
ETAS VECU-BUILDER V1.1

User Guide

Copyright

The data in this document may not be altered or amended without special notifica-
tion from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to
this document. The software described in it can only be used if the customer is in
possession of a general license agreement or single license. Using and copying is
only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language without
the express written permission of ETAS GmbH.

© Copyright 2022 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands be-
longing to the respective owners.

ETAS VECU-BUILDER V1.1 – User Guide R04 EN – 10.2022

ETAS Contents

ETAS VECU-BUILDER V1.1 – User Guide 3

Contents

1 Safety and Privacy Information ... 5

1.1 Intended Use ..5

1.2 Target Group ..5

1.3 Classification of Safety Messages ...5

1.4 Privacy Information ..6

1.4.1 Data Processing ..6

1.4.2 Technical and Organizational Measures ..6

2 About VECU-BUILDER ... 7

2.1 Basics ..7

2.2 Virtual ECU ..8

2.3 vECU Creation Process Workflow ...8

3 Installation ... 9

3.1 System Requirements ...9

3.2 Preparation ...9

3.3 Installation Content ..9

3.4 Installing ... 10

3.5 Installed Files and Folders ... 11

3.6 Licensing .. 12

3.7 Uninstalling ... 12

4 Working with VECU-BUILDER .. 13

4.1 Creating a New Workspace .. 14

4.2 Importing Files and Folders .. 15

4.3 Building the vECU ... 16

4.4 Building the FMU .. 17

4.5 Workspace Content ... 17

4.6 Configuration .. 19

ETAS Contents

ETAS VECU-BUILDER V1.1 – User Guide 4

5 Exploring the Examples .. 25

5.1 Simple Example .. 25

5.1.1 FMU Checker ... 25

5.1.2 Difference Between Debug and Release vECUs 25

5.1.3 Features to Explore in the Simple Example Workspace 26

5.2 BCU Example ... 27

5.2.1 Show Symbol Information .. 27

5.2.2 A2L File Patching .. 27

5.2.3 Features to Explore in the BCU Workspace 28

6 Controlling VECU-BUILDER ... 29

6.1 Manual Interaction ... 29

6.2 Command-Line Interface .. 29

7 Debugging vECU .. 32

7.1 Debugging with Visual Studio 2019 ... 33

7.2 Debugging with Visual Studio Code .. 34

8 Migrating Workspaces of VECU-BUILDER V1.0 .. 35

9 Troubleshooting .. 36

9.1 CMake not found ... 36

9.2 Notepad++ Does Not Open During Workspace Creation Process 37

9.3 Some Breakpoints Not Being Hit ... 38

9.4 (SymbolInfo.dll) The *.die File Is too Large to Load 38

10 Contact Information ... 39

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 5

1 Safety and Privacy Information
In this chapter you can find information about the intended use, the addressed tar-
get group, and information about safety and privacy related topics.

1.1 Intended Use
The product is designed to produce a virtual ECU for microcontrollers from existing
ECU source codes or from precompiled binaries. The virtual ECU is designed for
simulation, debugging, and pre-calibration of ECU software in a PC-based virtual
simulation environment.

In general, virtual ECUs may not be real-time capable. If you control physical de-
vices with a virtual ECU, the system may respond unexpectedly. Take suitable pre-
cautions to ensure safe operation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information. Please adhere to the ETAS Safety Ad-
vice (see documentation folder).

1.2 Target Group
This product is directed at trained qualified personnel in development of automotive
ECU software (e.g., function developer, application engineer, ECU software inte-
grator, system engineer or calibration engineer) at OEMs, tier-1 or tier-2 suppliers
in the automotive industry. Technical knowledge in control unit engineering is a
prerequisite. In addition, programming knowledge in C/C++ is required. AUTOSAR
Classic knowledge is helpful.

1.3 Classification of Safety Messages
Safety messages warn of dangers that can lead to personal injury or damage to
property:

 DANGER

DANGER indicates a hazardous situation that, if not avoided, will result in death
or serious injury.

 WARNING

WARNING indicates a hazardous situation that, if not avoided, could result in
death or serious injury.

 CAUTION

CAUTION indicates a hazardous situation that, if not avoided, could result in mi-
nor or moderate injury.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 6

NOTICE

NOTICE indicates a situation that, if not avoided, could result in damage to prop-
erty.

1.4 Privacy Information
Your privacy is important to ETAS. We have created the following privacy notice
that informs you, which data are processed in VECU-BUILDER, which data catego-
ries VECU-BUILDER uses, and which technical measure you must take to ensure
the privacy of the users. Additionally, we provide further instructions where this
product stores and where you can delete personal data.

1.4.1 Data Processing
Note that personal data or data categories are processed when using this product
(e.g. in log files). The purchaser of this product is responsible for the legal conform-
ity of processing the data in accordance with Article 4 No. 7 of the General Data
Protection Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for
any mishandling of this data.

1.4.2 Technical and Organizational Measures
This product itself does not encrypt the personal data or data categories that it rec-
ords. Ensure the data security of the recorded data by suitable technical or organi-
zational measures of your IT system, e.g., by classical anti-theft and access protec-
tion on the hardware.

Personal data in log files can be deleted by tools in the operating system.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 7

2 About VECU-BUILDER
VECU-BUILDER is designed to build a virtual ECU (vECU). The vECU can be
used for simulation, debugging and pre-calibration of ECU software in a PC-based
virtual simulation environment.

VECU-BUILDER supports the generation of Level-1, Level-2, and Level-3 vECUs
according to the Prostep Definition of vECUs. Level-4 vECUs, i.e., hex-files for a
specific target, are not supported.

VECU-BUILDER is based on Python and CMake. The inputs can either be C/C++
source codes or binaries like object files or shared libraries including symbol infor-
mation. In contrast to AUTOSAR Classic, the configuration of a vECU is done in a
single YAML file (vEcuConf.yaml). No ARXML files are processed. The proper-
ties are configured in this text-based file. This file is used to define the supported
features of the vECU such as an XCP slave or initial data as part of simulated
NVRAM. VECU-BUILDER wraps the binaries of the vECU into an FMU (FMI 2.0 for
Co-Simulation). These FMUs can be integrated into any FMI-compliant simulation
master.

2.1 Basics
The basic principle is to keep the data lean in a simple and smart way. The concept
is the simplification of the ECU software stack and the ARXML file. The A2L file is
patched by removing all hardware dependencies and updating memory addresses
of all inputs, outputs, measurements, and characteristics. The software stack layers
are represented by C and H files which are reflected in the imported folder
(vECU\imported) in the vECU build process. The result is a stand-alone FMU
containing the model description (e.g. its variables) as XML file, the access to cali-
bration and measurement variables via patched A2L file and an executable model
as DLL file.

Figure 1 - Basic concept and result of VECU-BUILDER

https://www.prostep.org/fileadmin/downloads/WhitePaper_V-ECU_2020_05_04-EN.pdf

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 8

2.2 Virtual ECU
A vECU is a virtualized ECU which can be used as a real ECU. With the vECU you
can test the ECU software and execute the software functionality without hardware.
This gives you the possibility to test the communication between the ECUs before
prototypes or hardware is available. The vECU contains the code, the parameters
and the XCP slave as an alternative path to the hex code.

2.3 vECU Creation Process Workflow
The whole workflow is an iterative process to get to the final configuration of the
YAML file. The listed points give a rough overview of the workflow. Section A and F
are taking place out of the VECU-BUILDER.

A. Prepare sources
− Directives that refer to header files in code must be fixed
− Generate a script collecting the files you need from the various locations

you found
B. Compile sources, incompatible sources must be removed

− Generate new workspace
− Copy sources into workspace
− Build
− Check error messages
− Remove or patch code

C. Link sources and create stubs
− Solve link errors with empty stubs

D. Define Inputs and Outputs (I/O) to make the vECU runnable
− Use symbol information to generate I/O
− Manually patch the sources of virtual devices
− Use the C notation of the variables (e.g., sensor.*)

E. Create task model to run the tasks
− Use text format to define task model

F. Operate for first time, apply SiL specific code changes
− Debug code
− Fill some stub functions with code or apply SiL specific code changes

After building the first iteration of an vECU it can be used to perform further steps
like (out of VECU-BUILDER):

• Integrate vECU with plant models and execute it in Co-Simulation environment
• Run and test the vECU in an experiment environment
• Measurement and calibration of vECU
• Debugging with source code editor

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 9

3 Installation
This chapter provides information for preparing and performing the installation and
for licensing the software.

3.1 System Requirements
The following system prerequisites are required:

PC Hardware min. 2 GHz

3 GHz Dual-Core or higher recommended

min. 8 GB RAM

32 GB RAM recommended

Operating System Windows® 10 (64 bit)

Free Disk Space 5 GB (not including the size for application data)

>100 GB recommended

Required third-party tools CMake (version ≥3.15)

Recommended third-party tools Notepad++

Optional third-party tools Microsoft Visual Studio 2015, 2017, 2019

3.2 Preparation
Prior to the installation, check that your computer meets the System Requirements.
Depending on the operating system used and network connection, you must en-
sure that you have the required user rights.

 NOTE

Ensure that you have the necessary access privileges for the installation of the
software. If in doubt, contact your system administrator.

3.3 Installation Content
The installation content can either be downloaded from ETAS license and down-
load portal (http://www.etas.com/support/licensing) or executed from the DVD.

It contains information about the open-source software attributions, important infor-
mation like Safety Advice or the User Guide and the executable installation file
(EXE).

i

http://www.etas.com/support/licensing

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 10

3.4 Installing
1. Go to the directory where the installation file is located and execute the

VECU_BUILDER_installer_1.1.0.exe file.

 The Setup Wizard opens.
2. Click Next.

 The "End User License Agreement" window opens.
3. Read the License Agreement carefully, then select I accept the terms of the

License Agreement.
4. Click Next.

 The "Safety Advice" window opens.
5. Read the Safety Advice carefully, then select I read and selected the Safety

Advice.
6. Click Next.

 The "Installation Path" window opens.
7. Accept the default path (click Next) or click Browse to select a custom location.

 The "Ready to Install" window opens.
8. Click Install.

 The installation is performed, its progress is shown via a progress bar.
9. Click Next.

 The "Third-party Software" window opens.
10. Install CMake (required) and Notepad++ (recommended) see the links below in

the installation dialog:
CMake (version 3.15 or higher)
Notepad++

11. Click Next.

 The "Completing VECU-BUILDER Setup" window opens.
12. Optionally, activate the Open VECU-BUILDER documentation checkbox to

open the documentation folder.
13. Click Finish.

 The installation is completed, and the VECU-BUILDER can now be used.

https://cmake.org/download/
https://notepad-plus-plus.org/downloads/

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 11

3.5 Installed Files and Folders

VECU-BUILDER Tool
The default installation location is

C:\Program Files\ETAS\VECU-BUILDER\1.1.0

and it is recommended not to alter the installation location.

An environment variable of VECUBUILDER_HOME points to this folder.

Figure 2 - Installation content of VECU-BUILDER tool

The content of this folder consists of several sub-folders and one command script:

• 3rd_party: contains the third party tools of FMU Checker and MinGW.
• bin: contains DLL and EXE files for the build process. These files are im-

portant for the build and must not be altered.
• build: contains templates, resources, and scripts for the build process. These

files are important for the build and must not be altered.
• documentation: contains the VECU-BUILDER User Guide, the OSS Attribu-

tion and the ETAS Safety Advice documents.
• CreateWorkspace.cmd: creates a new workspace. After executing this CMD

you will be guided through the process step by step.

VECU-BUILDER Examples
You can find ready-to-use examples in the following location:

C:\ProgramData\ETAS\VECU-BUILDER\Examples_v1.1.0

An environment variable of VECUBUILDER_EXAMPLES points to this folder.

The following two examples are delivered along with the tool:

• BCU (Body Control Unit)
• Simple Example

Figure 3: Examples delivered along with VECU-BUILDER

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 12

VECU-BUILDER Workspaces
As location for all your workspaces we recommend the default folder, where you
should create a dedicated subfolder for each workspace.

The default folder is created during the installation process:

C:\Users\Public\Documents\VECU-BUILDER_Workspaces

Access to Artefacts
You can access all artefacts via their respective Start Menu entries.

Figure 4 - Start Menu entries

3.6 Licensing
The use of VECU-BUILDER is protected by electronic licensing. Valid licenses are
necessary to operate ETAS VECU-BUILDER and its add-ons. The use of unli-
censed ETAS software is prohibited. The required licenses are not included in this
delivery.

When you purchase VECU-BUILDER licenses, you receive a separate entitlement
letter. Activate the license using a self-service portal on the ETAS website:
https://www.etas.com/support/licensing

For assistance, please consult the help file available on the start page of the self-
service portal. During the activation process, you receive the necessary license
keys per e-mail.

License keys are valid for a major version. If you have a valid service contract, you
will receive a new entitlement automatically for successive major version (e.g., from
V4.x to V5.x). You do not need a new license file for updates and maintenance ver-
sions, e.g., for the refresh V5.0.1 or update V5.1.0 to major version V5.0.0.

3.7 Uninstalling
1. Open the location where you installed VECU-BUILDER.

If you used the default installation location, you can find it under:
C:\Program Files\ETAS\VECU-BUILDER

2. Execute the uninstall.exe with double-click.

https://www.etas.com/support/licensing

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 13

4 Working with VECU-BUILDER
To commence your learning, we recommend following the bellow path:

Figure 5 - The learning path

This section guides you through the process of creating a vECU in four distinct
stages. Each stage can be triggered individually, and you can choose to continue
with the next one.

Figure 6 - VECU-BUILDER stages

By following the steps described in the next chapters, you will build your first vECU
based on the Simple Example. This is the ideal starting point for your virtualization
leaning journey.

Simple
Example

• Create a workspace based on the provided Simple Example
• Get familiar with all artefacts of this workspace
• Explore VECU-BUILDER features such as
• build tool, inputs, outputs and tasks
• initial data and eeprom
• redirect function calls
• debug hook

BCU
Example

• Create a workspace based on the provided BCU Example
• Explore further VECU-BUILDER features such as
• additional include directories
• additional compile and linker
• additional scripts
• xcp slave and a2l file patching file

Build your
own vECU

• Create a new workspace with your own sources
• Explore the remainig VECU-BUILDER features
• Incrementally increase the complexity of your project
• Use the CLI to control VECU-BUILDER
• Share the knowledge you gained so far with your colleagues

Creating a
new

workspace

Importing
files and
folders

Building a
vECU

Building a
FMU

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 14

4.1 Creating a New Workspace
The very first step, required at the beginning of every project, is to create a work-
space.

 NOTE

Workspaces are designed for parallel use.

A single workspace cannot be used for tasks running in parallel.

1. Launch “Create new workspace” from the Start Menu.

Figure 7 - Start Menu entries

 A console window opens providing details on the overall process, various
stages it goes through and their individual steps.

 In the first step of “Create new workspace” you will be asked to select a
folder where your workspace will be saved.

Figure 8 - Select workspace location

i

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 15

2. Navigate to the default location of your workspaces

C:\Users\Public\Documents\VECU-BUILDER_Workspaces

and select an existing folder or create a new one.

 The configuration file vEcuConf.yaml opens in Notepad++.

Per default, this is the configuration file of the Simple Example.

Figure 9 - Default configuration

3. Keep the configuration file as is and close the Notepad ++ application.

 Your new workspace is now created.

The process will automatically continue with the next stage.

4.2 Importing Files and Folders
During this stage, the sources defined in your vEcuConf.yaml are copied to the
"vEcu/imported" folder in your workspace.

 NOTE

During the import stage, files and folders get copied into the workspace. For rea-
sons of portability, we recommend creating workspaces that are self-contained.

After successful completion of the previous stage Creating a New Workspace you
were forwarded to the next stage Importing Files and Folders and the process con-
tinues.

If you work in an already existing workspace, you can trigger this stage by running
the 1_Import.cmd command script.

i

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 16

 After successful completion of this stage Importing Files and Folders a dia-
log opens asking you whether you want to continue with the next stage
Building the vECU or inspect the results of this stage.

Figure 10 - Proceed with vECU Build dialog or inspect the results

4. Click Yes.

 Your new workspace is now created.

The process will continue with the next stage.

4.3 Building the vECU
During this stage, the sources imported into your workspace are compiled and
linked into a DLL file forming the core functionality of your future vECU.

After successful completion of the previous stage Importing Files and Folders and
selecting to proceed with the build of the vECU you were forwarded to the next
stage Building the vECU and the process continues.

If you work in an already existing workspace, you can trigger this stage by running
the 2_Build.cmd command script.

Figure 11 - Building vECU completed

The process will automatically continue with the next stage.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 17

4.4 Building the FMU
During this stage, the DLL file created in the previous stage will be wrapped into an
FMU container representing your vECU.

After successful completion of the previous stage Building the vECU and selecting
to proceed with the build of the vECU you were forwarded to the next stage Build-
ing the FMU where the process completes.

Figure 12 - Building FMU completed

4.5 Workspace Content
You have now successfully created the VECU-BUILDER workspace and built your
first vECU based on the provided Simple Example sources. In this chapter, you find
a description of the workspace contents.

Figure 13 - Workspace contents

The content of the workspace consists of several artefacts:

• .vscode folder
launch.json file for vECU debugging in VS Code

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 18

• build folder:

− additional_scripts folder: location for your project specific addi-
tional scripts

− log folder: log files from executed stages
− scripts folder: command and shell scripts to perform the individual

stages
− last_build_footprint file: details of last performed build stage
− SymbolDetails.txt file: symbols within your sources and their attrib-

utes

• vECU folder:

− buildArtifacts folder: DLL file and its associated debug information
− CMake folder: CMake project artifacts
− imported folder: all imported artifacts
− CMakeLists.txt file: set of directives and instructions for building your

sources

• 1_Import.cmd
command script to trigger the Importing Files and Folders stage

• 2_Build.cmd
command script to trigger the Building the vECU stage

• 3a_CheckFMU.bat
batch file to invoke the FMU Checker and inspect the vECU outputs

• 3b_StartDebugger.bat only present if build_tool is set to one MSVC
batch file to invoke the configured MSVC as debugger

• 3c_ShowSymbolDetails.bat
batch file to invoke Notepad++ and display the Symbol Details

• 3d_RemoveGoLicense.bat only relevant if vECU was built with GO-license
batch file to remove the GO license from the vECU

• SimpleExample.fmu
release version of your vECU, for more details see Simple Example

• SimpleExample_debug.fmu
debug version of your vECU, for more details see Simple Example

• vEcuConf.yaml
the YAML configuration file, for more details see Configuration

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 19

4.6 Configuration
The YAML file contains the configurations for the import and build process as well
as for the vECU itself. It is the only configuration you need to create and maintain.

The YAML file is divided into several sections, each section configuring a particular
attribute. You are guided through the YAML file with comments on each section
and configuration attributes. Every section is structured in a standardized way:

A: comment with information on the corresponding section

B: configuration attributes and values

The following is a list of all attributes available in the YAML file:

• version
This is the version of the used YAML file schema and must not be changed.

• build_mode
You can select between 2 modes:
build_sources: You import source code (either as AUTOSAR Classic
compliant or legacy C-code), header files, and static libraries. VECU-
BUILDER then builds your vECU in the form of an FMU container.
The vECU will be named <fmu_name>.fmu.
import_dll: You import an existing, already compiled and linked software
in the form of a DLL containing the functionality of your vECU.
VECU-BUILDER then wraps it in an FMU container, sets up the inputs, out-
puts and tasks, patches the a2l file, sets up the xcp slave port, etc.

• fmu_name
Enter the name of you vECU.
The code of your vECU is located inside the FMU in the folder
"resources/<fmu_name>.dll".
This and other DLL files are loaded and executed by the FMU runner.

• import_into_project
Enter the paths to the files and folders to be imported.
You can specify paths to folders and/or individual files such as *.c, *.h,
*.cpp, *.hpp or *.zip archives which will be extracted during import.
The import target is the "vEcu/imported" folder in your workspace.
Environment variables can be used like this:
'${VECUBUILDER_EXAMPLES}\SimpleExample\src'

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 20

• import_external_vecu_dll.
The DLL needs to contain the symbol information.

• import_external_vecu_dll
Only needed if you selected import_dll as build_mode.
That DLL already contains the code of your vECU, you can skip the compil-
ing and linking and just import your DLL into the FMU wrapper.
Here you enter the DLL name and the path for updates:
dll_name: The name of the DLL. A corresponding PDB file with the same
file name must exist.
get_updates_from: If VECU-BUILDER can find a DLL and PDB in this
folder, the imported DLL will be updated.
Environment variables can be used like this:
'${SystemDrive}\Sandbox'.

• architecture
Specify the architecture.
When importing sources, the setting of this attribute has to match the inte-
gration and simulation system where the vECU is to be used.
In case you are importing an DLL pre-compiled for either 32bit or 64bit archi-
tecture, this attribute must be set to the same.

• xcp_slave
Enter the port and IP address of the XCP Slave to be setup in your vECU.
These values are transferred to the patched A2L file. The used protocol is
TCP. For more details, see A2L File Patching.

 NOTE

A socket (IP address + port + protocol) for the XCP connection between
INCA and XCP slave can only be used once. If a port is busy, you must
define another port in the YAML file.

• operating_system

Enter the operating system. Currently only Windows is supported.
• build_tool

Enter your preferred build tool.
Several MSVC versions and MinGW Makefiles are supported.
In case Visual Studio is selected, a Visual Studio Solution is generated.
If you choose MinGW Makefiles, a CMake project is generated.
These artefacts are stored in the “vECU\CMake” folder in your workspace.

• cmake_generator_toolset
Define which toolset should be used by CMake during the build process.
For more details, see CMAKE_GENERATOR_TOOLSET.

• inputs, outputs, parameters, locals
Enter the variables you wish to expose as ports of your FMU.
Inputs, outputs, parameters, and locals refer to the causality of the FMI.

i

https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_TOOLSET.html

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 21

Wildcards of * and ? are allowed. Arrays can be added using myArray*,
the same goes for structures. If your wildcard expression breaks the YAML
compatibility, put it in single apostrophes.
Example: '*a' finds all symbols ending with an 'a'.

Aliases can be defined for variables, which results in renaming of FMI ports.
The aliases are used in the modelDescription.xml and the original vari-
able names are used in the resources.txt.

 NOTE

Variables of type enumeration will be interpreted as integers in the mod-
elDescription.xml of the FMU.

The name-value mapping of enumerations will be ignored when enumera-
tions are used as interfaces. Only the integer value will be exchanged.

• initial_data

Enter the path for source and target destination to define the initial values of
calibration variables.
The initial data is virtually flashed into memory during initialization. It simu-
lates a part of the NVRAM (non-volatile RAM).
source: Where to get the file.
destination: Where to store the file relative to the resources folder of the
FMU (optional).
Supported format: *.VarVal  list of pairs separated by one space, where
the lhs refers to the C variable and the rhs to the value.

• eeprom
Specify the eeprom simulation attributes.
The eeprom data is loaded from a file to RAM during vECU initialization. The
data is saved to the file before running terminate tasks and when unloading
the vECU. This can be used to simulate a soft reset behavior where
EEPROM stored data are preserved and not lost once the simulation of
vECU terminates. A typical application of this feature is the storage of total
mileage information in the ESP controller.
source: Path where to get the file. This is used during the build.
destination: Path where to store the file relative to the resources folder of
the FMU. This is the working copy (optional).
sync: This must be a UNC pathname. When the vECU is initializing, this file
is copied to the 'destination', if it exists. When the vECU terminates, the up-
dated file in 'destination' is copied to the 'sync' location (optional).
c_variables: The C variable names that store the eeprom data.
Supported format: *.txt  A line starting with '#' is a comment. All other
lines store the data stream to be flashed to the C variables. The order of the
data stream lines is the same as the order of the c_variables listed.
A data stream is a sequence of bytes in hex format. Each byte is separated
by a space. E.g.: 01 02 ee 4f. In the default YAML file the sync is com-
mented out.

i

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 22

• tasks
Define the tasks that are to be executed and their attributes.
To simulate the microcontroller behavior with its periodically executed func-
tions of your software, these functions are to be defined as tasks in this sec-
tion.
A function can be defined as a task only once, duplicated functions will be
ignored.
function_name: '<function name>', without brackets, set in apostrophes,
no arguments allowed.
trigger: Choose between cyclic, initial or terminate, the default is cyclic.
period: <number> [in seconds], the default is 1.0.
first_call: <number> [in seconds] for the cyclic tasks, the default is pe-
riod.
priority: The lower the number the higher the priority, the default is 0.
max_calls: <number>, -1 means infinite, 0 means no call.

• redirect_function_calls
Enter the names functions to be replaced and their substitutes.
The function signatures of the two functions must be identical. This allows
you to test the behavior of your software using alternative implementation
without changing the original source code or to replace unfinished or hard-
ware-dependent functions with mock functions.
replaced_function: Enter the function name of the function to be re-
placed.
substitute_function: The function name of the function that substitutes
the replaced function.

• build_include_filters & build_exclude_filters
Only usable if you selected build_sources as build_mode.
You can select files and/or folders that should be included or excluded
in/from the vECU build process.
Files are only included into the build if they are matched by at least one
build_include_filter and are not matched by any build_ex-
clude_filter.

• assembly_list_files
Specify your assembly list files for the build process.
Of the given sources defined by "build_include_filters" and
"build_exclude_filters", only those listed in a file are passed to the
compiler.
If no assembly list files are configured, all sources are compiled.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 23

• additional_include_directories & additional_defines
Only usable if you selected build_sources as build_mode.
These values are passed to the preprocessor. This is useful if you need to
set/unset some defines to adapt them to the new PC target.
Brackets '(', ')' must be escaped as '\(', '\)'.

 NOTE

The following limitations apply to filename paths, command-line and re-
sponse-file lengths in the Windows environment.

 Filename paths cannot be longer than MAX_PATH (260) characters.
 Command-line lengths cannot be longer than 32,768 characters.
 Response-file lengths cannot be longer than 131,072 characters.

• additional_compile_flags

Only usable if you selected build_sources as build_mode.
Specify how the compiler should work. Each individual flag must be written in
a separate line and put in single apostrophes, i.e. '/ZI'.
The flags are written into the CMakeLists.
For more details, see MSVC compiler options or gcc compiler options.

• additional_static_libraries
Only usable if you selected build_sources for build_mode.
The libraries need to be located in the folder "./projects/vEcu/im-
ported".

• environment_variables
You can define process-level environment variables that are set by the build
process and by the FMI wrapper during the vECU execution.
Example: PATH=c:\Temp;${PATH}
These variables can be configured and modified in one location and can be
accessed from scripts and configuration files.
Process-level environment variable of VECUBUILDER_WORKSPACE is cre-
ated automatically during the build process with its value pointing to the cur-
rent workspace.

i

https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/Invoking-GCC.html

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 24

• additional_scripts
Define your additional scripts for execution.
Project-specific scripts can be configured to be executed at various phases
of the import and/or the build process.
You can utilize these to copy or modify files, add files to the FMU archive,
parse files, etc. You may use Python scripts or .bat and .cmd scripts.
filename: Your script name (default location for such scripts is
“build\additional_scripts” in your workspace) or full absolute path.
arguments: Optionally, you may define arguments to be passed to the re-
spective interpreter.
command_line: Full absolute path to the interpreter.
trigger: Select from four available options:
 before_import
 after_import

 before_build

 after_build

priority: Define with which priority your script should be executed

• patch_a2l_file
Enter the name of your A2L file to be patched.
An A2L File is required to connect an MCD tool such as INCA to the running
vECU. The A2L file needs to be located in the folder: “vEcu/imported".
VECU-BUILDER will update the memory addresses of all measurements
and characteristics in the provided A2L file. The original A2L file is renamed
by appending .bak to its name.
For more details, see A2L File Patching.

• debug_hook
Specify whether to enable or disable a debug hook.
When enabled, the FMU execution is interrupted when the FMU is instanti-
ated until a debugger is attached.
For more details, see Debugging vECU.

• additional_link_flags
Only usable if you selected build_sources as build_mode.
Specify how the linker should work. Each individual flag must be written in a
separate line and put in single apostrophes, i.e. '/DEBUG'.
The flags are written into the CMakeLists.txt.
For more details, see MSVC linker options or gcc linker options.

https://learn.microsoft.com/en-us/cpp/build/reference/linker-options?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 25

5 Exploring the Examples
This chapter contains details on the two examples that are delivered along with the
tool and provides pointers on how to experiment within their respective work-
spaces.

5.1 Simple Example
If you followed the instructions in the chapter Working with VECU-BUILDER, you
now have a workspace on your PC which is based on the Simple Example.

5.1.1 FMU Checker
To conduct a quick smoke test of the created vECU, the FMU check tool is deliv-
ered along with VECU-BUILDER. This tool can be invoked via the
3a_CheckFMU.bat file. Simply execute this batch file to run the release vECU or
drag-and-drop the debug vECU into this batch file to run the debug vECU.
This tool opens a terminal where details of the FMU are displayed, and the time
and values of defined outputs are printed. The batch file is configured so that the
simulation runs for 10 seconds. You can change this by altering the batch file.

Figure 14 - FMU Checker output

5.1.2 Difference Between Debug and Release vECUs
You find two FMUs in this workspace, one named SimpleExample.fmu (which
will be referred to as ‘release vECU’) and the other one named SimpleExam-
ple_debug.fmu (which will be referred to as ‘debug vECU’).

Extract each of these two FMU archives into its own folder and let’s explore what
they contain and how they differ.
The functional behavior of both vECUs is identical.
The debug vECU contains symbol information and additional artefacts, e.g., PDB
(when build tool is MSVC) or DIE (when build tool is MinGW). Use the debug vECU
to debug and step through your code.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 26

When you compare the two extracted folders, you will notice that the main differ-
ence is in the resources folder.

Figure 15 - Comparison of debug and release vECU

The release vECU contains only address information, unlike the debug FMU which
contains the variables and function names. The release vECU protects the IP con-
tained in the vECU and does not contain symbol information. Use the release
vECU if you want to share it with others.

Figure 16 - Comparison of Resources.txt

5.1.3 Features to Explore in the Simple Example Workspace
Now start experimenting with the following features in this current workspace:

• build tool, inputs, outputs and tasks
• initial data and eeprom
• redirect function calls
• debug hook

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 27

5.2 BCU Example
To create a workspace based on the BCU example, follow the steps described in
Creating a New Workspace to the point where the YAML file opens in Notepad++.

1. Replace the entire content of the YAML file with the content of prepared BCU

configuration YAML file located in:

C:\ProgramData\ETAS\VECU-BUILDER\Examples_v1.1.0\BCU

 Continue the process as described in Working with VECU-BUILDER.

5.2.1 Show Symbol Information
To see all the symbols available in your vECU, open the SymbolDetails file.

2. Run the command:
3c_ShowSymbolDetails.bat

 A text editor window opens, and symbol details are shown.

Figure 17 - Symbol Details of BCU example

5.2.2 A2L File Patching
Most ECU software authoring tools can generate an A2L file for you. It contains the
addresses of your labels for a specific target. In addition, it may contain tool-spe-
cific statements or even non-standard clauses. The addresses for a vECU target
differ from the addresses in a physical ECU target, so that the original A2L cannot
be used for an XCP connection with a vECU as is.

Since the generation of A2L files is an intricate task, VECU-BUILDER excludes this
functionality completely. Instead, VECU-BUILDER reads, modifies, and writes a
given A2L file. This patching procedure preserves most of the original contents of
the A2L file but changes all addresses to those of the virtual target. A backup copy
of the original A2L file is preserved.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 28

VECU-BUILDER includes its own XCP slave software component. Currently, it
supports TCP connections only. The communication parameters for an XCP con-
nection are part of an A2L file. VECU-BUILDER patches in the values for TCP port
and IP address, which were specified in the YAML file. For instance:

Original A2L file Patched A2L file

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 <TCPPORT> /* Port */

 ADDRESS "<IPADDR>"

/end XCP_ON_TCP_IP

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 12345 /* Port */

 ADDRESS "127.0.0.1"

/end XCP_ON_TCP_IP

If your A2L file contains an “XCP_ON_UDP_IP” clause, then VECU-BUILDER re-
writes it to an “XCP_ON_TCP_IP” clause. The integrated XCP slave supports a
limited subset of the commands of the ASAM MCD-1 (XCP) standard version 1.0. It
supports a limited subset of the clauses from ASAM MCD-2 (ASAP2 / A2L) stand-
ard version 1.7.1.

If your ECU software includes an XCP slave already, you may want to drop this
software component from your vECU software stack.

5.2.3 Features to Explore in the BCU Workspace
Now start experimenting with the following features in the current workspace:

• additional include directories

• additional compile and linker flags

• additional scripts

• xcp slave and a2l file patching

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 29

6 Controlling VECU-BUILDER

6.1 Manual Interaction
You can operate VECU-BUILDER via the provided command and batch scripts.
For some user inputs, such as selecting a workspace directory, the tool may dis-
play dialogs.

This control method is recommended for all new users. Only this method has been
used in this document.

6.2 Command-Line Interface
Besides the manual Interaction method, you can also operate VECU-BUILDER via
a command-line interface (CLI). VECU-BUILDER is a CLI native application, and
the command and batch scripts allow manual interaction.

The following arguments exist:

• --new-project-path: Path where the workspace is to be created.
• --no-dialogs: Suppress all dialogs and always select the default option.
• --stop-on-success: Prevent automatic forwarding to the next stage (create

workspace, import, build).
• --version: Print the version information.
• -h: Print list of all optional arguments.

To see all CLI optional arguments and their description
1. Open a terminal (type cmd in the Windows Explorer) in your workspace.
2. Run the command:

1_Import.cmd -h

Figure 18 - CLI optional arguments

The CLI control method is ideal for integrating VECU-BUILDER into an automation
pipeline. The CLI behaviour is the same as running the scripts manually: each
script would call the next script to proceed through the stages of create a work-
space, import, build. To change this behaviour, use --stop-on-success.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 30

The following table gives an overview of which script uses which arguments:

argument CreateWorkspace.cmd 1_Import.cmd 2_Build.cmd

--new-project-path Used (required) Ignored Ignored

--no-dialogs Used (optional) Used (optional) Used (optional)

--stop-on-success Used (optional) Used (optional) Ignored

--version Used (optional) Used (optional) Used (optional)

-h Used (optional) Used (optional) Used (optional)

Table 1 – Mapping of CLI arguments to scripts

To build the SimpleExample via two command lines
After creating the workspace, stop the process so that you can copy a specific
YAML file into your workspace. Then trigger the import without

--stop-on-success and let it finish the build automatically.

1. Open a terminal
2. Go to the installation location

cd %VECUBUILDER_HOME%
3. Run the command:

CreateWorkspace.cmd
with the arguments
--new-project-path <destination>
--no-dialogs
--stop-on-success
where <destination> points to your workspace folder.

Figure 19 - Workspace creation via CLI

 NOTE

A default YAML file is used in all newly created workspaces.

Project specific YAML file can be either prepared manually or in the previous
step of your automation pipeline.

i

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 31

To use your project specific YAML file in this newly created workspace:

4. Run the command:
copy /y <source> <destination>

Figure 20 - Copy your project specific YAML file

 NOTE

The argument /y suppresses the prompt and thus overwrites the destination
file.

To continue building your workspace:

5. Navigate to this new workspace by running the command:
cd <destination>

6. Run the command:
1_Import.cmd --no-dialogs

i

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 32

7 Debugging vECU
VECU-BUILDER provides features to debug the vECU. One such feature is the
debug_hook, which can be enabled in the YAML file. vECUs built with this attrib-
ute activated enter their instantiation and wait for a debugger to be attached before
entering their execution.

The following table summarizes the possible combinations of build tool and debug-
ger in terms of debugging:

 Debugger

 VS Code VS 2015 VS 2017 VS 2019

Bu
ild

 to
ol

MinGW recommended unavailable experimental recommended

VS 2015 experimental recommended possible possible

VS 2017 experimental unavailable recommended possible

VS 2019 experimental unavailable unavailable recommended

Table 2 - Debugging possibilities

Combinations marked as experimental, are neither tested nor supported and their
use is solely your responsibility.

Among the recommended combinations, two are particularly recommended for use
and are described in detail in the following chapters.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 33

7.1 Debugging with Visual Studio 2019
This chapter describes how to debug vECU built with Visual Studio 2019 using Vis-
ual Studio 2019 as the debugger.

1. Navigate to your workspace.
2. Execute the 3b_StartDebugger.bat file.

 The VS2019 debugger is invoked and loads the CMake project.
3. Navigate to where you want to start debugging and place a breakpoint there.
4. In the “Menu” tab click Debug > Start Debugging (F5).

 FMU Checker is invoked, and the debugger is attached.

Figure 21 - VS 2019 Debugger attached

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 34

7.2 Debugging with Visual Studio Code
This chapter describes how to debug vECU built with MinGW using Visual Studio
Code as the debugger.

1. Navigate to your workspace.
2. Right-click in your workspace and select Open with Code.

 Visual Studio Code opens.
3. Navigate to where you want to start the debugging and place a breakpoint

there.
4. In the menu panel on the left click Run and Debug.
5. Click Start Debugging (F5).

 FMU Checker is invoked, and the debugger is attached.

Figure 22 - VS Code Debugger attached

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 35

8 Migrating Workspaces of VECU-BUILDER V1.0
If you have created projects with VECU-BUILDER V1.0 some files of your work-
space need to be changed and migrated for using VECU-BUILDER V1.1.

This task is divided into the following main steps:

1. Create new workspace with VECU-BUILDER V1.1.

• See Creating a New Workspace.

2. Transfer the project-specific config content of the old YAML file into the
new one.

• The vEcuConf.yaml of the newly created workspace opens in
Notepad++ as part of the workspace creation process.

3. Copy the project-specific content into the new YAML file.

• TIP: To identify the deviations easily use a comparison tool.

4. Save the changes and close the new YAML file, the creation of the work-
space will continue.

5. When VECU-BUILDER asks to continue with the Build stage, select No.

6. Copy the contents of the 'imported' folder in the old workspace to the
'imported' folder in the new workspace.

• If you used the default folder when creating your workspace with
VECU-BUILDER V1.0, it is located here:

C:\ETASData\VECU-BUILDER v1.0\vEcuBuild_Work-
spaces.

7. The vECU can now be built and used as before with VECU-BUILDER
V1.0. For the build use 2_Build.cmd of your new created workspace.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 36

9 Troubleshooting
This chapter lists possible warning or error messages, their possible reasons and a
possible solution to fix the issue.

9.1 CMake not found

Figure 24 – CMake not found error

Possible Reason
A CMake installation is required (see System Requirements) and must be regis-
tered properly. This registry entry is used to locate the CMake installation, if it does
not exist, the build fails.

It appears as if CMake was not installed or is not properly registered on your PC.

Possible Solution
Ensure the following:

• CMake is installed (version 3.15 or higher).
• Kitware and CMake keys exist in the Windows Registry.
• The CMake registry key

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Kitware\CMake
contains the string value InstallDir pointing to the CMake installation
path:

Figure 25 – Windows Registry with Kitware\CMake registry key

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 37

9.2 Notepad++ Does Not Open During Workspace Creation
Process

Possible Reason
Notepad++ is the recommended text editor to be used along with VECU-BUILDER
(see System Requirements). For it to work as intended, it must be installed and
registered properly.

If Notepad++ does not open during the Workspace Creation process, but Windows
Notepad opens instead, it is either not installed at all or is not properly registered
on your PC.

Possible Solution
Ensure the following:

• Notepad++ is installed.
• Notepad++ key exists in the Windows Registry.
• The Notepad++ registry key

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Notepad++
contains the string value (Default) pointing to the Notepad++ installation
path:

Figure 26 - Windows Registry with Notepad++ registry key

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 38

9.3 Some Breakpoints Not Being Hit

Possible Reason
Depending on your compiler configurations, the resulting vECU may be built so that
some debugging information is not available. This may result in the debugger not
being able to hit some breakpoints.

Figure 27 – Breakpoint not being hit

Possible Solution
In order to prevent such compiler optimization, include the following pragma state-
ments:

• For MSVC compiler: #pragma optimize("", off)

• For MinGW compiler: #pragma GCC optimize ("O0")

9.4 (SymbolInfo.dll) The *.die File Is too Large to Load

Possible Reason
The amount of symbol information (stored in the *.die file) does not fit into the
memory provided by the operating system.

32bit processes are limited to less than 4 GB of RAM, this might be insufficient to
load a large *.die file.

Possible Solution
Use 64bit architecture when building the vECU (configured in the YAMl file) and
use a PC with sufficient memory.

ETAS

ETAS VECU-BUILDER V1.1 – User Guide 39

10 Contact Information
Technical Support
For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website: www.etas.com/en/hotlines.php

ETAS Headquarters
ETAS GmbH
Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany Internet: www.etas.com

https://www.etas.com/en/hotlines.php
https://www.etas.com/

	1 Safety and Privacy Information
	1.1 Intended Use
	1.2 Target Group
	1.3 Classification of Safety Messages
	1.4 Privacy Information
	1.4.1 Data Processing
	1.4.2 Technical and Organizational Measures

	2 About VECU-BUILDER
	2.1 Basics
	2.2 Virtual ECU
	2.3 vECU Creation Process Workflow

	3 Installation
	3.1 System Requirements
	3.2 Preparation
	3.3 Installation Content
	3.4 Installing
	3.5 Installed Files and Folders
	VECU-BUILDER Tool
	VECU-BUILDER Examples
	VECU-BUILDER Workspaces
	Access to Artefacts

	3.6 Licensing
	3.7 Uninstalling

	4 Working with VECU-BUILDER
	4.1 Creating a New Workspace
	4.2 Importing Files and Folders
	4.3 Building the vECU
	4.4 Building the FMU
	4.5 Workspace Content
	4.6 Configuration

	5 Exploring the Examples
	5.1 Simple Example
	5.1.1 FMU Checker
	5.1.2 Difference Between Debug and Release vECUs
	5.1.3 Features to Explore in the Simple Example Workspace

	5.2 BCU Example
	5.2.1 Show Symbol Information
	5.2.2 A2L File Patching
	5.2.3 Features to Explore in the BCU Workspace

	6 Controlling VECU-BUILDER
	6.1 Manual Interaction
	6.2 Command-Line Interface

	7 Debugging vECU
	7.1 Debugging with Visual Studio 2019
	7.2 Debugging with Visual Studio Code

	8 Migrating Workspaces of VECU-BUILDER V1.0
	9 Troubleshooting
	9.1 CMake not found
	9.2 Notepad++ Does Not Open During Workspace Creation Process
	9.3 Some Breakpoints Not Being Hit
	9.4 (SymbolInfo.dll) The *.die File Is too Large to Load

	10 Contact Information
	Technical Support
	ETAS Headquarters

