition, it may contain tool-
specific statements or even non-standard clauses. The addresses for a vECU
target differ from the addresses in a physical ECU target, so that the original A2L
cannot be used for an XCP connection with a vECU as is.

Since the generation of A2L files is an intricate task, VECU-BUILDER excludes this
functionality completely. Instead, VECU-BUILDER reads, modifies, and writes a
given A2L file. This patching procedure preserves most of the original contents of
the A2L file but changes all addresses to those of the virtual target. A backup copy
of the original A2L file is preserved.

VECU-BUILDER includes its own XCP slave software component. Currently, it
supports TCP connections only. The communication parameters for an XCP
connection are part of an A2L file as well. VECU-BUILDER patches in the values
for TCP port and IP address, which were specified in the YAML file. For instance:

Original A2L file Patched A2L file

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 <TCPPORT> /* Port */

 ADDRESS "<IPADDR>"

 /end XCP_ON_TCP_IP

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 12345 /* Port */

 ADDRESS "127.0.0.1"

/end XCP_ON_TCP_IP

If your A2L file contains an “XCP_ON_UDP_IP” clause, then VECU-BUILDER
rewrites it to an “XCP_ON_TCP_IP” clause. The integrated XCP slave supports a
limited subset of the commands of the ASAM MCD-1 (XCP) standard version 1.0. It

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 16

supports a limited subset of the clauses from ASAM MCD-2 (ASAP2 / A2L)
standard version 1.7.1.

If your ECU software includes an XCP slave already, you may want to drop this
software component from your vECU software stack.

4.3 Get familiar with VECU-BUILDER
For getting started with VECU-BUILDER and test the iterative approach we provide
2 examples.

4.3.1 Simple Example
1. Go to your workspace (e.g. C:\ETASData\VECU-BUILDER v1.0.0-

rc.1\vEcuBuild_Workspaces).
2. Create a folder “SimpleExample”.
3. Go to the location where you installed VECU-BUILDER.

When you used the default location, it can be found in
C:\ETAS\VECU-BUILDER

4. Execute StartNewProject.cmd with double-click.

 A console window is opened. You will be asked where your
workspace should be saved.

5. Select the folder you created in Step 2.
 The configuration file vEcuConf.yaml is opened in Notepad++.
6. Close the Notepad ++ application.
 The windows console is shown again and displaying the progress.

A how to proceed question inquiry is shown.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 17

7. Select Yes to continue building the vECU.

 The vECU has been build in 2 versions (release and debug

version) in your workspace with the SimpleExample as name. The
windows console is shown again and displaying the progress.

4.3.2 BCU (Body Control Unit)
1. Go to your workspace (e.g. C:\ETASData\VECU-BUILDER v1.0.0-

rc.1\vEcuBuild_Workspaces).
2. Create a folder “BCU”.
3. Go to the location where you installed VECU-BUILDER.

When you used the default location, it can be found in
C:\ETAS\VECU-BUILDER

4. Open folder vEcuBuild_v1.0.0.
5. Execute StartNewProject.cmd with double-click.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 18

 A console window is opened. You will be asked where your
workspace should be saved.

6. Select BCU folder in C:\ETAS\VECU-

BUILDER1.0.0\vEcuBuild_SourcesToImport\BCU.
 The Step “Starting new project” is completed. The configuration

file vEcuConf.yaml, which was just created by VECU-BUILDER, is
opened in Notepad++.

7. Go to C:\ETAS\VECU-
BUILDER1.0.0\vEcuBuild_SourcesToImport\BCU and open
preconfigured YAML file (vEcuConf.yaml) of the example folder to
copy the content.

 The document should be opened in a second tab of Notepad++.

8. Select the whole content with STRG/CTRL+A and copy it with

STRG/CTRL+C.
9. Switch to the current YAML file. This should be the first tab of

Notepad ++. If you are unsure, check the storage location in the
title, it should show your workspace location.

10. Select the whole content with STRG/CTRL+A and paste the content

into the YAML file with STRG/CTRL+V of your workspace.
11. Navigate to line 82: build_tool.
12. Change MinGW Makefiles into Visual Studio 16 2019.

 For the moment everything is configured and the Step “Importing
files and folders” is completed.

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 19

In the background some files have been added to your
workspace, e.g. imported files in the vECU folder > imported like
A2L files or stubs as C files and other folders. Everything was
defined in the YAML file. See import_into_project (line 28)
in the YAML file.

13. Close the Notepad ++ application.
 The windows console is shown again and displaying the progress.

A how to proceed question inquiry is shown.
14. Select Yes to continue building the vECU.

 The Step “Building vECU” completed. In the background the

vECU has been added in 2 versions (release and debug version)
to your workspace with the name you specified in the YAML file.
As we did not touch this, the name should be BCU.fmu. See
import_into_project (line 28) in the YAML file.
Also additional BAT files were added: StartDebugger.bat and
ShowSymbolDetails.bat
The windows console is shown again and displaying the progress.

To inspect the differences of the two FMU versions (release and debug) extract the
FMU and compare them with an appropriate tool. The mainly difference can be
found in the resources folder:

ETAS Getting Started

ETAS VECU-BUILDER V1.0 – User Guide 20

The debug version is debuggable and uses variable names or task names. In the
release version this is replaced with addresses. The behavior of both FMU is the
same. The release FMU will be derived of the debug FMU without using a compiler
or build tool.

In summary, the idea behind the release and debug FMU versions is to have a
FMU which can be used as a vECU and does not contain all information on the one
hand (release version) and to have a FMU containing all information which is
debuggable (debug version) on the other hand.

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 21

5 Working with VECU-BUILDER
The Working with VECU-BUILDER section provides information with focus on step-
by-step instructions as how-tos.

As workspace location we recommend using the following path:
C:\ETASData\VECU-BUILDER v1.0.0-rc.1\vEcuBuild_Workspaces

This folder is created during the installation process.

5.1 YAML File Reference
The YAML file contains the configuration for the vECU and is divided in different
sections. You are guided through the YAML file with providing comments for each
section and configuration attributes.

Every section is structured in a standardized way:

A: comment with information to the appropriate section

B: configuration attribute and value

The following attributes are provided within the YAML file. You can also enter own
comments in the YAML file.

 NOTE

The following limitations apply to filename paths, command-line and response-
file lengths in Windows environment.
 Filename paths can't be longer than MAX_PATH (260) characters
 Command-line lengths can't be longer than 32,768 characters
 Response-file lengths can't be longer than 131,072 characters

• version
This is the version of the used YAML file schema and must not be changed.

• build_mode
You can select between 2 modes

i

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 22

build_sources: You import source code, header files, static libraries
(either as AUTOSAR Classic compliant or legacy C-code) and let
prvEcuBuild compile, link and build a DLL file. The DLL file will be named
<fmu_name>.dll
import_dll: You import an existing, already compiled and linked software
in the form of a DLL, wrap it with a FMU wrapper, setup the inputs, outputs
and tasks. That DLL already contains the code of your vECU. See also line
43.

• fmu_name
Enter a name for the vECU depicted as a standalone FMU. Technically it is a
ZIP archive. The code of your vECU will be located inside the FMU in the
folder "resources/<fmu_name>.dll". This DLL file will be loaded and run by
the FMU.

 NOTE

Variables of type enumeration will be interpreted as integers in the
modelDescription.xml of the FMU. The name-value mapping of
enumerations will be ignored when enumerations are used as interfaces.
Only the integer value will be exchanged.

• import_into_project
Enter the path to files which should be imported. Here you specify paths to
the individual files, such as .c, .h, .cpp, .hpp or .zip archives that will be
extracted upon importing or folders with your code. The import target is the
folder "vEcu/imported". You can import files, folders and ZIP archives.
Environment variables can be used like this: ${SomeEnvironmentVariable}
 e.g. -
'${VECUBUILD_HOME}\..\vEcuBuild_SourcesToImport\SimpleEx
ample\src'

Values must be set in apostrophes
• import_external_vecu_dll

Only needed if you use an existing DLL and you selected import_dll for
build_mode (line 14).
That DLL already contains the code of your vECU, you can skip the
compiling and linking and just import your DLL into the FMU wrapper.
Here you enter the DLL name and the path for updates
dll_name: The name of the DLL. There must exist a corresponding PDB
file with the same file name.
get_updates_from: If vEcuBuild can find a DLL and PDB in this folder, it
will update the imported DLL. Environment variables can be used like this:
${SomeEnvironmentVariable}  e.g. '${SystemDrive}\Sandbox'
Values must be set in apostrophes

• architecture
Specify the architecture. When importing sources, the setting of this attribute
is to match the integration and simulation system where the vECU is to be
used. In case you are importing an DLL pre-compiled for either 32bit or 64bit
architecture, this attribute is to be set to the same. In the default YAML file
the 32bit is commented out.

• xcp_slave
Enter the port and IP address for XCP slave. These values are transferred to
the A2L file. The used protocol is TCP. See also NEW A2L File Preparation.
port: default is 1802

i

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 23

ip_address: default is 127.0.0.1

• operating_system
Enter the operating system. Currently Windows is supported.

• build_tool
Enter the build tool as the preferred development environment. Currently you
can choose between several Visual Studio versions and MinGW Makefiles.
In one case Visual Studio project files are generated, in the other case a
make file for use with mingw32-make. In the default YAML file the Visual
Studio 16 2019 is commented out.

 NOTE

If Visual Studio is used as build tool, the vECU.dll can be investigated with
a debugger. If MinGW is used as build tool, the vECU.dll cannot be
investigated with a debugger.

• inputs, outputs, parameters, locals
Enter the variables. Inputs, outputs, parameters, and locals refer to the
causality of the FMI. Each wildcard must match a global variable. Wildcards
* and ? are allowed. Arrays can be added using myArray*, same for
structures. If your wildcard expression breaks the YAML compatibility, set it
in apostrophs.
Example: '*a' finds all symbols ending with an 'a'. In the default YAML file
some outputs are commented out.

• initial_data
Enter the path for source and target to define the initial values of calibration
variables. The initial data is virtually flashed into memory during initialization.
It simulates a part of the NVRAM (non-volatile RAM).
source: Where to get the file.
destination: Where to store the file relative to the resources folder of the
FMU (optional).
Supported format: *.VarVal  list of pairs separated by one space, where
the lhs refers to the C variable and the rhs to the value.
Values must be set in apostrophes

• eeprom
Specify the eeprom (Electrically Erasable Programmable Read-Only
Memory). The eeprom data is loaded from a file to RAM during vECU
initialization. The data is saved to the file before running terminate tasks and
when unloading the vECU. This can be used to simulate a soft reset
behaviour where EEPROM stored data are preserved and not lost once the
simulation of vECU terminates. A typical application of such feature is the
storage of total mileage information in ESP controller.
source: Path where to get the file. This is used during the build.
sync: This can be a UNC pathname. When the vECU is initializing, this file
is copied to the 'destination', if it exists. When the vECU terminates, the
updated file in 'destination' is copied to the 'sync' location. (optional)
destination: Path where to store the file relative to the resources folder of
the FMU. This is the working copy. (optional)
c_variables: The C variable names that store the eeprom data. (optional).
Skipping c_variables means, the vECU handles loading and saving the
eeprom. This tool will just provide the files then.
Supported format: *.txt  A line starting with '#' is a comment. All other lines
store the data stream to be flashed to the C variables. The order of the data

i

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 24

stream lines is the same as the order of the c_variables listed. A data stream
is a sequence of bytes in hex format. Each byte is separated by a space.
E.g.: 01 02 ee 4f. In the default YAML file the sync is commented out.

• tasks
Define the tasks with the following specifications. To simulate the
microcontroller environment with its periodically executed tasks in your
software, these are to be defined as tasks of your vECU.
function_name: '<function name>', without brackets, set in apostrophes,
no arguments allowed
trigger: choose between cyclic, initial or terminate, the default is cyclic
period: <number> [in seconds], the default is 1.0
first_call: <number> [in seconds] for the cyclic tasks, the default is
period
priority: The lower the number the higher the priority, the default is 0
max_calls: <number>, -1 means infinite, 0 means no call
See also hints as comments in line 164, 165 and 166.

• redirect_function_calls
Enter the names for replacing functions. Consider the signatures of the
replaced and the substitute function must be the same. This allows you to
test the behaviour of your software using alternative implantation without
changing the code and to replace unfinished or hardware-dependent
functions with mock functions.
replaced_function: Enter the function name of the function that should
be replaced.
substitute_function: The function name of the function that substitutes
the replaced function.

• build_include_filters & build_exclude_filters
Only usable if you selected build_sources for build_mode (line 14),
contrary to line 43. Here you can select files and/or folders that should be
included or excluded in/from the vECU build process. Files are included into
the build if and if only they are matched by at least one build_include_filter
and not matched by any build_exclude_filter.
Values must be set in apostrophes

• assembly_list_files
Refers to line 188&193. From the given sources defined by
"build_include_filters" and "build_exclude_filters" only pass the ones to the
compiler that are listed in a file. If no assembly list files are configured, all
sources will be compiled. See more details in the comment in line 204.

• additional_include_directories & additional_defines
Only usable if you selected build_sources for build_mode (line 14),
contrary to line 43. additional_defines are passed to the preprocessor.
This is useful if you need to set/unset some defines to adapt to the new
windows target. Brackets '(', ')' must be escaped as '\(', '\)'. In the default
YAML file the examples are commented out.

• additional_static_libraries
Only usable if you selected build_sources for build_mode (line 14),
contrary to line 43. The libraries need to be located in the folder
"./projects/vEcu/imported". Environment variables can be used like this:
${SomeEnvironmentVariable}
In the default YAML file the examples are commented out.

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 25

 Configuring the attributes build_include_filters,
build_exclude_filters, assembly_list_files,
additional_include_directories,
additional_include_directories enables you to remove the
hardware dependencies of your SW so that your vECU can be executed in a
virtual environment based on x86 hardware.

• environment_variables
You can define environment variables that will be set by the build process or
the FMI wrapper of the vECU. Example: PATH=c:\Temp;${PATH}
These variables can be configured and modified at one location and can be
accessed in scripts and configuration files.
In the default YAML file the examples are commented out.

• calls & additional_scripts
You can define calls or additional scripts. Project-specific scripts can be
configured to be executed at various phases of the import and build process.
Like copy or modify files, add files to the FMU archive, parse files. Enter
filename, arguments (only for calls), command_line, trigger and
priority. Environment variables can be used.
In the default YAML file the examples are commented out.
Additional scripts refer to the folder C:\ETAS\VECU-
BUILDER1.0.0\vEcuBuild_v1.0.0-rc.1\vEcuBuild_v1.0.0-
rc.1\build\project_template\build\additional_scripts

• patch_a2l_file
Enter the name of the A2L file. An A2L File is required to connect an MCD
tool like e.g. INCA to the running vECU. The A2L file needs to be located in
the folder: "./projects/vEcu/imported". The vEcuBuild will update the memory
addresses of all measurements and characteristics (not only the inputs and
outputs) in the A2L file. Environment variables can be used like this:
${SomeEnvironmentVariable}
Only one A2L file can be defined. In the default YAML file the example is
commented out.

5.2 Command Line Interface
VECU-BUILDER is controlled via a command-line interface. Using the CMD files
provided with the installation you will be guided within a command line interface
and through dialog windows.

The sequence of the building process is always the same when you use
“StartNewProject.cmd”. It contains 3 main steps. The current status is always
shown in the console window.

STARTING NEW PROJECT
1. Selecting the project folder
2. Creating project template
3. Update vEcuConf.yaml

IMPORTING FILES and FOLDERS
1. Running scripts triggered through “before_import”
2. Reading config: vEcuConf.yaml
3. Importing files and foldes to “vECU/imported”

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 26

4. Running scripts triggered through “after_import”

BUILDING VECU
1. Reading config: vEcuConf.yaml
2. Running scripts triggered through “before_import”
3. Rebuilding FMU folders
4. Compiling and Linking (BCU.dll)
5. Building inputs, outputs, parameters, taks
6. Patching A2L files
7. Building FMU archives
8. Running scripts triggered through “after_import”

5.3 Create a vECU
There are two concepts to create a vECU:

• Create vECU from scratch
• Edit existing vECU

The first concept is to Create vECU from scratch using the
StartNewProject.cmd. Starting this batch file you will be guided through the
whole process including import and build step. Needed files will be imported and
the vECU will be build.

The second concept is to edit an existing YAML file and changing the
configuration. You can also import files and folder manually using the
1_Import.cmd. When you are finished you can use 2_Build.cmd to create the
vECU based in the import and the configuration.

In both cases the resulting vECU is self-contained. That means dependencies are
not present and the vECU can be used independently. The needed files for that are
copied into the workspace and can be found in imported folder (see
vECU\imported).

Figure 5: Imported folder with copied dependencies of the vECU

Every vECU gets a separate workspace containing the same structure.

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 27

Figure 6: Standardized structure of vECU workspace

The created vECUs with VECU-BUILDER are self-contained. Possible
dependencies are copied into the workspace, see imported folder in
vECU\imported.

5.3.1 Configuring the YAML file
1. Open the vEcuConf.yaml of your workspace.
2. Adapt the configuration to your needs.
 Every section contains a comment with a description which

content is expected, and selection options are given.

In the comment above line 14 you can see that there are 2 options
to choose from for the build_mode:
build_sources or import_dll.

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 28

5.4 Check created vECU (release version)
You can check if the created FMU can be executed.

1. Go to your workspace folder.
When you used the default location, it can be found in
C:\Users\Username\Documents\

2. Execute 3a_CheckFMU.bat with double-click.

 A console window is opened. The FMU is checked, and the result
is shown in the console window.

The first number represents the simulation time, the second
number is the output.

5.5 Check created vECU (debug version)
You can check if the created FMU can be executed.

1. Go to your workspace folder.
2. Drag the *_debug.fmu and drop it to 3a_CheckFMU.bat.

 A console window is opened. The FMU is checked, and the result

is shown in the console window.

5.6 Show Symbol information
To check the compile, you can have a look into the symbol details.

1. Go to your workspace folder.
When you used the default location, it can be found in
C:\Users\Username\Documents\

ETAS Working with VECU-BUILDER

ETAS VECU-BUILDER V1.0 – User Guide 29

2. Execute 3c_ShowSymbolDetails.bat with double-click.

 A text editor window is opened, and symbol details are shown.

ETAS Contact Information

ETAS VECU-BUILDER V1.0 – User Guide 30

6 Contact Information

Technical Support
For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website: www.etas.com/en/hotlines.php

ETAS Headquarters
ETAS GmbH
Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com/en/hotlines.php
https://www.etas.com/

	1 Safety and Privacy Information
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Privacy Information
	1.4.1 Data Processing
	1.4.2 Technical and Organizational Measures

	2 About VECU-BUILDER
	2.1 Basics
	2.2 Virtual ECU
	2.3 Workflow vECU Creation Process
	2.4 Limitations

	3 Installation
	3.1 Preparation
	3.2 Installation Content
	3.3 Installing
	3.4 Installed Files and Folders
	3.5 Licensing
	3.6 Uninstalling

	4 Getting Started
	4.1 Create your First virtual ECU
	4.2 A2L File Patching
	4.3 Get familiar with VECU-BUILDER
	4.3.1 Simple Example
	4.3.2 BCU (Body Control Unit)

	5 Working with VECU-BUILDER
	5.1 YAML File Reference
	5.2 Command Line Interface
	5.3 Create a vECU
	5.3.1 Configuring the YAML file

	5.4 Check created vECU (release version)
	5.5 Check created vECU (debug version)
	5.6 Show Symbol information

	6 Contact Information
	Technical Support
	ETAS Headquarters

